
14 January 2025

Università degli studi di Udine

Original

An in-depth investigation of interval temporal logic model checking with
regular expressions

Publisher:

Published
DOI:10.1007/978-3-319-66197-1_7

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Springer

This version is available http://hdl.handle.net/11390/1120030 since 2017-11-04T15:04:35Z

An in-Depth Investigation of Interval Temporal
Logic Model Checking with Regular Expressions

Laura Bozzelli1, Alberto Molinari2, Angelo Montanari2, and Adriano Peron1

1 University of Napoli “Federico II”, Napoli, Italy
2 University of Udine, Udine, Italy

Abstract. In the last years, the model checking (MC) problem for inter-
val temporal logic (ITL) has received an increasing attention as a viable
alternative to the traditional (point-based) temporal logic MC, which
can be recovered as a special case. Most results have been obtained by
imposing suitable restrictions on interval labeling. In this paper, we over-
come such limitations by using regular expressions to define the behavior
of proposition letters over intervals in terms of the component states. We
first prove that MC for Halpern and Shoham’s ITL (HS), extended with
regular expressions, is decidable. Then, we show that formulas of a large
class of HS fragments, namely, all fragments featuring (a subset of) HS
modalities for Allen’s relations meets, met-by, starts, and started-by, can
be model checked in polynomial working space (MC for all these frag-
ments turns out to be PSPACE-complete).

1 Introduction

Model checking (MC) is commonly recognized as one of the most effective tech-
niques in automatic system verification [2]. It has also been successfully used in
databases, e.g., active databases, database-backed web applications, and NoSQL
databases, and artificial intelligence, e.g., planning, configuration systems, and
multi-agent systems. MC allows one to automatically check whether a model of
a given system satisfies a desired property to ensure that it meets the expected
behaviour. A good balancing of expressiveness and complexity in the choice of
the computational model and the specification formalism is a key factor for the
actual exploitation of MC. Systems are usually modeled as finite-state transition
graphs (Kripke structures), while properties are commonly expressed by formulas
of point-based temporal logics, such as LTL, CTL, and CTL∗. Various improve-
ments to the computational model and/or the specification language have been
proposed in the literature. As for the former, we mention MC for pushdown sys-
tems (see, e.g., [7]), that feature an infinite state space, while for the latter we
remind the extensions of LTL with promptness, that make it possible to bound
the delay with which a liveness request is fulfilled (see, e.g., [9]).

In this paper, we focus on MC with interval temporal logic (ITL) as the speci-
fication language. ITL allows one to deal with relevant temporal properties, such
as actions with duration, accomplishments, and temporal aggregations, which
are inherently “interval-based” and cannot be properly expressed by point-based
temporal logics. In the last years, ITL MC has received an increasing attention

as a viable alternative to the traditional (point-based) temporal logic MC [18],
which can be recovered as a special case [4]. ITLs feature intervals, instead of
points, as their primitive temporal entities [8, 19, 21], and they have been fruit-
fully applied in various areas of computer science, including formal verification,
computational linguistics, planning, and multi-agent systems [10, 11, 19]. Among
ITLs, the landmark is Halpern and Shoham’s modal logic of time intervals HS [8].
It features one modality for each of the 13 ordering relations between pairs of
intervals (the so-called Allen’s relations [1]), apart from equality. Its satisfiability
problem is undecidable over all relevant classes of linear orders [8], and most of
its fragments are undecidable as well [6, 13]. Some meaningful exceptions are the
logic of temporal neighbourhood AA and the logic of sub-intervals D.

The MC problem for HS and its fragments consists in the verification of the
correctness of the behaviour of a given system with respect to some relevant
interval properties. To make it effective, we need to collect information about
states into computation stretches: we interpret each finite computation path as
an interval, and we define its labelling on the basis of the labelling of the states
that compose it. Most results have been obtained by imposing suitable restric-
tions on interval labeling: either a proposition letter can be constrained to hold
over an interval iff it holds over each component state (homogeneity assump-
tion [20]), or interval labeling can be defined in terms of interval endpoints.

In [14], Molinari et al. deal with MC for full HS over finite Kripke struc-
tures, under the homogeneity assumption, according to a state-based semantics
that allows branching in the past and in the future. They introduce the funda-
mental elements of the problem and prove its non-elementary decidability and
PSPACE-hardness. Since then, the attention was also brought to the fragments
of HS, which, similarly to what happens with satisfiability, are often computa-
tionally much better [15, 16, 3, 5, 14, 17].

The MC problem for some HS fragments, extended with epistemic operators,
has been investigated by Lomuscio and Michaliszyn in [10, 11]. Their semantic
assumptions differ from those of [14], making it difficult to compare the two ap-
proaches. Formulas are interpreted over the unwinding of the Kripke structure
(computation-tree-based semantics [4]), and interval labeling takes into account
only the endpoints of intervals. The decidability status of MC for full epistemic
HS is still unknown. In [12], Lomuscio and Michaliszyn propose to use regular
expressions to define the labeling of proposition letters over intervals in terms of
the component states. They prove the decidability of MC with regular expres-
sions for some restricted fragments of epistemic HS, giving rough upper bounds
to its computational complexity.

In this paper, we prove that MC for full HS with regular expressions is decid-
able (Section 4) and that its complexity, when restricted to system models—that
is, if we assume the formula to be constant length—is P. Then, by exploiting a
small-model theorem (Section 5), in Section 6, we show that formulas of a large
class of HS fragments, i.e., those featuring (any subset of) HS modalities for the
Allen’s relations meets, met-by, started-by, and starts (AABB), can be checked
in polynomial working space (MC for all these is PSPACE-complete).

Due to lack of space, all proofs, as well as some complements, can be found
in Appendix A.

2 Preliminaries

We first introduce notation and background knowledge, and then the logic HS.
Let N be the set of natural numbers. For all i, j ∈ N, we denote by [i, j],

with i ≤ j, the set of naturals h such that i ≤ h ≤ j. Let Σ be an alphabet,
w be a non-empty finite word over Σ, and ε be the empty word. We denote
by |w| the length of w. For all 1 ≤ i ≤ j ≤ |w|, w(i) denotes the i-th letter
of w (i is called a w-position), while w(i, j) denotes the finite subword of w
given by w(i) · · ·w(j). Let |w| = n. We define fst(w) = w(1) and lst(w) = w(n).
Pref(w) = {w(1, i) | 1 ≤ i ≤ n− 1} and Suff(w) = {w(i, n) | 2 ≤ i ≤ n} are the
sets of all proper prefixes and suffixes of w, respectively. For i ∈ [1, n], wi is a
shorthand for w(1, i). The concatenation of two words w and w′ is denoted as
usual by w · w′. Moreover, if lst(w) = fst(w′), w ? w′ represents w(1, n− 1) · w′.

For all h, n ≥ 0, let Tower(h, n) denote a tower of exponentials of height h
and argument n: Tower(0, n) = n and Tower(h + 1, n) = 2Tower(h,n). Moreover,
let h-EXPTIME denote the class of languages decided by deterministic Turing
machines whose number of computation steps is bounded by functions of n in
O(Tower(h, nc)), for some constant c ≥ 1. Note that 0-EXPTIME is P.

2.1 Kripke structures, regular expressions, and finite automata

Finite state systems are usually modelled as finite Kripke structures. Let AP be
a finite set of proposition letters, which represent predicates over the states of
the given system.

Definition 1 (Kripke structure). A Kripke structure is a tuple K = (AP , S,
R, µ, s0), where S is a set of states, R ⊆ S × S is a left-total transition relation,
µ : S 7→ 2AP is a total labelling function assigning to each state s the set of
proposition letters that hold over it, and s0 ∈ S is the initial state. For s ∈ S, the
set R(s) of successors of s is the non-empty set of states s′ such that (s, s′) ∈ R.
We say that K is finite if S is finite.

Let K = (AP , S,R, µ, s0) be a Kripke structure. A trace of K is a non-empty
finite word ρ over S such that (ρ(i), ρ(i + 1)) ∈ R for i ∈ [1, |ρ| − 1]. A trace is
initial if it starts from s0. We denote by TrcK the infinite set of traces of K . A
trace ρ induces the finite word µ(ρ) over 2AP given by µ(ρ(1)) . . . µ(ρ(n)), with
n = |ρ|. We call µ(ρ) the labeling sequence induced by ρ.

Let us now introduce the class of regular expressions over finite words. Since
we are interested in expressing requirements over the labeling sequences induced
by the traces of Kripke structures, here we consider proposition-based regular
expressions (RE), where atomic expressions are propositional formulas over AP
instead of letters over an alphabet. Formally, the set of RE r over AP is defined
as r ::= ε | φ | r ∪ r | r · r | r∗ where φ is a propositional formula over AP . The
length |r| of an RE r is the number of subexpressions of r. An RE r denotes a
language L(r) of finite words over 2AP defined as: (i) L(ε) = {ε} and L(φ) =
{A ∈ 2AP | A satisfies φ}; (ii) L(r1∪r2) = L(r1)∪L(r2), L(r1 ·r2) = L(r1)·L(r2),
and L(r∗) = (L(r))∗. By well-known results, the class of RE over AP captures
the class of regular languages of finite words over 2AP .

Table 1. Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v
contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

A non-deterministic finite automaton (NFA) is a tuple A = (Σ,Q,Q0, δ, F),
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, δ : Q × Σ 7→ 2Q is the transition function, and F ⊆ Q is the
set of accepting states. Given a finite word w over Σ, with |w| = n, and two
states q, q′ ∈ Q, a run (or computation) of A from q to q′ over w is a finite
sequence of states q1, . . . , qn+1 such that q1 = q, qn+1 = q′, and for all i ∈ [1, n],
qi+1 ∈ δ(qi, w(i)). The language L(A) accepted by A consists of the finite words
w over Σ such that there is a run from some initial state to some accepting state
over w. A deterministic finite automaton (DFA) is an NFA D = (Σ,Q,Q0, δ, F)
such that Q0 is a singleton and for all (q, c) ∈ Q×Σ, δ(q, c) is a singleton.

Remark 2. By well-known results, given an RE r over AP , one can construct, in a
compositional way, an NFA Ar over 2AP , whose number of states is at most 2|r|,
such that L(Ar) = L(r). We call Ar the canonical NFA associated with r. Note
that the number of edges of Ar may be exponential in |AP | (edges are labelled
by assignments A ∈ 2AP satisfying propositional formulas φ of r); however, we
can avoid storing edges, as they can be recovered in polynomial time from r.

2.2 The interval temporal logic HS

An interval algebra to reason about intervals and their relative order was pro-
posed by Allen in [1], while a systematic logical study of interval representation
and reasoning was done a few years later by Halpern and Shoham, who in-
troduced the interval temporal logic HS featuring one modality for each Allen
relation, but equality [8]. Table 1 depicts 6 of the 13 Allen’s relations, together
with the corresponding HS (existential) modalities. The other 7 relations are the
6 inverse relations (the inverse R of a binary relation R is such that bR a iff aR b)
and equality. Moreover, if 〈X〉 is the modality for R , 〈X〉 is the modality for R .

