Università degli studi di Udine

Observation of the $Y(4140)$ structure in the $J / m a s s$ spectrum in $B+/-->K+/-$ decays

Original

Availability:
This version is available http://hdl.handle.net/11390/1124184 since 2021-03-24T11:09:58Z

Publisher:

Published
DOI:10.1142/S0217732317501395

Terms of use:
The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright
(Article begins on next page)

Aaltonen, T. et al. (2017) Observation of the Y (4140) structure in the $\mathrm{J} / \psi \phi$ mass spectrum in $\mathrm{B} \pm \rightarrow \mathrm{J} / \psi \phi \mathrm{K} \pm$ decays. Modern Physics Letters A, 32(26), 1750139. (doi:10.1142/s0217732317501395)

This is the author's final accepted version.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/145407/

Deposited on: 16 August 2017

Enlighten - Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Observation of the $Y(4140)$ structure in the $J / \psi \phi$ Mass Spectrum in $B^{ \pm} \rightarrow J / \psi \phi K^{ \pm}$ Decays

T. Aaltonen, ${ }^{21}$ B. Álvarez González ${ }^{v},{ }^{9}$ S. Amerio, ${ }^{41}$ D. Amidei, ${ }^{32}$ A. Anastassov, ${ }^{36}$ A. Annovi, ${ }^{17}$ J. Antos, ${ }^{12}$ G. Apollinari, ${ }^{15}$ J.A. Appel,,${ }^{15}$ A. Apresyan, ${ }^{46}$ T. Arisawa, ${ }^{56}$ A. Artikov, ${ }^{13}$ J. Asaadi, ${ }^{51}$ W. Ashmanskas, ${ }^{15}$ B. Auerbach, ${ }^{59}$ A. Aurisano, ${ }^{51}$ F. Azfar, ${ }^{40}$ W. Badgett, ${ }^{15}$ A. Barbaro-Galtieri, ${ }^{26}$ V.E. Barnes, ${ }^{46}$ B.A. Barnett, ${ }^{23}$ P. Barria ${ }^{c c},{ }^{44}$ P. Bartos, ${ }^{12}$ M. Bauce ${ }^{a a},{ }^{41}$ G. Bauer, ${ }^{30}$ F. Bedeschi, ${ }^{44}$ D. Beecher, ${ }^{28}$ S. Behari, ${ }^{23}$ G. Bellettini ${ }^{b b},{ }^{44}$ J. Bellinger, ${ }^{58}$ D. Benjamin, ${ }^{14}$ A. Beretvas, ${ }^{15}$ A. Bhatti, ${ }^{48}$ M. Binkley*, ${ }^{15}$ D. Bisello ${ }^{a a},{ }^{41}$ I. Bizjak ${ }^{g g}$, ${ }^{28}$ K.R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{23}$ A. Bocci, ${ }^{14}$ A. Bodek, ${ }^{47}$ D. Bortoletto, ${ }^{46}$ J. Boudreau, ${ }^{45}$ A. Boveia, ${ }^{11}$ B. Brau ${ }^{a},{ }^{15}$ L. Brigliadori ${ }^{z}$, ${ }^{6}$ A. Brisuda, ${ }^{12}$ C. Bromberg, ${ }^{33}$ E. Brucken, ${ }^{21}$ M. Bucciantonio ${ }^{b b},{ }^{44}$ J. Budagov, ${ }^{13}$ H.S. Budd, ${ }^{47}$ S. Budd, ${ }^{22}$ K. Burkett,,${ }^{15}$ G. Busetto ${ }^{a a},{ }^{41}$ P. Bussey, ${ }^{19}$ A. Buzatu, ${ }^{31}$ C. Calancha, ${ }^{29}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{33}$ M. Campbell, ${ }^{32}$ F. Canelli ${ }^{12},{ }^{15}$ A. Canepa, ${ }^{43}$ B. Carls, ${ }^{22}$ D. Carlsmith, ${ }^{58}$ R. Carosi, ${ }^{44}$ S. Carrillo ${ }^{k},{ }^{16}$ S. Carron, ${ }^{15}$ B. Casal, ${ }^{9}$ M. Casarsa, ${ }^{15}$ A. Castro ${ }^{z},{ }^{6}$ P. Catastini, ${ }^{15}$ D. Cauz,,${ }^{52}$ V. Cavaliere ${ }^{c c},{ }^{44}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri ${ }^{f},{ }^{26}$
