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Formal analysis of Facebook Connect
Single Sign-On authentication protocol?

Marino Miculan Caterina Urban

Dept. of Mathematics and Computer Science, University of Udine, Italy.
marino.miculan@uniud.it, caterina.urban@gmail.com

Abstract. We present a formal analysis of the authentication protocol
of Facebook Connect, the Single Sign-On service offered by the Facebook
Platform which allows Facebook users to login to affiliated sites.
Formal specification and verification have been carried out using the
specification language HLPSL and AVISPA, a state-of-the-art verifica-
tion tool for security protocols. AVISPA has revealed two security flaws,
one of which (previously unheard of, up to our knowledge) allows an
intruder to impersonate a user at a service provider affiliated with Face-
book. To address this problem, we propose a modification of the protocol,
by adding a message authentication mechanism; this protocol has been
verified with AVISPA to be safe from the masquerade attack. Finally, we
sketch a JavaScript implementation of the modified protocol.

1 Introduction

Single Sign-On (SSO) protocols allow to establish a federated environment,
where users can login once and access to services offered by different systems.
This approach addresses the issue of having multiple user-names and passwords.
The need for a federated environment is even stronger due to the diffusion of
integrated web services: a website can aggregate contents and services from other
sites, each of which may require a specific authentication (e.g., a page embedding
a video from YouTube, a calendar from Google and a slideshow from Flickr).

Federated authentication mechanisms need one or more identity providers,
that is, sites providing users identities registration and user authentication. Re-
cently, social networks are being proposed as possible identity providers. In fact,
users are keen to register to these sites, and to update regularly their profile;
in this way social networks already gather lots of personal information about
users, such as habits, tastes, friend networks, etc.—all data very valuable for
third parties. Moreover, the friend network of a user can be seen as an implicit
“web of trust” for that user’s identity.

Among others, Facebook is emerging as the most used social network by
worldwide monthly active users [5]. Remarkably, the development of third-party
applications interacting with Facebook is quite simple, thanks to the Facebook
Platform, a REST-like API to access Facebook services. A Facebook method
call is made over the Internet by sending HTTP GET or POST requests to
? Work partially supported by MIUR PRIN project “SisteR”, prot. 20088HXMYN.



the Facebook API REST server. Third-party web applications (i.e., websites
affiliated with Facebook) can be implemented as Java servlets or PHP pages,
but also stand-alone desktop applications, interacting with Facebook and third-
party sites, can be developed (in C, C++, Java, JavaScript. . . ).

Clearly, this raises the issue of user authentication before granting access
to web services. To this end, the Facebook Platform has been extended with
Facebook Connect1, a Single Sign-On service that enables Facebook users to login
to applications (e.g., affiliated websites) using their Facebook accounts, and at
the same time these applications can access user’s information on Facebook.

In this paper, we present a formal analysis of the authentication protocol of
Facebook Connect for web applications. Formal specification and verification are
carried out using the specification language HLPSL and AVISPA [1], a state-of-
the-art verification tool for security protocols.

This work is useful for many reasons. Obviously, mechanized formal methods
are very helpful to identify flaws in protocols, and to suggest corrections to fix
these flaws. Moreover, protocols are seldom described in a precise, formal way;
therefore, a HLPSL specification can be used as an accurate, authoritative defi-
nition of the protocol, where all important details must be spelled out. Indeed,
many security protocols have been formally analyzed, using similar techniques
and tools, see e.g. [3,4], and [2] for the analysis of Google Single Sign-On protocol.

The first problem we have to face is that Facebook Connect is a service, and
not a protocol specification like SAML SSO [6] or OpenID [7]. In fact, a detailed
protocol description has not been officially provided, because a programmer is
supposed to use the API provided by Facebook Connect, and not to implement
the authentication protocol from scratch.

To overcome this problem, in Section 2 we analyze the actual HTTP mes-
sage exchange between a client, a server and Facebook, during authentication.
From our analysis, in Section 3 we distill the first abstract formalization of the
Facebook Connect protocol in Alice-Bob notation; the corresponding HLPSL
specification is then obtained (almost) directly.

In Section 4, we inspect this formalization using AVISPA, which has identified
two security issues. First, a legitimate request can be observed and replayed by
an intruder; however, this issue is common to many HTTP-based services, since
HTTP is stateless. But also a more serious masquerade attack is possible: an
intruder can capture the session credential during a legitimate request, and use
them to impersonate the client to access any resource of the website. This attack
was previously unheard of, up to our knowledge.