Let Pu be a finite set of uninterpreted interval properties. The HS language
over Pu consists of proposition letters from Pu, the Boolean connectives ¬ and
∧, and a temporal modality for each of the (non trivial) Allen’s relations, i.e.,
〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS formulas are
defined by the grammar ψ ::= pu | ¬ψ | ψ∧ψ | 〈X〉ψ | 〈X〉ψ, where pu ∈ Pu and
X ∈ {A,L,B,E,D,O}. We will also use the standard connectives (disjunction ∨
and implication→). Moreover, for any modality X, the dual universal modalities
[X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively. Given any
subset of Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn the HS fragment
that features existential (and universal) modalities for X1, . . . , Xn only. W.l.o.g.,
we assume the non-strict semantics of HS, which admits intervals consisting of

a single point3. Under such an assumption, all HS modalities can be expressed
in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [21]. HS can thus be viewed as a
multi-modal logic with 4 primitive modalities. However, since later we will focus
on the HS fragments AAEE and AABB—which respectively do not feature 〈B〉,
〈B〉 and 〈E〉, 〈E〉—we add both 〈A〉 and 〈A〉 to the considered set of modalities.

In [14], the authors investigate the MC problem over finite Kripke structures
K for HS formulas where intervals correspond to the traces of K . The approach
followed there is subject to two restrictions: (i) the set Pu of HS-proposition let-
ters and the set AP of proposition letters for the Kripke structure coincide, and
(ii) a proposition letter holds over an interval iff it holds over all its sub-intervals
(homogeneity assumption). Here, we adopt a more general and expressive ap-
proach according to which an abstract interval proposition letter pu ∈ Pu denotes
a regular language of finite words over 2AP , that is, every pu is a (proposition-
based) regular expression over AP . Thus, hereafter, an HS formula over AP is
an HS formula whose interval proposition letters (or atomic formulas) are RE r
over AP . Given a Kripke structure K = (AP , S,R, µ, s0), a trace ρ of K , and an
HS formula ϕ over AP , the satisfaction relation K , ρ |= ϕ is inductively defined
as follows (we omit the standard clauses for Boolean connectives):
– K , ρ |= r iff µ(ρ) ∈ L(r) for each RE r over AP ,
– K , ρ |= 〈B〉ϕ iff there exists ρ′ ∈ Pref(ρ) such that K , ρ′ |= ϕ,
– K , ρ |= 〈E〉ϕ iff there exists ρ′ ∈ Suff(ρ) such that K , ρ′ |= ϕ,
– K , ρ |= 〈B〉ϕ iff K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Pref(ρ′),
– K , ρ |= 〈E〉ϕ iff K , ρ′ |= ϕ for some trace ρ′ such that ρ ∈ Suff(ρ′).

K is a model of ϕ, denoted as K |= ϕ, if for all initial traces ρ of K , it holds
that K , ρ |= ϕ. The MC problem for HS is the problem of checking, for a finite
Kripke structure K and an HS formula ϕ, whether or not K |= ϕ. The problem
is not trivially decidable since the set TrcK of traces of K is infinite.

3 The general picture

Here we give a short account of research on MC for HS and its fragments, and
we enlighten the original contributions of the present paper (see Table 2).

Let us consider first the MC problem for HS and its fragments, under the ho-
mogeneity assumption, according to a state-based semantics [4]. In [14], Molinari
et al. provide a MC algorithm for (full) HS, with a non-elementary complexity,
that, given a finite Kripke structure K and a bound k on the nesting depth of 〈E〉
and 〈B〉 modalities in the input HS formula, exploits a finite and satisfiability-
equivalent representation for the infinite set TrcK , that accounts for K and k.
EXPSPACE-hardness of BE, and thus of full HS, has been shown in [3]. An
EXPSPACE MC algorithm for the fragments AABBE and AAEBE has been de-
vised in [16]. A number of well-behaved HS fragments, whose MC problem has a
computational complexity markedly lower than that of full HS, have been iden-
tified in [3, 5, 15, 17], where MC has been proved to be (i) PSPACE-complete

for AABE, AABB, AAEE, B, and E, (ii) PNP-complete for AB, AAB, AE, and

3 All the results we prove in the paper hold for the strict semantics as well.

Table 2. Complexity of MC for HS and its fragments (†local MC).

Homogeneity Regular expressions Endpoints + KC

Full HS, BE
non-elem. non-elem. BE+KC†: PSPACE

EXPSPACE-hard EXPSPACE-hard BE†: P

AABBE,AAEBE
EXPSPACE non-elem.

PSPACE-hard PSPACE-hard

AABE PSPACE-c.
non-elem.

PSPACE-hard

AABB,BB,B,
PSPACE-c. PSPACE-c. AB+KC: non-elem.

AAEE,EE,E

AAB,AAE,AB,AE PNP-c. PSPACE-c.

AA,AB,AE,A,A
PNP[O(log2 n)]

PSPACE-c.
PNP[O(logn)]-hard

Prop,B,E co-NP-c. PSPACE-c.

AAE, (iii) in between PNP[O(logn)] and PNP[O(log2 n)] for AA, A, A, AB, and AE,
and (iv) co-NP-complete for B, E, and Prop (the pure propositional fragment).

In [10, 11], Lomuscio and Michaliszyn investigate MC for some HS fragments
extended with the epistemic modalities K and C, according to a computation-
tree-based semantics [4], under the assumption that interval labeling is defined
by interval endpoints only. They prove that local MC for BE+KC is PSPACE-
complete (it is in P for BE), and they give a non-elementary upper bound to
the complexity of MC for AB+KC. Later, in [12], they propose an alternative
definition of interval labeling for the two fragments, which associates a regular
expression over the set of states of the Kripke structure with each proposition
letter, that leads to a significant increase in expressiveness, at no extra compu-
tational cost. Nothing is said about MC for full HS (with or without K, C).

In this paper, we define interval labeling via regular expressions in a way that
can be shown to be equivalent to that of [12]. We first show that MC for (full)
HS with regular expressions and state-based semantics is decidable. Then, we
prove that relaxing the homogeneity assumption via regular expressions comes
at no cost for AABB, AAEE, BB, EE, B, and E, that remain in PSPACE, while
AAB and AAE and their fragments increase their complexity to PSPACE. Since
the computation-tree-based semantics and the state-based one behave exactly
in the same way when restricted to HS fragments featuring present and future
modalities only4, from the PSPACE-completeness of AABB, it immediately
follows the PSPACE membership of AB with regular expressions, devoid of
epistemic operators (in fact, the non-elementary complexity of MC for AB in [12]
can be hardly ascribed to the addition of epistemic operators). The definitions
of interval labeling given in [14] and [10, 11] can be recovered as special cases of
the present one as follows. To force homogeneity, all regular expressions in the
formula have to be of the form p ·p∗, for p ∈ AP , while interval labeling based on
endpoints is captured by regular expressions of the form

⋃
(i,j)∈I(qi · >∗ · qj) ∪⋃

i∈I′ qi, for some suitable I ⊆ {1, . . . , |S|}2, I ′ ⊆ {1, . . . , |S|}, where qi ∈ AP is
a letter labeling the state si ∈ S of K only.

4 As shown in [4], this is not the case in general: the computation-tree-based semantics
of [10–12] is subsumed by the state-based one of [14] and follow-up papers.

4 MC for full HS

In this section, we give an automata-theoretic solution to the MC problem for
full HS. Given a finite Kripke structure K and an HS formula ϕ over AP , we
compositionally construct an NFA over the set of states of K accepting the set of
traces ρ of K such that K , ρ |= ϕ. The size of the resulting NFA is nonelementary,
but it is just linear in the size of K . To ensure that the non-elementary blow-up
does not depend on the size of K , we introduce a special subclass of NFAs, that
we call K -NFA. Let K = (AP , S,R, µ, s0) be a Kripke structure over AP .

Definition 3. A K -NFA is an NFA A = (S,Q,Q0, δ, F) over S satisfying: (i)
the set Q of states is of the form M × S (M is called the main component
or the set of main states); (ii) Q0 ∩ F = ∅, i.e., the empty word ε is not
accepted; (iii) for all (q, s) ∈ M × S and s′ ∈ S, δ((q, s), s′) = ∅ if s′ 6= s, and
δ((q, s), s) ⊆M × R(s).

Note that a K -NFA A accepts only traces of K . Moreover, for all words
ρ ∈ S+, if there is a run of A over ρ, then ρ is a trace of K .

Proposition 4. Let A be an NFA over 2AP with n states. One can construct in
polynomial time a K -NFA AK with at most n + 1 main states accepting the set
of traces ρ of K such that µ(ρ) ∈ L(A).

Proof. Let A = (2AP , Q,Q0, δ, F). By using an additional state, we can assume
ε /∈ L(A) (i.e., Q0 ∩ F = ∅). Then, AK = (S,Q × S,Q0 × S, δ′, F × S), where
for all (q, s) ∈ Q × S and s′ ∈ S, δ′((q, s), s′) = ∅ if s′ 6= s, and δ′((q, s), s) =
δ(q, µ(s))× R(s). Since R(s) 6= ∅ for all s ∈ S, the thesis follows. ut

We now extend the semantics of the HS modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉 over
K to languages L of finite words over S. Given any such language L over S, let
〈B〉K (L), 〈E〉K (L), 〈B〉K (L), 〈E〉K (L) be the languages of traces of K defined as:

– 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ L ∩ S+ and ρ′′ ∈ S+ such that ρ = ρ′ · ρ′′},
– 〈B〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ · ρ′ ∈ L ∩ TrcK },
– 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′′ ∈ L ∩ S+ and ρ′ ∈ S+ such that ρ = ρ′ · ρ′′},
– 〈E〉K (L) = {ρ ∈ TrcK | ∃ ρ′ ∈ S+ such that ρ′ · ρ ∈ L ∩ TrcK }.

The compositional translation of HS formulas into a K -NFA is based on the
following two propositions. First, we show that K -NFAs are closed under the
above language operations.

Proposition 5. Given a K -NFA A with n main states, one can construct in
polynomial time K -NFAs with n + 1 main states accepting the languages
〈B〉K (L(A)), 〈E〉K (L(A)), 〈B〉K (L(A)), and 〈E〉K (L(A)), respectively.

Proof. Let A = (S,M × S,Q0, δ, F) be the given K -NFA, where M is the set of
main states. We omit the constructions for 〈E〉K (L(A)) and 〈E〉K (L(A)) (which

are symmetric to those for 〈B〉K (L(A)) and 〈B〉K (L(A)), respectively).
Construction for the language 〈B〉K (L(A)). Let us consider the NFAA〈B〉 over

S given by A〈B〉 = (S, (M ∪ {qacc})× S,Q0, δ
′, {qacc} × S), where qacc /∈M is a

fresh main state, and for all (q, s) ∈ (M∪{qacc})×S and s′ ∈ S, δ′((q, s), s′) = ∅,
if s′ 6= s, and δ′((q, s), s) is defined as follows:

δ′((q, s), s) =

 δ((q, s), s) if (q, s) ∈ (M × S) \ F
δ((q, s), s) ∪ ({qacc} × R(s)) if (q, s) ∈ F
{qacc} × R(s) if q = qacc.

