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APPROXIMATION OF EIGENVALUES OF EVOLUTION1

OPERATORS FOR LINEAR RENEWAL EQUATIONS∗2

DIMITRI BREDA† AND DAVIDE LIESSI†3

Abstract. A numerical method based on pseudospectral collocation is proposed to approximate4
the eigenvalues of evolution operators for linear renewal equations, which are retarded functional5
equations of Volterra type. Rigorous error and convergence analyses are provided, together with6
numerical tests. The outcome is an efficient and reliable tool which can be used, for instance, to7
study the local asymptotic stability of equilibria and periodic solutions of nonlinear autonomous8
renewal equations. Fundamental applications can be found in population dynamics, where renewal9
equations play a central role.10
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1. Introduction. Delay equations of renewal or differential type are often used15

in different fields of science to model complex phenomena in a more realistic way,16

thanks to the presence of delayed terms which relate the current evolution to the past17

history. Examples of broad areas where delays arise naturally are control theory in18

engineering [37, 39, 53, 59] and population dynamics or epidemics in mathematical19

biology [36, 41, 47, 51, 52, 58].20

In many applications there is a strong interest in determining the asymptotic sta-21

bility of particular invariants of the associated dynamical systems, mainly equilibria22

and periodic solutions. Notable instances are network consensus, mechanical vibra-23

tions, endemic states and seasonal fluctuations. The problem is nontrivial since the24

introduction of delays notoriously requires an infinite-dimensional state space [24].25

A common tool to investigate local stability is the principle of linearized stability26

which, generically, links the stability of a solution of a nonlinear system to that of27

the null solution of the system linearized around the chosen solution. This linearized28

system is autonomous in the case of equilibria and has periodic coefficients in the case29

of periodic solutions.30

As far as renewal equations (REs) and retarded functional differential equations31

(RFDEs) are concerned, the stability of the null solution of a linear autonomous32

system is determined by the spectrum of the semigroup of solution operators or,33

equivalently, by that of its infinitesimal generator [25, 31, 40].34

For RFDEs, as for ordinary differential equations, the Floquet theory relates35

the stability of the null solution of a linear periodic system to the characteristic36

multipliers. These are the eigenvalues of the monodromy operator, i.e., the evolution37

operator that shifts the state along the solution by one period (see [31, chapter XIV]38

and [40, chapter 8]). An analogous formal theory lacks for REs. A possible extension39

is still an ongoing effort of the authors and colleagues, in view of the application40
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2 D. BREDA AND D. LIESSI

of sun-star calculus to REs in [25] for equilibria. A preliminary study reveals the41

above a promising approach, with difficulties restricted to the validation of technical42

hypotheses. Thus we retain reasonable to assume here the validity of a Floquet43

theory, as well as that of a corresponding principle of linearized stability (more on44

this is postponed to section 6).45

Given the infinite-dimensional nature of delay equations, numerical methods to46

approximate the spectrum of the operators mentioned above characterize part of the47

recent literature (to start see [14] and the references therein). They are based on48

the reduction to finite dimension, in order to exploit the eigenvalues of the obtained49

matrices as approximations to (part of) the exact ones.50

About equilibria of RFDEs, see [12] for the discretization of the infinitesimal51

generator via pseudospectral collocation and [34] for the discretization of the solution52

operator via linear multistep methods. For equilibria of REs and coupled systems of53

REs and RFDEs, see instead the more recent collocation techniques of [10, 11].54

Concerning periodic solutions of RFDEs, perhaps the most (indirectly) used tech-55

nique is that behind DDE-BIFTOOL [1, 57], the widespread bifurcation package56

for delay problems (namely delay differential algebraic equations with constant or57

state-dependent discrete delays). There, a discretization of the monodromy opera-58

tor is obtained as a byproduct of the piecewise collocation used to compute periodic59

solutions [33]. Other approaches are the semi-discretization method [43] and the60

Chebyshev-based collocations [19, 20, 21], and [44] contains an interesting account61

of this piece of literature. The most general collocation approach is perhaps [13],62

targeted to the discretization of generic evolution operators, including both solution63

operators (for equilibria) and monodromy operators (for periodic solutions, with any64

ratio between delay and period, even irrational) and any (finite) combination of dis-65

crete and distributed delay terms.66

From an overall glimpse of the existing works, it emerges clearly that there are67

no currently available methods to approximate the spectrum of evolution operators68

of REs. Given their importance in population dynamics [7, 17, 28, 29, 30, 41, 42, 45,69

48, 52, 61], this lack of tools deserves consideration, especially when the interest is in70

the stability of periodic solutions. Indeed, inspired by the ideas of the pseudospectral71

collocation approach for RFDEs of [13], the present work is a first attempt to fill this72

gap. With respect to [13], in reformulating the evolution operators we introduce an73

essential modification, in order to accommodate for the different kind of equations.74

Namely, RFDEs provide the value of the derivative of the unknown function, while75

REs provide directly the value of the unknown function. Moreover, the state space is76

a space of L1 functions, instead of continuous functions as in the RFDE case; this is a77

natural choice for REs [25], since in general the initial functions can be discontinuous78

and the solution itself can be discontinuous at the initial time. Finally, provided that79

some hypotheses on the integration kernel are satisfied, the right-hand side of REs80

exhibits a regularizing effect (in the sense that applying the right-hand side to an L181

function produces a continuous function), which is not present in general in RFDEs.82

These differences motivate a complete revisit of [13] rather than a mere adaptation.83

A preliminary algorithm implementing the method we propose is adopted for the84

first time in the recent work [9] for a special class of REs. There it is just marginally85

summarized, as it is only used in the background simply to support the analysis of the86

approach for nonlinear problems described in [8]. In this work, instead, the method87

is central, and we elaborate a full treatment including a rigorous error analysis and88
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EIGENVALUES OF EVOLUTION OPERATORS FOR REs 3

proof of convergence, as well as numerical tests for experimental confirmation and89

relevant codes.90

The main practical outcome is the construction of an approximating matrix whose91

eigenvalues are demonstrated to converge to the exact ones, possibly with infinite or-92

der, under reasonable regularity assumptions on the model coefficients. This infinite93

order of convergence, typical of pseudospectral methods [60], represents a key com-94

putational feature, especially in case of robust analyses (as for, e.g., stability charts95

and bifurcations). Indeed, a good accuracy is ensured in general with low matrix96

dimension and, consequently, low computational cost and time.97

For completeness, let us notice that the literature on Volterra integral and func-98

tional equations abounds of numerical methods for initial and boundary value prob-99

lems. The monograph [16] and the references therein may serve as a starting point.100

However, all these methods deal with time integration to approximate a solution101

rather than with spectral approximation to detect stability.102

The paper is structured as follows. In section 2 we define the problem and refor-103

mulate the evolution operators, an essential step hereinafter. In section 3 we define104

the discretizations of the relevant function spaces and of the generic evolution op-105

erator. In section 4 we prove that the discretized evolution operator is well-defined106

and that its eigenvalues approximate those of the infinite-dimensional evolution op-107

erator. In section 5 we present two numerical tests. Concluding comments follow in108

section 6. Eventually, a matrix representation of the discretized evolution operator109

is constructed in Appendix A for the sake of implementation and relevant MATLAB110

codes are available at the authors.111

2. Formulation of the problem. For d ∈ N and τ ∈ R both positive, consider112

the function space X := L1([−τ, 0],Rd) equipped with the usual L1 norm, denoted by113

‖·‖X . For s ∈ R and a function x defined on [s− τ,+∞) let114

(2.1) xt(θ) := x(t+ θ), t ≥ s, θ ∈ [−τ, 0].115

Given a measurable function C : [s,+∞) × [−τ, 0] → Rd×d and ϕ ∈ X, define the116

initial value problem for the RE117

(2.2) x(t) =

∫ 0

−τ
C(t, θ)xt(θ) dθ, t > s,118

by imposing xs = ϕ. As long as t ∈ [0, τ ], this corresponds to the Volterra integral119

equation (VIE) of the second kind120

x(t) =

∫ t

0

K(t, σ)x(σ) dσ + f(t)121

for122

(2.3) K(t, σ) := C(s+ t, σ − t)123

and f(t) :=
∫ 0

t−τ K(t, σ)ϕ(σ) dσ. With standard regularity assumptions on the kernel124

C, the solution exists unique and bounded in L1 (see Theorem 2.2 below). Moreover,125

a reasoning on the lines of Bellman’s method of steps [3, 5] allows to extend well-126

posedness to any t > s, by working successively on [τ, 2τ ], [2τ, 3τ ] and so on (see also127
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4 D. BREDA AND D. LIESSI

[2, 4] for similar arguments, and [16, section 4.1.2] for VIEs). Denote this solution by128

x(t), or x(t; s, ϕ) when emphasis on s and ϕ is required.129

Let {T (t, s)}t≥s be the family of linear and bounded evolution operators [23, 31]130

associated to (2.2), i.e.,131

T (t, s) : X → X, T (t, s)ϕ = xt(·; s, ϕ).132

The aim of this work is to approximate the dominant part of the spectrum of the133

infinite-dimensional operator T (t, s) for the sake of studying stability. This is pur-134

sued by reducing to finite dimension via the pseudospectral collocation described in135

section 3 and by using the eigenvalues of the obtained matrix, computed via standard136

techniques, as approximations to the exact ones.137

Let, e.g., C(t, θ) be Ω-periodic in t. As anticipated in section 1, we assume the138

validity of a Floquet theory and of a corresponding principle of linearized stability.139

