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Dynamic Reconfiguration in Camera Networks:
a short survey

Claudio Piciarelli, Member, IEEE, Lukas Esterle, Asif Khan, Bernhard Rinner, Senior Member, IEEE
and Gian Luca Foresti, Senior Member, IEEE

Abstract—There is a clear trend in camera networks to-
wards enhanced functionality and flexibility, and a fixed static
deployment is typically not sufficient to fulfill these increased
requirements. Dynamic network reconfiguration helps to opti-
mize the network performance to the currently required specific
tasks while considering the available resources. Although several
reconfiguration methods have been recently proposed, e.g., for
maximizing the global scene coverage or maximizing the image
quality of specific targets, there is a lack of a general framework
highlighting the key components shared by all these systems.
In this paper we propose a reference framework for network
reconfiguration and present a short survey of some of the most
relevant state-of-the-art works in this field, showing how they can
be reformulated in our framework. Finally we discuss the main
open research challenges in camera network reconfiguration.

Index Terms—Camera networks, sensor reconfiguration, active
vision

I. INTRODUCTION

CAMERA networks are nowadays widely used in many
different application fields, such as building surveillance,

traffic monitoring, crime prevention in public areas and crowd
flow analysis. Despite many of these networks are still based
on CCTV-based architectures, where the sensor control and
data interpretation are in charge of human operators, the
amount of acquired data often requires some form of auto-
matic processing. This can be achieved either by centralized
processing of the video streams or, for better scalability, by
distributed processing using smart cameras [1], [2].

Although many works have been published on the use of
camera networks for various computer vision applications,
few of them considered how the configuration of the network
influences the system performance, and how reconfiguration
could be used to adapt and improve the network performance
[3]. The configuration space of a network is here defined
as a set of sensor parameters that can actively modify the
quality and amount of the acquired data. In static camera
networks, these parameters include frame rate, exposure time,
aperture and resolution and can be altered during normal
sensor operation. The use of Pan-Tilt-Zoom (PTZ) cameras
extends the configuration space with orientation and field-
of-view parameters for each sensor. Finally, in networks
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composed by mobile camera platforms, such as robots and
unmanned aerial vehicles (UAVs), the location of the sensors
become a configuration parameter as well.

Reconfiguring a network may affect both the observed areas
(i.e., by adapting position, orientation and zoom parameters)
and the image quality (i.e., by adapting the internal camera
parameters), which directly influence the global performance
of the sensing system. A proper reconfiguration policy can
thus optimize the output quality according to specific criteria.
This optimization of course depends on the overall goal of
the system. Typical examples are networks of PTZ or mobile
cameras where the goal is to monitor the largest area possible
(coverage maximization) or to focus on specific targets. An-
other common objective is to reconfigure the internal camera
sensors in order to optimize the resource consumption in terms
of power, processing and bandwidth usage.

The contribution of this paper is twofold. First, we describe
a novel reconfiguration framework for camera networks. The
framework generalizes the key concepts basically shared by all
reconfiguration systems. Its main aim is to clearly highlight
the system components and propose a reference notation to
designate them. The framework models both main goals of
the reconfiguration: (i) to enable the cameras to cooperate and
work towards a common goal in a distributed fashion, and
(ii) to minimize overall resource consumption in the network
by optimizing the tasks assigned to the cameras. Our second
contribution is to present a short survey on camera network
reconfiguration. The aim of the survey is not to cover all the
state-of-the-art works on this topic, but rather to show how
the most relevant works on network reconfiguration can be
expressed in terms of our framework.

The rest of the paper is structured as follows. In section II
we present the novel framework for reconfiguring smart cam-
era networks allowing the combination of various types of
cameras such as fixed, PTZ, and aerial cameras. Section III
reviews the current state of the art, classifying several relevant
works according to our framework. In section VI we identify
recent trends and discuss open research challenges.

II. RECONFIGURATION FRAMEWORK

Figure 1 depicts the proposed framework for dynamic
reconfiguration in camera networks. A network of distributed
camera nodes observes a physical environment which often
exhibits complex behaviors of the involved objects of interest.
A key goal of the camera network is to capture relevant
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Fig. 1. High-level framework for dynamic reconfiguration in camera networks. A set of camera nodes observe the scene and derive local quality criteria and
resource requirements. This local information is merged to a global state which serves as key input for the reconfigurator. It computes optimized configurations
for each camera node. In any case, the reconfigurator can be either centralized or distributed among the different cameras in the network.

data of the environment and analyze it in order to provide
information about the current situation. However, the level
of detail and quality of the derived information depends
on the functionality and available resources of the camera
network. While there are methods and techniques available
for reconfiguration in sensor networks, these approaches often
assume omnidirectional sensors. In contrast, visual sensors
imply much stricter constraints, such as directionality.

The network is composed of several camera sensors si ∈
{s1, . . . , sN}. Each camera sensor performs some analysis
given local sensor data and available resources of that node.
The output of si is thus a local state fi of the scene at a
specific quality qi with some information about the current
resource usage ri. This abstracted data may be processed in a
centralized manner where each camera sensor is connected
to central node. As an alternative, the camera nodes may
directly exchange the data and process it in a distributed
manner. In such a case, the individual cameras have to run
their very own reconfigurator locally with the information
received from the other cameras. An overhead from fusing all
this information at the individual cameras occurs. In Figure 1
the choice between a centralized or distributed approach for
information fusion and camera reconfiguration is depicted as
a gray cloud. Each sensor si has its own configuration ci,
denoting the current state of the configurable parameters. The
union of all parameters, which can be actively changed, is
referred to as the configuration space of the node; the union of
all node configurations is thus referred to as the configuration
space of the overall network. The configuration space may
include sensor resolution, frame rate, camera position, PTZ
parameters and tasks to be executed on the camera.

