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Summary 18 

• Self-inhibition of growth has been observed in different organisms, but an underlying 19 

common mechanism has not been proposed so far. Recently, extracellular DNA has 20 

been reported as species-specific growth inhibitor in plants and proposed as an 21 

explanation of negative plant-soil feedback. In this work the effect of exDNA was 22 

tested on different species to assess the occurrence of such inhibition in organisms 23 

other than plants. 24 

• Bioassays were performed on six species of different taxonomic groups, including 25 

bacteria, fungi, algae, plants, protozoa and insects. Treatments consisted in the 26 

addition to the growth substrate of conspecific and heterologous DNA at different 27 

concentration levels. 28 

• Results showed that treatments with conspecific DNA always produced a 29 

concentration dependent growth inhibition, which instead was not observed in the 30 

case of heterologous DNA.  31 

• Reported evidence suggests the generality of the observed phenomenon which opens 32 

new perspectives in the context of self-inhibition processes. Moreover, the existence 33 

of a general species-specific biological effect of exDNA raises interesting questions 34 

on its possible involvement in self-recognition mechanisms. Further investigation at 35 

molecular level will be required to unravel the specific functioning of the observed 36 

inhibitory effects. 37 

 38 

 39 

Key words: autotoxicity, exDNA, self-recognition, exDNA functions, heterologous DNA. 40 

41 

Page 2 of 19New Phytologist



 

 

3

Introduction 42 

Self-inhibition or autotoxicity has been reported for several organisms including bacteria 43 

(Andersen et al. 1974; Trinick and Parker 1982), fungi (Bottone et al. 2011), algae (Inderjit 44 

and Dakshini 1994), plants (Singh et al. 1999) and animals (Akin 1966). 45 

The mechanism has been mostly ascribed to the release and accumulation of different toxic 46 

compounds in the growth environment, but a specific class of chemicals accounting for both 47 

toxicity and species-specificity has never been identified. On the other hand, theoretical and 48 

modelling studies on species coexistence have suggested the involvement of a general 49 

mechanism to explain species-specific inhibition (Freitas and Fredrickson 1978; Bever 1994; 50 

Mazzoleni et al. 2010). 51 

The recent observations by Mazzoleni et al. (2014) of inhibitory effects by extracellular self-52 

DNA in plants provided new perspectives for understanding litter autotoxicity and negative 53 

plant-soil feedbacks. The authors reported significant evidence that fragmented extracellular 54 

DNA (exDNA) has a concentration dependent and species-specific inhibitory effect on 55 

plants’ growth. These findings suggested an unexpected functional role of exDNA in intra- 56 

and inter-specific plant interactions at ecosystem level. 57 

While the molecular mechanisms behind these phenomena certainly deserve in-depth 58 

investigations, more basic questions arise: does extracellular self-DNA act as inhibitor on 59 

biological systems other than plants? Could this be the general mechanism behind the 60 

observed phenomena of self-inhibition and autotoxicity? 61 

62 
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Materials and Methods 63 

In order to test the occurrence of species-specific inhibition by exDNA, a set of laboratory 64 

experiments was performed on six species selected across different taxonomic groups.  65 

Systematic experiments included exposures to self DNA and to heterologous DNA from 66 

Arabidopsis thaliana as a model organism, plus a control with distilled water. Extraction of 67 

genomic DNA from each species was performed using standard Qiagen® (Valencia, CA, 68 

USA) extraction kits and DNA purity was spectrophotometrically assessed at 260 nm on a 69 

NanoDrop TM 1000 (Thermo Scientific, Wilmington, DE, USA) and visually verified on 70 

1.5% agarose gel using Sybr® Safe (Invitrogen). The extracted DNA was fragmented by 71 

sonication according to Mazzoleni et al. (2014) in order to obtain fragments mainly 72 

distributed in the range between 50 and 1000 bp, with similar size distribution for all DNA 73 

samples. The organisms were exposed to increasing concentrations of self-DNA while 74 

heterologous DNA was applied at the maximum concentration tested for self-DNA. Other 75 

experiments were preliminary performed to assess possible different effects from different 76 

sources of heterologous DNA. The specific experimental settings and treatment 77 

concentrations were adapted to the growth requirements of the different species as reported 78 

below. Bacillus subtilis was selected as target Gram-positive bacterium. It was pre-grown on 79 

