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Modern Likelihood-Frequentist Inference

Donald A. Pierce, Oregon State University (U.S.A.)
Ruggero Bellio, University of Udine (Italy) ∗

Abstract

We offer an exposition of modern higher-order likelihood inference, and introduce soft-
ware to implement this in a quite general setting. The aim is to make more accessible an
important development in statistical theory and practice. The software, implemented in an
R package, requires only that the user provide code to compute the likelihood function, and
to specify extra-likelihood aspects of the model, such as stopping rule or censoring model,
through a function generating a dataset under the model. The exposition charts a narrow
course through the developments, intending thereby to make these more widely accessible.
It includes the likelihood ratio approximation to the distribution of the maximum likelihood
estimator, i.e. the p∗ formula, and transformation of this yielding a second-order approxima-
tion to the distribution of the signed likelihood ratio test statistic, based on a modified signed
likelihood ratio statistic r∗. This follows developments of Barndorff-Nielsen and others. The
software utilizes the approximation to required Jacobians as developed by Skovgaard, which
is included in the exposition. Several examples of using the software are provided.

Keywords: Ancillary statistic, conditional inference, likelihood asymptotics, modified pro-
file likelihood, modified signed likelihood ratio, neo-Fisherian inference, p∗ formula, saddle-
point approximation.
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1 Introduction and Basic Concepts

1.1 Introductory Aims of Paper

Special likelihood-based procedures, modifying usual inferential approximations for much higher

accuracy, have emerged in recent years; see glimpses provided by Davison (2003, Chapter 12),

Brazzale and Davison (2008), Lozada-Can and Davison (2010). The performance of these methods

is superb and often close to exact. These improvements are of practical interest, e.g. as seen in

the Examples here, where P -values near 0.05 are often changed by a factor of 2. However, there

is considerably more to modern likelihood asymptotics than this numerical accuracy, in terms of

Extended (or Neo-) Fisherian inference, as treated to a limited extent here. This paper includes

both an exposition aiming to make more accessible the main ideas of this development, and

provides novel software tools for implementing them.

Modern likelihood inference has much to do with higher-order asymptotics, particularly second-

orderO(n−1) as contrasted with the usual first-orderO(n−1/2). We emphasize that the higher-order

versions are often suitable for small samples, the convergence in sample size being far more rapid.

After dealing with preliminary issues in Section 2, Sections 3-4 present the main higher-order

theory, for approximating the distribution of parameter estimates and transforming from this to the

distribution of the likelihood ratio test statistic. Section 5 deals with approximation of Jacobians

required for the latter step. The challenge of this step hindered the development of the main

theory for the decade 1986-96. This was because the Jacobians are likelihood partial derivatives

with respect to parameter estimates, holding fixed ancillary statistics that can be largely notional.

Section 6 pertains to discrete data and to similar tests in exponential families.

The tools for applying this are embodied in the package likelihoodAsy in R (R Core Team,

2017), which is available at the Comprehensive R Archive Network (CRAN)1. This package applies

quite generally - well beyond independent observations, exponential families and transformation

models, requiring primarily only a user-supplied function for evaluating the likelihood. Models

where evaluating the likelihood requires numerical integration are exemplified. Inferences beyond

first order require model specification beyond the likelihood function, such as stopping rules or

censoring models, which is achieved by another user-provided function that generates a sample

under the model.

This raises interesting issues about asymptotic methods. Suppose data from sequential Bernoulli

trials with success probability p yields r successes in n trials. Exact frequentist inference depends

on whether one has stopped on the rth failure or on the nth trial. Under mild conditions the like-

lihood function is in either case proportional to py (1 − p)n−y. With many first-order asymptotic

1http://cran.r-project.org

2

http://cran.r-project.org


methods the inference depends only on the likelihood function, while higher-order methods will

better approximate the exact inference and thus depend on more than the likelihood function.

Cox and Hinkley (1974, Example 2.34) give one characterization of stopping rules that do not

affect the likelihood function. Similar issues also arise in terms of specifying the mechanism giving

rise to censored data. Kalbfleisch and Prentice (2002, Section 5.2) discuss censoring models that

do not affect the likelihood function. Of course, the gain in this respect of higher-order methods

can depend on such models being correctly formulated, which is not a lack of robustness. It may

be uncommon to desire inference in terms of models for censoring - these are seldom intended to

be realistic; see Pierce and Bellio (2015). On the other hand, there is considerable applied interest

in the effect of stopping rules, e.g. in sequential clinical trials, and higher-order methods are useful

in studying this; see Pierce and Bellio (2006). We return to these matters following Equation (13)

in Section 4.

We have particular motivations for providing the exposition for non-experts of the basis for

this theory, which is not intended as a complete review or survey of its development, as was

provided by Reid (1988, 1996, 2003). It is fair to predict that the development over the past 30

years is nearly complete. The original developments were in more advanced and esoteric terms

than meet the needs for a widespread grasp of them, as might find its way into textbooks; e.g. see

Young and Smith (2005). Without this wider dissemination, our concern is that this important

chapter in the theory of inference will largely fade away following the final stages of development.

Making more accessible the main ideas requires carefully choosing a narrow path through the

developments. As is typical for major advances, it is possible in retrospect to describe the main

ideas and results much more simply, which is our aim. Others have chosen, usefully, to make

such exposition quite differently from this, e.g. Brazzale, Davison and Reid (2007), Brazzale and

Davison (2008), Lozada-Can and Davison (2010). Accompanying the text by Brazzale, Davison

and Reid were software tools of a different nature than here.

There are largely two limiting issues regarding the adequacy of first-order methods: (a) lim-

ited information on the interest parameter, and (b) effects of fitting nuisance parameters. Issue

(a) is the ‘small sample size’ matter that would first come to mind in considering adequacy of

asymptotics, but (b) can be important even for moderately large samples. Thus it can be said

that (b) is often the most practically important of the two, though (a) is certainly theoretically

important. The software here provides diagnostics that assess these two matters, which would be

less clear from direct simulation as described later in this Section.

Our thinking has been largely influenced by Barndorff-Nielsen (1986, 1991) and Skovgaard

(1996, 2001). We note, however, that there has been a parallel, somewhat different and penetrat-

ing, thread of development by Donald Fraser and colleagues: Fraser and Reid (1988), Fraser (1991,
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2004), Reid (2003), Brazzale and Davison (2008). The closest point of contact with the particulars

of this paper arises in the approximations considered in Section 5. Anthony Davison, starting with

Davison (1988) has done much to promote the ideas reviewed in this paper, particularly for focus

on the conditional likelihood function; see Chapter 12 of Davison (2003) and the three citations

above with Davison as co-author.

1.2 Overview of Main Results and Basis for Development

Focus here in these methods is on testing a hypothesis on the value of a smooth scalar function ψ(θ)

of the model parameters. Frequently it will be best to obtain higher-order confidence intervals by

testing a grid of hypotheses on ψ roughly spanning a first-order interval of form ψ̂±SE(ψ̂), taking

the confidence interval as values not “rejected” by a one-sided test. The package likelihoodAsy

automates this process. Let Wψ(y) be the usual generalized likelihood ratio statistic, detailed in

(2) of Section 2, with limiting χ2
1 distribution, and consider one-sided inference based on rψ(y) =

sgn(ψ̂ − ψ)Wψ(y)1/2. Parameters with hats will denote maximum likelihood estimators.Then for

observed data y, first-order inference can be based on the result

P {rψ(Y ) ≤ rψ(y); θ : ψ(θ) = ψ} = Φ{rψ(y)}
{

1 +O
(
n−1/2

)}
,

where Φ(·) is the standard normal distribution function and n is the sample size. The results

considered in this paper involve a modification r∗ψ of this rψ, that is commonly denoted by simply

r∗, for which the higher-order accuracy can be formalized as the second-order result

P {rψ(Y ) ≤ rψ(y); θ : ψ(θ) = ψ} = Φ{r∗ψ(y)}
{

1 +O
(
n−1
)}

, (1)

provided that ψ is within O(n−1/2) of its maximum likelihood estimator. There is a similar

statement for the upper tail probability. Further aspects of (1) are discussed in the next Section

in connection with (1*). To clarify an elusive matter, we note that setting the observed value

of r∗ψ equal to 1.96 and solving this equation for ψ provides a lower confidence limit with error

probability 0.025; changing the sign provides an upper limit. A result of doing this for both lower

and upper confidence limits, for all confidence levels, is shown soon in Figure 2.

