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Abstract

This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems,
tracing back the roots of the original thinking behind the development of the concept of “context”. It shows how its fortune in the
distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting
possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a
priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output,
etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain
are presented and discussed.
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1. Introduction

Terms like “context-awareness”, “context-aware application”
and “context-aware computing” have been the subject of an
increasing research interest in the past twenty years. The im-
portance of Contextual Information (CI) for improving system
performance has been widely recognized and applied to succes-
sive generations of distributed computing models [1]. Notwith-
standing this growing popularity, the context-awareness con-
cept, namely considering, representing, and exploiting infor-
mation and knowledge that does not characterize the focal el-
ement(s) of interest but the surrounding environment or cur-
rent situation, had not crossed the borders of the aforemen-
tioned computing domain until the past few years. An area
that has lately shown a rapidly escalating interest in CI is In-
formation Fusion (IF). IF systems are traditionally designed
to exploit observational data and a priori models and to work
well in what can be defined as well-behaved conditions. How-
ever, they cannot be expected to work in problems where the
“world-behaviour” is very complex and unpredictable without
hard-coded knowledge, or in problems where contextual in-
fluences are important or even critical. The development of
context-based fusion systems is an opportunity to improve the
quality of the fused output and provide domain-adapted solu-
tions. The understanding and principled exploitation of context
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in fusion systems is still very limited. Domain knowledge is
generally acquired ad hoc from an expert and applied to stove-
piped solutions that can hardly scale or adapt to new conditions.
However, context should play a vital role at any level of a mod-
ern fusion system (taking as reference the JDL-Joint Directors
of Laboratories- framework): from object recognition through
physical context exploitation, to intention estimation through
linguistic communication analysis. It would be the key element
to gain adaptability and improved performance.

This survey aims to provide a comprehensive status of re-
cent and current research on context-based IF systems, tracing
back the roots of the original thinking behind the development
of the concept of “context”. It shows how its fortune in the dis-
tributed computing world eventually permeated in the world of
IF, discussing the current strategies and techniques, and hinting
possible future trends.

The paper is structured as follows: Section 2 discusses sev-
eral existing definitions of context in the literature, highlighting
the most relevant aspects for the fusion domain and the perspec-
tive taken in the analysis. Section 3 provides an overview of
the most significant works exploiting CI in the fields of mobile
and pervasive computing, image processing and understanding
and Artificial Intelligence (AI). Section 4 gives a brief intro-
duction to the terminology used in the JDL fusion model, and
Section 5 makes use of this terminology to categorize existing
works on context in the fusion domain according to the fusion
processes involved. Section 6 provides some insights on a few
fundamental concepts, discussing their meaning in fusion sys-
tems for Situation Assessment. Section 7 discusses some novel
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architectural design concepts that can be taken into account for
developing context-aware fusion systems. Concluding remarks
can be found in Section 8.

2. Definition of context

As difficult as it is to be very precise in defining “fusion”
boundaries, we will see that the definitions of “context” and
“contextual information” are equally difficult. Intuitively, CI
could be said to be that information that “surrounds” a situa-
tion of interest in the world. It is information that aids in un-
derstanding the (estimated) situation and also aids in reacting
to the situation, if a reaction is required. Devlin [2] takes this
view, defining context as follows: “a feature F is contextual for
an action A if F constrains A, and may affect the outcome of A,
but is not a constituent of A”. Contextual premises can thus be
seen as a set of constraints to a reasoning process about a situ-
ation; Kandefer and Shapiro also define it in a constraint-based
sense [3]: “the structured set of variables, external constraints to
some (natural or artificial) cognitive process that influences the
behavior of that process in the agent(s) under consideration”.
There are of course other definitions of this somewhat slippery
term, such as that offered by Dey and Abowd [4], who state that
context is “any information (either implicit or explicit) that can
be used to characterize the situation of an entity”. These def-
initions imply that these contextual premises are constraints to
other premises that could be called “focal” to the formation of
our “argument” or conclusion. For example, Kent writes that
“It is the context of the situation alone which gives point and
meaning to the subsequent elements of the speculation,” im-
plying that there is a situational premise that is separate from
the contextually-augmented (or constrained) premises. Heuer,
in the well-known work of [5] writes, “The significance of in-
formation is always a joint function of the nature of the infor-
mation and the context in which it is interpreted”, where he
distinguishes “the (focal) information” and “the context” of it.

Here, we will use these viewpoints to develop a perspective
as follows: In many problems involving interpretation and the
development of meaning, there is often some focal data that
is purposely collected to help in developing such understand-
ing –in a surveillance application these are the sensor data and
possibly human-based observational data. Through analysis,
these data can support the formation of what we will call “fo-
cal premises” –statements (propositions) about some aspect of
the “condition or situation” of interest. To the extent that sep-
arate contextual data or information are available, they too can
be analyzed to form additional premises –propositions that we
will call “contextual premises”– that, together with the focal
premises, can lead to the formation of an “argument” –a con-
clusion traceable to the foundations of the joint set of these
premises.

3. Origins and development of context representation and
exploitation approaches

There is a vast literature on context in many diverse fields
outside computer science spanning fields such as cognitive sci-

ences, psychology, linguistics, social sciences. The beginning
of years 1990s marks the start of a significant interest in the
topic by researchers in computer science, even if a few pio-
neering works existed even before. At the end of that decade,
the CONTEXT conference was started to gather researchers
from diverse fields with the common binding interest in under-
stating, modelling and exploiting CI. The reader is referred to
Brézillon’s survey [6] for an account of early works in many
diverse fields and to [7] for a dedicated survey on works in AI.

Here we provide an overview of the selected works in the
fields of mobile and pervasive computing, image processing
and understanding and AI, highlighting the most relevant con-
cepts and providing pointers for further reading. These fields
have produced a significant amount of works on context, ad-
dressing and developing concepts that are now permeating in
the fusion domain as will be discussed later.

3.1. Mobile and pervasive computing
The area of mobile and pervasive computing is probably the

most prolific in terms of works dealing with CI. Starting at
the beginning of the 1990s, and taking inspiration from ear-
lier works in the domain of cognitive and social sciences, re-
searchers in this field have never stopped to investigate ways of
representing and reasoning about context. In this area, all re-
volves around the user and the services that can be provided to
her/him. One fundamental contextual element here is location
and the environment surrounding the user [8], even though it
was clear from the beginning that context is much more than
that [9]. A later and classic work by Dey, in addition to external
features such as location, environment and time, included the
emotional state of the user as part of the contextual elements
(this aspect will be discussed in detail in Section 6). More re-
cent works recognise the fact that context is also far from being
static but is considered an “ever-changing environment com-
posed of reconfigurable, migratory, distributed, and multiscale
resources” as in [10], even though this work seems to focus
more on the relations with surrounding computing resources.

The research in this field is so vast that a number of surveys
exist. In addition to providing several seminal papers on the
subject, in 2000 Dey surveyed the literature [4] for context-
aware computing approaches according to the type of CI used
(location, identity, activity and time) and the way it is exploited
(for presentation, execution of a service, or tagging for later
retrieval). Later, the often cited paper of Strang and Linnhoff-
Popien [1] provided a survey of the most relevant current ap-
proaches to modelling context for ubiquitous computing. With-
out attempting to providing a definition of context, the paper
reviews the approaches in the literature that could be catego-
rized as: key-valued models, markup scheme models, graphical
models, object oriented models, logic based models, and ontol-
ogy based models.

The excellent survey by Baldauf et al. [11] is probably the
most well-structured, reviewing in detail the existing architec-
ture types, sensors types, context models and discussing several
framework approaches.

An extensive review of all the papers published between
2000 and 2007 can be found in [12] where all the approaches
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are classified according to five layers: concept and research,
network, middleware, application, and user infrastructure. The
middleware approach, addressed by many papers in this sur-
vey, provides a convenient way of designing an interface level
between the sensor/data source level and the application level,
brokering all relevant contextual data sources to the correct data
sinks. This type of solution is proposed in Section 7.2 as a new
approach to design in a general way context-aided IF systems.

A more recent survey of context modelling and reasoning
techniques for context-aware applications can be found in [13]
where, after listing a set of requirements that context mod-
els and context management system should have, several tech-
niques belonging to the three most prominent models that sat-
isfy the requirements are reviewed: object-role based, spatial
models, and ontology-based. Hybrid models, which combine
different formalisms in an attempt to better fulfil the require-
ments, are then discussed and presented as promising direction.

