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Abstract Motivated by some recent studies on the Allen–Cahn phase tran-
sition model with a periodic nonautonomous term, we prove the existence of
complex dynamics for the second order equation

−ẍ+ (1 + ε−1A(t))G′(x) = 0,

where A(t) is a nonnegative T -periodic function and ε > 0 is sufficiently small.
More precisely, we find a full symbolic dynamics made by solutions which
oscillate between any two different strict local minima x0 and x1 of G(x).
Such solutions stay close to x0 or x1 in some fixed intervals, according to any
prescribed coin tossing sequence. For convenience in the exposition we consider
(without loss of generality) the case x0 = 0 and x1 = 1.
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1 Introduction

Let G : [0, 1] → R be a differentiable function with locally Lipschitz con-
tinuous derivative g(x) := G′(x) satisfying the following condition

(G1) G′(0) = 0 = G′(1) and there exist a0, b0 with 0 < a0 < b0 < 1 such that

g(x) > 0 ∀x ∈ ]0, a0] and g(x) < 0 ∀x ∈ [b0, 1[ .

Let A : R→ R be a T -periodic locally integrable function such that for some
τ ∈ ]0, T [ it holds that

(A1) A(t) = 0 for a. e. t ∈ [τ, T ] and A(t) > 0 for a. e. t ∈ [0, τ ].

In this paper, we study the second order nonlinear scalar ODE

ẍ− wε(t)G′(x) = 0, (1)

where, for ε > 0,

wε(t) := 1 +
A(t)

ε
.

Solutions of (1) are meant in the Carathéodory setting.
The study of these equations is motivated by the search of stationary so-

lutions to some parabolic PDEs which are used in physical models of phase
transition. A classical example is given by the Allen-Cahn equation introduced
in [4]. In such models a typical potential G(x) is a double well function as in
the real Ginzburg-Landau equation. The presence of nonconstant weight func-
tions accounts for models describing heterogeneous materials. In recent years
a great deal of interests has been devoted to the study of multiple solutions
satisfying different boundary conditions (see, for instance [1], [2], [3], [5], [6],
[9], [17], [18] and the references therein).

Our interest for equation (1) is motivated by recent works by Byeon and
Rabinowitz [6], [7], [8], [9] concerning the equation

−∆u+AεG
′(u) = 0, x ∈ RN , (2)

where G is a double well potential of the form G(u) = u2(1− u)2 and

Aε(x) := 1 +
A(x)

ε
,

where A(x) is a nontrivial non-negative function which is 1-periodic with re-

spect to x1, . . . , xN and such that the support of A|[0,1]N is contained in ]0, 1[
N
.

It was shown in [6] that there is an infinitude of mixed states that shadow 0
and 1 in any prescribed way on a spatially periodic array of sets (from the
Introduction in [8]). Further improvements of this result were obtained in [9],
by producing several other solutions of mountain pass type.

In the present work we consider a simpler situation with respect to the
case of (2), in fact we deal with the one-dimensional case N = 1. On the other
hand, we obtain analogous results with a completely different approach which
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rely on the theory of topological horseshoes [11] applied to planar dynamical
systems. Our main results (Theorem 1 and Theorem 2) require a minimal
set of assumptions on the potential. In particular, in our first result, we only
suppose the existence of two strict local minima for the potential which are
conventionally indicated as 0 and 1. Such local minima are neither required to
be consecutive ones, nor at the same energy level. Indeed, we have:

Theorem 1 Assume (G1) and (A1). For every pair (a, b) with 0 < a ≤ a0
and b0 ≤ b < 1, there exists ε∗ = ε(a, b) > 0 such that, for each fixed ε ∈ ]0, ε∗[
the following property holds.
For each nontrivial two-sided sequence s = (sn)n∈Z ∈ {0, 1}Z , there exists at
least one solution u(t) = us,ε(t) of (1) with the following properties:

1. 0 < u(t) < 1 for all t ∈ R;
2. for all n ∈ Z one has that{

0 < u(t) ≤ a if sn = 0

b ≤ u(t) < 1 if sn = 1
∀t ∈ [nT, nT + τ ];

3. u is kT -periodic if the sequence s is k-periodic for some k ∈ N.

In particular, as ε→ 0+, we have that:

us,ε → sn uniformly on [nT, nT + τ ] for each n ∈ Z.

In the trivial cases s = (0)n∈Z and s = (1)n∈Z we can only provide the trivial
solutions u ≡ 0 and u ≡ 1, respectively.

Our result can be applied to any two strict local minima of the potential
G(x) in equation (1) without any other assumption on G. In particular, we do
not assume that G(0) = G(1) (a condition which sometimes has been required
in related papers). Indeed, if G is a potential with several (possibly infinitely
many) strict local minima, we can take any pair {x0, x1} with x0 < x1 of such
local minima and obtain a complex dynamics in the interval ]x0, x1[ of the
form described in Theorem 1. Another feature of our result is that we could
allow the weight function A(t) to vanish at some points in ]0, τ [, provided that
there is no subinterval of ]0, τ [, where A(·) vanishes identically. However, our
method can be easily adapted also to deal with the case in which the shape of
the function A(t) is made by a finite number of positive humps separated by
some intervals where A(·) vanishes identically. This is briefly described at the
end of Section 3. Finally, we point out that the constant ε∗ can be estimated in
terms of the coefficients of the equation (see the determination of ε0 in Lemma
5). Even if we find useful for our computations to exploit some properties of the
conservative equation x′′ + G′(x) = 0 (for example, in using the energy level
lines as comparison trajectories), however our method of proof is of topological
nature and do not rely on the Hamiltonian/variational structure of (1). As a
consequence, conclusions 1, 2, 3 of Theorem 1 are still true for an equation of
the form

x′′ + cx′ + wε(t)G
′(x) = 0



4 Duccio Papini, Fabio Zanolin

provided that c is a sufficiently small constant (depending on ε).
Using a classical approach, the study of (1) will be performed by means of

the analysis of the equivalent system in the phase plane:{
ẋ = y

ẏ = wε(t)g(x).
(3)

For such a system, we will show that the associated Poincaré map has a rich
dynamics.