We assume that each camera is able to compute a local

quality score qi denoting how good the current local config-
uration is in executing a required task at a specific state fi.
The quality thus highly depends on the overall system goal,
and its measurement must be defined according to a specific
application. For example, if the goal is to optimize the sensor
area coverage, the size of the observed area could be a possible
quality measure. Each camera also monitors its resource usage
ri, where the resource space (the set of all possible resources)
is again system-dependent, and may include bandwidth usage
and power consumption. Local information is then propagated
in order to define a common network state F and compute a
joint network quality Q with a total resource consumption R,
representing an aggregated view of the current network state
based on the local information from the individual cameras.
The global values F , Q, and R serve as key input to the
reconfigurator, which computes new configurations c′1 . . . c

′
N

for the camera nodes based on some global objective on quality
and/or resource consumption.

Figure 1 represents the high-level information flow for
dynamic reconfiguration. As the reconfiguration should allow
the network to deal with the dynamics of the environment, the
information exchange and reconfiguration has to be executed
in regular intervals. Our framework helps to identify the key
processes of the system:

a) Local analysis: The local analysis of each sensor
is dependent on the system goal. It generally processes the
video stream to detect changes, track moving objects, perform
high-level behavior interpretation etc.—just to name typical
examples. There is a plethora of methods available for com-
puting the local analysis from a single sensor input data. By
abstracting the output of local processing with fi, qi and
ri, network reconfiguration becomes independent of the local
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analysis.
b) Information distribution and fusion: In general, the

local states fi, the quality scores qi and resource consumptions
ri of each individual camera dependent on each other. As
an example, the visual coverage of a single sensor in a
coverage-maximization system could have different degrees
of quality, depending if other cameras are monitoring the
same areas or not. The local data must thus be analyzed
in order to compute the global state, quality and resource
consumptions F , Q and R. This requires a distribution—and in
some cases an aggregation and fusion—of local information
in order to compute a global state of the system. This can
be accomplished either by a centralized approach, where all
the data is transferred to a central node which is in charge
of computing the global state, or a distributed approach. In
the second case, all the nodes converge to a shared estimate
of F , Q and R only through local communications between
neighboring cameras.

c) Reconfiguration: There are various methods available
for solving the reconfiguration problem. These methods can
be distinguished based on the used algorithms, the degree
of decentralization and the rate of execution. In general,
reconfiguration is performed towards achieving a specific goal
of the overall application. In the context of the proposed
framework such objective is expressed in terms of quality
maximization and/or resource consumption minimization.

III. STATE OF THE ART

In the past, many works have been published on active
vision, especially in the field of robotics (see for example
the survey by Chen et al. [4]). Here “active” means that
the camera sensor is not simply acquiring data in a passive
way, but actively reconfigures its own internal and/or external
parameters (e.g., position, orientation, focus, and exposure)
in order to optimize a specific task. More recently, several
works investigated the extension of the active approach from
a single sensor to networks of sensors. In this approach, the
entire network is dynamically reconfigured in order to increase
the system capabilities of acquiring useful information from
the surrounding environment. Camera network reconfiguration
is not just an application of standard active vision techniques
to multiple cameras, as the sensors are not independent from
each other. New problems arise especially in terms of sensor
coordination and distribution of computation (for an example
of some typical problems to be faced in camera network
reconfiguration systems see [5]).

Several works on network reconfiguration are based on
wireless sensor networks, where sensors are typically assumed
to be omnidirectional (e.g. temperature sensors) and the wire-
less communication infrastructure eases the reconfiguration
tasks in terms of sensor (re-)deployment. Akyildiz et al. [6]
present a detailed survey on wireless sensor networks. Visual
sensors however imply stricter constraints on their capabilities
compared to other sensors, in particular the directionality.

The rest of this section describes the most relevant works
on camera network reconfiguration, organized by configuration
space complexity. In section III-A we focus on resource-aware

methods, in which reconfiguration is applied to those camera
parameters that affect the resource consumption of the sensor,
e.g., in terms of power consumption or bandwidth usage.
These parameters typically include, but are not limited to,
frame rate, image size, and in general any parameter involving
image formation and transmission. These works often consider
static cameras only, even though they can be extended to
other types of sensors. In the next sections, we discuss more
complex configuration spaces in which camera orientation and
zoom are taken in consideration as well. Since the majority
of the analyzed works fall in this case, we split them into two
sections, representing the two main approaches developed so
far. First, section III-B presents the coverage-oriented works,
in which PTZ (pan-tilt-zoom) reconfiguration aims to achieve
an optimal scene coverage. Second, section III-C discusses
target-driven PTZ reconfiguration, in the sense that the cam-
era parameters are controlled to optimize the acquisition of
specific targets possibly moving inside the monitored scene.
Finally, in section III-D the configuration space is extended
to include the position of mobile cameras, and discusses
configuration methods in UAV-based camera networks.

Each work is classified in terms of the key elements identi-
fied in the framework proposed in section II. The results of this
analysis are summarized in Table I, where we identify the local
processing, the configuration space, the fusion approach, the
reconfiguration goal and the adopted reconfiguration algorithm
for each mentioned work.

A. Resource-aware methods

Resource-aware methods explicitly focus on the available
and/or required resources on each device while achieving
a feasible performance. Hoffmann [7] studies four different
heuristics for energy-aware resource allocation to achieve a
given goal. The reconfigurator has to ensure minimal energy
consumption and timely completion of the task. Hoffmann
states that none of the investigated heuristics is always best
for all evaluated situations.

