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via delle scienze 206, 33100 Udine, Italy
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via delle scienze 206, 33100 Udine, Italy

(Communicated by the associate editor name)

Abstract. A recent pseudospectral collocation is used to reduce a nonlin-
ear delay differential equation to a system of ordinary differential equations.

Standard methods are then applied to compute Lyapunov exponents. The va-

lidity of this simple approach is shown experimentally. Matlab codes are also
included.

1. Introduction. We consider the question of computing Lyapunov exponents of
Delay Differential Equations (DDEs). Lyapunov exponents are defined through
limits in the infinite time [1]. DDEs give rise to infinite-dimensional dynamical
systems [16, 23, 29]. These two aspects make the problem particularly hard.

The literature is not lacking of material on the subject. On the one hand, most
of the relevant papers are of experimental flavor: more focused on applications
and results, less on the often coarse techniques they apply, and always restricted
to specific, yet important examples (see, e.g., [26, 39, 40]). On the other hand,
extremely few papers address the question from a more numerical or computational
point of view, but the methods proposed are usually difficult to replicate by non-
experts and relevant algorithms and codes are rarely available or user-friendly (see,
e.g., [14, 41]).

The present work aims at filling the gap between the need for off-the-shelf routines
for those interested in the applications and the complexity of reliable, efficient and
rigorous methods.

The approach we propose is based on reducing the DDE to a system of Ordinary
Differential Equations (ODEs), a class for which definitely more is known and avail-
able about both theory and computation of Lyapunov exponents (start, e.g., from
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[20]). The reduction is based on the pseudospectral discretization recently intro-
duced in [8]. As described in Section 2, the resulting system of ODEs is quite simple
to obtain: a single equation depends on the original DDE, basically retaining the
same right-hand side; the rest is linear and independent of the DDE. To compute
the exponents of ODEs we choose, among others, the discrete QR technique. It
is easy to understand, also with respect to the underlying concept of exponential
divergence of infinitesimally closed orbits. At the same time it is not difficult to
code efficiently, taking inspiration from [17].

Despite the simplicity of the combined methodology, we also furnish relevant
Matlab codes in Appendix A. To the best of our knowledge, they are the first public
and available codes for computing Lypaunov exponents of DDEs. We explain and
use them in Section 4, where we illustrate some tests on three equations, quite
simple for deliberate choice. This way we keep both presentation and application
at a basic level, focusing more on the validity of the method and the use of the
codes. Possible technicalities due to generalizations could distract the reader from
appreciating the straightforwardness of the proposed approach (however, suitable
references to treat them are given).

We postpone to the following sections, where better indicated, additional com-
ments and detailed references on the above and other interesting aspects about
pseudospectral reduction and Lyapunov exponents. Some are related to either con-
vergence and approximation, others to more theoretical issues such as, e.g., the
proper state space to deal with. We just remark from [8] that the reduction to
ODEs can be extended to more general classes of functional equations. Therefore,
in principle, the methodology we propose has a potentially wide range of applica-
tions.

2. From DDEs to ODEs. Let us summarize from [8] the pseudospectral dis-
cretization to reduce DDEs to ODEs. We restrict to the scalar case, extension to
systems being straightforward.

Consider the nonlinear autonomous DDE

x′(t) = f(xt), (1)

where, for τ > 0 and X := C([−τ, 0];R), f : X → R is smooth and xt ∈ X denotes
xt(θ) := x(t+ θ), θ ∈ [−τ, 0]. Given ϕ ∈ X, the initial value problem{

x′(t) = f(xt), t ≥ 0,

x(θ) = ϕ(θ), θ ∈ [−τ, 0],
(2)

is well-posed. The associated semigroup {T (t)}t≥0 of nonlinear solution operators
T (t) : X → X defined by

T (t)(ϕ) = xt

is strongly continuous and has generator A : D(A) ⊆ X → X with action

A(ϕ) = ϕ′

and domain

D(A) = {ϕ ∈ X : ϕ′ ∈ X and ϕ′(0) = f(ϕ)}. (3)
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Eventually, standard results on semigroups provide the equivalent formulation of
(2) as the abstract Cauchy problem{

u′(t) = A(u(t)), t ≥ 0,

u(0) = ϕ, ϕ ∈ D(A),
(4)

for u(t) = xt, see, e.g., [25, 36].

The basic idea behind the pseudospectral reduction is to collocate (4) at given
nodes w.r.t. the variable θ ∈ [−τ, 0]. For M ≥ 1, let these nodes be the Chebyshev
extrema, say −τ = θM < · · · < θ1 < θ0 = 0 with

θi =
τ

2

(
cos

iπ

M
− 1

)
, i = 0, 1, . . . ,M.

