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Abstract
In this paper we present a comparison of different model order reduction techniques for flexible multibody dynamics.
In particular, we adopt a formulation based on a Equivalent Rigid-Link System (ERLS). This approach is suitable in
the case of large displacements and small elastic deformations and it allows the kinematic equations of motion to be
decoupled from the compatibility equations of the displacements at the joints. The ERLS approach, recently extended
through a modal formulation, is here implemented in combination with different reduction techniques, i.e. Craig-
Bampton, Interior Mode Ranking (IMR), Guyan, Least Square Model Reduction (LSMR) and Mode Displacement
Method (MDM). In order to assess the advantages and disadvantages of the different methodologies, these techniques
are applied to a benchmark mechanism under different input conditions, i.e. gravitational force and step torque input.
The accuracy of each reduced model is numerically evaluated through the comparison of computational time, the
behaviour in frequency domain and by means of vector correlation methods, i.e. Modal Assurance Criterion (MAC),
Cross-Orthogonality (CO) and Normalized Cross-Orthogonality (NCO).

Keywords: Equivalent Rigid-Link System, Flexible Multibody Dynamics, Model Order Reduction, flexible-link mech-
anism

1. Introduction
Nowadays, industrial mechanisms and robots are demanded to be lightweight, easily manoeuvrable and less energy-
intensive. These features result in the design of manipulators in which structural flexibility has to be taken into account
and, therefore, simulation and control become more difficult and challenging. For these reasons, not only the kinemat-
ics [7], but also the dynamic modelling of flexible multibody systems [21] has become, in the last decades, a crucial
research topic in both industry and academia and it is still an open field of investigation.
In multibody dynamics, the classical approach to take into account the flexibility of elastic mechanisms is based on the
rigid-body dynamical model of the system and then the elastic deformations are introduced. The elastic deformations
of the bodies are influenced by the rigid motion and vice versa. It results in a highly non-linear dynamic formulation
described by a coupled set of partial differential equations. Two main methodologies can be found in literature for
obtaining a set of ordinary differential equations: the nodal approach (i.e. the Finite Element Method, FEM) and the
modal one [20]. However, since a high number of Degrees of Freedom (DoFs) is introduced by the discretization of the
flexible bodies, proper reduction methods should be applied in order to allow an efficient simulation of the multibody
system while keeping an accurate description of the predominant dynamic behaviour.
Model reduction methods can be classified in physical coordinates techniques, generalized coordinates (i.e. modal
coordinates) and hybrid methods, such as the Component Mode Synthesis (CMS). A review of model reduction tech-
niques for structural dynamics, numerical mathematics and system and control is proposed in [4], whereas in [2], [9]
and [18] reduced order modelling strategies are applied in dynamics sub-structuring. An example of model reduction
can be found in [12], in which a study on an elastic rod is proposed. Furthermore, in the field of multibody systems,
an overview of the basic approaches to model elastic multibody systems with the help of Floating Frame of Reference
formulation in given by [14]. A new ranking method (Interior Mode Ranking, IMR) for the selection of interior normal
modes in the Craig-Bampton technique [3] has been proposed in [15].
In this work, an Equivalent Rigid-Link System (ERLS) formulation for modelling the dynamics of flexible multibody
systems is considered in its recent developments. This approach, suitable in case of large displacements and small
elastic deformations, differently from other formulations, e.g. the Floating Frame of Reference (FFR) [20], enables the