Thus, the eigenvalues of the monodromy operator T (Ω, 0), called characteristic mul-140

tipliers, provide information on the stability of the null solution of (2.2). Moreover,141

if (2.2) comes from the linearization of a nonlinear RE around a periodic solution,142

the multipliers reveal also the local stability of the latter. More precisely, except for143

the trivial multiplier 1, which is always present due to linearization but does not af-144

fect stability, the original periodic solution is locally asymptotically stable if all the145

multipliers are inside the unit circle. Otherwise, a multiplier outside the unit circle is146

enough to declare instability.147

The same reasoning can be applied equally to T (h, 0), independently of h > 0,148

to study the stability of the null solution of (2.2) in the autonomous case, i.e., when149

C(t, θ) is independent of t. By linearization, again, this is valid also for equilibria150

of nonlinear systems. Here the evolution family reduces to a classic one-parameter151

semigroup, whose generator can be discretized as in [10] or [11], as already mentioned,152

providing alternatives to the method described in this work.153

One can use the discretization we propose in the framework of [15] also to compute154

Lyapunov exponents for the generic nonautonomous case. Preliminary results appear155

already in [9] and are confirmed by the ones obtained therein for equilibria and periodic156

solutions, with reference to negative and zero exponents, respectively. For further157

comments on this topic see section 6.158

To keep this level of generality, embracing autonomous, periodic and generic non-159

autonomous problems altogether, let h ∈ R be positive and define for brevity160

(2.4) T := T (s+ h, s).161

From now on this is the generic evolution operator that we aim at discretizing. We162

remark that any relation between h and τ , even irrational, is allowed.163

The following reformulation of T is inspired by the one used in [13] for RFDEs.164

It is convenient for discretizing T and approximating its eigenvalues. With respect165

to [13], an essential modification of the operator V below is introduced to take into166

account the different way by which the equation describes the solution, i.e., directly167

(REs) or through its derivative (RFDEs).168

Define the function spaces X+ := L1([0, h],Rd) and X± := L1([−τ, h],Rd),169

equipped with the corresponding L1 norms denoted, respectively, by ‖·‖X+ and ‖·‖X± .170
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Define the operator V : X ×X+ → X± as171

(2.5) V (ϕ,w)(t) :=

{
w(t), t ∈ (0, h],

ϕ(t), t ∈ [−τ, 0].
172

Let also V − : X → X± and V + : X+ → X± be given, respectively, by V −ϕ :=173

V (ϕ, 0X+) and V +w := V (0X , w), where 0Y denotes the null element of a linear174

space Y (similarly, IY in the sequel stands for the identity operator in Y ). Observe175

that176

(2.6) V (ϕ,w) = V −ϕ+ V +w.177

Note as much that V (ϕ,w) can have a discontinuity in 0 even when ϕ and w are178

continuous but ϕ(0) 6= w(0). This is an important difference with respect to [13],179

which calls later on for special attention to discontinuities and to the role of 0, both180

in the theoretical treatment of the numerical method and in its implementation.181

Remark 2.1. The choice of including t = 0 in the past in (2.5), as well as in (2.2), is182

common for REs modeling, e.g., structured populations [25, 27]. From the theoretical183

point of view, it does not make any difference, since X consists of equivalence classes184

of functions coinciding almost everywhere. From the interpretative point of view,185

it can be motivated by the consideration that although the actual value ϕ(0) is not186

well-defined, being ϕ in L1, it is reasonable to define the solution as coinciding with187

the initial function ϕ of the problem on the whole domain of ϕ. Moreover, from the188

implementation point of view, numerical tests performed including t = 0 in the past189

or in the future show that either choice gives the same results, with the only (obvious)190

requirement to be consistent throughout the code.191

Now define also the operator Fs : X± → X+ as192

(2.7) Fsu(t) :=

∫ 0

−τ
C(s+ t, θ)u(t+ θ) dθ, t ∈ [0, h].193

Eventually, the evolution operator T can be reformulated as194

(2.8) Tϕ = V (ϕ,w∗)h,195

where w∗ ∈ X+ is the solution of the fixed point equation196

(2.9) w = FsV (ϕ,w),197

which exists unique and bounded thanks to Theorem 2.2 below (where in (2.10), and198

also in the sequel, |·| denotes any finite-dimensional norm). Recall that in (2.8) the199

subscript h is used according to (2.1), hence V (ϕ,w∗)h(θ) = V (ϕ,w∗)(h + θ) for200

θ ∈ [−τ, 0].201

Theorem 2.2. If the interval [0, τ ] can be partitioned into finitely many subin-202

tervals J1, . . . , Jn such that, for any s ∈ R,203

(2.10) ess sup
σ∈Ji

∫
Ji

|C(s+ t, σ − t)|dt < 1, i ∈ {1, . . . , n},204

then the operator IX+ − FsV + is invertible with bounded inverse and (2.9) admits a205

unique solution in X+.206
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6 D. BREDA AND D. LIESSI

Proof. Given f ∈ X+ the equation (IX+ − FsV +)w = f has a unique solution207

w ∈ X+ if and only if the initial value problem208 w(t) =

∫ 0

−τ
C(s+ t, θ)w(t+ θ) dθ + f(t), t ∈ [0, h],

w0 = 0 ∈ X,
209

has a unique solution in X±, with the two solutions coinciding on [0, h]. If h ≤ τ ,210

this follows directly from standard theory on VIEs, see, e.g., [38, Corollary 9.3.14 and211

Theorem 9.3.6], whose validity is ensured via (2.3) by the hypothesis on C. Otherwise,212

the same argument can be repeated on [τ, 2τ ], [2τ, 3τ ] and so on. So IX+ − FsV + is213

invertible and bounded and the bounded inverse theorem completes the proof.214

We conclude this section by comparing the choice of (2.2) as a prototype equation215

to that of the general linear nonautonomous RFDE [13, (2.1)] (or, equivalently, [14,216

(2.4)]), i.e., x′(t) = L(t)xt for linear bounded operators L(t) : X → Rd, t ≥ s. Thanks217

to the Riesz representation theorem for L1 (see, e.g., [56, page 400]), every linear non-218

autonomous retarded functional equation of the type x(t) = L(t)xt can be written219

in the form (2.2), although not all of them satisfy the assumptions of Theorem 2.2.220

Think, e.g., of the difference equation x(t) = a(t)x(t − τ), i.e., C(t, θ) = a(t)δ−τ (θ)221

for δ−τ the Dirac delta at −τ . Here we exclude these equations because, first and as222

already noted, they might not be well-posed. Second, they do not ensure the regular-223

ization of solutions as it happens for the analogous RFDEs, and this is fundamental224

for the convergence of the numerical method. Third and last, they might be of neutral225

type, a case out of the scope of the present work and about which we comment further226

in section 6.227

Also with reference to [13, (2.4)], in many applications the function C(t, θ) (is228

continuous in t and) has a finite number of discontinuities in θ. Hence (2.2) may often229

be written in the form230

(2.11) x(t) =

p∑
k=1

−τk−1∫
−τk

Ck(t, θ)x(t+ θ) dθ231

with τ0 := 0 < τ1 < · · · < τp := τ and Ck(t, θ) continuous in θ. In section 5 we refer232

to this choice, which agrees, for instance, with the literature on physiologically- and233

age-structured populations (where discontinuities are due, e.g., to different behavior234

of juveniles and adults) [29, 41, 52].235

3. Discretization. In order to approximate the eigenvalues of the infinite-di-236

mensional operator T : X → X defined in (2.4), we discretize the function spaces and237

the operator itself by revisiting the pseudospectral collocation method used in [13],238

with the necessary modifications due to the new definition of V and those anticipated239

in section 1.240

In the sequel let M and N be positive integers, referred to as discretization indices.241

3.1. Partition of time intervals. If h ≥ τ , let ΩM := {θM,0, . . . , θM,M} be a242

partition of [−τ, 0] with −τ = θM,M < · · · < θM,0 = 0. If h < τ , instead, let Q be the243

minimum positive integer q such that qh ≥ τ . Note that Q > 1. Let θ(q) := −qh for244

q ∈ {0, . . . , Q − 1} and θ(Q) := −τ . For q ∈ {1, . . . , Q}, let Ω
(q)
M := {θ(q)

M,0, . . . , θ
(q)
M,M}245
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be a partition of [θ(q), θ(q−1)] with246

θ(1) = θ
(1)
M,M < · · · < θ

(1)
M,0 = θ(0) = 0,247

θ(q) = θ
(q)
M,M < · · · < θ

(q)
M,0 = θ(q−1), q ∈ {2, . . . , Q− 1},248

−τ = θ(Q) = θ
(Q)
M,M < · · · < θ

(Q)
M,0 = θ(Q−1).249

250

Define also the partition ΩM := Ω
(1)
M ∪ · · · ∪ Ω

(Q)
M of [−τ, 0]. Note in particular that251

for q ∈ {1, . . . , Q− 1}252

(3.1) θ
(q)
M,M = −qh = θ

(q+1)
M,0 .253

In principle, one can use more general meshes in [−τ, 0], e.g., not including the254

endpoints or using different families of nodes in the piecewise case. The forthcoming255

results can be generalized straightforwardly, but we avoid this choice in favor of a256

lighter notation and to reduce technicalities.257

Finally, let Ω+
N := {tN,1, . . . , tN,N} be a partition of [0, h] with 0 ≤ tN,1 < · · · <258

tN,N ≤ h.259

3.2. Discretization of function spaces. If h ≥ τ , the discretization of X of260

index M is XM := Rd(M+1). An element Φ ∈ XM is written as Φ = (Φ0, . . . ,ΦM ),‡261

where Φm ∈ Rd for m ∈ {0, . . . ,M}. The restriction operator RM : X̃ → XM is given262

by RMϕ := (ϕ(θM,0), . . . , ϕ(θM,M )) for X̃ any subspace of X regular enough to make263

point-wise evaluation meaningful. The same holds below and see also the comment264

concluding this section. The prolongation operator PM : XM → X is the discrete265

Lagrange interpolation operator PMΦ(θ) :=
∑M
m=0 `M,m(θ)Φm, θ ∈ [−τ, 0], where266