Multi-agent systems have been identified as basic technol-
ogy for software development in Ambient Intelligence (AmI)
and pervasive computing [14], [15] to develop context-based
services. So, in [16], the key technologies in AI for AmI are
planning, learning, temporal reasoning and agent-oriented tech-
nologies. Another term usually associated to AmI is smart en-
vironments [17], generally involving the implementation of in-
telligent agents and multi-agent interactions. An example, in
the assisted living domain can be seen in [18]. In other cases,
as [19], the interactions and reasoning with CI in AmI environ-
ments are implemented with blackboard paradigm to increase
the communication efficiency among different nodes sharing
their context information to provide the services to the users.

Regarding knowledge representation and communication,
reasoning with ontologies has proved to be a powerful process
with advantages over classical multiagent content languages,
such as FIPA Semantic Language (SL). So, ontologies have
been proposed to be the knowledge representation of agent sys-
tems [20]. So, in [21] authors develop an ontology to represent
the basic ideas of the contextual knowledge domain used in the
communication of agents: instances or individuals which are
concrete occurrences of concepts; relations, roles, or properties
resulting from the inner reasoning processes developed in the
agents.

A recent work [22] presents a network architecture where
context elements are managed at abstract level by contain-
ers and observers, with mechanisms to subscribe and release
them, and blackboard interactions to connect the nodes work-
ing complementarily on the same context elements. A case
study demonstrates that the framework can deal with contex-
tual information in an Ambient Intelligence environment, with
an exemplifying scenario in a teaching environment for guiding
meetings attendees.

3.2. Image processing and understanding
Lately, there has been much interest in the image processing

and computer vision fields to incorporate CI in order to improve
detection, classification, and understanding tasks on images and
videos. The studies on the effects of context on perception and
cognition in the 1970s (e.g. [23]) have attracted the interest of

image processing researchers that have begun to actively turn
the attention from the individual objects in the scene, to the
scene itself and the relations with the objects and among the
objects. In particular, among the others, the work of Torralba
[24] should be mentioned as being able to convincingly stoke
the interest on the subject after the initial attempts in the 1970s
[25] and 1990s. In the following, we provide a concise account
of some relevant works showing the exploitation of CI for dif-
ferent image processing tasks.

Torralba et al. presented in 2004 a work that exploits con-
text for both scene segmentation and object detection [26]. In
2006, Avidan proposed an extension to the AdaBoost algorithm
to incorporate spatial reasoning for pixel classification [27].

In [28], Jiang et al. propose a context-based concept fusion
method for semantic concept detection aiming at detecting con-
cepts in whole images/videos. The proposed approach is based
on a boosted conditional random fields structure able to model
inter-conceptual relationships. These relationships improve the
results obtained by the independent detectors by taking into ac-
count the correlations among concepts. Starting from the idea
that semantic concepts do not occur in isolation, the model al-
lows to incorporate contextual dependencies to improve con-
cept detection.

While [28] is an example of high-level concept detection, the
majority of the works focus on object detection as in [29], also
exploiting 3D scene constraints [30]. A 2007 account of on
state of the art by Oliva and Torralba can be found in [31] dis-
cussing the effects of context on object recognition. For the
same purpose, the “auto-context” model is proposed in [32] to
automatically learn an effective context model, by computing
the marginals of the posterior as classifications maps.

Even though most of the papers exploit geometric and se-
mantic relations, an effort in categorization of the types of CI
used for image processing and understating can be found in [33]
citing: pixel, geometric, semantic, photogrammetric, illumina-
tion, weather, geographic, temporal and cultural context. While
[34] provides a review of the different ways of using CI for ob-
ject categorization in still images.

Coming to more recent works, pedestrian detection by means
of a multi-scale context descriptor and iterative boosted classi-
fication algorithm is presented in [35]. New category discovery
by means of Object-Graphs are proposed in [36]. The approach
considers modelling the interaction between an image’s known
and unknown objects. The approach combines the appearances
of focal objects together with context information by learning a
series of classifiers. The approach is tested on object segmen-
tation, human body configuration, and scene region labelling.
A study of the tradeoffs of appearance and CI using both low
and high resolution images in human and machine studies can
be found in [37]. The work by Zheng et al. [38] proposes a
context modelling framework without the need for prior scene
segmentation or context annotation. The approach makes use of
a mechanism to evaluate the usefulness of context called Maxi-
mum Margin Context and transfer learning to address the prob-
lem of limited data for training the classifiers into distinguish-
ing focal and contextual elements.

In the distributed vision domain, multi-agent solutions have
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been proposed to exploit the coordination capability to manage
multiple sensing nodes and improve the tracking results [39].
Here, the context of each vision node needs to be shared with
the other ones perceiving the same scene (from differents point
of view). For instance, the Cooperative Surveillance Multi-
Agent System (CS-MAS) [40] consists of agent-based platform
to support the formation of smart camera coalitions; i.e., groups
of sensors able to carry out complex processing tasks and co-
operate with their neighbours to build fused results of the mon-
itored environment and improve the estimation algorithms.

3.3. Context in Artificial Intelligence
The concept of context has been studied from abstract per-

spective in computer science too. One of the first approxima-
tions to the formalization of the notion of context in AI is due to
McCarthy [41], who proposed the extensions of logic relations
to explicitly include context. So, the ist(c, p) relation (“is true”)
relates the proposition p with context c, being p true only if con-
text c is given. Sowa [42] extended this idea with other logical
relations to connect abstract context with entities, as dscr(x, p)
relation, to state that p “describes” entity x. Therefore, if x is
a situation, dscr semantics include the relation ist. Giunchiglia
[43] defines an analogous framework where the context is a sub-
set of the complete state of an entity, and it is employed to solve
a task. Some theoretical analyses have been carried out to prove
that these multi-context logics are more general than original
“ist”-based formalisms [44]. These approaches have been in-
vestigated later to address context modeling with ontologies in
the semantic web [45], [46],[47], although the current standard
languages do not provide support yet.

4. JDL model

Of the many possible ways of differentiating among types of
IF functions, that of the Joint Directors of Laboratories (JDL)
Data Fusion Sub-Panel has gained the greatest popularity. This
“JDL Model” differentiates functions into fusion “levels” that
provide an often useful distinction among IF processes that re-
late to the refinement of estimates for parameters of interest
related to “objects”, “situations”, “threats” and “processes” as
shown in Figure 1. Note that the figure is meant to depict ei-
ther a single IF node or the aggregate processing of a suite of
IF nodes that would each have similar structure; the figure is
strictly a discussion aid and not an architecture or processing
diagram. In 1998, revisions of the number of and definitions for
the “levels” were proposed in [49] to (a) provide a useful cat-
egorization representing logically different types of problems,
which are generally (though not necessarily) solved by differ-
ent techniques; and (b) maintain a degree of consistency with
the mainstream of technical usage. The proposed new defini-
tions are as follows [48]:

• Level 0 – Sub-Object Data Assessment: estimation and
prediction of signal/object observable states on the basis
of pixel/signal level data association and characterization
(this is a new level which was added to the original process
model);

JDL Model

LEVEL 1
Object 

Refinement

Data/Information 
Sources

DBMS
LEVEL 0

Signal 
Refinement

LEVEL 4
Process 

Refinement

LEVEL 2
Situation 

Refinement

LEVEL 3
Impact 

Refinement

Human-Computer 
Interface

Figure 1: JDL Data Fusion Process Model derived from the 1999 revision [48].

• Level 1 – Object Assessment: estimation and prediction
of entity states on the basis of inferences from observa-
tions;

• Level 2 – Situation Assessment: estimation and predic-
tion of entity states on the basis of inferred relations among
entities;

• Level 3 – Impact Assessment: estimation and prediction
of effects on situations of planned or estimated/predicted
actions by the participants;

• Level 4 – Process Refinement (an element of Resource
Management): adaptive data acquisition and processing
to support mission objectives.

As we have described the IF process here, we have noted that
the inputs are from a “multisensor” front-end type capability.
From a historical point of view, there is no doubt that IF system
and IF technology concepts were framed around the notion that
the input was sensor data. Such sensor systems were what have
rather recently been called “physics-based” sensors, meaning
the usual type of electromechanical devices that are designed
around ideas that exploit sensory capability in some range of
the electromagnetic spectrum. The idea here is to frame the ob-
servational capability of a problem-space of interest around its
naturally-occurring “signals” that result either from passive em-
anations such as heat signals from any object or from active or
responsive emanations that come from an object being illumi-
nated by a radiating sensor such as a radar. Usually, the sensors
are in either “search” mode or a directed mode, pointed to ob-
jects and spatiotemporal areas of interest. Such data of this type
are focused on some collective, multisensory-based spatiotem-
poral Area of Interest, an AOI, which can be conceptualized as
bounded by the joint spatiotemporal boundaries of the multi-
sensory system resolutional capabilities. Our point here is that
such data are usually focused on items and activities of interest
and do not include any “surrounding” data or information be-
yond the AOI (an exception may be the possible opportunistic
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inference local ambient conditions with some sensors, for in-
stance detecting meteorological conditions potentially affecting
to the behavior of entities). It is true of course that an IF system
design could also include supportive data base and other infor-
mation peculiar to the IF processing, such as a “Track File” that
maintains files on all object kinematic tracks. But at least his-
torically (roughly, pre-year 2000 say), the data and information
in an IF system design have not typically included anything of
a contextual type.

