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Abstract We describe a new algoritmic approach able
to automatically pick and track the NMR resonances of
a large number of 2D NMR spectra acquired during a
stepwise variation of a physical parameter. The method
has been named TinT (Trace in Track), referring to
the idea that a gaussian decomposition traces peaks
within the tracks recognised through 3D matematical
morphology. It is capable of determining the evolution
of the chemical shifts, intensity and linewidths of each
tracked peak.

The performances obtained in term of track recon-
struction and correct assignment on realistic synthetic
spectra were high above 90% when a noise level similar
to that of experimental data were considered. TinT was
applied successfully to several protein systems during
a temperature ramp in isotope exchange experiments.
A comparison with a state-of-the-art algorithm showed
promising results for great numbers of spectra and low
signal to noise ratios, when the graduality of the per-
turbation is appropriate.

TinT can be applied to di↵erent kinds of high through-
put chemical shift mapping experiments, with quasi-
continuous variations, in which a quantitative automated
recognition is crucial.
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1 Introduction

With the growing storage capability of the modern com-
puters and their decreasing cost, it is more and more
feasible to acquire series of stepwise perturbed 2D NMR
spectra in various kind of experiments designed to char-
acterize molecular behavior during variation of physical
and chemical conditions. In fact it is possible to moni-
tor modifications in NMR spectra following structural
and functional changes of molecules in solution due to
thermal, pH or external pressure variation, chemical re-
actions, solvation, complex formation or ligand binding.

What is observed is a strong correlation between
the chemical and physical changes of the systems un-
der study and the features of the NMR spectrum, i.e.
chemical shifts, intensities, peak multiplicity, peak on-
set and/or loss. It is theoretically and experimentally
confirmed that the major alterations are experienced
by those peaks that are correlated to residues that are
involved in the process under consideration (see reviews
[35,36,49] and references therein) which makes high res-
olution NMR a so powerful and informative technique
in chemistry, physics and biophysics.

In particular the displacement of the chemical shift
and the modification of signal linewidth and intensity
are used to probe relevant events in experiments such
as drug screening [9], SAR by NMR [22,47], protein-
protein interaction [32,33,17,13,10], chemical shift co-
variance analyses [6], isotopic exchange at single tem-
peratures [15,16,41], BLUU-Tramp [40,39] and titra-
tion in general [48] .
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Very often the NMR experiment of choice, for such
studies on proteins, is the highly sensitive 2D HSQC of
15N-enriched proteins [5,4] or fast acquisition versions
such as HMQC-SOFAST [44] and BEST-TROSY [29],
because they allow one to obtain information at single
residue resolution with one signal for each N-H pair.
However, homonuclear 2D TOCSY is also often used.
Mapping and quantitative evaluation of peak evolution
allows one not only to e↵ectively gather experimen-
tal points, but also to accurately trace and reconstruct
the function, modeling the process, to which thermody-
namic formulae, statistical and clustering analyses can
be applied.

Although algorithmic approaches have been devel-
oped, NMR spectroscopy has not yet raised an appro-
priate interest by the specialist programmers [19], that
could address these issues with an automatic approach.
In fact, though the human perceptual capability re-
mains the source of inspiration for new methods, it is
likely to fail providing the best results, especially re-
garding the performance precision, the timing and the
analysis completeness, when dealing with massive data,
i.e. circumstances in which computers outperform even
an expert operator to give an unbiased result. Stepwise
perturbed NMR spectra analysis and high throughput
screening still o↵er compelling challenges to automa-
tion because of noise, peak overlap, cross shifting and
long distance correlation peaks.