Similar, dynamic power management (DPM) allows the
system to change the operation state of system components
during runtime based on their workloads. This reduces power
consumption of the system while providing satisfactory overall
performance. To omit a priori knowledge, Khan and Rinner
[8], [9] employ a multi-layer artificial neural network to esti-
mate the workloads in the reconfigurator, and hence select the
optimal timeouts for each component in a multi-camera traffic
surveillance system. Their system’s quality measurements are
based on user-specified power and performance constraints.

In distributed camera networks, Karuppiah et al. [10] coor-
dinate resources to track persons in pairs of cameras. They
rely on a fault containment unit as their reconfigurator to
reallocate cameras during runtime in case persons are oc-
cluded, lost, or triangulation of the tracked person fails. To
select a proficient camera pair, they propose two different
policies—one focusing on stationary factors such as overlap
and quality of triangulation, the other one exploiting dynamic
environment factors such as activity density and the related
trajectory dynamics. Rinner et al. [57] analyze a centralized,
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TABLE I
CLASSIFICATION OF THE STATE OF THE ART ACCORDING TO THE KEY COMPONENTS OF THE PROPOSED FRAMEWORK. LOCAL PROCESSING REFERS TO
THE ANALYSIS PERFORMED BY A SINGLE CAMERA, ALTHOUGH THIS INFORMATION IS NOT ALWAYS AVAILABLE (N/A) IN THE ANALYZED WORKS. THE

CONFIGURATION SPACE REFERS TO PARAMETERS WHICH ARE MODIFIED DURING OPERATION. THE FUSION CAN BE PERFORMED IN CENTRALIZED (C) OR
DISTRIBUTED (D) WAY. THE LAST TWO COLUMNS SUMMARIZE THE OVERALL RECONFIGURATION GOAL AND THE ALGORITHM ADOPTED TO ACHIEVE IT.

PAPER
LOCAL

PROCESSING
CONFIGURATION

SPACE
FUSION

APPROACH
RECONFIGURATION

GOAL
RECONFIGURATION

ALGORITHM

[7] n/a Resource allocation C Task completion &
resource consumption Heuristics

[8], [9] Surveillance State selection C Resource consumption Reinforced learning
& ML-ANN

[10] Tracking Camera selection C Tracking quality &
resource consumption Failure containment

[11] Tracking Camera Selection D Tracking &
target image quality Socio-economic approach

[12] n/a Camera selection &
energy distribution C Coverage &

resource consumption Stochastic model

[13]–[15] Detection & tracking Camera selection,
task assignment & PTZ D Coverage &

resource consumption
Message passing &

expectation-maximization

[16], [17] n/a Position & PTZ C Coverage, image quality Simulated annealing

[18] Detection PTZ D Coverage, resolution Incremental line search

[19] n/a Position & orientation C Coverage Particle swarm optimization

[20] n/a Position & orientation C & D Coverage Integer linear programming
& greedy

[21] n/a PTZ C Coverage & image quality Particle swarm optimization

[22] n/a Position & orientation C Coverage Greedy min-set cover

[23] n/a Position & PTZ C Coverage Genetic algorithm

[24] Task-specific Position & orientation C Task-oriented coverage Hill-climbing

[25], [26] n/a PTZ C Coverage Expectation-maximization

[27] Detection Position & orientation D Target visibility BIP, greedy

[28] Detection & tracking PTZ C Target image quality sensor slaving

[29], [30] Tracking PTZ C Tracking POMDP

[31] Tracking Camera selection C Tracking Game-theoretic

[32]–[35] Tracking Camera selection & PTZ D Tracking &
target image quality Game-theoretic

[36], [37] Tracking Camera selection & PTZ C Tracking Greedy best-first search

[38] Tracking Camera selection & PTZ C Tracking Production rules

[39] Detection Position C Detection quality Probabilistic occupancy map

[40]–[42] Detection Position D Coverage Greedy search algorithm

[43] Detection Position & PTZ C Path planning Receding-horizon optimization

[44], [45] Feature extraction Position D Path planning Optimization

[46], [47] Detection / Tracking Position D Tracking Task assignment

[48] n/a Position & PTZ D Coverage Optimization

[49]–[51] n/a Position C Coverage Coverage path planning

[52] n/a Position D Coverage Max-sum task assignment

[53] Identification Position D Tracking Negotiation

[54], [55] Path selection Position & direction D Tracking Optimization

[56] Detection Position D Coverage Lawn mower search pattern
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distributed and proprioceptive approach to assign tracking re-
sponsibilities in smart camera networks. Their analysis focuses
on resource consumption in terms of exchanged messages as
a quality metric. This communication overhead as a proxy
for computational power, as cameras only process images
when they are requested to do so. Yu and Sharma [12]
define a stochastic model of the operational lifetime of a
visual sensor network. They consider two problems for their
reconfigurator: (i) the selection of a set of cameras to achieve
a desired coverage and (ii) the distribution of energy among
all selected nodes. Based on an abstraction of their proposed
model, they are able to optimize the lifetime of the network.
Dieber et al. [13] propose a distributed algorithm to find a
network wide configuration with a focus on a good trade-off
within their quality metrics: surveillance quality and resource
consumption. They compare their distributed approach to a
centralized, evolutionary approximation and show that they
can achieve equal configuration qualities. In [14] they extend
their approximation method with an expectation-maximization
algorithm to optimize coverage and resource allocation in dis-
tributed camera networks including PTZ cameras. To deal with
even higher dynamics, Dieber et al. [15] merge the distributed
reconfiguration approach with the market-based assignment of
tracking responsibilities. This represents a particular imple-
mentation of our presented generalized framework.

