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Intrinsic algebraic entropy

Dikran Dikranjan Anna Giordano Bruno Luigi Salce Simone Virili

Abstract

The new notion of intrinsic algebraic entropy ẽnt of endomorphisms of Abelian groups is intro-
duced and investigated. The intrinsic algebraic entropy is compared with the algebraic entropy, a
well-known numerical invariant introduced in the sixties and recently deeply studied also in its re-
lations to other fields of Mathematics. In particular, it is shown that the intrinsic algebraic entropy
and the algebraic entropy coincide on endomorphisms of torsion Abelian groups, and their precise
relation is clarified in the torsion-free case. The Addition Theorem and the Uniqueness Theorem
are also proved for ẽnt, in analogy with similar results for the algebraic entropy. Furthermore,
a relevant connection of ẽnt to the algebraic entropy of a continuous endomorphism of a locally
compact Abelian group G is pointed out; this allows for the computation of the algebraic entropy
in case G is totally disconnected.

1 Introduction

The algebraic entropy ent for endomorphisms of Abelian groups, as sketched in [2] and developed in
[25] by Weiss, and more recently in [9], is defined by using trajectories of finite subgroups, and so
its natural setting is that of torsion Abelian groups. Peters gave a different definition of algebraic
entropy in [16] for automorphisms of Abelian groups using finite subsets instead of finite subgroups;
he obtained in this way the new invariant h which is non-trivial also for torsion-free Abelian groups.
This notion was extended to endomorphisms of Abelian groups in [6], where it was proved that h
coincides with the algebraic entropy ent for endomorphisms of torsion Abelian groups. Imitating [17]
and [6], in [24] the definition of algebraic entropy was extended to all continuous endomorphisms of
locally compact Abelian (LCA) groups (see §4.1). As noted in [7] also the commutativity of the groups
can be removed in all these cases.

In this paper we extend the family of finite subgroups of an Abelian group G by a suitable larger
family of subgroups depending on the fixed endomorphism φ of G, deriving a new notion of algebraic
entropy of φ (see Definition 1.2). This suitable notion of subgroup (see Definition 1.1) is inspired
by that of inert subgroup introduced by Belyaev in [3] for inner automorphisms of non-commutative
groups and investigated in that setting in [4], [18] and [5]. (Recall that a subgroup H of G is inert
if [H : H ∩ φ(H)] is finite for every inner automorphism φ of G; Belyaev [3] gives credit to Kegel for
coining the term “inert subgroup”.)

Following [6], the definition of algebraic entropy h(φ) of an endomorphism φ : G→ G of an Abelian
group G makes use of finite subsets F of G and their partial φ-trajectories

Tn(φ, F ) = F + φ(F ) + φ2(F ) + . . .+ φn−1(F )
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for all n ∈ N+, which are still finite subsets of G. Moreover, the φ-trajectory of F is

T (φ, F ) =
⋃
n∈N+

Tn(φ, F ).

If F is a finite subgroup of G, then T (φ, F ) is the smallest φ-invariant subgroup of G containing F .
According to [6], the limit

H(φ, F ) = lim
n→∞

log |Tn(φ, F )|
n

(1.1)

does exist and is finite, and it is called the algebraic entropy with respect to F of φ. The algebraic
entropy of φ is

h(φ) = sup{H(φ, F ) : F ⊆ G finite},
while

ent(φ) = sup{H(φ, F ) : F ∈ F(G)},
where F(G) denotes the family of all finite subgroups of G. As previously noted, h and ent coincide
when dealing with torsion Abelian groups. Indeed, denoting as usual by t(G) the torsion subgroup
of the Abelian group G (that is fully invariant), we have that ent(φ) = ent(φ �t(G)) as every finite
subgroup of G is contained in t(G), and h(φ �t(G)) = ent(φ �t(G)) since every finite subset of t(G)
generates a finite subgroup containing it.

According to a basic fact in the framework of the algebraic entropy ent (see [9, Lemma 1.1]), for
a finite subgroup F of G, the sequence of non-negative integers

αn =
|Tn+1(φ, F )|
|Tn(φ, F )|

(1.2)

is non-increasing, hence it is stationary. A crucial consequence of this fact is that

H(φ, F ) = lim
n→∞

logαn = logα, (1.3)

where α = αn for all n large enough (see [9, Proposition 1.3]).
A natural question arises: can we compute H(φ, F ) using the formula in (1.3), without asking

finiteness of the subgroup F? The idea of using (1.3) instead of (1.1) to compute the algebraic
entropy of φ with respect to F triggered the new notion of entropy, that we call intrinsic algebraic
entropy.

Since for all n ∈ N+ and for every subgroup H of G we have

Tn+1(φ,H)

Tn(φ,H)
∼=
Tn+1(φ,H)/H

Tn(φ,H)/H
, (1.4)

in order to get the limit in (1.3) we do not need finiteness of Tn(φ,H) for all n ∈ N+. What really
matters is finiteness of Tn(φ,H)/H for all n ∈ N+, hence we are led to the following

Definition 1.1. Let G be an Abelian group, φ : G → G an endomorphism. A subgroup H of G is
φ-inert if (H + φ(H))/H is finite.

Since T2(φ,H)/H = (H + φ(H))/H is finite if and only if Tn(φ,H)/H is finite for all n ∈ N+ (see
Lemma 2.1), in view of (1.4) the limit in (1.3) exists and is finite for a φ-inert subgroup H of G (see
Lemma 3.2); hence we can set

ẽnt(φ,H) = lim
n→∞

log |Tn(φ,H)/H|
n

.

Taking the supremum of these non-negative real numbers, ranging H in the set Iφ(G) of the φ-inert
subgroups of G, we have the announced new notion:
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Definition 1.2. Let G be an Abelian group and φ : G→ G an endomorphism. The intrinsic algebraic
entropy of φ is

ẽnt(φ) = sup
H∈Iφ(G)

ẽnt(φ,H).

In Section 2 we study the family Iφ(G) of the φ-inert subgroups of an Abelian group G, where φ
is an endomorphism of G. In particular, we show that Iφ(G) is a bounded sublattice of the lattice of
all the subgroups of G (see Lemma 2.6), containing all finite subgroups, all finite-index subgroups, as
well as all φ-invariant and fully invariant subgroups of G; but in general Iφ(G) is wider.

In Section 3 we give the basic properties of the intrinsic algebraic entropy; some of them are similar
to those of the algebraic entropy, but there are also important differences. For every endomorphism φ
of any Abelian group G, these entropies are related by the inequalities ent(φ) ≤ ẽnt(φ) ≤ h(φ); as for
endomorphisms of torsion Abelian groups the equality ent(φ) = h(φ) holds, in this case this common
value coincides also with ẽnt(φ). Therefore, the real novelty of intrinsic algebraic entropy is confined
to the class of non-torsion Abelian groups.

The topological setting provides another motivation for introducing φ-inert subgroups (see §4.1).
Let G be a locally compact Abelian group and B(G) be the family of all compact open subgroups of G.
Then every U ∈ B(G) is φ-inert for every continuous endomorphism φ : G → G (i.e., B(G) ⊆ Iφ(G))
and ẽnt(φ,U) coincides with the algebraic entropy of φ with respect to U (see Theorem 4.3). In
particular, ẽnt(φ) is an upper bound for the algebraic entropy of φ whenever G is totally disconnected
(see Remark 4.4). On the other hand, if G is totally disconnected and φ is a topological automorphism
of G, then the finite index [U + φ(U) : U ] = [φ(U) : U ∩ φ(U)], for U ∈ B(G), is involved also in the
definition of the scale function s(φ) of Willis [26, 27] given by s(φ) = min{[φ(U) : U ∩ φ(U)] : U ∈
B(G)}.

In the rest of Section 4 we compute the intrinsic algebraic entropy of endomorphisms of finite
dimensional Q-vector spaces and we reveal its relation to the so-called Algebraic Yuzvinski Formula
recently proved in [12]. The Algebraic Yuzvinski Formula states that, for an endomorphism φ : Qm →
Qm with m ∈ N+, the value of the algebraic entropy can be computed as

h(φ) = log s+
∑
|λi|>1

log |λi|,

where {λ1, . . . , λm} ⊆ C are the eigenvalues of φ and s is the least common multiple of the denominators
of the coefficients of the characteristic polynomial of φ. The term log s in this formula seems to be
somewhat mysterious; now we see in Theorem 4.2 that

ẽnt(φ) = log s. (1.5)

In Section 5 we carefully study the particular case when the group G is the φ-trajectory of a finitely
generated subgroup, in other words, when G is a finitely generated Z[X]-module, where the action of
an integer polynomial over G is induced by φ. The detailed description of this case allows us to prove
the Addition Theorem for the intrinsic algebraic entropy, stating that ẽnt is an additive invariant of
the category Mod(Z[X]). This result, together with the property of being upper continuous, makes
the intrinsic algebraic entropy a length function on Mod(Z[X]), similarly to the algebraic entropy h
(see [6]).

In Section 6 we prove a Uniqueness Theorem, characterizing the intrinsic algebraic entropy in a
similar fashion, mutatis mutandis, to the analogous theorems proved for the two above mentioned
entropies ent and h in [9] and [6], respectively. Indeed, we see that ẽnt is the unique length function
on Mod(Z[X]) coinciding with ent on torsion Abelian groups and satisfying (1.5).
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In [5] an automorphism φ : G → G of a group G is defined to be inertial if [H : H ∩ φ(H)]
and [φ(H) : H ∩ φ(H)] are finite for every subgroup H of G (note that in Definition 1.1 we consider
endomorphisms of Abelian groups, not only automorphisms, and we require that H ∩ φ(H) has finite
index only in φ(H), and not in H). Inspired by this and similarly to what is done in [4] and [18] for
inner automorphisms, one can introduce a smaller class of subgroups of an Abelian group G, letting
φ ranging in the ring End(G) of all endomorphisms of G. Namely, call a subgroup H of an Abelian
group G fully inert if H is φ-inert for every endomorphism φ of G. The family

⋂
φ∈End(G) Iφ(G) of

all fully inert subgroups of G contains all finite subgroups, all finite-index subgroups and all fully
invariant subgroups of G. Fully inert subgroups are investigated in the papers [8] and [10], with
particular attention paid to the Abelian groups which are fully inert in divisible groups and free
groups respectively.

Notation and terminology

We denote by N, N+, P, Z and Q the set of the naturals, positive naturals, primes, integers and
rationals respectively. For every p ∈ P we denote by Jp the ring of p-adic integers, by Qp the field of
p-adic numbers and by |− |p the p-adic norm on Qp; this is defined by |p|p = 1/p and |q|p = 1 for every
q ∈ P with q 6= p. Let R be the set of real numbers, R≥0 = {r ∈ R : r ≥ 0} and R∗ = R≥0 ∪ {∞}.

For an Abelian group G we denote by t(G) the torsion subgroup of G and by rk(G) = dimQ(G⊗ZQ)
the torsion-free rank of G. Moreover, D(G) denotes a divisible hull of G and, if G is torsion-free and
L is a subgroup of G, L∗ denotes the pure closure of L in G. We recall that L∗/L = t(G/L) and so
G/L∗ ∼= (G/L)/(L∗/L) = (G/L)/t(G/L), hence we have the short exact sequence

0→ L∗ → G→ (G/L)/t(G/L)→ 0. (1.6)

For a ring R we denote by Mod(R) the category of the left R-modules.

2 Basic properties of φ-inert subgroups

In this section we prove the basic facts concerning inert subgroups, that will be used in the investigation
of the intrinsic algebraic entropy. We start from the next lemma collecting some useful properties of
inert subgroups.

Lemma 2.1. Let G be an Abelian group, φ : G → G an endomorphism and H a φ-inert subgroup of
G. Then:

(a) Tn(φ,H)/H is finite for all n ∈ N+;

(b) T (φ,H)/H is torsion;

(c) if G is torsion-free, then T (φ,H) is contained in H∗ and H∗ is φ-invariant.