`M,0, . . . , `M,M are the Lagrange coefficients relevant to the nodes of ΩM . Observe267

that268

(3.2) RMPM = IXM , PMRM = LM ,269

where LM : X̃ → X is the Lagrange interpolation operator that associates to a func-270

tion ϕ ∈ X̃ the M -degree Rd-valued polynomial LMϕ such that LMϕ(θM,m) =271

ϕ(θM,m) for m ∈ {0, . . . ,M}.272

If h < τ , proceed similarly but in a piecewise fashion. The discretization of X of273

index M is XM := Rd(QM+1). An element Φ ∈ XM is written as274

(3.3) Φ = (Φ
(1)
0 , . . . ,Φ

(1)
M−1, . . . ,Φ

(Q)
0 , . . . ,Φ

(Q)
M−1,Φ

(Q)
M ),275

where Φ
(q)
m ∈ Rd for q ∈ {1, . . . , Q} and m ∈ {0, . . . ,M − 1} and Φ

(Q)
M ∈ Rd. In276

view of (3.1), let also Φ
(q)
M := Φ

(q+1)
0 for q ∈ {1, . . . , Q− 1}. The restriction operator277

RM : X̃ → XM is given by278

RMϕ := (ϕ(θ
(1)
M,0), . . . , ϕ(θ

(1)
M,M−1), . . . , ϕ(θ

(Q)
M,0), . . . , ϕ(θ

(Q)
M,M−1), ϕ(θ

(Q)
M,M )).279

The prolongation operator PM : XM → X is the discrete piecewise Lagrange inter-280

polation operator PMΦ(θ) :=
∑M
m=0 `

(q)
M,m(θ)Φ

(q)
m , θ ∈ [θ(q), θ(q−1)], q ∈ {1, . . . , Q},281

where `
(q)
M,0, . . . , `

(q)
M,M are the Lagrange coefficients relevant to the nodes of Ω

(q)
M for282

‡Throughout the text we use this simpler notation to denote a concatenation of column vectors
in place of the more formal Φ = (ΦT0 , . . . ,Φ

T
M )T .
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8 D. BREDA AND D. LIESSI

q ∈ {1, . . . , Q}. Observe that the equalities (3.2) hold again, with LM : X̃ → X283

the piecewise Lagrange interpolation operator that associates to a function ϕ ∈ X̃ the284

piecewise polynomial LMϕ such that LMϕ�[θ(q),θ(q−1)]
is the M -degree Rd-valued poly-285

nomial with values ϕ(θ
(q)
M,m) at the nodes θ

(q)
M,m for q ∈ {1, . . . , Q} and m = 0, . . . ,M .286

Notice that to avoid a cumbersome notation the same symbols for XM , RM , PM and287

LM are used.288

Finally, the discretization of X+ of index N is X+
N := RdN . An element W ∈ X+

N289

is written as W = (W1, . . . ,WN ), where Wn ∈ Rd for n ∈ {1, . . . , N}. The re-290

striction operator R+
N : X̃+ → X+

N is given by R+
Nw := (w(tN,1), . . . , w(tN,N )). The291

prolongation operator P+
N : X+

N → X+ is the discrete Lagrange interpolation oper-292

ator P+
NW (t) :=

∑N
n=1 `

+
N,n(t)Wn, t ∈ [0, h], where `+N,1, . . . , `

+
N,N are the Lagrange293

coefficients relevant to the nodes of Ω+
N . Observe again that294

(3.4) R+
NP

+
N = IX+

N
, P+

NR
+
N = L+

N ,295

where L+
N : X̃+ → X+ is the Lagrange interpolation operator that associates to a func-296

tion w ∈ X̃+ the (N − 1)-degree Rd-valued polynomial L+
Nw such that L+

Nw(tN,n) =297

w(tN,n) for n ∈ {1, . . . , N}.298

When not ambiguous (e.g., when applied to an element) the restrictions to sub-299

spaces of the above prolongation, restriction and Lagrange interpolation operators are300

denoted in the same way as the operators themselves.301

Observe that since an L1 function is an equivalence class of functions equal almost302

everywhere, values in specific points are not well-defined. Thus, it does not seem303

reasonable to define the restriction operator on the whole space X (respectively, X+),304

motivating the above use of X̃ (respectively, X̃+). Indeed, this is amply justified.305

First of all, it is clear from the following sections that the restriction and interpolation306

operators are actually applied only to continuous functions or polynomials (or their307

piecewise counterparts if h < τ). Moreover, the interest of the present work is in the308

eigenfunctions of the evolution operator (see Theorem 4.10 below), which are expected309

to be sufficiently regular (see relevant comments in section 6). As a last argument,310

ultimately, the numerical method is applied to finite-dimensional vectors, which bear311

no notion of the function from which they are derived.312

3.3. Discretization of T . Following (2.8) and (2.9), the discretization of indices313

M and N of the evolution operator T in (2.4) is the finite-dimensional operator314

TM,N : XM → XM defined as315

TM,NΦ := RMV (PMΦ, P+
NW

∗)h,316

where W ∗ ∈ X+
N is a solution of the fixed point equation317

(3.5) W = R+
NFsV (PMΦ, P+

NW )318

for the given Φ ∈ XM . We establish that (3.5) is well-posed in subsection 4.2.319

By virtue of (2.6), the operator TM,N can be rewritten as320

TM,NΦ = T
(1)
M Φ + T

(2)
M,NW

∗,321

with T
(1)
M : XM → XM and T

(2)
M,N : X+

N → XM defined as322

T
(1)
M Φ := RM (V −PMΦ)h, T

(2)
M,NW := RM (V +P+

NW )h.323
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Similarly, the fixed point equation (3.5) can be rewritten as324

(IX+
N
− U (2)

N )W = U
(1)
M,NΦ,325

with U
(1)
M,N : XM → X+

N and U
(2)
N : X+

N → X+
N defined as326

U
(1)
M,NΦ := R+

NFsV
−PMΦ, U

(2)
N W := R+

NFsV
+P+

NW.327

Since IX+
N
− U

(2)
N is invertible, the operator TM,N : XM → XM can be eventually328

reformulated as329

(3.6) TM,N = T
(1)
M + T

(2)
M,N (IX+

N
− U (2)

N )−1U
(1)
M,N .330

This reformulation simplifies the construction of the matrix representation of TM,N331

given in Appendix A.332

4. Convergence analysis. After introducing some additional spaces and as-333

sumptions in subsection 4.1, we first prove that the discretized problem (viz. (3.5))334

is well-posed in subsection 4.2. Then, in subsection 4.3, we present the proof of the335

convergence of the eigenvalues of the finite-dimensional operator TM,N to those of the336

infinite-dimensional operator T .337

4.1. Additional spaces and assumptions. Consider the space of continuous338

functions X+
C := C([0, h],Rd) ⊂ X+ equipped with the uniform norm, denoted by339

‖·‖X+
C

. If h ≥ τ consider also XC := C([−τ, 0],Rd) ⊂ X equipped with the uniform340

norm, denoted by ‖·‖XC . If h < τ , instead, define341

XC := {ϕ ∈ X | ϕ�(θ(q+1),θ(q))
∈ C((θ(q+1), θ(q)),Rd), q ∈ {0, . . . , Q− 1}

and the one-sided limits at θ(q) exist finite, q ∈ {0, . . . , Q}} ⊂ X,
342

equipped with the same norm ‖·‖XC . With these choices, all these function spaces343

are Banach spaces.344

Remark 4.1. Observe that XC and X+
C are identified with their projections on the345

spacesX andX+, respectively, hence their elements may be seen as equivalence classes346

of functions coinciding almost everywhere. In particular, the values of a function in X347

or X+ at the endpoints of the domain interval are not relevant to that function being348

an element of XC or X+
C , respectively. The same is true for the endpoints of domain349

pieces for elements of XC if h < τ .350

In the following sections, some hypotheses on the discretization nodes in [0, h] and351

on Fs and V are needed beyond the assumption of Theorem 2.2, in order to attain the352

regularity required to ensure the convergence of the method. They are all referenced353

individually from the following list where needed:354

(H1) the meshes {Ω+
N}N>0 are the Chebyshev zeros355

tN,n :=
h

2

(
1− cos

(
(2n− 1)π

2N

))
, n ∈ {1, . . . , N};356

(H2) the hypothesis of Theorem 2.2 holds;357
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10 D. BREDA AND D. LIESSI

(H3) FsV + : X+ → X+ has range contained in X+
C and FsV + : X+ → X+

C is358

bounded;359

(H4) FsV − : X → X+ has range contained in X+
C and FsV − : X → X+

C is bounded.360

With respect to (2.5) and (2.7), hypotheses (H3) and (H4) are fulfilled if the361

following two conditions on the kernel C of (2.2) are satisfied:362

(C1) there exists γ > 0 such that |C(t, θ)| ≤ γ for all t ∈ [0, h] and almost all363

θ ∈ [−τ, 0];364

(C2) t 7→ C(t, θ) is continuous for almost all θ ∈ [−τ, 0], uniformly with respect365

to θ.366

Indeed, let u ∈ X± \ {0}, t ∈ [0, h] and ε > 0. From the continuity of translation367

in L1 there exists δ′ > 0 such that for all t′ ∈ [0, h] if |t′ − t| < δ′ then
∫ 0

−τ |u(t′ + θ)−368

u(t+ θ)|dθ < ε
2γ . From condition (C2) there exists δ′′ > 0 such that for all t′ ∈ [0, h]369

and almost all θ ∈ [−τ, 0] if |t′− t| < δ′′ then |C(t′, θ)−C(t, θ)| < ε
2‖u‖X±

. Hence, for370

all t′ ∈ [0, h] if |t′ − t| < δ := min{δ′, δ′′} then371 ∣∣∣∫ 0

−τ
C(t′, θ)u(t′ + θ) dθ −

∫ 0

−τ
C(t, θ)u(t+ θ) dθ

∣∣∣
≤
∫ 0

−τ
|C(t′, θ)||u(t′ + θ)− u(t+ θ)|dθ +

∫ 0

−τ
|C(t′, θ)− C(t, θ)||u(t+ θ)|dθ

< γ
ε

2γ
+

ε

2‖u‖X±

∫ 0

−τ
|u(t+ θ)|dθ ≤ ε.