B. Coverage-oriented methods

Coverage-oriented methods aim to optimize the global
coverage of the monitored scene, e.g., by maximizing the
number of sensors observing relevant areas or minimizing
the unobserved portions of the environment. The problem
has been initially formulated and studied in the field of
computational geometry, where it is known as the “art gallery
problem” [58]. The original problem is proven to be NP-
Hard, but several approximate solutions and variants have
been proposed (for an example, see [59]). The original art
gallery problem however cannot be directly applied to real
distributed camera networks, as it does not consider several
issues such as camera directionality or range. Surveys on
coverage modeling for real cameras include Mavrinac and
Chen [60], where different geometrical and topological models
for camera coverage are analyzed, Guvesan and Yavuz [61],
which focuses on networks of directional sensors and their
similarities/dissimilarities with wireless sensor networks, and
Zhao et al. [62].

One of the most relevant works on coverage optimization
has been proposed by Mittal and Davis [16], [17]. The authors
assume that the probability distribution of random objects
appearing in the scene, as well as object characteristics such
as appearance and geometry, are known. By combining this
information with prior knowledge on the static structure of
the scene, they propose a probabilistic framework modeling
the scene visibility given the presence of random occlusions
due to dynamic objects. The authors also combine this model
with image capture quality metrics to define a global quality
function. The reconfigurator uses a centralized approach based
on simulated annealing to optimize this function and finds

the configuration that maximizes the scene visibility and
image quality even in presence of random occlusions. The
configuration space consists in sensors position, orientation
and zoom, as well as acquisition parameters related to image
quality, such as image resolution.

In Kansal et al. [18] the configuration space consists in
the pan, tilt and zoom values of fixed-position PTZ cameras.
Their system collects information on scene topology by using
laser ranging devices, and learns the zones of high activity by
detecting moving objects in wide-view, low-resolution image
sequences. A quality metric is defined as a function of several
parameters such as scene coverage (with higher importance
given to high-activity zones), object visibility and resolu-
tion, and actuation delay. The authors propose a distributed
approach in which each camera computes its local quality
metrics and is able to communicate only with other sensors
in a limited neighborhood. Incremental Line Search is used
as a reconfiguration algorithm to let each camera converge to
a shared global performance-maximizing configuration. The
system can dynamically reconfigure and adapt to changes in
activity maps.

The work by Morsly et al. [19] deals with the initial deploy-
ment of static cameras: the configuration space thus consists in
the sensors positions and orientations. The authors model the
sensor capabilities as constraints for an optimization problem
that minimizes the required resources, defined as the number
of sensors needed to guarantee that each point in the scene
is sensed by at least one camera. The reconfigurator is based
on a probability-inspired binary particle swarm optimization
technique. The proposed system uses a centralized approach.

The work of Ai and Abouzeid [20] focuses on the coverage
of a discrete set of targets with generic directional sensors. The
configuration space consists in both position and orientation
of the sensors, and the goal is to maximize a global quality
function defined as the coverage of the targets, while minimiz-
ing the required resources (number of sensors). The problem
is solved both exactly with an integer linear programming
approach, and approximately with a computationally efficient
greedy algorithm. The greedy algorithm is formulated both in
a centralized and a distributed version.

Konda and Conci [21] propose an multi-purpose approach
to PTZ configuration. The configuration space consists in both
the orientation and zoom levels of each sensor. The authors
aim to maximize two quality measures, camera network cover-
age and image quality, defined in terms of image entropy and
distortion. The reconfigurator optimizes these metrics using a
centralized particle swarm optimization approach.

Angella et al. [22] discretize the observation and the camera
placement spaces, and define a proper inter-visibility measure
between points in 3D environments. The visibility measure
is used to define a global coverage quality score, whose
maximization is found by applying a variant of the central-
ized greedy algorithm for min-set cover problems. They also
propose a software implementation which can be hardware-
accelerated by using modern graphic cards. The configuration
space consists in both the sensor positions and orientations.

Also Indu et al. [23] discretize the environment space.
They also require manual definition of special areas such as
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the zones where camera placement is possible and priority
areas where sensor coverage is mandatory. They define a
probability-based quality measure related to scene coverage.
The configuration space considers the orientation and zoom
levels of the cameras, as well as their position in the case of
patrolling PTZ cameras. The reconfigurator finds the optimal
coverage by means of a centralized genetic algorithm.

Bodor et al. [24] define reconfiguration goal in terms of
maximizing a quality measure expressing the coverage of areas
where most of the activities are taking place. Moreover, they
observe that different tasks have different needs in terms of
image quality, and thus they propose a task-oriented optimal
network configuration based on a hill-climbing centralized
algorithm.

Piciarelli et al. [25], [26] propose a method for the automatic
reconfiguration of a network of PTZ cameras based on the
notion of relevance maps. A relevance map is a 2D (in [25])
or 3D (in [26]) map expressing the relevance for each visible
portion of the environment based on the goals of the system. Its
definition is thus highly dependent on the global goal: a typical
example could be an activity map expressing the presence of
moving objects detected by wide-FOV static cameras or noisy
targets localized by audio sensors [63]. In this case, the authors
assume that the zones with higher activity are also the most
relevant for surveillance. The final aim of the system is to
compute a reconfiguration of the pan, tilt and zoom parameters
of each camera in order to maximize the global coverage, giv-
ing more weight to high-relevance zones. The authors propose
a local coverage model that expresses, for each camera, the
quality of the current local configuration, defined as the total
amount of relevance of the zones observed by the sensor. The
Fusion module acts in a centralized way and computes the
global quality of the current configuration as a sum of the local
qualities. The final goal of the system is to maximize the global
quality, and this is obtained by the reconfigurator module by
iteratively computing the best network configuration using an
approach based on the Expectation-Maximization algorithm.
The configuration space consists in the pan, tilt and FOV
angles of each camera.

