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Abstract. In this paper we present a predator-prey mathematical model for two biological populations
which dislike crowding. The model consists of a system of two degenerate parabolic equations with
nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence,
namely the existence of two non-trivial non-negative periodic solutions representing the densities of
the two populations. We assume that the predator species is harvested if its density exceeds a given
threshold. A minimization problem for a cost functional associated with this process and with some
other significant parameters of the model is also considered.
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1. Introduction

There is a vast literature on mathematical models in biology and population dynamics and the last
decades witnessed a growing interest toward models that take into account the effects of spatial inho-
mogeneity and diffusion on the evolution of a population. Mathematically, this translates into studying
mainly systems of partial differential equations of parabolic type with particular attention to the existence
of positive steady states, positive periodic solutions, their stability properties, permanence and extinction
issues as the following far-from-exhaustive list of references is meant to illustrate.

In [1] an autonomous and competitive Lotka-Volterra system of parabolic type is considered and
conditions are given on the size of diffusivity coefficients in order to guarantee that the model has spatially
non homogeneous steady states (see also [2, 3, 4] for results on stability of coexistence steady states). The
existence of periodic solutions of an autonomous reaction diffusion systems is proved in [5]. In particular,
in [6] nonlocal delays are added to a predator-prey parabolic system and the global asymptotical stability
of its steady states is discussed together with the occurrence of Hopf bifurcations.

One of the first papers to consider the predator-prey non-autonomous situation is [7] where the coef-
ficients are T -periodic in time and the existence of componentwise positive periodic solutions is proved
with different boundary conditions. Existence and stability of positive periodic solutions to reaction-
diffusion systems are also considered in the papers [8, 9, 10, 11, 12, 13, 14] when the right hand side is in
the classical predator-prey or competitive form [12], ratio-dependent of Holling type-III [9], monotone in
some suitable sense [8, 10, 11, 14]. The techniques employed involve monotone iteration schemes, upper
and lower solutions, comparison results. The question of permanence and extinction is also considered
in [9, 12] while the presence of delayed terms is allowed in [10, 11, 13].

In order to model a more general way of spreading behavior in space the use of degenerate parabolic
operators has been proposed. For instance, replacing the usual −∆u term by a degenerate elliptic operator
as −∆um, as proposed in [15, 16, 17, 18], is a way of modeling the diffusion of species that dislike crowding.
The periodic problem for single degenerate parabolic equations has been already considered in a series
of papers including the significant results in [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] under different
kinds of degeneracy for the elliptic operator.
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Phone: +39 0577 23 4850 (int. 1056). Fax: +39 0577 234629.
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Of more importance to our situation are the problems studied in [31, 32, 33, 34, 35]. A porous media
type model (see the monographs [36, 37] for detailed references on this equation and on degenerate
parabolic equations) is studied in [31, 32] were a single degenerate equation featuring a nonlocal term has
been considered and the existence of a nonnegative nontrivial periodic solution has been proved. Nonlocal
terms are a way to express that the evolution of a population in a point of space does not depend only
on nearby density but also on the total amount of population (see [38]). Analogous results are shown in
[33, 34] for p-Laplacean and in [35] for a doubly degenerate parabolic equation. In [33, 38, 39, 40, 41] an
optimization problem is also considered in which some of the coefficient functions are taken as control
parameters and the existence of an optimal control minimizing (or maximizing) a suitable cost functional
is proved. Concerning systems of degenerate parabolic equations, there are few papers dealing with the
subject. In [42, 43] the existence, continuability and asymptotic behavior of the positive solutions of
a system of possibly degenerate semilinear parabolic equations are considered under different boundary
conditions. On the other hand, [41] deals with the positive periodic problem for a system of degenerate
and delayed reaction-diffusion equations with non-local terms of the following form:





∂u

∂t
−∆um =

(
f(x, t) +

∫

Ω

[−K1(ξ, t)u
2(ξ, t− τ1) +K2(ξ, t− τ2)v

2]dξ

)
u,

∂v

∂t
−∆vm =

(
g(x, t) +

∫

Ω

[K3(ξ, t)u
2(ξ, t− τ3)−K4(ξ, t− τ4)v

2]dξ

)
v.

(1)

In this paper we consider a predator-prey model that is described by the following system of degenerate
parabolic equations:





∂u

∂t
−∇ ·

[
∇um + 2~buδ

]
=

(
f(x, t)−N1(x, t)u− N2(x, t)v

K0 + u
−
∫

Ω

K1(ξ, t)u
2(ξ, t)dξ

)
u,

∂v

∂t
−∇ ·

[
∇vn + 2~βvγ

]
=

(
K3(x, t)u

K0 + u
−K4(x, t)v −

∫

Ω

[
K2(ξ, t)v

2(ξ, t) + h
(
ξ, v0(t)

)
v(ξ, t)

]
dξ

)
v.

(2)
Here u and v denote respectively the densities of the prey and the predator, sharing the same territory
Ω, which is a bounded domain of RN , 1 ≤ N ≤ 3 (even if the dimension is mathematically irrelevant in
the arguments we develop), with smooth boundary ∂Ω. Beside the degeneracy of the elliptic operators,

the model features the terms 2~buδ, 2~βvγ which, in a biological setting, simulate the effects of drifts within
the system (caused, for example, by currents due either to natural fluid movements or by mechanical
stirring of the system medium, when u, v represent populations living in water). We shall only consider
the situation 1 ≤ δ ≤ m and 1 ≤ γ ≤ n. In particular, the cases δ = γ = 1 with m > 1, n > 1
are allowed, corresponding to the Fokker-Plank equation situation with degenerate diffusion. The terms
N1(x, t)u

2(x, t),K4(x, t)v
2(x, t) represent the natural mortality based on the logistic equation (see [44]).

