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Errors-In-Variables Anisotropic Extended
Orthogonal Procrustes Analysis

Eleonora Maset, Fabio Crosilla, and Andrea Fusiello

Abstract—This paper presents a novel total least squares
solution of the anisotropic row-scaling Procrustes problem. Ordi-
nary least squares Procrustes approach finds the transformation
parameters between origin and destination sets of observations
minimizing errors affecting only the destination one. In this study,
we introduce the Errors-In-Variables model in the anisotropic
Procrustes analysis problem and present a solution that can
deal with the uncertainty affecting both sets of observations.
The algorithm is applied to solve the image exterior orientation
problem. Experiments show that the proposed total least squares
method leads to an accuracy in the parameters estimation that
is higher than the one reached with the ordinary least squares
anisotropic Procrustes solution when the number of points, whose
coordinates are known in both the image and the external
systems, is small.

Index Terms—Anisotropic Extended Orthogonal Procrustes
Analysis (AEOPA), Errors-in-Variables (EIV) model, exterior
orientation, Total Least Squares (TLS)

I. INTRODUCTION

PROCRUSTES analysis is a well known technique used
to directly provide least squares (LS) alignment among

corresponding points belonging to a generic k-dimensional
space, in order to satisfy their maximum agreement. It is
particularly appealing from the computational point of view,
for it requires only matrix products and the singular value
decomposition of a k × k matrix.

Applied at first in multifactorial analysis [1], shape analysis
[2] and geodesy [3], [4], in the last decade Procrustes analysis
was also used to solve some classical photogrammetric prob-
lems [5], [6], [7]. In this context, where functional models are
non-linear, it proved to be powerful since it does not need a
priori approximate parameters values.

Given a matrix P (origin) and a matrix S (destination),
containing the coordinates of n points in Rk, classical LS
Procrustes solutions find the parameters transformation be-
tween the two point-sets assuming that all random errors are
confined to the destination matrix S, whereas P is noise-
free. However, this assumption is often unrealistic, since
both P and S are corrupted by errors if they derive from
measurements. Therefore, it seems appropriate to introduce
the Errors-In-Variables (EIV) model, which is a more general
model wherein both matrices P and S are assumed to be
contaminated by errors. The problem of parameters estimation
in the EIV model is often called the total least squares (TLS)
problem [8]. Arun [9] showed that for rigid transformations
the classical LS orthogonal Procrustes solution coincides with
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the TLS one. Felus and Burtch [10] instead started from a
EIV extended orthogonal Procrustes model to compute the
unknown parameters of a similarity transformation (rotation
matrix, translation vector and scale factor), showing that, in
this case, LS and TLS solution are not coincident.

Recently, an anisotropic variant of the extended orthogonal
Procrustes analysis (AEOPA) was developed to solve the
exterior orientation problem of one image [6]. This particular
version generalizes the extended orthogonal Procrustes model
by the fact that the isotropic scale factor is substituted by
an anisotropic scaling, i.e., each measurement may have a
different scaling factor. The main contribution of this paper is
the derivation of a new TLS solution of the AEOPA, assuming
that both matrices P and S are affected by random errors.

The paper is organized as follows: in the next section a
review of some applied EIV models and their solution is
furnished. In Section III the novel TLS Procrustes solutions
are described, with particular attention to the anisotropic case.
In Section IV the proposed TLS solution of the AEOPA is
presented to solve the exterior orientation of an image and
compared with the ordinary least squares AEOPA solution [6].
Finally, results and conclusions are discussed in Section V.

II. ERRORS-IN-VARIABLES MODEL AND TOTAL LEAST
SQUARES SOLUTIONS

The first TLS solutions were developed in literature to solve
linear problems expressed by the following EIV model:

y + ey = (A+ EA)x (1)

where ey and EA are the error vector of observations y and
the error matrix of the design matrix A, respectively, and x
is the vector of unknown parameters. Golub and Van Loan
[8] introduced in mathematical literature the TLS method to
treat regression problems where all the data are affected by
random errors. The solution they proposed was based on a
SVD approach.