C. Target-based methods

In contrast to coverage-oriented approaches, which aim to
maximize the area coverage independently of the presence of
objects in the scene, target-based methods use reconfiguration
to focus on a specific target. Target tracking is the most typical
application, and can be accomplished by tasking PTZ cameras
to actively follow the tracked objects while other cameras
adapt their configuration to observe the remaining environ-
ment. Reconfiguration can occur even with static cameras, and
the network reconfiguration consists in actively selecting the
best cameras to acquire a specific target (camera assignment
and hand-off problems).

Zhao et al. [27] deals with the problem of detecting specific
visual features (tags) on targets, e.g., faces, even in case
of occlusion. They propose a stochastic visibility model to
guarantee that tags are visible from at least two cameras,
thus allowing the distributed 3D localization of the tags also

in occluded views. Then, they introduce two algorithms for
their reconfigurator to compute the camera positions and
orientations that maximize the tag visibility. Finally, they
present a practical privacy-oriented application that removes
the presence of a tagged person from all the camera views.
Del Bimbo et al. [28] reconfigure the network to acquire
high-resolution images of a target with PTZ cameras. They
rely on a master-slave approach, in which a master camera
monitoring a large environment provides rough positional
information to slave cameras. Each camera in the network
can act either as master or slave. Their reconfigurator uses an
uncalibrated method to estimate the time-variant homographies
between camera views. Natarajan et al. [29], [30] try to
overcome the limits of a master-slave approach and propose
a model to coordinate a network of PTZ cameras for tracking
multiple targets with high resolution even in presence of
occlusions. In their approach, the reconfigurator maintains
a belief on the states of the targets which is considered
in the framework of Partially Observable Markov Decision
Processes. Qureshi and Terzopoulos [36], [37] consider the
problem to track moving objects with PTZ cameras while
optimizing the image quality and minimizing the number of
camera hand-offs. The novelty of their approach consists in
considering the predicted trajectories of moving objects in
order to optimize the camera tasking strategies through time
for future situations. A proactive approach is proposed also
by Starzyk & Qureshi [38], where a reasoning module tries
to find the best camera assignments and hand-offs, and reuses
the same configuration when similar events occur. The authors
also extend their works to the case of multiple tasks executed
by each camera simultaneously [64].

Regarding camera assignment and hand-off systems, Li and
Bhanu [31] define multiple utility functions as a quality mea-
sure to analyze the system efficiency in target tracking from
the point of view of each sensor. Then, a global optimal camera
assignment is found by using the utilities in a game theoretic
framework, where the global utility is maximized by a bar-
gaining process on a centralized reconfigurator. The proposed
system works both with overlapping and non-overlapping cam-
eras and does not require specific offline camera calibration
procedures. Results are given on people tracking and face
detection. The same authors compare several camera selection
and hand-off techniques in [65]. A similar approach is used
by Song et al. [32] and by Ding et al. [35], where again utility
functions are proposed to model the tracking quality of moving
people and the optimal camera selection is found by means of a
game-theoretic approach. However, in these works the system
is fully decentralized, and PTZ configuration is considered for
acquiring high-resolution images of specific targets. The same
authors in [33] improve the system tracking performances
by using a distributed Consensus-Based Kalman filter, and
propose a more generic framework based on their approach
in [34], [66]. Esterle et al. [11] present a completely distributed
coordination approach exploiting market mechanisms. Several
strategies are proposed to use a local utility function combined
with distributed Vickrey auctions to assign tracking responsi-
bilities during runtime to the ”best” camera. As no a priori
knowledge is facilitated, the cameras need to learn the network
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topology online and use artificial pheromones to represent
the local neighborhood. The reconfigurator selects appropriate
neighbors to focus marketing efforts. In [67] they show the ro-
bustness of their approach in uncertain environments but define
the employed strategies at deployment time. To overcome an
initial—and possibly non-optimal—assignment of strategies,
Lewis et al. [68] propose to facilitate so-called bandit solvers
on each camera to learn the best strategy during runtime. Here
the focus of the reconfigurator shifts from selecting appropriate
cameras as recipients of auction invitations to selecting the
most appropriate strategy locally on each camera. Starzyk
and Qureshi [69] adopted the approach by Esterle et al. and
applied one of the strategies for coordinating the handover in a
network of PTZ cameras. Additionally, they allowed cameras
to share their current state with others and to perform so-
called counteroffers, where the bidding camera offers one of
its objects for sale in order to free allocated resources.

In a collaborative tracking approach SanMiguel and Caval-
laro [70] use their reconfigurator to select a coalition manager
for each object of interest based on available battery levels and
current load. The coalition manager is dynamically changed
during runtime based on the objects location. The first task of
the coalition manager is to identify the trade-off between the
contributions of each camera tracking the object against the
effort to include it in the coalition for this specific object. The
second task is to estimate the target state over time based on
the information of the cameras within the coalition.

The problem of camera assignment has also been addressed
by Martinel et al. [71] in the context of human-computer
interfaces. In their work trajectory prediction of moving ob-
jects is used to dynamically select the best cameras from the
configuration space observing a specific target. This camera
selection allows to reduce the bandwidth consumption since
only the best video streams are sent to a centralized node for
human operator evaluation.