Proof. (a) We proceed by induction. For n = 2 finiteness is ensured by definition. Let us assume
that n ≥ 2 and Tn(φ,H)/H is finite. The map Tn(φ,H)/H → Tn+1(φ,H)/Tn(φ,H) induced by
φ is well-defined and surjective, therefore Tn+1(φ,H)/Tn(φ,H) is finite. Since Tn+1(φ,H)/Tn(φ,H)
is isomorphic to (Tn+1(φ,H)/H)/(Tn(φ,H)/H), Tn+1(φ,H)/H is finite as well, as an extension of
Tn(φ,H)/H by this group.

(b) Since T (φ,H) =
⋃
n∈N+

Tn(φ,H), it follows that

T (φ,H)/H =
⋃
n∈N+

Tn(φ,H)/H;
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so T (φ,H)/H, as a union of finite subgroups, is torsion.
(c) The first claim is an immediate consequence of item (b), as H∗/H is the torsion subgroup of

G/H. To prove that H∗ is φ-invariant, note that the φ-trajectory T = T (φ,H) is φ-invariant in G and
H∗/T is torsion. If x ∈ H∗, then kx ∈ T for a suitable integer k 6= 0. So kφ(x) = φ(kx) ∈ T , hence
φ(x) ∈ H∗, which is the pure closure of T in G, consequently H∗ is φ-invariant in G.

The following characterization of φ-inert subgroups is needed later on.

Proposition 2.2. Let G be an Abelian group, φ : G→ G an endomorphism and H a subgroup of G.
Then the following conditions are equivalent:

(a) H is φ-inert;

(b) there exists a finite subset F of H such that T2(φ,H) = H + φ(F );

(c) there exists a finite subset F of H such that Tn(φ,H) = H + Tn(φ, F ) for every n ≥ 2.

If G is torsion, the subset F in (b) and (c) can be assumed to be a finite subgroup.

Proof. (a)⇒(b) Since (H + φ(H))/H is finite by hypothesis, there are finitely many cosets of φ(H)
modulo H. Let F be a finite subset of H, such that H + φ(H) = H + φ(F ). If G is torsion and F
denotes the subgroup generated by these cosets, we have the same equality.

(b)⇒(c) We induct on n ∈ N+. The hypothesis gives H + φ(H) = H + φ(F ) for a suitable finite
subset F of H. Assume that Tn(φ,H) = H + Tn(φ, F ) for the same finite subset F , and for some
n ≥ 2. Then , using that H + φ(H) = H + φ(F ) and that H = H + F , so also φ(H) = φ(H) + φ(F ),
we get

Tn+1(φ,H) = H + φ(Tn(φ,H)) = H + φ(H) + φ(Tn(φ, F )) =

= H + φ(F ) + φ(Tn(φ, F )) = H + Tn+1(φ, F ).

We can replace “finite subset” by “finite subgroup” if G is torsion.
(c)⇒(b)⇒(a) are trivial.

Another useful property of inert subgroups is the following one.

Lemma 2.3. Let G be an Abelian group and φ : G → G an endomorphism. A subgroup H of G
is φ-inert if and only if H = (H + t(G))/t(G) is φ-inert in G = G/t(G), where φ : G → G is the
endomorphism induced by φ, and ((H + φ(H))/H)∩ ((H + t(G))/H) is finite. The latter condition is
automatically satisfied whenever H is finitely generated.

Proof. Let us denote Tn(φ,H) by Tn for every n ∈ N+. The canonical surjection Tn → (Tn+t(G))/t(G)
induces the exact sequence

0→ (Tn ∩ (H + t(G)))/H → Tn/H → (Tn + t(G))/(H + t(G))→ 0.

By Lemma 2.1, H is φ-inert if and only if Tn/H is finite; in view of the above exact sequence, this
is equivalent to the facts that (Tn + t(G))/(H + t(G)) ∼= ((Tn + t(G))/t(G))/((H + t(G))/t(G)) is
finite (that is, H is φ-inert) and (Tn ∩ (H + t(G)))/H is finite. For n = 2 this amounts to say that
((H+φ(H))/H)∩((H+t(G))/H) is finite; conversely, if this is true, then the same inductive argument
used in Lemma 2.1 shows that (Tn ∩ (H + t(G)))/H is finite.

The last claim follows from the fact that, if H is finitely generated, then (H + φ(H))/H and its
subgroups are finitely generated. So it remains to add that a finitely generated torsion Abelian group
is finite.
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The next lemma will be useful in proving Theorem 4.2.

Lemma 2.4. Let G be a torsion-free Abelian group of finite rank and φ : G → G an endomorphism.
Then every finitely generated subgroup H of G of maximal rank is φ-inert.

Proof. The quotient (H + φ(H))/H is torsion, being a subgroup of G/H, and it is finitely generated
being isomorphic to the quotient φ(H)/(H ∩ φ(H)) of φ(H). Hence (H + φ(H))/H is finite, as
desired.

The hypothesis that H is finitely generated in Lemma 2.4 cannot be removed, as shown in [8,
Example 2.5]. Obviously, Lemma 2.4 fails also if we do not assume that the finitely generated subgroup
H of G has maximal rank; in fact, if rk(H) < rk(G), it can happen that φ(H) is not contained in the
pure closure H∗ of H, and this implies that H is not φ-inert.

The next proposition partially reverses item (c) of Lemma 2.1 for finitely generated subgroups.

Proposition 2.5. Let G be a torsion-free Abelian group, φ : G → G an endomorphism and H a
finitely generated subgroup of G. Then H is φ-inert if and only if H∗ is φ-invariant.

Proof. By Lemma 2.1(c), we need only to prove that if H∗ is φ-invariant then H is φ-inert. As H and
H∗ have the same rank, Lemma 2.4 implies that H is φ-inert in H∗, hence it is also φ-inert in G.

The following lemma shows that Iφ(G) is a sublattice of the lattice of all the subgroups of G (this
lattice is bounded, as 0 and G are always φ-inert).

Lemma 2.6. Let G be an Abelian group, φ : G → G an endomorphism, H and H ′ two φ-inert
subgroups of G. Then H ∩H ′ and H +H ′ are both φ-inert.

Proof. The embeddings

(H ∩H ′) + φ(H ∩H ′)
H ∩H ′

→ (H ∩H ′) + φ(H ∩H ′) +H

H
⊕ (H ∩H ′) + φ(H ∩H ′) +H ′

H ′

⊆ H + φ(H)

H
⊕ H ′ + φ(H ′)

H ′
.

imply that H ∩H ′ is φ-inert. Concerning H +H ′, we note that

H +H ′ + φ(H +H ′)

H +H ′
=
H + φ(H) +H ′

H +H ′
+
H ′ + φ(H ′) +H

H +H ′

is a quotient of the finite group ((H+φ(H))/H)⊕((H ′+φ(H ′))/H ′), hence also H+H ′ is φ-inert.

A last useful property of φ-inert subgroups is contained in the next lemma.

Lemma 2.7. Let G be an Abelian group and φ : G→ G an endomorphism. If H is φ-inert, then for
every n ∈ N+:

(a) φn(H) is φ-inert;

(b) H is φn-inert.

Proof. Let n ∈ N+. To prove (a) it suffices to note that the homomorphism H +φ(H)/H → φn(H) +
φn+1(H)/φn(H) induced by φn is surjective. To verify (b) observe that H + φn(H) ⊆ Tn(φ,H); since
Tn(φ,H)/H is finite by Lemma 2.1, also H + φn(H)/H is finite.

Lemma 2.7(b) shows that for an endomorphism φ : G→ G of an Abelian group G, a subgroup H
of G is φ-inert if and only if H is φn-inert for every n ∈ N+. In other words,

Iφ(G) =
⋂
n∈N+

Iφn(G).

If φ : G→ G is an automorphism, then Iφ(G) 6= Iφ−1(G) may occur (see Example 3.1(b)).
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3 The intrinsic algebraic entropy and its properties

We start this section introducing the following basic example concerning the Bernoulli shifts.

Example 3.1. For an arbitrary Abelian group define the right Bernoulli shift βG : G(N) → G(N)

by βG(x0, x1, . . .) = (0, x0, x1, . . .), and the two-sided (right) Bernoulli shift σG : G(Z) → G(Z) by
σG((xn)n∈Z) = (xn−1)n∈Z. Note that σG is an automorphism, while βG is a non-surjective monomor-
phism.

(a) For p a prime, for the two-sided Bernoulli shift σZ(p) : Z(p)(Z) → Z(p)(Z) the subgroup H =⊕0
−∞ Z(p) is infinite and σZ(p)-inert.

(b) For the two-sided Bernoulli shift σZ : Z(Z) → Z(Z) the subgroup H =
⊕∞

0 Z if σZ-invariant,
hence σZ-inert, but it is not σ−1Z -inert.

3.1 Examples and comparison with the algebraic entropy

The following lemma shows that the limit defining the intrinsic algebraic entropy exists and it is finite.

Lemma 3.2. Let G be an Abelian group, φ : G → G an endomorphism and H a φ-inert subgroup of
G. Then the limit

lim
n→∞

log |Tn(φ,H)/H|
n

,

exists and it is finite.

Proof. In order to simplify notation, we set Tn = Tn(φ,H) for each n ∈ N+. Being H a φ-inert
subgroup of G, Tn/H is finite for each n ∈ N+ by Lemma 2.1(a). Set

αn+1 =
|Tn+1/H|
|Tn/H|

=

∣∣∣∣Tn+1

Tn

∣∣∣∣ =

∣∣∣∣ φn(H)

Tn ∩ φn(H)

∣∣∣∣ .
For each n ≥ 2, the group φn(H)/(Tn ∩ φn(H)) is a quotient of the group

Bn = φn(H)/(φ(Tn−1) ∩ φn(H)) ∼= φ(Tn)/φ(Tn−1) ∼= Tn/(Tn−1 + (Tn ∩ kerφ)).

Therefore αn+1 divides βn = |Bn|. On the other hand, since the latter group is a quotient of Tn/H
Tn−1/H

,
we get that βn divides αn so, in particular, αn+1 divides αn. We conclude that the sequence of non-
negatve integers (αn)n∈N+ is non-increasing, hence it is stationary. So, as in case of H finite (see [9,
Proposition 1.3]), it follows that

lim
n→∞

log |Tn(φ,H)/H|
n

= logα,

where α = αn for all n large enough.

Now we give a characterization of the φ-inert subgroups H with ẽnt(φ,H) = 0:

Proposition 3.3. Let φ : G → G be an endomorphism of an Abelian group G and H a φ-inert
subgroup of G. The following conditions are equivalent:

(a) ẽnt(φ,H) = 0;

(b) H has finite index in its φ-trajectory T (φ,H).
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Consequently ẽnt(φ) = 0 if and only if every φ-inert subgroup of G has finite index in its φ-trajectory.
In particular, ẽnt(φ) = 0 if all subgroups of G are φ-invariant.

Proof. The proof of Lemma 3.2 shows that ẽnt(φ,H) = logαn for all n ∈ N+ large enough, where αn =
|Tn+1(φ,H)/Tn(φ,H)|. As T (φ,H) =

⋃
n∈N+

Tn(φ,H), ẽnt(φ,H) = 0 exactly if T (φ,H) = Tn(φ,H)
for some n ∈ N+. Since H has finite index in Tn(φ,H) by Lemma 2.1(a), the equivalence of (a) and
(b) follows. The last claim is an immediate consequence.

Proposition 3.3 shows in particular that ẽnt(φ,H) = 0 for every subgroup H of finite index in G.
We examine the basic examples of the endomorphisms of rational groups. Here and in the sequel

we make use of the well known fact that, given a torsion-free Abelian group H of finite rank n, for
each b ∈ N+ the cardinality of H/bH is at most bn ([1, Theorem 0.1]); in particular, H/bH is finite.

