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Università degli Studi di Udine, Via delle Scienze 206 - 33100 Udine (Italy);

email:anna.giordanobruno@uniud.it

Pablo Spiga
Dipartimento di Matematica e Applicazioni,
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Abstract

We study the growth of group endomorphisms, a generalization of the classical notion of growth
of finitely generated groups, which is strictly related to the algebraic entropy. We prove that the
inner automorphisms of a group have the same growth type and the same algebraic entropy as the
identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot
have intermediate growth. We also find an example showing that the Addition Theorem for the
algebraic entropy does not hold for endomorphisms of arbitrary groups.

1 Introduction

The notion of growth for finitely generated groups was introduced by Milnor in the 60s and since then
it has become a modern prominent field of research. In particular, the famous Milnor Problem on
group growth (see [11]) had a great impact in this context:

(i) Are there finitely generated groups of intermediate growth (that is, between polynomial and
exponential)?

(ii) What are the finitely generated groups of polynomial growth?

Part (i) was solved by Grigorchuk (see [8]) by constructing his famous examples of finitely generated
groups of intermediate growth. Part (ii) was solved by Gromov in [9] by proving that a finitely
generated group G has polynomial growth if and only if G is virtually nilpotent; recall that a group G
is virtually nilpotent if it contains a nilpotent subgroup having finite index (equivalently, it admits a
normal nilpotent subgroup having finite index). The fact that a virtually nilpotent finitely generated
group has polynomial growth was already proved by Wolf in [14]. Moreover, Milnor-Wolf’s Theorem
states that a soluble finitely generated group has either polynomial or exponential growth (see [10, 14]).

In [3], the classical notion of growth is extended to arbitrary groups (that is, not necessarily
finitely generated), and also in a fairly natural way to group endomorphisms (see Section 2): these
generalizations use the language of algebraic entropy. The first definition of algebraic entropy was given

∗The first named author is supported by Programma SIR 2014 by MIUR (project GADYGR, number RBSI14V2LI,
cup G22I15000160008).
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for endomorphisms of torsion abelian groups in [1], later studied by Weiss in [13] and more recently
in [5]. Then, Peters in [12] extended the notion of algebraic entropy to automorphisms of abelian
groups; more recently, in [3, 4] this definition is appropriately modified and extended to arbitrary
group endomorphisms (see Section 2).

In Section 2, first we show that the Addition Theorem for the algebraic entropy does not hold for
endomorphisms of arbitrary groups, even for metabelian groups (see Example 2.7). This provides a
counterexample and gives a negative answer to [3, Question 5.2.12(b)] and also to the more general [3,
Problem 5.2.10].

Then, we extend Gromov’s Theorem to arbitrary groups G, by showing that G has polynomial
growth precisely when G is locally virtually nilpotent (i.e., every finitely generated subgroup of G is
virtually nilpotent) (see Theorem 2.4).

We extend to this setting also Milnor-Wolf’s Theorem, by proving that if a group G is locally
virtually soluble (i.e., every finitely generated subgroup of G has a soluble subgroup of finite index)
then G has either polynomial or exponential growth.

In Section 3, we show that the inner automorphisms of an arbitrary group G have the same growth
type and the same algebraic entropy as the identity automorphism of G (see Theorem 3.2).

In Section 4, we prove that if φ : G → G is a group endomorphism of zero entropy, then every
element of G is contained in a finitely generated φ-invariant subgroup of G. When G is locally finite,
this means that every element of G belongs to a finite φ-invariant subgroup of G, and this answers [3,
Problem 5.2.3]; we recall that a group G is locally finite if every finite subset of G generates a finite
subgroup (i.e., every finite subset of G is contained in a finite subgroup of G).

Finally, in the spirit of Milnor Problem, we consider the following problem on growth of group
endomorphisms.

Problem 1.1. Characterize the groups G admitting no endomorphism of intermediate growth.

A motivation and a first insight to this problem is given by the abelian case; indeed, it is known
from [2] that endomorphisms of abelian groups cannot have intermediate growth, that is, every en-
domorphism of an abelian group has either polynomial or exponential growth. Here we prove that
exactly the same result holds for locally finite groups (see Corollary 4.7).