D. UAV-based deployment methods

Recent developments in UAVs [72], flying ad-hoc networks
[73], and computer vision have enabled the deployment of
UAVs for mobile camera networks. Each node in such a
network is a position-aware UAV, carrying a camera (static
or PTZ) for vision-based sensing. A real time deployment
strategy is always required to decide on the configuration of
nodes (i.e., position and movement action of a UAV) in order
to achieve the mission goals. Reconfiguration in this kind of
network is based on the concept of minimizing uncertainty
in the environment or maximizing information gain about the
environment. One natural application of a UAV-based cam-
era deployment is situation-awareness in wide areas, which
includes detection, search and rescue, tracking, surveillance
and monitoring. Situation-awareness in natural environments
generally requires high mobility and perception capabilities of
mobile nodes.

Merino et al. [39] propose a cooperative perception system
for automatic forest fire detection and precise localization us-
ing camera-equipped UAV network. In their proposed method,
each UAV locally uses segmentation, and feature matching to

find the estimates of fire locations. These local estimates (qual-
ity measures) are then fused using Bayesian analysis to further
increase the accuracy of the fire locations. The reconfigurator
uses the centralized occupancy probability map and unscented
transform to position the UAVs for reducing the errors in
localization. Similar camera-equipped UAV networks have
been used in various search and rescue scenarios (e.g., [40]–
[45]), where computer vision algorithms are used to calculate
the probability of detection and probability of false alarm for
the vision sensors. Considering these probabilities as quality
measure, the observations from UAVs are fused to localize
a stationary target. Recently, Khan et al. [56] introduced a
generic framework of aerial mobile camera network for search
applications, where the local analysis is to update the probabil-
ity of target existence based on individual UAV observations.
The authors proposed and compared various strategies for
merging the time delayed and erroneous observations from
individual UAVs. The estimated probability of target existence
is then used as a confidence of the individual UAV in the
target location. The positions of UAVs along the predefined
paths are then reconfigured in order to minimize the search
time and detection errors.

How et al. [46] and Bethke et al. [47] propose system
architectures for distributed search and track for a moving
target. To provide accurate target state estimation, even in
the presence of obstructions in the environment, they use
optimization technique to combine instantaneous observations
from individual UAVs. This optimization is based on mini-
mizing the errors in distance from the last known estimate to
each measurement. The target state estimation is then used
by linear Kalman filter to determine the next location for
observation. A similar approach is used in [53] to monitor the
activities of firemen in disaster situation. The reconfiguration
in their method is based on a negotiation process. The UAVs
negotiate to decide the future locations based on minimization
of Euclidean distances to firemen. To track multiple moving
targets, the authors in [54], [55] claimed that uncertainty of a
target state is proportional to frequency of target state update.
They formulated the motion planning problem of UAVs as an
optimization problem to minimize the average time duration
between two consecutive observations of a target. A gradient-
approximation algorithm is then proposed as a reconfigurator
to generate suboptimal paths for the UAVs to traverse.

One of the most important works in UAV-based deploy-
ment for camera network reconfiguration is environmental
monitoring, proposed in [48]. The authors propose a method
to coordinate heterogeneous cameras and to maintain the
best view of the environment with maximal resolution. They
derive a cost function to represent how well a group of
cameras covers the environment. They use information per
pixel as a metric to incorporate physical, geometric, and
optical parameters into this cost function. A control law is
then obtained for reconfiguring the positions and orientations
of camera by taking the negative gradient of this cost function.
The authors in [49]–[51] propose techniques for generating
an overview image of a large scene. Images are received at
a fixed base station from multiple nodes that are planned to
travel along specific waypoints (configuration space). These
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waypoints are determined in a static manner but the dynamic
calculation of efficient paths for UAVs are formulated as
integer linear programming problem. Image registration and
mosaicking are then applied to form an overview image of
the defined area. Fave et al. [52] provide refined imagery of
multiple scenes prioritized by the user. Based on the priorities,
the shortest distance to scene, and the available battery life,
tasks are allocated to UAVs. The reconfigurator uses dynamic
task allocation to continuously change the positions and paths
of UAVs.

IV. RECONFIGURATION CHALLENGES

From the analysis presented in section III, it emerges that
network reconfiguration is a complex task that cannot be
reduced to the mere application of standard optimization
techniques. Here we summarize the main challenges that we
have identified in the analyzed works, and that are specific to
camera network reconfiguration problems:
• Complexity of multiple goals and constraints. The pro-

posed framework aims to maximize a global quality
measure for sensing capabilities of the network, based on
the local measurements of each individual sensor. While
the definition of the quality measure sometimes comes
naturally from the problem definition (e.g. the total size
of the observed area in coverage-oriented tasks), in can
be the most challenging problem in other cases. A typical
example comes from object tracking tasks: how can we
decide if a network configuration is good for tracking?
The answer depends on the specific context, for example
Zhao et al. [27] require each object to be observed by
at least two cameras, Del Bimbo et al. [28] focus on
acquiring high-resolution images of the targets, while
Qureshi and Terzopoulos. [37] minimize the number of
camera hand-offs. Finding a good quality measure and
defining how it can be computed by only using local
measurements of each sensor is thus a though task, tightly
coupled with the global goal of the system.
Moreover, there is a clear trend towards deployment
of camera networks in complex environments which
consequently requires more complex configuration ob-
jectives. Here the reconfiguration has to fulfill multiple,
sometimes even conflicting, criteria. In such settings,
a set of (Pareto-optimal) configurations are available,
and knowledge about the current context helps to select
a configuration. Thus, context-awareness or situation-
awareness is desirable for reconfigurations in complex
environments.
Finally, network reconfiguration systems need to deal
with multiple complex constraints. These constraints arise
either from the physical architecture of the sensors, such
as pan/tilt ranges, zoom levels, power requirements; or
from the environment, such as visual occlusions.

