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ALGORITHMIC APPROACHES FOR THE SINGLE

INDIVIDUAL HAPLOTYPING PROBLEM

Giuseppe Lancia1

Abstract. Since its introduction in 2001, the Single Individual Hap-
lotyping problem has received an ever-increasing attention from the
scientific community. In this paper we survey, in the form of an anno-
tated bibliography, the developments in the study of the problem from
its origin until our days.

1. Introduction

The collection of a large amount of genomic data over the past few years has
shown that our genetic makeup is remarkably well-conserved. Generally speak-
ing, the differences at genomic level between any two individuals amount to less
than 5% of their DNA sequences. This fact implies that the differences at the
phenotype level (i.e., in the way the individuals look) must be caused by small
regions of differences in the genomes. The smallest possible region consists of a
single nucleotide and therefore it is called Single Nucleotide Polymorphism or SNP
(pronounced “snip”). SNPs are the most common form of human genetic variation
and their importance can hardly be overestimated. They are used, for example,
in medical, drug-design, diagnostic, and forensic applications.

Generally speaking, a polymorphism is a trait common to everybody which
can take different forms, ranging in a limited set of possibilities, called alleles (for
example, the color of the eyes is a polymorphism, whose alleles include blue, black,
brown, green). As far as SNPs are concerned, each SNP is a specific nucleotide site
at which a statistically significant variability can be observed within a population.
A SNP is almost always a polymorphism with only two alleles (out of the four
possible, i.e., A, C, G and T). For a nucleotide site to be considered a SNP, it must

.
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Individual 1, paternal: caggtccCtatttCccaggcgcCgtatacttcgacgggTctata

Individual 1, maternal: caggtccGtatttAccaggcgcGgtatacttcgacgggTctata

Individual 2, paternal: caggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Individual 2, maternal: caggtccGtatttCccaggcgcGgtatacttcgacgggCctata

Individual 3, paternal: caggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Individual 3, maternal: caggtccGtatttAccaggcgcCgtatacttcgacgggCctata

Figure 1. A chromosome in 3 individuals. There are 4 SNPs.

be the case that the less frequent allele is found in the population with some
significant frequency.

Humans can be of two sexes and each individual has two parents, one for each
sex. The human genome is then organized in pairs of chromosomes. In each
chromosome pair, one of the chromosome copies is inherited from the father while
the other is inherited from the mother. In general, the organisms whose genome is
organized in pairs of homologous chromosomes are called diploid organisms. For
a diploid organism, at each SNP an individual can either be homozygous (i.e.,
possess the same allele on both chromosomes) or heterozygous (i.e., possess two
different alleles). The values of a sequence of SNPs on a particular chromosome
copy define a haplotype.

In Fig. 1, we illustrate a simple example, showing a chromosome in three indi-
viduals. For each individual, the pair of his chromosome copies are reported. In
this example there are four SNPs. The alleles for SNP 1 are C and G, while for
SNP 4 they are T and C. Individual 1 is heterozygous for SNPs 1, 2 and 3, and
homozygous for SNP 4. His haplotypes are CCCT and GAGT. The haplotypes of
individual 3 are CAGT and GACC.

Haplotyping an individual consists in determining his two haplotypes for a given
chromosome. With the larger availability in SNP genomic data, the recent years
have seen the birth of many new computational problems related to haplotyping.
Most of these problems are motivated by the fact that it can be difficult and/or very
expensive to determine the haplotypes experimentally, so that ad hoc algorithms
must be used to correct data errors or to infer missing data.

In this survey we will address the haplotyping problem for a single individual.
For haplotyping problems defined over sets of individuals (also called population
haplotyping problems), the reader is referred to [1]. The single individual haplotyp-
ing problem arises when haplotype data coming from experiments is inconsistent
with the existence of exactly two parents for an individual. This inconsistency can
be due to experimental errors and/or to missing data.

2. Single Individual Haplotyping

The process of turning the sequence of nucleotides in a DNA molecule into a
string over the DNA alphabet is called sequencing. A sequencer is a machine that,
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Figure 2. Sequence reads and assembly of the two chromosome
copies.

given a DNA molecule, outputs the string of A’s, T’s, C’s, and G’s corresponding
to the ordered nucleotides comprising the sequence. To each letter, the sequencer
attaches a value (called the confidence level) which expresses the probability that
the corresponding nucleotide has been correctly identified.