The present paper is organized as follows. In Section 2 we recall the main
topological tools which are used in the proof of our theorems. Namely, we give
a brief survey of the so-called stretching along the paths (SAP) method intro-
duced in [13] and further developed in a series of articles [12], [14], [15], [16].
Section 3 is devoted to the proof of Theorem 1 and to some of its immediate
extensions. Subsequently, in Section 4, we propose a refinement of the results
obtained in our main theorem from the point of view of the oscillatory prop-
erties of the solutions. This is obtained in Theorem 2, by imposing some extra
assumptions on the potential G(x) and also on the weight function A(t).

Throughout the article, the following basic set of notation is used: We
denote by Z and N the sets of integers and nonnegative integers, respectively.

2 Topological tools

In this section, we briefly recall some topological results concerning the
method of stretching along the paths (SAP). The general theory has been
developed for domains which are homeomorphic images of cylindrical sets in
a Banach space (see [16]), however, for the purpose of the present paper, we
just expose some basic facts in the simplified setting of planar maps.

By an oriented rectangle we mean a pair R̃ := (R,R−), where R ⊂ R2 is
a homeomorphic image of the unit square [0, 1]2 and R− ⊂ ∂R is the union
of two disjoint compact arcs denoted by Rleft and Rright. Consider now a
continuous map Ψ : DΨ (⊂ R2) → R2. Given two oriented rectangles Ã :=

(A,A−), B̃ := (B,B−), and a compact subset K of A ∩ DΨ , we say that the

pair (K, Ψ) stretches Ã to B̃ along the paths and write (K, Ψ) : Ã m−→B̃ if for
each continuous curve γ : [0, 1]→ A with γ(0) ∈ Aleft and γ(1) ∈ Aright there
exist t′, t′′ ∈ [0, 1] (with t′ < t′′) such that

1. γ(t) ∈ K and Ψ(γ(t)) ∈ B for all t ∈ [t′, t′′];
2. Ψ(γ(t′)) and Ψ(γ(t′′)) belong to different components of B−.

Usually the curve γ is called a path and its restriction to [t′, t′′] a sub-path.

We also say that Ψ stretches Ã to B̃ along the paths with crossing number m
and write Ψ : Ã m−→mB̃, if there exist m ≥ 2 pairwise disjoint compact subsets
K1 . . . ,Km of A ∩DΨ , such that (Ki, Ψ) : Ã m−→B̃ for each i = 1, . . . ,m.

The SAP technique allows to prove the existence of fixed points for Ψ in the
set K, when (K, Ψ) : R̃ m−→R̃, and, moreover, to detect the presence of a full
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symbolic dynamics on m symbols when Ψ : R̃ m−→mR̃, for some m ≥ 2. It can
be interpreted in the context of the theory of so-called topological horseshoes,
a name that is usually given to those theories that propose to extend the
prototypical geometric scheme of Smale’s horseshoe in a topological setting.

We present below some results which will be then applied to the Poincaré
map associated to (1). For the sake of completeness in the exposition, we also
introduce the set Σm := {0, . . . ,m − 1}Z of two-sided sequences of m ≥ 2
symbols with its standard metric and the (Bernoulli) shift automorphism σ :
Σm → Σm defined by σ : (sn)n → (sn+1)n .

Lemma 1 Let Ψ : DΨ (⊂ R2) → R2 be a continuous map. Suppose there are

two oriented rectangles R̃0 and R̃1 and four compact and pairwise disjoint sets
Hi,j ⊂ Ri ∩ DΨ such that

(Hi,j , Ψ) : R̃i m−→R̃j , ∀ i, j ∈ {0, 1}.

Then, for each two-sided sequence s := (sn) ∈ Σ2, there exists a sequence of
points (zn)n∈Z in DΨ with zn+1 = Ψ(zn), ∀n ∈ Z, such that

zn ∈ Hsn,sn+1 , ∀n ∈ Z

and, moreover, we can choose (zn)n as a k-periodic sequence if s is k-periodic.
Furthermore, there exists a compact set Λ ⊂ DΨ ∩

(
R0∪R1

)
which is invariant

for Ψ and such that Ψ |Λ is topologically semiconjugate to the Bernoulli shift
on two symbols

Λ Λ

Σ2 Σ2

-Ψ

?

h

?

h

-
σ

with the continuous surjection h (making the diagram commutative) such that
h−1(s) contains a k-periodic point of Ψ for every k-periodic sequence s ∈ Σ2.

In the setting of Lemma 1 it is possible to derive further information about
dynamical properties of the map Ψ. For instance, we know that the topolog-
ical entropy of Ψ |Λ is at least log 2. Figure 1 illustrates the directed graph
associated to Lemma 1.

R0 R1Ψ |H0,0

Ψ |H0,1

Ψ |H1,1

Ψ |H1,0

Fig. 1 Graph associated with the situation described in Lemma 1.
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Lemma 1 can be extended to the case of a stretching with any crossing
number m ≥ 2. In this situation we can produce an invariant set Λ which
is semiconjugate to the Bernoulli shift on m symbols in Σm. Actually, these
results can be derived from a general criterion concerning an arbitrary sequence
of oriented rectangles and maps (see [14, Theorem 2.2]) which we recall here
for a later use in Section 4.

Lemma 2 Assume there are double sequences of oriented rectangles R̃n , com-
pact sets Ln ⊂ Rn and maps Ψn (for n ∈ Z) such that

(Ln, Ψn) : R̃n m−→R̃n+1, ∀n ∈ Z.

Then, the following conclusions hold:

– There exists a two-sided sequence (zn)n∈Z such that zn ∈ Ln and Ψn(zn) =
zn+1 for all n ∈ Z;

– If there are integers p, q with p < q such that R̃p = R̃q, then there is
a finite sequence (zn)p≤n≤q with zn ∈ Ln and Ψn(zn) = zn+1 for each
n = p, . . . , q − 1, and such that zq = zp.

In the special case when Ψn = Ψ for all n ∈ Z, the second instance of
Lemma 2 guarantees the existence of a fixed point for Ψ q−p, that is a periodic
point of Ψ with period equal to q − p. By a suitable choice of the sets Ln it
will be possible to prove that q − p is the minimal period.