372

Since Fs0X± = 0X+ , this shows that Fs(X±) ⊂ X+
C , which implies the first part of373

hypotheses (H3) and (H4). Boundedness follows immediately. Eventually, observe374

that condition (C1) implies also hypothesis (H2). Indeed, the interval [0, τ ] can be375

partitioned into finitely many subintervals J1, . . . , Jn, each of length less than 1
γ , such376

that, for any s ∈ R and all i ∈ {1, . . . , n},377

ess sup
σ∈Ji

∫
Ji

|C(s+ t, σ − t)|dt ≤ γ
∫
Ji

dt < 1.378

Anyway, in the sequel we base the proofs on hypotheses (H2) to (H4) in the case one379

uses operators V and Fs more general than or different from (2.5) and (2.7).380

4.2. Well-posedness of the collocation equation. With reference to (3.5),381

let ϕ ∈ X and consider the collocation equation382

(4.1) W = R+
NFsV (ϕ, P+

NW )383

in W ∈ X+
N . The aim of this section is to show that (4.1) has a unique solution384

and to study its relation to the unique solution w∗ ∈ X+ of (2.9). Using (2.6), the385

equations (2.9) and (4.1) can be rewritten, respectively, as (IX+−FsV +)w = FsV −ϕ386

and387

(4.2) (IX+
N
−R+

NFsV
+P+

N )W = R+
NFsV

−ϕ.388

The following preliminary result concerns the operators389

(4.3) IX+ − L+
NFsV

+ : X+ → X+,390
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and391

(4.4) IX+
N
−R+

NFsV
+P+

N : X+
N → X+

N .392

Proposition 4.2. If the operator (4.3) is invertible, then the operator (4.4) is393

invertible. Moreover, given W̄ ∈ X+
N , the unique solution ŵ ∈ X+ of394

(4.5) (IX+ − L+
NFsV

+)w = P+
N W̄395

and the unique solution Ŵ ∈ X+
N of396

(4.6) (IX+
N
−R+

NFsV
+P+

N )W = W̄397

are related by Ŵ = R+
N ŵ and ŵ = P+

N Ŵ .398

Proof. If (4.3) is invertible, then, given W̄ ∈ X+
N , (4.5) has a unique solution, say399

ŵ ∈ X+. Then, by (3.4),400

(4.7) ŵ = P+
N (R+

NFsV
+ŵ + W̄ )401

and402

(4.8) R+
N ŵ = R+

NFsV
+ŵ + W̄403

hold. Hence, by substituting (4.8) in (4.7),404

(4.9) ŵ = P+
NR

+
N ŵ405

and, by substituting (4.9) in (4.8), R+
N ŵ = R+

NFsV +P+
NR

+
N ŵ + W̄ , i.e., R+

N ŵ is a406

solution of (4.6).407

Vice versa, if Ŵ ∈ X+
N is a solution of (4.6), then P+

N Ŵ = L+
NFsV +P+

N Ŵ+P+
N W̄408

holds again by (3.4), i.e., P+
N Ŵ is a solution of (4.5). Hence, by uniqueness, ŵ = P+

N Ŵ409

holds.410

Finally, if Ŵ1, Ŵ2 ∈ X+
N are solutions of (4.6), then P+

N Ŵ1 = ŵ = P+
N Ŵ2 and,411

once again by (3.4), Ŵ1 = R+
NP

+
N Ŵ1 = R+

NP
+
N Ŵ2 = Ŵ2. Therefore Ŵ := R+

N ŵ is412

the unique solution of (4.6) and the operator (4.4) is invertible.413

As observed above, the equation (4.1) is equivalent to (4.2), hence, by choosing414

(4.10) W̄ = R+
NFsV

−ϕ,415

it is equivalent to (4.6). Observe also that thanks to (3.4) the equation416

(4.11) w = L+
NFsV (ϕ,w)417

can be rewritten as (IX+ − L+
NFsV +)w = L+

NFsV −ϕ = P+
NR

+
NFsV −ϕ, which is418

equivalent to (4.5) with the choice (4.10). Thus, by Proposition 4.2, if the opera-419

tor (4.3) is invertible, then the equation (4.1) has a unique solution W ∗ ∈ X+
N such420

that421

(4.12) W ∗ = R+
Nw
∗
N , w∗N = P+

NW
∗,422

where w∗N ∈ X+ is the unique solution of (4.11). Note for clarity that (4.10) implies423

w∗N = ŵ for ŵ in Proposition 4.2. So, now we show that (4.3) is invertible under due424

assumptions.425
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12 D. BREDA AND D. LIESSI

Proposition 4.3. If hypotheses (H1) to (H3) hold, then there exists a positive426

integer N0 such that, for any N ≥ N0, the operator (4.3) is invertible and427

‖(IX+ − L+
NFsV

+)−1‖X+←X+ ≤ 2‖(IX+ −FsV +)−1‖X+←X+ .428

Moreover, for each ϕ ∈ X, (4.11) has a unique solution w∗N ∈ X+ and429

‖w∗N − w∗‖X+ ≤ 2‖(IX+ −FsV +)−1‖X+←X+‖L+
Nw
∗ − w∗‖X+ ,430

where w∗ ∈ X+ is the unique solution of (2.9).431

Proof. In this proof, let I := IX+ . By [35, Corollary of Theorem Ia], assuming432

hypothesis (H1), if w ∈ X+
C , then ‖(L+

N − I)w‖X+ → 0 for N →∞. By the Banach–433

Steinhaus theorem, the sequence ‖(L+
N − I)�X+

C

‖X+←X+
C

is bounded, hence434

(4.13) ‖(L+
N − I)�X+

C

‖X+←X+
C
−−−−→
N→∞

0.435

Assuming hypothesis (H3), this implies436

‖(L+
N − I)FsV +‖X+←X+ ≤ ‖(L+

N − I)�X+
C

‖X+←X+
C
‖FsV +‖X+

C←X+ −−−−→
N→∞

0.437

In particular, there exists a positive integer N0 such that, for each integer N ≥ N0,438

‖(L+
N − I)FsV +‖X+←X+ ≤

1

2‖(I −FsV +)−1‖X+←X+

,439

i.e., ‖(L+
N−I)FsV +‖X+←X+‖(I−FsV +)−1‖X+←X+ ≤ 1

2 , which holds since I−FsV +440

is invertible with bounded inverse by virtue of hypothesis (H2) and Theorem 2.2.441

Considering the operator I−L+
NFsV + as a perturbed version of I−FsV + and writing442

I −L+
NFsV + = I −FsV + − (L+

N − I)FsV +, by the Banach perturbation lemma [46,443

Theorem 10.1], there exists a positive integer N0 such that, for each integer N ≥ N0,444

the operator I − L+
NFsV + is invertible and445

‖(I − L+
NFsV

+)−1‖X+←X+ ≤
‖(I −FsV +)−1‖X+←X+

1− ‖(I −FsV +)−1((L+
N − I)FsV +)‖X+←X+

≤ 2‖(I −FsV +)−1‖X+←X+ .

446

Hence, fixed ϕ ∈ X, (4.11) has a unique solution w∗N ∈ X+. For the same ϕ, let e∗N ∈447

X+ such that w∗N = w∗ + e∗N , where w∗ ∈ X+ is the unique solution of (2.9). Then448

w∗+e∗N = L+
NFsV (ϕ,w∗+e∗N ) = L+

NFsV (ϕ,w∗)+L+
NFsV +e∗N = L+

Nw
∗+L+

NFsV +e∗N449

and (I − L+
NFsV +)e∗N = (L+

N − I)w∗, completing the proof.450

4.3. Convergence of the eigenvalues. The proof that the eigenvalues of TM,N451

approximate those of T follows the lines of the proof for RFDEs in [13], modulo the452

difference about V mentioned in section 2 and those due to the change of state space.453

As a consequence, although the proof of the main step (Proposition 4.7) is simplified,454

the outcome is a stronger result than [13, Proposition 4.5]. Indeed, restricting the state455

space to a subspace of more regular functions is no longer necessary. This is basically456

due to the regularizing nature of the right-hand side of (2.2) under hypothesis (H4),457

which is usually satisfied in applications, as remarked at the end of section 2.458

Observe that T and TM,N live on different spaces, which cannot be compared459

directly because of the different dimensions, viz. infinite vs. finite. In view of this,460
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we first translate the problem of studying the eigenvalues of TM,N on XM to that of461

studying the eigenvalues of finite-rank operators T̂M,N and T̂N on X (Propositions 4.4462

and 4.5). Then, in Proposition 4.7, we show that T̂N converges in operator norm to T463

and, by applying results from spectral approximation theory [22] (Lemma 4.8), we464

obtain the desired convergence of the eigenvalues of TM,N to the eigenvalues of T465

(Proposition 4.9 and Theorem 4.10), which represents the main result of the work.466

Under some additional hypotheses on the smoothness of the eigenfunctions of T ,467

the eigenvalues converge with infinite order. The numerical tests of section 5 show468

that in practice the infinite order of convergence can be attained. It is reasonable469

to expect that the regularity of the eigenfunctions depends on the regularity of the470

model coefficients. A rigorous investigation is ongoing in parallel to the completion471

of the Floquet theory and more comments are given in section 6.472

Now we introduce the finite-rank operator T̂M,N associated to TM,N and show473

the relation between their spectra.474

Proposition 4.4. The finite-dimensional operator TM,N has the same nonzero475

eigenvalues, with the same geometric and partial multiplicities, of the operator476