In Section 5 we discuss how to avoid the subtlest of these flaws, that is
the masquerade attack: we propose a correction to the protocol, by adding a
message authentication mechanism based on a Diffie-Hellman key exchange. The
fixed protocol has been formally verified using AVISPA, which has not found the
masquerade attack. Moreover, we sketch also a JavaScript implementation, which
can be actually used in websites.

Concluding remarks and directions for future work are in Section 6.

1 http://developers.facebook.com/news.php?blog=1&story=174
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2 The Facebook Connect Authentication Protocol

In this section we describe the Facebook Connect authentication protocol. Ac-
tually, there is no official description of this protocol; hence, in order to under-
stand it we have analyzed all incoming and outgoing HTTP traffic between the
browser, the Facebook login server and an application server during the authen-
tication process. In particular, we have considered The Run Around , a sample
site created by Facebook to demonstrate the key features of Facebook Connect.

In order to allow users to login with their Facebook profile, an application
must be registered with Facebook beforehand. At registration, Facebook assigns
a unique API key (required for calling Facebook API methods), and an API
secret key (to be kept secret between Facebook and the application).

The authentication flow consists of six HTTP requests-responses pairs, one
of which uses a secure (i.e. TLS) channel. The data involved in each HTTP
request-response transaction are request and response headers, sent and re-
ceived cookies, query string parameters, POST data and response body. Cook-
ies play a particularly important role, since they carry the information about
the login status of the user. The message sequence chart is shown in Fig-
ure 1. The protocol begins with the user requesting the home page (GET http:
//www.somethingtoputhere.com/therunaround/); the server answers with an
HTML page that includes a placeholder for the Facebook Connect login button
(Figure 2). The page also contains a reference to the Facebook JavaScript Client
Library, which provides access to the features of Facebook Platform.

After receiving this response, the browser initializes the Connect service by
calling FB.init, and then pings Facebook for login status by executing the
method FB.Connect.get status. This returns one of three possible states:
Not logged in: the user is not logged in to Facebook;
Not authorized: the user is logged in to Facebook but has not yet connected

with the website;
Connected: the user is logged in and has already connected with the website.

To check the login status, the FB.Connect.get status method requests the
page http://www.facebook.com/extern/login_status.php (second GET in
Figure 1): the query string contains the Facebook Platform API key of the
website and the cookies carry user’s current session informations (if any). The
response from Facebook does not contain any session information, since we con-
sider the case when the user is not already logged in.

At this point, the user executes the FB.Connect.requireSession method
by clicking on the Connect button. The browser requests the page http://www.
facebook.com/login.php (third GET in Figure 1); the query string contains
the parameter return session set to 1, and the API key. The response opens a
popup window, asking the user for permission and possibly user’s Facebook cre-
dentials (email and password). At this step, the browser receives from Facebook
the lsd cookie, which is a nonce identifying the authentication flow.

Then, user’s credentials are sent as data of an HTTPS POST request to
https://login.facebook.com/login.php, together with the API key, the cross-
domain communications channel, and the lsd cookie.
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Fig. 1. Message sequence chart of the authentication flow

The response from Facebook contains user’s new login status, which has to
be stored in cookies for the application web server. There is a technical issue
here: due to security restrictions imposed by the HTTP protocol, the response
from www.facebook.com cannot modify cookies associated to another web server,
as www.somethingtoputhere.com. To overcome this issue, the Client Library
adopts a Cross-Domain Communication technique: the result from Facebook
redirects the browser to a page of the application web server, called “cross-
domain communication channel” (fourth GET in Figure 1, to http://www.
somethingtoputhere.com/therunaround/xd_receiver.php), carrying user’s lo-
gin status on the query string. This page contains a JavaScript code which is
executed by the browser: it decodes the session data contained in the query
string and stores them in the cookies for www.somethingtoputhere.com. Let us
describe briefly the meaning of these cookies, whose names begin with the API
key value (denoted by APIKEY ), with possibly a suffix.

APIKEY user: currently logged in user’s ID;
APIKEY session key: a value identifying the current session, required to make

API calls;
APIKEY expires: session’s expire time. If it is 0, session does not expire;
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<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

<body>

<fb:login-button></fb:login-button>

<script

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/Feature

Loader.js.php"

type="text/javascript"></script>

<script type="text/javascript">

FB.init("YOUR_API_KEY_HERE", "xd_receiver.htm");

</script>

</body>

</html>

Fig. 2. Basic Facebook Connect implementation

APIKEY ss: a session-only secret key, which allows to make API calls from
client-side applications;

APIKEY : the signature generated by taking the hash of the string obtained by
concatenating the other cookies and the API secret key.