kinematic equations of the ERLS to be decoupled from the compatibility equations of the displacement at the joints.
In previous works, the ERLS approach has been firstly applied to model planar flexible-link mechanisms and then 3D
flexible systems [22] [23]. The ERLS formulation has been also exploited for simulation and control purposes [8] [10].
The evolution of the ERLS-based dynamic model for flexible mechanisms and its applications over the years have been
presented in [5]. It has to be noticed that, if a computational time adequate for real-time simulation or control purposes
is needed, the number of DoFs in the ERLS-FEM model (i.e. the number of nodes) should be kept low. For this reason,
the ERLS formulation has been recently extended through a modal approach so as to obtain a more flexible solution
based on a reduced-order system of equations and, in particular, a classical Craig-Bampton approach has been adopted
[21]. However, this reduction is not the only technique capable of reducing the number of DoFs.
For this reason, in this paper different model order reduction techniques are implemented using the ERLS approach and
the results compared. In particular, we evaluate advantages and disadvantages of the different techniques on a L-shaped
benchmark mechanism under different input conditions. FEM models of the benchmark mechanism are developed in
Ansys R© environment with different discretizations, whereas dynamics and post-processing are evaluated by means of
MatlabTM software. The reduced model accuracy is evaluated through the comparison of the computational time, the
accuracy in frequency domain and by means of vector correlation methods such as Modal Assurance Criterion [1] [16]
[18], Cross-Orthogonality [1] and Normalized Cross-Orthogonality [13] [15] [24].
The paper is organized as follows: in Section 2 the Equivalent Rigid-Link System kinematics and dynamics formu-
lation is presented; in Section 3 the model order reduction techniques, that have been implemented and tested on the
ERLS dynamic model, are briefly recalled; Section 4 shows the numerical implementation of the model on a bench-
mark mechanism, whereas in Section 5 the results of the simulations are presented and discussed. Finally, Section 6
gives the conclusions of this work.

2. Equivalent Rigid-Link System modal formulation

2.1. ERLS kinematics
In this section, the Equivalent Rigid-Link System modal formulation, presented and evaluated in [21], is briefly re-
called and summarized. With reference to Fig.1, the kinematic definitions of the Equivalent Rigid-Link System can be
introduced: uuui,k represents the k-th nodal displacement vector of the i-th link, eeei,k the k-th nodal position vector for the
i-th link of the ERLS, whereas pppi,k the absolute nodal position vector, that can be computed as:

pppi,k = eeei,k +uuui,k (1)

The index i spans from 1 to N, i.e. the number of links of the mechanism, whereas k spans from 1 to h, i.e. the number
of nodes of the i-th link. In Fig.1, x, y, z is a fixed global reference frame, whereas xi, yi, zi is a local reference frame,
fixed to the ERLS.
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Figure 1: Kinematic definitions of the Equivalent Rigid-Link System.

The ERLS modal formulation can be developed starting from the expression of the nodal displacements uuui of the i-th
link as functions of a given number of eigenvectors UUU i and modal coordinates qqqi, as follows:

uuui =UUU i qqqi (2)

The eigenvectors and eigenvalues can be obtained accordingly to the chosen modal reduction technique, e.g. in our
case Craig-Bampton, Interior Mode Ranking, Guyan, Least Square Model Reduction and Mode Displacement Method.



Let us consider two consequent links i and i+1. The joint displacements belonging to each link are given by ûuui = SSSiUUU iqqqi
and ûuui+1 = SSSi+1UUU i+1qqqi+1 respectively, where SSSi and SSSi+1 are selection matrices introduced to extract the proper joint
displacements from all the nodal displacements uuui. The compatibility condition at the i-th joint of the mechanism is
given by:

ûuui+1 = TTT i+1ûuui (3)

where TTT i+1(θθθ) is a local-to-local transformation matrix between the two consecutive local reference frames associated
to links i and i+1. Note that Eq.(3) is linear with respect to modal coordinates. By writing the compatibility equations
for all the links and assembling them in matrix format, the comprehensive compatibility equation can be obtained:

CCC(θθθ)qqq = 0 (4)

The coefficient matrix CCC depends only on the joint parameters and the vector qqq contains both the rigid and elastic modal
coordinates. The rigid-body modal coordinates and elastic ones can be gathered into two separated vectors qqqr and qqqd ,
respectively. In this manner, the compatibility equation can be rewritten in the following form:

CCCrqqqr +CCCdqqqd = 0 (5)