The main problem with sequencing is that, due technological limitations, it
is impossible to sequence a long DNA molecule at once. What can be done,
however, is to sequence short DNA fragments (also called reads), of length of
about 1,000 nucleotides each, which can be seen at small ”windows” showing a
substring of the target molecule. In order to sequence a long DNA molecule, the
molecule must first amplified, i.e., many copies of the molecule must be created.
One possible way to achieve this goal is by using an experiment called Polymerase
Chain Reaction (PCR, cite). The copies are then broken, at random, into several
small fragments, which are fed to a sequencer that will sequence those of the right
size. The amplification phase is necessary so that the reads can have non-empty
overlap. From the overlap of two reads, one may infer (through a process called
fragment assembly) a longer fragment, and so on, until eventually the original DNA
sequence is reconstructed. The overall procedure, known as shotgun sequencing,
was validated in the late 90’s by Celera Genomics, a private biotech company trying
to achieve the completion of the sequencing of the human genome faster than with
other experimental techniques of the time [2,3]. At Celera the fragments were read
by proprietary sequencers and then assembled back into the original sequence with
the use of sophisticated algorithms and powerful computers.



4 TITLE WILL BE SET BY THE PUBLISHER

In Figure 2 we show an example in which the two chromosome copies (a) and (b)
have been amplified, and then a set of fragments (denoted by rectangular boxes)
have been sequenced. The objective is to retrieve (a) and (b) given as input the
set of sequenced fragments. The major difficulty obstructing this goal is that,
during the amplification phase, the paternal and the maternal chromosome copies
are amplified together, so that it is not known for each random read if it belongs
to paternal or to the maternal original copy. One major problem in reconstructing
the haplotypes consists therefore in segregating the paternal fragments from the
maternal ones. In addition to the individual fragments described so far, there
may be cases in which some extra information relates some fragments to some
others. In particular, there exists a sequencing technique that allows to sequence
the ends of a long fragment, i.e., to read a few hundred nucleotides at each of the
two extremes. This experiment yields therefore pairs of reads, called mate pairs,
which can then be part of the input data. Although even with this technique only
about one thousand nucleotides are read at each end of the target, the result is
stronger than reading two individual fragments (one for each end) since in this
case it is known that the two reads must come from the same original chromo-
some copy. Furthermore, the experiment returns a fairly precise estimate of the
distance, expressed in number of nucleotides, between the two reads of a mate pair.

Even with the best possible technology, sequencing errors are unavoidable. The
main errors are due to bases that have been miscalled or skipped altogether, or to
the presence of contaminants, i.e., DNA coming from organisms other than the one
that had to be sequenced. Due to these experimental errors, the reconstruction
of the haplotypes, given the the reads coming from sequencing, is not always
straightforward and may require the correction of the input data. In a general
way, the haplotyping problem for an individual can then be informally stated as
follows:

Given inconsistent haplotype data coming from the sequencing of
an individual’s chromosome, find and correct the errors in the data
so as to retrieve a consistent pair of haplotypes.

Depending on what type of errors one is after, there can be many versions
of this problem. Historically, the formalization of the first haplotyping problems
for an individual was given by Lancia et al. in [4] Within that work, the mini-
mum fragment removal (MFR) and minimum SNP removal (MSR) problems were
introduced, which we briefly discuss in the next section.

3. Minimum fragment and minimum SNP removal

Given the fact that at each SNP only two alleles are possible, the alleles can be
encoded by a binary alphabet. Hence, in the sequel, the two values that a SNP
can take will be denoted by 0 and 1. Under this encoding, a haplotype is simply
a string over the alphabet {0, 1}.
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The basic framework for the single individual haplotyping problems is as follows.
The data consists of a set F = {f1, . . . , fm} of fragments (i.e., reads coming from
sequencing) all taken from a target region containing a set S = {s1, . . . , sn} of
SNPs. Each SNP is covered by some of the fragments, and can take the values 0

or 1. Since there is a natural ordering of the SNPs, given by their physical location
on the chromosome, the data can be represented by an m× n matrix M over the
alphabet {0, 1, -}, called SNP matrix. Each column of the matrix corresponds to
a SNP and each row corresponds to a fragment. If fragment fi covers the SNP sj ,
then M [i, j] is the value of the allele for SNP sj appearing in fragment fi. The
symbol “-” is used to represent a SNP not covered by a fragment (see Figure 3
(a) and (b) for an example of a SNP matrix).