3 Main results

In this section we prove Theorem 1 as an application of Lemma 1 to the
Poincaré map associated to system (3). Accordingly, as a first step, we make
sure to have such Poincaré map globally defined on the plane. We extend G
on the whole real line by setting:

G̃(x) :=


G(0) if x < 0

G(x) if 0 ≤ x ≤ 1

G(1) if x > 1,

(4)

which is still differentiable in R with a locally Lipschitz continuous derivative
g̃ := G̃′. Thanks to (4) all the solutions of

ẍ− wε(t)g̃(x) = 0 (5)

are defined for all t ∈ R. Such a modification does not affect our study since,
by a suitable form of the maximum principle, we can prove that solutions of
(5) which are frequently in ]0, 1[ must necessarily have range in ]0, 1[. Indeed
we prove the following:
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Lemma 3 Assume x(t) is a solution of (5) and that there is a double sequence
(tn)n∈N such that tn → ±∞ as n → ±∞, x(tn) ≤ 1 for all n ∈ Z and there
is a k ∈ Z such that x(tk) < 1. Then x(t) < 1 for all t ∈ R. Similarly, if
x(tn) ≥ 0 for all n ∈ Z and there is a k ∈ Z such that x(tk) > 0, then x(t) > 0
for all t ∈ R.

Proof Without loss of generality we assume that tn is strictly increasing.
Suppose (by contradiction) there is t∗ ∈ R such that x(t∗) > 1. We have
t∗ ∈ ]tn, tn+1[ for some n ∈ Z and let [t′, t′′] be the maximal interval such that
t∗ ∈ [t′, t′′] ⊂ [tn, tn+1] and x(t) > 1 in ]t′, t′′[. By the continuity of x and the
unique solvability of Cauchy problems for (5) we have that x(t′) = x(t′′) = 1,
ẋ(t′) > 0 and ẋ(t′′) < 0. Hence:

0 > ẋ(t′′)− ẋ(t′) =

∫ t′′

t′
wε(t)g̃(x(t))dt = 0,

that is a contradiction. We have thus proved that x(t) ≤ 1 for all t ∈ R. If
x(t̂) = 1 for some t̂, then ẋ(t̂) = 0 and by the unique solvability of the Cauchy
problems for (5), we have x(t) ≡ 1. This cannot happen in our case because
x(tk) < 1. Hence x(t) < 1 for every t. A similar argument applies to prove
that x(t) > 0 for every t. ut

In what follows, in order to simplify the notation we will write G and g in
place of G̃ and g̃.

On the time interval [τ, T ] all the solutions of (1) are in fact solutions of
the autonomous equation {

ẋ = y

ẏ = g(x)
(6)

therefore the pairs (x(t), y(t)) = (x(t), ẋ(t)) lie on the level lines of the energy

E(x, y) :=
y2

2
−G(x). (7)

Lemma 4 Let

G∗ := min
x∈[0,1]

G(x)

and let us fix any E0 such that

E0 ≥
1

2(T − τ)2
−G∗. (8)

We have that every solution (x, y) of (6) with energy E(x(t), y(t)) = E0 and
x(τ) ∈ [0, 1] satisfies x(T ) ≥ 1 if y(τ) > 0 and x(T ) ≤ 0 if y(τ) < 0.

Proof For all t ∈ [τ, T ] we have that:

ẋ(t)2 = y(t)2 = 2(G(x(t)) + E0) ≥ 2(G∗ + E0) > 0,
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by (8) and, thus, either ẋ(t) > 0 for all t ∈ [τ, T ] or ẋ(t) < 0 for all t ∈ [τ, T ].
In both cases we can estimate:

|x(T )− x(τ)| =
∫ T

τ

|ẋ(t)|dt ≥ (T − τ)
√

2(G∗ + E0) ≥ 1

again by assumption (8), and the thesis follows. ut

For each a ∈ ]0, a0] and b ∈ [b0, 1[ let us introduce the following “rectan-
gular” domains

R0 := {(x, y) : 0 ≤ x ≤ a and y2 ≤ 2(G(x) + E0)}
R1 := {(x, y) : b ≤ x ≤ 1 and y2 ≤ 2(G(x) + E0)}

where E0 satisfies (8) (see Figure 2). The sets R0 and R1 will be the supports
of two corresponding oriented rectangles. Indeed we choose an orientation on
R0 and R1 by setting:

Rleft
0 := {0} ×

[
−
√

2(G(0) + E0), 0
]

Rright
0 := {a} ×

[
−
√

2(G(a) + E0),
√

2(G(a) + E0)
]

and, symmetrically:

Rleft
1 := {1} ×

[
0,
√

2(G(1) + E0)
]

Rright
1 := {b} ×

[
−
√

2(G(b) + E0),
√

2(G(b) + E0)
]
.

For later use we also define:

Rtop
0 :=

{(
x,
√

2(G(x) + E0)
)

: 0 ≤ x ≤ a
}

Rbot
0 :=

{(
x,−

√
2(G(x) + E0)

)
: 0 ≤ x ≤ a

}
Rtop

1 :=
{(
x,−

√
2(G(x) + E0)

)
: b ≤ x ≤ 1

}
Rbot

1 :=
{(
x,
√

2(G(x) + E0)
)

: b ≤ x ≤ 1
}
.

Lemma 5 Fix δ1, δ2 with 0 < δ1 < δ2 < a. Then there is ε0 = ε0(δ1, δ2, a) > 0
such that the following properties hold for the solutions (x(t), y(t)) of (3) on
the interval [0, τ ] whenever ε ∈ ]0, ε0[:

1. if (x(0), y(0)) ∈ R0 and x(0) = δ2 and [0, t1] is the maximal interval in
[0, τ ] such that (x(t), y(t)) ∈ R0 ∩ {(x, y) : x ≥ δ1} for all t ∈ [0, t1], then
t1 < τ , δ1 < x(t) < a for all t ∈ [0, t1] and y(t1) =

√
2(G(x(t1)) + E0);

2. if (x(t0), y(t0)) ∈ R0, x(t0) ≤ δ2, y(t0) ≥ 0 for some t0 ∈ [0, τ ] and
[t0, t1] is the maximal interval in [t0, τ ] such that (x(t), y(t)) ∈ R0 for all
t ∈ [t0, t1], then x(t) < a for all t ∈ [t0, t1].



Complex dynamics in a ODE model related to phase transition 9

Proof We let

g0 := min
s∈[δ1,a]

g(s)

M := max
(x,y)∈R0

|y| =
√

2(G(a) + E0)

r := min

{
τ,
δ2 − δ1
M

,
a− δ2
M

}
ε0 :=

g0
2M

min
t0∈[0,τ−r]

∫ t0+r

t0

A(t)dt

and remark that ε0 > 0 by our assumptions on g and A. In what follows we
fix any ε ∈ ]0, ε0[.