Example 3.4. (1) Let φ : Z→ Z be a non-zero endomorphism of the group of the integers. Trivially,
Z has no non-trivial finite subgroups, hence ent(φ) = 0. As φ acts as the multiplication by a
non-zero integer, every subgroup of Z is φ-invariant, so Proposition 3.3 implies that ẽnt(φ) = 0.

(2) Let φ : Q → Q be a non-zero endomorphism of the group of the rational numbers, and note
that Q has no non-trivial finite subgroups, hence, as before, ent(φ) = 0. As φ acts as the
multiplication by a non-zero fraction a/b, with b > 0 and a and b relatively prime, a non-zero
subgroup H of Q is φ-invariant exactly if aH ≤ bH. This inequality is equivalent to the equality
H = bH; in fact, H = bH trivially implies aH ≤ bH, and to see that the converse holds recall
that (a, b) = 1 implies aH + bH = H. Hence H is φ-invariant exactly if it is p-divisible by all
primes p dividing b. Furthermore, if H is an arbitrary subgroup of Q, we have:

H + φ(H)

H
=
H + ab−1H

H
∼=
bH + aH

bH
=

H

bH
;

hence H is φ-inert, since H/bH is finite. Setting m = |H/bH|, by the fact quoted above we
know that m ≤ b; it easy to show that ẽnt(φ,H) = logm ≤ log b and consequently ẽnt(φ) =
ẽnt(φ,Z) = log b. This example is extended to higher dimensions in the next Theorem 4.2.
Recall that h(φ) = max{log |a|, log b} (see [6] for a direct computation, otherwise one can apply
the Algebraic Yuzvinski Formula proved in [12]). Hence, h(φ) > ẽnt(φ) in case |a| > b.

(3) Generalizing the two preceding cases, let φ : G → G be a non-zero endomorphism of a fixed
subgroup G of the rational numbers. We can assume, without loss of generality, that Z ⊆ G.
As φ acts as the multiplication by a non-zero fraction a/b (with (a, b) = 1) belonging to the
maximal subring contained in G, the same argument used in case (2) shows that ẽnt(φ) = log b.

An easy property of the intrinsic algebraic entropy is that ẽnt(φ) = ẽnt(−φ). On the other hand,
ẽnt is not preserved by taking the inverse of a given automorphism, as underlined in the following
remark.

Remark 3.5. In case (2) of the preceding example, the automorphism φ−1 of Q acts as the mul-
tiplication by b/a, hence ẽnt(φ−1) = log |a|. This shows that the equalities ent(φ) = ent(φ−1) and
h(φ) = h(φ−1), which hold for an automorphism φ, do not extend from the algebraic entropies to the
intrinsic algebraic entropy.

We would like to compare the intrinsic algebraic entropy ẽnt with the algebraic entropy ent and
with the algebraic entropy h. In contrast with the inequality h(φ) > ẽnt(φ) established in Example
3.4(2), we see now that always h(φ) = ẽnt(φ) in case the Abelian group G is torsion.
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Proposition 3.6. Let G be an Abelian group and φ : G → G an endomorphism. Then ent(φ) ≤
ẽnt(φ) ≤ h(φ). If G is torsion, then ent(φ) = ẽnt(φ) = h(φ).

Proof. Since the family Iφ(G) of the φ-inert subgroups of G contains the family F(G) of the finite
subgroups of G, one obviously derives the inequality ent(φ) ≤ ẽnt(φ). Let H be a φ-inert subgroup.
According to Proposition 2.2, there exists a finite subset F of H such that Tn(φ,H) = H+Tn(φ, F ) for
all n ∈ N+. Then |Tn(φ,H)/H| = |(H+Tn(φ, F ))/H|. Taking logarithms and dividing by n, the limit
on the left hand side gives ẽnt(φ,H). On the other hand, |H+Tn(φ, F )/H| ≤ |Tn(φ, F )|, thus log |H+
Tn(φ, F )/H| ≤ log |Tn(φ, F )| and after dividing by n we get ẽnt(φ,H) ≤ limn→∞ log |Tn(φ, F )|/n ≤
h(φ), hence ẽnt(φ) ≤ h(φ). If G is torsion, it is well known (see [6] or [20]) that ent(φ) = h(φ), hence
the latter claim follows.

In Theorem 4.3 and Remark 4.4 we find a counterpart of the equality ent(φ) = ẽnt(φ) in the case
of a continuous endomorphism φ of a locally compact totally disconnected Abelian group G covered
by compact subgroups (note that if such a group G is discrete, then it is torsion, so we obtain the case
considered above).

Proposition 3.6 shows that for torsion Abelian groups it suffices to compute the intrinsic algebraic
entropy with respect to finite subgroups, even if they may be less than the inert ones, as Example 3.1
shows.

As the Bernoulli shifts are crucial examples of endomorphisms in the theory of algebraic entropy,
it is convenient to examine what happens also for their intrinsic algebraic entropy.

Example 3.7. We prove that ẽnt(βG) = log |G| for the right Bernoulli shift βG : G(N) → G(N) (see
Example 3.1), where we intend that log |G| =∞ in case G is infinite. If G is torsion, this follows from
Proposition 3.6 and the equality ent(βG) = log |G| proved in [9, Example 1.9].

Now assume that G is a non-torsion Abelian group and choose a non-torsion element g ∈ G.
Consider the element x = (g, 0, 0, . . .) ∈ G(N) and fix an integer k > 1. Let the subgroup Hk of G(N)

be defined as follows:
Hk = xZ + T (βG, kxZ) = gZ⊕

⊕
i≥1

kβiG(x)Z.

Then, for every n ∈ N+, we get:

Tn(βG, Hk) =
⊕
i<n

βiG(x)Z⊕
⊕
i≥n

kβiG(x)Z.

It follows that Tn(βG, Hk)/Hk is isomorphic to the direct sum of n− 1 many copies of Z/kZ, so it has
size kn−1. Thus, every subgroup Hk is βG-inert, ẽnt(βG, Hk) = log k, and consequently ẽnt(βG) =∞.

As in the case of the algebraic entropy ent, the range of the intrinsic algebraic entropy is a discrete
subset of the real numbers; in fact, if it is finite, it is reached by a suitable inert subgroup as a
maximum:

Lemma 3.8. Let G be an Abelian group and φ : G→ G an endomorphism. If ẽnt(φ) <∞, then there
exists a φ-inert subgroup H of G such that ẽnt(φ) = ẽnt(φ,H) = log n for some n ∈ N+.

Proof. By the proof of Lemma 3.2, for every H ∈ Iφ(G) there exists a positive integer nH such that
ẽnt(φ,H) = log nH . Consider the set F = {ẽnt(φ,H) : H ∈ Iφ(G)} ⊆ {log n : n ∈ N+}, and notice
that F is bounded by the finite value ẽnt(φ). One can easily conclude that F is finite and then
ẽnt(φ) = supH∈Iφ(G) log nH = maxF is an element of F .
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A consequence of the above lemma is that the set of finite values of ẽnt ( considered as a function
from the class of all the endomorphisms of abelian groups) is contained in the subset {log n : n ∈ N+} of
R≥0. Moreover, these two sets actually coincide, since by Example 3.7 we know that ẽnt(βG) = log |G|
if G is a finite Abelian group.

3.2 Typical properties of entropy functions

In the rest of this section we provide some fundamental properties of the intrinsic algebraic entropy
that will allow us to prove the Uniqueness Theorem in Section 6. Similar results hold for the algebraic
entropies ent and h (see [25], [9] and [6]); however, in the present situation, ad hoc arguments are
needed.

In the next lemma we establish invariance of the intrinsic algebraic entropy under conjugation.

Lemma 3.9. Let φ : G→ G be an endomorphism and ξ : G→ G′ an isomorphism of Abelian groups.
Then ẽnt(φ) = ẽnt(ξφξ−1).

Proof. Set ψ = ξφξ−1. A subgroup H of G is φ-inert if and only if ξ(H) is ψ-inert in G′, and
an easy computation shows that |Tn(φ,H)/H| = |Tn(ψ, ξ(H))/ξ(H)| for every n ∈ N+. Therefore
ẽnt(ξ,H) = ẽnt(ψ, ξ(H)) and the desired equality follows.

The next lemma establishes monotonicity of the intrinsic algebraic entropy under taking restrictions
and quotients with respect to a φ-invariant subgroup.

Lemma 3.10. Let G be an Abelian group, φ : G→ G an endomorphism and H a φ-invariant subgroup
of G. Then:

(a) ẽnt(φ) ≥ ẽnt(φ �H) and ẽnt(φ) ≥ ẽnt(φ), where φ : G/H → G/H is the endomorphism induced
by φ;

(b) if K is a φ-inert subgroup of G and K = (K + H)/H, then K ∩H is φ �H-inert, K is φ-inert
and

ẽnt(φ,K) ≥ ẽnt(φ �H , H ∩K) + ẽnt(φ,K).

Proof. (a) The first inequality is obvious, since a φ �H -inert subgroup of H is also a φ-inert subgroup
of G. Let now K = K/H be a φ-inert subgroup of G/H, with H ≤ K ≤ G. Since

Tn(φ,K)

K
∼=
Tn(φ,K)

K

for all n ∈ N+, K is φ-inert in G and ẽnt(φ,K) = ẽnt(φ,K) ≤ ẽnt(φ). Hence the latter inequality also
holds.

(b) It is easy to check that the following short sequence is exact for all n ≥ 1:

0→ Tn(φ,K) ∩ (K +H)

K
→ Tn(φ,K)

K
→ Tn(φ,K) +H

K +H
→ 0.

The last non-zero term in the above sequence is isomorphic to Tn(φ,K)/K, because (Tn(φ,K) +
H)/H = Tn(φ,K). The first non-zero term contains the subgroup

(K + Tn(φ �H , H ∩K)) ∩ (K +H)

K
∼=
Tn(φ �H , H ∩K)

(H ∩K)
.

Consequently we deduce that

|Tn(φ,K)/K| ≥ |Tn(φ,K)/K| · |Tn(φ �H , H ∩K)/(H ∩K)|.

Taking logarithms, dividing by n and making n tend to ∞, we get the desired inequality.
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We apply the next lemma in the proof of Lemma 3.12 below.

Lemma 3.11. Let G be an Abelian group, φ : G→ G an endomorphism and H a subgroup of G.

(a) If H is φ-inert and H ′ = Tk(φ,H) for some k ∈ N+, then H ′ is φ-inert and ẽnt(φ,H) =
ẽnt(φ,H ′).

(b) If H is φk-inert for some k ∈ N+ and H ′ = Tk(φ,H), then H ′ is φ-inert (so, in particular
φk-inert) and ẽnt(φk, H) = ẽnt(φk, H ′).

Proof. (a) Since H ′ + φ(H ′) = Tk+1(φ,H), we have (H ′ + φ(H ′))/H ′ = Tk+1(φ,H)/Tk(φ,H). This
quotient is finite, as it is a quotient of Tk+1(φ,H)/H, which is finite by the assumption that H is
φ-inert and Lemma 2.1(a). Moreover, since∣∣∣∣Tn(φ,H ′)

H ′

∣∣∣∣ =

∣∣∣∣Tk+n(φ,H)

H ′

∣∣∣∣ =

∣∣∣∣Tk+n(φ,H)

H

∣∣∣∣ · |H ′/H|,
and |H ′/H| is a finite constant by Lemma 2.1(a), it follows that

ẽnt(φ,H ′) = lim
n→∞

log |Tn(φ,H ′)/H ′|
n

= lim
n→∞

log |Tk+n(φ,H)/H|
n

= ẽnt(φ,H).

(b) To prove that H ′ is φ-inert, we need to verify that (H ′+φ(H ′))/H ′ is finite. Since H ′+φ(H ′) =
Tk+1(φ,H) = H ′ + φk(H), we have that (H ′ + φ(H ′))/H ′ ∼= φk(H)/(H ′ ∩ φk(H)). This is finite since
it is a quotient of φk(H)/(H ∩ φk(H)) ∼= (H + φk(H))/H, which is finite by the assumption that H
is φk-inert. Hence, H ′ is φ-inert. By Lemma 2.7 the subgroup H ′ is also φk-inert. Item (a) gives that
ẽnt(φk, H) = ẽnt(φk, H ′).