The term N2(x, t)v(x, t)u(x, t)/[K0+u(x, t)] accounts for losses of preys due to the grazing by predators,
while the symmetric term K3(x, t)u(x, t)v(x, t)/[K0 + u(x, t)] measures the effect of predation on the
growth rate of predators. The nonlocal terms u(x, t)

∫
Ω
K1(ξ, t)u

2(ξ, t)dξ and v(x, t)
∫
Ω
K2(ξ, t)v

2(ξ, t)dξ
describe the effect of the competition for food among the members of each species through the weighted
fraction of individuals that actually interact at time t > 0.

Moreover, the term −[
∫
Ω
h(ξ, v0)v(ξ, t)dξ]v(x, t) is added in the second equation to include a contin-

uous harvesting effect on the predators in a region Ω′ ⊂ Ω. This situation occurs, for instance, in the
management of fisheries with v standing for the concentration of fish that are caught and u standing
for the concentration of their (live) food. The harvesting is modeled as an increase in the death rate of
the prey that depends non-locally on v in Ω′ as we explain hereafter. First of all, a sample of the prey
concentration v0(t) =

∫
Ω′′ v(x, t)dx/|Ω′′| is measured for x0 ∈ Ω′′, where Ω′′ ⊂ Ω′ is a small region. For

simplicity, v can be considered constant in Ω′′ so that v0(t)
M
= v(x0, t) for x0 ∈ Ω′′. If v0(t) exceeds a

suitable threshold a > 0 the harvesting of v in Ω′ takes place at an intensity that increases linearly with
v0(t) and reaches its maximum intensity, say ω > 0, if v0(t) is larger than or equal to another suitable
threshold b > a; if v0(t) is below a, no harvesting occurs. Therefore we consider the following expression
for the function h:

h
(
ξ, v0(t)

) M
=

ω

|Ω′|χΩ′(ξ)H
(
v0(t)

)
with H(z)

M
= χ(a,b)(z)

z − a

b− a
+ χ[b,+∞)(z),

where χA is the characteristic function of the set A.
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Assuming K0 > 0 and the T -periodicity of the functions f,Nj ,Ki (j = 1, 2 and i = 1, 2, 3, 4), we
provide conditions on system (2) ensuring the existence of a pair of non-trivial non-negative Hölder
continuous functions (u, v) solving (2) in the weak sense, cf. ([36], Definition 5.4), and satisfying the
following boundary conditions




u(x, t) = v(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u(x, T ) for x ∈ Ω,

v(x, 0) = v(x, T ) for x ∈ Ω.

(3)

One of our results, contained in Theorem 2.1, is as follows:

Theorem 1.1. If m,n > 1, m ≥ δ > (m + 1)/2, n ≥ γ > (n + 1)/2, f is non-negative non-trivial
and N1,K3,K4 are strictly positive, then system (2) has a pair of non-negative non-trivial periodic weak
solutions (u, v) belonging to Cα,α/2(QT ), for some α > 0.

Observe that unlike the m = 1 or n = 1 cases, we do not require a size estimate on f,K3,~b, ~β for this
result. Note also that we do not require the strict positivity of f, unlike earlier work, but we need the
strict positivity of N1,K3,K4. If δ, γ are “smaller”, stricter conditions will be needed, as we show below.

In particular, in some cases we shall require that ~b, ~β vanish in some part of Ω for all t. Intuitively, in the
case of species living in a lagoon, this corresponds to a small part of the lagoon being always stagnant.
We also remark that our proofs will immediately lead, in some cases, to the existence of positive periodic
solutions as a consequence of known results [45],[36].

We also point out that the presence of drift terms and the fact that the growth factor K3u/(K0 + u)
of v depends on u make the analysis of system (2) significatively different and more difficult than that
of (1) in [41]. In fact, looking at the conditions (b)–(d) in Theorem 2.1, when 2δ ≤ m + 1 in the prey

equation we have to impose that the drift vector field ~b is small in some suitable sense with respect to the
preys growth rate f in order to guarantee the non-triviality of the obtained solutions. On the other hand,
when 2γ ≤ n+ 1 in the predators equation in (2) (see conditions (α)–(δ) in Theorem 2.1), the predators
growth rate depends on the preys concentration u and, thus, we have to require that the drift vector

field ~β is similarly smaller than K3u∗/(K0 + u∗) where u∗ is any non-trivial and non-negative periodic
solution of the uncoupled preys equation (i.e. with v ≡ 0). Part of the paper is then devoted to obtain
some estimates on K3u∗/(K0 +u∗), since u∗ is not known. The fact that our conditions involve integrals
plays a critical role in these arguments. This differentiate our results from the preceding ones.

Our results are based on degree theory arguments, along the general lines of those used in [38]. We
recall that the presence of nonlocal terms seems to render upper/lower solutions arguments difficult to
apply as illustrated in [38]. Nevertheless we find cut-off arguments useful in our presentation.

In the last part of the paper we consider a cost functional associated to (2)–(3), which evaluates both
the cost of controlling the growth rate of the prey u to the values f(x, t), the grazing of v on u to the values
K3(x, t), the cost and the benefit due to the harvesting of the predator. Thus Section 3 of the paper is
devoted to the minimization of the considered cost functional. In fact, assuming as a control parameters
the threshold b of the piecewise linear function H representing the characteristic of the harvesting, its
maximum intensity per unit of time ω, the intrinsic growth rate f(x, t) of the prey and the intensity of
grazing K3(x, t) of v on u, we prove that the cost functional attains its minimum on the set of solutions
to (2)–(3) corresponding to the control parameters.

2. Preliminaries and coexistence result

We assume that the domain Ω ⊂ RN is bounded, open and has smooth boundary and we set QT =
Ω × (0, T ) for a fixed T > 0. The gradient ∇ and Laplacean ∆ differential operators are always meant
with respect to the space variable x ∈ RN unless otherwise stated. All functions on the right hand sides
of system (2) are assumed to be bounded and non-negative. In particular we will require N1,K4 to be

strictly positive. Moreover, ~b, ~β ∈ W 1,∞(QT ). The constants m,n are assumed bigger or equal to one.
We observe that the left hand sides of system (2) are of the classical “porous media” type. There is a
vast literature on this subject. We refer the interested reader to the book by Vazquez, [36], where many
references can be found. We begin by collecting in Lemma 2.1 results that are either simple consequences
or special cases of known results. As mentioned earlier, in Lemma 2.1 — and throughout the paper —
by a solution we mean a weak generalized solution defined in the usual way ([36], Definition 5.4). For
the reader’s convenience, we sketch a brief proof.