Finally the browser reloads the page http://www.somethingtoputhere.
com/therunaround/, this time providing the server with the cookies contain-
ing the signed session information. To make sure the data came from Facebook,
the server performs the same hash encoding and checks the signature to make
sure it matches. In this case, it proceeds to fulfil the request, showing the user
the Facebook Connect login process is completed.

3 Protocol formalization

In this section we give a formal specification of the Facebook Connect protocol2,
first in Alice-Bob notation, and then in the specification language HLPSL. In
particular, in the latter we formally specify the security properties to be verified.

3.1 Alice-Bob formalization

From HTTP traffic analysis described in Section 2, we can define a protocol
formalization in Alice-Bob notation by abstracting from implementation-level,
but still corresponding one-to-one to the steps in Figure 1. The protocol is shown
in Figure 3; principals C, SP , and IDP stand for the Client (i.e., the user or
better the browser), the Service Provider (i.e., the website the user wants to
authenticate for) and the Identity Provider (i.e., Facebook), respectively.

We briefly comment about some formalization choices. First, the secure chan-
nel (e.g. the SSL session) between C and IDP is modeled by symmetric encryp-
tion using the key CIDPKey (steps 7 and 8). This key is supposed to be generated
2 Notice that we work on our reconstruction of the authentication protocol (Section 2),

and not from official published specifications.
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1. C → SP : ResourceReq
2. SP → C : IDP ,APIKey
3. C → IDP : StatusReq
4. IDP → C : NotLoggedIn
5. C → IDP : SessionReq ,APIKey
6. IDP → C : Lsd
7. C → IDP : {APIKey ,Credentials,Lsd}CIDPKey

8. IDP → C : {SP , {Session}SPKey}CIDPKey

9. C → SP : {Session}SPKey

10. SP → C : Session
11. C → SP : ResourceReq ,Session
12. SP → C : Resource

Fig. 3. Facebook Connect authentication protocol in Alice-Bob notation

1. C → SP : ResourceReq
2. SP → C : IDP ,APIKey
3. C → IDP : SessionReq ,APIKey
4. IDP → C : Lsd
5. C → IDP : {APIKey ,Credentials,Lsd}CIDPKey

6. IDP → C : {SP ,Session}CIDPKey

7. C → SP : ResourceReq ,Session
8. SP → C : Resource

Fig. 4. Facebook Connect authentication protocol, short version

fresh by the client, and communicated to the Identity Provider through an ex-
ternal secure channel (which corresponds to the handshake protocol in SSL). In
Section 3.2 we will see how this channel can be represented in HLPSL.

Another technical aspect concerns the modeling of the Cross-Domain Com-
munication. As described in the previous section, the session credentials provided
by IDP has to be “decoded” by some JavaScript code embedded in the “cross-
domain communication channel” page, which resides on the Service Provider,
before being stored in cookies. This mechanism is modeled by first sending the
session credentials encrypted with a public key SPKey (step 8); the client passes
this message to the (cross-domain communication channel on) SP, which gives
back the session credentials in clear (step 9).

In fact, one can notice that in this protocol there are several redundant
steps, which can be actually omitted without altering the security analysis. First,
we can assume the user not already logged in to the Identity Provider, when
the authentication flow begins; hence, steps 3 and 4 are redundant and can be
omitted. Secondly, the Cross-Domain Communication channel is not relevant
either: the only important aspect is that the session credentials coming from the
Identity Provider are eventually received by the Client (in order to be sent to
the Service Provider in step 11). Thus, in step 8, the Identity Provider can send
the session cookies directly to the Client, and steps 9, 10 can be omitted.
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These simplifications allow for a shorter and simpler formalization, which
is presented in Figure 4. It is important to notice that this formalization still
captures the original protocol; in fact, we have formalized and analyzed also
the longer version of Figure 3, obtaining the same results. Hence, for sake of
simplicity, in the rest of the paper, we will consider the shorter formalization.

3.2 HLPSL formalization

Translating the protocol in Figure 4 into HLPSL is quite easy, since it is written
in Alice-Bob notation. Full Facebook Connect HLPSL code can be obtained from
http://www.dimi.uniud.it/miculan/data/downloads/fbconnect.zip.