Our attempt in automation stems from the need
to analyze data resulting from BLUU-Tramp experi-
ment [40,39]; therefore some methodological choices re-
flect features of the method. An experimental session
of BLUU-Tramp produces two sequences of around 200
2D HMQC spectra, that are acquired at regular temper-
ature increments (usually 0.1-0.2K) and time intervals.
The choice of a tiny temperature step provides a quasi-
continuum evolution. During the first thermal ramp,
the protein, previously deuterium-exchanged, undergoes
a D-H isotopic exchange with the aqueous solvent. The
second thermal ramp, analyzed by our routine, is used
as reference in absence of isotopic exchange and it mon-
itors the evolution of the NMR peaks as the tempera-
ture slowly changes: every peak shows a slow chemical
shift drift (variation of the position in the 15N and 1H
frequency space) along with a gradual modification of
the intensity and linewidth.

The aim of this work is to implement an automatic
data-analysis methodology which allows automatic peak
detection (picking) in every spectrum and peak track-
ing between spectra, henceforth dubbed TinT (Trace
in Track).

In literature peak picking and peak tracking analy-
ses are two distinct concepts and are often considered
separately.

As for the former procedure, the first proposal has
been STELLA [25] in 1990 and the software currently
used are based on a variety of methods, such as peak
properties [20,24], machine learning algorithms [3,7,11,
43], spectral decomposition [2,27,28,34], wavelet smooth-
ing [30], Benjamini-Hochberg procedure [1], Monte Carlo
stochastic approximation and Bayesian statistics [8] and
computer vision [26]. A comprehensive review has been
given by Liu and coworkers in the introduction of the
article describing their algorithm WaVPeak [30].

Fewer articles deal with the automation of the track-
ing procedure. The proposed methods in the litera-
ture are: APET/PROPET (in Felix-Autoscreen) [37],
based on bipartite graph matching by systematic tree
search methods and simulated annealing approach with
heuristic simplification, Nvmap (NMRViewJ [24]) [18],
based on search of the nearest pair with a greedy al-
gorithm, GAPT [38] based on best-score-selection un-
der constrain with heuristic simplification, PeakWalker
[23] based on many-to-one mapping through maximum
weighted k-dimensional matching of the graph. On one
hand, all of them have implemented algorithms with a
list-based approach considering matching among their
own generated peak lists or given by one of the afore-
mentioned peak pickers. Any error or artifact present in
the peak list is not correctable since the main routine
does not check the actual data. On the other hand, they
di↵er in the score function used for the matching and in
the level at which the best choice is made: peaks, pair
of spectra or whole paths. Moving from local to global
strategies brings all the approaches beyond computa-
tional possibilities for protein NMR spectra due to the
NP-completess of the problem [23].

Our method is applicable to a series of spectra in
which the features of the peaks undergo small modifi-
cations from one spectrum to the next due to quasi-
continuum progressive sample perturbations. To deal
with this issue we propose a novel approach based on
morphological filtering [31,45,46] and decomposition. A
selection of the region of interest is performed around
local maxima collected over a threshold, roughly cho-
sen low enough to maintain all the signal; subsequently
signal-peaks are singled-out based on their persistence
among the sequence of spectra, considered simultane-
ously. This is allowed by the application of 3D mathe-
matical morphology which produces the removal of the
fluctuating noise and the clustering by contact of the
signal peaks. The result is a set of masks selecting each
group of connected peaks. The estimated number of
peaks of each selection is used by a later subroutine
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that performs a decomposition to obtain the parame-
ters of the peaks, modelled as gaussians.

The validity and the e�ciency of TinT are demon-
strated first on realistic synthetic data, where more
than 90% of the tracks are correctly recognized, and
then applying it to three BLUU-Tramp experimental
sessions using 1H-15N HMQC spectra on three di↵er-
ent human proteins: Acylphosphatase (hAcP), �2-mi-
croglobulin (�2-m) and Lysozyme (hLys).

2 Methods and algorithms

2.1 Mathematical morphology

The novelty of our approach is to find a solution of the
tracking issue in the theoretical framework of mathe-
matical morphology, a powerful theory for image pro-
cessing [46,45] based on nonlinear geometric approach
[31]. For an introduction to Mathematical morphology
for image processing see e.g. a chapter by Glasbey [21].
The basic morphological tools are the dilation (�) and
the erosion ( ) algorithm that work on a black and
white image by altering the distribution of the two
colors in two opposite way (Fig. 1): dilation extends
the white portion over the black one following a shape
defined by the user through a “Structuring Element”
(SE); erosion works in the opposite way.