We will use the definitions given here as a basis to categorize
the concepts and the material found in the literature to enhance
the fusion process by inclusion of contextual elements as dis-
cussed in the following sections.

5. Context in fusion

There has been active research on how to represent and ex-
ploit context in fusion processes in the past fifteen years. While
recent works can be found in the Special Issue [50], and a sur-
vey on contextual tracking approaches in [51], we provide in
Table 1 a breakdown of the most significant works according
to JDL levels and the fusion process enhanced by CI: sensor
characterization, physical and procedural constraints, predic-
tion models, data association, tracks/algorithms management
and high-level fusion.

Regarding the type of information used as context, static
physical context is the most usual, such as geographic data files
in Geographic Information System (GIS) with surface descrip-
tions, bathymetry records, road maps etc. The use of tactical
or procedural information besides physical is also an option,
predictions can be also refined by using tactical rules, and op-
erational domain knowledge. This is usual in the examples at
higher levels. Finally, dynamic context variables such as me-
teorological conditions, sea state, situation variables or inputs
coming from an inference engine have also been considered.

However, Table 1 shows how, save for [112] which presents
a framework for the inclusion of CI in high-level fusion pro-
cesses (Levels 2,3,4), all the works focus on a specific fusion
process and provide a solution which applies only to specific
functions. Most examples are in fact tailored to the charac-
teristic of the problems addressed instead of general processes
to design context-integrated fusion systems. No initiative has
been done towards exploiting context in the fusion process in a
systematic way separating context knowledge as information to
be modelled and processed in the appropriate way to the fusion
functions. For instance, analysis of reliability, consistency, rel-
evance to the fusion processes, induced uncertainties etc., as-
pects which will be in the coming sections. As expressed in-
stead in [115], context can play a vital role at any level of a
modern fusion system: from object recognition through physi-
cal context exploitation, to intention estimation through linguis-
tic communication analysis.

5.1. Context sources and interaction with fusion processes

Context-based fusion approaches can be classified in terms
of the contextual knowledge sources. In many applications, it

is available in static repositories such as maps, GIS databases,
representations of roads, channels, bridges, etc.; in other cases,
context comes through dynamic data, such as meteorological
conditions. In this case we talk about context variables, im-
plying the need of context access and update processes running
in parallel with the core fusion processes. Finally, sometimes
the context information cannot be observed directly, and only
indirectly deduced from other sources (inferred context).

In any case, static or dynamic, we can distinguish physical
and logical context. In the first case, we will have physical
descriptions (like GIS files) or variables (like meteorological
phenomena) which are measurable objectively. In the case of
logical knowledge (such as entities engaged in a coordinated
trajectory, traffic regulations, mission goals, etc), context can
come from knowledge, human reports, learned from data or the
result of indirect inference processes from other pieces of infor-
mation. This division of context sources is illustrated in Figure
2. Therefore, a first criterion to categorize contextual sources

Context 
Representation and 

Access

Context learning processes
(off-line)

T

S

Induction- influence 
models

Constrains, models, 
variables

Physical and logical 
models (static/dyanamc)

Direct context info
observations

Human Observers

Figure 2: Context sources types.

can be in terms of the nature of available information, and ob-
servation/inference process.

Physical and logical structures.

• Static datasets with information: roads, channels, GIS
databases, terrain characterization (navigation), urban en-
vironment, procedural information, normative, etc.

• Contextual variables such as physical fields: weather,
wind, maritime state, clouds, etc. These variables are dis-
tribution of magnitudes, changing in space and time

Observed relations. Dynamic reports, human messages, and
other documents represent the explicit input to the fusion pro-
cess about situation (normal, labor day, anomaly, emergency,
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High/Low JDL level Function Techniques

Low Level 0 Sensor Characterization Geographic aspects [52, 53, 54]
Weighting [55, 53, 56]
Fuzzy systems [57, 58, 59]

Signal fusion Context Enhancement [60, 61, 62, 63]

Level 1

Data association Confidence-based association [64, 65, 66]
JPDA [67, 68]
PDAF [67]
MHT [69, 70]
Fuzzy association [71, 72, 73]

Filtering Physical and maps context [57, 74, 53]
Road layout [75, 76, 77, 78, 79, 67, 80]
PHD [81, 82, 78]
Multiple-model [83, 84, 85, 86, 87]
Non-linear filters [75, 88, 89]
Tactical rules [52, 90, 81, 91]

Track management [92, 69]
Classification [93]

High Level 2
Knowledge representation Ontologies [94]
Situation Assessment Activity monitoring [95, 96, 97, 98]

Situation understanding [99, 100, 101]
Natural language understanding and linguistics [102, 103]

Decision Making [104, 105, 106, 107, 108, 109]
Level 3 Intent assessment [110, 111, 112]
Level 4 Process refinement Context discovery [113]

Context adaptation [107]
Context learning [82, 114, 115]

Table 1: Survey of some works exploiting context in typical fusion processes according to the JDL model.

etc.), time of the day or week (working, meeting, etc). These
variables usually take discrete values indicating different con-
texts, coming from direct observation. The instantiated rela-
tionships are input to the system as context in some way, such
as a human “observation” directly input to system.

Inferred relations. Context can be deducted as dynamic rela-
tionships. A possibility is employing an automatic inference
process, which may lead to the idea of a parallel representation
of context process with its own processes and sources available.

Additionally, the information in context sources can be clas-
sified as it interacts with the state variables in the estima-
tion/inference processes, two main alternatives can be identified
[116]:

Context as constraints. In many cases context imply con-
straints, as mentioned case of maps, channels, obstacles, routes,
formal procedures, etc. Constraints can be hard physical con-
straints or procedural (such as forbidden operation, to be con-
firmed), and can be applied in different ways depending on al-
gorithm (projection, inference rules, probabilistic conditioning
such as Bayesian or Markov networks, etc). The closed-world
constraint mentioned above [117] can be exploited for instance
to freeze the number of players in certain domains as sport
games.

Context as additional features, semantics or situation elements.
In some applications context is not directly a constraint over the
estimation space (in the sense of reduction in the uncertainty in
the search space), but brings new problem dimensions as new
features. In this case context adds dimensionality, opening hy-
pothetical or more detailed ways to interpret the data. An ex-
ample can be the knowledge of semantic features, such as pres-
ence of high-value locations, which open hypothesis to explain
the trajectories of targets. In other cases, a source of context
can be related with the situation that is going on, so that the
meaning of available data depends on the context. An example
is the detection of anomalous situations. There, a certain nor-
mal situation is defined, S, which is the normal context under
these conditions (rules, characteristics, etc.). The existence of
alternative known contexts would influence possible interpreta-
tions of situation, so the information about change of context to
a different situation would automatically open new hypotheses.

5.2. Low-level fusion

The number of applications of context-aided fusion systems
at low level is certainly large. In order to organize the works
exploiting context in fusion, it is useful the abstraction of any
fusion process as a node (Fusion Node, FN) consisting in three
main basic functions applied to the data [118]. Note that the
FN nominally accepts either sensor type input from some input
source or an estimate (fused or otherwise formed) from some
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prior FN or processing node. In this characterization, the FN
processing operations involve three basic functions, comple-
mented with a management process (Figure 3):

Data/Information 
Source k

CR
Common 

Referncing

Fusion Node

Output/
Next node

Context Input

Data/Information 
Source 2

DA
Data 

Association

SE
State 

Estimation

Data/Information 
Source 1

State

Fusion 
Management

Context adaptation

Figure 3: Fusion node and adaptation to context.

• Data alignment (also known as Common Referencing):
normalization operations are performed, such as coordi-
nate or units transformations and uncertainty transforma-
tions, to align data from information sources to be fused.

• Data association: multiple inputs of either estimates or
measurements are examined in order to determine which
(hypothetical) entity that the system believes to exist they
are associated to or come from.

• State estimation: often about entity attributes (e.g., kine-
matic properties, classification attributes such as color,
identity, etc), exploiting prediction models and estima-
tion/inference processes.

• Fusion management: actions to control the output of fu-
sion processes, such as creation, deletion, merging, etc.

So, the abundant literature is organized accordingly to the
main function in the data fusion process where the context
is applied: impact on sensor performance (affecting to data
preprocessing), data association, estimation algorithms and
track/algorithm management. Regarding the type of informa-
tion used as context, several possibilities exist, as commented in
previous section (physical an logical constrains, dynamic con-
text variables, human observer, input from inference engine,
etc.). In the low-level fusion, the most typical application is the
use physical descriptions and domain operational knowledge,
detailed in the filtering subsection.