For i = 0, 1, . . . ,M , t ≥ 0 and u(t) ∈ D(A), denote by ui(t) the approximation of
u(t)(θi) obtained as follows. Let U(t) be the Lagrange interpolation polynomial

U(t)(θ) =

M∑
j=0

`j(θ)uj(t), θ ∈ [−τ, 0],

where

`j(θ) =

M∏
k=0
k 6=j

θ − θk
θj − θk

, j = 0, 1, . . . ,M,

constitute the Lagrange basis. Now require that U(t)(θ) satisfies (4) at all the nodes
but for θ0 = 0, where the boundary condition in (3) is instead forced. Then

u′i(t) = U ′(t)(θi) = A(U(t))(θi), i = 0, 1, . . . ,M,

and, eventually, we get the system of M + 1 ODEs
u′0(t) = f(U(t))

u′i(t) =

M∑
i=0

di,juj(t), i = 1, . . . ,M,
(5)

with initial conditions

ui(0) = ϕ(θi), i = 0, 1, . . . ,M.

Above, di,j := `′j(θi) are the entries of the Chebyshev differentiation matrix, see,
e.g., [42] for their explicit expression.

Notice that only the first ODE in (5) depends on the original DDE, preserving
the nonlinearity. All the others are linear due to the linearity of both interpolation
and differentiation. They are also independent of the DDE if one scales time to get
τ = 1. This makes the reduction simple, and particularly attractive from the point
of view of implementation. For a detailed discussion on this advantage and other
aspects see [8]. Again, we just remark that, in principle, the same approach can be
extended to reduce also other general classes of functional equations, e.g., neutral
and retarded-advanced as well as renewal and coupled renewal-retarded, [8, 9, 11].

Now, let us underline that when f is linear and autonomous, so is (5). Then,
the matrix characterizing the right-hand side corresponds to the discretization of
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the infinitesimal generator first proposed in [10] to address the local stability of
equilibria:

AM :=


f(`0) f(`1) · · · f(`M )
d1,0 d1,1 · · · d1,M

...
...

. . .
...

dM,0 dM,1 · · · dM,M

 .

See [13] for an updated exposition. Otherwise, when f is nonlinear, it is immediate
to verify that linearization around a given solution x∗ and pseudospectral discretiza-
tion commute [8, Theorem 2.5]. The result is the linear, in general nonautonomous
system of ODEs

u′(t) = AM (t)u(t)

for u := (u0, u1, . . . , uM )T and

AM (t) :=


Df(x∗t )`0 Df(x∗t )`1 · · · Df(x∗t )`M
d1,0 d1,1 · · · d1,M

...
...

. . .
...

dM,0 dM,1 · · · dM,M

 , (6)

where Df(x) is the Frechét derivative of f at x ∈ X. Time-dependence and, again,
the original DDE affect only the first row.

Let us conclude this section with a glimpse of the literature. The pseudospectral
technique above recalled can be recast as the collocation in θ of the hyperbolic
Partial Differential Equation (PDE)

∂v

∂t
(t, θ) =

∂v

∂θ
(t, θ), t ≥ 0, θ ∈ [−τ, 0],

∂v

∂θ
(t, 0) = f(v(t, ·)), t ≥ 0,

v(0, θ) = ϕ(θ), θ ∈ [−τ, 0].

(7)

Spectral and pseudospectral methods for PDEs have been extensively treated in,
e.g., [27, 28]. (7) is equivalent to both (2) and (4) through v(t, θ) = u(t)(θ) = xt(θ),
see, e.g., [23, 29]. This equivalence was originally exploited in [3, 35] to reduce
DDEs with a single constant delay to systems of ODEs by Runge-Kutta methods,
for the purpose of numerical time-integration. Other reductions, similar in scopes,
can be traced back to [30] about the use of spline functions and [2, 31] concerning
splines again and Galerkin-type projections, respectively. Except for the last two,
all these methods rely on the classic state space X of continuous functions; [2, 31],
instead, move to an Hilbert space for the numerical aspects, see also the interesting
comments in [31, p.148]. More on these different settings is left to Section 3.