The previous system can be solved with respect to qqqr, by using the right pseudo-inverse matrix CCC+
r , namely:

qqqr = DDD(θθθ)qqqd (6)

where matrix DDD is defined as:
DDD =−CCC+

r (θθθ)CCCd(θθθ) (7)

CCC+
r and CCCd contain the coefficients of the rigid and vibrational modal coordinates respectively and only depend on the

joint parameters vector θθθ . Starting from Eq.(6), the relationships between the velocities/virtual displacements and the
accelerations of the independent variables can be derived. In particular, the following equations are obtained:

q̇qqr = DDD(θθθ)q̇qqd +GGG(θθθ ,qqq)θ̇θθ (8)

q̈qqr = GGG(θθθ ,qqq)θ̈θθ +DDD(θθθ)q̈qqd +nnn(θθθ , θ̇θθ ,qqq, q̇qq) (9)

where the matrices GGG and nnn take into account the different contributions and dependencies.

2.2. ERLS dynamics
The dynamic equations are obtained by applying the principle of virtual work and computing the inertial, elastic, gravity
and external generalized forces terms as follows:

δWWW inertia +δWWW elastic +δWWW gravity +δWWW ext. f orces = 000 (10)

Starting from Eq.(8), the virtual term of the generic i-th link, composed by the linear δPPP0i, angular δφφφ i and modal δqqq
contributes, can be obtained as follows (see [21] for further details):δPPP0i

δφφφ i
δqqq

=

VVV θ i 000 000
000 VVV qri 000
000 000 VVV qdi

 JJJ(θθθ) 000
GGG(θθθ ,qqq) DDD(θθθ)

000 III

[ δθθθ

δqqqd

]
=VVV o

i NNN
[

δθθθ

δqqqd

]
(11)

where VVV o
i is a selection matrix for the proper elements of the i-th link (VVV θ i is the selection block-matrix for the rigid

DoF, VVV qri for the rigid modal coordinates and VVV qdi for the elastic modal ones) and JJJ(θθθ) the Jacobian matrix of the
Equivalent Rigid-Link System. The VVV o

i matrix is block diagonal and allows to select the correct terms related to both
the rigid DoFs and the independent vibration modal coordinates.

The acceleration terms, i.e. linear aaa0i, angular ααα i and modal q̈qq, can be rewritten, starting from Eq.(9), as function of
the independent variables: aaa0i

ααα i
q̈qq

=VVV o
i NNN
[

θ̈θθ

q̈qqddd

]
+VVV o

i

 J̇JJ(θθθ , θ̇θθ)θ̇θθ
nnn(θθθ , θ̇θθ ,qqq, q̇qq)

000

 (12)

where J̇JJ(θθθ , θ̇θθ) represents the first time derivative of the Jacobian matrix of the ERLS. The second term of the equation
depends only on the position and velocity of the independent variables and thus it is known.



The virtual work done by the inertial forces can be split into two contributes:

δWWW inertia = δWWW I
inertia +δWWW II

inertia (13)

where the former contains all the terms related to the second derivative of the variables, the latter contains all the
remaining terms. The virtual work done by the inertial forces δWWW I

inertia,i and δWWW II
inertia,i of each i-th link, and the virtual

works done by the gravitational δWWW g and generalized forces δWWW ext. f orces, can be written as:

−δWWW I
inertia,i =

[
δPPPT

0i δφφφ
T
i δqqqT

]
Li

aaa0i
ααα i
q̈qq

 (14)

where the LLLi matrix contains all the terms not depending on virtual displacements and accelerations.
By substituting Eq.(11) and (12) into Eq.(14), we can obtain:

−δWWW I
inertia,i =

[
δθθθ

T
δqqqT

d

]
NNNTVVV oT

i LLLi

VVV o
i NNN
[

θ̈θθ

q̈qqddd

]
+VVV o

i

 J̇JJ(θθθ , θ̇θθ)θ̇θθ
nnn(θθθ , θ̇θθ ,qqq, q̇qq)

000

 (15)