Given an input word ρ, from an initial state (q0, s) of A, the automaton A〈B〉
simulates the behavior of A from (q0, s) over ρ, but when A is in an accepting
state (qf , s) and the current input symbol is s, A〈B〉 can additionally choose to
move to a state in {qacc} ×R(s), which is accepting for A〈B〉. From such states,
A〈B〉 accepts iff the remaining portion of the input is a trace of K . Formally, by
construction, since A is a K -NFA, A〈B〉 is a K -NFA as well. Moreover, a word ρ
over S is accepted by A〈B〉 iff ρ is a trace of K having some proper prefix ρ′ in
L(A) (note that ρ′ 6= ε since A is a K -NFA). Hence, L(A〈B〉) = 〈B〉K (L(A)).

Construction for the language 〈B〉K (L(A)). Let us consider the NFAA〈B〉 over

S given by A〈B〉 = (S, (M ∪ {q′0})× S, {q′0} × S, δ′, F ′), where q′0 /∈M is a fresh

main state and δ′ and F ′ are defined as follows: (i) for all (q, s) ∈ (M ∪{q′0})×S
and s′ ∈ S, δ′((q, s), s′) = ∅ if s′ 6= s, and δ′((q, s), s) is defined as follows:

δ′((q, s), s) =


⋃

(q0,s)∈Q0

δ((q0, s), s) if q = q′0

δ((q, s), s) otherwise.

(ii) The set F ′ of accepting states is the set of states (q, s) of A such that there
is a run of A from (q, s) to some state in F over some non-empty word. It easily
follows by construction that A〈B〉 is a K -NFA and L(A〈B〉) = 〈B〉K (L(A)). ut

We now show that K -NFAs are closed under Boolean operations.

Proposition 6. Given two K -NFAs A and A′ with n and n′ main states, re-
spectively, one can construct:
– in time O(n+n′) a K -NFA with n+n′ main states accepting L(A)∪L(A′);
– in time 2O(n) a K -NFA with 2n+1 + 1 main states accepting TrcK \L(A).

Proof. We omit the construction for union, as it is a natural generalization of the
one for NFAs, and focus on complementation. Let A = (S,M × S,Q0, δ, F). Let
n be the number of main states of A. First, we need a preliminary construction.
Let us consider the NFA A′′ = (S, (M ∪ {qacc}) × S,Q0, δ

′′, {qacc} × S), where
qacc /∈ M is a fresh main state, and for all (q, s) ∈ (M ∪ {qacc})× S and s′ ∈ s,
δ′′((q, s), s′) = ∅ if s′ 6= s, and

δ′′((q, s), s) =

 δ((q, s), s) ∪ ({qacc} × S) if q ∈M and δ((q, s), s) ∩ F 6= ∅
δ((q, s), s) if q ∈M and δ((q, s), s) ∩ F = ∅
∅ if q = qacc.

Note that A′′ is not a K -NFA. However, L(A′′) = L(A).

Next we show that it is possible to construct in time 2O(n) a weak K -NFA Ac
with 2n+1 main states accepting (TrcK \L(A′′)) ∪ {ε}, where a weak K -NFA is
a K -NFA but the requirement that the empty word ε is not accepted is relaxed.
Thus, since a weak K -NFA can be easily converted into an equivalent K -NFA by
using an additional main state and L(A′′) = L(A), the result follows. Let M̃ =

M ∪{qacc}. Then, the weak K -NFA Ac is given by Ac = (S, 2M̃ ×S,Q0,c, δc, Fc),
where Q0,c, Fc, and δc are defined as follows: (i) Q0,c = {(P, s) ∈ 2M × S | P =

{q ∈M | (q, s) ∈ Q0}}; (ii) Fc = {(P, s) ∈ 2M × S}; (iii) for all (P, s) ∈ 2M̃ × S
and s′ ∈ S, δc((P, s), s

′) = ∅ if s′ 6= s, and δc((P, s), s) is given by⋃
s′∈R(s)

{
({q′ ∈ M̃ | (q′, s′) ∈

⋃
p∈P

δ′′(p, s)}, s′)
}
.

By construction, Ac is a weak K -NFA. Hence Ac does not accept words in
S+ \ TrcK . Moreover, by construction, Q0,c ⊆ F , thus ε ∈ L(Ac). Finally it is
easy to prove that ρ ∈ L(A′′) if and only if ρ /∈ L(Ac). ut

Let ϕ be an HS formula. We can convert ϕ into an equivalent formula, called
existential form of ϕ, that makes use of negations, disjunctions, and the existen-
tial modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉, only. For all h ≥ 1, HSh denotes the syntactical
HS fragment consisting only of formulas ϕ such that the nesting depth of nega-
tion in the existential form of ϕ is at most h. Moreover ¬HSh is the set of formulas
ϕ such that ¬ϕ ∈ HSh. Given an HS formula ϕ, checking whether K 6|= ϕ reduces
to checking the existence of an initial trace ρ of K such that K , ρ |= ¬ϕ.

The next theorem concludes this section by stating its main result.

Theorem 7. There exists a constant c such that, given a finite Kripke structure
K and an HS formula ϕ, one can construct a K -NFA with O(|K | ·Tower(h, |ϕ|c))
states accepting the set of traces ρ of K such that K , ρ |= ϕ, where h is the
nesting depth of negation in the existential form of ϕ.

Moreover, for each h ≥ 0, the MC problem for ¬HSh is in h-EXPTIME.
Additionally, for a constant-length formula, the MC problem is in P.

5 Exponential Small-Model for AABB and AAEE

Here we prove an exponential small-model property for the fragments AABB and
AAEE, that is, if a trace ρ of a finite Kripke structure K satisfies a formula ϕ
of AABB or AAEE, then there exists a trace π, whose length is exponential in
the sizes of ϕ and K , starting from and leading to the same states as ρ, that
satisfies ϕ. We focus on AABB (being the case for AAEE symmetric). Let K =
(AP , S,R, µ, s0) be a finite Kripke structure. We start by introducing the notion
of trace induced by a trace ρ which is obtained by contracting ρ, concatenating
some subtraces of ρ (provided that the resulting sequence is another trace of K).

Definition 8. Let ρ ∈ TrcK be a trace with |ρ| = n. A trace induced by ρ is
a trace π ∈ TrcK such that there exists an increasing sequence of ρ-positions
i1 < . . . < ik, with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik). Moreover, we say that
the π-position j and the ρ-position ij are corresponding.

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|.
Given a DFA D = (Σ,Q, q0, δ, F), we denote by D(w) (resp., Dq(w)) the state

reached by the computation of D from q0 (resp., q ∈ Q) over the word w ∈ Σ∗.
We now consider well-formedness of induced traces w.r.t. a set of DFAs: a

well formed trace π induced by ρ preserves the states of the computations of the
DFAs reached by reading prefixes of ρ and π bounded by corresponding positions.

Definition 9. Let K = (AP , S,R, µ, s0) be a finite Kripke structure, ρ ∈ TrcK
be a trace, and Ds = (2AP , Qs, qs0, δ

s, F s) with s = 1, . . . , k, be DFAs. A trace
π ∈ TrcK induced by ρ is (q1`1 , . . . , q

k
`k

)-well-formed w.r.t. ρ, with qs`s ∈ Q
s for

all s = 1, . . . , k, if and only if for all π-positions j, with corresponding ρ-positions
ij, and all s = 1, . . . , k, it holds that Dsqs`s (µ(πj)) = Dsqs`s (µ(ρij)).

For qs`s ∈Q
s, s = 1, . . . , k, the (q1`1 ,. . .,q

k
`k

)-well-formedness relation is transitive.
Now it is possible to show that a trace whose length exceeds a suitable

exponential threshold, induces a shorter, well-formed trace. Such a contraction
pattern represents a “basic step” in a contraction process which will allow us
to prove the exponential small-model property for AABB. Let us consider an
AABB formula ϕ and let r1, . . . , rk be the RE’s over AP in ϕ. Let D1, . . . ,Dk
be the DFAs such that L(Dt) = L(rt), for t = 1, . . . , k, where |Qt| ≤ 22|rt| (see
Remark 2). We denote Q1 × . . .×Qk by Q(ϕ), and D1, . . . ,Dk by D(ϕ).

Proposition 10. Let K = (AP , S,R, µ, s0) be a finite Kripke structure, ϕ be
an AABB formula with RE’s r1, . . . , rk over AP , ρ ∈ TrcK be a trace, and
(q1, . . . , qk) ∈ Q(ϕ). There exists a trace π ∈ TrcK , which is (q1, . . . , qk)-well-

formed w.r.t. ρ, such that |π| ≤ |S| · 22
∑k
`=1 |r`|.

The next step is to determine some conditions for contracting traces while
preserving the equivalence w.r.t. the satisfiability of a considered AABB formula.
In the following, we restrict ourselves to formulas in negation normal form (ab-
breviated NNF, a.k.a. positive normal form), i.e., formulas where negation is
applied only to atomic formulas (regular expressions). Any formula in AABB
can be converted (in linear time) into an equivalent one in NNF, having at most
double length (by using De Morgan’s laws and duality of HS modalities).

For a trace ρ and a formula ϕ of AABB (in NNF), we fix some special ρ-
positions, called witness positions, each one corresponding to the minimal prefix
of ρ which satisfies a formula ψ occurring in ϕ as a subformula of the form
〈B〉ψ (provided that 〈B〉ψ is satisfied by ρ). When a contraction is performed
in between a pair of consecutive witness positions (thus no witness position is
ever removed), we get a trace induced by ρ equivalent w.r.t. satisfiability of ϕ.

Definition 11 (Witness positions). Let ρ be a trace of K and ϕ be a formula
of AABB. Let us denote by B(ϕ, ρ) the set of subformulas 〈B〉ψ of ϕ such that
K , ρ |= 〈B〉ψ. The set Wt(ϕ, ρ) of witness positions of ρ for ϕ is the minimal
set of ρ-positions satisfying the following constraint: for each 〈B〉ψ ∈ B(ϕ, ρ),
the smallest ρ-position i < |ρ| such that K , ρi |= ψ belongs to Wt(ϕ, ρ).5

5 Note that such a ρ-position exists by definition of B(ϕ, ρ).

The cardinality of B(ϕ, ρ) and of Wt(ϕ, ρ) is at most |ϕ|−1.