We are inclined to believe that Problem 1.1 has no easy answer, moreover it is conceivable that the
class of groups arising from this problem might not have a natural algebraic description. Despite this,
we dare to conjecture that locally virtually nilpotent groups admit no endomorphism of intermediate
growth. If this were true, this would offer in our opinion a beautiful entropy-analogue to the celebrated
theorem of Gromov.1

It is a pleasure to thank the referee for the careful reading and his/her comments and suggestions.

2 Growth and algebraic entropy

2.1 Growth for finitely generated groups

Given two maps γ, γ′ : N → {z ∈ R : z ≥ 0}, we write γ � γ′ if there exist n0, C ∈ N such that
γ(n) ≤ γ′(Cn) for every n ≥ n0. Moreover, we say that γ and γ′ are equivalent, and write γ ∼ γ′, if
γ � γ′ and γ′ � γ; indeed, ∼ is an equivalence relation. Routine computations show that, for every

1During the refereeing process of this paper, by adapting the proof of Milnor-Wolf’s Theorem to our more general
situation, we proved ourselves right here. Actually, we have proved something stronger: we have shown that locally
virtually soluble groups admit no endomorphism of intermediate growth and, moreover, in some cases we have determined
when an endomorphism has polynomial growth, see [7].
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α, β ∈ {z ∈ R : z ≥ 0}, nα ∼ nβ if and only if α = β; moreover, for every a, b ∈ {z ∈ R : z > 1},
an ∼ bn.

A map γ : N→ N is called:

(a) polynomial, if γ(n) � nd for some d ∈ N+;

(b) exponential, if γ(n) ∼ en;

(c) intermediate, if nd � γ(n) for every d ∈ N+, γ(n) � en and en 6� γ(n).

Let G be a finitely generated group and let S be a finite set of generators for G. For every g ∈ G,
denote by `S(g) the smallest ` ∈ N+ with

g = sε11 s
ε2
2 · · · s

ε`
` ,

where s1, . . . , s` ∈ S and ε1, . . . , ε` ∈ {−1, 1}. In particular, `S(g) is the length of a shortest word
representing g in the alphabet S ∪ S−1, where S−1 = {s−1 : s ∈ S}. By abuse of notation, we let
`S(eG) = 0 where eG is the identity element of G. The growth function of G with respect to S is

γS :N→ N
n 7→ |BS(n)|,

where BS(n) = {g ∈ G : `S(g) ≤ n} is the ball of radius n in the word metric of G. Note that
BS(0) = {eG} and BS(1) = S ∪ S−1 ∪ {eG}.

Routine computations show that γS ∼ γS′ , for every finite generating set S′ for G. This obser-
vation allows us to say that G has polynomial (respectively, exponential, intermediate) growth if γS
is polynomial (respectively, exponential, intermediate), and to notice that this definition does not
depend upon S.

We recall that the growth rate of G with respect to S is

λS = lim
n→∞

log γS(n)

n
.

It is straightforward to prove that G has exponential growth if and only if λS > 0.

2.2 Growth for group endomorphisms

For a group G, denote by F(G) the family of all finite non-empty subsets of G. If φ : G → G is an
endomorphism and F ∈ F(G), the growth function of φ with respect to F is

γφ,F :N→ N
n 7→ |Tn(φ, F )|,

where
Tn(φ, F ) = F · φ(F ) · · ·φn−1(F )

is the n-th φ-trajectory of F . Here, we define φ0(F ) = F for every F ∈ F(G), and, by abuse of notation,
we write T0(φ, F ) = {eG}. When eG ∈ F , we get Tn(φ, F ) ⊆ Tn+1(φ, F ) and hence {Tn(φ, F )}n∈N is
an increasing (with respect to inclusion) family of subsets of G.

In general, for every F ∈ F(G), we have |F | ≤ γφ,F (n) ≤ |F |n for every n ∈ N+, hence the growth
of γφ,F is always at most exponential.

Definition 2.1. [See [2, 3]] Let G be a group and let φ : G→ G be an endomorphism. Then:
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(a) φ has polynomial growth if γφ,F is polynomial for every F ∈ F(G);

(b) φ has exponential growth if there exists F0 ∈ F(G) such that γφ,F0 is exponential;

(c) φ has intermediate growth if γφ,F is not exponential for every F ∈ F(G) and there exists F0 ∈
F(G) such that γφ,F0 is intermediate.