5.2.1. Sensor characterization
The characterization of sensor performance is often depend-

ing on geographic context, an aspect that can be considered as
“Level 0” accordingly to the JDL levels presented above. An
example is the use of context in Vessel Traffic Services (VTS)
[52]. In this case, the radar knowledge is used to discriminate
between the relatively steady target returns and other returns
from clutter, interference and noise. Areas of poor radar cov-
erage and false targets are generally known. In [53], an anal-
ogous strategy is used to predict and protect the visual sensor
processing with available information (for instance prediction
of occluded areas).

An approach frequently used by several authors is weighting
sensor input with quality factors. So, [57] proposed a method
to combine symbolic and numerical information, in order to
have a supervised fusion process [56, 55]. The aim is favor-
ing measurements provided by the sensors well-adapted to the
context and minimizing the impact of those sensors that are not
well-adapted. For instance, in a GPS sensor the signal qual-
ity depends on the environment, it is suitable to this approach.
The contextual analysis supervising tracking is able to detect
the sensors, which are reliable and those, which are not. The
developed algorithm automatically increases the importance of
measurements of reliable sensors and decreases the importance
of unreliable ones.

Fuzzy logic has been also used to represent expert knowledge
to describe the reliability of the sensors [57]. In the same line,
[58] and [59] present applications using fuzzy system for GPS
data classification based on the signal and geometry informa-
tion with fuzzy reasoning to properly weigh the observations in
the Kalman filter.

5.2.2. Signal Fusion
Signal fusion is also considered as belonging to JDL “Level

0”, or “early fusion”, since sensor measurements are improved
with a process previous to detecting entities of interest.

Our analysis of the literature, to the best of our knowledge,
has not shown a significant amount of works on CI exploita-
tion at signal level in data fusion. At least not in the terms as
CI is intended here (Section 2). For instance, context is often
mentioned in the remote sensing field in different processes,
from pixel fusion, to change detection and region classification.
However, most of the times the term “context” is used to refer
to neighbouring (spatially or temporally) pixels, with respect to
the one under analysis, either in the same image or in other ones
possibly obtained from different sensing modalities.

The closest match can be found in what several works re-
fer to as Context Enhancement (CE). CE is intended to be an
auxiliary process aiming at improving what “surrounds” fore-
ground objects or entities of interest. As a matter of fact, CE is
used to improve the background information for different tasks
such as visualization, tracking, etc. An example can be found in
[60] where the image fusion techniques to automatically com-
bine images of a scene captured under different illumination are
employed. As the authors state, in addition to generating inter-
esting non-realistic photographic effects, the technique could
be used to enhance the context of night-time traffic videos for
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better visualization and understanding. Improvements are dis-
cussed in [61], while a multi-resolution approach is proposed in
[62]. A recent comparative study on algorithms for objective as-
sessment of multi-resolution image fusion for CE can be found
in [63]. It should be noted however, that CE, as it is understood
in these works, is essentially an image fusion technique and the
focus is given to the quality of the resulting image [63] rather
than the actual help that CE could bring to the primary fusion
task (e.g. target tracking).

5.2.3. Data Association
A key fusion process where context can be applied to im-

prove performance in low-level fusion is data association. Here,
we consider fusion processes involved in tracking individual en-
tities of interest, and therefore belonging to JDL “Level 1”.

At this level, the association of sensor measurements to exist-
ing entity tracks or the initiation of new ones involves an anal-
ysis of correspondences among observations and tracked tra-
jectories, and the context can be a boundary in the space data
association process: how many interesting objects, and assign-
ments to observations, which may take into account confidence
levels obtained from context [64]. Other example is the situa-
tion of closed-world knowledge in some applications in which
the objects are known to follow specific rules [65]. For in-
stance, in sport applications such as football tracking the num-
ber of player is constrained to a certain number, where a body
of knowledge is relevant for tracking the players, strategies, etc,
reducing the uncertainty in the observations (video input) [66].

For instance, JPDA is a very extended association algorithm
which can use context as external probabilities in the associa-
tion process. [68] propose an enhancement of JPDA method
based on the dynamic estimation of the detection probability
of each object using a Bayesian network integrating contextual
variables. Analogously, [81] use Bayesian Networks for con-
voy detection and improve the efficiency, computing the evo-
lution of the detection probability (PD) at each time for each
tracked object. Convoy tracking is based on the hybridization
of a labelled GMCPHD (Gaussian Mixture Cardinalized Prob-
ability Hypothesis Density) and the VS-IMMC-MHT (Variable
Structure Interacting Multiple Model with Constraints - Multi-
ple Hypothesis Tracking): one is very efficient to estimate the
number of targets and the other for the state estimates.

The authors in [67] apply a simple Probabilistic Data Asso-
ciation Filter (PDAF) where a weighted average over all feasi-
ble plot-target assignments is performed. They do a compar-
ative analysis of information impact showing the results for a
PDAF tracker including road-map and sensor information (clut-
ter notch), only sensor information, and without any additional
information.

Multiple Hypotheses Tracking (MHT) is considered a very
robust method for data association. Authors in [70] use map
information to prevent unnecessary branches and improve the
state estimator considering the road network information. An
analogous strategy is applied by [69] to boost the efficiency of
the method.

Analogously, [82] propose exploiting information about
context-dependent events: target births (i.e., objects entering

the scene or reappearing after occlusion) and spatially persis-
tent clutter. The information adapts a Probability Hypothesis
Density (PHD) filter that spatially modulates its strength based
on the learned CI.

In maritime domain, [71], [72] describe a fuzzy association
strategy augmented to accommodate a variable scale target lo-
cation region. Information such as bathymetric data is used to
describe the influence on location possibilities of a submarine
or a ship. The approach proposed is to use a weighting scheme
that maps the operational parameters into the environmental re-
ports to create a weight. The heuristic nature of information
justifies the use of a fuzzy to decide weighting [73].

5.2.4. Context in Filtering
Physical and maps context. Physical context can be seen as the
most direct use of context to refine state estimators, when this
information is helpful to model the behavior of entities. In the
case of ground systems, it is quite usual modeling geographic
data in the format of GIS files ([119] [54], [77], [56]). GIS
databases contain information of elevation usually in DTED
format (Digital Terrain Elevation Database) expressed in geode-
tic coordinates, the WGS 84 system.

This has been used in ground target tracking systems [120],
[57] as a priori information. This same information has been
also applied in the field of navigation [89]. This is the case
of or Terrain-Aided Positioning (TAP). Their base principle is
to measure terrain variations along the flight path and compare
it with the GIS database with terrain elevation for given po-
sitions. It is a way to avoid limitations of GPS and depend on
on-board sensors as Inertial Navigation Systems (INS) or radio-
altimeters. Analogously, in [75], the DGPS and INS data are
fused considering also map geometry stored in a digital map
database

Similar ideas can be found in maritime domain [95], [121]
[64]. The geographic knowledge of the coastline, currents,
tides, bathymetry, weather, sea state and ice, etc describes the
marine environment when vessels move, with the addition of
navigation knowledge, enables better prediction of their be-
haviour. For instance, deep draught vessels in shallow channels
may be significantly constrained by the water depth (calculated
from tabulated tidal height plus bathymetric depth). The idea
of constrained estimation has been also used in maritime envi-
ronment [88]: specifically, ports, coastline, sea highways and
corridors, interdicted areas are elements that can be easily rep-
resented on a geographic map, providing a better understanding
of the scenario.

Another example in this sea domain is con-tracker [74] which
uses a representation with a field of attraction/repletion effects
in each region affecting to the velocity of ships. The represen-
tation uses a grid-division map of the area of interest, used in
the propagation stage, ships are affected accordingly to the field
effect on velocity, using what authors call as trafficability val-
ues, based on depth information, marked channel information,
restricted areas, etc

With respect to maps format, it is usual having the context
represented as a set of waypoints and junctions to describe the
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road layout [79]. A road can be so delimited by sets of lin-
ear segments between the points [76], [77]. The possibility of
constraining the estimation process has been approached by dif-
ferent researchers [78], [67].

A representative example is map exploitation in airport do-
main, a classical example in cooperative environments where
the targets have available equipment (GPS or multilateration
systems) to be fused with primary sources as surface movement
radar [122], [123]. Targets on airport surface (aircraft, vehicles)
move along the road and runway network. So, target kinemat-
ics is constrained depending on the target state: i.e. when the
target is on the airport surface, its position has associated kine-
matic clues, such as maneuvering areas, stop and go, runway
acceleration, etc.