The next lemma establishes a “logarithmic law” for the intrinsic algebraic entropy.

Lemma 3.12. Let G be an Abelian group and φ : G→ G an endomorphism. Then ẽnt(φk) = k · ẽnt(φ)
for every k ∈ N+.

Proof. Fix k ∈ N+. First we prove the inequality ẽnt(φk) ≤ k · ẽnt(φ). Let H be a φk-inert subgroup
of G and H ′ = Tk(φ,H). Lemma 3.11(b) yields that H ′ is φ-inert, so also φk-inert, and ẽnt(φk, H) =
ẽnt(φk, H ′).

Let n ∈ N+. Then Tn(φk, H ′) ⊆ Tkn−k+1(φ,H
′) and so

ẽnt(φk, H ′) = lim
n→∞

log |Tn(φk, H ′)/H ′|
n

≤ lim
n→∞

log |Tkn−k+1(φ,H
′)/H ′|

n

= lim
n→∞

log |Tkn−k+1(φ,H
′)/H ′|

kn− k + 1
· lim
n→∞

kn− k + 1

n

= k · lim
n→∞

log |Tkn−n+1(φ,H
′)/H ′|

kn− k + 1
= k · ẽnt(φ,H ′).

Therefore, ẽnt(φk, H) = ẽnt(φk, H ′) ≤ k · ẽnt(φ,H ′). Since H ′ is φ-inert, we can conclude that
ẽnt(φk) ≤ k · ẽnt(φ).

To prove the converse inequality, let H be a φ-inert subgroup of G and H1 = Tk(φ,H). Moreover,
let n ∈ N+. By Lemma 3.11(a) the subgroup H1 is φ-inert and H1/H is finite. By Lemma 2.7 the
subgroup H1 is also φk-inert. Moreover, Tn(φk, H1) = Tkn(φ,H) and so |Tn(φk, H1)/H1| · |H1/H| =
|Tkn(φ,H)/H|. Then, as |H1/H| is constant,

1

k
· ẽnt(φk, H1) = lim

n→∞

log |Tn(φk, H1)/H1|
kn

= lim
n→∞

log |Tkn(φ,H)/H|
kn

= ẽnt(φ,H).

We can conclude that ẽnt(φk) ≥ k · ẽnt(φ).
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Here we obtain a weaker form of the Addition Theorem with respect to direct sums (the general
case is discussed in Section 5).

Lemma 3.13. Let Gi be Abelian groups and φi : Gi → Gi endomorphisms for i = 1, 2. Then
ẽnt(φ1 ⊕ φ2) = ẽnt(φ1) + ẽnt(φ2).

Proof. Let Hi be a φi-inert subgroup of Gi, for i = 1, 2. Setting φ = φ1 ⊕ φ2, for every n ∈ N+ we
have Tn(φ,H1 ⊕H2)/(H1 ⊕H2) ∼= (Tn(φ1, H1)/H1) ⊕ (Tn(φ2, H2)/H2), therefore H1 ⊕H2 is φ-inert
and

ẽnt(φ,H1 ⊕H2) = ẽnt(φ1, H1) + ẽnt(φ2, H2). (3.1)

Let H be a φ-inert subgroup of G = G1⊕G2, pi : G→ Gi the canonical projection and Hi = pi(H), for
i = 1, 2. EachHi is a φi-inert subgroup ofGi, as the homomorphism (H+φ(H))/H → (Hi+φi(Hi))/Hi

induced by pi is well-defined and surjective. Therefore H1 ⊕H2 is a φ-inert subgroup of G. Since for
every n ∈ N+ the homomorphism Tn(φ,H)/H → Tn(φ,H1⊕H2)/(H1⊕H2) induced by p1⊕p2 is well-
defined and injective, ẽnt(φ,H) ≤ ẽnt(φ,H1⊕H2). By (3.1) we can conclude that ẽnt(φ) ≤ ẽnt(φ1) +
ẽnt(φ2). If ẽnt(φ) =∞, by the latter inequality we can conclude that ẽnt(φ) = ẽnt(φ1) + ẽnt(φ2). So
assume that ẽnt(φ) is finite. By Lemma 3.10(a) we have that ẽnt(φ1) and ẽnt(φ2) are finite as well.
For i = 1, 2, let Hi be a φi-inert subgroup of Gi such that ẽnt(φi) = ẽnt(φi, Hi). Then (3.1) gives

ẽnt(φ) ≥ ẽnt(φ,H1 ⊕H2) = ẽnt(φ1, H1) + ẽnt(φ2, H2) = ẽnt(φ1) + ẽnt(φ2),

and this concludes the proof.

The next lemma shows that the intrinsic algebraic entropy is “continuous” with respect to direct
limits.

Lemma 3.14. Let G be an Abelian group and φ : G → G an endomorphism, and assume that the
group G is the direct limit of a family of φ-invariant subgroups {Gi : i ∈ I}. Let φi = φ �Gi for all
i ∈ I. Then ẽnt(φ) = supi∈I ẽnt(φi).

Proof. If H is a φi-inert subgroup of Gi, then it is also a φ-inert subgroup of G, therefore ẽnt(φ) ≥
ẽnt(φi) for all i ∈ I, hence ẽnt(φ) ≥ supi∈I(ẽnt(φi)).

Conversely, let H be a φ-inert subgroup of G. By Lemma 3.10(b) H ∩Gi is a φi-inert subgroup of
Gi for every index i ∈ I. To conclude it is enough to prove that there exists an index i ∈ I such that,
for all n ≥ 1,

|Tn(φ,H)/H| ≤ |Tn(φi, H ∩Gi)/(H ∩Gi)|. (3.2)

In fact, if this occurs, then ẽnt(φ,H) ≤ ẽnt(φi, H ∩ Gi) ≤ ẽnt(φi), therefore ẽnt(φ,H) ≤ ẽnt(φi) ≤
supi∈I ẽnt(φi), and hence ẽnt(φ) ≤ supi∈I ẽnt(φi). By Proposition 2.2 there exists a finitely generated
subset F of H such that for all n ≥ 1

Tn(φ,H) = H + Tn(φ, F ).

The subset F is contained in some Gi; therefore, F ⊆ H ∩Gi and Tn(φ, F ) ⊆ Tn(φi, H ∩Gi), so

(H ∩Gi) + Tn(φ, F ) ⊆ Tn(φi, H ∩Gi).

Also the converse inclusion holds true; in fact, Tn(φi, H∩Gi) ⊆ Tn(φ,H)∩Gi, and since Tn(φ, F ) ⊆ Gi
we can conclude that Tn(φ,H) ∩ Gi = (H + Tn(φ, F )) ∩ Gi = (H ∩ Gi) + Tn(φ, F ). So we have the
equality

Tn(φi, H ∩Gi) = (H ∩Gi) + Tn(φ, F ).
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Therefore Tn(φ,H)/H ∼= (H + Tn(φ, F ))/H ∼= Tn(φ, F )/(H ∩ Tn(φ, F )) is isomorphic to a quotient of

Tn(φi, H ∩Gi)/(H ∩Gi) ∼= ((H ∩Gi) + Tn(φ, F ))/(H ∩Gi) ∼= Tn(φ, F )/(H ∩Gi ∩ Tn(φ, F )),

hence the desired inequality in (3.2) is proved.

Thanks to Lemma 3.14 we can show now that, given an endomorphism φ : G→ G of a torsion-free
Abelian group G, its intrinsic algebraic entropy equals that of its unique extension to the divisible hull
of G.

Corollary 3.15. Let G be a torsion-free Abelian group and φ an endomorphism of G. Let φ̃ : D(G)→
D(G) be the unique extension of φ to the divisible hull. Then

ẽnt(φ) = ẽnt(φ̃).

Proof. We can identifyG with a subgroup ofD(G), which is the direct limit of its φ̃-invariant subgroups
of the form 1

n!G, with n ranging in N+. Hence, by Lemma 3.14, we have that ẽnt(φ̃) is the supremum

of the algebraic entropies of the restrictions of φ̃ to each 1
n!G. Furthermore, the groups 1

n!G are all

isomorphic to G and the restriction of φ̃ to 1
n!G is conjugated to φ through this isomorphism. Hence,

ẽnt(φ) = ẽnt(φ̃ �(1/n!)G) for all n ∈ N+, and so ẽnt(φ̃) = sup
{

ẽnt(φ̃ �(1/n!)G) : n ∈ N+

}
= ẽnt(φ).

The invariance of the intrinsic algebraic entropy under taking divisible hulls holds only for torsion-
free Abelian groups. In fact, consider the torsion group Z(p)(N), whose divisible hull is Z(p∞)(N). Then
ẽnt(βZ(p)) = ent(βZ(p)) = log p while ẽnt(βZ(p∞)) =∞ (see Example 3.7).

Unlike the monotonicity of the function F 7→ H(φ, F ), its counterpart for ẽnt fails, i.e., ẽnt(φ,H ′) ≤
ẽnt(φ,H) need not hold for φ-inert subgroups H ′ ⊆ H of G (e.g., take H = G and recall that
ẽnt(φ,G) = 0). In item (a) of the next proposition we establish such a monotonicity assuming that
the subgroups H and H ′ are “close” in terms of smallness of the quotient H/H ′.

Proposition 3.16. Let G be an Abelian group, φ : G→ G an endomorphism and H ′ ⊆ H two φ-inert
subgroups of G.

(a) If H/H ′ is finitely generated, then ẽnt(φ,H ′) ≤ ẽnt(φ,H).

(b) If H is finitely generated and G = T (φ,H), then ẽnt(φ) = ẽnt(φ,H).

Proof. (a) Consider the following exact sequence

0→ H ∩ Tn(φ,H ′)

H ′
→ Tn(φ,H ′)

H ′
→ Tn(φ,H)

H
.

As both H and H ′ are φ-inert, all the groups appearing in the above sequence are finite. This implies
that for every n ∈ N+, the following inequality holds

log

∣∣∣∣Tn(φ,H ′)

H ′

∣∣∣∣− log

∣∣∣∣H ∩ Tn(φ,H ′)

H ′

∣∣∣∣ ≤ log

∣∣∣∣Tn(φ,H)

H

∣∣∣∣ .
The subgroup (H/H ′) ∩ (T (φ,H ′)/H ′) of the finitely generated group H/H ′ is finitely generated.
Since it is a subgroup of the torsion group T (φ,H ′)/H ′ (see Lemma 2.1(b)), one has |(H/H ′) ∩
(T (φ,H ′)/H ′)| < ∞. For every n ∈ N+ there is an inclusion (H ∩ Tn(φ,H ′))/H ′ ⊆ (H/H ′) ∩
(T (φ,H ′)/H ′), which implies

0 ≤ lim
n→∞

log |(H ∩ Tn(φ,H ′))/H ′|
n

≤ lim
n→∞

log |(H/H ′) ∩ (T (φ,H ′)/H ′)|
n

= 0 .
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Hence we obtain:

ẽnt(φ,H ′) = lim
n→∞

log |Tn(φ,H ′)/H ′|
n

= lim
n→∞

log |Tn(φ,H ′)/H ′|
n

− lim
n→∞

log |(H ∩ Tn(φ,H ′))/H ′|
n

= lim
n→∞

log |Tn(φ,H ′)/H ′| − log |(H ∩ Tn(φ,H ′))/H ′|
n

≤ lim
n→∞

log |Tn(φ,H)/H|
n

= ẽnt(φ,H).