In order to prove Statement 1 we point out that the solution (x(t), y(t)) may
exit the set R0∩{x ≥ δ1} only through one of the vertical lines {δ1}× ]−∞, 0[
and {a} × [0,+∞[ or through Rtop

0 and Rbot
0 . If we use the energy E(x, y) in

(7) and, along solutions of (3) for t ∈ [0, t1] , we compute :

Ė(x(t), y(t)) = −g(x(t))y(t) + y(t)

[
1 +

A(t)

ε

]
g(x(t)) =

A(t)

ε
y(t)g(x(t)),

we immediately deduce that Ė(x(t), y(t)) ≤ 0 when y(t) ≤ 0. Therefore, as
long as y(t) ≤ 0 for t ∈ [0, t1], E(x(t), y(t)) cannot increase above the value E0

and the solution (x(t), y(t)) cannot exit R0 through Rbot
0 . Thus, if we assume

by contradiction that Statement 1 does not hold, then only the following three
possibilities can occur: t1 = τ or x(t1) = δ1 or x(t1) = a. Since:

|x(t1)− δ2| = |x(t1)− x(0)| =
∣∣∣∣∫ t1

0

y(t)dt

∣∣∣∣ ≤Mt1,

in all three cases we have t1 ≥ r. Hence, we obtain the following contradiction:

2M ≥ y(t1)− y(0) =

∫ t1

0

(
1 +

A(t)

ε

)
g(x(t))dt ≥ g0

ε

∫ r

0

A(t)dt > 2M (9)

since ε < ε0.
In a similar way we can show that, if (x(t), y(t)) is a solution as in Statement

2 which also satisfies x(t1) = a, then again we have that t1 − t0 ≥ r and a
contradiction like (9) is obtained. ut

A symmetric result holds in R1 and can be proved in a similar way.

Lemma 6 Fix δ1, δ2 with b < δ2 < δ1 < 1. Then there is ε1 = ε1(δ1, δ2, b) > 0
such that the following properties hold for the solutions (x(t), y(t)) of (3) on
the interval [0, τ ] whenever ε ∈ ]0, ε1[:

1. if (x(0), y(0)) ∈ R1 and x(0) = δ2 and [0, t1] is the maximal interval in
[0, τ ] such that (x(t), y(t)) ∈ R1 ∩ {(x, y) : x ≤ δ1} for all t ∈ [0, t1], then
t1 < τ , b < x(t) < δ1 for all t ∈ [0, t1] and y(t1) = −

√
2(G(x(t1)) + E0);
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2. if (x(t0), y(t0)) ∈ R1, x(t0) ≥ δ2, y(t0) ≤ 0 for some t0 ∈ [0, τ ] and
[t0, t1] is the maximal interval in [t0, τ ] such that (x(t), y(t)) ∈ R1 for all
t ∈ [t0, t1], then x(t) > b for all t ∈ [t0, t1].

Let Φts(z) = (x(t; s, z), y(t; s, z)) be the solution (x(t), y(t)) of system (3)
such that (x(s), y(s)) = z. For i, j ∈ {0, 1} we define the following compact
sets:

Hi := {z ∈ Ri : Φt0(z) ∈ Ri ∀ t ∈ [0, τ ]},
Hi,j := {z ∈ Hi : ΦT0 (z) ∈ Rj}.

(10)

Now we are in position to check the SAP property for the map Ψ = ΦT0 with
DΨ = R2.

Lemma 7 There exists ε∗ = ε∗(a, b) > 0 such that for all ε ∈ ]0, ε∗[ we have

that (Hi,j , ΦT0 ) : R̃i m−→R̃j for each i, j ∈ {0, 1}.

Proof Let ε∗ = min{ε0, ε1}, where ε0 is given by Lemma 5 with the choices
δ1 = a/3 and δ2 = 2a/3 and ε1 is given by Lemma 6 with δ1 = 1 − (1 −
b)/3 = (2 + b)/3 and δ2 = 1 − 2(1 − b)/3 = (1 + 2b)/3. We fix any ε ∈ ]0, ε∗[

and show explicitly that (H0,j , Φ
T
0 ) : R̃0 m−→R̃j with j ∈ {0, 1}. The other

two situations are completely symmetric and therefore their proof is omitted.
Figure 2 provides an illustration of a path γ crossing R0, which is stretched
by ΦT0 across R0 and R1.

Fig. 2 Example of a path stretched by the Poincaré map. For the present example we have
taken g(x) = 2x(1− x)( 1

2
− x), A(t) = sin+(2πt), so that τ = 1/2 and T = 1. The sets R0

and R1 are defined for a = 0.2, b = 0.8 and E0 = y20/2 with y0 = 2.1 so that (8) is satisfied.
The figure shows the effect of the stretching of path γ through the Poincaré map ΦT

0 for
ε = 5× 10−3.

Now the analytical proof follows. Let γ : [0, 1] → R0 be a continuous curve

such that γ(0) ∈ Rleft
0 and γ(1) ∈ Rright

0 . Since γ is continuous, we can define:

s1 := min{s ∈ [0, 1] : γ(s) ∈ {δ2} × R}
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and we have 0 < s1 < 1 and γ(s) ∈ [0, δ2] × R ∩ R0 for all s ∈ [0, s1]. By
Lemma 5.1, Φt0(γ(s1)) stays above Rtop

0 for some t ∈ ]0, τ [, thus we can define:

s2 := inf
{
s ∈ [0, s1] : ∃t ∈ [0, τ ] s.t. either x(t; 0, γ(s)) > a or

y(t; 0, γ(s)) >
√

2[G(x(t; 0, γ(s))) + E0]
}

and we have 0 < s2 < s1. Moreover, by the continuous dependence on initial
data, we deduce that Φt0(γ(s2)) ∈ R0 for all t ∈ [0, τ ] and, in particular, either
y(τ ; 0, γ(s2)) =

√
2[G(x(τ ; 0, γ(s2))) + E0] or x(τ ; 0, γ(s2)) = a. Let us see

that the second case cannot hold. Indeed, we surely have y(τ ; 0, γ(s2)) > 0
and, hence, we consider:

t0 := min{t ∈ [0, τ ] : y(t; 0, γ(s2)) ≥ 0} < τ.