The paradigm has been extended from ground to en-route
commercial air traffic, where airways routes information are ex-
ploited, knowing that aircraft follow air routes and change their
flight modes to maneuver at waypoints or Navaids. This rout-
ing information can be incorporated into the estimation process
[91]. An interesting aspect, which raises theoretical consider-
ations, concerns uncertainties, the flight mode changes usually
happen around but not exactly at the waypoints. The algorithm
must take into account both deterministic and stochastic factors.

Multiple-model Filters. The Kalman filter is the basic estima-
tion algorithm to provide optimum solution if linear dynamics
and Gaussian processes can be assumed. There have been dif-
ferent lines extending the Kalman filter to avoid this limitation,
beginning with the Extended Kalman Filter (EKF), the Interact-
ing Multiple Model Filter (IMM), the Unscented Kalman Filter
(UKF), and Particle Filters (PF). IMM is recognized as a very
efficient strategy to approximate optimum performance with
maneuvering targets since it uses several models in parallel.
With respect to the specific alternatives to integrate the ground
knowledge in estimation algorithms (roads, channels, airways,
etc.), they can be divided into two groups [86]: post-processing
correction techniques, which run conventional tracking algo-
rithms first and then apply corrections to the estimates to adapt
them to the road knowledge; and pre-processing tracking al-
gorithms, which incorporate the road information directly into
tracking algorithms. There are several approaches in the last
case: model target motion adaptively by tuning the process
noise’s according to the road map, project the measurements
in the map, extrapolate accordingly to expected directions, etc.
So, utilization of a priori knowledge requires hard-wiring the
knowledge into the tracker, if possible, in order to improve the
prediction model applied in the estimation process.

To include constraints, the IMM approach has been one of
the most extended approaches. In this line, Variable Structure
Multiple Model (VS)-IMM, has been widely used in ground
target tracking [85], [83].The basic idea is that the active model
set varies in an adaptive manner and thus only a small number
of active models are needed to be maintained at each time. The
logic manages dynamically the set of feasible dynamic models
that each track can follow based on each local track context.

In an analogous way, in maritime domain, vessel route infor-
mation is also used to refine dynamic models. Ships are con-

strained to follow the assigned channels accordingly to deep
draught category and water depth. In [87] a set of motion mod-
els, and the force dictates the actuation of the specific MM. In
each modeled state the force has a different effect, since the
ship is likely to actuate a given motion (still anchored, navi-
gation, approaching, etc). In [84] the state vector of the con-
sidered model is extended to include the ship state, heading,
rate of turn, drift angle and velocity; etc. Among the alterna-
tives we can mention fixed/variable structure augmented IMM
Algorithm for Ship Tracking, and hybrid algorithms doing si-
multaneous parameter and state estimation. The hydrodynamic
coefficients depend on the ship geometry, length, etc.

Predictions with Tactical Rules. Using tactical or procedural
information (not only physical), target prediction can be also
refined, accordingly to the operational domain. This is the case
in some ground military scenarios such as convoy targets fol-
lowing certain tactical rules [90]. A convoy is defined in this
way as a set of vehicles moving with the same dynamics during
a long time. For instance, motion on the road under a limited
velocity and keeping almost constant distances between them
[90],[81].

The incorporation of background information allows a better
discrimination and analysis of complex targets with coordinated
motion. This is also usual in maritime traffic, where navigation
knowledge allows accurately predict how vessels will manoeu-
vre as they move along shipping channels, meet other vessels
and encounter. Most vessels under VTS supervision follow a
known sailing plan, stay within established shipping routes and
make predictable manoeuvres where channels turn or diverge.
Even at a higher level, context from human reports may be also
exploited [52]. Radio communications between the VTS centre
and participating vessels provides information to the MTR on
changes to the filed sailing plan or Estimated Time of Arrival
(ETA) are similarly communicated. The MTR can also listen as
vessels plan manoeuvres in response to special conditions (ves-
sel intentions as to collision avoidance, pilot boat rendezvous,
anchoring and docking).

With an analogous strategy, in air traffic domain, Liu et al.
[91] model aircraft dynamics by a Stochastic Linear Hybrid
System (SLHS) using a multiple-model set to describe an air-
crafts dynamics with changing flight modes. Aircraft usually
follow air routes and change their flight modes to maneuver at
waypoints or Navaids. This routing information can be incor-
porated into the SLHS by the Stochastic Linear Guard Condi-
tions (SLGC). An interesting aspect raising theoretical consid-
erations about fusion exploitation concerns uncertainties, the
flight mode changes usually happen around but not exactly at
the waypoints. The SLGC can accurately account for these de-
terministic and stochastic factors.

Context in Non-linear Filters. Other algorithmic approach to
exploit context is the particle filter in which the samples of the
target state can be restricted and thus drawn exclusively from
the subspace generated by the context constraints. It may fol-
low a Bayesian strategy applied over the constrained subspace,
as in [88]. PF has become very popular because of its generality
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keeping Bayesian approach, although its implementation opens
important issues to work properly in practice. UKF also allows
non-linear processes with a more efficient transformation. In
order to exploit context with PF or UKF methods, hard con-
straints externally known are naturally integrated on the state
vector or the measurement process during the estimation pro-
cess [75],[89]. For instance, in [75], a constrained unscented
Kalman filter is used in GPS/INS fusion integrating state con-
straints from the surface geometry.

Combined with multiple-mode approach, particle filters lets
the different modes within the MM estimator framework be rep-
resented by constrained likelihood models, whereas the state
dynamics is the same for all models. So, In [89] the Gaus-
sian sums considered in the jump Markov systems framework
solved by VS-IMM algorithms mentioned above is one impor-
tant alternative in this respect.

5.2.5. Track / algorithm management
Track management can be used to exploit context in order to

adapt and improve the fusion process accordingly to the situ-
ation. For instance, feedback strategies i.e. commands flow-
ing from contextual situation level to the data fusion node, can
yield improvement in adverse conditions, such as high traffic or
heavy clutter scenarios with small probability of target detec-
tion. Other option is the automatic tuning or selection of algo-
rithms (multi-algorithm fusion) based on external input [69]

As mentioned above, a decision process following a KBS
approach captures the human criteria and embed this capability
into the system so that it may operate autonomously. As basic
capability, the inference engines carry out forward-backward
chaining and truth maintenance. Data about the sensors, con-
figuration, and environment where the entities are moving are
the input to configure the KBS [92].

In [69], a rule-based Inference Engine operates with the KBS
exploit knowledge bases about navigational rules, target be-
haviours, collision avoidance manoeuvres and interface with
the tracking algorithms. An expert system is aimed at increas-
ing robustness of sensor data fusion from disturbed sensors by
adaptation of their parameters. This reaction on algorithm pa-
rameters can be quick and can correct the local anomalies as
soon as they appear.

5.2.6. Classification
An example of CI exploitation for classification can be found

in [93]. In the paper, CI is exploited to improve the classifica-
tion of images in the medical domain by encoding context in a
Bayesian framework. The authors analyse both a “compound
Bayesian” approach that fuses CI for all elements in a set to-
gether and a less computationally demanding alternative that
fuses only the measurements related to an object and its rele-
vant CI. For the latter case, the authors correctly mention that
CI has to be directly extracted (manually in the paper) or some
form of relevance function would have to be devised in order to
select the relevant context.

5.3. High-level fusion

This subsection reviews the state of the art of architectures,
algorithms, and techniques developed to integrate CI in high-
level fusion processes. In JDL model fusion terminology and
according to the general acceptance of the term with the fusion
community, the term “high” here refers to fusion levels above
level 1. At these levels the fusion of data and information is
largely (but not exclusively) conducted at the symbolic level
[124].

5.3.1. Knowledge representation
Ontologies. An attempt in formalizing an instrument for con-
text representation can be found in [94] where an extension to
the OWL language called Context OWL (C-OWL) is presented.
The enriched language allows to contextualize ontologies in the
sense that contextual knowledge is not shared by default but
kept local and thus not visible to the outside. C-OWL allows
then for explicit mappings (bridge rules) between ontologies
that enable controlled forms of global visibility. However, it
must be noted that in this work the term contexts refers to “lo-
cal models that encode a party’s view of a domain” thus repre-
senting non shared models and interpretations. The work then
focuses on how to establish domain relations as mappings be-
tween elements in one domain to elements in another domain.
This ontology alignment is thus used to map global knowledge
in local domains and vice versa.

5.3.2. Situation Assessment
Activity monitoring. Padovitz et al. propose in [99] an ap-
proach for situation classification based on Multi-Attribute Util-
ity Theory (MAUT) sensor fusion. The technique computes a
degree of support to the situation to be inferred according to
the condition of the context state. The proposed method is ap-
plied to context-aware smart-spaces where readings from both
environmental and user-carried devices are combined to infer
situations related to the user.