Theorem 12 (Exponential small-model for AABB). Let K =(AP ,S,R,µ,s0),
σ, ρ ∈ TrcK , and ϕ be an AABB formula in NNF, with RE’s r1, . . . , ru over
AP , such that K , σ ? ρ |= ϕ. Then, there is π ∈ TrcK , induced by ρ, such that
K , σ ? π |= ϕ and |π| ≤ |S| · (|ϕ|+ 1) · 22

∑u
`=1 |r`|.

Theorem 12 holds in particular if |σ| = 1, and thus σ ? ρ = ρ and σ ? π = π.
In this case, if K , ρ |= ϕ, then K , π |= ϕ, where π is induced by ρ and |π| ≤
|S|·(|ϕ|+1)·22

∑u
`=1 |r`|. The more general assertion is needed for technical reasons.

In the following, we will exploit the exponential small-model for AABB and
AAEE to prove the PSPACE-completeness of the MC problem for the two
symmetrical fragments. First, we will provide a PSPACE MC algorithm for
BB (resp., EE); then, we will show that the meets and met-by modalities A and
A can be suitably encoded by using regular expressions, and thus they do not
increase the complexity of BB (resp., EE).

6 PSPACE-completeness of MC for AABB

To start with, we describe a PSPACE MC algorithm for BB formulas. W.l.o.g.,
we assume that the processed formulas do not contain occurrences of the univer-
sal modalities [B] and [B]. Moreover, for a formula ψ, we denote by Subf〈B〉(ψ) =
{ϕ | 〈B〉ϕ is a subformula of ψ}; Φ represents the overall formula to be checked,
while the parametric formula ψ ranges over its subformulas. Due to the result
of the previous section, the algorithm can consider only traces having length
bounded by the exponential small-model property. Note that an algorithm re-
quired to work in polynomial space cannot explicitly store the DFAs for the
regular expressions occurring in Φ (their states are exponentially many in the
length of the associated regular expressions). For this reason, while checking a
formula against a trace, the algorithm just stores the current states of the com-
putations of the DFAs associated with the regular expressions in Φ, from the
respective initial states (in the following such states are denoted—with a little
abuse of notation—again by D(Φ), and called the “current configuration” of the
DFAs) and calculates on-the-fly the successor states in the DFAs, once they have
read some state of K used to extend the considered trace (this can be done by
exploiting a succinct encoding of the NFAs for the reg.expr. of Φ, see Remark 2).

A call to the recursive procedure Check(K ,ψ,s,G,D(Φ)) (Algorithm 1) checks
the satisfiability of a subformula ψ of Φ w.r.t. any trace ρ fulfilling the following
conditions: (1) G ⊆ Subf〈B〉(ψ) is the set of formulas that hold true on at least a
prefix of ρ; (2) after reading µ(ρ(1, |ρ|−1)) the current configuration of the DFAs
for the regular expressions of Φ is D(Φ); (3) the last state of ρ is s. Intuitively,
since the algorithm cannot store the already checked portion of a trace (whose
length could be exponential), the relevant information is summarized in a triple

(G,D(Φ), s). Hereafter the set of all possible summarizing triples (G,D(Φ), s),

where G ⊆ Subf〈B〉(ψ), D(Φ) is any current configuration of the DFAs for the
regular expressions of Φ, and s is a state of K , is denoted by Conf(K , ψ).

Let us consider in detail the body of the procedure. First advance(D(Φ),µ(s)),
invoked at line 2, updates the current configuration of the DFAs after reading

Algorithm 1 Check(K , ψ, s,G,D(Φ))

1: if ψ = r then / r is a regular expression
2: If the current state of the DFA for r in advance(D(Φ), µ(s)) is final return >
3: else return ⊥
4: else if ψ = ¬ψ′ (resp., ψ = ψ1 ∧ ψ2) then
5: Call Check recursively on ψ′ (ψ1, ψ2) and apply ¬ (∧) to the returned result(s)
6: else if ψ = 〈B〉ψ′ then
7: If ψ′ ∈ G then return > else return ⊥
8: else if ψ = 〈B〉ψ′ then

9: for each b ∈ {1, . . . , |S| · (2|ψ′|+ 1) · 22
∑u
`=1 |r`| − 1}

and each (G′,D(Φ)′, s′) ∈ Conf(K , ψ) do/ r1, . . . , ru are the reg. expr. of ψ′

10: if Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, s′), b) and Check(K , ψ′, s′, G′,D(Φ)′) then
11: return >
12: return ⊥

Algorithm 2 Reach(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2), b)

1: if b = 1 then
2: return Compatible(K , ψ, (G1,D(Φ)1, s1), (G2,D(Φ)2, s2))
3: else / b ≥ 2
4: b′ ← bb/2c
5: for each (G3,D(Φ)3, s3) ∈ Conf(K , ψ) do
6: if Reach(K , ψ, (G1,D(Φ)1, s1), (G3,D(Φ)3, s3), b′) and Reach(K , ψ, (G3,D(Φ)3, s3), (G2,D(Φ)2, s2), b− b′) then
7: return >
8: return ⊥

the symbol µ(s). If ψ is a regular expression r (lines 1–3), we just check whether
the (computation of the) DFA associated with r is in a final state (i.e., the sum-
marized trace is accepted). Boolean connectives are easily dealt with recursively
(lines 4–5). If ψ has the form 〈B〉ψ′ (lines 6–7), then ψ′ has to hold over a proper
prefix of the summarized trace, namely, ψ′ must belong to G.

The only involved case is ψ = 〈B〉ψ′ (lines 8–12): we have to unravel the
Kripke structure K to find an extension ρ′ of ρ, summarized by the triple
(G′,D(Φ)′, s′), satisfying ψ′. The idea is checking whether or not there exists a
summarized trace (G′,D(Φ)′, s′), suitably extending (G,D(Φ), s), namely, such
that: (1) D(Φ)′ and s′ are synchronously reachable from D(Φ) and s, resp.; (2)
G′ ⊇ G contains all the formulas of Subf〈B〉(ψ

′) satisfied by some prefixes of the
extension; (3) the extension (G′,D(Φ)′, s′) satisfies ψ′. In order to check point
(1), i.e., synchronous reachability, we can exploit the exponential small-model
property and consider only the unravelling of K starting from s having depth at
most |S| ·(2|ψ′|+1) ·22

∑u
`=1 |r`|−16. The check of (1) and (2) is performed by the

procedure Reach (Algorithm 2), which accepts as input two summarized traces
and a bound b on the depth of the unravelling of K . The proposed reachability
algorithm is reminiscent of the binary reachability of Savitch’s theorem.

Reach proceeds recursively (lines 3–8) by halving at each step the value b of
the length bound, until it gets called over two states s1 and s2 which are adjacent

6 The factor 2 in front of |ψ′| is due to the fact that the exponential small-model for
AABB requires a formula in NNF.

Algorithm 3 Compatible(K ,ψ,(G1,D(Φ)1,s1),(G2,D(Φ)2,s2))

1: if (s1, s2)∈R and advance(D(Φ)1, µ(s1)) = D(Φ)2 and G1⊆G2 then
2: for each ϕ ∈ (G2 \G1) do
3: G← G1 ∩ Subf〈B〉(ϕ)
4: if Check(K , ϕ, s1, G,D(Φ)1) = ⊥ then
5: return ⊥
6: for each ϕ ∈ (Subf〈B〉(ψ) \G2) do
7: G← G1 ∩ Subf〈B〉(ϕ)
8: if Check(K , ϕ, s1, G,D(Φ)1) = > then
9: return ⊥

10: return >
11: else
12: return ⊥

in a trace. At each halving step, an intermediate summarizing triple is generated
to be associated with the split point. At the base of recursion (for b = 1, lines
1–2), the auxiliary procedure Compatible (Algorithm 3) is invoked. At line 1,
Compatible checks whether there is an edge between s1 and s2 ((s1, s2) ∈ R),
and if, at the considered step, the current configuration of the DFAs D(Φ)1 is
transformed into the configuration D(Φ)2 (i.e., s2 and D(Φ)2 are synchronously
reachable from s1 and D(Φ)1). At lines 2–9, Compatible checks that each for-
mula ϕ in (G2 \ G1), where G2 ⊇ G1, is satisfied by a trace summarized by
(G1,D(Φ)1, s1) (lines 2–5). Intuitively, (G1,D(Φ)1, s1) summarizes the maximal
prefix of (G2,D(Φ)2, s2), and thus a subformula satisfied by a prefix of a trace
summarized by (G2,D(Φ)2, s2) either belongs to G1 or it is satisfied by the trace
summarized by (G1,D(Φ)1, s1). Moreover, (lines 6–9) Compatible checks that
G2 is maximal (i.e., no subformula that must be in G2 has been forgot).

Note that by exploiting this binary reachability technique, the recursion
depth of Reach is logarithmic in the length of the trace to be visited, hence it can
use only polynomial space. Theorem 13 establishes the soundness of Check.

Theorem 13. Let Φ be a BB formula, ψ be a subformula of Φ, and ρ ∈ TrcK be
a trace with s = lst(ρ). Let G be the subset of formulas in Subf〈B〉(ψ) that hold
on some proper prefix of ρ. Let D(Φ) be the current configuration of the DFAs
associated with the regular expressions in Φ after reading µ(ρ(1, |ρ| − 1)). Then
Check(K , ψ, s,G,D(Φ)) = > ⇐⇒ K , ρ |= ψ.

Finally, the main MC procedure for BB formulas is reported in Algorithm 4:
CheckAux(K , Φ) starts by constructing the NFAs and the initial states of the
DFAs for the regular expressions of Φ. Then CheckAux invokes the procedure
Check two times: the former to check the special case of the trace s0 (consisting
of the initial state of K only), and the latter for considering any right-extensions
of s0 (i.e., all the initial traces having length at least 2).

Theorem 14. Let K = (AP , S,R, µ, s0) be a finite Kripke structure, and Φ be a
BB formula. Then CheckAux(K , Φ) returns > if and only if K |= Φ.

Corollary 15. The MC problem for BB formulas over finite Kripke structures
is in PSPACE.

Algorithm 4 CheckAux(K , Φ)

1: create(D(Φ)0)/ Creates the (succinct) NFAs and the initial states of the DFAs for
all the regular expressions in Φ

2: If Check(K ,¬Φ, s0, ∅,D(Φ)0) or Check(K , 〈B〉 ¬Φ, s0, ∅,D(Φ)0) then return ⊥
3: else return >

Proof. The procedure CheckAux decides the problem using polynomial work
space due to the following facts: (i) the number of simultaneously active recursive
calls of Check is O(|Φ|) (depending on the depth of Φ); (ii) for any call of Check

the used space (in bits) is O
(

(|Φ|+ |S|+
∑u
`=1 |r`|+log(|S| · |Φ| · 22

∑u
`=1 |r`|)(1)+

(|Φ|+ |S|+
∑u
`=1 |r`|)(2) · log(|S| · |Φ| · 22

∑u
`=1 |r`|)(3)

)
where r1, . . . , ru are the

regular expressions of Φ, and S the states of K . In particular, (1) O(log(|S| · |Φ| ·
22

∑u
`=1 |r`|)) bits are used for the bound b on the trace length, (3) for each sub-

formula 〈B〉ψ′ of Φ at most O(log(|S| · |Φ| · 22
∑u
`=1 |r`|)) recursive calls of Reach

may be simultaneously active (the recursion depth of Reach is logarithmic in b),
and (2) each call of Reach requires O(|Φ|+ |S|+

∑u
`=1 |r`|) bits. ut

Finally, since a Kripke structure can be unravelled against the direction of
its edges, and any language L is regular iff LRev = {w(|w|) · · ·w(1) | w ∈ L} is,
the algorithm can be easily modified to deal with the symmetrical fragment EE.