A remark is due about how the key CIDPKey can be shared secretly between
C and the IDP. This is implemented by means of a variable SSLKey of type
(symmetric_key) set, which can be seen as a “confidential shared memory”
between C and IDP. Thus, the client invents a fresh key CIDPKey and sends the
credentials encrypted with this key, saving it in the set:

role client (
C,SP,IDP : agent,
SSLKey : (symmetric_key) set, ... )

transition ...
3. State=2 /\ RCV(Lsd’) =|> State’:=3 /\ CIDPKey’:=new()

/\ SND({APIKey.credentials.Lsd’}_CIDPKey’)
/\ SSLKey’:=cons(CIDPKey’,SSLKey)

On the other hand, the identity provider retrieves the key from the set before
using it for decrypting the message with the credentials:

role identityProvider (
C,SP,IDP : agent,
SSLKey : (symmetric_key) set, ... )

transition ...
2. State=1 /\ in(CIDPKey’,SSLKey)

/\ RCV({APIKey.credentials.Lsd}_CIDPKey’) =|> ...

Thus, the shared variable SSLKey can be seen as an abstraction of the SSL
handshake protocol, which is used for establishing the session key CIDPKey.

Finally, we describe how the security goals are specified.
First, the authentication goal authentication on sp idp sig requests the

Identity Provider to be authenticated with respect to the Service Provider,
on session cookies signature. The related request goal fact is included in role
serviceProvider in the transition where the signature is received from Client
(see Figure 5). This can be read as “the Service Provider accepts the hash value
and now relies on the guarantee that the Identity Provider exists and agrees with
it on this value.” The matching witness predicate is in role identityProvider
as part of the transition where the signature is sent to the Client within session
information (see Figure 6). This fact should be read “Identity Provider asserts
that it wants to be the peer of Service Provider, agreeing on the hash value.”
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role serviceProvider ( ... )

transition ...

2. State=1 /\ RCV(resourcereq.Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(resource)

/\ request(SP,IDP,sp_idp_sig,Hash(Expires’.Ss’.Key’.Uid’.APISecret))

Fig. 5. Location of request goal fact related to authentication on
sp idp sig

role identityProvider ( ... )

transition ...

2. State=1 /\ in(CIDPKey’,SSLKey)

/\ RCV({APIKey.credentials.Lsd}_CIDPKey’) =|>

State’:=2 /\ SSLKey’:=delete(CIDPKey’,SSLKey)

/\ Key’:=new() /\ Expires’:=new() /\ Ss’:=new()

/\ Sig’:=Hash(Expires’.Ss’.Key’.Uid.APISecret)

/\ Session’:=(Key’.Uid.Expires’.Ss’.Sig’)

/\ SND({SP.Session’}_CIDPKey’)

/\ witness(IDP,SP,sp_idp_sig,Sig’)

Fig. 6. Location of witness goal fact related to authentication on
sp idp sig

Secondly, the secrecy goal secrecy of otherresourceid asserts that other
Service Provider resources, not requested by the Client, should be kept secret:
no intruder should be able to obtain them.

In order to justify this goal, we need to add an extra transition in role
serviceProvider, representing the fact that the Service Provider can fulfil
other requests. Notice that according to the protocol, the Client is not sup-
posed to make these requests. The related secret goal fact is included in role
serviceProvider as part of this extra transition (see Figure 7).

4 Attacks on Facebook Connect

In this section we present and discuss the results obtained by analyzing the
HLPSL formalization presented in Section 3 using AVISPA (and in particular
the OFMC model checker). This analysis has shown that Facebook Connect
authentication protocol is subject to a replay attack and a masquerade attack.

Replay attack This attack is found trying to achieve the authentication on
sp idp sig goal, in a scenario represented by an environment role with two
parallel sessions between the three legitimate agents. The attack trace is shown
as the first alternative in the Message Sequence Chart in Figure 8.
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role serviceProvider ( ... )

transition ...

3. State=1 /\ RCV(otherresourcereq.Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(otherresource)

/\ secret(otherresource,otherresourceid,{SP})

/\ request(SP,IDP,sp_idp_sig,Hash(Expires’.Ss’.Key’.Uid’.APISecret))

Fig. 7. Location of secret goal fact related to secrecy of otherresourceid

This attack can be effectively carried out since the HTTP traffic between
the Client and the Service Provider is not encrypted, and actually is common in
many HTTP-based services: since HTTP (without SSL) is basically stateless, an
intruder can always intercept a packet containing an HTTP request (e.g. using
a packet-sniffer like Wireshark), and submit it again.