Geoinformatics is a field in which EIV models have been
applied with success. Felus and Schaffrin [11] developed a
Structured Total Least Squares algorithm to solve a planar
linear conformal transformation with a particularly structured
coefficient matrix A. Moreover, they proposed [12] a method
based on the non-linear Euler-Lagrange condition equations
for estimating a planar affine transformation by a multivariate
TLS problem. Results showed that the differences between the
TLS and the classical LS estimated parameters are small [12];
nevertheless they could affect significantly the final accuracy
of the transformed coordinates. TLS solutions for the 3D
datum and affine transformations are also derived in [13] and
[14], respectively.
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Furthermore, constraints on the unknown parameters have
been often introduced in geodetic applications. Schaffrin [15]
solved a TLS problem with linear constraints, whereas the
TLS solution of [16] can be applied with arbitrary constraints.

Arun [9] was the first to deal with the TLS solution of
the orthogonal Procrustes problem. In the ordinary LS form,
the extended orthogonal Procrustes analysis (EOPA) allows to
directly estimate the unknown rotation matrix R (k × k), the
translation vector c (k × 1) and the global scale factor ζ, for
the following model (where 1 = [1 . . . 1]T):

S − ES = ζPR+ 1cT (2)

for which the square of the Frobenius norm of the residual
matrix ES is minimum, i.e.

min‖ES‖2F = min tr [(ESE
T

S)] (3)

under the orthogonality condition RTR = RRT = I .
Replacing model (2) by the EIV model

S − ES = ζ(P − EP )R+ 1cT (4)

where matrix EP represents the errors affecting the coordi-
nates contained in matrix P , the unknown R, c and ζ are then
computed by minimizing the square of the Frobenius norm of
the matrix [EP |ES ], i.e.

min
(
‖EP ‖2F + ‖ES‖2F

)
= min tr (EPE

T

P )+tr (ESE
T

S) (5)

under the constraint that matrix R is orthogonal.
Arun [9] showed that for rigid transformations (ζ=1) the

Procrustes solution of problems (2) and (4) leads to the same
result for the unknown parameters R and c.

On the contrary, for similarity transformations the equiv-
alence between the LS solution of model (2) and the TLS
solution of the EIV model (4) is disturbed by the scale factor
ζ, as demonstrated in [10]. Both methods lead to the following
solution for R and c:

R = UV T (6)

where T = UDV T is the SVD of T , with T = P̄ TS and P̄ T =
P T (I − 11T/(1T1)) is the transposed barycentric matrix P ,

c = (ST − ζRTP T)
1

1T1
. (7)

However, whereas in the LS case the scale factor is computed
from

tr
(
P̄ TP

)
ζ − tr

(
S̄TPR

)
= 0 (8)

with S̄T = ST (I − 11T/(1T1)), the TLS approach leads to
the following equation

tr
(
S̄TPR

)
ζ2 + tr

(
P̄ TP − S̄TS

)
ζ − tr

(
S̄TPR

)
= 0 (9)

The positive solution of (9) is the searched value of the scale
factor. One can notice that (9) contains two out of four terms
of (8).

III. NEW PROCRUSTES EIV MODELS

As previously reported, Felus and Burtch [10] introduced
the EIV model in the EOPA problem, obtaining a TLS solution
for a similarity transformation. Their method can deal also
with the weighting by rows of the coordinate matrices, i.e.,
to each point, whose coordinates are known in two reference
systems, a different weight is given. In this section, we will
present an improved version of their algorithm, that admits a
different weighting of the two coordinate matrices. The TLS
approach can be further extended to the anisotropic orthogonal
Procrustes analysis (AEOPA) with row scaling, whose solution
is derived in Section III-B and represents the main contribution
of this paper.

A. EIV-Weighted Extended Orthogonal Procrustes Analysis
(EIV-WEOPA)

Coordinate matrix can be weighted by columns, that corre-
sponds to assigning a different accuracy to the point coordinate
components. Starting from the EIV model (4), the condition
(5) to minimize in the weighted case becomes

min tr

([
EP |ES

]
WCW

T

C

[
ET

P

ET

S

])
(10)

where WC is a (2k × 2k) diagonal matrix able to differently
weigh the various components. In this case, if WC 6= I , no
algebraic direct solutions are known in the literature [4], [17],
[18]; an iterative solution has been proposed in [18].

However, if we are not interested in weighting differently
each component of P and S, but we want to assign a different
weight to the entries of P versus those of S as a whole,
assuming that the two sets P and S have been measured with
different accuracy, a closed-form solution can be derived.