Let us now focus on AABB. CheckAux can be used iteratively as a basic engine
to check formulas Φ of AABB: at each iteration, we select an occurrence of a
subformula of Φ, either of the form 〈A〉ψ or 〈A〉ψ, without internal occurrences
of 〈A〉 and 〈A〉. For such an occurrence, say 〈A〉ψ (〈A〉ψ is symmetric), we
compute the set S〈A〉ψ of states of K s.t., for any ρ ∈ TrcK , K , ρ |= 〈A〉ψ iff
lst(ρ) ∈ S〈A〉ψ. To this aim we run CheckAux(K ,¬ψ) using each s ∈ S as the
initial state (in place of s0): we have s ∈ S〈A〉ψ iff the procedure returns ⊥. Then

we replace 〈A〉ψ in Φ with a fresh reg. expr. r〈A〉ψ := >∗ ·
(⋃

s′∈S〈A〉ψ
qs′
)
—where

qs′ is an auxiliary letter labeling s′ ∈ S only—obtaining a formula Φ′. If Φ′ is in
BB the conversion is completed, otherwise we proceed with another iteration.

Finally, the pure propositional fragment Prop can be proved PSPACE-hard
by a reduction from the PSPACE-complete universality problem for regular
expressions: such lower bound immediately propagates to all other HS fragments.

Theorem 16. The MC problem for formulas of any (proper or improper) sub-
fragment of AABB (and AAEE) on finite Kripke structures isPSPACE-complete.

7 Conclusions

In this paper, we have investigated the MC problem for HS and two large frag-
ments of it, AABB and AAEE, defining interval labelling via regular expressions.
The approach, stemming from [12], generalizes both the one of [14] (which as-
sumes the homogeneity principle) and of [10, 11] (where labeling is endpoint-
based). MC turns out to be non-elementarily decidable and EXPSPACE-hard
for full HS (the hardness follows from that of BE under homogeneity [3]), and
PSPACE-complete for AABB, AAEE, and all their sub-fragments.

Future work will focus on the fragments AABBE, AAEBE, and AABE, which
have been proved to be in EXPSPACE (the first two) and PSPACE-complete
(the third one) under the homogeneity assumption [15, 16], as well as on the
problem of determining the exact complexity of MC for full HS. In addition,
we will study the MC problem for HS over visibly pushdown systems (VPS), in
order to deal with recursive programs and infinite state systems.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Comm. of the ACM
26(11), 832–843 (1983)

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
3. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Interval Temporal

Logic Model Checking: the Border Between Good and Bad HS Fragments. In:
IJCAR. pp. 389–405. LNAI 9706 (2016)

4. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Interval vs. Point Tem-
poral Logic Model Checking: an Expressiveness Comparison. In: FSTTCS (2016)

5. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Model Checking the
Logic of Allen’s Relations Meets and Started-by is PNP-Complete. In: GandALF.
pp. 76–90 (2016)

6. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The
dark side of interval temporal logic: marking the undecidability border. Annals of
Mathematics and Artificial Intelligence 71(1-3), 41–83 (2014)

7. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: CAV. pp. 232–247 (2000)

8. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. of the
ACM 38(4), 935–962 (1991)

9. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83–103 (2009)

10. Lomuscio, A., Michaliszyn, J.: An epistemic Halpern-Shoham logic. In: IJCAI. pp.
1010–1016 (2013)

11. Lomuscio, A., Michaliszyn, J.: Decidability of model checking multi-agent systems
against a class of EHS specifications. In: ECAI. pp. 543–548 (2014)

12. Lomuscio, A., Michaliszyn, J.: Model checking multi-agent systems against epis-
temic HS specifications with regular expressions. In: KR. pp. 298–308 (2016)

13. Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals.
Fundamenta Informaticae 131(2), 217–240 (2014)

14. Molinari, A., Montanari, A., Murano, A., Perelli, G., Peron, A.: Checking interval
properties of computations. Acta Informatica pp. 587–619 (2016)

15. Molinari, A., Montanari, A., Peron, A.: Complexity of ITL model checking: some
well-behaved fragments of the interval logic HS. In: TIME. pp. 90–100 (2015)

16. Molinari, A., Montanari, A., Peron, A.: A model checking procedure for interval
temporal logics based on track representatives. In: CSL. pp. 193–210 (2015)

17. Molinari, A., Montanari, A., Peron, A., Sala, P.: Model Checking Well-Behaved
Fragments of HS: the (Almost) Final Picture. In: KR. pp. 473–483 (2016)

18. Montanari, A.: Interval temporal logics model checking. In: TIME. p. 2 (2016)
19. Moszkowski, B.: Reasoning About Digital Circuits. Ph.D. thesis, Stanford Univer-

sity, Stanford, CA (1983)
20. Roeper, P.: Intervals and tenses. J. of Philosophical Logic 9, 451–469 (1980)
21. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre

Dame J. of Formal Logic 31(4), 529–547 (1990)

A Appendix

A.1 Completion of the proof of Proposition 5

Construction for the language 〈E〉K (L(A)). Let us consider the NFA A〈E〉 over
S given by A〈E〉 = (S, (M ∪ {q′0})× S, {q′0} × S, δ′, F), where q′0 /∈ M is a fresh
main state and for all (q, s) ∈ (M ∪ {q′0}) × S and s′ ∈ S, δ′((q, s), s′) = ∅, if
s′ 6= s, and δ((q, s), s) is defined as follows:

δ((q, s), s) =

{
δ((q, s), s) if q 6= q′0
({q′0} × R(s)) ∪ {(q0, s′) ∈ Q0 | s′ ∈ R(s)} otherwise.

Starting from an initial state (q′0, s), the automaton A〈E〉 either remains in a
state whose main component is q′0, or moves to an initial state (q0, s

′) of A,
ensuring at the same time that the portion of the input read so far is faithful
to the evolution of K . From the state (q0, s

′), A〈E〉 simulates the behavior of A.
Formally, since A is a K -NFA, by construction it easily follows that A〈E〉 is a
K -NFA which accepts the set of traces of K having a non-empty proper suffix in
L(A). Hence, L(A〈E〉) = 〈E〉K (L(A)).

Construction for the language 〈E〉K (L(A)). Let us consider the NFA A〈E〉 over

S given by A〈E〉 = (S, (M ∪ {qacc})× S,Q′0, δ′, {qacc} × S), where qacc /∈M is a

fresh main state, and Q′0 and δ′ are defined as follows:

– the set Q′0 of initial states is the set of states (q, s) of A such that there is a
run of A from some initial state to (q, s) over some non-empty word.

– For all (q, s) ∈ (M ∪ {qacc}) × S and s′ ∈ S, δ′((q, s), s′) = ∅ if s′ 6= s, and
δ′((q, s), s) is as follows:

δ′((q, s), s) =

 δ((q, s), s) ∪
⋃

(q′,s′)∈F∩δ((q,s),s)

{(qacc, s′)} if q ∈M

∅ if q = qacc.

Note that the set Q′0 can be computed in time polynomial in the size of A.
Since A〈E〉 essentially simulates A, and A is a K -NFA, by construction we easily

obtain that A〈E〉 is a K -NFA which accepts the set of words over S which are

non-empty proper suffixes of words in L(A). Thus, since A is a K -NFA, we obtain
that L(A〈E〉) = 〈E〉K (L(A)). ut

A.2 Completion of the proof of Proposition 6

Union. Let A = (S,M × S,Q0, δ, F) and A′ = (S,M ′ × S,Q′0, δ
′, F ′) be the

given K -NFAs. W.l.o.g., we assume that M ∩M ′ = ∅. Let us consider the NFA
A∪ over S given by A∪ = (S, (M ∪M ′)× S,Q0 ∪Q′0, δ′′, F ∪ F ′), where for all
(q, s) ∈ (M ∪M ′)× S and s′ ∈ S, δ′′((q, s), s′) = ∅ if s′ 6= s, and δ′′((q, s), s) is
defined as follows:

δ′′((q, s), s) =

{
δ((q, s), s) if q ∈M
δ′((q, s), s) if q ∈M ′.

Correctness of the construction trivially follows.

Complementation. Recall that A = (S,M ×S,Q0, δ, F). Let n be the number of
main states of A. First, we need a preliminary construction. Let us consider the
NFA A′′ = (S, (M ∪ {qacc}) × S,Q0, δ

′′, {qacc} × S), where qacc /∈ M is a fresh
main state, and for all (q, s) ∈ (M ∪ {qacc}) × S and s′ ∈ s, δ′′((q, s), s′) = ∅ if
s′ 6= s, and δ′′((q, s), s) is defined as follows:

δ′′((q, s), s) =

 δ((q, s), s) ∪ ({qacc} × S) if q ∈M and δ((q, s), s) ∩ F 6= ∅
δ((q, s), s) if q ∈M and δ((q, s), s) ∩ F = ∅
∅ if q = qacc.

Note that A′′ is not a K -NFA. However, L(A′′) = L(A).
Next we show that it is possible to construct in time 2O(n) a weak K -NFA Ac

with 2n+1 main states accepting (TrcK \L(A′′)) ∪ {ε}, where a weak K -NFA is
a K -NFA but the requirement that the empty word ε is not accepted is relaxed.
Thus, since a weak K -NFA can be easily converted into an equivalent K -NFA by
using an additional main state and L(A′′) = L(A), the result follows. Let M̃ =

M ∪{qacc}. Then, the weak K -NFA Ac is given by Ac = (S, 2M̃ ×S,Q0,c, δc, Fc),
where Q0,c, δc, and Fc are defined as follows:

– Q0,c = {(P, s) ∈ 2M × S | P = {q ∈M | (q, s) ∈ Q0}};
– for all (P, s) ∈ 2M̃ ×S and s′ ∈ S, δc((P, s), s

′) = ∅ if s′ 6= s, and δc((P, s), s)
is given by ⋃

s′∈R(s)

{
({q′ ∈ M̃ | (q′, s′) ∈

⋃
p∈P

δ′′(p, s)}, s′)
}

;

– Fc = {(P, s) ∈ 2M × S}.

By construction, Ac is a weak K -NFA. Hence Ac does not accept words in S+ \
TrcK . Moreover, by construction Q0,c ⊆ F . Hence ε ∈ L(Ac). Let ρ ∈ TrcK with
|ρ| = k. It remains to show that ρ ∈ L(A′′) if and only if ρ /∈ L(Ac).