3. Lyapunov exponents and the discrete QR method. There is an extensive
literature on the computation of Lyapunov exponents of DDEs, mostly of an exper-
imental flavor. We refer the reader to the introduction of [14] as a starting point, to
[7] for a minimal theoretical basis and to [26] for maybe the most considered paper
on the subject. Avoiding repetitions, we could summarize by saying that, until
very recently, [14] represented to the best of our knowledge the only method with a
rigorous and complete proof of convergence. This is no longer true potentially, since
the authors of [15] propose a modern reduction of DDEs to ODEs by Galerkin-type
projections via so-called Koornvinder orthogonal polynomials [32]. They show the
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reliability of the technique in approximating strange attractors and related statis-
tical features. Therefore, we believe that computing the Lyapunov exponents by
applying standard tools for ODEs to their reduced system is as reasonable as the
method we presently investigate, although they do not mention such an approach.
The main difference is that we keep on working on the classic Banach state space
of continuous functions – where DDEs are naturally posed – instead of the Hilbert
setting required in [15] to legitimate orthogonal projections. The same setting is
required even in [14], indeed, and more comments are given towards the end of
the section. Now we prefer instead to briefly account for the available methods for
computing Lyapunov exponents of ODEs, since there fall back either [15] or the
collocation presented in Section 2.

If the literature on Lyapunov exponents of DDEs is ample, just guess about
ODEs. Not to get lost, beyond the original thesis of Lyapunov [33], the most com-
plete, modern reference from a theoretical point of view is maybe [1]. One usually
considers linear and nonautonomous systems, resorting to linearization around a
reference trajectory in the attractor in the nonlinear case. Lyapunov exponents can
be recovered from a time limit as t → +∞ of the diagonal elements of the matrix
function at the right-hand side, after the system has been reduced to triangular form
through orthogonalization. From a computational point of view, due to stability
considerations, this orthogonalization has to be performed along a sequence of not
too-large time steps. In so doing one prevents the alignment along the direction of
highest growth (i.e., largest exponent). This procedure is at the base of the most
used class of computational techniques, namely QR methods, first discussed in the
pioneering works [5, 6]. Here we summarize from [17] the discrete version of the QR
method for computing the Lyapunov exponents of

x′(t) = A(t)x(t), (8)

where A : [0,+∞) → Rn×n is continuous and bounded. In the following a QR
factorization of a nonsingular matrix is intended as the unique one with positive
diagonal elements. For a starting reference on theory and computation of Lyapunov
exponents of ODEs see however [20].

Prior to go on we remark that the simple key of this work consists in replacing
A in (8) with AM given in (6).

Let X(t) be the fundamental matrix solution of (8) exiting from a given nonsin-
gular matrix X0 prescribed at time 0 without loss of generality. Choose any strictly
increasing sequence of time instants {tk} with t0 = 0 and construct the iterative
QR factorization

X(tk) = QkRk (9)

as follows. Starting from X0 = Q0R0, at each step j = 1, . . . , k solve{
Ψ′(t, tj−1) = A(t)Ψ(t, tj−1), t ∈ [tj−1, tj ],

Ψ(tj−1, tj−1) = Qj−1
(10)

and factorize the solution at tj as

Ψ(tj , tj−1) = QjRj,j−1. (11)
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If S(t, s) = X(t)X(s)−1 is the state transition matrix, then

X(tk) = S(tk, tk−1) · · ·S(t2, t1)S(t1, t0)Q0R0

= S(tk, tk−1) · · ·S(t2, t1)Ψ(t1, t0)R0

= S(tk, tk−1) · · ·S(t2, t1)Q1R1,0R0

= S(tk, tk−1) · · ·Ψ(t2, t1)R1,0R0

= S(tk, tk−1) · · ·Q2R2,1R1,0R0

· · ·
= QkRk,k−1 · · ·R1,0R0.

(12)

Uniqueness of the QR factorization and (9) give

Rk =

 k∏
j=1

Rj,j−1

R0.

Eventually, (upper) Lyapunov exponents are recovered as

λi = lim sup
k→∞

1

tk

k∑
j=1

ln[Rj,j−1]i,i, i = 1, . . . , n, (13)

where [Rj,j−1]i,i stands for the i-th diagonal entry of the j-th triangular factor
Rj,j−1. Lower exponents come either as lim inf or as upper exponents of the adjoint
system. Summarizing, each step requires the solution of the n initial value problems
(10) and the QR factorization (11).