Masquerade attack As observed in the replay attack above, the intruder can
acquire the HTTP cookies sent together with a legitimate query. Hence, he can
represent them to the Service Provider to be authenticated as the Client to
obtain illegitimately other resources (e.g., a user’s mailbox, even if it has not
been accessed before by the owner).

This attack is found when we require the secrecy of otherresourceid goal
to be satisfied. Intruder knows the alternative request OtherResourceReq , which
can be used in place of ResourceReq . Indeed, in the sequence of events found
by OFMC (shown as the second alternative in the Message Sequence Chart in
Figure 8), the intruder replaces ResourceReq with OtherResourceReq , gaining
the access to a resource which has not been requested by the Client.

5 Fixing the protocol

In this section, we discuss how to repair the security flaws described above.
The replay attack is due to the fact that, as in any unencrypted HTTP trans-

action, an intruder can intercept the traffic and submit it again subsequently.
This kind of attacks can be prevented using well-known mechanisms based e.g. on
timestamps and nonces. Alternatively, messages could be sent through a secure
channel like a SSL session. However, it should be noticed that session credentials
have a timeout, after which they cannot be reused for this kind of attacks.

On the other hand, the masquerade attack can also be prevented using SSL
channels. However, one can be interested in preventing the masquerade attack
without establishing an encrypted channel. To this end, we propose a small
correction to the protocol which adds an authentication mechanism ensuring
message integrity by means of a secret Diffie-Hellman key, without using SSL
channels. The modified protocol, in Alice-Bob notation, is shown in Figure 9;
the differences with respect to the protocol in Figure 4 are in boldface.
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Fig. 8. Replay attack and masquerade attack

The protocol requires that after receiving an unauthenticated resource re-
quest, the Service Provider chooses a Diffie-Hellman base A, a fresh Diffie-
Hellman secret key (not shown) and computes the corresponding public key Ysp;
A and Ysp are sent to the client in step 2, encrypted with IDP public key (which
exists because IDP establishes an SSL channel with C). This information is used
during authentication, in steps 5, 6 and 7. In step 5 and 6, the IDP decrypts for
the client the data A, Y sp; notice that this information is still protected by the
SSL channel (the encryption with CIDPKey). At this point, the Client chooses
his own secret key, computes the corresponding public key Yc and the shared
Diffie-Hellman secret key CSPKey . In step 7, the Client sends to the Service
Provider his key Yc and a “message authentication code” obtained by taking
the hash of ResourceReq and CSPKey . The Service Provider computes, in turn,
the shared secret key using Yc, then the same hash encoding, and checks the
authentication code received from the Client to make sure it matches.
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1. C → SP : ResourceReq
2. SP → C : IDP ,APIKey , {A, Ysp}IDPKey

3. C → IDP : SessionReq ,APIKey
4. IDP → C : Lsd
5. C → IDP : {APIKey ,Credentials,Lsd , {A, Ysp}IDPKey}CIDPKey

6. IDP → C : {SP ,Session, A, Ysp}CIDPKey

7. C → SP : ResourceReq ,Session, Yc, Hash(ResourceReq .CSPKey)
8. SP → C : Resource

Fig. 9. Modified Facebook Connect protocol in Alice-Bob notation

In order to obtain another resource, the intruder should be able to compute
the message authentication code for another request, say OtherResourceReq .
This cannot happen, since there is no way for the intruder to know the secret key
CSPKey . Notice also that, since A and Ysp are always sent encrypted, the man-
in-the-middle attack to the Diffie-Hellman key exchange cannot be carried out.

Again, this protocol has been formalized in HLPSL; full code is available at
http://www.dimi.uniud.it/miculan/data/downloads/fbconnect.zip.

Formal verification has been carried out using the OFMC model checker,
since it supports modular exponentiation. The algebraic properties of modular
exponentiation (needed for Diffie-Hellman key exchanges) are associativity, com-
mutativity and identity (i.e. x1 = x). The model checker has found no attacks
against the secrecy of otherresourceid goal. In other words, this security
goal is satisfied for a bounded number of sessions, as specified in environment
role. (Actually, the AVISPA TA4SP backend supports also unbounded scenarios,
but it does not support sets nor exponentiation operations.)

Implementation Changing the authentication flow in Figure 1 according to the
modified authentication protocol in Figure 9, requires a bit of care. First, the
Service Provider should communicate the encrypted Diffie-Hellman base and
his public key to the client at the first step, e.g. as a cookie, or along with
the APIKey. These data is then passed to the Identity Provider (Facebook)
in the POST request containing the credentials; the answer from the IDP con-
tains A and Y sp in clear (but still covered by the SSL session), to be stored
e.g. as a cookie. At this point, the Client can choose his secret key, and com-
pute the corresponding public and shared keys; this can be performed by a
JavaScript program contained in the xd_receiver.php page, which stores the
values in JavaScript “session variables”, like e.g. sessvar.authdata.pubkey and
sessvar.authdata.secret.