First, let ρ ∈ L(A′′). We show that ρ /∈ L(Ac). We assume the contrary
and derive a contradiction. Hence, there is a run of Ac over ρ of the form
(P0, s0), . . . , (Pk, sk) such that (P0, s0) ∈ Q0,c and (Pk, sk) ∈ Fc. Hence qacc /∈
Pk. By construction, P0 = {q ∈ M | (q, s0) ∈ Q0}, and for all i ∈ [0, k − 1],

si = ρ(i) and Pi+1 = {p ∈ M̃ |(p, si+1) ∈ δ′′(q, si) for some q ∈ Pi}. Since
ρ ∈ L(A′′), there is s ∈ S, (q0, s0) ∈ Q0 and an accepting run of A′′ over ρ of
the form (q0, s0), . . . , (qk−1, sk−1), (qk, s) where qk = qacc. By definition of the
transition function of A′′, we can also assume that s = sk. It follows that qi ∈ Pi
for all i ∈ [0, k], which is a contradiction since qacc /∈ Pk. Therefore, ρ /∈ L(Ac).

For the converse direction, let ρ /∈ L(Ac). We need to show that ρ ∈ L(A′′).
By construction, there is some run of Ac over ρ starting from an initial state
(recall that R(s) 6= ∅ for all s ∈ S). Moreover, each of such runs is of the form
(P0, s0), . . . , (Pk, sk) such that P0 = {q ∈M | (q, s0) ∈ Q0}, qacc ∈ Pk, and for all

i ∈ [0, k − 1], si = ρ(i) and Pi+1 = {p ∈ M̃ |(p, si+1) ∈ δ(q, si) for some q ∈ Pi}.
It easily follows that there is an accepting run of A′′ over ρ from some initial
state in P0 × {s0}. Hence, the result follows.

This concludes the proof of Proposition 6. ut

A.3 Proof of Proposition 10

Proof. Let ρ ∈ TrcK with |ρ| = n. If n ≤ |S| · 22
∑k
`=1 |r`|, the thesis trivially

holds. Thus, let us assume n > |S| · 22
∑k
`=1 |r`|. We show that there exists a

trace which is (q1, . . . , qk)-well-formed w.r.t. ρ, whose length is smaller than n.
The number of possible (joint) configurations of the DFAs D(ϕ) is (at most)

|Q(ϕ)| ≤ 22|r1| · · · 22|rk| = 22
∑k
`=1 |r`|. Since n > |S| · 22

∑k
`=1 |r`|, there exists

some state s ∈ S occurring in ρ at least twice in the ρ-positions say 1 ≤ l1 <
l2 ≤ |ρ|, such that Dtqt(µ(ρl1)) = Dtqt(µ(ρl2)), for all t = 1, . . . , k. Let us consider

π = ρ(1, l1)?ρ(l2, n). It is easy to see that π ∈ TrcK , as ρ(l1) = ρ(l2), and |π| < n.
Moreover, π is (q1, . . . , qk)-well-formed w.r.t. ρ (the corresponding positions are

ij = j if j ≤ l1, and ij = j + (l2 − l1) otherwise). Now, if |π| ≤ |S| · 22
∑k
`=1 |r`|,

the thesis holds. Otherwise, the same basic step can be iterated a finite number
of times: the thesis follows by transitivity of (q1, . . . , qk)-well-formedness. ut

A.4 Proof of Theorem 12

Proof. Let Wt(ϕ, σ ? ρ) be the set of witness positions of σ ? ρ for ϕ. Let
{i1, . . . , ik} be the ordering of Wt(ϕ, σ ? ρ) such that i1 < . . . < ik. Let i0 = 1
and ik+1 = |σ ? ρ|. Hence, 1 = i0 ≤ i1 < . . . < ik < ik+1 = |σ ? ρ|.

If the length of ρ is at most |S| · (|ϕ| + 1) · 22
∑u
`=1 |r`|, the thesis trivially

holds. Let us assume that |ρ| > |S| · (|ϕ| + 1) · 22
∑u
`=1 |r`|. We show that there

exists a trace π induced by ρ, with |π| < |ρ|, such that K , σ ? π |= ϕ.

W.l.o.g., we can assume that i0 ≤ i1 < . . . < ij−1, for some j ≥ 1, are
σ-positions (while ij < . . . < ik+1 are (σ ? ρ)-positions not in σ). We claim

that either (i) there exists t ∈ [j, k] such that it+1 − it > |S| · 22
∑u
`=1 |r`| or

(ii) |(σ ? ρ)(|σ|, ij)| > |S| · 22
∑u
`=1 |r`|. By way of contradiction, suppose that

neither (i) nor (ii) holds. We need to distinguish two cases. If σ ? ρ = ρ, then
|ρ| = (ik+1 − i0) + 1 ≤ (k + 1) · |S| · 22

∑u
`=1 |r`| + 1; otherwise (|ρ| < |σ ? ρ|),

|ρ| = (ik+1 − ij) + |(σ ? ρ)(|σ|, ij)| ≤ k · |S| · 22
∑u
`=1 |r`| + |S| · 22

∑u
`=1 |r`| ≤

(k+1)·|S|·22
∑u
`=1 |r`|. The contradiction follows since (k+1)·|S|·22

∑u
`=1 |r`|+1 ≤

|ϕ| · |S| · 22
∑u
`=1 |r`| + 1 ≤ |S| · (|ϕ|+ 1) · 22

∑u
`=1 |r`|.

Let us define (α, β) = (it, it+1) in case (i), and (α, β) = (|σ|, ij) in case (ii).

Moreover let ρ′ = ρ(α, β). In both the cases, we have |ρ′| > |S| · 22
∑u
`=1 |r`|.

By Proposition 10, there exists a trace π′ of K , (q1, · · · , qu)-well-formed with
respect to ρ′, such that |π′| ≤ |S| · 22

∑u
`=1 |r`| < |ρ′|, where we choose qx =

Dx(µ((σ ? ρ)α−1)) for x = 1, . . . , u (as a particular case we set qx as the initial
state of Dx if α = 1). Let π be the trace induced by ρ obtained by replacing the
subtrace ρ′ of ρ with π′. Since |π| < |ρ|, it remains to prove that K , σ ? π |= ϕ.

Let us denote σ ? π by π and σ ? ρ by ρ. Moreover, let H : [1, |π|] → [1, |ρ|]
be the function mapping positions of π into positions of ρ in this way: positions
“outside” π′ (i.e., outside the interval [α, α + |π′| − 1]) are mapped into their
original position in ρ; positions “inside” π′ (i.e., in [α, α+ |π′| − 1]) are mapped
to the corresponding position in ρ′ (exploiting well-formedness of π′ w.r. to ρ′).

Formally, H is defined as:

H(m) =


m if m < α

α+ `m−α+1 − 1 if α ≤ m < α+ |π′|
m+ (|ρ′| − |π′|) if m ≥ α+ |π′|

(1)

where `m is the ρ′-position corresponding to the π′-position m. It is easy to check
that H satisfies the following properties:

1. H is strictly monotonic, i.e., for all j, j′ ∈ [1, |π|], j < j′ iff H(j) < H(j′);
2. for all j ∈ [1, |π|], π(j) = ρ(H(j));
3. H(1) = 1 and H(|π|) = |ρ|;
4. Wt(ϕ, ρ) ⊆ {H(j) | j ∈ [1, |π|]};
5. for each j ∈ [1, |π|] and x = 1, . . . , u, Dx(µ(πj)) = Dx(µ(ρH(j))).

We only comment on Property 5. The property holds for j ∈ [1, α − 1], as
πj = ρH(j) = ρj . For j ∈ [α, α + |π′| − 1], Dx(µ(πj)) = Dx(µ(ρH(j))) follows
from the well-formedness hypothesis. Finally, being ρ(β, |ρ|) = π(α+ |π′|−1, |π|)
and Dx(µ(πα+|π

′|−1)) = Dx(µ(ρβ)), the property holds also for j ∈ [α+ |π′|, |π|].
The statement K , π |= ϕ is an immediate consequence of the following claim,

considering that H(|π|) = |ρ|, K , ρ |= ϕ, ρ|ρ| = ρ, and π|π| = π.

Claim. For all j ∈ [1, |π|], all subformulas ψ of ϕ, and all ξ ∈ TrcK , if K , ρH(j) ?
ξ |= ψ then K , πj ? ξ |= ψ.

Proof. Assume that K , ρH(j) ? ξ |= ψ. Note that ρH(j) ? ξ is defined iff πj ? ξ is
defined. We prove by induction on the structure of ψ that K , πj ? ξ |= ψ. Since
ϕ is in NNF, only the following cases can occur:
– ψ = rt or ψ = ¬rt where rt is some RE over AP . By Property 5 of H,
Dt(µ(πj)) = Dt(µ(ρH(j))), thus Dt(µ(πj ? ξ)) = Dt(µ(ρH(j) ? ξ)). It follows
that K , πj ? ξ |= rt iff K , ρH(j) ? ξ |= rt, and the result holds.

– ψ = θ1 ∧ θ2 or ψ = θ1 ∨ θ2, for some AABB formulas θ1 and θ2. The result
holds by the inductive hypothesis.

– ψ = [B]θ. We need to show that for each proper prefix η of πj ? ξ, K , η |= θ.
We distinguish two cases:
• η is not a proper prefix of πj . Hence, η is of the form πj ? ξh for some
h ∈ [1, |ξ| − 1]. Since K , ρH(j) ? ξ |= [B]θ, then K , ρH(j) ? ξh |= θ. By the
inductive hypothesis, K , πj ? ξh |= θ.

• η is a proper prefix of πj . Hence, η = πh for some h ∈ [1, j − 1]. By
Property 1 of H, H(h) < H(j), and since K , ρH(j) ? ξ |= [B]θ, we have
that K , ρH(h) |= θ. By the inductive hypothesis, K , πh |= θ.

Therefore, K , πj ? ξ |= [B]θ.
– ψ = 〈B〉 θ. We need to show that there exists a proper prefix of πj ? ξ

satisfying θ. Since K , ρH(j) ?ξ |= ψ, there exists a proper prefix η′ of ρH(j) ?ξ
such that K , η′ |= θ. We distinguish two cases:
• η′ is not a proper prefix of ρH(j). Hence, η′ is of the form ρH(j) ? ξh for

some h ∈ [1, |ξ| − 1]. By the inductive hypothesis, K , πj ? ξh |= θ, and
K , πj ? ξ |= 〈B〉 θ.

• η′ is a proper prefix of ρH(j). Hence, η′ = ρi for some i ∈ [1, H(j)−1], and

K , ρi |= θ. Let i′ be the smallest position of ρ such that K , ρi
′
|= θ. Hence

i′ ≤ i and, by Definition 11, i′ ∈Wt(ϕ, ρ). By Property 4 of H, i′ = H(h)
for some π-position h. Since H(h) < H(j), it holds that h < j (Property
1). By the inductive hypothesis, K , πh |= θ, and K , πj ? ξ |= 〈B〉 θ.