(b) Given a φ-inert subgroup K of G, we have to prove that ẽnt(φ,K) ≤ ẽnt(φ,H). First of all,
we can suppose that H ≤ K, as ẽnt(φ,K) ≤ ẽnt(φ,H + K) by item (a) (being (H + K)/K finitely
generated). By Proposition 2.2, there exists a finitely generated subgroup F of G such that

Tn(φ,K)

K
=
K + Tn(φ, F )

K
,

for every n ∈ N+. Since G = T (φ,H) and F is finitely generated, there exists k ∈ N+ such that
F ≤ Tk(φ,H) and so we obtain that

Tn(φ,K)

K
=
K + Tn(φ, F )

K
⊆ K + Tn+k(φ,H)

K
,

for every n ∈ N+. Since (K + Tn+k(φ,H))/K is a quotient of Tn+k(φ,H)/H (as we supposed that
H ≤ K), the inequality ∣∣∣∣Tn(φ,K)

K

∣∣∣∣ ≤ ∣∣∣∣Tn+k(φ,H)

H

∣∣∣∣
holds for every n ∈ N+. Applying the logarithm, dividing by n and taking the limit we get ẽnt(φ,K) ≤
ẽnt(φ, Tk(φ,H)). To conclude it is enough to apply Lemma 3.11(a).

Part (b) of the above proposition is particularly important as it says that, given a φ-inert finitely
generated subgroup H of G, the quantity ẽnt(φ,H) does not depend on H but only on T (φ,H), that
is, for any other finitely generated a φ-inert subgroup H ′ of G with T (φ,H) = T (φ,H ′), one has
ẽnt(φ,H) = ẽnt(φ,H ′) = ẽnt(φ �T (φ,H)).

4 Relationship with the Algebraic Yuzvinski Formula

For m ∈ N+, an endomorphism φ : Qm → Qm is described by an m×m matrix with coefficients in Q,
which has its monic characteristic polynomial fφ(X) ∈ Q[X]; we say that fφ(X) is the characteristic
polynomial of φ over Q. Let s be the least positive integer such that sfφ(X) ∈ Z[X] (i.e., s is the
least common multiple of the denominators of the coefficients of fφ(X)). We call pφ(X) = sfφ(X)
the characteristic polynomial of φ over Z. The roots of fφ(X) (which are the same of pφ(X)) are the
eigenvalues {λi : i = 1, . . . ,m} of φ.

Recall that the quantity

m(pφ(X)) = log s+
∑
|λi|>1

log |λi|

is the (logarithmic) Mahler measure of pφ(X) (see [13], [14] and [12] for more details). The Mahler
measure of φ is m(φ) = m(pφ(X)).

The main result of the recent paper [12] is the following formula concerning the algebraic entropy
h of an endomorphism φ of Qm.
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Theorem 4.1 (Algebraic Yuzvinski Formula). Let m be a positive integer and φ : Qm → Qm an
endomorphism. Then

h(φ) = m(φ).

While the eigenvalues appearing in the Mahler measure have a clear dynamical meaning in terms
of “expansiveness” of φ, the appearance of log s is somehow surprising. The main result of this section
is the following algebraic interpretation of this mysterious term, generalizing the 1-dimensional case
considered in Example 3.4(2).

Theorem 4.2. Let m be a positive integer, φ : Qm → Qm an endomorphism and let s be the positive
leading coefficient of the characteristic polynomial of φ over Z. Then

log s = ẽnt(φ).

Actually, we prove that log s = ẽnt(φ,Zm), from which Theorem 4.2 follows. In fact, ẽnt(φ) =
ẽnt(φ �T (φ,Zm)) by Corollary 3.15 and ẽnt(φ �T (φ,Zm)) = ẽnt(φ,Zm) by Proposition 3.16(b). The proof

of the equality log s = ẽnt(φ,Zm), deferred to §4.2, will follow as a consequence of some results from
[12].

A consequence of Theorems 4.1 and 4.2 is that the difference between the algebraic entropy h and
the intrinsic algebraic entropy of an endomorphism φ of a torsion-free Abelian group G of finite rank,
depends only on the eigenvalues of the endomorphism, that is

h(φ)− ẽnt(φ) =
∑
|λi|>1

log |λi|.

4.1 Algebraic entropy for locally compact Abelian groups

For a LCA group G denote by C(G) the family of all compact neighborhoods of 0 in G and note that
C(G) contains the family B(G) of all open compact subgroups of G. Let µ be a Haar measure on G.

For a continuous endomorphism φ : G→ G, the algebraic entropy of φ with respect to C ∈ C(G) is

H(φ,C) = lim sup
n→∞

logµ(Tn(φ,C))

n
,

and the algebraic entropy of φ is

h(φ) = sup{H(φ,C) : C ∈ C(G)}.

Our strategy for the proof of Theorem 4.2 is to find a connection between h and ẽnt, which
holds for continuous endomorphisms of totally disconnected LCA groups, implying in particular that
h(φp) = ẽnt(φp) for all p ∈ P (Theorem 4.3 and Corollary 4.7). Then, we show that ẽnt(φ,Zm) =∑

p∈P ẽnt(φp, Jmp ) (Lemma 4.8).

Theorem 4.3. Let G be a LCA group and φ : G→ G be a continuous endomorphism. Then B(G) ⊆
Iφ(G). Furthermore,

H(φ,U) = ẽnt(φ,U), (4.1)

for all U ∈ B(G).

Proof. Let U ∈ B(G). Then the subgroup U of the compact subgroup Tn(φ,U) of G is open, so
Tn(φ,U)/U is finite. Consider now a Haar measure µ on G. Since Tn(φ,U) is the disjoint union of
|Tn(φ,U)/U |-many cosets of the form x+ U , with x ∈ Tn(φ,U), one has

µ(Tn(φ,U)) = µ(U) · |Tn(φ,U)/U | .
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Moreover, 0 < µ(U) <∞, as U is open and compact; in particular, lim
n→∞

log µ(U)
n = 0. Therefore,

H(φ,U) = lim
n→∞

logµ(U) + log |Tn(φ,U)/U |
n

= lim
n→∞

log |Tn(φ,U)/U |
n

= ẽnt(φ,U),

and this concludes the proof.

Remark 4.4. In the sequel G will be a totally disconnected locally compact group G. Recall that for
such a group G the family B(G) is a local base at the neutral element, according to a theorem of van
Dantzig [23].

(a) If the group G is discrete, then the open compact subgroups of G are necessarily finite, so the
equality (4.1) in Theorem 4.3 obviously holds true.

(b) In case the totally disconnected group G is covered by compact subgroups, then by taking the
supremum in (4.1), whit U running over B(G), one gets the algebraic entropy h(φ) on the left
hand side. On the right hand side one gets a quantity that is ≤ ẽnt(φ). Therefore,

h(φ) ≤ ẽnt(φ). (4.2)

Furthermore, if G is discrete, then the current hypothesis entails that G is torsion, in which case
the opposite inequality in (4.2) is proved in Proposition 3.6.

The next example shows that the inequality in (4.2) can be strict in the non-discrete case.

Example 4.5. Let p be a prime. If ξ ∈ Jp is a p-adic integer transcendental over Z, then the
multiplication φξ by ξ in Qp (equipped with the p-adic topology) has algebraic entropy zero as proved
in [7, Example 5.6.5], while its intrinsic algebraic entropy is ∞. Indeed, φξ restricted to the subgroup
Z[ξ] is conjugated to the right Bernoulli shift and so it suffices to apply Lemma 3.9, Lemma 3.10(a)
and Example 3.7.

4.2 Proof of Theorem 4.2

The following Proposition 4.6 is an easy consequence of two results of [12], that is, Theorem 3.8 and
the Corollary stated in the Introduction. In order to state this result we need to recall some notations.

Let m be a positive integer and φ : Qm → Qm an endomorphism. For every p ∈ P, φ induces an
endomorphism φp : Qm

p → Qm
p just extending the scalars, that is,

φp = φ⊗Q idQp .

Proposition 4.6. [12] Let m be a positive integer, φ : Qm → Qm an endomorphism and pφ(X) =
sXm + a1X

m−1 + . . .+ am the characteristic polynomial over Z of φ. Then

h(φp) = H(φp, Jmp ) = log |1/s|p .

Using this proposition we can compute the algebraic entropy h of the various φp. From this result
and from Theorem 4.3 we derive the following consequence.

Corollary 4.7. Let m be a positive integer, φ : Qm → Qm an endomorphism and, for a fixed prime
p, let φp : Qm

p → Qm
p the induced endomorphism. Then

h(φp) = lim
n→∞

log |Tn(φp, Jmp )/Jmp |
n

= ẽnt(φp, Jmp ).
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Proof. By Proposition 4.6, we have that h(φp) = H(φp, Jmp ). To conclude, apply Theorem 4.3 with
G = Qm

p , U = Jmp and φ = φp.

The next lemma is the last step for the proof of Theorem 4.2. Remember that Jp is a valuation
domain, furthermore it is flat when considered as a module over Z. The field of quotients of Jp is the
field Qp of p-adic numbers.

Lemma 4.8. For every n ∈ N+, we have that

|Tn(φ,Zm)/Zm| =
∏
p∈P
|Tn(φp, Jmp )/Jmp |,

where on the right hand side only finitely many factors are > 1.

Proof. In order to simplify the notation, we set Qn = Tn(φ,Zm)/Zm. Consider the exact sequence

0→ Zm → Tn(φ,Zm)→ Qn → 0.

Let p ∈ P; as we said Jp is a flat Z-module. In particular the following sequence of Jp-modules is exact

0→ Zm ⊗Z Jp → Tn(φ,Zm)⊗Z Jp → Qn ⊗Z Jp → 0. (4.3)

Since Q ⊗Z Jp ∼= Qp, we can identify Zm ⊗Z Jp and Tn(φ,Zm) ⊗Z Jp with Jp-submodules of Qm
p . Fix

the canonical base {e1, . . . , em} of Qm as a Q-vector space. Then {e1 ⊗ 1Jp , . . . , em ⊗ 1Jp} is a base of
Qm
p as a Qp-vector space.

Now, Zm⊗Z Jp = Jmp is the Jp-submodule of Qm
p generated by e1⊗ 1Jp , . . . , em⊗ 1Jp . Similarly, for

every k ∈ N, φk(Zm) is the subgroup of Qm generated by φk(e1), . . . , φ
k(em). This shows that

(φkZm)⊗Z Jp = (φk(e1)⊗ 1Jp)Jp + · · ·+ (φk(em)⊗ 1Jp)Jp
= (φkp(e1 ⊗ 1Jp))Jp + · · ·+ (φkp(em ⊗ 1Jp))Jp = φkp(Jmp ).

In a similar way one can show that Tn(φ,Zm)⊗Z Jp = Tn(φp, Jmp ) for every n ∈ N+.
Since Jp is q-divisible for every prime q 6= p, we have that Qn⊗ZJp is isomorphic to the p-component

tp(Qn) of Qn. Hence equation (4.3) becomes

0→ Jmp → Tn(φp, Jmp )→ tp(Qn)→ 0.

It follows that

|Tn(φ,Zm)/Zm| = |Qn| = |
⊕
p∈P

tp(Qn)| =
∏
p∈P
|tp(Qn)| =

∏
p∈P
|Tn(φ, Jmp )/Jmp |,

as desired. Since Qn is finite, the family of primes p such that tp(Qn) is non-zero is a finite subset
of P. In particular, in the product appearing on the right hand side of the statement, only a finite
number of terms are > 1.

In the following remark we give another explication to the last claim in Lemma 4.8.

Remark 4.9. Let A = (aij) be the matrix of φ with respect to the canonical base of Qm. The
coefficients of A are all rational numbers; for every i, j = 1, . . . ,m we let aij = mij/dij with mij , dij ∈ Z
and (mij , dij) = 1. Suppose first that all the coefficients of A are integers, that is, dij = 1 for every
i, j. Then the subgroup Zm of Qm is φ-invariant and so Tn(φ,Zm) = Zm for every n ∈ N+. Hence
|Tn(φ,Zm)/Zm| = |Zm/Zm| = 1. (In this case we have log s = 0.) Similarly, suppose that p ∈ P does
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not divide any dij with i, j = 1, . . . ,m. Denote by Zp the localization of Z at the prime ideal pZ. It
is clear in this situation that Zmp is φ-invariant. In particular, |Tn(φ,Zmp )/Zmp | = |Zmp /Zmp | = 1. Since
Zp ⊗Z Jp = Z ⊗Z Jp, if Zmp is φ-invariant in Qm then Jmp is φp-invariant in Qm

p . In particular, in the
above situation, |Tn(φp, Jmp )/Jmp | = |Jmp /Jmp | = 1.