A subtler modification is in step 7, where the Client has to compute the
message authentication code and to send it along with the request and his pub-
lic key. In practice, this means that each GET request from the Client to the
Service Provider, in order to be authenticated, must also carry the hash code
computed from the request itself. This “on-the-fly” hash generation can be per-
formed by an onclick event handler, defined in the page header, and asso-
ciated to each link by replacing a tag of the form <a href="someurl"> with

11
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<html>

<head>

[... auxiliary libs omitted ...]

<script type="text/javascript">

[... auxiliary functions omitted ...]

function auth_url(url)

{

/* compute the hmac */

hmac = hex_sha1(url + sessvars.authdata.secret);

/* store the hmac in a cookie */

createCookie("fbs_hmac", hmac + "-" + sessvar.authdata.pubkey, 0);

/* then move to the requested url */

window.location=url;

}

</script>

</head>

<body>

[...]

This is an <a href="#" onclick="auth_url(’somepage.html’)">authenticated

request</a>.

[...]

</body>

</html>

Fig. 10. JavaScript implementation of a URL authentication mechanism

<a href="#" onclick="auth_url(’someurl’)"> (see Figure 10). When the
user clicks on the link, instead of following it immediately the browser executes
the function authenticate_url(’someurl’); this computes the authentication
code of the requested URL, saves the result in a cookie, and then proceeds to
load the requested URL. The resulting request provides the Service Provider
with the cookie containing the authentication code (and the public key); then
the Service Provider can perform the relevant checks.

6 Conclusions

In this paper, we have presented a formal analysis of the Facebook Connect
authentication protocol. We have given a protocol formalization first in Alice-
Bob notation, and then in HLPSL. Using AVISPA, we have found two security
flaws, including a masquerade attack: an intruder can intercept cookies carrying
user session information, and reuse them to illegitimately access resources on
websites. In order to fix this problem, we have corrected the protocol by adding
a message authentication mechanism which prevents an intruder to reuse cookies.
This solution has been formally verified using AVISPA; finally, we have briefly
described how this correction can be implemented in JavaScript.
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In our opinion, the message authentication mechanism we have presented in
this paper, can be applied in other situations where cookies are used to convey
session credentials, and as such masquerade attacks are possible.

On the other hand, it is not easy to distinguish a replay attack from a iteration
of the same request by the legitimate user (like, e.g. a page reload). One can
apply known authentication mechanisms, e.g. based on sequence counters, to
avoid this vulnerability. We leave as a possible future work the specification and
verification of an authentication protocol extending that in Figure 9, taking into
account these mechanisms.

One aspect of our formalization is that we have used a shared set variable
for representing the SSL handshake and session key exchange. At the moment,
not all AVISPA backends support these variables. In fact, very recently there
have been promising developments in the AVANTSSAR project (the successor
of AVISPA), in order to support channels beside Dolev-Yao ones: in the new
specification language (called HLPSL++) it will be possible to describe precisely
the security features of a SSL-like channel. We plan to adapt our formalizations
to the new platform, as soon as it will be available.
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A HLPSL code

A.1 Facebook Connect authentication protocol

role client (

C,SP,IDP : agent,

SSLKey : (symmetric_key) set,

SND,RCV : channel(dy) )

played_by C

def=

local

State : nat,

APIKey,Lsd : text,

CIDPKey : symmetric_key,

Session : symmetric_key.text.text.text.

hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0

transition

1. State=0 /\ RCV(start) =|> State’:=1 /\ SND(resourcereq)

2. State=1 /\ RCV(IDP.APIKey’) =|> State’:=2 /\ SND(sessionreq.APIKey’)

3. State=2 /\ RCV(Lsd’) =|> State’:=3 /\ CIDPKey’:=new()

/\ SND({APIKey.credentials.Lsd’}_CIDPKey’)

/\ SSLKey’:=cons(CIDPKey’,SSLKey)

4. State=3 /\ RCV({SP.Session’}_CIDPKey) =|>

State’:=4 /\ SND(resourcereq.Session’)