These 2D-image operations can be easily extended
to be applied on multidimensional binary matrices, defin-
ing:

dilation A� S =
S

z2S Az

erosion A S =
T

z2S Az

where Az is a translation of the image A and S is a SE.
Their combination defines new operators with more

complex and sophisticated action (Fig. 1) such as:

opening � =  � (1)

closing • = � (2)

We took advantage from the potentiality of the open-
ing operator to erase details smaller than a SE while
maintaining unaltered the remainder (Fig. 5b). Then
we exploit the capability of the closing operator to con-
nect structures separated by volumes smaller than a SE
(Fig. 5c).

2.2 Procedure

The work-flow of our routine is composed by five steps:

1. Default setting parameters definition: this proce-
dure overcomes the need of manual parameter spec-
ification. An output file summarizes all the param-
eters and permits their modification.
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Fig. 1 Morphological operators behavior. The arrows repre-
sent the specified algorithms that transform the input images
in output images, with the given SE

2. Selection of the region of interest: identification of
all the local maxima over a rough intensity threshold
in every spectrum and association of a correspond-
ing area.

3. Morphological filter: sequence of morphological op-
erators to track all peak representations along di↵er-
ent spectra, while discriminating signal from noise.
This stage allows us to group peaks that sooner or
later overlap along their evolution, assembling them
in a 3D structure that we shall refer to as 3D-blob.

4. Weighted decomposition: fitting all evolving peaks
in each 3D-blob slice with 2D-gaussians.

5. Results validation: parameters statistical analysis to
select internally coherent results.

The output of TinT is the evolution of the five fun-
damental descriptors of each peak over the time/ tem-
perature: intensity (I), 1H and 15N frequency positions
(�H, �N) and linewidths (�H, �N). In the following,
each step of the procedure will be described in some
detail.

2.2.1 Default setting parameters definition

A starting procedure was written to help the user to
manage parameters needed by the algorithm, although
the possibility of modification is maintained with an
autogenerated output file. The automatic definition of
all the default values through a fast analysis of the first
spectrum avoids human bias.

The typical expected peak linewidths, �H̄ and �N̄ ,
are statistically defined as the median of the set of
evaluated linewidths since the signals of protein HSQC
spectra can be guessed to exhibit similar shapes in prin-
ciple. The peak linewidths are estimated, for the first
twenty highest peaks, as half horizontal and vertical
pixel dimension of the peak section with a threshold of
66% of the maximum. �H̄ and �N̄ will be involved in
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the determination of the limit radius (see section 2.2.2),
in the computation of � of the weight function (see Eq.
(5)) and as starting guess in the decomposition proce-
dure (see section 2.2.4).

In order to let the user define the threshold used
to initially filter the spectra, an estimation of base-
line (B) and the noise level (N) are necessary. Follow-
ing the white noise definition and the observation that
the total signal area occupies a minority of the spec-
trum area, we compute the center (µ) and the width
(�) of the distribution of the intensities fitted by a
gaussian, that estimate the baseline and noise level, re-
spectively. The fitting is performed around the statis-
tic mode value because the contribution of signals af-
fects the gaussian shape only at very high intensities,
as evidenced in Fig. 2. This estimation method has
been named MIDNE (Modeling Intensity Distribution
for Noise Estimation). TinT will propose setting the
threshold at B + 5N [42].
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Fig. 2 The MIDNE method applied to the first hAcP spec-
trum. The distribution of the intensity is represented with a
histogram. The green dashed line ws half of the maximum bin
height. The bins higher than this value, shown in red, are used
to reconstruct the gaussian distribution shown with the red
line. The baseline (B) and the noise level (N) are estimated
by the center (µ) and the width (�) of the distribution. The
three magenta dotted lines show µ � �, µ and µ + � of the
distribution.