Lemma 2.1.
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(a) Let 0 ≤ g ∈ L∞(QT ) and consider the Dirichlet periodic problem




`1(w)
M
= wt −∇ ·

[
A∇w + 2 ~Bw

]
+ cw = g in QT

w = 0 on ∂Ω× [0, T ]

w(x, 0) = w(x, T ) in Ω

(4)

with 0 < a ≤ A(x, t) for some constant a, and A, ~B, c in L∞(QT ). If ess inf c > ‖ ~B‖2∞/a, then
(4) has a unique solution w ≥ 0, of class Cα,α/2(QT ) for some α > 0.

(b) Let ε ≥ 0, c ≥ 0, 1 ≤ q ≤ p with ~B, g smooth. There exists an upper solution z > 0, independent
of ε, c, such that

`(z)
M
= zt −∇ ·

[
∇(zp + εz) + 2 ~Bzq

]
+ cz ≥ ‖g‖∞ in QT , (5)

and z(x, 0) = z(x, T ).

Proof. (a) Existence is immediate from the usual Poincaré map argument, given that the condition on c
ensures that the elliptic part of `1 is uniformly definite. These conditions also yield the uniqueness and
the positivity of w. Indeed, let us consider the bilinear form

B(u, v) =
∫

Ω

v
{
cu−∇ ·

[
A∇u+ 2u~B

]}
dx

for functions satisfying Dirichlet boundary conditions on ∂Ω. Straightforward computations show that

B(u, u) =
∫

Ω

(
cu2 +A|∇u|2 + 2u ~B∇u

)

≥ (ess inf c)‖u‖22 − 2‖ ~B‖∞‖u‖2‖∇u‖2 + a‖∇u‖22

≥
(
a− ‖ ~B‖2∞

ess inf c

)
‖∇u‖22

and, in particular, B(u, u) = 0 if and only if u ≡ 0. Now, if w solves `1(w) = 0, then by T -periodicity we
get

0 =

∫∫

QT

w`1(w) =

∫ T

0

B(w,w),

and, thus, w ≡ 0 and the uniqueness of the solution of `1(w) = g follows. Moreover, if `1(w) = g ≥ 0,
then we obtain again by T -periodicity

0 ≤
∫∫

QT

gw− =

∫∫

QT

`1(w)w
− =

∫ T

0

B(w,w−) =
∫ T

0

B(−w−, w−) = −
∫ T

0

B(w−, w−) ≤ 0

and, hence, w ≥ 0. Here w− = max{0,−w}. Finally the regularity of w is a consequence of classical
results: [46], [47].

(b) We consider explicitly the case p > 1, since the case p = 1 is well known. It is useful to first

introduce a comparison function v(x) given by v(x) = C(1− x−D
1 ), where without loss of generality, we

may assume that if x = (x1, . . . , xN ) ∈ Ω then 1 < λ ≤ x1 ≤ Λ for some constants λ,Λ. We choose C,D
to ensure: {

−∇ ·
[
∇v + ε∇v1/p + 2 ~Bvq/p

]
≥ ‖g‖∞

v > 0
(6)

since c ≥ 0. Observing that −∇ · [∇v1/p] ≥ 0 by direct calculation, it suffices that

C

{
D(D + 1) +

[(
−∇ · 2 ~B

)
Cq/p−1

(
1− x−D

1

)q/p]
xD+2
1 − 2q

p
| ~B|vq/p−1Dx1

}
≥ ‖g‖∞xD+2

1 .

We first choose D such that

D >
2q

p
‖ ~B‖∞Λ

(
1− λ−D

)q/p−1
+ 1.

Next, taking into account that q/p− 1 < 0 and p > 1, we choose C0 ≥ 1 sufficiently large so that:
[
−2‖∇ · ~B‖∞C

q/p−1
0

(
1− Λ−D

)q/p]
xD+2
1 > −1.
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Finally, we choose C ≥ C0 such that:

C >
‖g‖∞xD+2

1

2D − 1

whence estimate (6) follows.
Putting v = zp then yields (5). ¤

We now employ Lemma 2.1 to obtain the coexistence result. We have:

Theorem 2.1. Assume m,n ≥ 1 and that N1,K4 are strictly positive. Then system (2) has a solution
(u, v) in QT , with non-trivial, non-negative functions u, v belonging to a space Cα,α/2(QT ) determined
by the problem data, if two of the following conditions are satisfied: one for the first (prey) equation of
system (2), the other for the second (predator) equation of system (2). These are as follows:

• Conditions on the first equation:
(a) If 2m ≥ 2δ > m+ 1 then f ≥ 0 non-trivial in QT .

(b) If 2δ < m+ 1 then there exists Ω′ ⊂⊂ Ω such that ~b = ~0 and f non-trivial in Ω′ × (0, T ).

(c) If 2δ = m+ 1 with m > 1, then there exists Ω′ ⊂⊂ Ω in which
∫ T

0

[
f − δ2 |~b|2

m

]
> 0.

(d) If m = δ = 1, then the least eigenvalue µ1 of the elliptic Dirichlet problem:



−∆τ +

[
1

T

∫ T

0

(
|~b|2 −∇ ·~b− f

)]
τ = µ1τ in Ω

τ = 0 on ∂Ω

is negative.
• Conditions on the second equation:

(α) If 2n ≥ 2γ > n+ 1, then K3u∗ ≥ 0 is non-trivial.

(β) If 2γ < n + 1, then there exists an open set Ω′′ ⊂ Ω such that ~β = ~0 and K3u∗ non-trivial
in Ω′′ × (0, T ).

(γ) If 2γ = n+ 1 with n > 1, then there exists an open set Ω′′ ⊂⊂ Ω in which

∫ T

0

[
K3u∗

K0 + u∗
− γ2 |~β|2

n

]
> 0.