5. State=4 /\ RCV(resource) =|> State’:=5

end role

role serviceProvider (

C,SP,IDP : agent,

APIKey : text,

APISecret : symmetric_key,

Hash : hash_func,

SND,RCV : channel(dy) )

played_by SP

def=

local

State : nat,

Uid,Expires,Ss : text,

Key : symmetric_key,

Sig : hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0

transition

1. State=0 /\ RCV(resourcereq) =|> State’:=1 /\ SND(IDP.APIKey)

2. State=1 /\ RCV(resourcereq.Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(resource) /\ request(SP,IDP,sp_idp_sig,

Hash(Expires’.Ss’.Key’.Uid’.APISecret))
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3. State=1 /\ RCV(otherresourcereq.Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(otherresource)

/\ secret(otherresource,otherresourceid,{SP})

/\ request(SP,IDP,sp_idp_sig,Hash(Expires’.Ss’.Key’.Uid’.APISecret))

end role

role identityProvider (

C,SP,IDP : agent,

APIKey,Uid : text,

APISecret : symmetric_key,

SSLKey : (symmetric_key) set,

Hash : hash_func,

SND,RCV : channel(dy) )

played_by IDP

def=

local

State : nat,

Lsd,Expires,Ss : text,

CIDPKey,Key : symmetric_key,

Sig : hash(text.text.symmetric_key.text.symmetric_key),

Session : symmetric_key.text.text.text.

hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0

transition

1. State=0 /\ RCV(sessionreq.APIKey) =|>

State’:=1 /\ Lsd’:=new() /\ SND(Lsd’)

2. State=1 /\ in(CIDPKey’,SSLKey)

/\ RCV({APIKey.credentials.Lsd}_CIDPKey’) =|>

State’:=2 /\ SSLKey’:=delete(CIDPKey’,SSLKey)

/\ Key’:=new() /\ Expires’:=new() /\ Ss’:=new()

/\ Sig’:=Hash(Expires’.Ss’.Key’.Uid.APISecret)

/\ Session’:=(Key’.Uid.Expires’.Ss’.Sig’)

/\ SND({SP.Session’}_CIDPKey’)

/\ witness(IDP,SP,sp_idp_sig,Sig’)

end role

role session (

C,SP,IDP : agent,

APIKey,Uid : text,

APISecret : symmetric_key,

SSLKey : (symmetric_key) set,

Hash : hash_func )

def=

local

SC,RC,SSP,RSP,SIDP,RIDP : channel(dy)

composition

client(C,SP,IDP,SSLKey,SC,RC)

/\ serviceProvider(C,SP,IDP,APIKey,APISecret,Hash,SSP,RSP)
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/\ identityProvider(C,SP,IDP,APIKey,Uid,APISecret,SSLKey,

Hash,SIDP,RIDP)

end role

role enviroment()

def=

local

Sslkey : (symmetric_key) set

const

c,sp,idp : agent,

apikey,uid : text,

resourcereq,sessionreq,credentials,

resource,otherresourcereq,otherresource : message,

apisecret : symmetric_key,

sp_idp_sig,otherresourceid : protocol_id,

h : hash_func

init

Sslkey:={}

intruder_knowledge = {otherresourcereq}

composition

session(c,sp,idp,apikey,uid,apisecret,Sslkey,h)

/\ session(c,sp,idp,apikey,uid,apisecret,Sslkey,h)

end role

goal

authentication_on sp_idp_sig

secrecy_of otherresourceid

end goal

enviroment()

A.2 Modified Facebook Connect authentication protocol

role client (

C,SP,IDP : agent,

SSLKey : (symmetric_key) set,

Hash : hash_func,

SND,RCV : channel(dy) )

played_by C

def=

local

State : nat,

APIKey,Lsd,Xc : text,

A,Ysp,Yc,CSPKey : message,

DiffieHellman : {message.message}_public_key,

CIDPKey : symmetric_key,

Session : symmetric_key.text.text.text.

hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0
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transition

1. State=0 /\ RCV(start) =|> State’:=1 /\ SND(resourcereq)

2. State=1 /\ RCV(IDP.APIKey’.DiffieHellman’) =|>

State’:=2 /\ SND(sessionreq.APIKey’)

3. State=2 /\ RCV(Lsd’) =|> State’:=3 /\ CIDPKey’:=new()

/\ SND({APIKey.credentials.Lsd’.DiffieHellman}_CIDPKey’)

/\ SSLKey’:=cons(CIDPKey’,SSLKey)

4. State=3 /\ RCV({SP.Session’.A’.Ysp’}_CIDPKey) =|> State’:=4

/\ Xc’:=new() /\ Yc’:=exp(A’,Xc’) /\ CSPKey’:=exp(Ysp’,Xc’)