In these relations, n will be the number of observations when the dataset consists of independent

contributions, otherwise a more general measure such as the Fisher information determinant |i|.
Note that the error bounds are relative, which is important when the P -values are small. Relations

pertaining to (1) are more commonly expressed in terms of asymptotic standard normality of

r∗ψ(Y ), but we prefer (1) as being inferentially more clear and direct. Throughout the paper first,

second and third order refers to powers of n−1/2 in expressions such as (1).
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The reason for focus on the signed square root of the likelihood ratio is mainly to allow for

one-sided tests. Adjustments to the chi-squared LR test Wψ(y), such as the Bartlett adjustment,

do not allow for this. Indeed, it is usual that nominally equi-tailed intervals based on first-order

methods have actual error rates differing considerably in the two directions and only average to

near the nominal level. The quantity r∗ was derived by Barndorff-Nielsen (1986, 1991) in path-

breaking work, but in a form difficult to compute in general. This is what led to the work by Pierce

and Peters (1992), which however dealt only with exponential families. Various approximations

have emerged, and in this paper and the accompanying software we utilize the version developed

by Skovgaard (1996, 2001). The work of Fraser and colleagues referred to above led to a different

version of r∗. Sometimes workers distinguish notationally between the original r∗ and approxima-

tions to it; e.g. Skovgaard uses r̃ for this. Here we will use r∗ to denote any of these, referring to

the version to distinguish between approximations. Other approximations to r∗ were proposed;

Severini (2000, Section 7.5), some of which are inferior to that employed here for reasons explained

later. We utilize simple simulation, without model fitting, to apply the Skovgaard method, but do

not consider that as yet another approximation; rather just a way to facilitate broad application

of Skovgaard’s remarkable advance.

Understanding the basis for (1) emphasizes some steps differing from the usual Neyman-

Pearson approach, though the end results are nearly the same when the latter arrives at an

exactly ‘optimal’ solution. That optimality obtains largely only for certain inferences in full-rank

exponential families and transformation models, beyond which the usual course is to employ the

power-maximizing principles within the first-order approximation realm. In that case, use of (1)

is typically more accurate than approximations ordinarily used. The material sketched in the next

two paragraphs comprises the specifics of the modern likelihood-frequentist inference of the title,

as indicated at the outset of this section and is further discussed later.

Steps leading to (1) can be thought of in terms of:

(i) a highly accurate ‘likelihood ratio approximation’ to the distribution of the maximum like-

lihood estimator θ̂,

(ii) a transformation and approximate integration to obtain from that a correspondingly accurate

approximation to the distribution of rψ(Y ) under the hypothesis on ψ(θ).

The approximation in (i), often called the p∗ formula, is novel in the higher-order theory. The

Jacobian for step (ii) can be difficult to compute, so a main issue is approximating this, here using

the Skovgaard approach.

In the simplest development, the likelihood ratio approximation requires that θ̂ be a sufficient

statistic, e.g. see Durbin (1980). In settings where it is not, when the Neyman-Pearson approach
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usually turns to first-order approximations, the approach outlined here is to condition on an

approximate ancillary statistic a such that θ̂ is conditionally sufficient - this being very generally

applicable. This achieves a sense of “optimality” differing in principle and sometimes in results,

from the power-maximization of the Neyman-Pearson theory. This emphasis on sufficiency is a

key aspect of the approach to inference here, paving the way for second-order approximations.

The concepts of ancillarity are that to suitable asymptotic approximation:

(iii) an ancillary statistic a carries information about the precision of θ̂, but not the value of θ,

i.e. its distribution is free of θ, and

(iv) (θ̂, a) is sufficient, and conditionally on a, the estimator θ̂ is sufficient.

This conditioning of (iii-iv) is most important in the considerations of this paper. The ancillarity

is almost always approximate. An important version is the Efron-Hinkley ancillary introduced in

Section 2, which is essentially the ratio of observed to expected Fisher information, as defined in

next Section. When the maximum likelihood estimator is not sufficient, then the observed infor-

mation varies around its expectation. The reciprocal of the observed information approximates

the variance of the maximum likelihood estimator, when conditioning on this Efron-Hinkley ap-

proximate ancillary. Another important consequence of such conditioning is that it renders the

maximum likelihood estimator to be a second-order sufficient statistic. This simplifies greatly

the matter of finding the ideal inference, and in a manner that is actually more effective than

the power-maximizing Neyman-Pearson theory. This encapsulates what has been termed Neo-

Fisherian inference; see Pace and Salvan (1997).

We note that use of r∗ is also important in full-rank exponential families, where the maximum

likelihood estimator is sufficient and there is no need for ancillary conditioning. It that setting it

is well known, and central to the Neyman-Pearson theory, that when ψ(θ) is a linear function of

the natural parameters, or a ratio of these as in the Student’s t-test, the best test whose P -value

does not depend on the nuisance parameter is obtained by conditioning on the nuisance parameter

estimates. These are referred to as similar tests; see Cox and Hinkley (1974, Section 5.2). Pierce

and Peters (1992) developed the same r∗ as in this paper, but for approximating the conditioning

for similar tests. This does not require the approximations of Section 5. This will be taken up

briefly in Section 6.

1.3 Examples using R package

Before turning to further details of general issues we offer an example of ancillary conditioning

in terms of the R software accompanying this paper. The function of the primary routine in this
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software is to fit the model with and without the hypothesis constraint, and then carry out a mod-

est simulation considered in Section 5 for approximating Jacobians to implement the Skovgaard

version of r∗. This involves approximating covariances of likelihood quantities by simulation with

no model fitting.

Example 1: Weibull regression.

Consider a sample of n observations from a Weibull distribution for response times t, including

regression-type covariates. The model can be defined in terms of the survival function S(ti; β, γ) =

exp
[
−
{
tγi exp(z>i β)

}]
so that θ = (β, γ) where β is a vector of regression parameters for covariates

zi, and the scalar γ governs the ‘shape’ of the distribution. Inference will be considered not simply

for individual coordinates of θ, but for the survival probability or reliability, at a given time t0,

and for a specified covariate vector z0. The interest parameter ψ will be represented as the log

reliability ψ(β, γ) = −tγ0 exp(z>0 β), where using this logarithmic representation does not affect r∗ψ
but it can affect the numerical behavior of the constrained maximization routine.

For the Weibull model the maximum likelihood estimator θ̂ is not a sufficient statistic. The

logarithms of the response times follow a location-scale model, with a regression-type form for

the location parameter. For such models there is a well-known exact ancillary, of dimension

n − dim(θ) referred to as the ‘[spacing] configuration’ of the sample; see Lawless (1973, 2003,

Appendix E), and Davison (2003, Example 5.21). Though exact inference conditional on this

ancillary can be accomplished with one-dimensional numerical integration, this is seldom used

in practice. The methods here approximate well that conditional inference, even though they

are based on conditioning on a more general approximate ancillary, along lines considered in the

following section.

We employ the commonly-used data from Feigl and Zelen (1965, Table 1 left panel) with

n = 17 and dim(β) = 2, involving simple linear regression on log(WBC) of the log failure rate for

leukemia survival. We will choose for defining our survival probability interest parameter values t0

and z0 such that, for our dataset, the maximum likelihood estimate of the reliability is 0.10. For

an hypothesis on this with P -values small enough to be of interest in comparing first-order and

second-order inferences, we will test that the reliability is 0.03, which is approximately a lower

97.5% confidence limit based on first-order Wald test methods. The functions to be provided by the

user of our software are shown in Figure 1. The function psifcn.Wbl defines the interest function,

and the other functions pertain to the case of no censoring. We note that although allowing

for censored data as considered below entails only a minor change in the likelihood routine, the

data-generation routine will then need to involve a probability model for the censoring.