(δ) If n = γ = 1, then the least eigenvalue λ1 of the elliptic Dirichlet problem:



−∆τ +

[
1

T

∫ T

0

(
|~β|2 −∇ · ~β − K3u∗

K0 + u∗

)]
τ = λ1τ in Ω

τ = 0 on ∂Ω

is negative.

Here, by u∗ we denote any non-trivial solution of the first equation of the decoupled system (2), i.e. with
v ≡ 0.

Before passing to the proof, we comment that conditions (a)–(d) are sufficient for a non-trivial solution
u∗ to exist, as can be seen by applying the arguments of the proof of Theorem 2.1 only to the first equation
of (2). Furthermore, condition (d) holds if, for example,

∫

Ω

[
1

T

∫ T

0

(
|~b|2 −∇ ·~b− f

)
+ ν1

]
φ2
1 < 0

where ν1, φ1 denote the least eigenvalue, eigenvector of
{
−∆φ = νφ in Ω

φ = 0 on ∂Ω.

An identical remark applies to condition (δ). Observe, as well, that conditions (c), (d), (γ), (δ) involve

the time averages of ~b, f, ~β,K3u∗. This allows for considerable variations in time of those coefficients, as
long as their averages are suitable.
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Proof. We modify and regularize system (2) in the following way




∂u

∂t
−∇ ·

[
∇(um + εu) + 2~buδ

]
+ cu =

(
f −N1u− N2v

K0 + u
−
∫

Ω

K1u
2dξ + c

)
u+ ε

M
= F1(u, v, ε),

∂v

∂t
−∇ ·

[
∇(vn + εv) + 2~βvγ

]
+ cv =

(
K3u

K0 + u
−K4v −

∫

Ω

(K2v
2 + hv)dξ + c

)
v + ε

M
= F2(u, v, ε).

(7)
with 0 < ε ≤ 1 constant, and c ≥ 0 to be chosen. Next, we apply Lemma 2.1(b) to the first equation

in (7) — with the choices p = m, q = δ, ~B = ~b and g = ‖f2/(4N1)‖∞ + 1 — and construct the upper
solution z1 to the first equation in (7). In the same way, we apply lemma 2.1(b) to the second equation

of (7) — with p = n, q = γ, ~B = ~b and g = ‖K2
3/(4K4)‖∞ + 1 — to obtain z2.

For any function ξ : QT → R put:

ξ̃
M
=





0 if ξ ≤ 0

ξ if 0 < ξ ≤ z1

z1 if ξ > z1

and ξ̂
M
=





0 if ξ ≤ 0

ξ if 0 < ξ ≤ z2

z2 if ξ > z2

and choose

c ≥ sup
0≤µ≤‖z1‖∞

[
‖~b‖2∞µ2δ−2

µm−1 + ε

]
+ sup

0≤µ≤‖z2‖∞

[
‖~β‖2∞µ2γ−2

µn−1 + ε

]
. (8)

We next consider the linear system




∂u1

∂t
−∇ ·

[(
m(ξ̃1)

m−1 + ε
)
∇u1 + 2~b(ξ̃1)

δ−1u1

]
+ cu1 = F1(ξ̃1, ξ̂2, ε),

∂v1
∂t

−∇ ·
[(

n(ξ̂2)
n−1 + ε

)
∇v1 + 2~β(ξ̂2)

γ−1v1

]
+ cv1 = F2(ξ̃1, ξ̂2, ε)

(9)

subject to Dirichlet and periodic conditions. Observe that given (ξ1, ξ2) we can find solutions (u1, v1) as
a consequence of the choice of c by Lemma 2.1(a). We thus establish a map (ξ1, ξ2) 7→ (u1, v1) between
Cα,α/2 spaces — for some α > 0 — which is continuous and completely continuous by suitable choices of
α > 0 (again by Lemma 2.1(a)). It follows that system (9) has a fixed point (u1, v1) by the usual Degree
Theory Arguments.

Next, we claim that ũ1 = u1 and v̂1 = v1. Indeed, let us consider the difference between the first
equation in (9) and the equation satisfied by z1 written as:

(z1)t −∇ ·
[
∇(zm1 + εz1) + 2~bzδ1

]
+ cz1 ≥ ‖f2/(4N1)‖∞ + 1 + cz1 .

Multiplying the obtained inequality by (u1−z1)
+, integrating over QT and recalling that ũ1 = z1 wherever

(u1 − z1)
+ 6= 0, we have
∫∫

QT

{(mzm−1
1 + ε)|∇(u1 − z1)

+|2+2zδ−1
1 (u1 − z1)

+~b · ∇(u1 − z1)
+ + c[(u1 − z1)

+]2}

≤ −
∫∫

QT

(
N1z

2
1 − fz1 − ε+

f2

4N1
+ 1

)
(u1 − z1)

+

by T -periodicity and boundary conditions. Now,

−
∫∫

QT

(
N1z

2
1 − fz1 − ε+

f2

4N1
+ 1

)
(u1 − z1)

+ ≤ −
∫∫

QT

N1

(
z1 − f

2N1

)2

(u1 − z1)
+ ≤ 0

and

0 ≥
∫∫

QT

{(mzm−1
1 + ε)|∇(u1 − z1)

+|2 + 2zδ−1
1 (u1 − z1)

+~b · ∇(u1 − z1)
+ + c[(u1 − z1)

+]2}

≥
∫∫

QT

{(mzm−1
1 + ε)|∇(u1 − z1)

+|2 − 2‖~b‖∞zδ−1
1 (u1 − z1)

+|∇(u1 − z1)
+|+ c[(u1 − z1)

+]2}

≥
∫∫

QT

(
c− ‖~b‖∞z2δ−2

1

mzm−1
1 + ε

)
[(u1 − z1)

+]2.