Actually the definition in [3] is sligthly different from Definition 2.1; indeed the set F(G) here is
replaced by the smaller set {F ∈ F(G) : eG ∈ F} in [3]. However, it is straightforward to prove that
these definitions are equivalent.

Remark 2.2. The notion of growth for group endomorphisms extends the classical one. For instance,
let G be a finitely generated group and let S be a finite set of generators for G. Then, for every n ∈ N,
BS(n) = Tn(idG, F ) where F = BS(1) = S ∪ S−1 ∪ {eG}; in other words the balls of radius n in the
alphabet S are exactly the n-th idG-trajectories of F . Hence, for every n ∈ N, γS(n) = γidG,F (n),
and so the classical definition of growth for G coincides with the definition of growth for the identity
automorphism idG : G→ G.

Now, in view of Definition 2.1 and Remark 2.2, one can extend the concept of growth to any group
(not necessarily finitely generated):

Definition 2.3. A group G has polynomial (respectively, intermediate, exponential) growth if the
identity automorphism idG of G has polynomial (respectively, intermediate, exponential) growth.

By applying Gromov’s Theorem one can extend the characterization of groups of polynomial
growth:

Theorem 2.4. A group G has polynomial growth if and only if G is locally virtually nilpotent.

Proof. Assume that G has polynomial growth and consider H = 〈F 〉 with F ∈ F(G). As G has
polynomial growth, so does H. Then H is a finitely generated group of polynomial growth in the
classical sense, and hence H is virtually nilpotent by Gromov’s Theorem (see [9]). Assume now that
every finitely generated subgroup of G is virtually nilpotent and let F ∈ F(G). Then H = 〈F 〉 has
polynomial growth by Wolf’s Theorem, and hence γidG,F is polynomial. Therefore, G has polynomial
growth.

Also Milnor-Wolf’s Theorem can be extended to our more general case:

Theorem 2.5. A locally virtually soluble group G has either polynomial or exponential growth. More-
over, G has polynomial growth if and only if G is locally virtually nilpotent.

Proof. Assume that G has not exponential growth and consider H = 〈F 〉 with F ∈ F(G). Then H
is a finitely generated virtually soluble group and H has not exponential growth. Consequently, H
has a soluble subgroup K of finite index in H. Then K is finitely generated and has the same growth
type of H, hence K has polynomial growth by Milnor-Wolf’s Theorem. Thus, we conclude that H has
polynomial growth and so G has polynomial growth as well.

The last assertion follows from Theorem 2.4.

2.3 Algebraic entropy

For G a group, φ : G → G an endomorphism and F ∈ F(G), the algebraic entropy of φ with respect
to F is

H(φ, F ) = lim
n→∞

log γφ,F (n)

n
.
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Observe that this limit exists because the sequence {log γφ,F (n)}n∈N is subadditive, and hence Fekete
Lemma applies (see [6]). Now, the algebraic entropy of φ is

h(φ) = sup
F∈F(G)

H(φ, F ).

It was proved in [3] that H(φ, F ) > 0 if and only if γφ,F is exponential, and

h(φ) > 0 if and only if φ has exponential growth. (2.1)

Equivalently, h(φ) = 0 if and only if φ has either polynomial or intermediate growth.

Remark 2.6. Let G be a finitely generated group, let S be a finite set of generators for G and let
F = BS(1) = S ∪ S−1 ∪ {eG}. Since γS(n) = γidG,F (n) for every n ∈ N as noted in Remark 2.2, the
classical growth rate λS of G with respect to S coincides with the algebraic entropy H(idG, F ) of idG
with respect to F .

The main “working” property that one wishes to have for the algebraic entropy is the so-called
Addition Theorem: namely, for a group G, an endomorphism φ : G → G and a φ-invariant normal
subgroup H of G, a wishful thinking asks for

h(φ) = h(φ �H) + h(φ),

where φ : G/H → G/H is the endomorphism induced by φ on the quotient G/H and φ �H is the
restriction of φ to the subgroup H. Remarkably, the Addition Theorem holds true when G is abelian
(see [4]).

The next example shows that the Addition Theorem does not hold in general, even for metabelian
groups.