• Dynamic reconfiguration and real-time processing. In
some cases, the optimal network configuration is an
offline process that leads to a static solution. This is
especially true for many coverage-oriented problems,
where the environment is considered static and it is

assumed that the coverage of each sensor will not change
through time. However, in many applications the network
reconfiguration is a continuous process, since the network
must dynamically adapt to the changing conditions of
the monitored environment. A good example is target
tracking: at each time instant, the network must adapt
its configuration to the position of the moving objects
being tracked. This dynamic aspect is often ignored by
many standard optimization techniques.
The dynamic nature of reconfiguration also implies strin-
gent requirements in terms of computational time. Espe-
cially in active camera networks, real-time processing is
required in order to allow the reconfiguration operation to
keep up with the dynamics of the environment. The lim-
ited resources available within the camera network pose
therefore a fundamental challenge for dynamic reconfigu-
ration. Offloading the computation to powerful servers or
even to cloud services—a technique which is frequently
applied in traditional camera networks and computer
vision applications to overcome resource limitations—is
often not feasible. Dynamic reconfiguration has there-
fore proactively monitor the available resources and
aim for computing configurations within guaranteed time
bounds. Heuristics, incremental algorithms or approxima-
tion methods might be potential algorithm candidates.

• Distributed computation. As shown in Table I, the ma-
jority of the surveyed works still adopts a centralized
approach to information distribution and fusion. In this
case the network relies on a central processing node
connected to all the sensors that computes the required
reconfiguration. While this approach is suitable for small
networks, it does not scale for larger installations. We
foresee that camera networks will continue to grow in
the near future—even to the scale of metropolitan areas.
Thus, distributed computation will become a necessity,
and the use of smart sensors, with embedded processing
capabilities, will be a key factor to implement fully-
distributed reconfiguration algorithms.

• Increased system uncertainty. Advanced camera networks
have to deal with uncertainties among various dimen-
sions. First, knowledge about the current state of the
camera network may be limited due to resource limita-
tions and failures. Second, knowledge about the available
configurations of the network may also be limited. Third,
sensing and low-level processing may only provide in-
complete information about the environment due to lack
of observation and detection errors, for example. Finally,
the environment may also provide unexpected behav-
ior which was not anticipated at time of deployment.
One fundamental approach to address the uncertainty
challenge is to exploit online or reinforcement learning
strategies.

• Self-organizing networks. The ultimate vision of reconfig-
uration is self-organization where the camera network au-
tonomously monitors its state and progress, learns behav-
iors and adapts itself to reflect changing conditions of the
environment. Learning models of the camera’s state and
context as well as decentralized decision making are the
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fundamental techniques for achieving self-organization.
An extension to self-organization is self-awareness and
self-expression. By introducing self-awareness and self-
expression, cameras will not only be able to learn about
their own state, but also to reason about their capabilities.
Having a plethora of capabilities, a self-aware camera
is able to do both: to decide when to apply a certain
technique or mechanism as well as to decide what the
most appropriate available method is during runtime.

V. DISCUSSION

In this section we discuss the key aspects that emerge from
an overall comparison of the works presented in section III.
In particular we focus on three main elements shared by any
camera reconfiguration work, namely:
• reconfiguration goals
• configuration spaces
• reconfiguration strategies

The outcome of this analysis is summarized in table II. The
table is meant as a quick reference to identify relevant works
given a specific applicative scenario.

Reconfiguration goals. Current state-of-the-art works are
focused on the optimization of three main aspects: the visual
coverage, the tracking performances, and the overall resource
consumption of the sensing network. Visual coverage consists
in maximizing the total area observed by the cameras. This
has been generally done by using some a-priori knowledge
on the static structure of the environment to compute its
visibility given a network configuration. None of the analyzed
works considers the possibility of dynamic occlusions, with the
notable exception of [16], [17], in which however the random
occlusions caused by dynamic objects are handled only from
a probabilistic point of view.

The work by Kansal et al. [18] extends the basic idea
by introducing weights, in order to give more importance
to the coverage of relevant zones. Most of the coverage-
oriented works are not focused on the dynamic aspects of
reconfiguration, and the proposed techniques are rather used to
find an static optimal configuration (e.g., after an sub-optimal
initial deployment of the sensors). Exceptions can be found in
weighted coverage works, in which the weights could change.
Piciarelli et al. [25], [26] compute the weights by detecting
the presence of moving objects, and thus these weights can
dynamically evolve through time.

The goal of tracking-oriented works, on the other hand, are
not so well defined. All of the works aim to improve the
network-wide performance of object tracking or some other
target-based processing, however there is no general consensus
on how this goal can be achieved. The aim of the system
is actually very application-specific: in [27] the authors want
some visual features (e.g. faces) to be always visible by at
least a camera, in [28] sensors are reconfigured to acquire
high-resolution images of the targets, while the work proposed
in [21] optimizes a metric modeling the overall image quality.
In general, all these systems assume that tracking will benefit
from an improved image quality. Another common approach
to improve tracking is to minimize the camera hand-offs

(changing the sensor in charge of tracking a specific target),
such as in [11], [31], [34], [66].

This leads directly to the third main goal, minimizing
resource consumption of each individual camera and hence
the entire network. The rationale behind minimizing hand-
offs is that vision-based tracking gives better results on long
sequences from the same sensor, moreover each camera hand-
off requires a non-trivial re-identification of the lost target in
the other views. Several works try to find a trade-off between
the two possibly conflicting goals, trying to optimize the image
quality while minimizing the hand-offs at the same time, such
as in [36], [37]. Lewis et al. [68] even use different strate-
gies in order to determine the Pareto-efficient frontier when
trading off tracking performance against required resources.
Furthermore, they use reinforcement learning techniques in
combination with weighted utility function to learn Pareto-
optimal solutions for their available strategies during runtime.