Luria Broth (LB) at 37 °C with agitation (200 rpm). An inoculum was prepared with 10 ml of 80 

preculture and 4 ml of LB. Treatments included self-DNA at three concentration levels (40, 81 

200, and 400 µg/ml) and heterologous DNA (400 µg/ml) from A. thaliana, Aspergillus niger, 82 

Escherichia coli, and Sarcophaga carnaria. All cultures were incubated with agitation (200 83 

rpm) at 37 °C, with three replicates for each treatment and the control. After 24 hrs of 84 

incubation, 0.5 ml were taken from each tube and serial dilutions in LB were prepared, from 85 

which 100 µl were placed on LB agar plates. Plates were incubated at 37 °C until appearance 86 

of colony-forming units (CFU). 87 
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Trichoderma harzianum was used as target fungus in a bioassay on spore germination. 88 

Fungal spores were produced by pure cultures on potato dextrose agar (PDA). Spores were 89 

diluted to a concentration of 1 x 10
6
 ml

-1
. Treatments included extracellular self-DNA (8, 80, 90 

and 800 µg/ml) and heterologous DNA (800 µg/ml) from A. thaliana, Aspergillus niger, 91 

Bacillus subtilis and Sarcophaga carnaria, with three replicates for each treatment. The 92 

germination bioassay was performed in ELISA plates (96 wells, 100 µl each), each well 93 

coated with 10 µl of liquid 10% PDB substrate, DNA at treatment concentration, fungal 94 

spores, and sterile distilled water. Spore germination and germ tube elongation of the conidia 95 

were assessed by spectrophotometric analysis and optical microscopy after 20 hrs of 96 

incubation at 24 °C. 97 

The green microalga Scenedesmus obliquus was maintained in Chu’s n° 10 medium (Chu 98 

1942). The cultures were incubated at 25°C under 270 µmoles photons m
-2

 sec
-1

 light 99 

intensity with 16:8 hrs light photoperiod. Treatments of S. obliquus were carried out with 100 

self-DNA (50 and 500 µg/ml) in the culture medium and heterologous DNA (500 µg/ml) 101 

from A. thaliana, with two replicates for each treatment. Algal growth was assessed by cell 102 

counts at the optical microscope after serial dilutions, and growth curves were built for each 103 

treatment, until reaching stationary phase (7 days). 104 

Acanthus mollis seedlings were treated with self-DNA (2, 20, and 200 µg/ml) and 105 

heterologous DNA (200 µg/ml) from A. thaliana, Quercus ilex and Sarcophaga carnaria, 106 

with three replicates for each treatment. Bioassays were done in vitro by using surface sterile 107 

seeds (n=20 in each plate) placed in 9 cm Petri dishes over sterile filter papers imbibed with 4 108 

ml of test solutions. Seedling root length was measured. 109 

Plasmodia of the ameboid protozoan Physarum polycephalum, a slime mold widely used in 110 

bioassays were maintained in the dark at 24 °C on 1% agar plates and were fed with oat 111 

flakes. Laboratory stocks were subcultured onto new 1% water agar plates and fed oat flakes. 112 
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Mature cultures (15 days) on Petri plates were used to produce slime mold biomass for total 113 

DNA extraction. Tip portions (17±5 mm
2
) of the plasmodia were taken from stock cultures 8 114 

hours after feeding time and placed on agar substrates at the conditions of maintenance, with 115 

three replicated plates for each treatment and the untreated control. Extracted self-DNA (290, 116 

580, and 1060 µg/ml) and heterologous DNA (1060 µg/ml) from A. thaliana were applied on 117 

0.2 g of oat flakes placed at the centre of each plate. Pictures of plasmodial growth patterns 118 

were taken from each plate every 24 hrs for 96 hrs and used to calculate spreading area size 119 

following Takamatsu et al. (2009). 120 

The dipteron Sarcophaga carnaria was grown in pure culture on 12 x 12 cm
2
 plates (2 cm 121 

height) at 10 °C, fed with ground meat. Treatments included self-DNA (10, 100, and 1000 122 