Example 2.7. Consider the lamplighter-type group G = Z(Z) o Z and the identity automorphism
idG : G → G. An easy computation shows that G has exponential growth, and hence h(idG) > 0
by (2.1). Actually, h(idG) =∞ because h((idG)n) = nh(idG) for every n ∈ N+ (see [4]). On the other
hand, Z(Z) and Z = G/(Z(Z)) are abelian groups and hence it is straightforward to prove directly that
h(idZ(Z)) = 0 and h(idZ) = 0, otherwise apply Theorem 2.4 and (2.1) (or see [4]).

In particular, the Addition Theorem does not hold for G.

This example answers [3, Question 5.2.12(b)], and so also [3, Problem 5.2.10].

3 Growth and algebraic entropy of inner automorphisms

For a group G and g ∈ G, we denote by φg : G → G the inner automorphism of G defined by
x 7→ g−1xg, for every x ∈ G.

Lemma 3.1. Let G be a group, let g be in G and let F be in F(G). Then γφg ,F (n) = γidG,Fg−1(n) for
every n ∈ N.

Proof. Let n ∈ N. If n = 0, then the result is obvious. Suppose that n > 0. Then

Tn(φg, F ) = Fφg(F )φ2g(F ) · · ·φn−1g (F )

= F (g−1Fg)(g−2Fg2) . . . (g−(n−1)Fgn−1)

= (Fg−1)(Fg−1) · · · (Fg−1)gn−1

= Tn(idG, Fg
−1)gn−1.

Therefore,

γφg ,F (n) = |Tn(φg, F )| = |Tn(idG, Fg
−1)gn−1| = |Tn(idG, Fg

−1)| = γidG,Fg−1(n).
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For finitely generated groups, in view of Remark 2.2, item (a) of the next theorem relates the
growth for inner automorphisms to the classical definition of growth.

Theorem 3.2. Let G be a group and let g be in G. Then:

(a) φg has the same growth type of G (i.e., of idG);

(b) h(φg) = h(idG).

Proof. Observe that the mapping F 7→ Fg−1 defines a permutation of F(G). By Lemma 3.1 we have
γφg ,F (n) = γidG,Fg−1(n), so part (a) follows immediately from Lemma 3.1.

Moreover, for F ∈ F(G), we have γφg ,F (n) = γidG,Fg−1(n) for every n ∈ N, and hence

H(φg, F ) = lim
n→∞

log γφg ,F (n)

n
= lim

n→∞

log γidG,Fg−1(n)

n
= H(idG, Fg

−1).

Therefore,

h(φg) = sup
F∈F(G)

H(φg, F ) = sup
F∈F(G)

H(idG, Fg
−1) = sup

F∈F(G)
H(idG, F ) = h(idG).

4 Dichotomy Theorem for locally finite groups

Let G be a group and let φ : G→ G be an endomorphism. For F ∈ F(G) and n ∈ N, we let

Vn(φ, F ) = 〈φi(F ) : i ∈ {0, . . . , n}〉,

V (φ, F ) = 〈φn(F ) : n ∈ N〉 =
⋃
n∈N

Vn(φ, F ).

Observe that V (φ, F ) is the smallest φ-invariant subgroup of G containing F . Similarly, if g ∈ G and
n ∈ N, we let Vn(φ, g) = Vn(φ, {g}) and V (φ, g) = V (φ, {g}).

Note that V0(φ, F ) = 〈F 〉 and Tn+1(φ, F ) ⊆ Vn(φ, F ) for every n ∈ N. Moreover, if eG ∈ F , then
Vn+1(φ, F ) = 〈Tn+1(φ, F )〉.

Lemma 4.1. Let G be a group and let φ : G → G be an endomorphism. The subgroup V (φ, F ) is
finitely generated if and only if V (φ, F ) = Vn(φ, F ) for some n ∈ N.

Proof. If V (φ, F ) = Vn(φ, F ) for some n ∈ N, then V (φ, F ) is generated by (n + 1)|F | elements and
hence it is finitely generated.

Assume that V (φ, F ) is finitely generated. In particular, V (φ, F ) = 〈S〉, for some S ∈ F(V (φ, F )).
Observe that, by definition,

V (φ, F ) =
⋃
n∈N

Vn(φ, F ).

In particular, as S is finite, there exists n0 ∈ N with S ⊆ Vn0(φ, F ). Therefore, Vn0(φ, F ) ≤ V (φ, F ) =
〈S〉 ≤ Vn0(φ, F ) and the lemma follows.