Configuration spaces. Another key aspect to consider in
network reconfiguration is the configuration space, this is, the
set of sensor parameters that can be altered and that influence
the network performance in some way. The configuration
space depends on the sensor mobility, i.e. if the sensors are
static, PTZ or fully mobile, and this distinction has been
used to organize section III. In static cameras, only the
internal parameters can be modified, such as optical aperture,
resolution, acquisition rate etc. (see section III-A). These
parameters affect the image quality and the power consump-
tion, and thus they are often reconfigured in order to find a
quality/resource trade-off in a resource-aware context, such as
in [13]. Sometimes network reconfiguration simply reduces to
turning specific sensors on or off, as in [74]: while aiming to
achieve a desired sensing performances while using the sensors
as little as possible, thus reducing resource consumption. In
general, all the analyzed works that rely on static cameras
are oriented to resource awareness. Nevertheless, resource
awareness is achieved in several works (e.g. [14]) using PTZ
sensor networks as well.

Pan-Tilt-Zoom (PTZ) cameras offer a more complex con-
figuration space, since the camera orientation becomes a con-
figurable parameter. The zoom parameter, when configured, is
always handled together with pan/tilt angles: in our analysis,
no work controlled the zoom in static cameras. The majority
of network reconfiguration works rely on PTZ architectures, as
shown in section III. The main problems addressed with this
type of sensors are visual coverage (section III-B) and target
tracking (section III-C). Indeed, given the limited field-of-view
of most of the cameras, controlling the sensor orientation is
an effective way to achieve better visual coverage or to keep
with a moving target in the observable area.

Finally, the configuration space can be further extended in
order to model not only the sensor orientation, but also its
position. In this case the reconfiguration strategy can take
advantage of the full mobility of the sensors, which can be dy-
namically deployed according to the sensing needs. While this
approach can be theoretically applied to any type of mobile
sensor, the totality of the works we analyzed involve the usage
of unmanned aerial vehicles (UAVs). UAV-based systems are
typically used to deal with both the visual coverage and target
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tracking in large geographical regions. Limitations in battery
life (flight time), field-of-view, and computing power of the
UAVs require intelligent and dynamic positioning of UAVs to
visually cover the region or to track the targets in the region.
Despite current reconfiguration works with mobile sensors
focus on UAV platforms, we foresee that in the near future
this approach could be extended to other types of sensors as
well, such as wearable equipment, tablets or smartphones.

Reconfiguration strategies. Once the reconfiguration goals
and parameters have been identified, a proper reconfiguration
strategy must be chosen. There is no general consensus on
which algorithms suit this task best, but all the analyzed works
can be expressed in form of nonlinear optimization problems
in the end, and have been handled accordingly with tools
like genetic algorithms [23], simulated annealing [17], particle
swarms [19], etc.

The choice of a proper algorithm also depends on the
specific challenges that the system must face, as the ones
described in section IV. In particular, the nature of the problem
leads naturally to either a centralized or distributed approach.
In the centralized approach, all the computation is required
to be accomplished by a single central computing node. This
node knows the global state of the system and can compute
the best configuration for each sensor on the network, however
it is also a single point of failure, and can be a computational
bottleneck in large networks. Distributed systems, on the other
hand, rely on distributing the computation on several smart
sensors, which mutually agree on a shared global reconfigu-
ration strategy by exchanging messages among the sensors.
The distributed approach is generally harder to implement,
however it performs better in terms of scalability, and it is
typically able to deal with the failure of one or more sensors.
From table I we can see that the number of works using the
different approaches is roughly the same, however there is
a clear trend towards the centralized or distributed strategy
depending on the reconfiguration goal. In particular, tracking
oriented systems tend to use a centralized approach [28]–[30],
[36]–[38]. We speculate that this is due to the limited area
to be monitored and the low number of employed sensors
in the network. In this case, the computational burden is
not critical, and the authors prefer a centralized strategy,
which is generally easier to implement. On the other hand,
the distributed approach is widely adopted in the UAV-based
works [42], [53]–[56]. This is often due to limitations in the
wireless communication [75]: while it could be feasible to
have local communications between UAVs, the wireless range
could limit the communication with a single remote node.

The other fundamental challenge is to deal with dynamic
problems, possibly requiring a real-time reconfiguration. From
this point of view, the two extrema are represented by
coverage-oriented and tracking-oriented problems. In the first
case the reconfiguration is often computed only once, using
static information on the structure of the environment, and
thus can be safely performed offline. No dynamic adaptation
is needed and the computational time is not a critical issue.
Undeniably, there are situation where the importance of cov-
ering a certain area may change during runtime (cp. [26]) and
an online reconfiguration is inevitable for coverage-oriented

problems. On the other hand, tracking-oriented approaches
always need to deal with extremely dynamic contexts, since
their reconfiguration depends on the movement of the tracked
objects. In this case, a real-time reaction is critical, since a
delay in reconfiguration could lead to the loss of the target.
For this reason, tracking-oriented works often try to find
fast, possibly approximate solutions, for example using greedy
algorithms as in [27], [36], [37].

VI. CONCLUSIONS

In this work, we have presented two main contributions. Our
first contribution proposes a novel framework for reconfiguring
smart camera networks. This framework enables several cam-
eras to work together towards a common goal under global
quality and resource constraints. Our second contribution is
a short survey of some of the most relevant state-of-the-art
works, allowing us to identify benefits as well as drawbacks
in current systems. The state of the art has been analyzed in the
novel context of the proposed framework. As a result of this
analysis, we have identified the main challenges to be faced in
the context of network reconfiguration, and we concluded with
a discussion of the most suitable reconfiguration strategies in
terms of the reconfiguration goals and parameter spaces.
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