A gapless fragment is one covering a set of consecutive SNPs (i.e., the 0’s and 1’s
appear consecutively in that row). We say that a fragment has k gaps if it covers
k+1 blocks of consecutive SNPs (for example, the fragment 00--101---01-has two
gaps). Although theoretically each fragment should be gapless, since it covers a
sequence of consecutive SNPs, in practice the data may contain gaps. In particular,
the gaps can be mainly due to two reasons:

(1) Thresholding of low-quality reads. When the sequencer cannot call a SNP
0 or 1 with enough confidence, the call is not made, and the SNP is marked
with a “-” . For instance, the sequencer could have read the first fragment
of Figure 3 (a) as acgaac, but with a high degree of uncertainty on the g.
Then the fragment would be turned into ac-aac.

(2) Mate-pairing in shotgun sequencing. Consider the following simplistic
example. If only 4 letters were read at each end of aggctaccgatggtg, then
the resulting fragment could be described as aggc-------ggtg. Hence, in
the case of mate pairs, there would be fragments with k = 1 gap.

A pair of fragments fi and fj are said to be in conflict if there exists a SNP sk
such that M [i, k] ∈ {0, 1}, M [j, k] ∈ {0, 1} and M [i, k] 6= M [j, k]. The conflict of
two fragments implies that the fragments are not coming from the same chromo-
some copy or, otherwise, there would be errors in the data. Given a SNP matrix
M , the fragment conflict graph is the graph GF (M) = (F , EF ) with an edge for
each pair of fragments in conflict (see figure 3(c)). A (less intuitive) notion of
conflict is defined also for the pair of SNPs. Two SNPs si and sj are said to be
in conflict if there exist two fragments fu and fv such that the 2 × 2 submatrix
defined by rows u and v and columns i and j contains three 0’s and one 1, or
three 1’s and one 0. Given a SNP matrix M , the SNP conflict graph is the graph
GS(M) = (S, ES), with an edge for each pair of SNPs in conflict (see figure 3(d)).

When GF (M) is a bipartite graph, the set of fragments F can be segregated
into two subsets H1 and H2 of pairwise compatible fragments. From each set one
can infer one haplotype by fragment overlap. Let h1 and h2 be the haplotypes thus
obtained. Since h1 and h2 are obtained by the assembly of the input fragments, the
single individual haplotyping problems are sometimes also referred to as fragment
assembly haplotyping problems.
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Figure 3. SNP matrix and conflict graphs

Let us call a SNP matrix M feasible if GF (M) is bipartite and infeasible other-
wise. It is immediate to see that a SNP matrix for error-free data must be feasible.
When the SNP matrix is not feasible the input data must contain errors that we
want to detect and correct. All the single individual haplotyping problems pro-
posed in the literature are therefore aimed at correcting an infeasible SNP matrix
so as it becomes feasible.

The very first paper on single individual haplotyping appeared in 2001 and
described two problems arisen at Celera Genomics in the context of sequencing the
human genome [4] . These are optimization problems called Minimum Fragment
Removal (MFR) and Minimum SNP Removal (MSR):

- MFR: Given a SNP matrix, remove the minimum number of fragments
(rows) so that the resulting matrix is feasible.

- MSR: Given a SNP matrix, remove the minimum number of SNPs (columns)
so that the resulting matrix is feasible.