2.2.2 Region of interest selection

All the spectra are uploaded with a zeroing of all points
below the previously estimated intensity threshold. A
selection of local maxima within a given window is im-
plemented. To apply the subsequent morphological fil-
ter, an area, called spot, has to be assigned to each
of the recognized maxima: we chose the base of the
peak portion above a local threshold corresponding to

a given percentage of the peak intensity (Percentage
Local Threshold, PLT).

It was soon noted that low intensity local maxima
can strongly a↵ect the area of the selected spot when
overlapping with higher intensity peaks (Fig. 3). The
proposed solution is to limit the area of the lower spot
by a disk of a radius equal to 1.5 times the maximum
between �H̄ and �N̄ . In this way, a black and white
image is obtained from each spectrum containing all
the signal spots (Fig. 4).
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Fig. 3 Example of spot evaluation for two overlapped peaks:
PLTs are shown with contour lines in red and blue. The low
intensity peak a↵ects and overestimates the area around the
higher peak. The magenta dotted line shows the circumfer-
ence limiting the area of the lower peak to avoid the overesti-
mation of areas. The filled areas are assigned to two maxima.

2.2.3 Morphological filter

The input for the filter is a 3D-matrix composed by
the obtained black and white images, stacked one over
the other, in which the planar dimension are 1H and
15N frequencies of the 2D spectrum itself and the third
dimension is the time/temperature (Fig. 5a). The sig-
nal spots are persistent from one spectrum to another
or, at most, a slow shift is observed due to thermal
drift. In this way, slanted columns, isolated or inter-
secting each other, will be assembled in the matrix
along the third dimension. At variance, noise which is
by definition uncorrelated between single spectra, tends
to create shorter and unoriented 3D connected struc-
tures. Both described features are easily recognizable
in Fig. 5a. We designed a filter that cleans the matrix
exploiting these di↵erent behaviors. It works by erasing
(with a morphological opening) black volumes smaller
than a given SE (Fig. 5b) and then connecting (with
a morphological closing) the surviving volumes closer
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Fig. 4 Comparison between global single threshold (in gray
and black) and our PLT method (black only).

than the proper SE (Fig. 5c). This SE has been cho-
sen with a cylindrical shape with the height along the
third dimension, to better resemble the silhouette of
the column. Minimum radius and height are chosen to
be sure to maintain the shape of the peaks however
they can be adjusted by the user by modifying the pa-
rameters in the file autogenerated by the starting pro-
cedure. The connected-components labeling algorithm
is subsequently used to uniquely identify subset of con-
nected components, one for each surviving 3D structure
(3D-blob) (Fig. 5d). The filtered 3D-matrix is used as a
mask to select the signal data and each 3D-blob recalls
one group of peaks at a time.

To exclude noise artifacts we analyze only blobs
whose persistence is longer than an established cuto↵
(two times the length of the opening SE). This choice
allows anyway to take in account peaks that disappear
or emerge as the physical and chemical conditions are
changing.

2.2.4 Weighted decomposition

The aim of this procedure is the reconstruction of syn-
thetic spectra by decomposition and modeling of peaks
as gaussians. This procedure allows one to obtain I,
�H, �N , �H and �N of the 2D gaussian for each peak
in each spectrum.

As a prerequisite, the procedure needs an estima-
tion of the number of the involved peaks (nG) in ev-
ery 3D-blob. In fact, at this stage, the 3D-blobs that
contain one recognized peak for each layer are already

a)

b)

c)

d)

Fig. 5 Elaboration of data during the weighted decomposi-
tion. The input 3D-matrix (a), the output of the opening al-
gorithm (b), the output of the closing algorithm (c) and the
output of the connected-components labeling algorithm (d)
are shown. Gaps (filled by the closing operator) are indicated
by the arrows.
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tracked in their evolution. If more than one peak is in-
volved in a blob, the appropriate number of gaussians
must be used for the decomposition to identify and iso-
late their contribution to the overall landscape.