T̂M,N := PMTM,NRM �XC
: XC → XC .477

Moreover, if Φ ∈ XM is an eigenvector of TM,N associated to a nonzero eigenvalue µ,478

then PMΦ ∈ XC is an eigenvector of T̂M,N associated to the same eigenvalue µ.479

Proof. Apply [13, Proposition 4.1], since prolongations are polynomials, hence480

continuous.481

Define the operator T̂N : X → X as482

T̂Nϕ := V (ϕ,w∗N )h,483

where w∗N ∈ X+ is the solution of the fixed point equation (4.11), which, under484

hypotheses (H1) to (H3), is unique thanks to Propositions 4.2 and 4.3. Observe that485

w∗N is a polynomial, hence, in particular, w∗N ∈ X
+
C . Then, for ϕ ∈ XC , by (4.12),486

T̂M,Nϕ = PMTM,NRMϕ

= PMRMV (PMRMϕ, P
+
NW

∗)h

= LMV (LMϕ,w∗N )h

= LM T̂NLMϕ,

487

where W ∗ ∈ X+
N and w∗N ∈ X+

C are the solutions, respectively, of (3.5) applied to488

Φ = RMϕ and of (4.11) with LMϕ replacing ϕ. These solutions are unique under489

hypotheses (H1) to (H3), thanks again to Propositions 4.2 and 4.3.490

Now we show the relation between the spectra of T̂M,N and T̂N .491

Proposition 4.5. Assume that hypotheses (H1) to (H3) hold and let M ≥ N ≥492

N0, with N0 given by Proposition 4.3. Then the operator T̂M,N has the same nonzero493

eigenvalues, with the same geometric and partial multiplicities and associated eigen-494

vectors, of the operator T̂N .495

Proof. Denote by Πr and Π+
r the subspaces of polynomials of degree r of X496

and X+, respectively, and observe that Remark 4.1 applies also here. Note that497

w∗N ∈ Π+
N−1.498
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If h ≥ τ , for all ϕ ∈ X, T̂Nϕ = V (ϕ,w∗N )h ∈ ΠN−1. Thus both T̂N and T̂M,N =499

LM T̂NLM have range contained in ΠM , being M ≥ N . By [13, Proposition 4.3500

and Remark 4.4], T̂N and T̂M,N have the same nonzero eigenvalues, with the same501

geometric and partial multiplicities and associated eigenvectors, as their restrictions502

to ΠM . Observing that T̂M,N�ΠM
= LM T̂NLM �ΠM

= T̂N�ΠM
, the thesis follows.503

Consider now the case h < τ . Denote by Πpw
r the subspace of piecewise poly-504

nomials of degree r of X on the intervals [θ(q+1), θ(q)], for q = 0, . . . , Q − 1. For505

all ϕ ∈ Πpw
M , T̂Nϕ = V (ϕ,w∗N )h ∈ Πpw

M . Let µ 6= 0, ϕ ∈ X and ϕ̄ ∈ Πpw
M such506

that (µIX − T̂N )ϕ = µϕ − V (ϕ,w∗N )h = ϕ̄. This equation can be rewritten as507

µϕ(θ) = w∗N (h+θ)+ϕ̄(θ) if θ ∈ (−h, 0] and as µϕ(θ) = ϕ(h+θ)+ϕ̄(θ) if θ ∈ [−τ,−h].508

From the first equation, ϕ restricted to [−h, 0] is a polynomial of degree M , being509

M ≥ N . From the second equation it is easy to show that ϕ ∈ Πpw
M by induction on the510

intervals [θ(q+1), θ(q)], for q = 1, . . . , Q−1. Hence, by [13, Proposition 4.3], T̂N has the511

same nonzero eigenvalues, with the same geometric and partial multiplicities and as-512

sociated eigenvectors, as its restriction to Πpw
M . The same holds for T̂M,N = LM T̂NLM513

by [13, Proposition 4.3 and Remark 4.4] since its range is contained in Πpw
M . The thesis514

follows by observing that T̂M,N�Πpw
M

= LM T̂NLM �Πpw
M

= T̂N�Πpw
M

.515

Below we prove the norm convergence of T̂N to T , which is the key step to obtain516

the main result of this work. First we need to extend the results of Theorem 2.2 to517

X+
C in the following lemma.518

Lemma 4.6. If hypotheses (H2) and (H3) hold, then (IX+ −FsV +)�X+
C

is invert-519

ible with bounded inverse.520

Proof. Since IX+ −FsV + is invertible with bounded inverse by virtue of hypoth-521

esis (H2) and Theorem 2.2, given f ∈ X+
C the equation (IX+ − FsV +)w = f has a522

unique solution w ∈ X+, which by hypothesis (H3) is in X+
C . Hence, the operator523

(IX+ − FsV +)�X+
C

is invertible. It is also bounded, since ‖·‖X+ ≤ h‖·‖X+
C

, which524

implies ‖FsV +
�X+

C

‖X+
C←X

+
C
≤ h‖FsV +‖X+

C←X+ . The bounded inverse theorem com-525

pletes the proof.526

Proposition 4.7. If hypotheses (H1) to (H4) hold, then ‖T̂N − T‖X←X → 0 for527

N →∞.528

Proof. Let ϕ ∈ X and let w∗ and w∗N be the solutions of the fixed point equa-529

tions (2.9) and (4.11), respectively. Recall that w∗N is a polynomial. Assuming530

hypotheses (H3) and (H4) and recalling that w∗ = FsV +w∗ + FsV −ϕ, it is clear531

that w∗ ∈ X+
C . Hence it follows that V (ϕ,w∗)h ∈ XC (recall Remark 4.1 and that532

for h < τ the space XC is piecewise defined, subsection 4.1). Then (T̂N − T )ϕ =533

V (ϕ,w∗N )h− V (ϕ,w∗)h = V +(w∗N −w∗)h. Assuming also hypotheses (H1) and (H2),534

by Proposition 4.3, there exists a positive integer N0 such that, for any N ≥ N0,535

‖(T̂N − T )ϕ‖X = ‖V +(w∗N − w∗)h‖X
≤ ‖w∗N − w∗‖X+

≤ 2‖(IX+ −FsV +)−1‖X+←X+‖L+
Nw
∗ − w∗‖X+

≤ 2‖(IX+ −FsV +)−1‖X+←X+‖(L+
N − IX+)�X+

C

‖X+←X+
C
‖w∗‖X+

C

536
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holds by virtue of (4.13). Eventually,537

‖w∗‖X+
C
≤ ‖((IX+ −FsV +)�X+

C

)−1‖X+
C←X

+
C
‖FsV −‖X+

C←X
‖ϕ‖X538

completes the proof thanks to Lemma 4.6 and hypothesis (H4).539

The final convergence results rely on a combination of tools from [22], as summa-540

rized in the following lemma.541

Lemma 4.8. Let U be a Banach space, A a linear and bounded operator on U and542

{AN}N∈N a sequence of linear and bounded operators on U such that ‖AN−A‖U←U →543

0 for N →∞. If µ ∈ C is an eigenvalue of A with finite algebraic multiplicity ν and544

ascent l, and ∆ is a neighborhood of µ such that µ is the only eigenvalue of A in ∆,545

then there exists a positive integer N̄ such that, for any N ≥ N̄ , AN has in ∆ exactly546

ν eigenvalues µN,j, j ∈ {1, . . . , ν}, counting their multiplicities. Moreover, by setting547

εN := ‖(AN −A)�Eµ
‖U←Eµ , where Eµ is the generalized eigenspace of µ equipped with548

the norm ‖·‖U restricted to Eµ, the following holds:549

(4.14) max
j∈{1,...,ν}

|µN,j − µ| = O(ε
1/l
N ).550

Proof. By [22, Example 3.8 and Theorem 5.22], the norm convergence of AN to551

A implies the strongly stable convergence AN − µIU
ss−→ A − µIU for all µ in the552

resolvent set of A and all isolated eigenvalues µ of finite multiplicity of A. The thesis553

follows then by [22, Proposition 5.6 and Theorem 6.7].554

Proposition 4.9. Assume that hypotheses (H1) to (H4) hold. If µ ∈ C \ {0}555

is an eigenvalue of T with finite algebraic multiplicity ν and ascent l, and ∆ is a556

neighborhood of µ such that µ is the only eigenvalue of T in ∆, then there exists557

a positive integer N1 ≥ N0, with N0 given by Proposition 4.3, such that, for any558

N ≥ N1, T̂N has in ∆ exactly ν eigenvalues µN,j, j ∈ {1, . . . , ν}, counting their559

multiplicities. Moreover, if for each ϕ ∈ Eµ, where Eµ is the generalized eigenspace560

of T associated to µ, the function w∗ that solves (2.9) is of class Cp, with p ≥ 1, then561

max
j∈{1,...,ν}

|µN,j − µ| = o
(
N

1−p
l

)
.562

Proof. By Proposition 4.7, ‖T̂N − T‖X←X → 0 for N →∞. The first part of the563

thesis is obtained by applying Lemma 4.8. From the same Lemma 4.8, (4.14) follows564

with εN := ‖(T̂N −T )�Eµ
‖X←Eµ and Eµ the generalized eigenspace of µ equipped with565

the norm of X restricted to Eµ.566

Let ϕ1, . . . , ϕν be a basis of Eµ. An element ϕ of Eµ can be written as ϕ =567 ∑ν
j=1 αj(ϕ)ϕj , with αj(ϕ) ∈ C, for j ∈ {1, . . . , ν}, hence568