The δWWW II
inertia,i term can be expressed by gathering in the matrix llli all the terms not depending on virtual displacements:

δWWW II
inertia,i =

[
δPPPT

0i δφφφ
T
i δqqqT

]
llli =

[
δθθθ

T
δqqqT

d

]
NNNTVVV oT

i llli (16)

All the other terms such as the variation of the elastic energy δHHH, the gravitational forces δWWW g and the resultant
generalized forces δWWW ext. f orces do not depend on accelerations. Then, they can be gathered into a unique term l̃lliii. By
naming δWWW i the term with all the contributions not depending on accelerations, it holds:

δWWW i =
[
δPPPT

0i δφφφ
T
i δqqqT

]
l̃lliii =

[
δθθθ

T
δqqqT

d

]
NNNTVVV oT

i l̃lliii (17)

By adding up the contributions of all the N links, the following formulation is obtained:

−δWWW I
inertia =

N

∑
i=1

[
δθθθ

T
δqqqT

d

]
NNNTVVV oT

i LLLi

VVV o
i NNN
[

θ̈θθ

q̈qqddd

]
+VVV o

i

 J̇JJ(θθθ , θ̇θθ)θ̇θθ
nnn(θθθ , θ̇θθ ,qqq, q̇qq)

000

== δWWW =
N

∑
i=1

[
δθθθ

T
δqqqT

d

]
NNNTVVV oT

i l̃lliii

(18)

Finally, by naming LLL def
= ∑

N
i=1 VVV oT

i LLLiVVV o
i and l̃ll def

= ∑
N
i=1 VVV oT

i l̃lliii, and discarding the virtual displacements, the final dynamic
model results:

NNNT LLLNNN
[

θ̈θθ

q̈qqddd

]
= NNNT

LLL

−
 J̇JJ(θθθ , θ̇θθ)θθθ

nnn(θθθ , θ̇θθ ,qqq, q̇qq)
000

+ l̃ll

 (19)

3. Model Order Reduction Techniques
In this section, the techniques that have been implemented for the Model Order Reduction (MOR) of the ERLS-based
dynamic model are briefly recalled. Starting from a generic dynamic equilibrium equation:

MMMẌXX(t)+CCCẊXX(t)+KKKXXX(t) = FFF(t) (20)

where MMM, CCC, KKK are the mass, dumping and stiffness matrices, XXX is the independent coordinates vector and FFF is the
force vector acting on the system, several MOR techniques assume the form of a coordinate transformation such as:

XXX(t) = TTT ZZZ(t) (21)

where TTT is the transformation matrix that converts the reduced model coordinates ZZZ in the complete model ones XXX .

3.1. Craig-Bampton
Craig-Bampton is the classical modal reduction technique in multibody dynamics [3] [18]. It is a hybrid method that
belongs to the Component Mode Synthesis techniques. By considering the partition of the degrees of freedom in two



sets: the boundary B DoFs, where the reduced link will be interfaced with other components of the structure, and the
interior I DoFs, the link dynamic equation, without considering the damping, becomes:[

MMMBB MMMBI
MMMIB MMMII

]{
ẌXXB
ẌXX I

}
+

[
KKKBB KKKBI
KKKIB KKKII

]{
XXXB
XXX I

}
=

{
FFFB
FFF I

}
(22)

The transformation matrix TTTCB, between physical and Craig-Bampton coordinates, can be obtained as follows:

XXX =

{
XXXB
XXX I

}
=

[
III 000

ϕϕϕC ϕϕϕN

]{
qqqC
qqqN

}
= TTTCB

{
qqqC
qqqN

}
(23)

In the transformation matrix the first column partition is related to the constraint modes. These describe the motion of
the system when each boundary degree of freedom undergoes a unit displacement, while holding the other boundary
DoFs fixed. The second column partition is related to the fixed-boundary modes, that can be described as the interior
DoF motion when the interface is fixed. The number of fixed-interface modes can be reduced in order to decrease the
total number of DoFs. Finally, qqqC and qqqN are the reduced model coordinates corresponding to the constraint and to the
fixed-boundary normal modes respectively.