Therefore we obtain that (u1 − z1)
+ ≡ 0 thanks to the choice of c in (8). In an analogous way it is

possible to deduce that (v1 − z2)
+ ≡ 0.
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We thus have found solutions (uε, vε) of (7) that are nonnegative nontrivial, due to: F1 ≥ ε > 0,
F2 ≥ ε > 0, and are uniformly bounded by z1, z2 respectively, that is: independently of ε for 0 < ε ≤ 1.
By a standard argument (see also the proof of [41, Theorem 2.1] for a similar situation) it is possible to
show that (uε, vε) converges to a T -periodic non-negative solution (u, v) of (2) as ε goes to zero along a
suitable sequence. We just mention how to deal with the presence of drift terms in (7). If we multiply
by φ ∈ C∞

c (Ω) the first equation of (7), integrating over QT and using the Banach-Steinhaus theorem
we get

∫∫

QT

|∇um
ε |2dxdt ≤ M

for any ε and some M > 0. Therefore ∇um
ε + 2~buδ

ε ⇀ ∇um + 2~buδ weakly in L2(QT ) as ε → 0 along a
suitable sequence. The same procedure and conclusion apply to the second equation of (7).

We now show that both components of (u, v) are non-trivial. For convenience we note that the first
equation of (7) can be written as

∂uε

∂t
−∇ ·

[
∇(um

ε + εuε) + 2~buδ
ε

]
+ cuε =

(
f −O(uε, vε) + c

)
uε + ε

where O(uε, vε) → 0 as (uε, vε) → 0. Next we let ε → 0 and observe that we need only show that
uε, vε 6→ 0 pointwise as ε → 0. We claim that uε 6→ 0, for otherwise we first note that vε 6→ 0. Indeed, if
we assume that both uε → 0 and vε → 0, we choose a nontrivial C∞

0 (Ω) function φ(x), further specified
below. We then observe: Let w = uε + ε2 > 0. Completing the square shows:

0 ≤ (mum−1
ε + ε)w2

∣∣∣∣∇
(
φ

w

)∣∣∣∣
2

− 2δφwuδ−1
ε

~b · ∇
(
φ

w

)
+

δ2|~b|2u2(δ−1)
ε φ2

mum−1
ε + ε

.

Integrating over QT and expanding gives:

0 ≤
∫∫

QT

[
(mum−1

ε + ε)|∇φ|2 − 2δφuδ−1
ε

~b · ∇φ+ δ2|~b|2 u
2(δ−1)
ε

mum−1
ε + ε

φ2

]

−
∫∫

QT

φ2

w

[
−∇ · [(mum−1

ε + ε)∇w
]− 2δuδ−1

ε
~b · ∇w

]

= I1 − I2

Now we observe:

I2 =

∫∫

QT

φ2

w

[
−∇ · [(mum−1

ε + ε)∇uε

]− 2δuδ−1
ε

~b · ∇uε

]

and thus, formally:

I2 =

∫∫

QT

φ2

uε + ε2

[
−∂uε

∂t
+
(
f −O(uε, vε)

)
uε + ε+ 2uδ

ε∇ ·~b
]
.

We note that by periodicity and Steklov averages:

∫∫

QT

φ2

uε + ε2
∂uε

∂t
=

∫

Ω

φ2
{
ln[uε + ε2]

∣∣T
0

}
= 0.

Thus

I2 =

∫∫

QT

φ2

uε + ε2

{(
f −O(uε, vε)

)
(uε + ε2) + ε

[
1− ε

(
f −O(uε, vε)

)]
+ 2uδ

ε∇ ·~b
}
.

Passing to the limit as ε → 0 we obtain, by obvious choice of φ, an immediate contradiction to I1−I2 ≥ 0
due to condition (a) or (b) accordingly to the case 2δ > m+ 1 or 2δ < m+ 1. If 2δ = m+ 1 and m > 1,
then observe that δ > 1 implies uδ

ε/(uε + ε2) ≤ uδ−1
ε → 0, and we have a contradiction to I1 − I2 ≥ 0 due
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to condition (c). Finally, if m = δ = 1 then

0 ≤I1 − I2

=

∫∫

QT

[
(1 + ε)|∇φ|2 − 2φ~b · ∇φ+

|~b|2φ2

1 + ε

]
−
∫∫

QT

φ2
[
f + 2∇ ·~b−O(uε, vε)

]

−
∫∫

QT

εφ2

uε + ε2

[
1− ε

(
f + 2∇ ·~b−O(uε, vε)

)]

=

∫∫

QT

[
(1 + ε)|∇φ|2 + φ2

(
|~b|2
1 + ε

−∇ ·~b− f +O(uε, vε)

)]

−
∫∫

QT

εφ2

uε + ε2

[
1− ε

(
f + 2∇ ·~b−O(uε, vε)

)]
.

Since the last integral is positive for ε small enough, condition (d) gives the needed contradiction to the
non-negativity of I1 − I2 as ε → 0 if φ is chosen to be an eigenfunction relative to µ1.

Next we observe that if vε 6→ 0 then uε 6→ 0, since otherwise we would have vε → v∗ > 0 and uε → 0
along a subsequence and direct integration on QT of the second equation formally gives as ε → 0:

∫∫

QT

∂v∗
∂t

−
∫ T

0

∫

∂Ω

∂vn∗
∂n

+

∫∫

QT

K4v
2
∗ ≤ 0.

The first integral is zero by periodicity, the second non-negative by the boundary condition and the
non-negativity of v∗. We then obtain the contradiction

∫∫
QT

K4v
2
∗ ≤ 0.

Finally suppose vε → 0. Then uε → u∗ ≥ 0 a non-trivial periodic solution of the first (decoupled)

equation, and we need only repeat the earlier arguments with f,~b,m, δ replaced byK3u∗/(K0+u∗), ~β, n, γ
respectively.