The first problem is mainly suited for a situation in which, more than sequencing
errors, one is worried about the presence of contaminants that should be removed
from the input data. The second problem is more suited in the presence of sequenc-
ing errors only, i.e., when all the fragments are to be retained. Both objectives are
driven by a general parsimony rule, in the same spirit as Occam’s razor, i.e., look
for the simplest explanation of why the matrix is not feasible.
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Both MFR and MSR were shown to be NP-hard [4] so that exact algorithms
for their solution are expected to be exponential branch-and-bound procedures.
In [5], Lippert et al. described a combinatorial branch-and-bound algorithm for
MFR. They also described an Integer Linear Programming (ILP) formulation of
the problem, based on a reduction of MFR to the Maximum Node-Induced Bipartite
Subgraph problem [6]. This problem requires to remove a smallest-size set of nodes
from a graph G so as G becomes bipartite. In particular, at least one node must
be removed from each odd cycle of G. The ILP model in [5] has an exponential
number of constraints (one for each odd cycle), but it is shown that they can
be separated in polynomial time. Good heuristic solutions for MFR were then
obtained from the optimal solution of the LP relaxation by randomized rounding.

While the general case for MFR and MSR is NP-hard, both problems become
tractable when the input fragments have no gaps. Let us call M a gapless matrix
if each row of M is a gapless fragment. The main connection between MFR and
MSR for gapless data is given by the following theorem.

Theorem 3.1. [4] Let M be a gapless SNP matrix. Then, GF (M) is a bipartite
graph if and only if GS(M) is a stable set.

In [4] it was shown that both MSR and MFR are polynomial for a gapless
SNP matrix. In particular, it was proved that, when M is gapless, GS(M) is a
perfect graph so that MSR boils down to finding the largest independent set in
a perfect graph, i.e., a polynomial problem. Furthermore, MFR was shown to be
polynomial by reducing it to a minimum cost flow problem on a suitably defined
network. Note that all results for gapless data can be extended to matrices with
gaps, as long as they possess the consecutive ones property (C1P), i.e., it is possible
to sort the columns in such a way that each row becomes gapless. Since testing if a
matrix M is C1P (and finding the corresponding sorting which makes M gapless)
can be done in polynomial time [7], it follows that MFR and MSR are polynomial
problems for matrices with C1P.

Later theoretical improvements extended these results from gapless fragments
to gapped fragments in which the gaps length is bounded by a constant. In par-
ticular, there are O(22lm2n + 23ln3) dynamic programming algorithms for MFR
and O(mn2l+2) for MSR for instances with gaps of total length l (Rizzi et al. [8],
Bafna et al. [9]). These algorithms are hardly practical, however, on instances for
which the gaps can be rather large. To overcome this problem, Xie and Wang [10]
(see also Xie el al. [11]) proposed an algorithm for MFR which takes into account
two new parameters: k, the maximum number of SNPs covered by any fragment
and c, the maximum number of fragments covering any SNP site (also called cov-
erage). Their solution has complexity O(nc3c +m logm+mk). Since k ≤ n and c
is generally at most 10, this method should be more suitable for mate-paired data,
where l can be quite large.
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4. Minimum letter flip

The very reason why single individual haplotyping problems exist is that no
sequencing process can be error-free and the data can always contain errors, mostly
due to miscalling or missing a base in a fragment. In order to model the correction
of bases that were mistakenly read, a particular version of the single individual
haplotyping problem was proposed in [5] (see also [12]) This version is called
the Minimum Letter Flip (MLF) problem (also known as the Minimum Error
Correction (MEC) problem), and is defined as follows:

MLF: Given a SNP matrix, swap the minimum number of entries
(0 into 1, or 1 into 0) so that the resulting matrix is feasible.

In another version of MLF, each entry is associated to a non-negative weight,
representing the confidence level with which the base corresponding to the entry
had been called. The objective is to flip a set of entries with minimum total weight
so as to make the matrix feasible. This problem is denoted by WMLF (Weighted
Minimum Letter Flip).

The MLF problem was shown to be NP-hard, both for general [5] than for gap-
less matrices [13]. The literature contains several approaches for the solution of
MLF. The reader is referred to Geraci [14] and Geraci and Pellegrini [15], for a
comprehensive study in which most of these procedures are described and com-
pared to each other.