3.2. Interior Mode Ranking
The Interior Mode Ranking (IMR) [15] is a technique developed for the selection of the interior normal modes in the
Craig-Bampton reduction technique. The IMR method allows ranking the interior modes analytically by comparing
their single contributions to the dynamics of interest of the complete system, given the actual boundary conditions.
In the IMR approach (see [15] for the full development) a weighted participation coefficient γ is defined for each
considered interior mode ζ :

γΛ,ζ = ∑
i∈Λ

|γi,ζ |
||γγγ i||

αi ζ = 1, ...,s ∑
i∈Λ

αi = 1 (24)

where Λ is the set of the full system vibrational modes to be represented and γγγ i is the vector whose entries are the
coefficients γi,ζ . Furthermore, αi is a normalized weighting coefficient referring to the i-th mode, employed to define
the level of importance of each mode with respect to the reduced model. The larger the value of the coefficients γΛ,ζ ,
the more the dynamics of the ζ -th interior mode affects the full system. The modes retained are those with the largest
values of the weighted participation coefficients. In the IMR reduction here adopted, we define the number of interior
modes to be retained and we assign an equal weighting coefficient to all of them.

3.3. Guyan’s reduction
Guyan is a physical-type reduction technique and it is based on the assumption that the effect of inertial forces on the
eliminated physical coordinates is negligible [11] [19]. After grouping the DOFs corresponding to master (denoted by
subscript m) and slave (subscript s), the equation of motion can be expressed as follows:[

MMMmm MMMms
MMMsm MMMss

]{
ẌXXm
ẌXX s

}
+

[
KKKmm KKKms
KKKsm KKKss

]{
XXXm
XXX s

}
=

{
FFFm
000

}
(25)

Neglecting the inertia associated with the slave DoFs, it holds:

XXX s =−KKK−1
ss KKKsmXXXm (26)

Finally, eliminating XXX s from Eq.(25), the transformation matrix can be obtained as:

TTT G =

[
III

−KKK−1
ss KKKsm

]
(27)

3.4. Least Square Model Reduction
The Least Square Model Reduction (LSMR) [17] is a physical coordinates reduction technique, mode type. It is based
on the subdivision of the eigenvectors into master m and slave s components, depending on their reference to master or
slave DoFs. Starting from Eq.(20), the displacement vector XXX may be expressed as:

XXX(t) = ΦΦΦqqq(t) (28)



where ΦΦΦ is the complete eigenvector matrix of the full model and qqq is the modal coordinates vector. If a modal
truncation is applied in order to reduce the computation of the complete eigenvector matrix and only p eigenvectors of
the full model are retained, Eq.(28) is rewritten as:

XXX(t) = ΦΦΦpqqqp(t) (29)

and it can be partitioned as:

XXX(t) =
{

XXXm(t)
XXX s(t)

}
=

{
ΦΦΦmp
ΦΦΦsp

}
qqqp(t) (30)

The transformation matrix for the LSMR technique is finally given by:

TTT LSMR =

[
III

ΦΦΦspΦΦΦ
+
mp

]
(31)

3.5. Mode Displacement Method
The Mode Displacement Method (MDM) [4] is a modal coordinates reduction technique, that consists in a truncation
of high frequency modes. In the case of maintaining m modes among the n of the full model, it holds:

XXX =
m

∑
j=1

ΦΦΦ jqqq j +
n

∑
jr=m+1

ΦΦΦ jr qqq jr (32)

where the second contribution of the right side of the equation corresponds to the deleted vibration modes.

4. Numerical simulations on a benchmark mechanism
The Equivalent Rigid-Link System formulation, in combination with the MOR techniques presented in Sect. 3, have
been implemented in MatlabTM environment on a L-shaped benchmark mechanism [6] [21], shown in Fig. 2. The
two rods that compose the L-mechanism are made of aluminium (density ρ = 2700 Kg/m3, Poisson’s ratio ν = 0.33,
Young’s module E = 7e1010 N/m2), they are 500 mm long, 8 mm wide and 8 mm deep.
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Figure 2: L-shaped benchmark mechanism.
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Figure 3: Input step torque signal.