[Figure 1 about here.]
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For the example dataset the main routine rstar in likelihoodAsy then returns, for testing

ψ = log(0.03),

rψ = 1.67 (P = 0.048)

r∗ψ = 2.10 (P = 0.018)

Wald = 1.96 (P = 0.025)

where the latter is the Wald statistic in representation (ψ̂ − ψ)/SE(ψ̂). Confidence limits are

shown in Figure 2. The displayed P -values have no general inferential relevance beyond providing

some points on the curves in Figure 2 regarding confidence limits. It was mentioned earlier that

our approach provides diagnostic information on the shortcomings of first-order inferences. This

is detailed later, but we can say now that about 63% of the adjustment r∗ − r is due to presence

of the 2 nuisance parameters, with the remainder being due to the specifics of limited information

with only 17 observations.

[Figure 2 about here.]

These results are not atypical, for settings with few nuisance parameters; with more nui-

sance parameters the higher-order adjustment is often much larger. As considered at the end

of Section 2, we can evaluate the accuracy of the fundamental approximation (1) by simulating

the distribution of rψ(Y ), using Weibull datasets with parameter values fitted to the analysis

dataset under the hypothesis on ψ. This is a parametric bootstrap approach to hypothesis test-

ing, to be discussed in later sections. The result with 50,000 simulation trials is that, empirically,

P {rψ(Y ) > rψ(y); θ : ψ = log(0.03)} .
= 0.021, which compares favorably to 1 − Φ(r∗ψ) = 0.018.

Though the Wald statistic is here slightly more accurate than the unadjusted likelihood ratio test,

one should not think this is typical. The problem is that the Wald test is sensitive to the choice

of parametrization, and it is not always easy to find a good choice for this.

It is not difficult to allow with the package for censoring in such analyses. This involves

specifying a censoring model in terms of the gendat.Wbl function. In principle, censoring models,

if applicable, must be specified for inferences going beyond first order; results depend on more than

the likelihood function. To exemplify this very simply we have carried out the inference based on

modifying these data, under a censoring model where the largest 5 failure times are censored at

the just-preceding failure time. The code for this is given in the vignette of the documentation for

likelihoodAsy package. For that we alter the hypothesis to be the 0.975 lower Wald confidence
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limit for the censored data, as done for the example above, which is now -2.07. Results become

rψ = 1.59 (P = 0.056)

r∗ψ = 1.99 (P = 0.023)

Wald = 1.96 (P = 0.025)

We now briefly consider another example emphasizing that the adjustments can make a practical

difference in real data settings, even when the sample size is not particularly small, when there

are several nuisance parameters.

Example 2: Veterans Administration Cancer Data.

These data are in the dataset veteran of the R package survival, which is also given in an

Appendix of Kalbfleisch and Prentice (2002). Results here are for the selection with cell type

squamous comprising 35 observations of which 4 are censored. Analysis is of survival time and

there are 5 covariables: treatment indicator, Karnofski performance, diagnosis time, age

and prior therapy. For a Weibull model analysis the user-defined functions can be similar to

those for Example 1. In the data selection used, the few individuals are censored at apparently

random times, rather than at termination of the study as we investigated for Example 1. We use

here a censoring model with exponentially-distributed censoring times, calibrated to achieve about

the observed amount of censoring. For comparison of first-order and second-order methods, we

test that the age coefficient is equal to the 97.5% upper Wald confidence limit 0.074. The P -value

based on r is 0.031 and that based on r∗ is 0.011. About 90% of the inadequacy of the first-order

result is due fitting the considerable number of nuisance parameters, with the remainder due to

limited information with only the 35 observations.

2 General Preliminary Issues

Let p(y; θ) be the density (or probability mass function) for a dataset Y that is not necessarily

a collection of independent observations, with dim(θ) ≥ 1. The observations can be continuous

or discrete, and the primary regularity condition is that p(y; θ) is a differentiable function of the

parameter, ruling out typical settings where the set of y-values where p(y; θ) > 0 depends abruptly

on θ. The likelihood function L(θ; y) is any function that is proportional to p(y; θ) for given y,

and we write `(θ; y) for the log likelihood function. The observed information matrix for observed

data y is j(θ) = −∂2`(θ; y)/∂θ∂θ>, θ̂ is the maximum likelihood estimator of θ and we write ̂

for the matrix j(θ̂). When θ̂ is not a sufficient statistic, ̂ varies around the expected information
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ı̂ = E{j(θ)}θ=θ̂, suggesting that the inference should reflect some samples being more informative

than others - an issue central to this paper.

Inference is here developed for any given smooth scalar function of the parameter ψ = ψ(θ),

which is referred to as the interest parameter. It is convenient to utilize a p − 1 dimensional

nuisance parameter λ such that the transformation θ ↔ (ψ, λ) is 1-1, but it is important that

results be independent of the arbitrary representation of the nuisance parameter. Note that in

likelihoodAsy the user does not need to specify a form for the nuisance parameter; one is

employed in the analysis program but it is determined in the code for rstar. We will first assume

that the distribution of y is continuous, and then deal in Section 6 with discrete settings.

The signed square root likelihood ratio statistic is defined as

rψ(y) = sgn(ψ̂ − ψ)

√
2
{
`(θ̂; y)− `(θ̃; y)

}
(2)

where θ̃ = (ψ, λ̂ψ) is the constrained maximum likelihood estimator. Note that (2) does not

depend on the specific representation of the nuisance parameter. We will throughout often use

the hat and tilde to denote the unconstrained and constrained estimators. As noted, this is a

signed square root of the usual χ2
1 statistic and as described in Section 1 the random variable

rψ(Y ) has to first order Op(n
−1/2) a standard normal distribution under the hypothesis. The aim

is to improve on this approximation to second order as in (1).

In the following sections we define the quantity r∗ψ used in (1). One of the key issues is a

suitable approximate ancillary statistic as indicated Section 1. Any locally second-order ancillary

will meet the needs for this paper. The main result in (1) and (1*) below will then be unique to

second order. However, we believe that basic ancillarity issues will be more readily understood, in

terms of the following specific choice, and that this may avoid some misconceptions about what

we have in mind. For our needs, the ancillary information can be transparently, generally and

effectively based on the ratio of observed to expected information i.e. the matrix ı̂−1 ̂. In order for

the distribution of the ancillary to be more nearly constant in θ, we may rescale ı̂−1 ̂ by dividing

it, in a matrix sense, by n1/2 times its estimated asymptotic standard deviation, resulting in an

ancillary statistic a = Γ(θ̂) ı̂−1 ̂, where the precise form of Γ(θ̂) is implicitly given in Skovgaard

(1985, Eq. (2.1)); see Endnote 1. This ancillary, reflecting ideas of Fisher and others, is called

the Efron-Hinkley ancillary, studied in the paper Efron and Hinkley (1978) that is notable for its

exposition.

Skovgaard (1985) established that this Efron-Hinkley ancillary is locally second-order ancillary,

meeting needs for this paper. The meaning of this is that the distribution of a depends on θ only

in terms of O(n−1) for θ-variations of O(n−1/2), and in this same sense (θ̂, a) is approximately

sufficient.
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Important aspects of modern likelihood asymptotics involve what we refer to as protection

for large deviations. Normal deviations refer to regions where ‖θ̂ − θ‖ = Op(n
−1/2), i.e. the

usual inferential region of interest. In that region the main results in this paper are of second

order O(n−1). Large deviations refer to regions where ‖θ̂ − θ‖ = Op(1), where P -values will

typically be extremely small. The “protection” arises from employing derivations such that, even

when P -values are very small, the approximations maintain relative error O(n−1/2). It is not

that great accuracy is desired for testing hypotheses far from estimate, but rather that imposing

this approach leads to methods which do not deteriorate as θ moves away from θ̂ and thus are

particularly accurate for normal deviations.