One of the first heuristics for MLF was FastHare, by Panconesi and Suozo [16].
FastHare starts by first sorting the fragments according to their position of the
chromosome (left to right), and then it reconstruct the two final haplotypes by
correcting the sorted fragments in a greedy way. This heuristic is very fast and,
despite its simplicity, it yields quite accurate solutions in general, especially when
the error rate in the data in not too high. For high error-rate data, Genovese et
al. proposed SpeedHap [17], an effective heuristic procedure organized in phases.
For each phase the procedure performs three main steps: 1) it detects the likely
positions of errors 2) it allocates the fragments to the two partially built final
haplotypes, and 3) it decides the final alleles in the two haplotypes via a majority
rule on ambiguous SNPs. Another similar greedy heuristic procedure is FAHR

(Fast and Accurate Haplotype Reconstruction, by Wu and Liang [18]), which
builds the final haplotypes by partitioning the fragments at each SNP in a greedy
way. In computational experiments run over data coming from chromosome one
of 60 individuals from the international HapMap Project [19], FAHR outperformed
FastHare in both running time and correctness of the solution.

Bayzid et al. in [20] proposed still another heuristic for MLF, called HMEC.
This is a steepest-descent local search procedure, which generally reaches good-
quality solutions, but has the drawback of being somewhat slow. Specifically, each
iteration of HMEC takes time O(m3n). Because of this time complexity, the use of
HMEC may be impractical for instances with a large number of fragments.

The weighted version of MLF was considered by Zhao et al. in [21]. In this work,
the authors proposed the use of a dynamic clustering heuristic, and introduced an
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extended version of the problem defined in order to deal with the presence of
contaminants. The new problem, denoted by CWMLF (Complete Weighted Min-
imum Letter Flip), requires to make the SNP matrix feasible not only by flipping
some of its entries but also by possibly removing some of the rows. In [22], Wu et
al. proposed a heuristic procedure for WMLF called AHHAP. The algorithm starts
with a preprocessing phase aimed at reducing the size of the instance, and then
it proceeds by a greedy assignment of the fragments to the haplotypes, according
to a measure of similarity between the fragments and the partial haplotypes built
so far. Computational experiments show that AHHAP performs in a similar way as
the best previous methods.

Among the various types of approaches employed for the solution of MLF, there
is the use of evolutionary algorithms such as Genetic Algorithms and Particle
Swarm Optimization (PSO). In [23], Wang et al. proposed both a combinatorial
branch-and-bound algorithm and a genetic algorithm for MLF. In the genetic
algorithm, each candidate solution is represented by a binary vector v of length
m, in which vi specifies the haplotype copy (0 or 1) to which fragment fi is assigned.
Being exponential, the branch-and-bound is only applicable to instances of very
small size, but the genetic algorithm can be used for large instances (e.g., more
than 50 fragments over more than 50 SNPs).

A PSO heuristic for MLF was proposed by Kargar et al. [24]. The PSO is an
evolutionary metaheuristic in which the flow of the algorithm is already defined
and problem-independent, while the user must only specifying the solution format
and the fitness function (i.e., the objective function) for his specific problem. In
particular, similarly to the above genetic algorithm, a candidate solution is repre-
sented by a binary vector of length m, whose components specify the haplotype
copy to which each fragment is assigned. Computational experiments show that
the PSO turns out to be fast and appropriate for instances with a low error-rate
in the data.

Among the most successful heuristics for MLF we recall HapCUT, proposed by
Bansal and Bafna [25]. This algorithm makes use of an auxiliary graph defined
from the fragments, where each SNP corresponds to a node in the graph and two
nodes (i.e., two SNPs) are joined by an edge if there exists a fragment that covers
both SNPs. In order to minimize the MLF cost of the reconstructed haplotypes,
the algorithm proceeds by iteratively finding max-cuts in a sequence of auxiliary
graphs. Computational experiments run on real-life data showed that haplotypes
inferred by HapCUT were significantly more accurate (20-25% lower maximum er-
ror correction scores for all chromosomes) than those obtained by the previously
published methods.