µg/ml) and heterologous DNA (1000 µg/ml) from A. thaliana mixed with 1 g of food. Three 123 

replicated plates, each containing 10 larvae, were prepared for each treatment, plus the 124 

untreated control. All plates were incubated in the dark at 10 °C. Development, survival, and 125 

time required for the formation of pupae were monitored every 3 days during a 21-days 126 

incubation period. 127 

A generalized linear mixed model (GLMM) was used to analyse the results of the bioassays. 128 

Since different metrics were used to assess the performance of target species, data were 129 

expressed as percent of untreated controls. Tested effects on species performance included 130 

the target species (6 levels) as random effect, and treatment (3 levels: heterologous DNA, 131 

self-DNA and untreated control) and 2nd order interaction as fixed effects. Since the 132 

experimental design was not fully balanced with respect to concentration levels of DNA 133 

treatment, a further GLMM was tested to assess the effect of DNA concentration, limited to 134 

samples treated with self-DNA. Also in this model the target species (6 levels) and its 135 

interaction with self-DNA concentration were included as random effects. In both GLMMs 136 

pair-wise differences were tested for statistical significance using post-hoc Duncan tests. 137 
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 138 

Results 139 

The experiments produced consistent results for all target species with evident effects of 140 

inhibition by self-DNA (Figure 1). The effect of all treatments was highly significant with 141 

different responses to either heterologous or self-DNA without differences between species 142 

(Table 1a). The application of heterologous DNA did not produce any significant growth 143 

reduction compared to control, with the exception of B. subtilis which showed some 144 

inhibition also in this case (Table 2).  This was consistent with results from preliminary tests 145 

with different heterologous DNA sources, showing the absence of inhibitory effects in all 146 

cases, with the exception of the tested bacterium, which was inhibited at variable levels by 147 

heterologous DNA  (Table 3).  148 

On the contrary, treatments with conspecific DNA always resulted in a concentration 149 

dependent growth reduction (Table 1b), showing an inhibitory effect on all tested species 150 

(Table 2), consistent with the observations on plants by Mazzoleni et al. (2014). At lower 151 

self-DNA concentration the inhibitory effect was reduced with different responses for 152 

different species (see significant interactive term in Table 1b). 153 

 154 

Discussion 155 

Species-specific inhibitory effects of exDNA has been recently reported for higher plants 156 

(Mazzoleni et al. 2014). Here we extend such results to a set of organisms from different 157 

taxonomic groups.  158 

Extracellular DNA has been found both in soil and marine sediments in large amounts 159 

(Steffan et al. 1988). Its long persistence in soil has been related to chemical stability and 160 

protection against enzymatic degradation by absorption to both mineral and organic 161 

components (Levy-Booth et al. 2007). Such accumulation of DNA molecules mainly derives 162 
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from degradation of organic matter, though release by excretion from living cells is also 163 

reported (Nielsen et al. 2007). 164 

Extracellular DNA has been proposed to serve different functions (Vlassov et al. 2007). It has 165 

been proposed to be a major source for the transfer of genetic information (Weinberg and 166 

Stotzky 1972; Graham and Istock 1978; Nielsen et al. 2007). It has been reported to play a 167 

role in the formation of microbial biofilms (Whitchurch et al. 2002; Steinberger and Holden 168 

2005), in the protection from pathogen attack in root cap “slime” (Wen et al. 2009; Hawes et 169 

al. 2011) and in extracellular traps (Brinkmann et al. 2004; Goldmann and Medina 2012). 170 

Extracellular DNA has also been considered as a relevant source of nutrients for plants 171 

(Paungfoo-Lonhienne et al. 2010) and microbes (Finkel and Kolter 2001; Palchevskiy and 172 

Finkel 2006; Pinchuk et al. 2008).  173 

The role of exDNA as species-specific inhibitor has been recently reported for higher plants 174 

(Mazzoleni et al. 2014), providing a novel explanation for negative plant-soil feedbacks such 175 

as inhibition of plant recruitment, growth and reproduction in soils previously occupied by 176 

conspecifics (Bever et al. 1997, van der Putten 2003; Kulmatiski et al. 2008; Mangan et al. 177 

2010). The same effect could be the explanation of the frequently reported interspecific 178 

facilitation but rare occurrence of intraspecific facilitation in terrestrial ecosystems 179 