We now consider (1) with more detail regarding the ancillary conditioning. Let a be a locally

second-order ancillary such as the Efron-Hinkley choice. Then for testing an hypothesis on ψ =

ψ(θ),

P {rψ(Y ) ≤ rψ(y)|a;ψ, λ} = Φ{r∗ψ(y)}
{

1 +O(|ψ̂ − ψ| × ‖a‖)
}
, (1*)

where a is expressed so that it is ‖a‖ = O(n−1/2). If both the parameter and ancillary deviations

are of normal type, then the relative error becomes O(n−1). This result remains valid without the

ancillary conditioning, as written in (1), as it is a key feature of likelihood ratio statistics that

they are to second order independent of any ancillary; see McCullagh (1984), Severini (1990) and

Severini (2000, Section 6.4.4). Note the implication in (1*) that such P -values do not, to second

order, depend on the nuisance parameter. If the deviation regarding ψ is large then the error

bound is O(n−1/2) and for some second-order approximations the measure of error is not that

small; see Endnote 2. Skovgaard (1996, 2001) proved these claims, for the version of r∗ we employ

here.

Since (1*) pertains to the true distribution of rψ(Y ), an alternative approach to computing P -

values would involve direct simulation, i.e. the “parametric bootstrap”, with references to follow.

An important issue is that a standard unconditional simulation leads to inferences agreeing with

the ancillary conditioning in (1*), since the likelihood ratio statistic is to second order independent

of any ancillary; see Davison, Hinkley and Young (2003), DiCiccio, Martin and Stern (2001),

DiCiccio, Kuffner, Young and Zaretzki (2015), Young (2009). This asymptotic independence

also obtains with other pivotals agreeing sufficiently well with the likelihood ratio, such as the

Wald statistic using observed information. It is well known and considered in the references just

given, that if the constrained maximum likelihood estimator θ̃ is used for such simulation, then

as the number of trials approaches infinity, the results approximate to O(n−3/2) quantiles of the

distribution of rψ(Y ).

It is attractive to many to employ the parametric bootstrap as an alternative to use of r∗, on

the grounds that it is more transparent and the results agree well. There are however reasons to
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prefer use of r∗. It was shown by DiCiccio and Young (2008) that it can require close to 50,000

bootstrap trials to achieve comparable accuracy. More importantly, fitting models under the hy-

pothesis is often computationally challenging, particularly when ψ is not simply a coordinate of

θ and this fitting becomes even more problematic when it must be done a large number of times.

Evolution of the package likelihoodAsy has been attentive to this problem, for which long-term

developments in numerical optimization, such as the augmented Lagrangian method (e.g. Nocedal

and Wright, 2006), provide an effective resolution. Note that, however, regardless of the optmiza-

tion method employed, a recommended strategy is to start from the unconstrained estimate and

work toward the constrained solution. Due to this matter, it is usually simpler to apply the r∗

function in that package, than to carry out a parametric bootstrap using other software for the

constrained optimization. Further, byproducts of r∗ not provided by the parametric bootstrap are

diagnostics INF and NP regarding the source and magnitude of improvement with second-order

approximations. These are raised in Section 4 at Equation (13).

3 The Likelihood Ratio Approximation to the Density of

θ̂

The argument here follows Durbin (1980), which clarifies a key aspect of modern likelihood theory

with a rich history; see Endnote 3. What we call the likelihood ratio approximation is often called

Barndorff-Nielsen’s p∗ formula (Barndorff-Nielsen, 1983; Barndorff-Nielsen and Cox, 1994). The

argument as summarized here is in detail heuristic, and we comment on that afterward.

The likelihood ratio approximation to the density of θ̂, when this is a sufficient statistic of

dim(θ) ≥ 1, and hence its distributions belong to a full-rank exponential family, is

p∗(θ̂; θ) =
|j(θ̂)|1/2

(2π)p/2
p(y; θ)

p(y; θ̂)
(3)

= p(θ̂; θ)
{

1 +O(n−1)
}
,

where j(θ) is the observed Fisher information, which in this case is also the expected information.

As for other approximations in this paper, the error specified in (3) is for ‖θ̂ − θ‖ = O(n−1/2)

and is otherwise O(n−1/2). To derive this, consider the following identities, noting that due to

sufficiency the ratio p(y|θ̂; θ)/p(y|θ̂; θ̂) is unity,

p(θ̂; θ) =
p(θ̂; θ)

p(θ̂; θ̂)
p(θ̂; θ̂) =

p(y|θ̂; θ)
p(y|θ̂; θ̂)

× p(θ̂; θ)

p(θ̂; θ̂)
p(θ̂; θ̂) =

p(y; θ)

p(y; θ̂)
p(θ̂; θ̂) . (4)

We now assume that p(θ̂; θ) admits an Edgeworth expansion, with conditions for this being given

by Durbin (1980). When this is evaluated at θ = θ̂, the correction term to the base Gaussian

12



density vanishes (see remark in penultimate paragraph of this section), and for that Gaussian term

the exponent is zero, so that to second order p(θ̂; θ̂) = (2π)−p/2 |j(θ̂)|1/2, which provides (3). This

p∗(θ̂; θ) does not ordinarily integrate exactly to unity, and the accuracy is improved by one power

of n1/2 by normalizing it, but this is not employed for our needs.

It is the key to this result, and in a more general sense to much of modern likelihood asymp-

totics, that in the only approximation made here, that to p(θ̂; θ̂), the true parameter ‘tracks’ the

estimator θ̂ so that the resulting approximation to p(θ̂; θ) is good not only for θ̂ near θ, but for

large deviations of θ̂ − θ, as mentioned in connection with (1*).

For the case that θ̂ is not sufficient, we proceed somewhat more heuristically. It is a central

aspect of higher-order likelihood asymptotics that, to suitable approximation, there is an ancillary

statistic a such that the quantity (θ̂, a) is sufficient, and θ̂ is sufficient in the model for the

conditional distribution of θ̂|a. These conditions mean that to a related order of approximation

the distribution of a does not depend on θ. In addition to showing that the Efron-Hinkley statistic

is locally second-order ancillary in that sense, Skovgaard (1985) provided ‘information loss’ results

in the direction of the conditional sufficiency just considered. More fully, Reid (1988, Section 3)

notes that several researchers, primarily Barndorff-Nielsen and McCullagh, had already considered

the second-order conditional sufficiency in the model for θ̂|a. The second-order results of this

section hold for any choice of first-order ancillary; see Pace and Salvan (1997, Section 11.2), which

implies that it is locally second-order ancillary as considered by Cox (1980), Skovgaard (1985). In

a slightly different statement, Reid (1988, Section 3) notes that the results in this section hold for

any second-order ancillary.

Due to these approximate sufficiency considerations, the same argument as above applies con-

ditionally, leading now to the same approximation formula, but interpreted as approximating the

density conditional on an ancillary,

p∗(θ̂|a; θ) =
|j(θ̂; θ̂, a)|1/2

(2π)p/2
p(y; θ)

p(y; θ̂)
(5)

= p(θ̂|a; θ)
{

1 +O(n−1)
}
.

Note that in the argument (5) the omitted term p(y|θ̂, a; θ)/p(y|θ̂, a; θ̂) is no longer exactly unity,

but is 1 +O(n−1) due to the second-order sufficiency of (θ̂, a). Though the observed and expected

information were identical in the sufficiency setting of (3), they are no longer so, and it is more

accurate to use the observed information in (5), as the appropriate variance for the Edgeworth

expansion. The most remarkable aspect of this approximation is that the formula is the same as

when θ̂ is sufficient, with the understanding that the ‘observed information’ in (3) actually coin-

cided with the expected information, which is not the case in (5). Nevertheless, the generality of

this may be largely the reason that (5) is often referred to as Barndorff-Nielsen’s “magic formula”,
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e.g. Efron (1998).

It is known that (3), after rescaling to integrate to unity, is exact for location-scale and all other

transformation models. This was realized by Fisher (1934), long before the other developments

of this section began. In the same paper Fisher suggested that θ̂ supplemented by the first few

derivatives of the log likelihood at θ̂ would be asymptotically sufficient.

Reasons to consider the above as heuristic include the need to deal with asymptotically negli-

gible bias in θ̂, complicating the treatment of p(θ̂; θ̂) in the argument, the matter of existence of

the Edgeworth expansion in the general setting, and many matters glossed over in deriving (5)

when θ̂ is not sufficient. These issues involving p(θ̂; θ̂) apply whether or not θ̂ is sufficient, and

for the sufficient case were considered by Durbin (1980). Having raised these matters of heuristic

reasoning, we add that it seems remarkably difficult to obtain a rigorous proof the desired result

in its full generality; see for example Reid (1988), Section 2.2.