In [26] , He et al. proposed a dynamic programming algorithm for MLF with
time complexity O(2Lmn) where L is maximum length of a fragment. The algo-
rithm can be used for values of L up to about 15, but it becomes impractical for
larger values. When the input fragments are too long for the dynamic program-
ming procedure, the authors proceed by modeling the problem as a satisfiability
problem, and solve it via a MaxSAT solver. The quality of the solutions obtained
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through this approach is shown to be quite high, but the solving process remains
slow in many cases.

Another dynamic programming algorithm was proposed by Deng et al. in [27]
and is parametrized by the maximum coverage c of each SNP (where the coverage
of a SNP is defined to be the number of fragments to which that SNP belongs).
The complexity of the dynamic program is O(nc2c), which can be quite high when
c is large. For large values of c the authors propose a heuristic procedure derived
from the dynamic programming algorithm. Experiments showed that the heuristic
returns very accurate solutions on average.

Chen et al. [28] proposed an algorithm for MLF based on an ILP formulation of
the problem. Since computing the ILP solution for the whole input SNP matrix
would require an enormous amount of time, the algorithm starts by decomposing
the matrix into small, independent, blocks. For each individual block, the ILP
model is then computed and solved by the ILP solver. The program was tested
on a popular benchmark, i.e., the filtered HuRef data set [29], and it took a total
time of 31h (26h of which were spent on the most difficult block of the 15th
chromosome). This was the first time that MLF optimal solutions were obtained
for the filtered HuRef dataset.

5. Probabilistic models

Some models of single haplotyping problems are of probabilistic nature, i.e.,
loosely speaking, they seek a solution which has the greatest probability of being
the correct one.

In [30], Li et al. proposed a probabilistic model for the haplotype inference
problem. Their method is based on a statistical model of sequencing errors, com-
positional information, and haplotype memberships. In their model, they studied
the conditional probability P (h1, h2|M) of h1 and h2 being the correct haplotypes
given that M was the SNP matrix measured. They pursued the objective of deter-
mining the most likely pair of correct haplotypes, i.e. a pair {h∗1, h∗2} maximizing
the above conditional probability. Due to computational complexity, the method
proceeds in steps. The first step considers only consecutive SNPs and decides, for
each pair of consecutive SNPs, which allele should be assigned to the first haplo-
type and which to the second. In a second step these assignments of alleles are
combined in order to reconstruct the actual haplotypes. The solving procedure is
based on Gibbs sampling and an Expectation Maximization (EM) algorithm. The
procedure is also able to compute the accuracy, or confidence, of the reconstructed
haplotypes.

Wang et al. in [31] formulated the haplotype assembly problem into a statistical
framework and modeled it by a Markov Chain (MC) model which can account for
various types of data errors. This Markov Chain approach presents several main
advantages: (i) it is suitable for those data sets on which we have no previous
information about the type of errors that we might expect in the data; (ii) the
model can be solved by a polynomial time algorithm, and therefore it is particularly
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effective for dealing with large data sets; (iii) haplotypes have very a strong linkage
disequilibrium property [32], and the MC model is suitable for characterizing this
kind of linkage property. The objective pursued by Wang et al. is the same as in
Li et al., i.e., determining the most probable pair of haplotypes given the observed
SNP matrix. In the MC approach, the assignment of fragments to haplotypes is
regarded as a Markov process in which successive allele pairs are generated based
on the value of a small number of the preceding SNP sites in the sequence. In
order to find the most probable haplotypes for the set of fragments, the authors
proposed a Viterbi-like dynamic programming procedure. Computational tests
run on HapMap data showed that the MC approach retrieves solutions with a
higher probability of being correct than those obtained by the MLF procedures,
and in a much shorter running time.

Probabilistic arguments were not only used in the definition of new models for
haplotyping, but also in deriving probabilistic algorithms for the existing objec-
tive functions. For example, HASH (Haplotype Assembly for Single Human), is a
probabilistic algorithm proposed by Bansal et al. [33] for assembling haplotype
fragments under the MLF objective function. HASH is a Markov Chain Monte
Carlo (MCMC) algorithm in which the transitions of the Markov chain are gen-
erated using min-cut computations on auxiliary graphs derived from the input
reads. The method was applied to infer the haplotypes from real data consisting
of whole-genome shotgun sequence fragments of a human individual. The results
showed that the haplotypes inferred by using HASH were significantly more accu-
rate than the haplotypes estimated by using the best heuristics available at the
time.