For comparison, let us comment on the method in [14], which is based on lifting
(12) to infinite dimension. Of course, for a QR factorization to make sense in
infinite dimension, the state space must be changed from the Banach space X of
continuous functions with uniform norm to the Hilbert spaceH := R×L2([−τ, 0);R)
with metric induced by the proper inner product. See [7, 16] for a discussion on this
setting and the former for the definition of the relevant Lyapunov exponents. The
work [14] proposes to discretize the evolution family S(t, s) in H via generalized
Fourier projection, going back to finite dimension with no need to solve the initial
value problems (10), (11) being replaced by

S̃(tj , tj−1)Qj−1 = QjRj,j−1

for S̃ approximating S. A rigorous convergence analysis is also provided there. The
key fact is that one does not usually compute state transition matrices for ODEs
(but rather solve them), while for DDEs an efficient way to approximate evolution
families was already available in [12], for the sake of stability of periodic problems.
The approach in [14] was indeed inspired from the latter. The pseudospectral col-
location technique in [12] instead, is not appropriate in the context of Lyapunov
exponents, since based on X where orthogonal factorization is nonsense. This is why
here we take the other way around, i.e., we first reduce to finite dimension, allowing
to change from uniform to euclidean metric with proper scalar product. Summa-
rizing, one could choose between two strategies: lifting finite-dimensional methods
to solve infinite-dimensional problems or reduce infinite-dimensional problems and
solve by finite-dimensional methods. While [14] can be ascribed to the first class,
the method proposed here belongs to the second. As such, it represents the natural
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attempt to address the study of chaotic dynamics by following the originating mo-
tivation of [8], there focused on equilibria and their bifurcation, and later applied to
periodic orbits of renewal equations in [9]. We conclude by observing that most of
the computational techniques proposed in the literature for computing exponents
of DDEs belong to the second category above mentioned, see, e.g., [26, 40].

4. Implementation and results. Three Matlab codes are listed in Appendix A:

• dqr, implementing the discrete QR method for computing Lyapunov expo-
nents of linear nonautonomus ODEs like (8), as described in Section 3 and
based on [17];

• solveDDE_MG, implementing the time-integration of nonlinear DDEs like (1),
based on [38];

• lrhs_MG, implementing the construction of the linear(ized) nonautonomous
matrix (6), based on Section 2 and [8].

The first code is a Matlab version of the Fortran 77 routine LESLIS freely available
at [22]. As the original one, it solves the initial value problems (10) by using the
celebrated DOPRI54 embedded Runge-Kutta pair [24] to keep the error on the
exponents below a given tolerance by automatic selection of the stepsizes tj − tj−1.
The QR factorization is obtained via Matlab built-in qr, just notice that lines 39
and 57 are a rude, yet trivial way to realize the required uniqueness. For more on
computational aspects of orthogonal factors in this context see [21]. The limit (13)
is truncated at a given large time specified in input, say T . The latter two codes
are written for the specific example of the Mackey-Glass equation, described below.
The first one simply resorts to Matlab dde23. The second one follows Section 2
and uses the auxiliary routine difmat taken from [42] to construct the Chebyshev
differentiation matrix.

We believe that the first code is useful for those accustomed to the Matlab
environment rather than to less high-level frameworks. The other two may be
of help to those who wish to repeat the following numerical experiments or test
their own problems. It is enough indeed to alter the auxiliary function rhs in
solveDDE_MG and lines 25 − 26 in lrhs_MG, beyond straightforward modifications
of parameters input. Results are obtained by computing a reference trajectory x∗

for a given choice of parameters with solveDDE_MG, constructing the matrix (6)
with lrhs_MG and eventually approximating the Laypunov exponents with dqr. An
instance of explicit call is given next.

The remaining of the section is devoted to run the proposed methodology on three
test DDEs, two scalar and a system, all with a single delay. We have no reason
to doubt that the method could work properly also for more general equations
and systems with either multiple and distributed delays. For extensions of the
pseudospectral reduction in these directions it is enough to consider the linear case,
for which we refer to [13], also for an efficient piecewise approach. Moreover, we have
already mentioned in the Introduction and in Section 2 the possibility to extend the
reduction to other classes of functional equations. In this sense, a first successful
attempt to compute Lyapunov exponents of renewal equations is reported in [9].

Here we choose to sacrifice extensions and generality in favor of simplicity. We
focus on demonstrating the validity of the approach as a manageable strategy to
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obtain Lyapunov exponents, unveiling some of its features experimentally. A rig-
orous proof of convergence of the computed exponents to the exact ones is not
available, and out of the reach of the present work. In fact, even the convergence of
the approximating system of ODEs to the original DDE is still a subject of current
research. More comments can be found in [8], especially w.r.t the prominent role of
the Chebyshev differentiation matrix DM and the stability of its time exponential
exp(DM t) as M →∞ (see also [28] in this respect).