so that y(t; 0, γ(s2)) ≥ 0 for all t ∈ [t0, τ ]. If t0 = 0 then x(t0; 0, γ(s2)) ≤ δ2
by construction, while, if t0 > 0, then ẋ(t; 0, γ(s2)) = y(t; 0, γ(s2)) < 0
for all t ∈ [0, t0[ and again x(t0; 0, γ(s2)) ≤ δ2. Therefore, Lemma 5.2 ap-
plies and we deduce that x(τ ; 0, γ(s2)) < a and, thus, that y(τ ; 0, γ(s2)) =√

2[G(x(τ ; 0, γ(s2))) + E0]. Hence, we can define

s3 := sup{s ∈ [0, s2] : ∃t ∈ [0, τ ] s.t. x(t; 0, γ(s)) = 0}

and note that 0 ≤ s3 < s2 and x(τ ; 0, γ(s3)) = 0. By construction, we have
that γ([s3, s2]) ⊂ H0 since Φt0(γ(s)) ∈ R0 for all t ∈ [0, τ ] and all s ∈ [s3, s2].
Moreover Φτ0(γ(s3)) ∈ Rleft

0 and Φτ0(γ(s2)) ∈ Rtop
0 .

Now, since the flow generated by (3) during the time interval [τ, T ] coincides
with the one generated by (6), the region {E(x, y) ≤ E0}, which contains both
R0 and R1, is invariant for Φtτ as t ranges in [τ, T ]. Therefore ΦT0 (γ(s)) ∈
{E(x, y) ≤ E0} for all s ∈ [s3, s2]. Moreover:

Φτ0(γ(s3)) ∈ Rleft
0 =⇒

{
x(T ; 0, γ(s3)) ≤ 0

y(T ; 0, γ(s3)) ≤ 0

Φτ0(γ(s2)) ∈ Rtop
0 =⇒

{
x(T ; 0, γ(s2)) ≥ 1

y(T ; 0, γ(s2)) > 0

by Lemma 4. We then define:

s4 := max{s ∈ [s3, s2] : x(T ; 0, γ(s)) = 0}
s5 := min{s ∈ [s4, s2] : x(T ; 0, γ(s)) = a}
s6 := max{s ∈ [s5, s2] : x(T ; 0, γ(s)) = b}
s7 := min{s ∈ [s6, s2] : x(T ; 0, γ(s)) = 1}

and note that the above construction and the properties of the flow of (6)
imply that ΦT0 (γ(s)) ∈ R0 for all s ∈ [s4, s5] and ΦT0 (γ(s)) ∈ R1 for all

s ∈ [s6, s7], while ΦT0 (γ(s4)) ∈ Rleft
0 , ΦT0 (γ(s5)) ∈ Rright

0 , ΦT0 (γ(s6)) ∈ Rright
1

and ΦT0 (γ(s7)) ∈ Rleft
1 . This shows that (H0,j , Φ

T
0 ) : R̃0 m−→R̃j for j ∈ {0, 1}.

ut
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We are ready now to conclude the proof.

Proof (Proof of Theorem 1) Let the pair (a, b) be fixed as in the statement
of the theorem, let ε∗ = ε∗(a, b) > 0 be given by Lemma 7 and let us fix

ε ∈ ]0, ε∗[. Then we have that (Hi,j , ΦT0 ) : R̃i m−→R̃j for each i, j ∈ {0, 1}
by Lemma 7. Therefore, Lemma 1, applied to Ψ = ΦT0 , grants that for any
non-trivial two-sided sequence s = (sn)n∈Z ∈ {0, 1}Z there exists a two-sided
sequence (zn)n∈Z in the plane such that zn+1 = ΦT0 (zn) and

zn ∈ Hsn,sn+1
∀n ∈ Z,

with (zn)n k-periodic whenever s is k-periodic. We will show that the func-
tion us,ε(t) := x(t; 0, z0) satisfies all the requirements in the statement of the
theorem.

First of all, by the T -periodicity of wε, we have that

(us,ε(nT ), u̇s,ε(nT )) = ΦnT0 (z0) = (ΦT0 )n(z0) = zn ∈ Hsn,sn+1
⊂ Hsn ⊂ Rsn

for all n ∈ Z. In particular we can apply Lemma 3 with the choice tn = nT ,
n ∈ Z: we have that 0 ≤ us,ε(tn) ≤ 1 for all n ∈ Z and, since the sequence
s is nontrivial, there are h, k ∈ Z, with h 6= k, such that zh ∈ R0, zk ∈ R1

and, thus, us,ε(th) ≤ a < 1 and us,ε(tk) ≥ b > 0. Therefore we can infer that
0 < us,ε(t) < 1 for all t ∈ R and that us,ε is in fact a solution of (1).

Moreover, if the sequence s is k-periodic, we have that us,ε is kT -periodic
since

(us,ε(0), u̇s,ε(0)) = z0 = zk = ΦkT0 (z0) = (us,ε(kT ), u̇s,ε(kT )).

Finally, Statement 2 also holds by the very definition of the set Hi (10)
since ΦnT0 (z0) = zn ∈ Hsn . ut

Remark 1 The same argument employed for the proof of Theorem 1 can be
used to provide an extension of our result to a class of more general weight
functions. Indeed, let us suppose that A : R → R is a T -periodic locally
integrable function such that there are points

0 = σ0 < τ0 < σ1 < τ1 < · · · < σm−1 < τm−1 < σm = T

such that, for all ` = 0, . . . ,m− 1,

(A1′) A(t) = 0 for a. e. t ∈ [τ`, σ`+1] and A(t) > 0 for a. e. t ∈ [σ`, τ`].

In this case, if we choose

E0 ≥
1

2 min0≤`≤m−1(σ`+1 − τ`)2
−G∗

(see (8)) we can construct the oriented rectangles R̃0 and R̃1 as above. For each
interval [σ`, τ`] we can repeat the proof of Lemma 5 we gave for the interval
[0, τ ] and obtain a corresponding constant ε`0 . Similarly, we can reproduce
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Lemma 6 on each interval [σ`, τ`] and obtain a corresponding constant ε`1 .
Next, following (10), we introduce the sets

H`i := {z ∈ Ri : Φtσ`
(z) ∈ Ri ∀ t ∈ [σ`, τ`]},

H`i,j := {z ∈ H`i : Φσ`+1
σ`

(z) ∈ Rj}

and, arguing as in Lemma 7 we can prove the following

Lemma 8 There exists ε∗ = ε∗(a, b) > 0 such that for all ε ∈ ]0, ε∗[ we have

that (H`i,j , Φ
σ`+1
σ` ) : R̃i m−→R̃j for each i, j ∈ {0, 1} and each ` = 0, . . . ,m− 1.