Thus we have the following inclusion

{p ∈ P : |Tn(φp, Jmp )/Jmp | > 1} ⊆ {p ∈ P : p|dij for some i, j = 1, . . . ,m}.

We are now in position to demonstrate Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.8 we get

ẽnt(φ,Zm) =
∑
p∈P

ẽnt(φp, Jmp ). (4.4)

Now, Corollary 4.7 and Proposition 4.6 give

ẽnt(φp, Jmp ) = h(φp) = log |1/s|p.

Since s =
∏
p∈P |1/s|p, we can conclude with (4.4) that ẽnt(φ,Zm) = log s, as desired.

5 The Addition Theorem

We start this section by recalling some notions concerning real-valued invariants of a category of
modules. Let R be a ring and L : Mod(R) → R∗ a map; we say that L is an invariant if L(0) = 0
and L(M) = L(M ′) whenever M ∼= M ′; and that L is an additive invariant if, in addition, L(M) =
L(M ′) + L(M ′′) for any short exact sequence 0→M ′ →M →M ′′ → 0 in Mod(R).

Clearly, if L is an additive invariant of Mod(R) and M is an R-module, then, given a finite chain
of submodules 0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M, we have that L(M) =

∑n
i=1 L(Mi/Mi−1).

An invariant L : Mod(R)→ R∗ is upper continuous if

L(M) = sup{L(F ) : F ∈ F(M)},

for every M ∈ Mod(R), where F(M) denotes the family of all the finitely generated submodules of M .
If L is both additive and upper continuous, then L is called a length function. Length functions have
been introduced by Northcott-Reufel [15] and were investigated also by Vámos in [21] and [22].

The following result is contained in [22, Proposition 8].

Lemma 5.1. [22] Given a ring R and an additive invariant L : Mod(R)→ R∗, the following conditions
are equivalent:

(a) L is upper continuous;

(b) for every R-module M and every directed system {Mi : i ∈ I} of submodules of M such that⋃
i∈IMi = M , we have L(M) = sup{L(Mi) : i ∈ I};

(c) for every R-module M and every totally ordered set {Mi : i ∈ I} of submodules of M such that⋃
i∈IMi = M , we have L(M) = sup{L(Mi) : i ∈ I}.
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The meaning of Lemma 5.1 is that any additive invariant which is continuous on direct limits is
completely determined by the values it assumes on finitely generated modules. This becomes even more
convenient over Noetherian rings (so also for Abelian groups), where the finitely generated modules
form a Serre subclass of Mod(R). In the following proposition we see that an upper continuous
invariant is a length function if and only if it is additive on finitely generated modules. This fact will
be used in demonstrating the Addition Theorem.

Proposition 5.2. Let R be a Noetherian ring and L : Mod(R)→ R∗ be an upper continuous invariant.
If L(F2) = L(F1) +L(F3) for every short exact sequence 0→ F1 → F2 → F3 → 0 of finitely generated
R-modules, then L is additive, hence a length function.

Proof. Since L is upper continuous by hypothesis, it remains only to check additivity. To this end,
let N and M be R-modules such that N ⊆ M , and choose F ∈ F(M); so F ∩ N ∈ F(N) since R
is Noetherian, and (F + N)/N ∈ F(M/N). By the additivity of L on finitely generated modules,
we obtain L(F ) = L(F ∩ N) + L((F + N)/N) which proves that L(M) ≤ L(N) + L(M/N) by the
arbitrariness of F .

On the other hand, let F1 ∈ F(N) and F 2 ∈ F(M/N). Choose a submodule F2 ∈ F(M) such that
(F2 +N)/N = F 2 and set F = F1 + F2. Then

L(F ) = L(F ∩N) + L((F +N)/N) ≥ L(F1) + L(F 2),

since F 2 = (F+N)/N (being F1 contained in N) and F1 ⊆ F∩N . This gives L(M) ≥ L(N)+L(M/N),
concluding the proof.

Usually a mathematical notion of entropy (no matter if topological, algebraic, measure-theoretic)
is defined as a map from the set of endomorphisms of a fixed object in a category C to R∗. This point
of view can be made categorical as follows (see [6] and [20]).

Given a category C, let Flow(C) denote the category of flows of C, whose objects are the pairs
(G,φ) where G is an object of C and φ : G→ G is an endomorphism. A morphism (G1, φ)→ (G2, ψ)
in Flow(C) is a commutative square

G1
φ //

α

��

G1

α

��
G2

ψ // G2

where α : G1 → G2 is a morphism in C. Abusing notation, we shall denote by α also the morphism
(G1, φ1)→ (G2, φ2) in Flow(C).

When the category C is the category Mod(R), there is a nice description of the category of flows; in
fact, the category Flow(Mod(R)) is canonically isomorphic to Mod(R[X]). The canonical isomorphism
is given by (G,φ) 7→ Gφ ∈ Mod(R[X]), where Gφ as an R-module is just G and X acts on G via φ,
that is

(r0 + r1X + · · ·+ rnX
n) · g = r0g + r1φ(g) + · · ·+ rnφ

n(g)

for all g ∈ G and (r0 + r1X + · · ·+ rnX
n) ∈ R[X]. Also a morphism in Flow(Mod(R)) is easily seen

to commute with the action of X and thus it becomes an R[X]-module homomorphism.

In what follows we will identify the categories Flow(Mod(R)) and Mod(R[X]), denoting by Gφ a
generic object.

Let Gφ be an R[X]-module. An R[X]-submodule of Gφ is nothing else but a φ-invariant submodule
of G. Similarly, a quotient of Gφ is just a quotient of G such that the kernel of the natural projection
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is φ-invariant. Recall that a segment of Gφ is any submodule of a quotient of Gφ. We shall sometimes
abuse notation, denoting by Hφ a segment of Gφ with X acting as the endomorphism induced on H
by φ.

Notice that it is possible to consider the intrinsic algebraic entropy as an invariant of Mod(Z[X]).
Indeed, we let

ẽnt : Mod(Z[X])→ R∗, Gφ 7−→ ẽnt(φ).

By Lemma 3.9 ẽnt is an invariant and by Lemma 3.14 ẽnt is also upper continuous.
The remaining part of this section is devoted to prove the Addition Theorem for ẽnt, which

says that, given a Z[X]-module Gφ and a Z[X]-submodule Hφ of Gφ, then ẽnt(Gφ) = ẽnt(Hφ) +
ẽnt((G/H)φ).

The next two results give the proof of the Addition Theorem in the very particular case of a
divisible torsion-free Abelian group of finite rank with a pure φ-invariant subgroup. The proof of the
next lemma is analogous to that of [6, Proposition 4.2] in the case of h.

Lemma 5.3. Let m be a positive integer and φ : Qm → Qm an endomorphism. Suppose that K ∼= Qk,
for some k ≤ m, is a φ-invariant Q-vector subspace of Qm. Then

ẽnt(φ) = ẽnt(φ �K) + ẽnt(φ),

where φ : Qm/K → Qm/K is the endomorphism induced by φ.

Proof. Choose a basis B = {v1, . . . , vk, vk+1, . . . , vm} of Qm such that BK = {v1, . . . , vk} is a basis of
K; the matrix of φ with respect to B has the following block-wise form:

A =

(
A1 B
0 A2

)
,

where A1 is the matrix of φ �K with respect to BK . Let π : Qm → Qm/K be the canonical projection
and let B = {π(vk+1), . . . , π(vm)}, which is a basis of Qm/K. Then A2 is the matrix of φ with respect
to B. Let α1, . . . , αk be the eigenvalues of A1 and let αk+1, . . . , αm be the eigenvalues of A2.

Let fφ(X), f1(X), f2(X) ∈ Q[X] be the characteristic polynomials of A,A1, A2 respectively. Then
fφ(X) = f1(X) · f2(X). Let s1 and s2 be the least common multiples of the denominators of the
coefficients of f1 and f2 respectively. This means that p1(X) = s1f1(X) and p2(X) = s2f2(X) ∈ Z[X]
are primitive. By Gauss Lemma, pφ(X) = p1(X) · p2(X) is primitive and so, setting s = s1s2, the
polynomial pφ(X) = sfφ(X) ∈ Z[X] is primitive. Now Theorem 4.2 applied to φ, φ �K and φ gives
ẽnt(φ) = log s = log s1 + log s2 = ẽnt(φ �K) + ẽnt(φ).

Proposition 5.4. Let G be a torsion-free Abelian group of finite rank and φ : G → G an endomor-
phism. If H is a φ-invariant pure subgroup of G then

ẽnt(φ) = ẽnt(φ �H) + ẽnt(φ) ,

where φ : G/H → G/H is the morphism induced by φ.

Proof. As H is pure in G we have that G/H is torsion-free. Furthermore, the following exact sequence

0→ H → G→ G/H → 0

is sent to the following short exact sequence tensorizing by Q:

0→ D(H)→ D(G)→ D(G/H)→ 0.

Now, to conclude the proof it is enough to use the fact that the intrinsic algebraic entropy is preserved
by taking divisible hulls of torsion-free Abelian groups by Corollary 3.15, and that it is additive on
sequences of rational vector spaces by Lemma 5.3.
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Our next goal is to prove the Addition Theorem in the particular case when G is a finite-rank
torsion-free Abelian group that is the trajectory of a finitely generated subgroup, and H is a φ-
invariant subgroup of G of maximal rank.

Proposition 5.5. Let G be a torsion-free Abelian group of finite rank k ∈ N+, φ : G → G an
endomorphism and suppose there exists a finitely generated subgroup F of G such that G = T (φ, F ).
Let H be a φ-invariant subgroup of G such that G/H is torsion. Then:

(a) G/H is finite;

(b) ẽnt(φ) = ẽnt(φ �H) and ẽnt(φ) = 0, where φ is the endomorphism induced by φ on G/H.

Proof. There exist finitely many prime numbers {p1, . . . , ph} such that, identifying G with a subgroup
of its divisible hull D(G) = Qk, we have G ⊆ Z[1/p1, . . . , 1/ph]k, where Z[1/p1, . . . , 1/ph] = R is the
subring of Q generated by the fractions 1/pi with 1 ≤ i ≤ h. Indeed, since F is finitely generated,
we can suppose F ∼= Zm ⊆ Zk for some m ≤ k. Let {p1, . . . , ph} be the family of primes dividing the
coefficients of the rational matrix associated to the extension φ̃ of φ to D(G). Then clearly φn(F ) ⊆ Rk
for every n ∈ N, hence G = T (φ, F ) ⊆ Rk.

(a) As (G/H)φ is a finitely generated Z[X]-module, any positive integer annihilating its generators
annihilates G/H, which is therefore bounded. A bounded Abelian group with finite socle is finite, so it
is enough to prove that G/H has finite socle. Since the class of torsion Abelian groups with finite socle
is closed under taking subgroups, quotients and finite direct sums, recalling that G/H is contained
into Rk/H, and noting that Rk/H is a quotient of R/m1Z⊕ . . .⊕R/mkZ for suitable non-zero integers
m1, . . . ,mk, the conclusion comes from the fact that the socle of R/nZ is finite for all n ∈ Z, because
R/nZ is a finite direct sum of cocyclic groups.

(b) As G and H have the same rank, D(G) = D(H) and so it follows by Corollary 3.15 that
ẽnt(φ) = ẽnt(φ �H). Furthermore, G/H is finite by item (a) and so ẽnt(φ) = 0.