The first example is the linear autonomous DDE

x′(t) = −x(t) + 2ex(t− 1). (14)

Taken from [14], it is invoked for the lack of DDEs with known and exact exponents.
For (14), instead, the exponents coincide with the real part of the characteristic
roots. The recent literature abounds of efficient and reliable methods to approx-
imate the latter. Moreover, it is not difficult to show that the rightmost root of
(14) is 1. In Figure 1 (left) we plot in C the first five characteristic roots (×, with
nonnegative imaginary part) computed to machine precision with the code eigAM

accompanying [13], together with the corresponding Lyapunov exponents (along the
real axis) approximated with the proposed technique (•) and with the method in
[14] (◦), both for M = 20. The truncation time was set to T = 105, while dqr

was modified to use the exact solution of (10) through the matrix exponential in
order to save useless computations (recall that (14) is autonomous). In Figure 1
(right) we plot the absolute error of the largest exponent w.r.t. the leading real
part 1 (leftmost curves, solid • for the current method, dashed ◦ for the method in
[14]). We plot also the absolute errors of the remaining exponents w.r.t. the real
part of the relevant characteristic roots, assumed as reference values. The spectrally
accurate behavior (see, e.g., [42]) typical of pseudospectral methods as applied to
smooth functions emerges evident. Notice, moreover, how the error curves move to
the right as the exponents decrease, signature that the error constants increase in
general proportionally to |λ| in both cases. Eventually, the method in [14] seems to
give lower errors in general (made exception for the leading exponent at larger values
of M). This behavior is not surprising: the method in [14] is developed specifically
for DDEs, while the current one is more general w.r.t. the class of equations it can
tackle. This major generality (and the subsequent simplicity) seems thus to trade
the accuracy off.

A lower barrier for the error at about 10−5 is also evident from Figure 1 (right).
It is essentially due to the truncation of the limit (13) at a finite time T . Some
insight is given by the results illustrated in Figure 2, where the error on the largest
exponent is plotted against T for varying M = 10, 15, 20 (solid •). Similar data
for M = 20 from Figure 3 of [14] are included for a direct comparison (dashed
◦), confirming the expected linear decay as discussed in the latter. For a deeper
analysis of the consequences of this truncation we refer also to [18, 19].

The second example is the celebrated Mackey-Glass equation [34]:

x′(t) =
ax(t− τ)

1− [x(t− τ)]c
− bx(t). (15)

In Table 1 we collect the first six exponents for a = 0.2, b = 0.1, c = 10 and τ = 50
computed with M = 20, comparing with the values from [14, 39]. Truncation time
and tolerance in dqr were set to 105 and 10−6, respectively. The accordance of the
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0
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ℑ
(λ
)

2 4 6 8 10 20
M

10-8

10-6

10-4

10-2

100

Figure 1. First five rightmost characteristic roots (×) of (14) and
first five dominant Lyapunov exponents computed with the current
method (•) and with the method in [14] (◦), both for M = 20 and
T = 105 (left); relevant absolute errors for increasing M (right):
current method (solid •) and method in [14] (dashed ◦).

2 4 6 8 10
T ×104

10-6

10-5

Figure 2. Absolute error with respect to 1 of the largest exponent
of (14) plotted against the final truncation time T , computed with
the current method for varying M = 10, 15, 20 (solid •, top-to-
bottom) and with the method in [14] (dashed ◦) for M = 20.

results is limited to few digits, but this is not surprising in the context of Lyapunov
exponents, given the role of the truncation of the limit already encountered above.

5.85× 10−3 5.76× 10−3 5.83× 10−3

3.29× 10−3 3.02× 10−3 3.15× 10−3

0.53× 10−3 0.65× 10−3 0.01× 10−3

−0.92× 10−3 −0.85× 10−3 −0.29× 10−3

−5.17× 10−3 −4.78× 10−3 −5.08× 10−3

−9.56× 10−3 −9.85× 10−3 −9.78× 10−3

Table 1. First six exponents of (15) for a = 0.2, b = 0.1, c = 10
and τ = 50 computed with M = 20 (first column), from [14] (sec-
ond column) and from [39] (third column); the reference solution
corresponds to the initial function of constant value ϕ ≡ 2 in (2).

It is also interesting to validate the approach by plotting some attractors, see
Figure 3 and confront with Figure 2 in [26]. The plane of projection has coordinates
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x(t−τ) and x(t), respectively approximated by uM (t) and u0(t) obtained by solving
(5) with Matlab ode23s for M = 9: notice how 10 ODEs are sufficient to get a rather
accurate representation. In this sense, the pseudospectral reduction could be a valid
alternative to more accomplished methods for initial value problems for DDEs [4].