The constant ε∗ is now defined as

ε∗ := min{ε`0, ε`1 : ` = 0, . . . ,m− 1}.

Lemma 8 implies that the scheme of Figure 1 holds for each map Ψ = Φ
σ`+1
σ`

with respect to the sets H`i,j . Since the Poincaré map on one period is given
by

ΦT0 = Φσm
σm−1

◦ · · · ◦ Φσ1
σ0
,

we conclude that the same diagram of Figure 1 holds also for ΦT0 , but each
arrow corresponds to 2m−1 different itineraries. In other words, we have that
for each i, j ∈ {0, 1}, the Poincaré map ΦT0 stretches R̃i to R̃j along the paths
with crossing number 2m−1. In this manner, under the assumptions (G1) and
(A1′), we have a version of Theorem 1 in which the obtained solutions realize
a full dynamics on 2m symbols.

4 More complicated dynamics

In this section we investigate the case in which solutions oscillate several
times around (1/2, 0) in the interval [0, τ ]. To achieve this result we need some
further technical assumptions on the time map of an associated autonomous
system which in turn allow us to compute the rotation number of the solutions.
Accordingly, besides the basic hypotheses on G(x) considered in Section 1, we
suppose further that

(G2) G(0) = G(1) = 0 and G(x) > 0 ∀x ∈ ]0, 1[

and we still assume without loss of generality that the auxiliary position (4)
holds. We denote by x∗ a point in ]0, 1[ such that

G(x∗) = max
x∈[0,1]

G(x).

As a consequence of the above assumption, without loss of generality, we may
assume that the constants a0 and b0 can be chosen so that

min
x∈[a0,b0]

G(x) = G(a0) = G(b0), with a0 < x∗ < b0 .
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Moreover, in order to make our analysis more transparent, we consider a T -
periodic stepwise weight function vµ(t) given by

(A2) vµ(t) =

{
µ if 0 ≤ t < τ

1 if τ ≤ t < T,

so that equation (1) reduces to

ẍ− vµ(t)g(x) = 0. (11)

As in the previous section, we perform a phase-plane analysis on the associated
planar system {

ẋ = y

ẏ = vµ(t)g(x)
(12)

and we denote again by Φts(z) the value at time t of the solution of (12) such
that (x(s), y(s)) = z.

When t ∈ [0, τ ], (12) is the autonomous system{
ẋ = y

ẏ = µg(x)
(13)

whose solutions run on the level sets of the energy function

Eµ(x, y) :=
y2

2
− µG(x)

and are periodic orbits contained in the strip 0 < x < 1 if −µG(a0) ≤
Eµ(x, y) < 0, while the level set Eµ(x, y) = 0 contains the two hetero-
clinic orbits connecting the saddle points (0, 0) and (1, 0). Indeed, for each
e ∈ [−µG(a0), 0[ there exist exactly two values x0, x1 such that G(x0) =
G(x1) = −e/µ with x0 ∈ ]0, a0] and x1 ∈ [b0, 1[. Viceversa, for each x0 ∈ ]0, a0]
(respectively, for each x1 ∈ [b0, 1[) there exists a unique periodic orbit of (13)
passing through (x0, 0) (respectively, through (x1, 0)) which crosses again the
x-axis at only another point (x1, 0) with b0 ≤ x1 < 1 (respectively, (x0, 0) with
0 < x0 ≤ a0) and whose period, denoted by Tµ(x0) is given by

Tµ(x0) :=

√
2

µ
p(x0),

where

p(x0) = p(x1) :=

∫ x1

x0

dξ√
G(ξ)−G(x0)

.

In particular, all these periodic orbits turn around the point P ∗ := (x∗, 0)
in the clockwise sense. In the sequel it will be useful to introduce a polar
coordinate systems with center at P ∗, counting the angles in the clockwise
sense starting from the half-line {(x∗, y) : y ≤ 0}. In this system, we denote
by ϑ(t, Q) the angular coordinate associate with the solution (x(t), y(t)) of
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system (13) such that (x(0), y(0)) = Q, with ϑ(0, Q) ∈ ]−π, π[. Notice that
with this position, ϑ(t, Q) is well defined for every initial point Q which does
not belong to the vertical half-line {(x∗, y) : y ≥ 0}.

On the time interval [τ, T ], the solutions of (12) are again solutions of (6).
In particular, Lemma 4 holds without any change.

Theorem 2 Let G satisfy (G1) and (G2), vµ be given as in (A2), and a, b
be fixed with 0 < a ≤ a0 and b0 ≤ a < 1. For each N ∈ N, N ≥ 1, there
exists µ∗N = µ∗N (a, b) > 0 such that for every µ > µ∗N and every sequence
s = (δn, kn)n∈Z ∈ [{0, 1} × {0, 1, . . . , 2N − 1}]Z there exists at least a global
solution xs of (11) such that

1. 0 < xs(t) < 1 for all t ∈ R;
2. for all n ∈ Z one has that xs(nT ) < a if δn = 0, while xs(nT ) > b if δn = 1;

moreover, xs − x∗ vanishes exactly kn times in the interval ]nT, nT + τ [;
3. if the sequence s is m-periodic for some m ∈ N, then xs is mT -periodic.

Proof According to Lemma 4 in the present situation we have G∗ = 0 and we
fix E0 ≥ 1

2(T−τ)2 . Given a, b with

0 < a ≤ a0, b0 ≤ b < 1,

we choose x0 ∈ ]0, a[ and x1 ∈ ]b, 1[ such that G(x0) = G(x1).
Next, we consider µ > µ1, for

µ1 := max

{
G(a) + E0

G(a)−G(x0)
,
G(b) + E0

G(b)−G(x1)

}
.

Now we introduce two regions (depending on the parameter µ > µ1) as follows

S0 := {(x, y) : 0 ≤ x ≤ a, 2µ[G(x)−G(x0)] ≤ y2 ≤ 2(G(x) + E0)}
S1 := {(x, y) : b ≤ x ≤ 1, 2µ[G(x)−G(x1)] ≤ y2 ≤ 2(G(x) + E0)}.