‖(T̂N − T )ϕ‖X ≤ max
j∈{1,...,ν}

|αj(ϕ)|
ν∑
j=1

‖(T̂N − T )ϕj‖X .569

The function ϕ 7→ maxj∈{1,...,ν}|αj(ϕ)| is a norm on Eµ, so it is equivalent to the norm570

of X restricted to Eµ. Thus, there exists a positive constant c independent of ϕ such571

that maxj∈{1,...,ν}|αj(ϕ)| ≤ c‖ϕ‖X and572

εN = ‖(T̂N − T )�Eµ
‖X←Eµ ≤ c

ν∑
j=1

‖(T̂N − T )ϕj‖X .573
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Let j ∈ {1, . . . , ν}. As seen in Proposition 4.7,574

‖(T̂N − T )ϕj‖X ≤ 2‖(IX+ −FsV +)−1‖X+←X+‖(L+
N − IX+)w∗j ‖X+ ,575

where w∗j is the solution of (2.9) associated to ϕj . Now, by well-known results in576

interpolation theory (see, e.g., [55, Theorems 1.5 and 4.1]), since w∗j is of class Cp,577

the bound578

‖(L+
N − IX+)w∗j ‖X+ ≤ h(1 + ΛN )EN−1(w∗j )

≤ h(1 + ΛN )
6p+1ep

1 + p

(h
2

)p 1

(N − 1)p
ω
( h

2(N − 1− p)

)
579

holds, where ΛN is the Lebesgue constant for Ω+
N , EN−1(·) is the best uniform ap-580

proximation error and ω(·) is the modulus of continuity of (w∗j )(p) on [0, h]. Since581

hypothesis (H1) is assumed, by classic results on interpolation (see, e.g., [55, Theo-582

rem 4.5]), ΛN = o(N). Hence, εN = o(N1−p) and the thesis follows immediately.583

Theorem 4.10. Assume that hypotheses (H1) to (H4) hold. If µ ∈ C \ {0} is an584

eigenvalue of T with finite algebraic multiplicity ν and ascent l, and ∆ is a neighbor-585

hood of µ such that µ is the only eigenvalue of T in ∆, then there exists a positive586

integer N1 ≥ N0, with N0 given by Proposition 4.3, such that, for any N ≥ N1 and587

any M ≥ N , TM,N has in ∆ exactly ν eigenvalues µM,N,j, j ∈ {1, . . . , ν}, count-588

ing their multiplicities. Moreover, if for each ϕ ∈ Eµ, where Eµ is the generalized589

eigenspace of T associated to µ, the function w∗ that solves (2.9) is of class Cp, with590

p ≥ 1, then591

max
j∈{1,...,ν}

|µM,N,j − µ| = o
(
N

1−p
l

)
.592

Proof. If M ≥ N ≥ N0, by Propositions 4.4 and 4.5 the operators TM,N , T̂M,N593

and T̂N have the same nonzero eigenvalues, with the same geometric and partial594

multiplicities and associated eigenvectors. The thesis follows by Proposition 4.9.595

We conclude this section with a couple of comments. First, nodes other than those596

required by hypothesis (H1) may be used. Indeed, they are only asked to satisfy the597

hypotheses of [35, Corollary of Theorem Ia] and ΛN = o(N). Let us notice that598

both are guaranteed by zeros of other families of classic orthogonal polynomials [18].599

Anyway, here we assume hypothesis (H1) since these are the nodes we actually use in600

implementing the method.601

Second, in general, it may not be possible to compute exactly the integral in (2.7).602

If this is the case, an approximation F̃s of Fs must be used, leading to a further contri-603

bution in the final error. See [14, section 6.3.3] and further comments in Appendix A604

as far as implementation is concerned.605

5. Numerical tests. REs with known solutions and stability properties are606

rather rare. A notable difficulty is the lack of a characteristic equation for non-607

autonomous equations, which makes it hard to obtain both theoretical and numerical608

results to compare with our method. For these reasons, we first compare our method609

with that of [10] in the autonomous case, where, instead, a characteristic equation610

can be derived. Then we study a nonlinear equation which possesses a branch of611

analytically known periodic solutions in a certain range of a varying parameter.612

In the following tests we use Chebyshev zeros in [0, h] as Ω+
N , as required by613

hypothesis (H1). In [−τ, 0] we use Chebyshev extrema as ΩM if h ≥ τ and as Ω
(q)
M for614

q ∈ {1, . . . , Q} if h < τ .615
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1 10 20 30

10−16

10−8

100

Figure 1. Numerical test with (5.1) where a = 2 and β = 1
2

exp(1 + 2π
3
√
3

). Left: eigenvalues of

T (4, 0) for M = N = 20 with respect to the unit circle. Right: error with respect to 1 of the absolute
value of the dominant eigenvalues of T (4, 0) in black and error on the 0 real part of the rightmost
characteristic roots obtained with the method of [10] in gray.

Consider the egg cannibalism model616

x(t) = β

∫ −a
−4

x(t+ θ) e−x(t+θ) dθ,617

where β > 0 and 0 < a < 4, for which some theoretical results are known [10,618

section 5.1]. By linearizing it around the nontrivial equilibrium log(β(4 − a)), we619

obtain the linear equation620

(5.1) x(t) =
1− log(β(4− a))

4− a

∫ −a
−4

x(t+ θ) dθ.621

It corresponds to (2.2) by setting C(t, θ) := 1−log(β(4−a))
4−a for θ ∈ [−τ,−a], C(t, θ) := 0622

for θ ∈ (−a, 0] and τ := 4. Observe that C(t, θ) is independent of t and piecewise623

constant in θ, thus making (5.1) an instance of (2.11) with p = 2, τ1 = a and τ2 = 4.624

By studying the characteristic equation it is known that the equilibrium undergoes a625

Hopf bifurcation for a = 2 and β = 1
2 exp(1 + 2π

3
√

3
), hence the operator T (h, 0) has a626

complex conjugate pair on the unit circle as its dominant eigenvalues, independently627

of h > 0. In this test we choose h = τ (= 4). Figure 1 shows the eigenvalues of T (4, 0)628

for M = N = 20 and the errors with respect to 1 of the absolute value of the dominant629

eigenvalues as M = N varies from 1 to 30, compared with the errors on the 0 real part630

of the characteristic roots obtained with the method of [10]. Observe that the latter631

approximates the eigenvalues λ of the infinitesimal generator (characteristic roots),632

which are related to the eigenvalues µ of T (characteristic multipliers) by µ = eλh.633

Notice that both methods experiment the proved convergence of infinite order, with634

apparently larger error constants for the method of [10].635

The second numerical test is based on the nonlinear equation636

(5.2) x(t) =
γ

2

∫ −1

−3

x(t+ θ)(1− x(t+ θ)) dθ,637

linearized around the periodic solution638

(5.3) x̄(t) =
1

2
+

π

4γ
+

√
1

2
− 1

γ
− π

2γ2

(
1 +

π

4

)
sin
(π

2
t
)
,639
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1 10 20 30

10−16

10−8

100

Figure 2. Numerical test with (5.2) where γ = 4, linearized around (5.3). Left: eigenvalues of
T (4, 0) for M = N = 20 with respect to the unit circle. Right: error on the known eigenvalue 1 of
T (4, 0).

1 10 60

10−16

10−8

100

Figure 3. Numerical test with (5.2) where γ = 4.4, linearized around a numerically approxi-
mated periodic solution of period Ω ≈ 8.0189. Left: eigenvalues of T (Ω, 0) for M = N = 20 with
respect to the unit circle. Right: error on the known eigenvalue 1 of T (Ω, 0).

which exists for γ ≥ 2 + π
2 and has period 4 [9]. The linearized equation reads640

x(t) =
γ

2

∫ −1

−3

(1− 2x̄(t+ θ))x(t+ θ) dθ,641

which corresponds to (2.2) by setting C(t, θ) := γ
2 (1 − 2x̄(t + θ)) for θ ∈ [−τ,−1],642

C(t, θ) := 0 for θ ∈ (−1, 0] and τ := 3. Observe that C(t, θ) is continuous in t and for643

each t it may have a single discontinuity in θ, thus adhering to (2.11) with p = 2, τ1 = 1644

and τ2 = 3. Although not much is known theoretically about stability, the monodromy645

operator T (4, 0) has always an eigenvalue 1 due to the linearization around the periodic646

solution, which allows us to test the accuracy of the approximation. Figure 2 shows647

the eigenvalues of T (4, 0) and the errors on the known eigenvalue 1 for γ = 4. By using648

standard zero-finding routines (e.g., MATLAB’s fzero), we can detect for γ ≈ 4.3247649

an eigenvalue crossing the unit circle outwards through −1, which characterizes a650

period doubling bifurcation. The branch of periodic solutions arising from the latter651

is not known analytically. In [9] these periodic solutions are computed numerically by652

adapting the method of [32] for RFDEs or of [49] for differential algebraic equations653

with delays (see relevant comments in section 6). The method is then applied to the654

equation linearized around the numerical solution. Figure 3 shows the eigenvalues of655

T (Ω, 0) and the errors on the known eigenvalue 1 for γ = 4.4, where Ω ≈ 8.0189 is656

the computed period of the numerically approximated periodic solution. Notice again657

that our method works equally well, independently of the relation between Ω and τ .658

It can be seen that to achieve the same accuracy as for the branch of periodic659
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solutions (5.3), a number of nodes more than double than before must be used. This660

fact is in line with usual properties of pseudospectral methods, which exhibit slower661

convergence as the length of the discretization interval increases (although the infinite662

order is preserved). Indeed, by standard results on interpolation, the error depends663

both on the length of the interpolation interval and on bounds on the derivatives664

of the interpolated function: in this case, after the period doubling bifurcation both665

the period of the solution (length of the interpolation interval) and the number of666

oscillations (related to the magnitude of the derivatives) are roughly double than667

before. Observe, however, that here the error takes also into account for the error in668

the computation of the reference solution.669

6. Future perspectives. In this work we propose a numerical method to ap-670

proximate the spectrum of evolution operators for linear REs. This concluding section671

contains diverse comments on open problems and possible future research lines, most672

of which were briefly touched along the text.673

The numerical experiments suggest that the order of convergence of the approx-674

imated eigenvalues to the exact ones is infinite and Theorem 4.10 guarantees that675

this is the case if the eigenfunctions of the evolution operator are sufficiently smooth.676