The paper of Steinberg and Rogova [102] addresses the con-
cepts of situation and context in the fields of data fusion and
natural language understanding. In addition to pitching the nat-
ural language understanding problem as a Situation Assessment
(SA) problem (well-known in the data fusion community), the
paper has the merit of exposing the importance of contextual
data in typical fusion tasks such as refining ambiguous esti-
mates, explaining observations, and constraining processing.
Also, the concepts of context of and context for are discussed
with references to impacts on the interpretation and use of CI
in the fusion process.

In [100], Steinberg models contexts as situations and sug-
gests the use of Structural Equation Modeling (SEM) tech-
niques for evaluating dependences between problem and con-
text variables. Both types of variables can be latent or observ-
able even though, according to Steinberg, high level fusion pro-
cesses for SA mostly aim to estimate latent variables governing
the situation being assessed. The concept of utility of context
variables in solving a given problem is also discussed.
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Rogova discusses in [101] how context plays a central role
in threat assessment and crisis management by providing deci-
sion makers important information regarding the situation and
its dynamics with respect to their goals. Methods and issues in
context representation and discovery are described in addition
to designing a processing flow for context-aware crisis manage-
ment systems.

The recent work of Suarez-Tangil et al. [96] discusses typi-
cal problems in the domain of Security Information, addressed
with an Event Management paradigm (SIEM) for intrusion de-
tection with self-adaptive systems. Machine learning is applied
for rule extraction to classify reported events accordingly to a
context-based pattern definition of attacks. The focus is on in-
tegrating security events reported from heterogeneous sources,
where context assists to the correlation process to identify re-
lated events in a complex multi-steps attack scenario.

Jenkins et al. propose in [97] a framework for aligning the
uncertainty of human observations (soft data) for intelligence
data analysis. The authors postulate how the error charac-
teristics of human-generated data are significantly affected by
contextual effects. Notably, the paper develops a classification
scheme of human observations as relevant to the counterinsur-
gency domain and proposes a way to quantify the benefit of the
uncertainty alignment process to the fusion tasks of data asso-
ciation and situation assessment.

A proposal to dynamically represent context knowledge with
ontologies and evaluate anomalous situations is presented by
Gomez-Romero et al. in [125]. In a harbour surveillance sce-
nario, it arranges the architecture of the system in two pro-
cessing levels. The first includes rule-based reasoning to ex-
tend tracking data and classify objects according to pre-defined
categories, while in the second a belief-argumentation system
(BAS) is used to determine the threat level of situations which
are non-compliant to the normality model.

The recent approach of Snidaro et al. [98] discusses the fu-
sion of uncertain sensory and contextual information for mar-
itime situational awareness. Starting from the premise that
events and anomalies are key elements in the process of as-
sessing and understanding the observed environment, the pa-
per arguments how building an effective situational picture for
a surveillance system in the maritime domain involves com-
bining high-level information with sensory data. The Markov
Logic Networks framework is employed to both encode a priori
and contextual knowledge and to fuse evidence from multiple
sources, possibly reasoning over incomplete data. Knowledge
is expressed by formulas in first-order logic with the possibility
of associating to each of them a level of uncertainty encoded by
a weight factor.

Situation understanding. Agent technologies have been ap-
plied to build fusion systems at different levels [126]. At the
higher levels there are many examples, such as agents dealing
with situation management or event analysis [127]. So, in [128]
situation awareness is implemented with peer-to-peer multia-
gent system to overcome the limitations and localized knowl-
edge of each agent platform. Since the cooperation and sharing
interactions may not be predefined a priori, this leads to require-

ments for semantic-based agent discovery, with a service over-
lay approach. Sycara et al [129] propose the HiLIFE (High-
Level Information Fusion Environment) fusion model for bat-
tlefield management. To these authors, context is defined as
significant features that influence a situation, or expectations
on what is to be observed and the interpretation of what has
been observed. In order to simulate uncertain effects of actions
they used the multiagent platform RETSINA (Reusable En-
vironment for Task Structured Intelligent Networked Agents)
[130].

Natural language understanding and linguistics. Ferrin et al.
[103] reviews the two main contrasting paradigms on linguistic
context: one considers context as a mere collection of features
of the world, the other sees context as a representation of fea-
tures of the world. These two main concepts represent the basis
for three definitions that can be found in linguistics: objective
context, pragmatic context, and discourse context. The work
then proposes the use of the term Context to indicate a set of
features at a real world physical level able to answer questions
such as Who, Where, When, What, How and Why. The authors
then define as Co-text the set of features at representational level
that can be used to bind variables such as those introduced by
pronouns. The term Situation is then used to indicate any cog-
nitive form of link between the real world physical level and
the representational one. Even though the discussion is mainly
grounded in linguistic territories, the distinction between con-
textual elements in the real world and at representational level
is seen as a significant one, worth of further analysis for the
development of context-aware fusion processes.

5.3.3. Decision making
The development of information fusion systems usually im-

ply a need for processes in support of decision making, par-
ticularly at higher levels dealing with situations and reasoning
mechanisms. So, a challenge identified within the high-level
fusion is related to the need to incorporate the human in the
decision process [105]: ”how should we design information
fusion systems formed from combinations of people and ma-
chines?”. This challenge reflects the concern of what is the
impact of HLIF to decision support.

This aspect is proposed by some authors as ”Level 5 - User
Refinement” [105], the set of processes aimed at adaptive in-
teraction and queries for data retrieval and display to support
decision making and actions. Various user refinement decision
support techniques have been proposed to improve decision-
making, with the challenge of integrating context and culture to
enrich the process. The paradigm of autonomous agents have
been related with this objective [104].

Rogova et al. [106] further discuss the problem of decision
making when incorporating context-dependant information in
the fusion process. In particular, the paper highlights how the
quality of information can, depending on the context, relate to
different combinations of quality attributes. A model for se-
quential decision making for pattern recognition is then dis-
cussed. Quality attributes such as credibility, reliability and
timeliness are considered.
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Following Steinberg et al [107], the use of context for pre-
dicting and understanding situations can be oriented to estab-
lishing expectations about the states of individuals, events or
situations of interest in decision-making. The use of context
in data fusion can be generalized to decision-making in gen-
eral to establish expectations and resolve ambiguity. Follow-
ing this approach, the decision system must meet predefined
mission-specific information needs in terms of user-defined Es-
sential Elements of Information (EEIs): their current, historical
and predicted location, track, identity, classification, attributes,
activities, and courses of actions; interactions and other rela-
tionships.

An architecture to integrate contextual information in the fu-
sion process for decision systems is discussed by Solaiman et
al. in [108]. The framework explicitly considers the role of
context as something that can produce effects on the proposed
Holon functional model, the latter capturing the relationship be-
tween input and output values. To this end, and with a differ-
ent meaning with respect to what is described later in Section
6, “Internal Context” is intended as intrinsic characteristics and
constraints about the input-output relation (e.g. capabilities of a
sensor), while “External Context” is intended as all exogenous
information that can influence the relation. The application of
the proposed framework is discussed with a walk-though exam-
ple in the remote-sensing domain.

The work by Smirnov et al. [109] describes from a general
perspective context-based knowledge fusion processes and pro-
poses a classification related to their use in Decision Support
Systems (DSS). Some general patterns are identified, analysing
the effects that knowledge fusion process produces in the sys-
tem for the preservation of internal structures representing the
knowledge and their autonomies.

5.3.4. Intent assessment
Intent assessment is the process of estimating the intentions

of an entity of interest. The fusion functions and processes de-
voted to this goal are pertinent to JDL level 3. Little and Rogova
[111] claim that a formal structure of domain-specific types of
entities, attributes, situations, and their relations are needed for
reasoning about situations, intent and threats. To this end, they
postulate the use of formal ontologies in order to capture the
complexity of domain-specific knowledge so to be able to un-
derstand issues related to change over time, CI, and identity.

In a framework that encompasses different high-level fusion
processes (JDL Levels 2 to 4), a model for inferring adversary
intent by mapping sensor readings of opponent forces to possi-
ble opponent goals and actions is presented in [112]. In addition
to extending concepts developed earlier for the use of context
in intelligence processing [110], where context is seen as being
able to influence the value of a situational feature of interest,
context is also considered “source of expectations of what is
to be observed and interpretation of what has been observed”.
The authors suggest that embracing a cognitive approach could
benefit high level fusion processes such as inferencing and in-
tent assessment. In particular, a terrain analysis model is used
for reasoning about tactically significant operational concepts
such as trafficability, engagement areas, avenues of approach.

The intent of a given entity will be later discussed in Section
6 to be its internal context.