By construction, Si ⊂ Ri. Indeed, S0 is a rectangular domain bounded below
and above by the level lines y = ±

√
2(G(x) + E0), by the y-axis at the left and

by the level line y2 = 2µ[G(x)−G(x0)] at the right. This is a consequence of
the fact that the curves y = ±

√
2(G(x) + E0) and y2 = 2µ[G(x)−G(x0)] cross

exactly at one point in the strip 0 ≤ x ≤ a (actually the crossing point lies
in x0 < x < a) since G is strictly increasing on [0, a0] and µ > µ1. Similarly,
S1 is bounded at the left, above and below by the same level lines and at the
right by the vertical line x = 1.

We choose a first orientation (Si,S−i ) on Si, for i = 0, 1, by setting S−i :=

S lefti ∪ Srighti with:

S left0 := {0} ×
[
−
√

2(G(0) + E0), 0
]

Sright0 := {(x, y) : x0 ≤ x ≤ a, 2µ[G(x)−G(x0)] = y2 ≤ 2(G(x) + E0)}
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and, symmetrically:

S left1 := {1} ×
[
0,
√

2(G(1) + E0)
]

Sright1 := {(x, y) : b ≤ x ≤ x1, 2µ[G(x)−G(x1)] = y2 ≤ 2(G(x) + E0)}.

We also define:

Stop0 :=
{

(x, y) : 0 ≤ x ≤ a, y2 ≥ 2µ[G(x)−G(x0)], y =
√

2(G(x) + E0)
}

Sbot0 :=
{

(x, y) : 0 ≤ x ≤ a, y2 ≥ 2µ[G(x)−G(x0)], y = −
√

2(G(x) + E0)
}

Stop1 :=
{

(x, y) : b ≤ x ≤ 1, y2 ≥ 2µ[G(x)−G(x1)], y = −
√

2(G(x) + E0)
}

Sbot1 :=
{

(x, y) : b ≤ x ≤ 1, y2 ≥ 2µ[G(x)−G(x1)], y =
√

2(G(x) + E0)
}
.

Indeed we will consider also the following (somehow complementary) orienta-
tion (Si,S+i ) of Si, where:

S+i := Sboti ∪ S lefti ∪ Stopi i = 0, 1.

Observe that here Sboti ∪ S lefti and Stopi are the two connected components of
S+ that play the role of opposite sides of the topological rectangle Si.

We will show that the map Φτ0 stretches (Si,S−i ) to (Sj ,S+j ) multiple times,

if µ is chosen large enough, while ΦTτ stretches (Si,S+i ) to (Sj ,S−j ), for each
µ > µ1. In order to do this, we now define the compact sets in Si with respect
to which the stretching along the paths occurs. Namely, for each i, j ∈ {0, 1}
and k ∈ N we set:

Hi,j := {Q ∈ Si : Φτ0(Q) ∈ Sj},

Hki,j :=

{
Q ∈ Hij :

ϑ(τ,Q)

π
∈ ]i+ |j − i|+ 2k, i+ |j − i|+ 2k + 1[

}
,

Ki,j := {Q ∈ Si : ΦTτ (Q) ∈ Sj}.

Observe that a solution of (12) starting at time t = 0 from Q ∈ Hkij will cross
the line x = x∗ exactly |i − j| + 2k times before reaching the rectangle Sj at
time t = τ .

Claim For any N ∈ N and any µ such that:

µ > µ∗N := max

{
µ1, 2

[
N
p(x0)

τ

]2}
(14)

we have that Φτ0 : (Si,S−i ) m−→N (Sj ,S+j ), for each i, j ∈ {0, 1}, with respect to

the compact sets Hkij , for k = 1, . . . , N .



Complex dynamics in a ODE model related to phase transition 17

Indeed, let us consider the case i = 0 and let γ : [0, 1] → S0 be any

path such that γ(0) ∈ S left0 and γ(1) ∈ Sright0 . We have that Φt0(γ(0)) ∈
]−∞, 0[ × ]−∞, 0[ for all t > 0. On the other hand, Φt0(γ(1)) belongs to the
level line

Eµ(x, y) = −µG(x0),

which is a periodic orbit of system (13) of period Tµ(x0). By (14) we have
that τ > NTµ(x0). Passing to the polar coordinates, this in turn implies that
ϑ(τ, γ(1)) > 2Nπ, while ϑ(τ, γ(0)) < π/2, therefore the interval spanned by
the angle ϑ(τ, γ(s)) as s ranges in [0, 1] contains the interval [π/2, 2Nπ] .

We can now split the interval [0, 1] into some subintervals of the form
[s′`, s

′′
` ], as follows:

s′0 := max{s ∈ [0, 1] : x(τ ; 0, γ(s)) ≤ 0},
s′′0 := min{s ∈ ]s′0, 1] : Φτ0(γ(s)) ∈ Stop0 },

s′1 := max

{
s ∈ ]s′′0 , 1] : 1 <

ϑ(τ, γ(s))

π
< 2, Φτ0(γ(s)) ∈ Sbot1

}
,

s′′1 := min{s ∈ ]s′1, 1] : Φτ0(γ(s)) ∈ Stop1 },

and recursively for k = 1, . . . , N − 1:

s′2k := max

{
s ∈

]
s′′2k−1, 1

]
: 2k <

ϑ(τ, γ(s))

π
< 2k + 1, Φτ0(γ(s)) ∈ Sbot0

}
,

s′′2k := min{s ∈ ]s′2k, 1] : Φτ0(γ(s)) ∈ Stop0 },

s′2k+1 := max

{
s ∈ ]s′′2k, 1] : 2k + 1 <

ϑ(τ, γ(s))

π
< 2k + 2, Φτ0(γ(s)) ∈ Sbot1

}
,

s′′2k+1 := min{s ∈
]
s′2k+1, 1

]
: Φτ0(γ(s)) ∈ Stop1 }.