The approximations (3) and (5) are of limited practical value for direct use, since as θ̂ varies

one must correspondingly vary y, keeping fixed the ancillary in the case of (5). In this respect, the

final factor in (5) will depend to second order on the choice of ancillary. Although for given data

y, (5) is simply the likelihood function, what is being approximated is not an object involving

given data, but the density as a function of θ̂. Thus it might be said that (5) is deceptively simple,

although the text by Butler (2007) gives useful and interesting applications. The main point, to

follow, is that for approximating the distribution of rψ the p∗ formula becomes far more useful.

4 Corresponding Distribution of rψ

We first consider this when dim(θ) = 1. The distribution of rθ derived from the likelihood ratio

approximation to the distribution of θ̂ has density, under regularity conditions mainly involving

monotonicity,

p∗(rθ|a; θ) = |∂rθ/∂θ̂|−1 p∗(θ̂|a; θ) . (6)

This is not convenient to use, and we make a further second-order approximations as follows.

Note that ∂rθ/∂θ̂ = [∂{`(θ̂; θ̂, a) − `(θ; θ̂, a)}/∂θ̂]/rθ, from differentiating r2θ in definition (2).

This Jacobian term indicates why sample space derivatives, i.e. likelihood partial derivatives with

respect to θ̂, are central to higher-order likelihood asymptotics. When θ̂ is sufficient, no ancillary

arises, and the sample-space derivatives may be straightforward. However, when an ancillary must

be held fixed, this is seldom tractable. That is, it would often be nearly impossible to express the

likelihood in terms of (θ̂, a) in order to carry out the partial differentiation, particularly when the

ancillary is only approximate. Our resolution of this is to leave the theoretical statement in such

possibly intractable terms, but for implementation to employ a general method for approximating
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these sample-space derivatives, which is detailed in Section 5.

Denote by uθ the sample-space derivative ∂{`(θ̂; θ̂, a) − `(θ; θ̂, a)}/∂θ̂ divided by |j(θ̂)|1/2, so

(6) can be expressed as

p∗(rθ|a; θ) = |uθ/rθ|−1 (2π)−1/2 exp(−r2θ/2) . (7)

This means that to second-order approximation uθ must be a function of rθ when holding fixed

a, and Barndorff-Nielsen (1986, Section 3.2) gave results showing that to second order uθ/rθ is

quadratic in rθ with coefficients that are data-independent functions of θ. It is fundamental to the

nature of our aims that r∗θ = rθ +Op(n
−1/2), and we note that uθ/rθ = 1 +Op(n

−1/2) for |θ̂− θ| =
Op(n

−1/2). Sweeting (1995) analyzed such structures as (7) under these conditions, referring to

such densities as “near-normal”. Through raising |uθ/rθ|−1 to the exponential, completing the

square, and dropping the term (uθ/rθ)
2 we have

p∗(rθ|a; θ) = (2π)−1/2 exp{−(r∗θ)
2/2} , (8)

where

r∗θ = rθ + r−1θ log(uθ/rθ) . (9)

It also follows from results in Barndorff-Nielsen (1986, Section 3.2) that, to second order, r∗θ is

monotonically increasing in rθ, so one can compute tail probabilities in terms of these pivotals,

and thus we have formulations as introduced at the outset in (1),

P {rθ(Y ) ≤ rθ(y)|a; θ} = Φ{r∗θ(y)}
{

1 +O
(
n−1
)}

. (10)

It is somewhat more common to consider the higher-order distribution of r∗, as noted in Section 1

and discussed in Endnote 2. The result (9) as stated holds under the normal deviation condition

|θ̂−θ| = Op(n
−1/2), which is required for the likelihood ratio approximation to the distribution of θ̂

and other steps following (7). See Endnote 2 regarding second versus third-order approximations,

and also remarks following (1*).

We now turn to the case where dim(θ) > 1, expressing θ = (ψ, λ) as in Section 2. The material

is intricate and could be only skimmed on a first reading; see Endnote 4. Recall that the likelihood

ratio approximation to the density of θ̂|a applies in the case that dim(θ) > 1. Thus the changes

from the argument above are that in transforming from p∗(θ̂|a; θ) to the distribution of rψ the

Jacobian is for the p dimensional transformation from θ̂ to (rψ, λ̂ψ), and we must further integrate

out λ̂ψ to obtain the distribution of rψ. The standard approach for results in this section is to

express the approximate marginal distribution of rψ in the form

p(rψ|a; θ) =
p(rψ, λ̂ψ|a; θ)

p(λ̂ψ|rψ, a; θ)
(11)
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and employ the likelihood ratio approximation to the numerator and denominator. The numerator

involves, similarly to in (6), a Jacobian that now becomes |∂(rψ, λ̂ψ)/∂θ̂|−1, and a further sample-

space derivative that can be expressed as

∂2`(ψ, λ̂ψ; θ̂, a)

∂λ∂λ̂>
=
∂2`(ψ, λ; θ̂, a)

∂λ∂λ̂>

∣∣∣∣∣
λ=λ̂ψ

.

The sample-space derivative raised for (7) now becomes ∂{`P (ψ̂; θ̂, a) − `P (ψ; θ̂, a)}/∂ψ̂, where

`P (·) denotes the profile log likelihood, i.e. `P (ψ; θ̂, a) = `(ψ, λ̂ψ; θ̂, a). The likelihood ratio ap-

proximation to the denominator is straightforward, upon observing that the statistic (rψ, a), as

opposed to simply a, is a suitable ancillary for the smaller family where ψ is considered as fixed.

The details of obtaining the approximation p∗(rψ|a; θ) in this manner are given in Section 7.4

of Severini (2000), up through his (7.4) for the near-normal distribution of rψ which can then be

dealt with in the manner of steps between our (7) and (9). See also Barndorff-Nielsen and Cox

(1994), Section 6.6. The result is again our formula (8), but with a more general definition of r∗ψ,

that can be expressed as

r∗ψ = rψ + r−1ψ log(C−1ψ ) + r−1ψ log(ũψ/rψ) , (12)

where

C−1ψ =

∣∣∣∣∣∂2`(ψ, λ̂ψ; θ̂, a)

∂λ∂λ̂>

∣∣∣∣∣ {|̂λλ| |̃λλ|}−1/2 , ũψ =

[
∂{`P (ψ̂; θ̂, a)− `P (ψ; θ̂, a)}

∂ψ̂

]
̂
−1/2
ψψ|λ .

Here, recall that the tilde denotes evaluation at (ψ, λ̂ψ), ũψ is given the sign of rψ and jψψ|λ

denotes the adjusted information for ψ, as defined shortly. The two final terms in (12) derive

almost entirely from the Jacobian re-expressed in likelihood terms and arranged into two parts

for reasons to follow. The final one of these two terms of (12) is essentially the same as in (9),

except for being defined in terms of the profile likelihood. The intricacy of the above relations is

discussed in Endnote 4. The penultimate term is a new object corresponding to Barndorff-Nielsen’s

modified profile likelihood LMP (ψ; y) ∝ LP (ψ; y)Cψ for the setting of a scalar parameter ψ. This

modified likelihood pertains specifically to allowing for effects of fitting nuisance parameters λ.

The modified profile likelihood, in contrast to r∗, applies to the case dim(ψ) > 1. Higher-order

test statistics for this case are proposed in Skovgaard (2001) and Fraser, Reid and Sartori (2016).

Related to modified profile likelihood (MPL) is the Cox-Reid Approximate Conditional Likeli-

hood ACL (Cox and Reid, 1987), given by omitting the troublesome term |∂2`(ψ, λ̂ψ; θ̂, a)/∂λ∂λ̂>|
in C−1ψ . However, as those authors noted, this results in loss of the invariance to the choice of

representation of the nuisance parameter. They dealt with that alternatively by requiring that
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the parameters (ψ, λ) be “orthogonal” to each other, however there is not a unique choice in this

respect.