To conclude with the Mackey-Glass equation, an example call to the Matlab
codes follows, w.r.t. the data in Table 1:

>> sol=solveDDE_MG(.2,.1,10,50,2,1e5);

>> [lambda,t]=dqr(@(t)lrhs_MG(t,sol,.2,.1,10,50,20),1e5,1e-6);

x(t− τ )

x
(t
)

x(t− τ )

x
(t
)

Figure 3. Projection of the attractor of (15) for a = 0.2, b = 0.1,
c = 10 and τ = 14 (left), τ = 17 (right).

The literature on Lypaunov exponents for DDEs is not much rich on quantitative
results to compare with. Nevertheless, we include a last example to test the behavior
of the pseudospectral reduction on systems of DDEs. In particular, we consider from
[14] the two Rössler oscillators symmetrically coupled

x′1(t) = −x2(t)− x3(t),

x′2(t) = x1(t) + ax2(t) + ε[x5(t− τ)− x2(t)],

x′3(t) = b+ x3(t)[x1(t)− c],

x′4(t) = −x5(t)− x6(t),

x′5(t) = x4(t) + ax5(t) + ε[x2(t− τ)− x5(t)],

x′6(t) = b+ x6(t)[x4(t)− c],

(16)

taken originally from [37]. In Table 2 we compare the first three exponents of (16)
with a = b = 0.1, c = 14 and ε = 0.5 and varying coupling delay τ , computed (on
purpose) with a quite rough approximation obtained with the proposed method for
M = 5, T = 103 and the usual tolerance 10−6 in dqr. Notice that the dimension of
the approximating system of ODEs is n(M + 1) = 36, hence already not properly
small. The reference trajectory x∗ is computed by dde23 with starting time 0 and
initial function ϕ in (2) of constant value a (pseudo)random vector in R6. The
results are compared with those in Figure 6 of [14], computed with the method
proposed therein with M = 20 and T = 104. The latter is basically much more
accurate, but the size of the underlying matrix discretization is n(M + 1) = 126,
almost 4 times the one of the current method. The correspondence is nevertheless
good, since signs and magnitudes of the exponents are preserved. The analogous of
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Figure 6 in [14] obtained with the current method would be almost indistinguishable
at eye, or within the same range of variation of the original one in [37].

−2.20× 10−2 −6.74× 10−2 −1.51× 10−2

−2.21× 10−2 −6.77× 10−2 −1.49× 10−2

−3.65× 10−1 −1.19× 10−1 −1.21× 10−1

−2.28× 10−2 −6.81× 10−2 −1.55× 10−2

−2.30× 10−2 −6.89× 10−2 −1.57× 10−2

−3.59× 10−1 −1.11× 10−1 −1.14× 10−1

Table 2. First three exponents of (16) for a = b = 0.1, c = 14 and
ε = 0.5 and varying coupling delay τ = 1 (first column), 1.5 (second
column) and 2 (third column), computed with the current method
for M = 5 and T = 103 (first three rows) and with the method in
[14] for M = 20 and T = 104 (second three rows); the reference
solution of (2) corresponds to the initial function of constant value
a (pseudo)random vector in R6.

As a general conclusion, especially from the results on the nonlinear examples,
we remark that the proposed method can represent a valid alternative, particularly
useful for non-experts necessitating practical computations. Let us notice, indeed,
that the experimental results available in the literature of Lyapunov exponents for
DDEs are usually furnished with limited precision, which seems enough for most
applications. On the other hand, codes implementing most methods proposed in
the literature are practically unavailable. Then the pseudospectral reduction might
result more advantageous than these techniques, in that it is easily implementable,
adaptable to other classes of functional equations and rather reliable (at least ex-
perimentally), although we are aware that a rigorous convergence is not proved yet,
as already commented.
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Appendix A. Matlab codes. The following codes are freely available at http:

//users.dimi.uniud.it/~dimitri.breda/research/software/.

1 function [ lambda , t ]=dqr (A,T,TOL)
2 %DQR Discre te QR method f o r Lyapunov exponents o f l i n e a r ODEs.

3 % [ lambda , t ]= dqr (A,T,TOL) computes the Lyapunov exponents o f

4 % the l i n e a r ODE x ’ ( t )=A( t ) x ( t ) wi th the d i s c r e t e QR method
5 % according to [ 1 ] .