For each ` = 0, 1, . . . , 2N − 1, by the choice of the points s′` and s′′` it follows
that Φτ0(γ([s′`, s

′′
` ])) ∈ Sj , Φτ0(γ(s′`)) ∈ S leftj ∪ Sbotj , Φτ0(γ(s′′` )) ∈ Stopj , and

γ([s′`, s
′′
` ]) ⊂ Hk0,j , where j ≡ ` mod 2 and k = b`/2c. We just remark here

the small difference between the cases ` = 0 and 1 ≤ ` ≤ 2N − 1 that led
us to the definition of S+i : we actually have that Φτ0(γ(s′0)) ∈ S left0 , while
Φτ0(γ(s′`)) ∈ Sbotj for 1 ≤ ` ≤ 2N − 1 and j ≡ ` mod 2. However, we now have
shown that

(Hk0,j , Φτ0) : (S0,S−0 ) m−→(Sj ,S+j ) for j = 0, 1 (15)

for each k = 0, . . . , N − 1. The remaining cases with i = 1 can be proved in a
similar way.

Claim For any µ > µ1 and any i, j ∈ {0, 1} we have that

(Kij , ΦTτ ) : (Si,S+i ) m−→(Sj ,S−j ). (16)
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Again we will show the details only for the cases with i = 0 and leave
the ones with i = 1 to the reader. Let γ : [0, 1] → S0 be any path such that
γ(0) ∈ S left0 ∪ Sbot0 and γ(1) ∈ Stop0 . Still ΦTτ maps the point γ(0) in the third
quadrant: if γ(0) ∈ S left0 , it is just a consequence of the behavior of (12), while,
if γ(0) ∈ Sbot0 , it comes from the choice of E0 and Lemma 4. On the other
hand, ΦTτ (γ(1)) lies in the half plane x > 1 again by the choice of E0 and
Lemma 4. Moreover the strip given by {(x, y) : E1(x, y) ≤ E0} is invariant for
Φtτ for any t ∈ [τ, T ]. Hence we can define:

s′0 := max{s ∈ [0, 1] : x(T ; τ, γ(s)) ≤ 0},

s′′0 := min{s ∈ [s′0, 1] : ΦTτ (γ(s)) ∈ Sright0 },

s′1 := max{s ∈ [s′′0 , 1] : ΦTτ (γ(s)) ∈ Sright1 },
s′′1 := min{s ∈ [s′1, 1] : x(T ; τ, γ(s)) ≥ 1}.

These choices imply that, for j = 0, 1, ΦTτ (γ([s′j , s
′′
j ])) ⊂ Sj , ΦTτ (γ(s′0)) ∈ S left0 ,

ΦTτ (γ(s′′0)) ∈ Sright0 , ΦTτ (γ(s′1)) ∈ (S)right1 , ΦTτ (γ(s′′1)) ∈ S left1 and γ([s′j , s
′′
j ]) ⊂

K0,j . Thus, the claim is proved for i = 0.

As a consequence of Claim 1 and Claim 2, we have that the map ΦT0 =
ΦTτ ◦ Φτ0 satisfy a SAP property of the form (Si,S−i ) m−→(Sj ,S−j ), via the
composition

(Si,S−i ) m−→(Sh,S+h ) m−→(Sj ,S−j ),

where i, h, j ∈ {0, 1} can be chosen arbitrarily (the fact that the SAP property
is preserved by the composition of maps easily follows from the definition [16]).
To make the formula more precise, we should determine the compact subsets
of Si which are involved in the definition. Actually, from (15) and (16), we
have that

(Hki,h ∩ Φ0
τ (Kh,j), ΦT0 ) : (Si,S−i ) m−→(Sj ,S−j ), (17)

where we recall that Φ0
τ = (Φτ0)−1.

Suppose now that µ > µ∗N is fixed and let s = (δn, kn)n∈Z ∈ [{0, 1} ×
{0, 1, . . . , 2N−1}]Z be an arbitrary two-sided sequence. We show how to enter
in the setting of Lemma 2, via the following positions.

For each n ∈ Z we take as oriented rectangle

R̃n := S̃δn

and a constant sequence of maps

Ψn := ΦT0 = ΦnT+T
nT .

For the compact sets Ln we make the following observation. A solution with
initial point in Sδn (at the time nT ), after the time τ will be in the same
rectangle or in the other one according to the fact that kn is even or odd,
respectively. On the other hand, the index δn+1 specifies in which rectangle
the solution should be at the time nT +T. Therefore, in view of formula (17),



Complex dynamics in a ODE model related to phase transition 19

we have to take, at any step n, i = δn, j = δn+1 and the intermediate index h
will be determined according to the parity of kn. Accordingly, we define

Ln := Hkδn,h ∩ Φ
0
τ (Kh,δn+1), (18)

with

k :=

⌊
kn
2

⌋
, and h ≡ kn + δn mod 2.

Now we are in position to apply Lemma 2 to the sequence

(Ln, Ψn) : R̃n m−→R̃n+1, ∀n ∈ Z.

In particular, given any sequence (zn)n∈Z with zn+1 = ΦT0 (zn) with zn ∈ Ln
for each n ∈ Z, we have that the solution (x(t), y(t)) = (x(t; 0, z0), y(t; 0, z0))
of (12) satisfies the following properties:

1. x(t) is a solution of (11) with 0 < x(t) < 1 for all t ∈ R (this follows by
the construction of the rectangular sets and also by Lemma 3).

2. x(nT ) < a0 if δn = 0 and x(nT ) > b0 if δn = 1. Moreover, x(t) − x∗ has
exactly kn simple zeros in the interval ]nT, nT + τ [ (this follows from the
choice of the sets Hki,h and the definition (18)).

3. If zm = ΦmT0 (z0) = z0 for some m ≥ 1, then the corresponding solution

x(t) is mT -periodic (this situation occurs when the sequence (Ln, R̃n)n is
m-periodic and this, in turn, follows whenever the sequence of symbols s
is m-periodic).

Concerning the third property, observe that, if we choose the sequence Ln as
a periodic sequence of minimal period m, then the corresponding mT -periodic
solution x(t) has mT as its minimal period.
In this manner all the assertions in the statement of Theorem 2 have been
verified. ut

Remark 2 Theorem 2 is stable with respect to small perturbations of the
weight function vµ(t). Indeed, it is possible to check that Claim 1 and Claim
2 are still valid if we perturb the right hand member of equation (12) by a
sufficiently small term. More precisely, as a consequence of the theorem of con-
tinuous dependence of solutions [10, Lemma 3.2 and p. 28], we see that once
we have fixed N and µ > µ∗N , then the same conclusion of Theorem 2 holds
for equation

x′′ + cx′ + w(t)g(x) = 0,

provided that |c| < δ and
∫ T
0
|w(t) − vµ(t)|dt < δ, where δ = δN,µ > 0 is a

sufficiently small constant.
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