The system has one rigid rotational degree of freedom and it has been modelled in Ansys R© with 4, 8 and 16 beam188
finite elements, i.e. 2, 4 and 8 elements for each of the two flexible rods that compose the L-system. It results a
number of degrees of freedom for each subdivision equal to 30, 54 and 102 respectively. The mass M and stiffness K
matrices of the complete model have been exported from Ansys R© for each subdivision in beam elements and imported
in MatlabTM, where the reduction techniques have been applied. Then, the dynamic behaviour of the system has been
numerically evaluated under two different input conditions: gravity and a torque signal, reported in Fig. 3.
For each subdivision of the mechanism in beam elements and for each modal reduction strategy, different simulations
have been run, by varying the number of considered modes. In this way, not only the influence of elements number and
of the reduction methodology but also the modal variables number can be evaluated.
The numerical simulations provided the dynamics of the system for a time of 2 seconds. An ode45 variable-step solver,
based on a Runge-Kutta integration scheme, has been adopted. Each simulation has been run three times in order to
obtain an average value of computational time. For the simulations, a laptop running Windows 10 64 bit with an Intel R©

CoreTM i7-4710HQ CPU @2.50 GHz and a 8 GB DDR3 installed RAM has been exploited.



5. Results and discussion
In this section, the results of the numerical simulations on the mechanism presented in Sect.4 are reported and discussed.
Firstly, the different reduction techniques have been compared through the modal vector correlation parameters, then
the dynamic behaviour is evaluated under both gravitational force and a step torque input.

5.1. Modal vector correlation parameters
In order to evaluate the accuracy of the reduced model in matching the mode frequencies and shapes of the full order
model, three parameters have been here adopted: Modal Assurance Criterion (MAC) [1] [16] [18], Normal Cross-
Orthogonality (NCO) [13] [15] [24] and Cross-Orthogonality (CO) [1]. The three parameters are defined as follows:

MMMAAACCCi, j =
(φ T

i φr, j)
2

(φ T
i φi)(φ T

r, jφr, j)
NNNCCCOOOi, j =

(φ T
i MMMφr, j)

2

(φ T
i MMMφi)(φ T

r, jMMMφr, j)
CCCOOOi, j = φ

T
i MMMφr, j (33)

where φi is the i-th eigenvector of the complete model, φr, j is the j-th eigenvector of the reduced model and MMM is the
mass matrix of the reduced model. By varying the indices i and j, these parameters constitute a matrix, that will have
values close to a identity matrix if the reduction is well-designed. In Fig.4 a graphical representation of the resultant
matrices for the three parameters and the different reduction methods, in the case with 16 elements and 18 retained
modes, is reported. In particular, in the techniques here implemented, the internal modes that have been chosen are
those neither corresponding to the constrained end nor to the tip of the mechanism. It has to be noticed that in the Craig-
Bampton, IMR and Guyan the choice of internal and secondary modes is fundamental for a good reduction, whereas
the LSMR and MDM methods show a higher correspondence since they are based on a modal truncation approach.
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Figure 4: MAC, NCO and CO for the different methods, case with 16 elements and 18 considered modes.

5.2. Gravitational force input
In Fig.5 the tip Z-coordinate acceleration of the L-shaped mechanism under gravity in the frequency domain is reported.
In particular, the case with 16 elements and 18 considered modes is shown. A good agreement between the different
reduction techniques and the complete model in the first resonance peaks can be found, whereas, by considering the
peak at almost 160 Hz, Craig-Bampton is the only method that accurately reproduces the dynamics of the full model.
In Tables 1 and 2 the average computational times for the mechanism under gravity force are reported.
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Figure 5: Comparison of the tip Z-coord. acceleration under gravity, case with 16 el. and 18 considered modes.