6 % INPUT:

7 % A = matrix f u n c t i o n ( i n l i n e )
8 % T = trunca t ion time

9 % TOL = t o l e r a n c e f o r error c o n t r o l

10 % OUTPUT:
11 % lambda ( : , i ) = exponents at the i−th time s t e p

12 % t = sequence o f time s t e p s
13 % CALL:
14 % >>A=@( t ) matrix e x p r e s s i o n o f t ;

15 % >>[lambda , t ]= dqr (A,1 e3 ,1 e−4)
16 % REFERENCES:
17 % [ 1 ] L . Dieci , M. S . J o l l y and E. Van Vleck , ”Numerical

18 % t e c h n i q u e s f o r approximating Lyapunov exponents and
19 % t h e i r implementation ” , J . Comput . Nonlinear Dynam.
20 % 6(1):011003−1−7 , 2010.

21
22 %DOPRI54
23 s =7;
24 Ark =[0 , 0 , 0 , 0 , 0 , 0 , 0 ;

25 1/5 , 0 , 0 , 0 , 0 , 0 , 0 ;

26 3/40 ,9/40 ,0 , 0 , 0 , 0 , 0 ;
27 44/45 , −56/15 ,32/9 ,0 ,0 ,0 ,0 ;
28 19372/6561 , −25360/2187 ,64448/6561 , −212/729 ,0 ,0 ,0;

29 9017/3168 , −355/33 ,46732/5247 ,49/176 , −5103/18656 ,0 ,0;
30 35/384 ,0 ,500/1113 ,125/192 , −2187/6784 ,11/84 ,0 ] ;

31 brk =[5179/57600 ,0 ,7571/16695 ,393/640 , −92097/339200 ,187/2100 , . . .

32 1 / 4 0 ] ;
33 crk = [ 0 ; 1 / 5 ; 3 / 1 0 ; 4 / 5 ; 8 / 9 ; 1 ; 1 ] ;
34 brkhat=Ark ( s , 1 : s −1);

35 %i n i z i a l i z a t i o n
36 n=s ize (A( 0 ) , 1 ) ;

37 I=eye (n ) ;
38 t =0;

39 [Q,R]=qr (rand (n ) ) ;
40 Q=Q∗diag (diag (R) . / abs (diag (R) ) ) ;

http://www.ams.org/mathscinet-getitem?mr=MR2017014&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0710486&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2198313&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1831793&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1385446&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2570698&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2101580&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1776072&return=pdf
http://users.dimi.uniud.it/~dimitri.breda/research/software/
http://users.dimi.uniud.it/~dimitri.breda/research/software/
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41 h=.01;
42 lambda ( : ,1 )= zeros (n , 1 ) ;

43 r e j e c t s =0;
44 s t ep s =0;

45 while t (end)+h<=T

46 %IVP
47 PSI ( 1 : n , : )=Q;

48 F( 1 : n , : )=A( t (end)+crk (1)∗h)∗Q;

49 for i =2: s
50 PSI (n∗( i −1)+1:n∗ i , : )=Q+h∗kron ( Ark ( i , 1 : i −1) , I ) ∗ . . .

51 F( 1 : n∗( i −1 ) , : ) ;

52 F(n∗( i −1)+1:n∗ i , : )=A( t (end ) + . . .
53 crk ( i )∗h)∗PSI (n∗( i −1)+1:n∗ i , : ) ;

54 end

55 Psi=Q+h∗kron ( brk , I )∗F;
56 Psihat=Q+h∗kron ( brkhat , I )∗F( 1 : n∗( s −1 ) , : ) ;

57 %QR
58 [ Qnew,R]=qr ( Ps i ) ;
59 Qnew=Qnew∗diag (diag (R) . / abs (diag (R) ) ) ;

60 R=abs (diag (R) ) ;
61 [ ˜ , Rhat]=qr ( Ps ihat ) ;
62 Rhat=abs (diag ( Rhat ) ) ;

63 %error
64 e=max(abs (R−Rhat ) ./( (1+R) . ∗TOL) ) ;
65 hnew=.8∗h∗(1/ e ˆ . 2 ) ;

66 %update
67 i f e<=1 %accept s t e p
68 t =[t , t (end)+h ] ;

69 h=min(hnew ,5∗h ) ;
70 Q=Qnew ;
71 lambda=[lambda , ( t (end−1)∗ lambda ( : , end)+log (R) )/ t (end ) ] ;
72 %avoid accumulation o f lambda and t i f not

73 %i n t e r e s t e d in monitoring the time behav ior
74 s t ep s=s t ep s +1;
75 else h=max(hnew , h / 5 ) ; %r e j e c t s t e p
76 r e j e c t s=r e j e c t s +1;