– ψ = [B]θ or ψ = 〈B〉 θ. The result holds as a direct consequence of the
inductive hypothesis.

– ψ = [A]θ, ψ = 〈A〉 θ, ψ = [A]θ or ψ = 〈A〉 θ. Since πj ? ξ and ρH(j) ? ξ start
at the same state and lead to the same state (by Properties 2 and 3 of H),
the result trivially follows, concluding the proof of the claim. ut

We have proved that K , π |= ϕ, with |π| < |ρ|. If |π| ≤ |S|·(|ϕ|+1)·22
∑u
`=1 |r`|,

the thesis hold. Otherwise, we can iterate the above contraction (a finite number
of times) until the bound is achieved. ut

A.5 The exponential small-model is strict: an example

The following example shows that the exponential small-model is strict, that
is, there exists a formula and a Kripke structure, such that the shortest trace
satisfying the formula has exponential length in the size of the formula. This is
the case even for pure propositional formulas.

Example 17. Let pri be the i-th smallest prime. It is well-known that pri ∈
O(i log i). Let w⊗k denote the string obtained by concatenating k times w. Let
us fix some n ∈ N, and let K = ({p}, {s},R, µ, s) be the trivial Kripke structure
having only one state with a self-loop, where R = {(s, s)}, and µ(s) = {p}. The
shortest trace satisfying ψ =

∧n
i=1(p⊗(pri))∗ is ρ = s⊗(pr1···prn), since its length

is the least common multiple of pr1, . . . , prn, which is indeed pr1 · · · prn. It is
immediate to check that the length of ψ is O(n · prn) = O(n2 log n). On the
other hand, the length of ρ is pr1 · · · prn ≥ 2n. ut

A.6 Proof of Theorem 13

Algorithm 5 is the complete version of Check. We refer to that in the proof.

Proof. The proof is by induction on the structure of ψ. The thesis trivially follows
for the cases ψ = r (regular expression), ψ = ¬ψ′, ψ = ψ1 ∧ψ2, and ψ = 〈B〉ψ′.

Let us now assume ψ = 〈B〉ψ′.
Check(K , ψ, s,G,D(Φ)) = > if and only if, for some b′′ ∈ {1, . . . , |S| · (2|ψ′|+ 1) ·
22

∑u
`=1 |r`|−1} and some (G′′,D(Φ)′′, s′′) ∈ Conf(K , ψ) (= Conf(K , ψ′)), we have

Reach(K , ψ′, (G,D(Φ), s), (G′′,D(Φ)′′, s′′), b′′) = > and Check(K , ψ′, s′′, G′′,
D(Φ)′′) = >. We prove first the following claim.

Claim. Let b ∈ N, b > 0. Let ρ̃ ∈ TrcK be a trace with s̃ = lst(ρ̃). Let G̃ be the

subset of formulas in Subf〈B〉(ψ
′) that hold on some proper prefix of ρ̃. Let D̃(Φ)

be the current configuration of states of the DFAs associated with the regular
expressions in Φ, reached from the initial states after reading µ(ρ̃(1, |ρ̃| − 1)).

Algorithm 5 Check(K , ψ, s,G,D(Φ))

1: if ψ = r then / r is a regular expression
2: if the current state of the DFA for r in advance(D(Φ), µ(s)) is final then
3: return >
4: else
5: return ⊥
6: else if ψ = ¬ψ′ then
7: return not Check(K , ψ′, s, G,D(Φ))
8: else if ψ = ψ1 ∧ ψ2 then
9: return Check(K , ψ1, s, G ∩ Subf〈B〉(ψ1),D(Φ)) and Check(K , ψ2, s, G ∩ Subf〈B〉(ψ2),D(Φ))

10: else if ψ = 〈B〉ψ′ then
11: if ψ′ ∈ G then
12: return >
13: else
14: return ⊥
15: else if ψ = 〈B〉ψ′ then

16: for each b ∈ {1, . . . , |S| · (2|ψ′|+ 1) · 22
∑u
`=1 |r`| − 1}

and each (G′,D(Φ)′, s′) ∈ Conf(K , ψ) do / r1, .., ru are the r.e. of ψ′

17: if Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, s′), b) and Check(K , ψ′, s′, G′,D(Φ)′) then
18: return >
19: return ⊥

For (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′) ∈ Conf(K , ψ′), Reach(K , ψ′, (G̃, D̃(Φ), s̃),
(G′,D(Φ)′, s′), b) = > iff there exists ρ′ ∈ TrcK such that ρ̃ · ρ′ ∈ TrcK , |ρ′| = b,
lst(ρ′) = s′, G′ is the subset of formulas in Subf〈B〉(ψ

′) that hold on some proper
prefix of ρ̃ · ρ′, and D(Φ)′ is the current configuration of the DFAs associated
with the regular expressions of Φ, after reading µ(ρ̃ · ρ′(1, |ρ̃ · ρ′| − 1)).

Proof. The proof is by induction on b ≥ 1.
If b = 1, Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) = > if and only if

Compatible(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′)) = >. This happens if and only
if:

1. (s̃, s′) ∈ R—i.e., (s̃, s′) is an edge of K ;

2. advance(D̃(Φ), µ(s̃)) = D(Φ)′;

3. G̃ ⊆ G′;
4. for each ϕ ∈ (G′ \ G̃), Check(K , ϕ, s̃, G̃ ∩ Subf〈B〉(ϕ), D̃(Φ)) = >;

5. for each ϕ ∈ (Subf〈B〉(ψ
′) \G′), Check(K , ϕ, s̃, G̃ ∩ Subf〈B〉(ϕ), D̃(Φ)) = ⊥.

Let ρ′ = s′. (⇒) By the inductive hypothesis (of the external theorem over ρ̃), by

4. it follows that K , ρ̃ |= ϕ for each ϕ ∈ (G′ \ G̃). By 5. it follows that K , ρ̃ 6|= ϕ
for each ϕ ∈ (Subf〈B〉(ψ

′) \G′). The claim follows.
Conversely, (⇐) 1., 2., and 3. easily follow. Moreover it must hold that K , ρ̃ |=

ϕ for each ϕ ∈ (G′ \ G̃), and K , ρ̃ 6|= ϕ for each ϕ ∈ (Subf〈B〉(ψ
′) \G′): 4. and 5.

follow by the inductive hypothesis (of the external theorem).

If b ≥ 2, Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) = > if and only if, for

some (G3,D(Φ)3, s3) ∈ Conf(K , ψ′), Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G3,D(Φ)3, s3),
bb/2c) = > and Reach(K , ψ′, (G3,D(Φ)3, s3), (G′,D(Φ)′, s′), b− bb/2c) = >.

(⇒) By the inductive hypothesis (over b), there exists ρ3 ∈ TrcK such that
ρ̃ · ρ3 ∈ TrcK , |ρ3| = bb/2c, lst(ρ3) = s3, G3 is the subset of subformulas in
Subf〈B〉(ψ

′) that hold on some proper prefix of ρ̃ · ρ3, and D(Φ)3 is the current
configuration of the DFAs associated with the regular expressions in Φ, after
reading µ(ρ̃ · ρ3(1, |ρ̃ · ρ3| − 1)).

By the inductive hypothesis (over b, applied to the trace ρ̃ · ρ3), there exists
ρ′ ∈ TrcK such that ρ̃ · ρ3 · ρ′ ∈ TrcK , |ρ′| = b − bb/2c, lst(ρ′) = s′, G′ is the
subset of subformulas in Subf〈B〉(ψ

′) that hold on some proper prefix of ρ̃ ·ρ3 ·ρ′,
and D(Φ)′ is the current configuration of the DFAs associated with the regular
expressions in Φ, after reading µ(ρ̃ · ρ3 · ρ′(1, |ρ̃ · ρ3 · ρ′| − 1)). The claim follows,
as ρ3 · ρ′ ∈ TrcK and |ρ3 · ρ′| = b.

(⇐) Conversely, there exists ρ′ ∈ TrcK such that ρ̃ · ρ′ ∈ TrcK , |ρ′| = b ≥
2, lst(ρ′) = s′, G′ is the subset of subformulas in Subf〈B〉(ψ

′) that hold on
some proper prefix of ρ̃ · ρ′, and D(Φ)′ is the current configuration of the DFAs
associated with the regular expressions in Φ, after reading µ(ρ̃ · ρ′(1, |ρ̃ · ρ′| −
1)). Let us split ρ′ = ρ3 · ρ4, where |ρ3| = bb/2c and |ρ4| = b − bb/2c. Let
(G3,D(Φ)3, s3) ∈ Conf(K , ψ′) be such that D(Φ)3 is the current configuration
of the DFAs associated with the regular expressions in Φ, after reading µ(ρ̃ ·
ρ3(1, |ρ̃ · ρ3| − 1)), s3 = lst(ρ3), G3 is the subset of subformulas in Subf〈B〉(ψ

′)
that hold on some proper prefix of ρ̃ · ρ3. By the inductive hypothesis (on b over
ρ̃ ·ρ3), Reach(K , ψ′, (G3,D(Φ)3, s3), (G′,D(Φ)′, s′), b−bb/2c) = >. Moreover, by

the inductive hypothesis (on b over ρ̃), Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G3,D(Φ)3, s3),
bb/2c) = >.

Hence both the recursive calls at line 6 return>, when at line 5 (G3,D(Φ)3, s3)

is considered by the loop. Thus Reach(K , ψ′, (G̃, D̃(Φ), s̃), (G′,D(Φ)′, s′), b) re-
turns >.

This concludes the proof of the claim. ut

(⇒) Let us now assume that in Check, at lines 15–19, for some b′′ ∈ {1, . . . , |S|·
(2|ψ′|+1)·22

∑u
`=1 |r`|−1} and some (G′′,D(Φ)′′, s′′) ∈ Conf(K , ψ) (= Conf(K , ψ′)),

we have Reach(K , ψ′, (G,D(Φ), s), (G′′,D(Φ)′′, s′′), b′′) = > and Check(K , ψ′, s′′,
G′′,D(Φ)′′) = >. By the previous claim, there exists ρ′′ ∈ TrcK such that ρ ·ρ′′ ∈
TrcK , lst(ρ′′) = s′′, G′′ is the subset of subformulas in Subf〈B〉(ψ

′) that hold on
some proper prefix of ρ·ρ′′, and D(Φ)′′ is the current configuration of the DFAs as-
sociated with the regular expressions of Φ, after reading µ(ρ · ρ′′(1, |ρ · ρ′′| − 1)).
By the inductive hypothesis, since Check(K , ψ′, s′′, G′′,D(Φ)′′) = >, we have
K , ρ · ρ′′ |= ψ′. Thus K , ρ |= 〈B〉ψ′.