A routine estimates nG by the following steps:

– the number of recognized maxima for each layer in
the 3D-blob is stored in an array, A;

– A is processed with a median filter to smooth sharp
fluctuations;

– the first 2 modal values are calculated and the high-
est is chosen if its frequency is greater than a given
percentage (5%) of the total number of spectra.

nG also allows to identify the best layer in the 3D-
matrix in which the decomposition procedure starts:
within the longest interval of coincidence between nG

and A[i], the most distant layer from the interval bor-
ders is chosen, because in the corresponding spectrum
the peaks are well distinguished.

The decomposition is implemented as a minimiza-
tion algorithm with weighted data as target (Fig. 6).
For each layer, the decomposition modifies the param-
eters

x̄ = {Ik, �Hk, �Nk,�Hk,�Nk|k = 1, ..., nG}

to minimize a cost-function,

C(x̄) =
X

p̄

Hr
⇣
w(p̄) ⇤

⇥
D(p̄)�R(p̄; x̄)

⇤⌘
(3)

where w, D, and R are the weight function, the original
data and the reconstructed spectrum in the spectral
coordinate space (p̄ = (F1, F2)), respectively. Hr is the
Huber function

Hr(v) =

⇢
1
2v

2, |v| < r

rv � 1
2r

2, |v| � r
(4)

where r is a cuto↵ value equal to the initial threshold
value (see section 2.2.1). The Huber function substi-
tutes the square function, normally used for minimiza-
tion, to reduce the contribution of original data outliers
and to obtain a more robust evaluation of the recon-
struction.

The weight function focuses the solution of the op-
timization on the neighborhood of the recognized max-
ima: we propose to use as weight function the section
of the 3D-blob relative to the considered layer in which
the sharp transition at the borders is smoothed by ex-
tending it with a gaussian shape having a linewidth
comparable with the peaks (Fig. 6b):

w(p̄) =

(
1 p̄ 2 M

e�(
d(p̄,M)

� )
2

p̄ 62 M
(5)

where M is the morphological recognition set, d
�
p̄,M

�

is the minimum Euclidean distance between the p̄ point
and all the point in M and � is a distance cuto↵ cho-
sen as the maximum typical expected peak linewidth
evaluated in the starting procedure (section 2.2.1).

a)

c)

b)

d)

Fig. 6 Weighted deconvolution: data (a), weight function (b),
peak reconstruction (c) and remainder (d).

The peak reconstruction (example in Fig. 6c) in the
starting layer needs a guess of the 5 parameters involved
for each peak. I, �H and �N can be directly taken from
the recognized maxima (section 2.2.2), while �H̄, �N̄
(section 2.2.1) are used to estimate �H, �N . After every
estimation �H, �N will be forced to be positive.

For all the other layers, along the downstream di-
rection the starting parameters are estimated using the
evaluated ones of the previous spectrum, while the up-
stream starting parameters consider the next spectrum
in the sequence.

2.2.5 Result validation

Statistical analysis is performed on position and line-
widths of peaks resulting from the decomposition stage
to select valid results. The following condition must be
sequentially met:

1. �H and �N must be within the analysis window
around the weight function;

2. �H and �N must not be within the areas of a di↵er-
ent blob with respect to the analyzed one;

3. �H and �N must be limited by half of the spectrum
dimension;

4. in every spectrum, �H and �N must be within the
interval centered on the median of the linewidths of
the isolated peaks at the same temperature and 6
MAD (Median Absolute Deviation) wide.

It must be noticed that filtering the results after
the decomposition, instead of imposing the conditions
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as a constrain to the optimizer, allows to use the same
results as a discriminant for the quality of the peak
identification. In fact results that do not meet the above
criteria are symptoms of various kind of error such as:

– peaks that disappear or appear during physical evo-
lution,

– excessive overlap between peaks,
– wrong estimation of involved peaks in a blob (nG).