Lemma 4.2. Let G be a group and let φ : G→ G be an endomorphism. If g ∈ G and V (φ, g) is not
finitely generated, then H(φ, {eG, g}) > 0.

Proof. By Lemma 4.1, Vn(φ, g) ( Vn+1(φ, g) for every n ∈ N. Set F = {eG, g}. We claim that
γφ,F (n) = 2n for every n ∈ N. We argue by induction on n. If n = 0, then γφ,F (0) = |T0(φ, F )| =

6



|{eG}| = 1; if n = 1, then γφ,F (1) = |T1(φ, F )| = |F | = 2. Assume that n ∈ N+ and γφ,F (n) = 2n.
Note that

Tn+1(φ, F ) = Fφ(F ) · · ·φn(F ) = Tn(φ, F )φn(F ) =

= Tn(φ, F ){eG, φn(g)} = Tn(φ, F ) ∪ Tn(φ, F )φn(g).

As Vn(φ, g) = 〈Vn−1(φ, g), φn(g)〉 and Vn−1(φ, g) ( Vn(φ, g), we see that φn(g) ∈ Vn(φ, g) \ Vn−1(φ, g).
Therefore,

Tn(φ, F ) ⊆ Vn−1(φ, g) and Tn(φ, F )φn(g) ⊆ Vn(φ, g) \ Vn−1(φ, g).

This shows that Tn(φ, F ) ∩ Tn(φ, F )φn(g) = ∅, and hence γφ,F (n+ 1) = 2γφ,F (n) = 2n+1.

Corollary 4.4 is a direct consequence of Lemma 4.2 in view of the following:

Remark 4.3. Let G be a group and let φ : G → G be an endomorphism. The following conditions
are equivalent:

(a) V (φ, F ) is finitely generated for every F ∈ F(G);

(b) V (φ, g) is finitely generated for every g ∈ G.

Corollary 4.4. Let G be a group and let φ : G→ G be an endomorphism. If h(φ) = 0, then V (φ, F )
is finitely generated for every F ∈ F(G).

The converse implication of Lemma 4.2 does not hold true; indeed it is possible that each V (φ, g)
is finitely generated while h(φ) > 0: consider a group G of exponential growth and the identity
automorphism; in this case, V (idG, F ) = 〈F 〉 is finitely generated for every F ∈ F(G), while h(idG) =
∞ by (2.1).

On the other hand, the converse implication of Lemma 4.2 holds true assuming that G is locally
finite:

Proposition 4.5. Let G be a locally finite group, let φ : G→ G be an endomorphism and let F be in
F(G). Then the following conditions are equivalent:

(a) H(φ, F ) = 0;

(b) γφ,F is bounded (in particular, polynomial);

(c) V (φ, F ) is finite (i.e., finitely generated).

Proof. (a)⇒(c) Assume that V (φ, F ) is infinite. By Remark 4.3, there exists g ∈ F such that V (φ, g)
is infinite, that is, not finitely generated. By Lemma 4.2 we conclude that H(φ, F ) > 0.

(c)⇒(b) Suppose that V (φ, F ) is finite. Then γφ,F (n) ≤ |V (φ, F )| for every n ∈ N. In particular,
γφ,F is bounded.

(b)⇒(a) is clear.

The following result is a consequence of Proposition 4.5 and gives an entirely complete solution
to [3, Problem 5.2.3].

Theorem 4.6. Let G be a locally finite group and let φ : G → G be an endomorphism. Then the
following conditions are equivalent:

(a) φ has polynomial growth;

(b) h(φ) = 0;
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(c) V (φ, F ) is finite for every F ∈ F(G).

Theorem 4.6 shows that, if φ is an endomorphism of a locally finite group G of zero entropy, then
G is a direct limit of finite φ-invariant subgroups.

As a consequence of Theorem 4.6 and (2.1), we get that locally finite groups satisfy the condition
of Problem 1.1 and indeed are in line with our conjecture: locally virtually nilpotent groups admit no
endomorphism of intermediate growth.

Corollary 4.7 (Dichotomy Theorem). Let G be a locally finite group and let φ : G → G be an
endomorphism. Then φ has either polynomial or exponential growth.

This solves [3, Problem 5.4.5] for locally finite groups.
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