We thus obtained the existence of solutions (u, v). That these belong in some Cα,α/2 is a consequence
of the results of Porzio and Vespri, [48], due to the boundedness of (u, v) (by z1, z2). ¤

We observe that some of the conditions in Theorem 2.1 — namely, those on the second equation —
involve the unknown function u∗. A first obvious way to eliminate the dependence on u∗ in conditions (α)
and (β) is to assume that K3 > 0 in QT . If we knew that each non-trivial and non-negative T -periodic
solution u∗ of the first uncoupled equation is positive everywhere inside QT , conditions (α) and (β) could
be further simplified by directly dropping u∗. However, the strong maximum principle does not hold in
general here due to the degeneracy of the elliptic part of the differential operator and it cannot be used
to show that a non-trivial non-negative solution is actually positive [36, §1.2]. On the other hand, the
support of a non-negative solution of the porous medium equation without lower order terms expands in
time and includes in finite time every point of the domain Ω [36, Theorem 14.3]. This fact and the T -
periodicity of a solution are now enough to guarantee that a T -periodic non-negative non-trivial solution
of the porous medium equation without lower order terms must be positive in QT . As for analogous
properties in presence of lower order terms, we mention that there are recent papers dealing with the
subject which seems to be still under investigation. In particular, in [49] an intrinsic Harnack estimate is
proved for degenerate parabolic equations with degeneracy of two types: p-Laplacean and porous media
(and it has been extended to doubly degenerate equations in [50]). The results in those papers, on the
one hand, imply that, if u(x0, t0) > 0, then u(x0, t) > 0 for all t > t0 and, on the other, have been used in
[51, 52] to show that the expansion of the positivity set does occur also with lower order terms in the case
of p-Laplace type of degenerate equations. The validity of the analogous result for the porous medium
equations still seems to be an open problem.

However, it is sometimes possible to eliminate the dependence on u∗ in (α)–(γ) and obtain explicit —
albeit somewhat crude — sufficient conditions for coexistence. We illustrate this remark by considering
condition (γ) in Theorem 2.1, and recall that 0 ≤ u∗ ≤ z1 by construction, with z1 a super-solution that
can be explicitly estimated in terms of the problem data. We then have:

Corollary 2.1. Let ~b ≡ ~0 and assume that n > 1, 2γ = n+ 1.
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1. Assume m > 1 and let φ1, ν1 be the eigenvector/eigenvalue of −∆ as given after the statement of
Theorem 2.1. Put:

V (η)
M
= (η +K0)

∫ η

0

mξm−2

ξ +K0
dξ

R(x, t)
M
= f(x, t)− ν1V

(
z1(x)

)−
∫

Ω

K1(ξ, t)z
2
1(ξ)dξ.

If:

ess inf
QT

K3

N1

∫∫

QT

Rφ1

z1 +K0
>

∫∫

QT

φ1γ
2|~β|2
n

,

then condition (γ) of Theorem 2.1 holds.
2. Assume m = 1 and condition (d) of Theorem 2.1. If

γ2

n

∫∫

QT

|~β|2 (K0 + z1)(N1 + |Ω|K1z1)

K3
< −µ1

∫∫

QT

τ21 , (10)

where µ1, τ1 are the principal eigenvalue/eigenvector in condition (d) with ‖τ1‖∞ = 1, then
condition (γ) of Theorem 2.1 holds.

Proof. Observe first that z1 depends on ‖f2/N1‖∞, whence z1 will be small if N1 À f2. Consequently
the conditions of the Corollary are not void. Put u∗ = u in this proof for notational simplicity.

Case 1: m > 1. Choosing φ1/[(u+K0)(u+ ε)] as a test function in the equation for u yields
∫∫

QT

∇um · ∇
[

φ1

(u+K0)(u+ ε)

]
=

∫∫

QT

(
f −N1u−

∫

Ω

K1u
2

)
uφ1

(u+K0)(u+ ε)
.

Now,
∫∫

QT

∇um · ∇
[

φ1

(u+K0)(u+ ε)

]
=

∫∫

QT

∇um · ∇φ1

(u+K0)(u+ ε)
−
∫∫

QT

mφ1u
m−1(2u+K0 + ε)

(u+K0)2(u+ ε)2
|∇u|2

≤
∫∫

QT

∇
[∫ u

0

mξm−1

(ξ +K0)(ξ + ε)
dξ

]
· ∇φ1

= ν1

∫∫

QT

[∫ u

0

mξm−1

(ξ +K0)(ξ + ε)
dξ

]
φ1 .

Recalling m > 1 and letting ε → 0 gives

ν1

∫∫

QT

[∫ u

0

mξm−2

ξ +K0
dξ

]
φ1 ≥

∫∫

QT

(
f −N1u−

∫

Ω

K1u
2

)
φ1

u+K0
.

Rearranging we obtain ∫∫

QT

N1uφ1

u+K0
≥

∫∫

QT

Rφ1

z1 +K0
,

and, finally,
∫∫

QT

φ1K3u

K0 + u
≥ ess inf

QT

K3

N1

∫∫

QT

Rφ1

z1 +K0
>

∫∫

QT

φ1γ
2|~β|2
n

and the first result follows.
Case 2: m = 1. Let φ ∈ C∞

c (Ω) a non-negative function to be specified later. Using φ2/u as a test
function in the equation for u we obtain

∫∫

QT

(
2
φ

u
∇u · ∇φ− φ2

u2
|∇u|2

)
=

∫∫

QT

[
f −N1u−

∫

Ω

K1u
2

]
φ2

and, therefore,

0 ≤
∫∫

QT

u2

∣∣∣∣∇
φ

u

∣∣∣∣
2

=

∫∫

QT

|∇φ|2 −
∫∫

QT

[
f −N1u−

∫

Ω

K1u
2

]
φ2.
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If we take any sequence φk ∈ C∞
c (Ω) such that φk → τ1, then we have as k → +∞

−µ1

∫∫

QT

τ21 ≤
∫∫

QT

[
N1u+

∫

Ω

K1u
2

]
τ21

≤
∫∫

QT

(N1u+ |Ω|K1u
2)

≤
∫∫

QT

K3u

K0 + u

(K0 + z1)(N1 + |Ω|K1z1)

K3

and condition (γ) follows from (10). ¤

Remark 1. It is clear from the argument in case 2 that condition (10) can be replaced by the requirement
that

γ2

n

∫∫

QT

|~β|2 (K0 + z1)(N1 + |Ω|K1z1)

K3
<

∫∫

QT

(fφ2 − |∇φ|2)

for some φ ∈ C1
0 (Ω) such that ‖φ‖∞ = 1.