(Bonanomi et al. 2010). Further studies are needed to clarify the interplay between DNA 180 

persistence in the environment and related ecosystem diversity. 181 

The experiments presented in this paper confirmed the occurrence and the concentration 182 

dependency of the inhibition by extracellular self-DNA in bacteria, fungi, algae, plants, 183 

protozoa and insects. The possible bias in these results by the presence of residual chemicals 184 

from DNA extraction can be excluded because the heterologous DNA, not producing 185 

inhibitory effects, was extracted with the same method and applied at the same high 186 

concentration of self-DNA. 187 
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The range of target species, including prokaryotes and both unicellular and multicellular 188 

eukaryotes, highlights the widespread occurrence of self-DNA inhibitory effect. An 189 

interesting evidence of self-inhibition in vertebrates was reported on Rana pipiens (Richards 190 

1958, 1962), clearly showing a significant reduction of tadpoles growth in water previously 191 

occupied by conspecifics, unaffected by the presence of unrelated species and only slightly 192 

inhibited by phylogenetically related ones (Akin 1966). Richards (1958) suggested that "alga-193 

like" pathogens could be the cause of the observed growth inhibition, but the involvement of 194 

such pathogens in small tadpoles inhibition was later falsified (West 1960). Akin (1966) 195 

suggested the involvement of an unknown self-inhibiting agent. Other works related this 196 

inhibition to the production of some "proteinaceous" compounds by large tadpoles (Rose and 197 

Rose 1961, Runkova et al. 1974, Stepanova 1974, Steinwascher 1978).  Notably, Richards 198 

(1962) showed that growth inhibition could be removed after physical and chemical 199 

treatments like filtration, centrifugation, heating, sonication, freezing and thawing, ultraviolet 200 

light and low pH. We propose that all these observations can coherently be ascribed to the 201 

species-specific inhibitory effects of exDNA accumulated in the growth medium. 202 

A distinct topic where the specificity of action of exDNA could play an important role is self-203 

recognition. Callaway and Mahall (2007) reviewed the evidence regarding how plants are 204 

able to distinguish self from non-self conspecific individuals. In particular, Dudley and File 205 

(2007) demonstrated kin recognition at root level in Cakile edentula without proposing an 206 

explanatory mechanism. Considering the high specificity of the information stored in DNA, 207 

we speculate that it can potentially mediate recognition not only at species level, but also 208 

within species to distinguish kin from unrelated individuals. 209 

In this work, we presented phenomenological evidence supporting the hypothesis of the 210 

general occurrence of an inhibitory effect of extracellular self-DNA and of its possible 211 

involvement in recognition signalling processes. Are these functions of exDNA going to be a 212 
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new paradigm? The reported findings certainly suggest intriguing questions and ideas, which 213 

may open new research scenarios. For example, in ecology, experiments can be planned to 214 

investigate the relevance of this effect in the regulation of species coexistence and 215 

competition, in the interactions with natural enemies, in relation with nutrient depletion and 216 

symbiont community changes, and its general occurrence in natural conditions. Moreover, a 217 

more comprehensive experimental design should address the relationship between inhibition 218 

and phylogenetic distance among target species and exDNA sources.  219 

In a broader context of life sciences, other issues can be considered. The reported species-220 

specificity of DNA inhibition seems consistent in eukaryotes (both unicellular and 221 

multicellular organisms), but this should be further investigated on a larger number of taxa. 222 

On the other hand, the effect on prokaryotes appears less certain considering that 223 

heterologous DNA also produced a performance reduction in the only observed case of 224 

Bacillus subtilis. This definitely requires further experimental work on more species. 225 

Finally, the investigation of the molecular mechanisms behind the observed inhibitory 226 

phenomenon is certainly a major challenge to be faced. It has been widely demonstrated that 227 

exDNA can be uptaken by living cells in both prokaryotes and eukaryotes, such as higher 228 

plants (Paungfoo-Lonhienne et al. 2010) and mammalian (Groneberg et al. 1975) where it 229 

can be transported to the nucleus (Wienhues et al. 1987) and possibly integrated into the 230 

genome of the guest cell (Doerfler et al. 1995). Indeed, cells present mechanisms of 231 

protection from exDNA uptake. Bacterial restriction enzymes cleave foreign nucleic acids 232 

while protecting their own genome by methylation (Wilson 1988). More sophisticated 233 

processes of specific clearance of exDNA are found in vertebrates (e.g. Stenglein 2009). The 234 

above mentioned mechanisms refer to the recognition of exogenous DNA, whereas little is 235 

known about the processes involved in specific responses to self-DNA, for which the 236 

mechanisms of viral, retroviral transposons, or other types of parasitic DNA could be taken 237 
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into account. Future studies are needed to clarify the inhibitory effects of extracellular self-238 