We pass now to examine Abelian groups which fail to be torsion-free, but which still are trajectories
of finitely generated subgroups. Proposition 3.16(b) shows that, if the Abelian groupG is the trajectory
of a finitely generated φ-inert subgroup H, then ẽnt(φ) = ẽnt(φ,H). On the other hand, it is possible
to find examples where G is the trajectory of a finitely generated subgroup, but it is not possible to
find a finite set of elements generating a φ-inert subgroup (take for example the right Bernoulli shift
on the group Z(N)). We will prove in the following proposition that this inconvenience may occur only
if the torsion-free rank of G is infinite.

Proposition 5.6. Let G be an Abelian group, φ : G → G an endomorphism and suppose that there
exists a finitely generated subgroup F of G such that G = T (φ, F ). Then the following conditions are
equivalent:

(a) ẽnt(φ) <∞;

(b) rk(G) <∞;

(c) there exists n ∈ N+ such that Tn(φ, F ) is φ-inert.

Furthermore, if the above equivalent conditions are not verified, then G has a φ-inert subgroup iso-
morphic to Z(N) on which the restriction of φ acts as the right Bernoulli shift βZ.

Proof. (a)⇒(b) Suppose rk(G) = ∞. Let x1, . . . , xk be a set of generators of F , in particular, G =
T (φ, x1Z) + . . .+ T (φ, xkZ) and so rk(G) ≤

∑k
i=1 rk(T (φ, xiZ)). In particular, rk(T (φ, xiZ)) =∞ for

some i. But the condition that rk(T (φ, xiZ)) = ∞ is equivalent to the fact that φn(xi)Z ∼= Z and
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Tn(φ, xi) ∼= Zn, for every n ∈ N+. This means exactly that T (φ, xiZ) ∼= Z(N) and φ acts on this group
as a right Bernoulli shift. From Example 3.7 we deduce that ẽnt(φ) =∞.

(b)⇒(c) There exists a finitely generated subgroup F ′ of G such that F ′ ∼= Zk and G/F ′ is torsion.
Since G = T (φ, F ) and F ′ is finitely generated, there exists n ∈ N+ such that F ′ ⊆ Tn(φ, F ). Now
(Tn(φ, F ) + φ(Tn(φ, F )))/Tn(φ, F ) is torsion, because it is contained in a quotient of G/F ′, and also
finitely generated, hence it is finite, so Tn(φ, F ) is φ-inert as desired.

(c)⇒(a) Since Tn(φ, F ) is also finitely generated , by Proposition 3.16(b) one can see that ẽnt(φ) =
ẽnt(φ, Tn(φ, F )), therefore,

ẽnt(φ) ≤ log |Tn+1(φ, F )/Tn(φ, F )| <∞,

and this concludes the proof.

The following technical lemma is needed in the proof of Proposition 5.8

Lemma 5.7. Let G be an Abelian group of finite rank, φ : G → G an endomorphism and suppose
there exists a finitely generated subgroup F of G such that G = T (φ, F ). Then t(G) is bounded,
hence G = t(G) ⊕K, where K is torsion-free. Hence φ can be represented in matrix form as follows
(φt ∈ End(t(G)), φ∗ ∈ Hom(K, t(G)), φ ∈ End(K)):(

φt φ∗

0 φ

)
: t(G)⊕K → t(G)⊕K

(
t
f

)
7→
(
φt(t) + φ∗(f)

φ(f)

)
.

Furthermore, there exist subgroups H1 of t(G) and H2 of K such that:

(i) H1 is finite, it contains φ∗(T (φ,H2)) and T (φt, H1) = t(G);

(ii) H2 is finitely generated, φ-inert and T (φ,H2) = K;

(iii) H = H1 ⊕H2 is finitely generated, φ-inert and T (φ,H) = G;

(iv) ẽnt(φ,H) = ẽnt(φt, H1) + ẽnt(φ,H2).

Proof. By hypothesis Gφ is a finitely generated Z[X]-module. As Z[X] is a Noetherian ring, the Z[X]-
submodule T = t(G)φ is again finitely generated, so T = T (φ, F1) for a finite subgroup F1. A positive
integer annihilating F1 annihilates the whole T , which is therefore bounded, hence a summand of G.

Thus, we can adopt the notation of the statement and let π : G→ K be the canonical projection.
We have that K = T (φ̄, πF ) satisfies the hypothesis of Proposition 5.6 and so, there exists n ≥ 1 such
that H2 = Tn(φ̄, πF ) is a φ̄-inert subgroup of K. We let also H1 = F1 + φ∗(T (φ̄,H2)).

(i) As φ∗(T (φ,H2)) is bounded, there exists m ≥ 1 such that mφ∗(T (φ,H2)) = 0. In particular,
mT (φ,H2) ⊆ ker(φ∗) ∩ T (φ,H2) and so φ∗(T (φ,H2)) is a quotient of T (φ,H2)/mT (φ,H2), which is
a finite group, since T (φ,H2) has finite rank. Hence H1 is the sum of two finite groups, thus it is
finitely generated and φt-inert. Furthermore, the inclusions T = T (φt, F1) ⊆ T (φt, H1) ⊆ T show that
T (φt, H1) = T .

(ii) easily follows by construction.
(iii) The subgroup H is finitely generated as it is the sum of two finitely generated subgroups. Since

H2 is φ-inert by part (ii), H is φ-inert by Lemma 2.6. Finally, the inclusion T (φt, H1) ⊕ T (φ,H2) ⊆
T (φ,H) shows that G = t(G)⊕K = T (φ,H).

(iv) We want now to compute the n-trajectories of H. It is useful here to use the matrix notation,
with the obvious meaning of symbols. Indeed, we have:

H =

(
H1

H2

)
, φ(H) ⊆

(
φt(H1) + φ∗(H2)

φ(H2)

)
, φ2(H) ⊆

(
φ2t (H1) + φtφ

∗(H2) + φ∗φ(H2)

φ
2
(H2)

)
, . . .
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Going on this way, one obtains the inclusion

φn(H) ⊆

φntH1 +
∑
{φit φ∗ φ

j
(H2) : i+ j = n− 1, 0 ≤ i, j ≤ n− 1 }

φ
n
(H2)


It is clear that

∑
φitφ
∗φ

j
H2 ⊆

∑
φitφ
∗(T (φ,H2)). Now recall that by construction, φ∗(T (φ,H2)) ≤ H1

and so we can improve the above inclusion as follows

φn(H) ⊆

φnt (H1) +
∑n−1

i=0 φ
i
t(H1)

φ
n
(H2)


An easy computation now gives

Tn(φ,H) ⊆
(
Tn(φt, H1)

Tn(φ,H2)

)
.

Hence we obtain that Tn(φ,H)/H ⊆ Tn(φt, H1)/H1 ⊕ Tn(φ,H2)/H2. This shows that

ẽnt(φ,H) ≤ ẽnt(φt, H1) + ẽnt(φ,H2).

Since the other inequality holds by Lemma 3.10(b), we get the wanted equality.

The next result proves the Addition Theorem with respect to the torsion subgroup.

Proposition 5.8. Let G be an Abelian group, φ : G→ G an endomorphism and φ : G/t(G)→ G/t(G)
the endomorphism induced by φ. Suppose there exists a finitely generated subgroup F of G such that
G = T (φ, F ). Then ẽnt(φ) = ẽnt(φ �t(G)) + ẽnt(φ).

Proof. Suppose that rk(G) is infinite. By Proposition 5.6 ẽnt(φ) = ∞ and G/t(G) has a φ-invariant
subgroup isomorphic to Z(N) on which φ acts as a right Bernoulli shift, so clearly ẽnt(φ) =∞ = ẽnt(φ).
So assume that rk(G) is finite. By Lemma 5.7 t(G) splits in G and so G = t(G)⊕K, where K is torsion-
free. Again by Lemma 5.7 there exist a finite subgroup H1 of t(G) and a finitely generated subgroup H2

of K such that T (φ �t(G), H1) = t(G) and T (φ,H2) = K; moreover H = H1⊕H2 is finitely generated,

φ-inert, T (φ,H) = G and ẽnt(φ,H) = ẽnt(φt, H1) + ẽnt(φ,H2). In order to conclude, notice that
ẽnt(φ,H) = ẽnt(φ), ẽnt(φ �t(G), H1) = ẽnt(φt) and ẽnt(φ,H2) = ẽnt(φ) by Proposition 3.16(b).

The preceding results allow us to prove the Addition Theorem for the intrinsic algebraic entropy
in case the Abelian group we are dealing with is the trajectory of a finitely generated subgroup. The
general case will follow using Proposition 5.2.

Theorem 5.9. Let G be an Abelian group, φ an endomorphism and suppose that there exists a finitely
generated subgroup F of G such that G = T (φ, F ). Then, for every φ-invariant subgroup H of G we
have that

ẽnt(φ) = ẽnt(φ �H) + ẽnt(φ),

where φ denotes the endomorphism induced by φ on the quotient G/H.

Proof. Obviously, rk(G) =∞ if and only if rk(H) =∞ or rk(G/H) =∞, as rk(G) = rk(H)+rk(G/H).
By Proposition 5.6, this means that ẽnt(φ) = ∞ if and only if ẽnt(φ �H) = ∞ or ẽnt(φ) = ∞. This
allows us to suppose, as we will do from now on, that G has finite rank. In order to simplify the
notation, we will adopt the following conventions. All the groups that will appear in this proof will be of
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the formK1/K2, withK2 ≤ K1 φ-invariant subgroups ofG, so that φ induces an endomorphism φK1/K2

of K1/K2. We will denote ẽnt(φK1/K2
) simply by ẽnt(K1/K2). Furthermore, we let K = t(G) +H.

Let us list some short exact sequences of Z[X]-modules on which ẽnt is additive (recall that we are
assuming G of finite rank).

(1) From 0 → t(G) → G → G/t(G) → 0 we have that ẽnt(G) = ẽnt(t(G)) + ẽnt(G/t(G)) by
Proposition 5.8.

(2) From 0 → t(H) → H → K/t(G) → 0 we have that ẽnt(H) = ẽnt(t(H)) + ẽnt(K/t(G)) by
Proposition 5.8.

(3) From 0→ t(H)→ t(G)→ t(G)/t(H)→ 0 we have that ẽnt(t(G)) = ẽnt(t(H)) + ẽnt(t(G)/t(H))
by the Addition Theorem for ent (see [9]) and the fact that ẽnt = ent on torsion Abelian groups.

(4) Considering the short exact sequence in (1.6) (replacing there G by G/t(G) and L by K/t(G)),
and noting that (G/t(G))/(K/t(G)) ∼= G/K, we obtain the short exact sequence:

0→ (K/t(G))∗ → G/t(G)→ G/K

t(G/K)
→ 0.

So we have that ẽnt(G/t(G)) = ẽnt((K/t(G))∗) + ẽnt((G/K)/t(G/K)) by Corollary 5.4.

(5) From 0 → K/t(G) → (K/t(G))∗ → (K/t(G))∗/(K/t(G)) → 0 we have that ẽnt(K/t(G)) =
ẽnt((K/t(G))∗), by Proposition 5.5.

(6) It is not difficult to verify that (G/K)/t(G/K) ∼= (G/H)/t(G/H) (to see this just notice that the
two canonical surjections G→ (G/K)/t(G/K) and G→ (G/H)/t(G/H) have the same kernel),
and so ẽnt((G/K)/t(G/K)) = ẽnt((G/H)/t(G/H)).

(7) From 0 → t(G/H) → G/H → (G/H)/t(G/H) → 0 we have, again by Proposition 5.8, that
ẽnt(G/H) = ẽnt(t(G/H)) + ẽnt((G/H)/t(G/H)).

(8) The quotient K/H is contained in t(G/H) and it is the kernel of the projection t(G/H) →
t(G/K). Moreover, K/H ∼= t(G)/t(H). So we consider the short exact sequence of torsion
Abelian groups

0→ t(G)/t(H)→ t(G/H)→ t(G/K)→ 0.