L. Cerrito ${ }^{q},{ }^{28}$ Y.C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{44}$ G. Chlachidze, ${ }^{15}$ F. Chlebana, ${ }^{15}$ K. Cho, ${ }^{25}$
D. Chokheli, ${ }^{13}$ J.P. Chou, ${ }^{20}$ W.H. Chung, ${ }^{58}$ Y.S. Chung, ${ }^{47}$ C.I. Ciobanu, ${ }^{42}$ M.A. Ciocci ${ }^{\text {cc }}{ }^{44}$ A. Clark, ${ }^{18}$ G. Compostella ${ }^{a a},{ }^{41}$ M.E. Convery, ${ }^{15}$ J. Conway, ${ }^{7}$ M.Corbo, ${ }^{42}$ M. Cordelli, ${ }^{17}$ C.A. Cox, ${ }^{7}$ D.J. Cox, ${ }^{7}$ F. Cresciolibb, ${ }^{44}$ C. Cuenca Almenar, ${ }^{59}$ J. Cuevas ${ }^{v},{ }^{9}$ R. Culbertson, ${ }^{15}$ D. Dagenhart, ${ }^{15}$ N. d'Ascenzot, ${ }^{42}$ M. Datta, ${ }^{15}$ P. de Barbaro, ${ }^{47}$
S. De Cecco, ${ }^{49}$ G. De Lorenzo, ${ }^{4}$ M. Dell'Orso ${ }^{b b},{ }^{44}$ C. Deluca, ${ }^{4}$ L. Demortier, ${ }^{48}$ J. Deng ${ }^{c},{ }^{14}$ M. Deninno, ${ }^{6}$ F. Devoto, ${ }^{21}$ M. d'Errico ${ }^{a a},{ }^{41}$ A. Di Canto ${ }^{b b},{ }^{44}$ B. Di Ruzza, ${ }^{44}$ J.R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{27}$ S. Donati ${ }^{b b},{ }^{44}$ P. Dong, ${ }^{15}$ M. Dorigo, ${ }^{52}$ T. Dorigo, ${ }^{41}$ K. Ebina, ${ }^{56}$ A. Elagin, ${ }^{51}$ A. Eppig, ${ }^{32}$ R. Erbacher, ${ }^{7}$ D. Errede, ${ }^{22}$ S. Errede, ${ }^{22}$ N. Ershaidat ${ }^{4}{ }^{42}$ R. Eusebi, ${ }^{51}$ H.C. Fang, ${ }^{26}$ S. Farrington, ${ }^{40}$ M. Feindt, ${ }^{24}$ J.P. Fernandez, ${ }^{29}$ C. Ferrazza ${ }^{\text {dd }}$, ${ }^{44}$ R. Field, ${ }^{16}$ G. Flanagan ${ }^{r},{ }^{46}$ R. Forrest, ${ }^{7}$ M.J. Frank, ${ }^{5}$ M. Franklin, ${ }^{20}$ J.C. Freeman, ${ }^{15}$ Y. Funakoshi, ${ }^{56}$ I. Furic, ${ }^{16}$ M. Gallinaro, ${ }^{48}$ J. Galyardt, ${ }^{10}$ J.E. Garcia, ${ }^{18}$ A.F. Garfinkel, ${ }^{46}$ P. Garosi ${ }^{c c},{ }^{44}$ H. Gerberich, ${ }^{22}$ E. Gerchtein, ${ }^{15}$ S. Giaguee, ${ }^{49}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{44}$ K. Gibson, ${ }^{45}$ C.M. Ginsburg, ${ }^{15}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{17}$ M. Giunta, ${ }^{44}$ G. Giurgiu, ${ }^{23}$ V. Glagolev, ${ }^{13}$ D. Glenzinski, ${ }^{15}$ M. Gold, ${ }^{35}$ D. Goldin, ${ }^{51}$ N. Goldschmidt, ${ }^{16}$ A. Golossanov, ${ }^{15}$ G. Gomez, ${ }^{9}$ G. Gomez-Ceballos, ${ }^{30}$ M. Goncharov, ${ }^{30}$ O. González, ${ }^{29}$ I. Gorelov, ${ }^{35}$ A.T. Goshaw, ${ }^{14}$ K. Goulianos, ${ }^{48}$ A. Gresele, ${ }^{41}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{11}$ R.C. Group, ${ }^{55}$ J. Guimaraes da Costa, ${ }^{20}$ Z. Gunay-Unalan, ${ }^{33}$ C. Haber, ${ }^{26}$ S.R. Hahn, ${ }^{15}$ E. Halkiadakis, ${ }^{50}$ A. Hamaguchi, ${ }^{39}$ J.Y. Han, ${ }^{47}$ F. Happacher, ${ }^{17}$ K. Hara,,${ }^{53}$ D. Hare,,50 M. Hare, ${ }^{54}$ R.F. Harr,,${ }^{57}$ K. Hatakeyama,,${ }^{5}$ C. Hays, ${ }^{40}$ M. Heck, ${ }^{24}$