Chen et al. [34] described a probabilistic algorithm for MLF in which they
considered three error parameters, called α1, α2 and β. The parameter α1 is the
error-rate with which entries of the SNP matrix have been miscalled (i.e., a 0 in
place of a 1, or a 1 in place of a 0). The parameter α2 is the error-rate with which a
”-” in the SNP matrix appears where, in fact, a SNP is covered by a fragment and
therefore an allele 0 or 1 should be present. Finally, β is a measure of the expected
dissimilarity between the haplotypes to be reconstructed. The authors gave a
linear-time (in the size of M) probabilistic algorithm that reconstructs the correct
haplotypes with high probability when all the parameters are known. Even for
the case when some of the parameters are unknown, they provided a probabilistic
algorithm that outputs the correct haplotypes with probability depending on the
actual values of α1, α2 and β.

6. Generalizations and variants of haplotyping

Among the works proposed for the solution of the MLF model, there are some
papers which introduced variants to the original framework in order to deal with
some specific data problems. For instance, Zhang et al. [35] proposed a model
called Minimum Conflict Individual Haplotyping (MCIH), suitable for data sets
with particularly high error-rate. The problem was shown to be NP-hard. For
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the solution of MCIH, the authors described a dynamic programming procedure,
suitable for moderate-sized data sets, and a feed-forward neural network algorithm
for larger instances.

Duitama et al. [36] proposed a model called Maximum Fragments Cut (MCF)
whose objective is to identify a set of fragments (i.e., rows of the SNP matrix)
maximizing a score proportional to their conflict with respect to the remaining
rows. This set of fragments can be interpreted as the shore of a cut in a suitable
graph G, so that the model requires the solution of a Max-Cut problem. In order
to solve MCF, the authors utilized a local optimization heuristic, called ReFHap.
The procedure starts by finding a good cut C in G via a classical local-search
heuristic for max-cut. Then, after having found the cut, the algorithm uses the
input SNP matrix to find the haplotype h that minimizes the number of entries
to be corrected assuming that the rows in C belong to h and the other rows do
not belong to h. Computational experiments were run showing the effectiveness
of the heuristic procedure.

Xie et al. introduced in [37] a model called Balanced Optimal Partition (BOP),
which generalizes both MLF and MCF. The model is, in a way, a weighted com-
bination of MLF and MCF, and by setting some model parameters to proper
extreme values, BOP degenerates into pure MLF or pure MCF respectively. To
solve the model, the authors proposed a dynamic programming algorithm called
H-BOP, which was made effective by limiting the number of intermediate solutions
to a suitable small integer k. Extensive computational experiments showed that,
for k = 8, H-BOP was generally faster and more effective than state-of-the-art pro-
cedures of the time, such as ReFHap. Furthermore, the experiments showed that
H-BOP scales rather well to large-size input data.

Aguiar and Istrail proposed in [38] HapCompass, an algorithm for haplotype
assembly of densely sequenced human genome data. HapCompass operates on the
compass graph, i.e., a graph where each SNP is a node, and the edges are as-
sociated to the fragments. The edges are weighted, and the weight of an edge
(si, sj) measures the best coupling of the alleles for si and sj on the two final
haplotypes. In the model, the reconstruction of the final haplotypes corresponds
to a minimum-weight edge removal problem until a special type of subgraph is
obtained. HapCompass is a heuristic with a local reoptimization step. Computa-
tional results showed the effectiveness of the procedure and the good quality of
its solution also with respect to the MLF objective. Later on, Aguiar and Istrail
described in [39] some generalizations of compass graphs and of the HapCompass
framework. They presented graph theory-based algorithms for (i) novel imple-
mentations of haplotype assembly optimizations (minimum error correction), (ii)
assembly of a pair of individuals sharing a haplotype tract identical by descent
and (iii) assembly of polyploid genomes (i.e., genomes having more than two sets
of homologous chromosomes). The method were evaluated on the 1000 Genomes
Project, Pacific Biosciences and simulated sequence data.
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