Let 1/α and 1/β be the weights assigned to P and S,
respectively. Matrix WC can then be written as

WC =

[
α−1I 0

0 β−1I

]
. (11)

Substituting (11) in (10), it results

min tr

([
α−1EP |β−1ES

]
IIT

[
α−1ET

P

β−1ET

S

])
(12)

under the orthogonality condition RRT = RTR = I . As
described in [9], condition (12) can be rewritten substituting
the expression for [EP |ES ] computed as the minimum norm
solution of (4). After some manipulations, the cost function
writes

F= tr

[(
1

ζ2 + 1

)2( ζ2
α2

+
1

β2

)(
ζ2RTP TPR+STS + c1T1cT

+2ζRTP T1cT−2ST1cT−2ζSTPR
)

+LRTR−L
]

(13)

where L is the matrix of Lagrangian multipliers. The transla-
tion vector c derives from equation

∂F

∂c
=

(
ζ2/α2+1/β2

)
(ζ2 + 1)

2 [21T1c+2ζRTP T1−2ST1] = 0 (14)
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hence
c = (ST − ζRTP T)

1

1T1
. (15)

Setting to zero the derivative of F with respect to R, it results

∂F

∂R
= 0 (16)

=

(
ζ2/α2+1/β2

)
(ζ2+1)

2

[
2ζ2P TPR+2ζP Tc1T−2ζP TS

]
+R(L+LT).

Rotation matrix R can then be computed as

R = UV T (17)

where T = UDV T is the SVD of T , with T = P̄ TS.
Substituting (15) in (13), it results

F= tr

[(
ζ2/α2+1/β2

)
(ζ2 + 1)

2

(
ζ2P̄ TP+S̄TS−2ζS̄TPR

)
+LRTR−L

]
. (18)

The solution for the scale factor ζ can be obtained by setting
to zero the partial derivatives of (18) with respect to ζ, which
leads to the following equation

2

α2
tr
(
S̄TPR

)
ζ4

+
[ 4

α2
tr
(
P̄ TP

)
− 2

β2
tr
(
P̄ TP

)
− 2

α2
tr
(
S̄TS

) ]
ζ3

+
[
− 6

α2
tr
(
S̄TPR

)
+

6

β2
tr
(
S̄TPR

) ]
ζ2

+
[ 2

α2
tr
(
P̄ TP

)
+

2

β2
tr
(
P̄ TP

)
− 4

β2
tr
(
S̄TS

) ]
ζ

− 2

β2
tr
(
S̄TPR

)
= 0. (19)

The searched value of ζ is the root of the 4th order polynomial
(19) that minimizes the cost function (18).

B. EIV-Anisotropic Orthogonal Procrustes Analysis (EIV-
AEOPA)

The EOPA model (2) can be generalized substituting the
isotropic scale factor ζ with an anisotropic scaling character-
ized by a diagonal matrix Z = diag (ζ1 . . . ζn) of different
scale values:

S − ES = ZPR+ 1cT. (20)

The LS solution of this problem, known as AEOPA with row
scaling [17], can be obtained with the Lagrange multipliers
method as follows.

Defining the Lagrangian function

F (ES , L,R, c, Z) = tr (ESE
T

S) + tr
[
L (RTR− I)

]
(21)

where L is the matrix of Lagrangian multipliers and setting to
zero the partial derivatives with respect to the unknowns R, c
and Z, one obtains the following solving equations:

R = UV T with UDV T=P TZ (I − 1 1T/n)S (22)

c = (S − ZPR)
T
1/n (23)

(ZAAT −BAT)� I = 0 (24)

where A = PR, B = S − 1cT and � is the Hadamard (or
element-wise) product.

Whereas in the solution of the EOPA problem one can re-
cover first R, that does not depend on the other unknowns, then
the isotropic scale factor ζ, and finally c, in the anisotropic
case the unknowns are entangled in such a way that there is no
direct solution available. An iterative procedure, the so called
block relaxation scheme, is then needed, where each variable
is alternatively estimated while keeping the others fixed.