Although it is reasonable to expect that any desired regularity of the eigenfunctions677

can be achieved by imposing suitable conditions on C(t, θ) (see, e.g., [54] for some678

results in this direction for convolution products), this has not been proved yet and679

remains an open question that the authors are investigating.680

Regarding the application to the asymptotic stability of periodic solutions of681

nonlinear autonomous REs, another open problem is the validity of a Floquet theory682

for linear periodic REs and of a corresponding principle of linearized stability. In683

view of [25], this would be guaranteed by the validity of assumptions (F), (H) and (Ξ)684

of [31, section XIV.4]. A preliminary study reveals that assumption (F) should be685

guaranteed by suitable regularity assumptions on C(t, θ). On the other hand, some686

results on the regularity of Volterra integrals, similar to the ones mentioned above687

with respect to the regularity of eigenfunctions, seem to be needed for assumptions (H)688

and (Ξ). Investigating these details and thus proving the validity of a Floquet theory689

is an ongoing effort by the authors and colleagues.690

As mentioned in section 2, the discretization proposed in this work can be used691

in principle in the framework of [15] to compute Lyapunov exponents for generic692

solutions of nonautonomous REs. Numerical tests on this approach appear in [9]693

with promising results. Investigating this natural development is in the future plans694

of the authors. Indeed, it goes beyond the scopes of the present paper since it requires695

to work in a Hilbert rather than in a Banach setting. Incidentally, notice how this696

change would require a restriction of the state space, as opposed to RFDEs in [15].697

In the literature of population dynamics, the recent paper [26] deals with a model698

based on retarded functional equations containing also point evaluation terms, i.e.,699

Volterra integrals with kernel of Dirac type. The presence of these terms may give700

rise to neutral dynamics, adding several difficulties both to the theoretical treatment701

(they are not covered in general by [25, 31]) and to the proof of convergence of the702

numerical method (the regularization effect on the solutions, essential to the current703

proof, is not guaranteed and in general does not take place). Anyway, investigating704

the neutral case remains in the interests of the authors.705

Finally, in structured population models, REs are often coupled with RFDEs706

(see, e.g., [29, 50]). Extending the method to such coupled equations, as in the case707

of [10, 11] for equilibria, poses additional and nontrivial difficulties in proving the708
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convergence of the approximated eigenvalues, with respect to both the RFDE case709

of [13] and the RE case of the present work. In fact, due to the coupling, there710

is a delicate interplay between the diverse regularization mechanisms, with different711

consequences on the two components of the solution. With respect to the regularity712

of eigenfunctions and to the validity of a Floquet theory, coupled equations retain the713

same difficulties as outlined above for REs and may be addressed by similar solutions,714

as it appears reasonable. The extension of the method to coupled equations, including715

a rigorous convergence proof and error analysis, together with numerical tests, is716

the subject of a distinct paper in preparation by the authors. Nevertheless, in the717

nonlinear context and for practical applications, this approach inevitably relies on the718

computation of the relevant periodic solutions. In this sense, an extension of [32] is719

being developed by the authors and colleagues. The final objective of these research720

lines is the study of the dynamics of the realistic Daphnia model of [29], which brings in721

several nontrivial challenges beyond those related to the discretization of the evolution722

operators.723

Appendix A. Matrix representation. In this appendix we describe the ex-724

plicit construction of a matrix representing the discretization of the evolution operator725

(2.4) according to (3.6). The reference is to model (2.11). We start by introducing726

some notations for block matrices.727

If h ≥ τ , for Φ ∈ XM and m ∈ {0, . . . ,M}, denote (Φdm+1, . . . ,Φd(m+1)), i.e.,728

the (m + 1)-th d-sized block of components of Φ, as [Φ]m. If h < τ , instead, for729

Φ ∈ XM , q ∈ {1, . . . , Q} and m ∈ {0, . . . ,M − 1} and for q = Q and m = M ,730

denote (Φd((q−1)M+m)+1, . . . ,Φd((q−1)M+m+1)), i.e., the (m + 1)-th d-sized block of731

components of the q-th block of Φ, as [Φ]q,m. Finally, for W ∈ X+
N and n ∈ {1, . . . , N},732

denote (Wd(n−1)+1, . . . ,Wdn), i.e., the n-th d-sized block of components ofW , as [W ]n.733

In the following, 0 denotes the scalar zero or a matrix of zeros of the dimensions734

implied by the context.735

A.1. The matrix T
(1)
M . Let Φ ∈ XM . If h > τ , for m ∈ {0, . . . ,M} [T

(1)
M Φ]m =736

(V −PMΦ)h(θM,m) = V −PMΦ(h + θM,m) = 0, hence T
(1)
M = 0 ∈ Rd(M+1)×d(M+1).737

If h = τ , instead, for m ∈ {0, . . . ,M − 1}, [T
(1)
M Φ]m = 0 as above. For m = M ,738

[T
(1)
M Φ]M = V −PMΦ(h+ θM,M ) = PMΦ(θM,0) = Φ0. Thus739

T
(1)
M =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 0 · · · 0

⊗ Id ∈ Rd(M+1)×d(M+1).740

Finally, if h < τ , for m ∈ {0, . . . ,M − 1} and q ∈ {1, . . . , Q− 1},741

[T
(1)
M Φ]q,m = V −PMΦ(h+ θ

(q)
M,m) =

{
0, q = 1,

PMΦ(θ
(q−1)
M,m ) = Φ

(q−1)
m , q ∈ {2, . . . , Q− 1},

742

while for m ∈ {0, . . . ,M} and q = Q,743

[T
(1)
M Φ]Q,m = PMΦ(h+ θ

(Q)
M,m) =

M∑
j=0

`
(Q−1)
M,j (h+ θ

(Q)
M,m)Φ

(Q−1)
j .744
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Observe that if Qh = τ , then [T
(1)
M Φ]Q,m = Φ

(Q−1)
m , since h + θ

(Q)
M,m = θ

(Q−1)
M,m . Then745

T
(1)
M ∈ Rd(QM+1)×d(QM+1) is given by746

T
(1)
M =



0
...
0
1 · · · 0
...

. . .
...

0 · · · 1
. . .

1 · · · 0
...

. . .
...

0 · · · 1

`
(Q−1)
M,0 (h+ θ

(Q)
M,0) · · · `

(Q−1)
M,M−1(h+ θ

(Q)
M,0) `

(Q−1)
M,M (h+ θ

(Q)
M,0) 0 · · · 0

...
. . .

...
...

...
. . .

...

`
(Q−1)
M,0 (h+ θ

(Q)
M,M−1) · · · `

(Q−1)
M,M−1(h+ θ

(Q)
M,M−1) `

(Q−1)
M,M (h+ θ

(Q)
M,M−1) 0 · · · 0

`
(Q−1)
M,0 (h+ θ

(Q)
M,M ) · · · `

(Q−1)
M,M−1(h+ θ

(Q)
M,M ) `

(Q−1)
M,M (h+ θ

(Q)
M,M ) 0 · · · 0



⊗ Id,747

748

where missing entries are 0. The order of rows and columns corresponds to the749

order of components in (3.3). Indeed it can be seen as a block matrix with Q rows750

(respectively, columns), where the first Q− 1 consist of blocks of height (respectively,751

width) M and the last of blocks of height (respectively, width) M + 1. However,752

looking at the actual matrix, a slightly different block structure emerges: still Q− 1753

rows of height M and a last row of height M + 1 can be seen, but there appear754

Q − 2 columns of width M followed by a column of width M + 1 and a last column755

of width M ; the top–left column (of zeros) has height M , the identity blocks are756

IM , the block of Lagrange coefficients has dimensions (M + 1) × (M + 1) and the757

bottom–right block of zeros has dimensions (M + 1)×M . Note that if Qh = τ then758

`
(Q−1)
M,j (h + θ

(Q)
M,m) = `

(Q−1)
M,j (θ

(Q−1)
M,m ) = δm,j and the block of Lagrange coefficients is759

actually IM+1.760

Let us notice that in the MATLAB codes the Lagrange coefficients (appearing761

here and in the sequel) are evaluated by resorting to barycentric interpolation [6].762

A.2. The matrix T
(2)
M,N . Let W ∈ X+

N . If h > τ , for m ∈ {0, . . . ,M},763

[T
(2)
M,NW ]m = (V +P+

NW )h(θM,m) = P+
NW (h+ θM,m) =

N∑
n=1

`+N,n(h+ θM,m)Wn,764

hence765

T
(2)
M,N =

 `+N,1(h+ θM,0) · · · `+N,N (h+ θM,0)
...

. . .
...

`+N,1(h+ θM,M ) · · · `+N,N (h+ θM,M )

⊗ Id ∈ Rd(M+1)×dN .766

If h = τ , instead, for m ∈ {0, . . . ,M − 1}, as above,767

[T
(2)
M,NW ]m =

N∑
n=1

`+N,n(h+ θM,m)Wn,768
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while for m = M , [T
(2)
M,NW ]M = V +P+

NW (h+ θM,M ) = V +P+
NW (0) = 0. Thus769

T
(2)
M,N =


`+N,1(h+ θM,0) · · · `+N,N (h+ θM,0)

...
. . .