Since

t(G/K) ∼= t

(
G/t(G)

K/t(G)

)
=

(K/t(G))∗

K/t(G)
,

and the latter quotient is finite by Proposition 5.5, we can conclude that t(G/K) is finite. So
ẽnt(t(G/K)) = 0. By the Addition Theorem for ent (see [9]) and the fact that ẽnt = ent on
torsion Abelian groups, we have ẽnt(t(G/H)) = ẽnt(t(G)/t(H)).

Now we can conclude the proof with the following series of equalities:

ẽnt(G) = ẽnt(t(G)) + ẽnt(G/t(G)) by (1)

= ẽnt(t(H)) + ẽnt(t(G)/t(H)) + ẽnt((K/t(G))∗) + ẽnt((G/K)/t(G/K)) by (3) and (4)

= ẽnt(t(H)) + ẽnt(t(G)/t(H)) + ẽnt(K/t(G)) + ẽnt((G/H)/t(G/H)) by (5) and (6)

= ẽnt(H) + ẽnt(t(G)/t(H)) + ẽnt(G/H)− ẽnt(t(G/H)) by (2) and (7)

= ẽnt(H) + ẽnt(G/H) by (8).

This concludes the proof.
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Corollary 5.10 (Addition Theorem). The intrinsic algebraic entropy ẽnt : Mod(Z[X]) → R∗ is an
additive invariant, hence it is a length function.

Proof. In Lemma 3.14 we proved that ẽnt is an upper continuous invariant, so it is a length function
provided that it is additive. The above Theorem 5.9 shows that ẽnt is additive on the class of finitely
generated Z[X]-modules. Since Z[X] is Noetherian, Proposition 5.2 applies to show that ẽnt is additive
on the whole category Mod(Z[X]).

We can easily derive from the Addition Theorem a characterization of the endomorphisms having
intrinsic algebraic entropy zero.

Corollary 5.11. Let G be an Abelian group and φ : G → G an endomorphism. Then ẽnt(φ) = 0 if
and only if the following conditions are satisfied:

(a) ent(φ �t(G)) = 0;

(b) G is the union of a chain of pure φ-invariant subgroups

t(G) = G0 < G1 < G2 < . . . < Gσ < . . . <
⋃
σ<λ

Gσ = G

such that rk(Gσ+1/Gσ) is finite for all σ and, denoting by φσ+1 : Gσ+1/Gσ → Gσ+1/Gσ the
endomorphism induced by φ, Gσ+1/Gσ is the pure closure in G/Gσ of a cyclic φσ+1-trajectory
for all σ < λ;

(c) the unique extension φ̃σ+1 of φσ+1 to the divisible hull of Gσ+1/Gσ has monic characteristic
polynomial over Z.

Proof. First assume that (a), (b) and (c) are true. We prove that ẽnt(φ �Gσ) = 0 for each ordinal σ,
by transfinite induction on σ; the fact that ẽnt(φ) = 0 then follows by Lemma 5.1. Item (a) provides
the initial step for σ = 0. Assume ẽnt(φ �Gσ) = 0 and consider the exact sequence:

0→ Gσ → Gσ+1 → Gσ+1/Gσ → 0.

The endomorphism φσ+1 of Gσ+1/Gσ induced by φ �Gσ+1 has zero intrinsic algebraic entropy by

(c), Corollary 3.15 and Theorem 4.2; then the Addition Theorem ensures that ẽnt(φ �Gσ+1) = 0.

Assume now that σ is a limit ordinal, and that ẽnt(φ �Gρ) = 0 for all ordinals ρ < σ. Then Lemma

5.1 ensures that also ẽnt(φ �Gσ) = 0, so we are done.
Conversely, let us assume that ẽnt(φ) = 0. Then (a) follows from Lemma 3.10(a). The construction

of the chain in (b) is made by transfinite induction. If Gσ is already constructed, let ψσ : G/Gσ →
G/Gσ the map induced by φ. Choose x ∈ G \Gσ and consider the ψσ-trajectory T (ψσ, x+Gσ) = Tσ
in G/Gσ; let Gσ+1/Gσ = T ∗σ be its pure closure in G/Gσ. Finally, let φσ+1 : Gσ+1/Gσ → Gσ+1/Gσ be
the restriction of ψσ to Gσ+1/Gσ. If σ is a limit ordinal, set Gσ =

⋃
ρ<σ Gρ. Then ẽnt(φ) = 0 implies

ẽnt(ψσ+1) = 0 for all σ, and consequently also that ẽnt(φσ+1) = 0 for all σ; this last equality has the
consequence that rk(Gσ+1/Gσ) is finite, because Tσ = T (ψσ, x+Gσ) of infinite rank would imply that
ẽnt(φσ+1) =∞, by Example 3.7. Now item (c) follows from Corollary 3.15 and Theorem 4.2.

As done in the case of the algebraic entropy in [9], it is possible to define the global intrinsic
algebraic entropy of an Abelian group G as

ẽnt(G) = sup{ẽnt(φ) : φ : G→ G endomorphism}.

The following is an example of a torsion-free Abelian group with rk(G) = 2ℵ0 and ẽnt(G) = 0.
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Example 5.12. It is well known that there exist 2ℵ0 subgroups Rσ, with σ < 2ℵ0 , of the group Q of
the rational numbers such that HomZ(Rσ, Rτ ) = 0 if σ 6= τ and End(Rσ) = Z for all σ (for instance,
take 2ℵ0 infinite subsets σ of P with finite mutual intersection, and for each σ let Rσ = 〈1/p : p ∈ σ〉).

Let G =
⊕

σ Rσ, that clearly has rk(G) = 2ℵ0 . Then End(G) =
∏
σ Z, and for every endomorphism

φ of G each subgroup Rσ is φ-invariant. Therefore φ : G → G satisfies the conditions of Corollary
5.11, with Gσ =

⊕
α≤σ Rα, so ẽnt(φ) = 0. Hence ẽnt(G) = 0.

In the case of torsion Abelian groups G, Proposition 3.6 gives ent(G) = ẽnt(G). Many examples
of torsion Abelian groups G with ent(G) = 0 can be found in [9]. Nevertheless, the problem of the
classification of all torsion Abelian groups with this property is open (see [9, 19]).

6 The Uniqueness Theorem

In this section h∗ : Mod(Z[X]) → R∗ denotes a length function and, given Gφ ∈ Mod(Z[X]), we will
often write h∗(φ) in place of h∗(Gφ). We characterize ẽnt as the unique length function of Mod(Z[X])
satisfying two natural hypotheses. Indeed, we prove the following

Theorem 6.1 (Uniqueness Theorem). There exists a unique length function h∗ : Mod(Z[X]) → R∗
such that

(a) h∗(βK) = log |K| for any finite Abelian group K, where βK : K(N) → K(N) is the right Bernoulli
shift;

(b) h∗(φ) = log s for every automorphism φ of Qm whose characteristic polynomial over Q has the
positive integer s as least common multiple of the denominators of its coefficients.

Furthermore, h∗ = ẽnt.

The proof of the Uniqueness Theorem will follow at the end of this section after three lemmas
describing some properties of the length functions of Mod(Z[X]). Note that an analogous result has
been proved for the algebraic entropy h in [6], with hypothesis (b) replaced by the Algebraic Yuzvinski
Formula:

(b′) h(φ) = m(φ) for every automorphism φ of Qm whose minimal polynomial over Q has the positive
integer s as least common multiple of the denominators of its coefficients.

Furthermore, it was proved in [9] that ent is the unique length function defined on the endomorphisms
of torsion Abelian groups satisfying hypothesis (a). We remark that in [9] also the logarithmic law
appeared in the hypothesis of such theorem, anyway one can use the following Lemma 6.2 to see that
this is not necessary.

The next lemma proves that condition (a) in the statement of the Uniqueness Theorem implies
that h∗ is trivial on all the endomorphisms of finite Abelian groups. The argument used in the proof
already appeared in [19].

Lemma 6.2. Let h∗ : Mod(Z[X]) → R∗ be a length function satisfying the hypothesis (a) of the
Uniqueness Theorem. Then h∗(φ) = 0 for all φ : G→ G, with G a finite Abelian group.

Proof. Consider the surjective homomorphism f : G(N) → G such that f((xn)n∈N) =
∑

n∈N φ
n(xn);

note also that fβG = φf , and so f is a surjective homomorphism of Z[X]-modules f : G
(N)
βG
→ Gφ.

Thus, by the additivity of h∗,

h∗(φ) = h∗(βG)− h∗(ker(f)βG) . (6.1)
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On the other hand, consider the injective homomorphism g : G(N) → G(N) defined on the generators
as follows

g(0, . . . , 0, x︸︷︷︸
n

, 0, . . . ) = (0, . . . , 0, φ(x)︸︷︷︸
n

,−x, 0, . . . ).

Note that gβG = βGg and fg = 0; hence g is an embedding of Z[X]-modules of G
(N)
βG

in ker(f)βG and
so h∗(βG) ≤ h∗(ker(f)βG) ≤ h∗(βG). By (6.1), h∗(φ) = 0 .

In the next lemma we prove that any length function h∗ of Mod(Z[X]) which satisfies condition
(a) in the statement of the Uniqueness Theorem, necessarily coincides with ẽnt on finitely generated
Z[X]-modules Gφ such that rk(G) =∞ (see also Proposition 5.6).

Lemma 6.3. Let h∗ : Mod(Z[X]) → R∗ be a length function satisfying the hypothesis (a) of the
Uniqueness Theorem. Let G be an Abelian group of infinite rank, φ : G → G an endomorphism and
F a finitely generated subgroup of G such that G = T (φ, F ). Then h∗(φ) =∞.

Proof. By Proposition 5.6 there is a φ-invariant subgroup H ∼= Z(N) of G on which the restriction of φ
acts as the right Bernoulli shift βZ. Thus, it is enough to show that h∗(Hφ) =∞. This follows by the

fact that (H/pH)φ ∼= Z(p)
(N)
βZ(p)

and so h∗(Hφ) ≥ sup{h∗(βZ(p)) : p ∈ P} = sup{log(p) : p ∈ P} =∞.

The next lemma is the last result that we need for the proof of the Uniqueness Theorem, the proof
is exactly the same of Corollary 3.15 and so it is omitted.

Lemma 6.4. Let h∗ : Mod(Z[X]) → R∗ be an upper continuous invariant. Let G be a torsion-free
Abelian group and φ : G→ G an endomorphism. Then h∗(φ) = h∗(φ̃), where φ̃ : D(G)→ D(G) is the
unique extension of φ to the divisible hull D(G) of G.

Proof of the Uniqueness Theorem 6.1. We already noted that ẽnt is an additive upper continu-
ous invariant; it satisfies (a) since over torsion Abelian groups it coincides with ent by Proposition 3.6
and because of [9, Example 1.9]; finally, it satisfies (b) in view of Theorem 4.2.

Conversely, let h∗ be a length function on Mod(Z[X]) satisfying (a) and (b). We have to show
that h∗ coincides with ẽnt. It suffices to verify that these two length functions coincide on finitely
generated Z[X]-modules. So assume without loss of generality that G = T (φ, F ) for some finitely
generated subgroup F of G.

If G is torsion, then G is either finite or there exists an element x ∈ G[p] for some prime p such
that T (φ, xZ) ∼= Z(p)(N) and φ acts on this subgroup as the right Bernoulli shift βZ(p). So, using an
inductive argument, one can realize the group G as the union of a finite chain of φ-invariant subgroups

0 = (H0)φ ⊆ (H1)φ ⊆ · · · ⊆ (Hn)φ = Gφ

such that (Hi+1/Hi)φ is either finite or conjugated to Z(pi)
(N)
βZ(pi)

, for all i < n and suitable primes pi.

Hence, ẽnt(φ) = h∗(φ) by the additivity of both invariants, condition (a) and Lemma 6.2.
If G is torsion-free, then ẽnt(φ) = h∗(φ) by (b) and Lemma 6.4 in case rk(G) <∞, by Lemma 6.3

and Proposition 5.6 in case rk(G) =∞.
The general case follows by the torsion and torsion-free cases using additivity.
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