The solution given by [6] assumes that all random errors
are confined to the destination matrix S. However, even in
the anisotropic case it appears more realistic to take into
account also the errors affecting matrix P . Model (20) can
therefore be substituted by the following EIV model, that we
will henceforth call EIV-AEOPA model:

S − ES = Z(P − EP )R+ 1cT. (25)

A TLS estimation of the parameters of this model has never
been developed in the literature, hence we derive its solution
below. Following the traditional Lagrangian approach, the
target function to be minimized can be written as

F (ES , EP , G, L, c, R, Z) =
1

α
tr (ESE

T

S) +
1

β
tr (EPE

T

P ) +

2 tr
[
GT (S − ES − ZPR+ ZEPR− 1cT)

]
+

2 tr
[
L (RTR− I)

]
(26)

where G and L are the matrix of Lagrangian multipliers,
whereas 1/α and 1/β are different weights assigned to S
and P , respectively. This can be solved by setting to zero the
partial derivatives with respect to the unknowns. Eventually,
the following necessary equations can be obtained:

∂F

∂ES
=

2

α
ES − 2G = 0 (27)

∂F

∂EP
=

2

β
EP + 2ZTGRT = 0 (28)

∂F

∂G
= 2 (S − ES − ZPR+ ZEPR− 1cT) = 0 (29)

∂F

∂L
= 2 (RTR− I) = 0 (30)

∂F

∂c
= −2GT1 = 0 (31)

∂F

∂R
= 2 (ETZT − P TZT)G+ 2R (LT + L) = 0 (32)

∂F

∂Z
= G (RTET −RTP T)� I = 0 (33)

The translation vector c can be computed from (27), (28), (29)
and (32):

c = (S − ZPR)
T

(αI + βZ2)−11

ε
(34)

where Z2 = ZZT and
ε = 1T(αI + βZ2)−11 = tr

[
(αI + βZ2)−1

]
.

Equations (28), (29) and (31) give:

R = UV T (35)
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where T = UDV T is the SVD of T , with

T = P TZT(αI + βZ2)−1

[
I − 11T

ε
(αI + βZ2)−1

]
S (36)

Finally, combining (27), (28), (29) and (33) one obtains:

(βZABTZ + αZAAT − βBBTZ − αBAT)� I = 0 (37)

with A and B previously defined. Equation (37) can be solved
independently for each element ζi of matrix Z. The value of
each scale factor is retrieved from the following equation:β 3∑

j=1

AijBij

 ζ2i +

α 3∑
j=1

A2
ij − β

3∑
j=1

B2
ij

 ζi−

α

 3∑
j=1

AijBij

 = 0 (38)

Analyzing (38), it can be noticed that there are two real
solutions, one negative and one positive; the latter is the
searched value of the scale factor ζi.

Comparing the solving equations for Z derived from the
classical model (20) and from the EIV model (25), it is easy
to see that the two terms of the LS solution (24) are contained
in the TLS solution (37). This is the same property previously
highlighted in the isotropic case. Let us rewrite (24) and (37)
as follows:

[(ZA−B)AT]� I = 0 (39)

[β(ZA−B)BTZ + α(ZA−B)AT]� I = 0. (40)

One can notice that, if the system ZA = B has an exact
solution (i.e., matrices P and S are error-less), this satisfies
both (39) and (40). Therefore in the ideal case ordinary LS
and TLS approaches coincide, as expected, whereas they lead
to different solutions when the data are affected by noise.

Similarly to the LS solution of the AEOPA problem, the
TLS solution of the EIV-AEOPA model requires a block
relaxation scheme to estimate the unknowns R, c and Z.

IV. EXPERIMENTAL VALIDATION

In the paper of Garro et al. [6] the AEOPA with row
scaling was applied to the problem of estimating the position
and orientation of a perspective camera given its intrinsic
parameters and a set of world-to-image correspondences,
known as exterior orientation problem in Photogrammetry or
Perspective-n-Point camera pose in Computer Vision.

We briefly review here how this problem can be formulated
in terms of model (20) or (25). Given at least three control
points and their projections, the exterior orientation problem
requires to find a rotation matrix R and a vector c (specifying
attitude and position of the camera) such that the vector form
of collinearity equations:

pi = ζ−1
i R(si − c) (41)

is satisfied for some positive scalar ζi, where
• si is the coordinate vector of the i-th control point in the

external system;

• c is the coordinate vector of the projection center in the
external system;

• ζi is a positive scalar proportional to the “depth” of the
point, i.e., the distance from the i-th control point to the
plane containing the projection center and parallel to the
image plane;

• R is the rotation matrix transforming from the external
system to the camera system;

• pi is the coordinate vector of the i-th control point in
the camera system, where the third component is equal
to −c, the principal distance or focal length.