5.3.5. Process refinement
Considered as the fourth level in JDL terminology (see Sec-

tion 4), the fusion process refinement aims at dynamically ad-
justing and improving the fusion processes in order to better
fulfil system objectives. The dynamic exploitation of context
can be a key element for optimizing the fusion process as prob-
lem variables and associated context variables change (see 6).
In addition, relevant contextual variables might not be known
a priori so a form of dynamic context discovery should also be
carried out as part of the optimization process.

A first attempt at proposing an architecture that defines the
interplay of Data Fusion and Resource Management (DF&RM)
functionalities in exploiting contextual information can be
found in [100].

Steinberg and Bowman discuss in in [113] an evidence-
accrual inference method to select context variables on the basis
of their utility in refining explicit problem variables, given can-
didate system actions considering also their cost. They develop
relations between the JDL model and Resource Management
functions to accommodate adaptive decision and include adap-
tive context exploitation. The goal is to develop a model and an
implementation scheme for seeking, discovering, selecting and
fusing contextual information as part of a goal-driven decision
process. This architecture allows any decision process to be
completely characterized in terms of Data Fusion and Resource
Management processes. Furthermore, a formal duality between
Data Fusion and Resource Management functions permits re-
use of techniques and consistent co-development between fu-
sion and management processes.

Few works deal with context learning yet. The already men-
tioned work [82], learns targets’ birth and death locations to
adjust the parameters of the PHD filter. In [114] context is rep-
resented by a network of situations and the work proposes a
framework for generic situation acquisition algorithm with an
application to video surveillance. Learning of complex domain
knowledge is discussed in [115] where also the problem of re-
using contextual knowledge is addressed. In fact, transfer learn-
ing techniques are identified as a possible solution for porting
the knowledge acquired in a (source) domain to another one
(target domain).

6. Discussion on context in fusion

After having surveyed the literature outside and inside the fu-
sion domain, we go back to some fundamental concepts high-
lighting here a few specificities that have to be taken into con-
sideration when developing fusion systems for taking into ac-
count CI. In particular, the concepts of internal and external
context can be found across many domains and we discuss here
their implications in fusion systems for situational awareness.

6.1. External and Internal context
Among the different ways in which context has been mod-

elled, the partition between external and internal context is a
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concept that appears to be widely accepted, even though there
are some notable exceptions ([131] for example), as pointed
out by Baldauf et al. in [11]. The authors report internal and
external context as being two different dimensions separating
the external physically measurable world and the internal (un-
observable) state of the user including goals, tasks, emotional
state, etc. This definition appears to be an adaptation for the
domain of pervasive computing and context-aware devices of
what was meant by earlier works in the field of cognitive sci-
ence and perception. In particular, Kokinov [132] states that
“context is the set of all entities that influence human (or sys-
tem’s) behaviour on a particular occasion, i.e. the set of el-
ements that produce context effects”. Then he describes, cit-
ing quite a few references in cognitive science dating back to
years 1986, 1988 and 1993, the notions of external and internal
context where the former refers to “physical and social envi-
ronment or the setting within which the subjects behaviour is
generated” while the latter “subjects current mental state within
which the subjects behaviour is generated”. In this domain ex-
ternal context is then seen as the sphere of subjective percep-
tions of the surrounding environment that have an effect on the
subject’s mental state. According to these definitions, a Ex-
ternal context→Internal context relation appears predominant
where external factors produce effects on the internal context
of the subject. Although the relation is not strictly in that di-
rection only as the internal context (e.g. mental state) of the
subject can influence the correct or complete perception of the
surrounding environment and thus in turn its influence can be
for example, with different degrees of consciousness, altered or
even prevented (Figure 4).

External context Internal contextInfluences

Conditions the perception of 

Figure 4: Relations between external and internal context in cognitive science
as described in [132].

As already mentioned, these notions of internal and exter-
nal context developed in the cognitive sciences domain have
been quickly adopted by the researchers in mobile and perva-
sive computing where external attributes, most notably loca-
tion, are sensed in order to provide relevant information to the
user. Most of the papers concentrate on the exploitation of ex-
ternal context since some attributes of it can be sensed by low-
cost hardware. Even though being generally non-observable,
there are still some good chances of guessing the internal con-
text of the user (of course a subset of it). Save for the cases
where the user is directly providing (part of) it, for example by
sharing her/his emotional state explicitly or by disclosing inter-
ests or intentions by searches in search engines, other mecha-
nisms involve for example the analysis of web navigation pat-
terns, opened documents, etc. [11].

A more complex situation can be found in the field of
autonomous-agents. Agents typically represent human cogni-

tive states using underlying beliefs and knowledge modelled in
a knowledge representation language. So, the model of a cogni-
tive state (internal context) defines the behaviour of agents but
it strongly influenced by the perceived external context . Be-
sides, the extension to shared context appears in a community
of agents to be coordinated. For instance, Motus, Preden et
al [133, 134] describe the team situation awareness concept in
the context of multi-agent systems. Here, the situation aware-
ness of an agent needs to be synchronized with the other agents,
leading to the creation of this collective and distributed situation
awareness.

6.2. External and Internal context for Information Fusion
We have seen ways of sensing or inferring external/internal

context in different domains, from cognitive science to dis-
tributed agents. We would like now to highlight what are the
commonalities and differences in typical tasks in the IF domain.

Uncertainty. Even though almost all of the domains surveyed
can be seen in terms of IF as soon as multiple sources of
data/information are present and there is the need to combine
their products in order to obtain better estimates of a certain
variables, typical IF systems and applications generally have
the common problem of lack of direct information from the fo-
cal entities of interest. SA systems, for example, have to go
through a number of processing steps, also combining hetero-
geneous data, in order to estimate the status and intentions (or
purpose) of non-cooperative entities (or process/system) [98].
In addition, observations from sensors are generally noisy and
sources of information can have different level of trust and pro-
vide outputs with different quality [135], therefore making fu-
sion a real necessity [124].

Observed and observable context. In such a scenario, other
definitions derived from Coutaz and Rey [136] can come to
help. However, the definitions of situation, context, observed
and observable context there provided are given with some bias
towards the development of context-aware (mobile) devices,
where the user is at the centre and the devices are a proxy of ser-
vices between the user and the environment. We provide here a
different account of a few key terms as graphically described in
Figure 5.

Entity’s
External
context

Observed situation

Situation

Entity’s
internal
context

System’s internal
context

Figure 5: Situation and context.

Here we consider a working definition of a situation as the
collection of all the entities, their attributes, the relations among
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them and the environment, and the events occurring in a given
scenario at a certain time. The entire real situation, giving a per-
fect account of what is happening in the scenario, is of course
impossible to observe and represent. A SA system can only
observe a subset of the real underlying situation and this sub-
set is given by the purpose of the system, that is the system’s
internal context. This means that if the system was designed
for a specific purpose or if its current setting is directed to a
certain objective, then the system is configured for observing a
specific subset of the situation. This is in practice complicated
even more by the sensing and interpretation capabilities of the
system, the noise corrupting the observations, uncertainties in-
volved in the processing algorithms, etc., making the situation
actually observed an even smaller subset of what the system
was intended to perceive and understand. Since the purpose of
the system and its inner workings are known to the system de-
signer, the internal context of the system is here understood as
totally observable.

External and Internal context. An interesting notion is given
in [136] is the following “context and situation can only be de-
fined with respect to an entity for a given purpose”. From this
premise the authors generalize that the Context at time t that re-
lates to a set of agents for performing a task is a composition of
situations in a time interval between a starting time t0 and t. A
situation is defined as the set of values observed of the variables
that relate to a given agent for performing the given task.

The specific characteristics of fusion systems for SA so far
described bring us to a revision of the concepts of external and
internal context as follows. If a given entity in the scenario is
to be considered of interest, that is the focal element f, then
the external context of f is understood here as a subset of the
situation that can be put in relation with f because of its internal
context. That is, the current goals and objectives of the focal
element f define what could be considered as contextual for it
at a given time as shown in Figure 6 thus in a sense reversing
the direction of the main conditioning relation of Figure 4.

External
context

Internal
context

Defines

Helps to infer

Conditions

Figure 6: Typical relations between external and internal context in fusion for
SA where the mission of the system is typically to infer the goals/purpose (in-
ternal context) of a focal entity. The internal context of the focal entity defines
what in the current situation is contextually relevant to it (external context).
This external context can be observed or inferred by the system in order to dis-
cover the entity’s internal context. At the same time the external context (e.g.
road network) conditions the goals of the focal entity.

Here, the goals of f (unknown and to be discovered) project
a number of relations to elements of the situation that are rel-
evant to f 1) for accomplishing its goals or 2) relevant to the
system because their contextual effects on f help to understand
the behaviour of f and infer its goals or purpose. This means

that in a fusion system for SA both the focal’s goals and CI need
to be continuously estimated in a iterative process: the initially
hypothesised goals of f define what is contextual to f that in
turns helps to refine/confirm/reject the initial hypothesis. This
proceeds, in a fashion similar to the Expectation Maximization
(EM) algorithm, continuously and dynamically as f can change
its goals over time, also depending on the focal’s own contex-
tual knowledge and perception of it that can influence/change
its own internal context (Figure 6).