3. An optimization problem

In this section we aim at minimizing a cost function associated with (2)–(3). Similar problems were
considered in [33, 38, 39, 40, 41]. Here, specifically, assuming as control parameters b and ω in the

harvesting term
∫
Ω
h
(
ξ, v0(t)

)
v(ξ, t)dξ (where we recall that v0(t)

M
= v(x0, t) = v(x, t) with x0 ∈ Ω′′ for

all x ∈ Ω′′), the growth rate f(x, t) of u and the intensity K3(x, t) of the grazing of v on u, we consider

the cost functional C :
(
C(QT )

)2 × (
L∞(QT )

)2 × (R+)
2 → R defined by

C(u, v, f,K3, b, ω)
M
=

∫∫

QT

[
c1
(
x, t, f(x, t)

)
+ c2

(
x, t,K3(x, t)

)]
dxdt−

∫∫

QT

g
(
x, t, v(x, t)

)
dxdt

+ c3(b, ω)

∫∫

QT

h
(
x, v0(t)

)
v(x, t)dxdt,

where c1
(
x, t, f(x, t)

)
is the cost of controlling the intrinsic growth rate f of the prey to the values

f(x, t), c2
(
x, t,K3(x, t)

)
is the cost of controlling the intensity of the grazing of v on u to the values

K3(x, t), c3(b, ω) is the unitary cost of the harvesting of the predator and g is the gain relative to the har-
vesting. We assume the continuity of the functions ci, i = 1, 2, 3, and g with respect to their arguments.

For given positive constants r1, r2, b0, b1, ω0 and ω1 consider the following sets.

U
M
=
{
(f,K3, b, ω) ∈

(
L∞(QT )

)2 × (R+)
2 : 0 ≤ f(x, t) ≤ r1, 0 ≤ K3(x, t) ≤ r2, for a.a. (x, t) ∈ QT ,

satisfying one of the conditions (a)-(d) and (α)-(δ) respectively, a+ b0 ≤ b ≤ b1, ω0 ≤ ω ≤ ω1

}

and

S
M
=

{
(u, v) : (u, v) ∈ (

Cα,α/2(QT )
)2

is a solution of (2)–(3) corresponding to

(f,K3, b, ω) ∈ U with u, v ≥ 0 in QT , u, v 6= 0
}
.

The set S is nonempty. In fact, for all (f,K3, b, ω) ∈ U , Theorem 2.1 ensures the existence of a

T -periodic solution (u, v) ∈ (
Cα,α/2(QT )

)2
of (2)–(3) with u ≥ 0 and v ≥ 0 in QT , u, v 6= 0 and α

depending on ri, i = 1, 2, radius of the ball B(0, ri) ⊂ L∞(QT ).
Fix (f,K3, b, ω) ∈ U and consider the map ψ(f,K3,b,ω) : QT × R6 → R3 given by

ψ(f,K3,b,ω)(x, t, α, β, α1, β1, α2, β2)
M
= (y1, y2, y3) with:

y1 =

(
f(x, t)−N1(x, t)α− N2(x, t)β

K0 + α
− α1

)
α,

y2 =

(
K3(x, t)α

K0 + α
−K4(x, t)β − β1 − α2

)
β,

y3 = c1
(
x, t, f(x, t)

)
+ c2

(
x, t,K3(x, t)

)
+ c3(b, ω)Γ(x, β2, b, ω)β − g(x, t, β),

where

Γ(x, β2, b, ω)
M
= χΩ′(x)

H(β2, b)ω

|Ω′| and H(β2, b)
M
= χ(a,b)(β2)

β2 − a

b− a
+ χ[b,+∞)(β2). (11)
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Consider now the multivalued map Ψ : QT × R8 ( R3 defined as follows:

Ψ(x, t, α, β, α1, β1, α2, β2, b, ω)
M
= {ψ(f,K3,b,ω)(x, t, α, β, α1, β1, α2, β2) : f ≡ γ1 ∈ [0, r1],K3 ≡ γ2 ∈ [0, r2]}.

For (u, v) ∈ (
C(QT )

)2
and (b, ω) ∈ [a+ b0, b1]× [ω0, ω1] we put

Ψ̂(u, v, b, ω)(x, t)
M
= Ψ

(
x, t, u(x, t), v(x, t), φ1(u)(t), φ2(v)(t), φ3(v)(t), φ4(v)(t), b, ω

)

for a.a. (x, t) ∈ QT , where φi(w)(t) =
∫
Ω
Ki(x, t)w

2(x, t)dx, i = 1, 2, φ3(v)(t) =
∫
Ω
h
(
x, v0(t)

)
v(x, t)dx,

and φ4(v)(t) = v0(t). Let Σ := S where the closure is in the C(QT ) × C(QT )-topology. We are now in
the position to prove the following result.

Theorem 3.1. The cost functional C attains the minimum in a point (u, v, f,K3, b, ω) ∈ Σ×B(0, r1)×
B(0, r2)× [a+ b0, b1]× [ω0, ω1], where (u, v) is a solution of (2)–(3) corresponding to (f,K3, b, ω).

Proof. First observe that infS C is finite. Let {(un, vn, fn,K3,n, bn, ωn)} be a minimizing sequence for
the cost functional C, where {(un, vn)} ⊂ S and {(fn,K3,n, bn, ωn)} ⊂ U is the corresponding sequence
of control parameters. Define

ψn(x, t)
M
= ψ(fn,K3,n,bn,ωn)

(
x, t, un(x, t), vn(x, t), φ1(un)(t), φ2(vn)(t), φ3(vn)(t), φ4(vn)(t)

)
.

Clearly, ψn(x, t) ∈ Ψ̂(un, vn, bn, ωn)(x, t) for a.a. (x, t) ∈ QT and Ψ̂(un, vn, bn, ωn)(x, t) is a nonempty,
compact, convex set in R3 for a.a. (x, t) ∈ QT and any n ∈ N.