Expressing (41) with respect to si yields:

si = ζiR
Tpi + c. (42)

After transposing and extending to n control points s1 . . . sn,
it results:

S = ZPR+ 1cT (43)

where P is the matrix by rows of image point coordinates
defined in the camera frame, S is the matrix by rows of point
coordinates defined in the external system, Z is the diagonal
(positive) depth matrix.

Formula (43) can be rewritten in the form of the AEOPA
model (20) or the EIV-AEOPA model (25), according to
whether the error is assumed to affect only S or both S
and P . It is particularly significant in this photogrammetric
application the capability of our solution (26) to take into
account the different variances of EP and ES , since image
coordinate pi and 3d points coordinate si are measured with
different accuracy.

Garro et al. [6] compared the LS solution of (20) with
state of the art algorithms that perform the exterior orientation,
showing that AEOPA reaches the best trade-off between speed
and accuracy. In this paper, we tested the proposed TLS
solution of the AEOPA for solving the exterior orientation
of an image against the LS formulation [6].

To carry out the simulation, n = {6, ..., 30} 3D points were
randomly distributed in a sphere of unit radius centered on the
origin and perturbed with random noise with standard devia-
tion σS = {0.10, 0.27, 0.71, 1.88, 5.00} [mm] (corresponding
to five logarithmically spaced values from 0.10 to 5.00). The
camera was positioned at distances of 5 and 10 meters from
the origin and the focal length was chosen so as to yield a
view angle of 60◦ with an image size of 1000 x 1000 pixels.
Different values of noise σP = {1, ..., 5} [pixel] were added to
the image coordinates obtained from the projection of the noise
free 3D points. For each setting the test was run 500 times
and the mean and median error norms were computed. In all
the experiments the initial depths were set to one. Results are
reported in Fig. 1 and 2. As a figure of merit only the rotation
errors are shown, since the behavior of the translations errors is
similar. The rotation error is the angle of the residual rotation,
computed as ‖log(RTR̂)‖F , where R is the ground truth, R̂
is the actual rotation and ‖·‖F is the Frobenius norm.

Comparing the median error, one can notice that EIV-
AEOPA and AEOPA lead almost to the same accuracy. On the
other hand, the root mean square error (RMSE) is different
when the number of correspondences in the image is small
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(n ≤ 15) (this is clear in Figure 1 where 10 points are
considered). This is due to the fact that AEOPA in a few
cases converges to wrong results, that are not sufficient to
skew the median, but affects the mean error. The rundown
of this simulation is that the new TLS solution works better
than the ordinary LS algorithm when the number of reference
points (whose coordinate are known in both the camera and
the external reference frame) is small, which is a common
situation in Photogrammetry.
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Fig. 1. Rotation error vs noise using 10 correspondences and a distance of the
camera from the origin equals to 10 m. The RMSE and the median rotation
errors are plotted against the standard deviation of the noise added to image
coordinates and 3d points coordinate.
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Fig. 2. Rotation error vs number of points. The RMSE and the median
rotation errors are plotted against the number of points that have been used.
The distance of the camera from the origin is equal to 10 m and the standard
deviation of the noise added is 3 pixel for the image coordinate and 0.71 mm
for the 3d points coordinate.

V. CONCLUSION

In this paper, a novel total least squares solution of the
AEOPA with row scaling has been proposed. The analytic
model considers that both the origin and destination points
coordinates are affected by random errors (EIV model). In
this way, an algorithm that maintains all the advantages of the
classical Procrustes analysis was obtained. In particular, the
problems related to linearization and approximate parameters

values determination were avoided. At the same time, the
unrealistic assumption that the source coordinates are error-
less was removed. This Errors-In-Variables model is closer to
reality and leads to a more realistic estimation of the unknown
transformation parameters.

The developed TLS solution of the AEOPA problem was
tested for solving the exterior orientation of an image. Exper-
iments show that when the number of reference points, whose
coordinate are known in both the camera and the external
frame, is small, the proposed total least squares method leads
to an accuracy in the parameters estimation that is higher than
the one reached with the ordinary least squares anisotropic
Procrustes solution.

The proposed EIV-AEOPA algorithm can be a valuable
tool in other computer vision and photogrammetric problems.
In a future work, its application for solving bundle block
adjustment will be investigated.
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