It is useful and common to express (12) as

r∗ψ = rψ + NPψ + INFψ , (13)

referring to the terms as the nuisance parameter and information adjustments (Pierce and Peters,

1992; Barndorff-Nielsen and Cox, 1994, Section 6.6.4). Neither of these adjustments depends on

the representation of the nuisance parameter. The NP adjustment can be substantial when dim(λ)

is not small, even for moderately large samples. Whether this occurs depends on the structure of

the model, in ways difficult to ascertain without computing at least an approximation to NP. The

INF adjustment is often small unless the data are so limited that the ψ inference is of marginal

practical value; i.e. the adjusted information jψψ|λ = jψψ − jψλ j
−1
λλ jλψ is quite small. Both

terms of the decomposition are conceptually important, but only the NP adjustment is commonly

important in practice.

It is easily seen that the modified profile likelihood introduced just above can be expressed

exactly as LMP (ψ; y) ∝ LP (ψ; y) exp(−rψ NPψ), where LP denotes the profile likelihood. This

is only for the case that dim(ψ) = 1, and note for this case that the modified profile likelihood

function does not involve the INF adjustment. It is, however, true that the NP adjustment is

usually much larger than INF. The INF adjustment mainly captures the nature of the model that

is not reflected in the likelihood function, for example the distinction between binomial and inverse

binomial sampling (Pierce and Bellio, 2006). Since that distinction is not included in Bayesian

inference, the modified profile likelihood is more suitable for a prior involving only the interest

parameter in that setting. For frequentist inference, though, it is hard to justify using the modified

profile likelihood as opposed to inferential summaries as that provided by Figure 2.

Pierce and Bellio (2006) have used the decomposition (13) to investigate extra-likelihood as-

pects of higher-order inference in regard to censoring and stopping rules. They found that in some

generality the choice of stopping rule has O(n−1) effect on NP but no smaller than O(n−1/2) effect

on INF. On the other hand, in some generality the choice of censoring model has O(n−1) effect

on both NP and INF.

We close this Section with two further examples, the first of which involves non-independent

observations, and the second illustrates using numerical integration to evaluate the likelihood

function.

Example 3: Autoregression model of order 1.

We consider use of the R package for inference about the correlation of an AR(1) process, with
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the mean and dispersion of the process as a nuisance parameters. The model is

yi − µ = ρ (yi−1 − µ) + εi , i = 1, . . . , n ,

with independent Gaussian errors satisfying var(εi) = σ2. The full parameter is θ = (µ, σ, ρ) and

we will mainly consider ψ(θ) = ρ. The functions to be provided by the user for inference about both

the mean and the correlation are in Figure 3, where Gamma1 is the inverse of the autocorrelation

matrix. In that code, the parameter ρ is reparametrized as Fisher’s z transformation. Note

that the inverse of this transformation is done in psifun.rho rather than in likAR1, since the

optimization is done on the theta scale. Even though our approach is in principle unaffected by

choice of parametrization, it makes the optimization go more smoothly if constrained ranges, such

as −1 < ρ < 1, are mapped into (−∞,∞). Similarly in general, it can be important to avoid

non-negativity constraints by a log transform.

Higher-order likelihood inference for this example was considered by Lozada-Can and Davison

(2010). An interesting aspect of this is that in order to apply the Fraser approach mentioned

earlier, they needed to utilize a special ancillary based on a martingale representation of the AR(1)

process, in contrast to the usual ones for independent observations, or the general ancillary based

on ı̂−1 ̂ that we have in mind here. For their dataset of 48 observations of luteinizing hormone

levels measured at 10 minute intervals given in the R package MASS, they invert the hypothesis

testing at 95% level to obtain r∗-based confidence limits for the mean of the process. With our

methodology such results agree with theirs to the 3 digits reported in their paper. However, as

expected for this sample size, with few nuisance parameters, the confidence limits based on r will

often agree closely with those based on r∗.

[Figure 3 about here.]

Thus we consider inference about the correlation of the process, which is somewhat more chal-

lenging. For this rather large sample size of = 48 inferences from first-order and higher-order

methods in the lower part of a confidence interval are quite similar. However, there is more dis-

tinction in the upper part of a confidence interval, where a first-order 95% one-sided confidence

limit for ρ equal to 0.765 based on r is found to be an 88% limit based on r∗. The maximum

likelihood estimate of ρ is 0.574±0.116. For testing ρ = 0.765 we find rψ = −1.643 (P=0.050) and

rψ = −1.155 (P=0.124). The NP and INF adjustments are 0.36 and 0.13. This r∗-based P -value

was confirmed by simulation of 50,000 trials using the parametric bootstrap method discussed at

the end of Section 2, yielding P = 0.131. For large values of ρ, inference strongly depends on an-

cillary conditioning, such as on the ratio of observed to expected information; see Johansen (1995).
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Example 4: Binomial overdispersion.

We now consider one of the standard models for overdispersion in binomial data; namely that

log{pi/(1− pi)} = z>i β + ui, where the ui are independent N(0, σ2) random variables. This form

of modeling, now widely used in more general settings as seen in McCulloch, Searle and Neuhaus

(2008), was first considered by Pierce and Sands (TR No. 46, 1975, Extra-Bernoulli Variation in

Binary Data), and we use a dataset from the text by Finney (1947) that they took as a motivating

example.

We note that when numerical differentiation of the log likelihood is to be used, it is important

that numerical integration of random effects be highly accurate. This led us to using the Gauss-

Hermite quadrature of the code given here, as indicated by the gq object that is included in the

dataset. In particular, the gq object includes the quadrature nodes and weights, that have to be

at least around 80 to achieve a good accuracy in the r∗ computation. Further details are included

in the vignette of the documentation of the likelihoodAsy package.

The Finney data comprises 10 observations considered to be binomial with numbers of trials

about 30, and a single covariable that is the “dose” for the bioassay. The estimated logit slope

is 1.44 ± 0.18 but that standard error is suspect since the residual deviance is 36.25 on 8 d.f.,

presenting evidence for large binomial overdispersion. Finney’s proposed resolution is to multiply

the parameter estimate covariance matrix from the binomial analysis by the mean residual deviance

36.25/8 = 4.5. This increases the estimated standard error of the slope estimate from 0.18 to 0.38.

The implicit rationale for this assumed that the excess variance over binomial is proportional to

the binomial variance, roughly p (1− p). The model we employ, and is now widely accepted, has

a variance function different from this, with the excess variance being approximately proportional

to {p (1− p)}−1. This distinction is studied in detail in the Pierce and Sands TR cited above.

Our package with the functions in Figure 4 provides, for testing that the slope is unity, results

rψ = 2.19 (P=0.014) and r∗ψ = 1.98 (P=0.024). We note that although the total adjustment

r∗ψ − rψ is only about 0.2, the NP and INF adjustments are -0.33 and 0.11, with opposite sign.

It can be seen from this that the proposal of Finney results in a standard error that is much too

large, under our model. The reason for this was indicated above in terms of the implicit variance

functions for the overdispersion.

For evaluating the approximation of our Equation (1), we simulated 50,000 trials under the

hypothesis fit parameters, finding that 2.86% of the rψ-values were greater than the observed value

of rψ = 2.19, compared to the 2.4% predicted by 1− Φ(r∗ψ) as in (1).

[Figure 4 about here.]
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5 Computation of the Jacobian Terms

The challenge in computing r∗ involves the sample-space derivatives given for (12) and elsewhere in

this paper, which are largely Jacobians. The primary difficulty is that in these partial derivatives

some suitable ancillary must be held fixed. This is so difficult that use of this theory was largely

stifled for most of the decade 1986-96. In a major advance, Skovgaard (1996, 2001) developed a way

of approximating these to second order that involves only computing some log likelihood-based

covariances computed without conditioning on an ancillary. Although the Skovgaard approach

does aim for conditioning on an ancillary, it is compatible with any ancillary meeting the needs

for the likelihood ratio approximation of Section 3. Note that the ancillary information appears

in the results through the term ı̂−1 ̂, which is part of the reason we like to think in terms of the

Efron-Hinkley ancillary.