(⇐) Conversely, if K , ρ |= 〈B〉ψ′, we have K , ρ · ρ′′ |= ψ′ for some ρ′′ ∈ TrcK ,
with ρ · ρ′′ ∈ TrcK . By the exponential small-model Theorem 12, there exists
ρ′ ∈ TrcK such that lst(ρ′′) = lst(ρ′), |ρ′| ≤ |S| · (2|ψ′| + 1) · 22

∑u
`=1 |r`| −

1 (the factor 2 in front of |ψ′| is due to the fact that the exponential small-
model property requires a formula in NNF), ρ · ρ′ ∈ TrcK and K , ρ · ρ′ |= ψ′.
Let G′ be the subset of subformulas in Subf〈B〉(ψ

′) = Subf〈B〉(ψ) that hold on
some proper prefix of ρ · ρ′, and D(Φ)′ be the current configuration of the DFAs
associated with the regular expressions in Φ, after reading µ(ρ ·ρ′(1, |ρ ·ρ′|− 1)).
By the inductive hypothesis (over ρ · ρ′), Check(K , ψ′, lst(ρ′), G′,D(Φ)′) = >.

By the previous claim, Reach(K , ψ′, (G,D(Φ), s), (G′,D(Φ)′, lst(ρ′)), |ρ′|) = >,
hence Check(K , ψ, s,G,D(Φ)) = >.

This concludes the proof of the theorem. ut

A.7 Proof of Theorem 14

Proof. If K |= Φ, then for all ρ ∈ TrcK with fst(ρ) = s0, we have K , ρ |= Φ,
hence K , s0 |= Φ, and K , s0 · ρ′ |= Φ for all s0 · ρ′ ∈ TrcK , thus K , s0 |= [B]Φ,
namely, K , s0 6|= 〈B〉 ¬Φ. By Theorem 13, Check(K ,¬Φ, s0, ∅,D(Φ)0) = ⊥ and
Check(K , 〈B〉 ¬Φ, s0, ∅,D(Φ)0) = ⊥ implying that CheckAux(K , Φ) returns >.

Conversely, if the procedure CheckAux(K , Φ) returns >, then it must be
Check(K ,¬Φ, s0, ∅,D(Φ)0) = ⊥ and Check(K , 〈B〉 ¬Φ, s0, ∅,D(Φ)0) = ⊥. By
Theorem 13 applied to the trace ρ = s0, we have K , s0 6|= ¬Φ and K , s0 6|= 〈B〉 ¬Φ,
and, therefore, K |= Φ. ut

A.8 MC for AABB is PSPACE-complete (in detail)

We show that the algorithm CheckAux can be used as a basic engine to design
a PSPACE MC algorithm for AABB. The idea is that, being the proposition
letters related with regular expressions, the modalities 〈A〉 and 〈A〉 do not aug-
ment the expressiveness of the fragment BB. In particular, we shall show how
〈A〉 and 〈A〉, occurring in an AABB formula, can suitably be “absorbed” and
replaced by fresh proposition letters.

By definition, K , ρ |= 〈A〉ψ if and only if there exists a trace ρ̃ ∈ TrcK such
that lst(ρ) = fst(ρ̃) and K , ρ̃ |= ψ. An immediate consequence is that, for any
ρ′ ∈ TrcK with lst(ρ) = lst(ρ′), K , ρ |= 〈A〉ψ ⇐⇒ K , ρ′ |= 〈A〉ψ. Analogous
considerations can be done for the symmetrical modality 〈A〉 with respect to
initial states of traces. In general, if two traces have the same final state (resp.,
first state), either both of them satisfy a formula 〈A〉ψ (resp., 〈A〉ψ), or none
of them does. Therefore, for a formula 〈A〉ψ (resp., 〈A〉ψ), we can determine
the subset S〈A〉ψ (resp., S〈A〉ψ) of the set of states S of the Kripke structure

such that, for any ρ ∈ TrcK , K , ρ |= 〈A〉ψ (resp., K , ρ |= 〈A〉ψ) if and only if
lst(ρ) ∈ S〈A〉ψ (resp., fst(ρ) ∈ S〈A〉ψ).

The idea is that we can identify each state s ∈ S exploiting a set of fresh
proposition letters {qs | s ∈ S}; then we define, for a subformula 〈A〉ψ (resp.,
〈A〉ψ), a regular expression r〈A〉ψ (resp., r〈A〉ψ) characterizing the set of traces

which model the subformula, and finally we replace any occurrence of 〈A〉ψ
(resp., 〈A〉ψ) by a fresh interval property associated with this regular expression.
More formally, instead of K = (AP , S,R, µ, s0), we consider K ′ = (AP ′, S,R, µ′, s0),
with AP ′ := AP ∪ {qs | s ∈ S} and µ′(s) = {qs} ∪ µ(s) for any s ∈ S. For
the formulas 〈A〉ψ and 〈A〉ψ, the regular expressions r〈A〉ψ and r〈A〉ψ are:

r〈A〉ψ := >∗ ·
(⋃

s∈S〈A〉ψ
qs

)
and r〈A〉ψ :=

(⋃
s∈S〈A〉ψ

qs

)
· >∗. By definition

K , ρ |=r〈A〉ψ iff lst(ρ)∈S〈A〉ψ iff K , ρ |=〈A〉ψ.

We can now sketch the procedure for “reducing” the MC problem for AABB
to the MC problem for BB. The idea is to iteratively rewrite a formula Φ of AABB

until it gets converted to an (equivalent) formula of BB. At each step, we select
an occurrence of a subformula of Φ, either of the form 〈A〉ψ or 〈A〉ψ, devoid of
any internal occurrences of modalities 〈A〉 and 〈A〉. For such an occurrence, say
〈A〉ψ, we have to compute the set S〈A〉ψ. For this purpose we can run a variant
CheckAux’(K , Ψ, s) of the MC procedure CheckAux(K , Ψ), which invokes Check
at line 2 on the additional parameter (state) s, instead of s0. For each s ∈ S, we
invoke CheckAux’(K ,¬ψ, s), deciding that s ∈ S〈A〉ψ iff the procedure returns
⊥. Then we replace 〈A〉ψ in Φ with a fresh interval property proposition letter
associated with the regular expression r〈A〉ψ, obtaining a formula Φ′. To deal

with subformulas of the form 〈A〉ψ, we have to introduce a slight variant of the
procedure Check, which finds traces leading to (and not starting from) a given
state. Now, if the resulting formula Φ′ is in BB, we have finished the conversion.
Otherwise we can proceed with another iteration of the conversion step over Φ′.

Considering that the sets S〈A〉ψ, S〈A〉ψ′ and the regular expressions r〈A〉ψ
and r〈A〉ψ have a size linear in |S|, we can conclude with the following theorem.

Theorem 18. The MC problem for AABB formulas over finite Kripke struc-
tures is in PSPACE.

By symmetry we can show that MC for AAEE formulas is also a PSPACE
problem.

The PSPACE-hardness of MC for BB and AABB directly follows from that
of the smallest fragment Prop (the purely propositional fragment of HS) which
is stated by Theorem 19. As a matter of fact, we prove that Prop is hard for
PSPACE by a reduction from the PSPACE-complete universality problem for
regular expressions (the problem of deciding, for a regular expression r with
L(r) ⊆ Σ∗ and |Σ| ≥ 2, whether L(r) = Σ∗).

Theorem 19. The MC problem for formulas of Prop over finite Kripke struc-
tures is PSPACE-hard (under LOGSPACE reductions).

Proof. Given a regular expression r with L(r) ⊆ Σ∗, let us define K = (Σ, {s0}∪
Σ,R, µ, s0), where s0 6∈ Σ, µ(s0) = ∅, for c ∈ Σ we have µ(c) = {c}, and
R = {(s0, c) | c ∈ Σ} ∪ {(c, c′) | c, c′ ∈ Σ}. It holds that

L(r) = Σ∗ ⇐⇒ K |= > · r,

where r is a RE over Σ, syntactically the same as r. Note that whereas r is
a standard regular expression—defining a finitary language over Σ—r, even
though syntactically the same as r, defines a finitary language over 2Σ , as pointed
out in Section 2. The distinction between r and r is kept in the rest of the proof
in order to avoid confusion between the two “roles” of r.

We show by induction on the structure of r that, for all w ∈ Σ∗, w ∈
L(r) ⇐⇒ K , w |= r. The thesis follows as K , w |= r if and only if K , s0·w |= >·r.
– r = ε. Then, w ∈ L(ε) iff w = ε iff µ(w) ∈ L(ε) = {ε} iff K , w |= ε.
– r = c ∈ Σ. Then, we have w ∈ L(c) iff w = c, thus µ(w) = {c} ∈ L(c), and

K , w |= c. Conversely, if K , w |= c we have µ(w) ∈ L(c) = {A ∈ 2Σ | c ∈ A}.
In particular |w| = 1. Moreover, by definition of µ, µ(w) is a singleton, hence
µ(w) = {c}. By definition of K , w = c, thus w ∈ L(c).

– r = r1 · r2. w ∈ L(r1 · r2) iff w = w1 ·w2 and w1 ∈ L(r1) and w2 ∈ L(r2). By
applying the inductive hypothesis, K , w1 |= r1 and K , w2 |= r2, thus µ(w1) ∈
L(r1) and µ(w2) ∈ L(r2). It follows that µ(w) = µ(w1) · µ(w2) ∈ L(r1) ·
L(r2) = L(r1 · r2), namely K , w |= r1 · r2. Conversely, µ(w) ∈ L(r1 · r2) =
L(r1) ·L(r2). Hence µ(w1) ∈ L(r1) and µ(w2) ∈ L(r2), for some w1 ·w2 = w.
By the inductive hypothesis, w1 ∈ L(r1) and w2 ∈ L(r2), hence w ∈ L(r1·r2).

– r = r1 ∪ r2. w ∈ L(r1 ∪ r2) iff w ∈ L(ri) for some i = 1, 2. By the inductive
hypothesis this is true iff K , w |= ri, iff µ(w) ∈ L(ri), iff µ(w) ∈ L(r1 ∪ r2),
iff K , w |= r1 ∪ r2.

– r = r∗1 . The thesis trivially holds if w = ε. Let us now assume w 6= ε.
w ∈ L(r∗1) iff w = w1 · · ·wt, t ≥ 1, such that w` ∈ L(r1) for all 1 ≤ ` ≤ t. By
the inductive hypothesis, K , w` |= r1, thus µ(w`) ∈ L(r1), and µ(w) ∈ L(r∗1).
We conclude that K , w |= r∗1 . Conversely, µ(w) ∈ L(r∗1) = (L(r1))∗, hence it
must be the case that w = w1 · · ·wt, t ≥ 1, such that µ(w`) ∈ L(r1). By the
inductive hypothesis, w` ∈ L(r1), hence w ∈ L(r∗1).
Finally, we can build K using logarithmic working space. ut

By Theorems 18 and 19, it immediately follows that MC for any (proper
or improper) sub-fragment of AABB (and AAEE) is PSPACE-complete (Theo-
rem 16).