Let G :
(
L∞(QT )

)3 → (
C(QT )

)2 × C([0, T ]) be the solution map defined as

G(ŷ1, ŷ2, ŷ3) = (u, v, z), with ψ = (ŷ1, ŷ2, ŷ3),

if and only if 



∂u

∂t
−∇ ·

[
∇um + 2~buδ

]
= ŷ1 in QT

∂v

∂t
−∇ ·

[
∇vn + 2~βvγ

]
= ŷ2 in QT

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),

u(x, 0) = u(x, T ), in Ω

v(x, 0) = v(x, T ), in Ω

(12)

and {
ż(t) =

∫
Ω
ŷ3(x, t)dx, a.e. in [0, T ],

z(0) = 0.
(13)

Since G is a compact map and the sequence {ψn} ⊂ (
L∞(QT )

)3
is bounded, we have that (un, vn) →

(u, v), with u, v ≥ 0 in QT , and zn → z in
(
C(QT )

)2
and C([0, T ]) respectively. Moreover (bn, ωn) →

(b, ω) ∈ [a+ b0, b1]× [ω0, ω1]. On the other hand, ψn ⇀ ψ weakly in
(
L2(QT )

)2 × L2
(
(0, T )

)
.

We now show that

ψ(x, t) ∈ Ψ̂(u, v, b, ω)(x, t)

for a.a (x, t) ∈ QT . By the weak convergence of ψn to ψ we have that

lim sup
n→∞

〈η, ψn(x, t)〉 ≥ 〈η, ψ(x, t)〉 ≥ lim inf
n→∞

〈η, ψn(x, t)〉

for all η ∈ R3 and for a.a. (x, t) ∈ QT . Therefore

lim sup
n→∞

[
sup〈η, Ψ̂(un, vn, bn, ωn)(x, t)〉

]
≥ 〈η, ψ(x, t)〉 ≥ lim inf

n→∞

[
inf〈η, Ψ̂(un, vn, bn, ωn)(x, t)〉

]
.

By the continuity of Ψ̂(u, v, b, ω)(x, t) with respect to u(x, t), v(x, t), b, ω we obtain

sup〈η, Ψ̂(u, v, b, ω)(x, t)〉 ≥ 〈η, ψ(x, t)〉 ≥ inf〈η, Ψ̂(u, v, b, ω)(x, t)〉,
for any η ∈ R3 and for a.a. (x, t) ∈ QT . By the convexity of the set Ψ̂(u, v, b, ω)(x, t) it follows that

ψ(x, t) ∈ Ψ̂(u, v, b, ω)(x, t)

for a.a. (x, t) ∈ QT . By the measurable selection Theorem, see e.g. [53], there exist (f,K3) ∈ B(0, r1)×
B(0, r2) ⊂

(
L∞(QT )

)2
such that

ψ(x, t) = ψ(f,K3,b,ω)

(
x, t, u(x, t), v(x, t), φ1(u)(t), φ2(v)(t), φ3(v)(t), φ4(v)(t)

)
. (14)
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Arguing as in the proof of Theorem 2.1 we get that ∇um
n + 2~buδ

n ⇀ ∇um + 2~buδ and ∇vmn + 2~bvδn ⇀

∇vm + 2~bvδ weakly in L2(QT ). Moreover, the inverse operator of the left hand side of (13) is weakly
continuous in L2

(
(0, T )

)
. In conclusion, (u, v) ∈ Σ is the weak solution of (12) and z is the solution of

(13), where (ŷ1, ŷ2, ŷ3) are the components of the function ψ given in (14). Hence, (u, v) is a solution

of (2)–(3), with u, v ≥ 0 in QT and (u, v) ∈ (
Cα,α/2(QT )

)2
, corresponding to the control parameters

(f,K3, b, ω) and
z(T ) = C(u, v, f,K3, b, ω) = inf

S
C.

¤
Observe that the arguments used in the proof of Theorem 3.1 when applied to the two first components

of the vector multivalued function Ψ̂(u, v, b, ω) also show that each pair (u, v) ∈ Σ \ S is a solution of
(2)–(3) corresponding to some control parameters (f,K3, b, ω) ∈ B(0, r1)×B(0, r2)× [a+b0, b1]× [ω0, ω1].
Furthermore in Theorem 3.1 the minimum of the cost functional C could be attained at a point (u, v) ∈ Σ
for which at least one element of the pair (u, v) is zero. This is due to the fact that the control set U is
not closed with respect to the multivalued approach used in the proof of Theorem 3.1. If it is of interest
to avoid such a situation, namely to have the minimum of C at a point (u, v, f,K3, b, ω) with u and v
different from zero, then we must strengthen the conditions of Theorem 2.1. For instance, we can replace
conditions (a) and (α) by

(a′) If 2m ≥ 2δ > m+1 then there exists Q′ ⊂ QT such that f ≥ f0 in Q′ for some positive constant
f0.

(α′) If 2n ≥ 2γ > n + 1 then there exists Q′′ ⊂ QT such that K3 ≥ K3,0 in Q′′ for some positive
constant K3,0.

Defining the control set Ũ as

Ũ
M
= {(f,K3, b, ω) ∈

(
L∞(QT )

)2 × (R+)
2 : 0 ≤ f(x, t) ≤ r1, 0 ≤ K3(x, t) ≤ r2, for a.a. (x, t) ∈ QT

satisfying (a′) and (α′) respectively, a+ b0 < b < b1, ω0 ≤ ω ≤ ω1},
we can proceed as in the proof of Theorem 3.1 to obtain that the measurable selections f and K3 of the
limit point of the minimizing sequence belong to Ũ , thus the cost functional C assumes the minimum in
the corresponding solution set S̃.

The same considerations apply to the other possible cases of Theorem 2.1 by replacing the conditions
therein with the more restrictive corresponding pointwise conditions. In particular, conditions like those
of Corollary 2.1 become essential in order to define explicitly the analogue of the control set Ũ in case of
2γ = n+ 1.
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