Our aim is to approximate the sample-space derivative ∂2`(ψ, λ̂ψ; θ̂, a)/∂θ∂θ̂> and ∂{`(ψ̂, λ̂; θ̂, a)−
`(ψ, λ̂ψ; θ̂, a)}/∂θ̂, that arise in the Jacobians of Section 4. Note that NPψ and INFψ of (13) can

be calculated from those quantities. The Skovgaard approximation to those quantities is given by

∂2`(ψ, λ̂ψ; θ̂, a)/∂θ∂θ̂>
.
= covθ0{U(θ0), U(θ)}|(θ0=θ̂, θ=θ̃) ı̂

−1̂ , (14)

∂{`(ψ̂, λ̂; θ̂, a)− `(ψ, λ̂ψ; θ̂, a)}/∂θ̂ .
= covθ0{U(θ0), `(θ0)− `(θ)}|(θ0=θ̂, θ=θ̃) ı̂

−1̂ ,

where the covariances are computed without conditioning on an ancillary. The functions U(·)
are ordinary score statistics U(θ) = ∂`(θ; y)/∂θ. The final terms ı̂−1̂ serve to adjust these to

conform to ancillary conditioning. This is the Skovgaard (1996) approximation. The error in

these approximations is of second order for normal deviations for both the parameter and the

ancillary.

It is often unreasonable to compute the required log likelihood-based covariances in (14) ex-

actly, and it is best to approximate them by a simple simulation of datasets under the model.

This simulation involves no model fitting and is very different in this respect from a parametric

bootstrap. The required number of simulation trials is not greater than a few thousand, since the

aim is only estimation of covariances, rather than tail probabilities directly.

For full-rank exponential families no ancillary must be held fixed for sample-space derivatives,

and there are closed form expressions for these sample-space derivatives, e.g. Barndorff-Nielsen

and Cox (1994, Example 6.24). However, these are obtained exactly with the simulation approach,

so it is better for computations not to distinguish between the full-rank exponential family, and

the general settings. Skovgaard (1996) noted that his approximation is exact for full-rank ex-

ponential families, and the type of argument employed by Severini (1999, Section 3) shows that

the simulation yields the exact Skovgaard covariances. Skovgaard’s argument is given in terms of

curved exponential families, with his general result being based on approximating other models by
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that form. For the general setting, the validity of the Skovgaard approximation may be clarified

from the more explicit arguments of Severini (1999). See also the two introductions to Chapter 9

and 11 in Reid and Martinussen (2017).

6 Topics on Discrete Data and Similar Tests

6.1 Discrete Data and the r∗ Approximation

The r∗ approximation applies well to discrete data. When r is highly discrete, consideration of

continuity correction is of interest, but for the following reason it can be reasonable not to make

such correction.

For approximating literally P{rψ(Y ) ≤ rψ(y); θ : ψ(θ) = ψ} a continuity correction should be

applied. But for discrete settings there are reasons to utilize the mid-P , which is the average of

the expression just given and the one employing strict inequality. Due to the discreteness, this

mid-P has more nearly a uniform distribution under the hypothesis, but there are other reasons

to prefer it. It is easily seen that the result of employing r∗ without any continuity correction

provides an approximation to the mid-P ; see Pierce and Peters (1999) and Davison, Fraser and

Reid (2006).

Considering this more precisely is in principle not complicated. In discrete settings the relation

(1) amounts to approximating a discrete distribution by a continuous one, which involves standard

elementary issues. The most accurate approximations involve continuity correction, which should

ideally in principle be done in terms of the distribution of r or of P -values, rather than the

original data. Though there are some general formulae for this, summarized by Pierce and Peters

(1992), it is typically simpler and adequate to make the continuity correction to the data before

computing r∗. When the inference is conditional on sufficient statistics for the nuisance parameter,

the continuity correction should conform to this. These and other matters are clarified in Example

5 of the next Section.

So, ignoring the continuity correction when employing r∗ leads approximately to the mid-P .

When the distribution of r is highly discrete, either this or the exact mid-P differs considerably

from the exact P -value for discrete data. There are reasons supporting the view that approxi-

mating the distribution of r as continuous, without continuity correction, may be preferable to

most other methods. In particular, this may be true when the discreteness arises largely from

conditioning on nuisance parameter estimates to achieve similar tests. The conditional sample

space may be too limited to be useful, or even degenerate. There are many difficulties with sim-

ilar, or “exact”, tests, some of which are raised in Section 5.2 of Cox and Hinkley (1974), and

others in Pierce and Peters (1999). It is attractive but rather intractable to sacrifice the exact
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conditioning in favor of some kind of approximate conditioning, which may involve modest loss of

the similarity. Pierce and Peters (1999) argued that in this case treating the distribution of r as

continuous provides a means of approximate conditioning.

6.2 Use of r∗ for Approximating the Conditioning for Similar Tests

It is related to the above that r∗ can be employed to approximate the conditioning on nuisance

parameter estimates in full-rank exponential families where ancillary conditioning is not required;

this was developed by Pierce and Peters (1992). Jensen (1986) noted that in full exponential

families when ψ(θ) is linear in the canonical parameters, the likelihood ratio statistic rψ(Y ) is to

third order independent of a nuisance parameter estimator. Thus, when the inference is based on

this likelihood ratio statistic, the conditioning to achieve similar tests is superfluous. The use of

r∗ can still be used to obtain a second order approximation to P -values as in (1). In the package

likelihoodAsy, the routines do not need to be informed that this is different from ancillary con-

ditioning. The following example illustrates this.

Example 5: 2× 2 contingency table.

Consider testing independence in the 2×2 contingency table with entries yij = {15, 9, 7, 13} where

the first and last numbers are the diagonal elements, by conditioning on the marginal totals as

usual. This is an instance of the conditioning to eliminate nuisance parameters raised above.

That is, the probability model for the usual ‘exact’ test, arises from conditioning on the row and

column totals in a Poisson model. For testing independence the interest parameter ψ can be

taken as the interaction term of the theta vector. The conditioning on the sufficient statistics for

the remaining coordinates is done automatically in the r∗ theory presented here, since as noted

above the marginal distribution in Equation (11) in this full exponential family setting agrees to

third order with the conditional distribution. Since no ancillary conditioning is required, and the

example is otherwise simple, it is easy to calculate the exact P -value conditionally on the table

margins.

[Figure 5 about here.]

For continuity correction it is desired to maintain the same row and column totals. The nearest

datasets in this sense would have would have ±1 added to the diagonal cells and subtracted from

the off-diagonal cells. For continuity correction one might move half-way to that nearest table,

adding and subtracting 0.50 to cells. The exact 1-sided P -value is 0.0646, and the r∗ψ P -value,

for testing that the odds ratio is unity, with such continuity correction on the original data is

0.0676. This agreement is the main point we are making, but to continue, the mid-P is 0.0404
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and the r∗ψ P -value without continuity correction is 0.0362. This agreement is less precise, but

the argument for it given by Pierce and Peters (1999) is more approximate than for the other

comparison. Our preference is the P -value without continuity correction, but the other numbers

are of some interest.

It is not difficult to generalize this example to the case of several nuisance parameters, which

arise for example in a a collection of k× 2 tables with common interaction parameter in a logistic

regression model, as would arise in case-control studies with k : 1 matching. See for example

Brazzale, Davison and Reid (2007), Sections 9.2 and 9.3, reporting results for D.R. Cox’s famous

Crying Babies data, where a stratified logistic regression model can be applied. This is an instance

where the methods of this paper can be adequate even for a large number of strata, especially so

when the stratum sizes are not minimally small.

7 Discussion and Conclusion

The theory and methods presented here reflect an important chapter in the developments in statis-

tics. The approximations can be considerably better than usual first-order ones. The development

is also an important complement to the Neyman-Pearson theory, which many, particularly outside

of the U.S., find limited by the emphasis on decision-making; see e.g. Reid (2005, Section 3).

Regardless of one’s view on this, approximately optimal inference has not been fully integrated

into the Neyman-Pearson theory.