/\ SND(resourcereq.Yc’.Hash(resourcereq.CSPKey’).Session’)

5. State=4 /\ RCV(resource) =|> State’:=5

end role

role serviceProvider (

C,SP,IDP : agent,

APIKey : text,

APISecret : symmetric_key,

IDPKey : public_key,

Hash : hash_func,

SND,RCV : channel(dy) )

played_by SP

def=

local

State : nat,

Uid,Expires,Ss,Xsp : text,

A,Ysp,Yc,CSPKey : message,

Key : symmetric_key,

Sig : hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0

transition

1. State=0 /\ RCV(resourcereq) =|>

State’:=1 /\ A’:=new() /\ Xsp’:=new() /\ Ysp’:=exp(A’,Xsp’)

/\ SND(IDP.APIKey.{A’.Ysp’}_IDPKey)

2. State=1 /\ RCV(resourcereq.Yc’.

Hash(resourcereq,exp(Yc’,Xsp)).Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(resource) /\ request(SP,IDP,sp_idp_sig,

Hash(Expires’.Ss’.Key’.Uid’.APISecret))

3. State=1 /\ RCV(otherresourcereq.Yc’.

Hash(otherresourcereq,exp(Yc’,Xsp)).Key’.Uid’.Expires’.Ss’.

Hash(Expires’.Ss’.Key’.Uid’.APISecret)) =|>

State’:=2 /\ SND(otherresource)

/\ secret(otherresource,otherresourceid,{SP})

/\ request(SP,IDP,sp_idp_sig,Hash(Expires’.Ss’.Key’.Uid’.APISecret))

end role

role identityProvider (

C,SP,IDP : agent,

APIKey,Uid : text,
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APISecret : symmetric_key,

SSLKey : (symmetric_key) set,

IDPKey : public_key,

Hash : hash_func,

SND,RCV : channel(dy) )

played_by IDP

def=

local

State : nat,

Lsd,Expires,Ss : text,

A,Ysp : message,

CIDPKey,Key : symmetric_key,

Sig : hash(text.text.symmetric_key.text.symmetric_key),

Session : symmetric_key.text.text.text.

hash(text.text.symmetric_key.text.symmetric_key)

init

State:=0

transition

1. State=0 /\ RCV(sessionreq.APIKey) =|>

State’:=1 /\ Lsd’:=new() /\ SND(Lsd’)

2. State=1 /\ in(CIDPKey’,SSLKey)

/\ RCV({APIKey.credentials.Lsd.{A’.Ysp’}_IDPKey}_CIDPKey’) =|>

State’:=2 /\ SSLKey’:=delete(CIDPKey’,SSLKey)

/\ Key’:=new() /\ Expires’:=new() /\ Ss’:=new()

/\ Sig’:=Hash(Expires’.Ss’.Key’.Uid.APISecret)

/\ Session’:=(Key’.Uid.Expires’.Ss’.Sig’)

/\ SND({SP.Session’.A’.Ysp’}_CIDPKey’)

/\ witness(IDP,SP,sp_idp_sig,Sig’)

end role

role session (

C,SP,IDP : agent,

APIKey,Uid : text,

APISecret : symmetric_key,

SSLKey : (symmetric_key) set,

IDPKey : public_key,

Hash : hash_func )

def=

local

SC,RC,SSP,RSP,SIDP,RIDP : channel(dy)

composition

client(C,SP,IDP,SSLKey,Hash,SC,RC)

/\ serviceProvider(C,SP,IDP,APIKey,APISecret,IDPKey,Hash,SSP,RSP)

/\ identityProvider(C,SP,IDP,APIKey,Uid,APISecret,SSLKey,IDPKey,

Hash,SIDP,RIDP)

end role

role enviroment()

def=

local
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Sslkey : (symmetric_key) set

const

c,sp,idp : agent,

apikey,uid : text,

resourcereq,sessionreq,credentials,

resource,otherresourcereq,otherresource : message,

apisecret : symmetric_key,

idpkey : public_key,

sp_idp_sig,otherresourceid : protocol_id,

h : hash_func

init

Sslkey:={}

intruder_knowledge = {otherresourcereq}

composition

session(c,sp,idp,apikey,uid,apisecret,Sslkey,idpkey,h)

/\ session(c,sp,idp,apikey,uid,apisecret,Sslkey,idpkey,h)

end role

goal

authentication_on sp_idp_sig

secrecy_of otherresourceid

end goal

enviroment()
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