3 Experimental methods

3.1 Synthetic spectra

For testing purposes synthetic spectra were generated
with realistic features. In particular, one hundred chem-
ical shifts were randomly selected from the (N,HN) as-
signments of hLys. Consistently with most tracks, the
chemical shift temperature dependence was approxi-
mated to be linear. The experimental reconstruction
of complete tracks from the spectra of the three an-
alyzed proteins, i.e. hAcP, �2-m, hLys, provided the
temperature coe�cients which were randomly assigned
to the synthetic peaks. Intensities and linewidths were
randomly assigned in a range of 0.4 to 1.5, and 0.8
to 1.2, respectively, of the averages observed on the
three proteins. The time dependence of the intensity
was assumed to be at most quadratic, whereas line-
widths decrease exponentially towards 60% to %90 of
their starting values, consistent with experimental ob-
servation (e.g. in Fig. 8). 210 spectra were generated.
Noise was added by convolving gaussian white noise
with a bidimensional gaussian with parameters opti-
mized to reproduce experimental noise.

3.2 NMR Experiments

The BLUU-Tramp sessions of �2-m (100 amino acids,
279.2 K - 317.2 K), hAcP (99 amino acids, 290.9 K -
315.8 K) and hLys (140 amino acids, 283.0 K - 336.0 K)
are used to demonstrate the e↵ectiveness of our algo-
rithm.

Chemical shift changes during the thermal ramp
were monitored in 1H-15N HMQC-SOFAST [44] or 1H-
15N BEST-TROSY [29]. The spectra of 15N-labeled pro-
tein samples were acquired on a Bruker Avance oper-
ating at 500 MHz (1H frequency) or a Bruker Avance
III equipped with cryoprobe and operating at 600 MHz
(1H frequency), respectively at Biophysics laboratory
of Udine University and Core Technology Platform of
New York University Abu Dhabi. Data were collected
over sweep widths of 14 ppm (1H) and 32 ppm (15N)

with 768 and 80 points, respectively. All remaining con-
ditions were set according to the protocol previously
reported [39,40].

3.3 Spectral data processing

The spectra were processed with NMRpipe [12] with a
sinebell squared apodization function. 1K ⇥ 512 points
real spectra were obtained after t1 linear prediction,
apodization, zero-filling and finally Fourier transforma-
tion.

3.4 TinT

The TinT algorithm is coded in Octave (version 4.0.0)
[14] with image (version 2.4.1), optim (version 1.4.1)
and statistics (version 1.2.4) packages. The code is avail-
able from the authors upon request.

4 Results and Discussion

4.1 Results on synthetic data

Synthetic data, generated as described in 3.1, were anal-
ysed by TinT. In order to evaluate the accuracy of the
method, for each spectrum the matrix of distances be-
tween reconstructed and original peaks was computed.
All peaks which were closer than the original linewidths
to an original peak, were considered compatible with
the original peak. Compatibility at this stage is meant
in a many-to-many relationship, due to overlaps or prox-
imity within linewidths. Finally, the most persistent
matches are used to produce the output one-to-one map-
ping between TinT and original tracks. Once a one-to-
one mapping has been obtained, the accuracy of TinT
was evaluated by two tests:

– the number of complete tracks reconstructed over
the total number of original tracks;

– the number of correct peak assignments in all spec-
tra over the product of number of original tracks
times number of spectra, in order to account for
both complete and partial track reconstructions.

The analysis was repeated for di↵erent noise level (with
standard deviation from zero to 10% of the peak inten-
sity mean, ranging up to 25% of the lowest intensity
peak), and by progressive downsampling of the signal.
All results are reported in table 1 and table 2.

It is seen from the tables that the performance of
TinT in both complete tracks and detailed reconstruc-
tion is excellent for realistic noise levels (say up to 2%)
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and it starts to deteriorate going to extreme noise lev-
els. Although the e↵ect of downsampling depends on
the specific experimental conditions (e.g. the tempera-
ture interval between consecutive spectra) it seems im-
portant that a quasi-continuous variation of spectral
features is met in the experiments, as it can be inferred
from the results in table 2.