DNA at both cellular and molecular levels, including the processes of recognition, uptake, 239 

and transport in both prokaryotes and eukaryotes. 240 

241 

Page 11 of 19 New Phytologist



 

 

12

References 242 

Akin G. 1966. Self-inhibition of growth in Rana pipiens tadpoles. Physiological Zoology 39: 243 

341–356. 244 

Andersen RJ, Wolfe MS, Faulkner DJ. 1974. Autotoxic antibiotic production by a marine 245 

Chromobacterium. Marine Biology 27: 281–285. 246 

Bever JD. 1994. Feeback between plants and their soil communities in an old field 247 

community. Ecology 75: 1965–1977. 248 

Bever JD, Westover M, Antonovics J. 1997. Incorporating the soil community into plant 249 

population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561–573. 250 

Bonanomi G, Incerti G, Capodilupo M, Mazzoleni S. 2010. Rare self-facilitation in 251 

terrestrial plants as compared to aquatic sessile organisms: empirical evidences and causal 252 

mechanisms. Community Ecology 11: 148–159. 253 

Bottone EJ, Nagarsheth N, Chiu K. 2011. Evidence of self-inhibition by filamentous fungi 254 

accounts for unidirectional hyphal growth in colonies. Canadian Journal of Microbiology 44: 255 

390–393. 256 

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch 257 

Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–5. 258 

Callaway RM, Mahall BE. 2007. Plant ecology: family roots. Nature 448: 145–147. 259 

Chu S. 1942. The influence of the mineral composition of the medium on the growth of 260 

planktonic algae: part I. Methods and culture media. The Journal of Ecology 30: 284–325. 261 

Doerfler W, Orend G, Schubbert R, Fechteler K, Heller H, Wilgenbus P, Schröer J. 262 

1995. On the insertion of foreign DNA into mammalian genomes: mechanism and 263 

consequences. Gene 157: 241–245. 264 

Dudley SA, File AL. 2007. Kin recognition in an annual plant. Biology Letters 3: 435–8. 265 

Finkel SE, Kolter R. 2001. DNA as a nutrient: novel role for bacterial competence gene 266 

homologs. Journal of Bacteriology 183: 6288–6293. 267 

Freitas M De, Fredrickson A. 1978. Inhibition as a factor in the maintenance of the 268 

diversity of microbial ecosystems. Journal of General Microbiology: 307–320. 269 

Goldmann O, Medina E. 2012. The expanding world of extracellular traps: not only 270 

neutrophils but much more. Frontiers in Immunology 3: 420. 271 

Graham JB, Istock CA. 1978. Genetic exchange in Bacillus subtilis in soil. Molecular & 272 

General Genetics 166: 287–290. 273 

Groneberg J, Brown DT, Doerfler W. 1975. Uptake and fate of the DNA of adenovirus 274 

type 2 in KB cells. Virology 64: 115–131. 275 

Page 12 of 19New Phytologist



 

 

13

Hawes MC, Curlango-Rivera G, Wen F, White GJ, Vanetten HD, Xiong Z. 2011. 276 

Extracellular DNA: the tip of root defenses? Plant Science 180: 741–745. 277 

Inderjit, Dakshini KMM. 1994. Algal allelopathy. The Botanical Review 60: 182–196. 278 

Kulmatiski A, Beard KH, Stevens JR, Cobbold SM. 2008. Plant-soil feedbacks: a meta-279 

analytical review. Ecology Letters 11: 980–992. 280 

Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, 281 

Pauls KP, Swanton CJ, Trevors JT, Dunfield KE. 2007. Cycling of extracellular DNA in 282 

the soil environment. Soil Biology and Biochemistry 39: 2977–2991. 283 

Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD. 284 

2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical 285 

forest. Nature 466: 752–755. 286 

Mazzoleni S, Bonanomi G, Giannino F, Incerti G, Dekker SC, Rietkerk M. 2010. 287 

Modelling the effects of litter decomposition on tree diversity patterns. Ecological Modelling 288 