With respect to [136], the context is not intended here as a
composition of situations since the valid external CI is here un-
derstood as being the one that relates to the current goals of
the focal. CI that has exited the current scope of validity is
treated as historical context that can be used for automatic con-
text learning purposes.

7. Architectural aspects for context-based fusion systems

Continuing the discussion in the previous section, a fusion
system may need continuous access to the available sources of
external context in order to improve the estimation of the state
of entities of interest. From an architectural perspective, the
“middleware” concept is appealing to develop a generic, well-
founded approach to connect the fusion process with available
context sources in a dynamic way, adapted to the needs and
inferences being carried out. In this section, we survey the mid-
dleware solutions in IF and other domains and then propose it as
a solution to address the design of contex-based fusion systems
in a more general way.

7.1. Middleware concept in IF and other domains
The idea of middleware is basically an abstraction to inter-

connect processes operating at different levels and working with
diverse types of information. It is a solution to enable interac-
tion between software systems, typically applications with dif-
ferent hardware/operating systems, and make uniform hetero-
geneous systems through software abstractions. It is associated
to the concept of service-oriented computing: the information
workflows are split into elementary building blocks as inde-
pendent reusable services components with homogenous inter-
faces. So, middleware is a common term in several domains
to facilitate distributed processing, connecting different appli-
cations over a network. Some examples:

• In simulation technology, middleware is a layer of soft-
ware that lies between the application code and the run-
time infrastructure.

• In wireless networks, middleware is the common strategy
to integrate operating systems and hardware with available
applications [137].

• In AmI, it is a common approach to compose context-
aware services [138, 139].

• In some operating systems, middleware is used for provid-
ing multimedia services in certain environments such as
automobiles or aircrafts.
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In fusion systems, there have been also approaches to employ
middleware architectures, such as the Network Enabled Capa-
bility (NEC) [140]. Each information fusion process involves
two fundamental elements: (1) information to be fused, and
(2) operations applied to the information to produce the output.
Here, the access to context knowledge can be implemented as
available services:

• Information source services are the sources of primary
data to be fused.

• Information fusion services perform the actual fusion on
the data obtained from previous information source ser-
vices or other fusion services working at a lower level.

With this perspective, fusion processes can be viewed as
workflows composed of different types of services, which are
composed either manually by a human expert, or automatically
by appropriate service composition tools. Examples of adap-
tive middlewares in the IF domain are Adaptive Middleware
[141] and MidFusion [142]. MidFusion is an architecture to
facilitate information fusion in sensor network applications. It
discovers and selects the best set of sensors or sensor agents on
behalf of applications (transparently), depending on the quality
of service (QoS) guarantees and the cost of information acqui-
sition, with some theoretical analysis to do selections. Adap-
tive Middleware is designed for context-aware applications and
abstracts the applications from the sensors that provide context.
The authors propose the use of utility functions to choose, given
multiple alternatives for providing a specific context, the one
maximizing the applications’ total satisfaction. Nexus [143] is
another middleware for service-oriented information fusion de-
veloped in BTs Pervasive ICT research centre. It implements
the three key concepts, i.e. service-oriented computing, auto-
mated service workflow composition and peer-to-peer architec-
ture.

7.2. Middleware proposal to integrate context sources and fu-
sion processes

Taking this architectural perspective, a way to systematically
address advanced and generic context-based IF design deals
with a context access and management system, in charge of
providing useful context information about the entities as a
transversal independent module. Context services supporting
fusion processes could include, as examples, access to reference
databases, meteorological information, image repositories, GIS
systems, texts, internet, etc.

The basic mechanism would be a query process (Figure
7): the middleware returns the selected relevant context infor-
mation from the available sources, accordingly to hypotheses
raised by fusion processes. Following the figure, two basic ele-
ments can be identified at both sides:

• At the context side, the middleware manager is responsi-
ble for collecting, updating and making contex knowledge
usable by fusion processes.

• At the fusion side, the adaptation logic takes the contex-
tual inputs and directs them to relevant fusion processes.
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Logic

Adaptive 
Logic

Data Fusion Processes (at different 
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Sensor/Estimate i

Observation k

Adaptation 
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Context source i

Output

(hard)

(soft)
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Adaptation to Context

Sensor/Estimate i

Observation k

Context source i

Fusion
process: X(t)

Relevant
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Figure 7: Context middleware mechanism.

To this end, all processes need to be designed as context-
aware in order to properly exploit contextual input.

The transformation operations to be done by the context mid-
dleware are sketched in Figure 8. In order to be useful, context
needs to be spatially and temporally aligned with the fusion
data, adapted to the granularity of the information, and the as-
sociated uncertainty should be available.

Fusion 
Processes

Contextual 
DBs

Context source i
Context source i

Context representation

Static
transformation

Dynamic
transformation

TRANSF.

Service Request and 
Response handle

Request 
adaptation

COMM

DYN CONTEXT

Context Search and 
Validation

Normalized
Context

Figure 8: Context functions access.

The main operations required are enumerated next. First,
regarding the search of applicable context to the fusion query
(“Context Search and Validation” in the figure):

• Search of context relevant to the situation: physical (roads,
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bridges, channels, etc.), operational rules, etc.

• Compatibility: validate the collected information as ap-
propriate for the query and check its compatibility (e.g.
map, number of objects, etc.). In some cases, context
maybe is not applicable (e.g. off-road, operational rules
not met, etc.)

Regarding the transformations to get the “Normalized Con-
text”:

• Context correlation and alignment with the fusion process.
This is especially relevant for the use of real-time “dy-
namic” contextual sources, i.e. meteorological services:

– Spatial alignment (fundamental for efficiency):
search with appropriate representation and algo-
rithms (maps, GIS, roads, etc.)

– Time alignment (necessary when context is dy-
namic): simple temporal indexing, extrapolation
models, etc.

• It must provide up-to-date context. This means that it must
integrate on-line information appropriate and potentially
useful for the fusion processes.

• Granularity: it implies adaptation to the needs of the fu-
sion algorithm. Some aggregation or interpolation may be
required to adapt the scales at both sides.

• Characterization of the uncertainty in CI, considering both
the intrinsic uncertainty in CI and the one propagated by
the query (for instance uncertainty in the location to index
spatial context).

At the fusion process side, it is needed the development of
functions supporting the adaptation mechanisms:

• Library of alternative models that can be selected accord-
ing to context (such as on/off road motion models)

• Impact on applicable models, sets of parameters, algo-
rithms, etc.

• Applicable rules to drive the fusion processes, such as con-
strains, hypotheses applicable, etc.

• Closed-world models depending on situation (number of
objects, appearance/disappearance assumptions, convoy
motion, etc.)

Therefore, a middleware is proposed as the approach to gen-
eralize the context access and exploitation by fusion processes,
organized as a set of operations done over the information avail-
able in different sources. The context middleware manager is
responsible for searching and providing the relevant and up-
dated information in the expected format and scale, considering
the needs and requirements of the fusion node, so that fusion
operations can take into account the context, independently of
the specific strategy adopted. The service-oriented architecture
is the key to develop a general perspective in the design and
avoid particular solutions depending on the specific types and
nature of the contextual sources available.

8. Conclusions

The exploitation of context information in fusion systems is
a very active area which has been receiving increasing attention
from several research communities. The idea of representing
and exploiting context has been motivated in many different ar-
eas such as pervasive computing (user context to improve the
services provided), image processing and AI. In the Informa-
tion Fusion community, there is a growing interest in this topic,
with a number of works presenting performance improvements
via context exploitation in the underlying models, leading to re-
search on powerful algorithms to exploit this additional knowl-
edge (from non-linear filters to logic-based inference systems)
and around appropriate ways to represent context. This paper
surveys the state of the art in this field, taking the JDL perspec-
tive to analyse and classify the literature of existing works.

Based on this survey, the paper introduces an analysis of con-
textual information as determinant element to describe the be-
haviour of any entity. A discrimination between internal and
external context from the entities’ point of view is useful to de-
scribe their behaviour, and how the available external context
helps in the estimation of focal entities’ internal context. This
discussion motivates also the architectural proposal to develop
context-based fusion systems with a more general approach.
Middleware is the structural element here discussed to unify
context access from fusion processes, taking care of correctness
and relevance accordingly to the needs of fusion tasks requiring
it. Research in this architectural line, from the authors’ point of
view, can be an aspect to fertilize the development of a new
generation of fusion systems integrating the context in a gen-
eral way with solid and general theoretical foundations beyond
the abundant particular cases in current literature.
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