Table 1 TinT results for synthetic data with increasing noise
level

N/S(mean) N/S(min)
complete

tracks

detailed

reconstruction

0 % 0.0 % 97 % 99.96 %

1 % 2.6 % 98 % 99.8 %

2 % 5.2 % 96 % 99.7 %

3 % 7.7 % 87 % 97.2 %

4 % 10.3 % 89 % 97.8 %

5 % 12.9 % 83 % 96.8 %

6 % 15.5 % 73 % 96.9 %

7 % 18.1 % 65 % 90.4 %

8 % 20.6 % 64 % 86.2 %

9 % 23.2 % 52 % 80.4 %

10 % 25.8 % 42 % 75.0 %

Table 2 TinT results for downsampled synthetic data with
a 2% N/S(mean) ratio.

downsampling
complete

tracks

detailed

reconstruction

1 96 % 99.7 %

2 93 % 99.1 %

3 90 % 97.4 %

4 76 % 90.2 %

5 69 % 85.4 %

6 56 % 79.8 %

4.2 Results on experimental data

We tested TinT on three BLUU-Tramp experimental
sessions using 1H-15N HMQC spectra on three di↵erent
human proteins hAcP, �2-m and hLys of 100, 99 and
140 residues, respectively.

For each recognized peak, I(t), �H(t), �N(t), �H(t)
and �N(t) were determined (an example is shown in
Fig. 8).

The high number of spectra, peaks and complexi-
ties, such as the appearance and the disappearance of
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128

8.58.558.68.658.78.75
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1
 
(
p
p
m
)
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Fig. 7 Recognition of a non linear path in hLys NMR spec-
trum. Lines show the evolution of the position of the rec-
ognized peaks. The flow of the time is represented with a
chromatic scale.

signals as well as extensive overlapping do not allow
to establish a ground truth, i.e. exact number of peaks
and their positions and shapes. Nevertheless in a single
spectrum we expect to observe a number of peaks close
to the number of N-H pairs. Thus we refer the number
of the resulting tracks to the protein length. Consider-
ing a reasonable track the one spanning at least half
of the number of experiments, the estimated percent-
ages of TinT recognition are around 90%, 88%, 88%
for hAcP, �2-m and hLys, respectively (table 3).

Table 3 TinT results for hAcP, �2-m and hLys considering
tracks spanning at least half of the number of experiments

Protein Residues Tracks Coverage

hAcP 100 90 90%

�2-m 99 87 88%

hLys 140 123 88%

It must be noticed that our method allows us to
recognize nonlinear paths, as shown in Fig. 7, similar
to those seen in ligand binding studies [48].

4.3 Comparison with PeakWalker

To better evaluate the method we compared TinT out-
put with the results of PeakWalker [23], a state-of-the-
art peak tracking algorithm. It must be noted that
PeakWalker has been designed to analyze a smaller
number of spectra with larger chemical shift changes
than the one analyzed here. Moreover multiple runs of
the program (which are not performed here) would re-
sult in better estimation of tracks, and finally it pro-
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a)

c)

b)

d)

Fig. 8 Evolution of the 5 fundamental parameters of one hAcP peak: I(t) (a), �H(t) and �N(t) (b), �H(t) (c) and �N(t) (d).

vides multiple choices for track end point mapping,
whereas our focus is on track reconstructions. For this
reasons the following comparisons should be regarded
with some caution. In the following we describe our us-
age of the program to the best of our possibilities.

In order to reduce human biases in the comparison
concerning thresholds, peak picking and validation, the
following precautions were adopted:

– the same threshold was used for both methods;
– the peaks coordinates calculated by the region of in-

terest selection were used to fill the peaklists needed
for PeakWalker;

– no inferior limit was given to the tracks length.

There were cases in which PeakWalker followed with
the same track the evolution of more than one peak
(Fig. 9b). To better evaluate the performance of the al-
gorithm, these cases should be filtered but a proper fil-
ter would need a prior knowledge of the position of each
peak in all the spectra and reconstructing the whole
tracks manually would have been impractical.