77 end
78 end
79 end

1 function s o l=solveDDE MG(a , b , c , tau , x0 ,T)
2 %SOLVEDDE MG s o l u t i o n o f the Mackey−Glass equat ion by dde23 .
3 %s o l=solveDDE MG(a , b , c , tau , x0 ,T) approximates the s o l u t i o n o f the

4 % Mackey−Glass equat ion

5 %
6 % x ’ ( t )=a∗x ( t−tau )/(1+x ( t−tau )ˆ c)−b∗x ( t )
7 %

8 % e x i t i n g from x0 at time 0 up to time T by using dde23 [ 1 ] .
9 % INPUT:

10 % a , b , c , tau = parameters

11 % x0 = i n i t i a l data ( constant )
12 % T = f i n a l time
13 % OUTPUT:

14 % s o l = approximated s o l u t i o n
15 % CALL:

16 % >>s o l=solveDDE MG ( . 2 , . 1 , 1 0 , 5 0 , 2 , 1 0 0 0 ) ;
17 % REFERENCES:

18 % [ 1 ] L .F. Shampine and S . Thompson , ” S o l v i n g DDEs in
19 % MATLAB” , Appl . Numer . Math . , 37:441−458 , 2001.
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20
21 s o l=dde23 ( @rhs , tau , x0 ,[− tau ,T ] , [ ] , a , b , c ) ;

22
23 function f=rhs ( t , x , z , a , b , c )

24 f=a∗z/(1+zˆc)−b∗x ;

25 end
26 end

1 function A=lrhs MG ( t , so l , a , b , c , tau ,M)
2 %LRHS MG l i n e a r i z e d Mackey−Glass DDE reduced to ODE.

3 % A=lrhs MG ( t , so l , a , b , c , tau ,M) computes the r i g h t−hand s i d e

4 % matrix o f the system of M+1 ODEs approximating the
5 % Mackey−Glass equat ion l i n e a r i z e d around the r e f e r e n c e

6 % s o l u t i o n s o l according to [ 1 ] and e v a l u a t e d at time t .

7 % INPUT:
8 % t = time

9 % s o l = r e f e r e n c e s o l u t i o n
10 % a , b , c , tau = parameters

11 % M = degree o f approximation

12 % OUTPUT:
13 % A = r i g h t−hand s i d e matrix

14 % CALL:

15 % >>A=lrhs MG (150 , so l , . 2 , . 1 , 1 0 , 5 0 , 1 0 ) ;
16 % REFERENCES:

17 % [ 1 ] Breda D. , Diekmann O. , Gy l l enberg M. , Scarabe l F. and

18 % Vermigl io R. . ” Pseudospec tra l d i s c r e t i z a t i o n o f
19 % nonl inear de lay equa t ions : new p r o s p e c t s f o r

20 % numerical b i f u r c a t i o n a n a l y s i s ” , SIAM J . Appl . Dyn .

21 % Syst . , 15(1):1 −23 , 2016.
22

23 theta=tau ∗( cos ( ( 0 :M)∗pi/M) −1)/2;
24 A=difmat ( theta ) ;
25 z=deval ( so l , t−tau ) ;

26 A(1 , :)=[ −b , zeros (1 ,M−1) ,a∗(1+(1−c )∗ zˆc )/((1+ zˆc ) ˆ 2 ) ] ;
27
28 function D=difmat ( x )

29 %DIFMAT d i f f e r e n t i a t i o n matrix on Chebyshev I I nodes .
30 % D=DIFMAT( x ) re turns the d i f f e r e n t i a t i o n matrix D
31 % r e l e v a n t to the M+1 Chebyshev I I nodes x according

32 % to [ 2 ] .
33 % INPUT:
34 % x = v e c t o r o f Chebyshev I I nodes
35 % OUTPUT:

36 % D = d i f f e r e n t i a t i o n matrix

37 % CALL:
38 % >>M=10;
39 % >>D=difmat ( cos ( ( 0 :M)∗ p i /M) ) ;

40 % REFERENCES:
41 % [ 2 ] L .N. Trefethen , ” S p e c t r a l methods in Matlab ” ,

42 % SIAM, 2000.

43
44 MM=length ( x)−1;
45 i f MM==0

46 D=0;
47 return

48 end
49 C=[2; ones (MM−1 , 1 ) ; 2 ] .∗ ( −1 ) . ˆ ( 0 :MM) ’ ;

50 X=repmat (x ’ , 1 ,MM+1);
51 dX=X−X’ ;
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52 D=(C∗ ( 1 . /C) ’ ) . / (dX+(eye (MM+1)) ) ;
53 D=D−diag (sum(D’ ) ) ;

54 end
55 end
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