221: 2784–2792. 289 

Mazzoleni S, Bonanomi G, Incerti G, Chiusano M, Termolino P, Mingo A, Senatore M, 290 

Giannino F, Cartenì F, Rietkerk M, Lanzotti V. 2014. Inhibitory and toxic effects of 291 

extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks? New 292 

Phytologist. doi 10.1111/nph.13121 293 

Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. 2007. Release and persistence of 294 

extracellular DNA in the environment. Environmental Biosafety Research 6: 37–53. 295 

Palchevskiy V, Finkel SE. 2006. Escherichia coli competence gene homologs are essential 296 

for competitive fitness and the use of DNA as a nutrient. Journal of Bacteriology 188: 3902–297 

3910. 298 

Paungfoo-Lonhienne C, Lonhienne TGA, Mudge SR, Schenk PM, Christie M, Carroll 299 

BJ, Schmidt S. 2010. DNA is taken up by root hairs and pollen, and stimulates root and 300 

pollen tube growth. Plant Physiology 153: 799–805. 301 

Pinchuk GE, Ammons C, Culley DE, Li S-MW, McLean JS, Romine MF, Nealson KH, 302 

Fredrickson JK, Beliaev AS. 2008. Utilization of DNA as a sole source of phosphorus, 303 

carbon, and energy by Shewanella spp.: ecological and physiological implications for 304 

dissimilatory metal reduction. Applied and Environmental Microbiology 74: 1198–1208. 305 

Van der Putten WH. 2003. Plant defense belowground and spatiotemporal processes in 306 

natural vegetation. Ecology 84: 2269–2280. 307 

Richards C. 1958. The inhibition of growth in crowded Rana pipiens tadpoles. Physiological 308 

Zoology 31: 138–151. 309 

Richards C. 1962. The control of tadpole growth by alga-like cells. Physiological Zoology 310 

35: 285–296. 311 

Page 13 of 19 New Phytologist



 

 

14

Rose SM, Rose FC. 1961. Growth controlling exudates of tadpoles. Symposia of the Society 312 

for Experimental BIology 15: 207–218. 313 

Runkova GG, Stepanova ZL, Kovalchuk LA. 1974. Organ specificity in the action of 314 

metabolites of amphibian larvae on their endogenous metabolism under condition of 315 

increased population density. The role of  protein in the regulating influence of metabolites. 316 

Akademia Nauk SSSR Doklady Biological Sciences Section 217: 328–330. 317 

Singh HP, Batish DR, Kohli RK. 1999. Autotoxicity: concept, organisms, and ecological 318 

significance. Critical Reviews in Plant Sciences 18: 757–772. 319 

Steffan R, Goksøyr J, Bej AK, Atlas RM. 1988. Recovery of DNA from soils and 320 

sediments. Applied and Environmental Microbiology 54: 2908–2915. 321 

Steinberger RE, Holden PA. 2005. Extracellular DNA in single- and multiple-species 322 

unsaturated biofilms. Applied and Environmental Microbiology 71: 5404–5410. 323 

Steinwascher K. 1978. Interference and exploitation competition among tadpoles of Rana 324 

utricularia. Ecology, 1039-1046. 325 

Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. 2010. APOBEC3 proteins mediate 326 

the clearance of foreign DNA from human cells. Nature Structural & Molecular Biology 17: 327 

222–229. 328 

Stepanova ZL. The chemical nature of the products of metabolism of amphibian larvae, 329 

excreted into the water. Soviet Journal of Ecology 5: 148–149. 330 

Takamatsu A, Takaba E, Takizawa G. 2009. Environment-dependent morphology in 331 

plasmodium of true slime mold Physarum polycephalum and a network growth model. 332 

Journal of Theoretical Biology 256: 29–44. 333 

Trinick MJ, Parker CA. 1982. Self-inhibition of rhizobial strains and the influence of 334 

cultural conditions on microbial interactions. Soil Biology and Biochemistry 14: 79–86. 335 

Vlassov VV, Laktionov PP, Rykova EY. 2007. Extracellular nucleic acids. BioEssays 29: 336 