Each experimental set was analyzed with two dif-
ferent thresholds: a high threshold (TH), that selects
mainly the signals discarding low intensity peaks, and
a low threshold (TL), that keeps those peaks but allows
also some noise to enter in the process. Following the
Rose criterion [42], they were set as follows:

TL = B + 4N (6)

TH = B + 8N (7)

where B is the baseline and N is the noise level, both
calculated with the starting procedure (see section 2.2.1)
on the first spectrum, which is the one less a↵ected by
thermal noise. Tables 4, 5 and 6 report the number of
signals at di↵erent thresholds, grouped by track length.

The outcomes highlight that, at a given threshold,
TinT was able to recognize a higher amount of longest
tracks than PeakWalker and this is more evident when
the TL is used (Tables 4, 5, 6 and Figures 10, 11 and
12). Furthermore, on decreasing the threshold from TH

to TL, the number of long tracks recognized by TinT
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Fig. 9 Comparison between TinT (a) and PeakWalker (b) resulting tracks
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Fig. 10 hAcP. Comparison between TinT (blue) and PeakWalker (red) results at TL (a) and TH (b): number of recognized
tracks, grouped by track length.
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Fig. 11 �2-m. Comparison between TinT (blue) and Peakwalker (red) results at TL (a) and TH (b): number of recognized
tracks, grouped by track length.
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Table 4 hAcP. Comparison between TinT and PeakWalker results: number of recognized tracks at TL and TH , grouped by
track length.

track length

0-26 26-51 51-76 76-101 101-126 126-150 150-175 175-200 200-225 225-250

TinT
TL 31 2 5 1 3 2 2 5 7 75

TH 18 5 3 2 3 0 3 4 5 65

PeakWalker
TL 118 31 10 9 8 6 12 1 5 5

TH 29 9 6 2 2 1 5 4 9 51

Table 5 �2-m. Comparison between TinT and Peakwalker results: number of recognized tracks at TL and TH , grouped by
track length.

track length

1-22 22-43 43-64 64-85 85-106 106-126 126-147 147-168 168-189 189-210

TinT
TL 21 5 8 4 1 1 0 3 2 82

TH 11 3 0 2 2 2 4 6 5 68

PeakWalker
TL 101 38 13 8 4 7 3 4 0 5

TH 64 19 15 7 6 10 7 5 7 45

Table 6 hLys. Comparison between TinT and Peakwalker results: number of recognized tracks at TL and TH , grouped by
track length.

track length

0-22 23-44 45-66 67-88 89-110 111-132 133-154 155-176 177-198 199-213

TinT
TL 50 17 9 6 6 8 7 7 12 93

TH 11 3 8 5 9 5 10 7 10 79

PeakWalker
TL 205 87 39 2 5 1 0 0 0 0

TH 81 101 18 11 23 10 12 4 10 8

increased, while decreasing for PeakWalker (tables 4, 5,
6).

The high number of short tracks recognized by Peak-
Walker at low thresholds is not due to a better perfor-
mance with respect to TinT, but rather to the capabil-
ity of the latter of recognizing much more long tracks
than PeakWalker within the same pool of experimental
data.

5 Conclusions

We developed TinT, a novel method for peak picking
and tracking based on mathematical morphology and
decomposition, tailored for the analysis of stepwise per-
turbed spectra. TinT can be suitable for monitoring
various kind of NMR and in general spectroscopic ex-
periments and it is able to give a detailed description of
all the fundamental parameters of each peak during a
stepwise evolution. The method was tested on synthetic
spectra showing excellent results on realistic noise lev-

els an performing well even in extreme noise conditions.
TinT was proved to be successful in tracking peaks
in sets of hundreds of spectra resulting from BLUU-
Tramp sessions performed on three di↵erent proteins
amenable to NMR analysis. Quasi-continuous changes
in spectral parameters between consecutive spectra are
required for the method to work at best, as seen on
downsampled synthetic data. In experiments where the
latter condition is met the method is able to reconstruct
complete peaks’ evolution.
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