The theory of ancillary conditioning is no doubt demanding for a general statistical audience,

but we have attempted here to make this more accessible than in the original developments. As

with other theoretical advances, success hinges on the existence of suitable software. So this paper

has the dual aims of useful exposition and announcement of an R package applying the methods

for a quite general setting.

It will have occurred to some readers that the terminology “Modern Likelihood-Frequentist

Inference” presumes there will be considerable further accessibility and acceptance of the method-

ology dealt with in the exposition here. We hope this paper achieves the aim of facilitating this.

Endnotes

Endnote 1

Unless considerable restraint is employed, the theory of ancillarity is quite complicated, with

grounds for pessimism in its practical value. A useful discussion of these difficulties is given

by Gosh, Reid and Fraser (2010). However, as they acknowledge, many of the difficulties can
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become less severe in terms of approximate ancillarity. The main issues for present purposes are:

(a) Skovgaard (1985) and others have shown that under quite general regularity conditions the

ancillary a = Γ(θ̂) ı̂−1̂ of Section 2 meets the requirements (iii) and (iv) of Section 1.2, although

not uniquely, and (b) this ancillary conforms well to the requirements for the likelihood ratio

approximation of Section 3. Efron and Hinkley (1978) had earlier shown more discursively the

value of this ancillary, conjecturing some of the results established by Skovgaard, who obtained

more rigorous results on this.

Endnote 2

The issues of second and third order, i.e. O(n−1) and O(n−3/2), results are subtle aspects of

modern likelihood asymptotics. One distinction in this is that often the distribution of r∗ψ is

standard normal to third order, whereas more inferentially clear results on the distribution of rψ

as in (1*) are generally valid only to second order. This is indicated in equation (7.4) of Severini

(2000). The distinction also arises in comparing the approximations to sample-space derivatives

due to Fraser and colleagues; e.g. Fraser (2004), Reid and Fraser (2010) and that due to Skovgaard

(1996) employed for this paper. For approximating the distribution of rψ, as we emphasize in this

paper, both approaches are generally of second order for reasons just stated. However, in general,

the ‘large deviation’ property discussed in relation to Equation (1*) is far more important than

whether a result is of second or third order. Both the Fraser and Skovgaard approaches have the

large deviation property. There are other second-order methods that do not, most often those

based on ‘orthogonal parameters’; Cox and Reid (1987), Severini (2000, Section 7.5.2).

Endnote 3

The likelihood ratio approximation to the density of θ̂ is more often referred to as the saddle-

point approximation, or Barndorff-Nielsen’s p∗ formula. The term saddlepoint refers to inversion

of the cumulant generating function, involving a saddlepoint in the complex coordinate system:

e.g. Daniels (1954). Reid (1988) provides a review of extensive work following that development,

involving far more workers than we can mention here. For full-rank exponential families the

approximate distribution of the maximum likelihood estimator was obtained through a more sta-

tistical approach without complex analysis, culminating in the work of Barndorff-Nielsen and Cox

(1979). For location-scale models, where the estimator is generally not sufficient, Fisher (1934) had

obtained a result of this nature on its distribution by conditioning on the configuration ancillary.
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Endnote 4

In multiparameter problems, definition and calculation of the terms involved in r∗ψ is rather in-

tricate, even though their basis is readily grasped. These intricacies are presented succinctly in

equations 6.102-6.108 of Barndorff-Nielsen and Cox (1994). Even experienced analysts often find

it difficult to get these correctly, when doing each problem from a fresh start. A considerable

part of our motivation in providing the R package is to remove the need for users to master these

potential difficulties.
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loglik.Wbl <- function(theta, data)

{

logy <- log(data$y)

X <- data$X

loggam <- theta[1]

beta <- theta[-1]

gam <- exp(loggam)

H <- exp(gam * logy + X %*% beta)

out <- sum(X %*% beta + loggam + (gam - 1) * logy - H)

return(out)

}

gendat.Wbl <- function(theta, data)

{

X <- data$X

n <- nrow(X)

beta <- theta[-1]

gam <- exp(theta[1])

data$y <- (rexp(n) / exp(X %*% beta)) ^ (1 / gam)

return(data)

}

psifcn.Wbl <- function(theta)

{

beta <- theta[-1]

gam <- exp(theta[1])

y0 <- 130

x0 <- 4

psi <- -(y0 ^ gam) * exp(beta[1] + x0 * beta[2])

return(psi)

}

Figure 1: Functions provided by user for Weibull regression example.
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Figure 2: Upper and lower one-sided confidence limits at all levels, using 1st and 2nd order
likelihood ratio methods. The P -values are the one-sided error rates given by 1− Φ(|r∗|).
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likAR1 <- function(theta, data)

{

y <- data$y

mu <- theta[1]

sigma2 <- exp(theta[2] * 2)

z <- theta[3]

rho <- (exp(2 * z) - 1) / (1 + exp(2 * z))

n <- length(y)

Gamma1 <- diag(1 + c(0, rep(rho^2, n-2), 0))

for(i in 2:n)

Gamma1[i,i-1]<- Gamma1[i-1,i] <- -rho

lik <- -n/2 * log(sigma2) + 0.5 * log(1 - rho^2) - 1 / (2 * sigma2) *

mahalanobis(y, rep(mu,n), Gamma1, inverted = TRUE)

return(lik)

}

genDataAR1 <- function(theta, data)

{

out <- data

mu <- theta[1]

sigma <- exp(theta[2])

z <- theta[3]

rho <- (exp(2 * z) - 1) / (1 + exp(2 * z))

n <- length(data$y)

y <- rep(0,n)

y[1] <- rnorm(1, mu, s = sigma * sqrt(1 / (1 - rho^2)))

for(i in 2:n)

y[i] <- mu + rho * (y[i-1] - mu) + rnorm(1) * sigma

out$y <- y

return(out)

}

psifcn.mu <- function(theta) theta[1]

psifcn.rho <- function(theta)

{

z <- theta[3]

rho <- (exp(2 * z) - 1) / (1 + exp(2 * z))

return(rho)

}

Figure 3: Functions provided by user for AR(1) example.
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loglik.binOD <- function(theta, data)

{

p.bound <- function(p, eps=2.22e-15) p <- (1 - eps) * (p - 0.5) + 0.5

y <- data$y

den <- data$den

X <- data$X

gq <- data$gq

n <- length(y)

p <- ncol(X)

beta <- theta[1:p]

sigma <- exp(theta[p+1])

linpred <- X %*% beta

L <- rep(0,n)

for (i in 1:n)

{

prob <- p.bound(plogis(linpred[i] + gq$nodes * sqrt(2) * sigma))

likq <- y[i] * log(prob) + (den[i] - y[i]) * log(1-prob)

L[i] <- sum(gq$weights * exp(likq) ) / sqrt(2 * pi)

}

return(sum(log(L)))

}

gendat.binOD <- function(theta, data)

{

out <- data

den <- data$den

X <- data$X

p <- ncol(X)

n <- length(data$y)

beta <- theta[1:p]

sigma <- exp(theta[p+1])

u <- rnorm(n) * sigma

linpred <- X %*% beta + u

out$y <- rbinom(n, size=den, prob=plogis(linpred))

return(out)

}

Figure 4: Functions provided by user for binomial overdispersion.
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loglik.Pois <- function(theta, data)

{

y <- data$y

y <- y + 0.50 * c(-1,1,1,-1)

mu <- exp(data$X %*% theta)

el <- sum(y * log(mu) - mu)

return(el)

}

gendat.Pois <- function(theta, data)

{

out <- data

mu <- exp(data$X %*% theta)

out$y <- rpois(n=4, lam=mu)

return(out)

}

Figure 5: Functions for 2× 2 contingency table

34


	Introduction and Basic Concepts
	Introductory Aims of Paper
	Overview of Main Results and Basis for Development
	 Examples using R package

	General Preliminary Issues
	The Likelihood Ratio Approximation to the Density of  
	Corresponding Distribution of r
	Computation of the Jacobian Terms
	Topics on Discrete Data and Similar Tests
	Discrete Data and the r* Approximation
	Use of r* for Approximating the Conditioning for Similar Tests

	Discussion and Conclusion