654–667. 337 

Weinberg SR, Stotzky G. 1972. Conjugation and genetic recombination of Escherichia coli 338 

in soil. Soil Biology and Biochemistry 4: 171–180. 339 

Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. 2009. Extracellular DNA is 340 

required for root tip resistance to fungal infection. Plant Physiology 151: 820–829. 341 

West LB. 1960. The nature of growth inhibitory material from crowded Rana pipiens 342 

tadpoles. Physiological Zoology, 232-239. 343 

Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA 344 

required for bacterial biofilm formation. Science 295: 1487.  345 

Wienhues U, Hosokawa K, Höveler A, Siegmann B, Doerfler W. 1987. A novel method 346 

Page 14 of 19New Phytologist



 

 

15

for transfection and expression of reconstituted DNA-protein complexes in eukaryotic cells. 347 

DNA 6: 81–89. 348 

Wilson GG. 1988. Type II restriction-modification systems. Trends in Genetics 4: 314–318. 349 

350 

Page 15 of 19 New Phytologist



 

 

16

Tables 351 

Table 1. Summary of the general linear mixed model (GLMM) testing for main and 352 

interactive effects of target species and treatments on species performance in the bioassays.  353 

a) Model I: self and heterologous DNA 

 Effect type SS df MS F P 

Target species Random 2134.7 5 426.9 1.53 0.2656 

Treatment Fixed 88928.9 2 44464.4 159.60 < 0.0001 

Target species x Treatment Random 2822.9 10 282.3 7.66 < 0.0001 

b) Model II: concentration of self-DNA 

 Effect type SS df MS F P 

Target species Random 18277.5 5 3655.5 6.55 0.0077 

Concentration Fixed 21909.3 2 10954.7 20.13 0.0005 

Target species x Concentration Random 5095.7 9 566.2 14.91 < 0.0001 

 354 

 355 

Table 2. Performance of target species exposed to extracellular heterologous DNA from 356 

Arabidopsis thaliana and self-DNA at different concentration levels. Data are mean ± 357 

standard deviations of different growth metrics for different species, expressed as % of 358 

untreated controls. Within each target species, asterisks indicate significant difference 359 

between exposure to heterologous and self-DNA at high concentration (Duncan post-hoc 360 

tests for the effect of treatment from GLMM model I in Table 1). Different letters indicates 361 

significantly different groups for the effect of self-DNA concentration (Duncan post-hoc tests 362 

from GLMM model II in Table 1). Values not significantly different from the controls are 363 

reported in italic fonts. 364 

Target species 
H DNA self-DNA  

high high mid low 

Bacillus subtilis 58.2 ± 7.4 * 7.7 ± 5.6 a 6.0 ± 2.6 a 41.4 ± 6.5 b 

Physarum polycephalum 93.9 ± 7.5 * 0.7 ± 0.2 a 18.4 ± 3.9 b  44.7 ± 7.5 c 

Scenedesmus obliquus 95.8 ± 6.7* 14.1 ± 6.7 a - 60.6 ± 3.4 b 

Trichoderma harzianum 93.3 ± 9.0 * 9.1 ± 3.0 a 53.0 ± 10.0 b 67.0 ± 16.0 c 

Acanthus mollis 94.8 ± 8.7 * 26.8 ± 1.4 a 81.7 ± 3.7 b 98.1 ± 5.4 c 

Sarcophaga carnaria 96.1 ± 4.0 * 12.5 ± 4.0 a 11.7 ± 3.0 a 44.2 ± 8.0 b 
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Table 3. Performance of target species exposed to extracellular heterologous DNA from 365 

different sources. Data are mean ± standard deviations of different growth metrics for 366 

different species, expressed as % of untreated controls. Values not significantly different 367 

from the controls are reported in italic fonts. 368 

Target species 
Source of heterologous DNA 

Escherichia coli Bacillus subtilis Aspergillus niger Sarcophaga carnaria Quercus ilex 

Bacillus subtilis 51±13% - 62±24%, 42±13% - 

Trichoderma hartianum - 108±14% 91±11% 98±9% - 

Acanthus mollis - - - 102±11% 94±19% 

369 
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Figure Legends 370 

 371 

Figure 1. Effects of exposure to heterologous DNA from Arabidopsis thaliana and self-DNA 372 

on different organisms. All species show significant concentration dependent inhibitory 373 

effects by self-DNA. See Materials and Methods for details on experimental conditions. 374 
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