Table 1: Average computational time [s], mechanism under gravity, complete models.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

1602,14 4046,99 16102,97

Table 2: Average computational time [s], mechanism under gravity.

Method Elements Modes

8 10 12 14 16 18

4 2,58 5,96 9,02 169,23 571,00 902,21
Craig-Bampton 8 3,12 5,13 13,49 32,38 51,20 89,75

16 3,20 4,70 11,55 26,71 46,74 79,76

4 2,58 6,10 9,05 453,90 469,97 1079,11
IMR 8 3,15 5,30 21,44 63,87 76,50 189,87

16 1,85 5,82 13,60 176,38 322,75 502,47

4 3,64 6,34 9,63 173,44 417,39 459,74
Guyan 8 2,55 5,74 18,87 28,04 94,64 297,22

16 3,40 5,42 18,48 23,31 100,36 305,73

4 2,59 6,04 9,18 181,77 255,96 421,53
LSMR 8 3,17 5,14 16,28 23,16 474,67 517,33

16 3,22 4,80 15,02 19,77 629,20 1158,22

4 2,60 5,84 9,60 178,36 251,26 515,40
MDM 8 3,08 5,02 16,26 23,50 28,45 74,06

16 3,20 4,78 14,18 18,33 37,01 48,60

5.3. Step torque input
Fig.6 reports the Fast Fourier Transform of the tip Z-coordinate of the L-shaped system for the different reduction
techniques in the case of step torque input. A good agreement between the complete model signal and the reduced ones
can be appreciated in the first two resonance peaks, whereas Craig-Bampton seems to be the method that best matches
the full model behaviour. Computational times are reported in Tables 3 and 4 for the complete and the reduced models
respectively. As expected, a time reduction can be noticed by increasing the model elements at constant number of
retained modes, since lower frequencies are, in general, taken into account. Furthermore, Craig-Bampton and MDM
appear to be the methods that reduce at best the computational time.

Table 3: Average computational time [s], mechanism under torque input, complete models.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

1703,26 4110,21 17754,19
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Figure 6: Comparison of the tip Z-coord. acceleration with torque input, case with 16 el. and 18 considered modes.

Table 4: Average computational time [s], mechanism under torque input.

Method Elements Modes

8 10 12 14 16 18

4 3,40 6,10 11,34 167,59 574,99 919,16
Craig-Bampton 8 3,30 4,39 13,00 33,73 50,71 89,66

16 3,34 4,49 11,66 28,89 47,63 80,72

4 3,41 6,08 10,97 459,32 482,43 1092,52
IMR 8 3,30 4,87 24,74 66,13 107,50 184,80

16 2,69 5,83 15,14 171,01 316,48 510,80

4 3,64 6,11 11,23 172,24 436,26 465,36
Guyan 8 3,41 5,16 20,70 30,67 98,44 292,73

16 3,40 5,40 21,42 29,57 110,34 301,42

4 3,33 6,10 11,33 184,68 229,75 408,88
LSMR 8 3,45 4,57 18,61 22,43 498,42 555,91

16 3,44 4,43 16,56 20,03 637,77 1176,80

4 3,33 6,02 11,31 180,71 230,76 554,30
MDM 8 3,39 4,60 18,89 24,11 31,09 80,87

16 3,45 4,24 16,43 19,59 39,99 47,31

6. Conclusion and future works
In this paper, a first comparison of different model order reduction techniques using an ERLS formulation has been
presented. In order to evaluate the accuracy of MOR methodologies, they have been applied on a L-shaped mechanism
excited under gravity and by means of a torque input. The results have been compared in terms of vector correlation
methods, dynamics behaviour in frequency domain and computational time showing advantages and disadvantages of
the different considered MOR techniques. In further developments of this work, model order reduction techniques will
be applied to a two (or more) DoFs multibody system with different subdivision in finite element domains. Furthermore,
more techniques will be considered and a deeper analysis of the choice of internal modes will be performed.
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