...
`+N,1(h+ θM,M−1) · · · `+N,N (h+ θM,M−1)

0 · · · 0

⊗ Id ∈ Rd(M+1)×dN .770

771

Finally, if h < τ , for m ∈ {0, . . . ,M − 1} and q ∈ {1, . . . , Q},772

[T
(2)
M,NW ]q,m = V +P+

NW (h+ θ
(q)
M,m) =

{∑N
n=1 `

+
N,n(h+ θ

(q)
M,m)Wn, q = 1,

0, q ∈ {2, . . . , Q},
773

and [T
(2)
M,NW ]Q,M = V +P+

NW (h+ θ
(Q)
M,M ) = V +P+

NW (h− τ) = 0. Then774

T
(2)
M,N =



`+N,1(h+ θ
(1)
M,0) · · · `+N,N (h+ θ

(1)
M,0)

...
. . .

...

`+N,1(h+ θ
(1)
M,M−1) · · · `+N,N (h+ θ

(1)
M,M−1)

0 · · · 0
...

. . .
...

0 · · · 0


⊗ Id ∈ Rd(QM+1)×dN .775

A.3. The matrix U
(1)
M,N . Let Φ ∈ XM and, for t > 0, define776

(A.1) κ(t) := max
k∈{0,...,p}

{τk < t}.777

Note that κ is nondecreasing. For n ∈ {1, . . . , N},778

[U
(1)
M,NΦ]n = FsV −PMΦ(tN,n) =

p∑
k=1

−τk−1∫
−τk

Ck(s+ tN,n, θ)V
−PMΦ(tN,n + θ) dθ.779

If h ≥ τ , define also780

N̂ :=

{
0, tN,n > τ for all n ∈ {1, . . . , N},
maxn∈{1,...,N}{tN,n ≤ τ}, otherwise.

781

Hence, for n ∈ {1, . . . , N̂} (if N̂ 6= 0),782

[U
(1)
M,NΦ]n =

−tN,n∫
−τκ(tN,n)+1

Cκ(tN,n)+1(s+ tN,n, θ)

M∑
m=0

`M,m(tN,n + θ)Φm dθ

+

p∑
k=κ(tN,n)+2

−τk−1∫
−τk

Ck(s+ tN,n, θ)

M∑
m=0

`M,m(tN,n + θ)Φm dθ,

(A.2)783
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and, for n ∈ {N̂ + 1, . . . , N}, [U
(1)
M,NΦ]n = 0. Observe that the first integral in (A.2)784

may be zero. For m ∈ {0, . . . ,M} and n ∈ {1, . . . , N̂} (if N̂ 6= 0), let785

Rd×d 3 Θn,m :=

−tN,n∫
−τκ(tN,n)+1

Cκ(tN,n)+1(s+ tN,n, θ)`M,m(tN,n + θ) dθ786

+

p∑
k=κ(tN,n)+2

−τk−1∫
−τk

Ck(s+ tN,n, θ)`M,m(tN,n + θ) dθ.787

788

Then789

U
(1)
M,N =



Θ1,0 · · · Θ1,M

...
. . .

...
ΘN̂,0 · · · ΘN̂,M

0 · · · 0
...

. . .
...

0 · · · 0


∈ RdN×d(M+1),790

which is the zero matrix if N̂ = 0.791

If h < τ , instead, for n ∈ {1, . . . , N} and q ∈ {0, . . . , Q − 1}, define t
(q)
N,n = qh +792

tN,n. Observe that, for q ∈ {1, . . . , Q−1}, [tN,n−τk, tN,n−τk−1]∩(−qh,−(q−1)h] 6= ∅793

if and only if κ(t
(q−1)
N,n ) + 1 ≤ k ≤ κ(t

(q)
N,n) + 1 and [tN,n− τk, tN,n− τk−1]∩ [−τ,−(Q−794

1)h] 6= ∅ if and only if k ≥ κ(t
(Q−1)
N,n )+ 1. Observe also that κ(t

(q−1)
N,n ) and κ(t

(q)
N,n) may795

be equal. For n ∈ {1, . . . , N}, k ∈ {1, . . . , p} and q ∈ {1, . . . , Q− 1}, define796

ak,q := max{−τk,−t(q)N,n}, ak,Q := −τk,797

bk,q := min{−τk−1,−t(q−1)
N,n }, bk,Q := min{−τk−1,−t(Q−1)

N,n },798

κn,q := min{κ(t
(q)
N,n) + 1, p}, κn,Q := p.799

800

Then, for n ∈ {1, . . . , N},801

[U
(1)
M,NΦ]n =

Q∑
q=1

κn,q∑
k=κ(t

(q−1)
N,n )+1

bk,q∫
ak,q

Ck(s+ tN,n, θ)

M∑
m=0

`
(q)
M,m(tN,n + θ)Φ(q)

m dθ,802

with the convention that
∑k2
k=k1

ak = 0 if k2 < k1. Observe that some of the integrals803

may be zero. For n ∈ {1, . . . , N}, m ∈ {0, . . . ,M} and q ∈ {1, . . . , Q}, define804

Rd×d 3 Θ(q)
n,m :=

κn,q∑
k=κ(t

(q−1)
N,n )+1

bk,q∫
ak,q

Ck(s+ tN,n, θ)`
(q)
M,m(tN,n + θ) dθ805

and recall that, for q ∈ {1, . . . , Q− 1}, Φ
(q)
M = Φ

(q+1)
0 . Then U

(1)
M,N ∈ RdN×d(QM+1) is806

given by807

U
(1)
M,N =


Θ

(1)
1,0 · · · Θ

(1)
1,M−1 Θ

(1)
1,M + Θ

(2)
1,0 Θ

(2)
1,1 · · · Θ

(2)
1,M−1 Θ

(Q−1)
1,M + Θ

(Q)
1,0 Θ

(Q)
1,1 · · · Θ

(Q)
1,M−1 Θ

(Q)
1,M

...
. . .

...
...

...
. . .

... · · ·
...

...
. . .

...
...

Θ
(1)
N,0 · · · Θ

(1)
N,M−1 Θ

(1)
N,M + Θ

(2)
N,0 Θ

(2)
N,1 · · · Θ

(2)
N,M−1 Θ

(Q−1)
N,M + Θ

(Q)
N,0 Θ

(Q)
N,1 · · · Θ

(Q)
N,M−1 Θ

(Q)
N,M

.808

809
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Eventually, with reference to the last comment of section 4, the various integrals810

appearing in the construction of the elements of U
(1)
M,N should be computed with a811

quadrature formula that, in presence of sufficient regularity of the model coefficients,812

preserves the infinite order of convergence of Theorem 4.10. The same remark holds813

for the elements of U
(2)
N in Appendix A.4. Specifically, in the MATLAB codes we814

resort to Clenshaw–Curtis quadrature [60].815

A.4. The matrix U
(2)
N . Let W ∈ X+

N . Define κ(t) as in (A.1), for t > 0. For816

n ∈ {1, . . . , N},817

[U
(2)
N W ]n = FsV +P+

NW (tN,n)

=

p∑
k=1

−τk−1∫
−τk

Ck(s+ tN,n, θ)V
+P+

NW (tN,n + θ) dθ

=

κ(tN,n)∑
k=1

−τk−1∫
−τk

Ck(s+ tN,n, θ)

N∑
i=1

`+N,i(tN,n + θ)Wi dθ

+

−τκ(tN,n)∫
−min{tN,n,τ}

Cmin{κ(tN,n)+1,p}(s+ tN,n, θ)

N∑
i=1

`+N,i(tN,n + θ)Wi dθ,

818

with the convention that
∑k2
k=k1

ak = 0 if k2 < k1. Observe that the last integral may819

be zero. For n ∈ {1, . . . , N} and i ∈ {1, . . . , N}, let820

Rd×d 3 Γn,i :=

κ(tN,n)∑
k=1

−τk−1∫
−τk

Ck(s+ tN,n, θ)`
+
N,i(tN,n + θ) dθ

+

−τκ(tN,n)∫
−min{tN,n,τ}

Cmin{κ(tN,n)+1,p}(s+ tN,n, θ)`
+
N,i(tN,n + θ) dθ.

821

Then822

U
(2)
N =

Γ1,1 · · · Γ1,N

...
. . .

...
ΓN,1 · · · ΓN,N

 ∈ RdN×dN .823
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[54] J. Mikusiński and C. Ryll-Nardzewski, Sur le produit de composition, Studia Mathematica,964
12 (1951), pp. 51–57.965

[55] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell Publishing Com-966
pany, Waltham, MA, 1969.967

[56] H. L. Royden and P. M. Fitzpatrick, Real Analysis, Prentice Hall, 4th ed., 2010.968
[57] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose, DDE-BIFTOOL969

manual: Bifurcation analysis of delay differential equations, ArXiv e-prints, (2014), https:970
//arxiv.org/abs/1406.7144.971

[58] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sci-972
ences, no. 57 in Texts Appl. Math., Springer-Verlag, New York, 2011, https://doi.org/10.973
1007/978-1-4419-7646-8.974

[59] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, no. 210 in975
Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow,976
1989.977

[60] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools, SIAM, Philadel-978
phia, 2000, https://doi.org/10.1137/1.9780898719598.979

[61] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Chapman & Hall980
Pure and Applied Mathematics, CRC Press, 1985.981

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-662-13159-6
https://doi.org/10.1007/978-3-662-13159-6
https://doi.org/10.1137/1.9781611973631
https://arxiv.org/abs/1406.7144
https://arxiv.org/abs/1406.7144
https://arxiv.org/abs/1406.7144
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.1137/1.9780898719598

	Introduction
	Formulation of the problem
	Discretization
	Partition of time intervals
	Discretization of function spaces
	Discretization of T

	Convergence analysis
	Additional spaces and assumptions
	Well-posedness of the collocation equation
	Convergence of the eigenvalues

	Numerical tests
	Future perspectives
	Appendix A. Matrix representation
	The matrix TM1
	The matrix TMN2
	The matrix UMN1
	The matrix UN2

	References