J. Heinrich, ${ }^{43}$ M. Herndon, ${ }^{58}$ S. Hewamanage, ${ }^{5}$ D. Hidas, ${ }^{50}$ A. Hocker, ${ }^{15}$ W. Hopkins ${ }^{g},{ }^{15}$ D. Horn, ${ }^{24}$ S. Hou, ${ }^{1}$ R.E. Hughes, ${ }^{37}$ M. Hurwitz, ${ }^{11}$ U. Husemann, ${ }^{59}$ N. Hussain, ${ }^{31}$ M. Hussein, ${ }^{33}$ J. Huston, ${ }^{33}$ G. Introzzi, ${ }^{44}$ M. Ioriee ${ }^{e}$, ${ }^{49}$ A. Ivanov ${ }^{0},{ }^{7}$ E. James, ${ }^{15}$ D. Jang, ${ }^{10}$ B. Jayatilaka, ${ }^{14}$ E.J. Jeon, ${ }^{25}$ M.K. Jha, ${ }^{6}$ S. Jindariani, ${ }^{15}$ W. Johnson, ${ }^{7}$ M. Jones, ${ }^{46}$ K.K. Joo, ${ }^{25}$ S.Y. Jun, ${ }^{10}$ T.R. Junk, ${ }^{15}$ T. Kamon, ${ }^{51}$ P.E. Karchin, ${ }^{57}$ Y. Kato ${ }^{n},{ }^{39}$ W. Ketchum, ${ }^{11}$ J. Keung, ${ }^{43}$ V. Khotilovich, ${ }^{51}$ B. Kilminster, ${ }^{15}$ D.H. Kim, ${ }^{25}$ H.S. Kim, ${ }^{25}$ H.W. Kim, ${ }^{25}$ J.E. Kim, ${ }^{25}$ M.J. Kim, ${ }^{17}$ S.B. Kim,,${ }^{25}$ S.H. Kim, ${ }^{53}$ Y.K. Kim, ${ }^{11}$ N. Kimura, ${ }^{56}$ M. Kirby, ${ }^{15}$ S. Klimenko, ${ }^{16}$ K. Kondo, ${ }^{56}$ D.J. Kong, ${ }^{25}$ J. Konigsberg, ${ }^{16}$ A.V. Kotwal, ${ }^{14}$ M. Kreps, ${ }^{24}$ J. Kroll, ${ }^{43}$ D. Krop, ${ }^{11}$ N. Krumnack ${ }^{l},{ }^{5}$ M. Kruse, ${ }^{14}$ V. Krutelyov ${ }^{\text {d }}$, ${ }^{51}$ T. Kuhr, ${ }^{24}$ M. Kurata, ${ }^{53}$ S. Kwang, ${ }^{11}$ A.T. Laasanen, ${ }^{46}$ S. Lami, ${ }^{44}$ S. Lammel, ${ }^{15}$ M. Lancaster, ${ }^{28}$ R.L. Lander, ${ }^{7}$ K. Lannon ${ }^{u},{ }^{37}$ A. Lath,,${ }^{50}$ G. Latino ${ }^{c c},{ }^{44}$ I. Lazzizzera, ${ }^{41}$ T. LeCompte, ${ }^{2}$ E. Lee, ${ }^{51}$ H.S. Lee, ${ }^{11}$ J.S. Lee, ${ }^{25}$ S.W. Lee ${ }^{w},{ }^{51}$ S. Leo ${ }^{b b},{ }^{44}$ S. Leone, ${ }^{44}$ J.D. Lewis, ${ }^{15}$ C.-J. Lin, ${ }^{26}$ J. Linacre, ${ }^{40}$ M. Lindgren, ${ }^{15}$ E. Lipeles, ${ }^{43}$ A. Lister, ${ }^{18}$
D.O. Litvintsev, ${ }^{15}$ C. Liu,,45 Q. Liu, ${ }^{46}$ T. Liu, ${ }^{15}$ S. Lockwitz, ${ }^{59}$ N.S. Lockyer, ${ }^{43}$ A. Loginov, ${ }^{59}$ D. Lucchesi ${ }^{a a},{ }^{41}$ J. Lueck, ${ }^{24}$ P. Lujan, ${ }^{26}$ P. Lukens, ${ }^{15}$ G. Lungu, ${ }^{48}$ J. Lys,,${ }^{26}$ R. Lysak, ${ }^{12}$ R. Madrak, ${ }^{15}$ K. Maeshima, ${ }^{15}$ K. Makhoul, ${ }^{30}$ P. Maksimovic, ${ }^{23}$ S. Malik, ${ }^{48}$ G. Manca ${ }^{b},{ }^{27}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{46}$ C. Marino, ${ }^{24}$ M. Martínez, ${ }^{4}$ R. Martínez-Ballarín, ${ }^{29}$ P. Mastrandrea, ${ }^{49}$ M. Mathis, ${ }^{23}$ M.E. Mattson, ${ }^{57}$ P. Mazzanti, ${ }^{6}$ K.S. McFarland, ${ }^{47}$ P. McIntyre, ${ }^{51}$ R. McNulty ${ }^{i},{ }^{27}$ A. Mehta, ${ }^{27}$ P. Mehtala, ${ }^{21}$ A. Menzione, ${ }^{44}$ C. Mesropian, ${ }^{48}$ T. Miao, ${ }^{15}$ D. Mietlicki, ${ }^{32}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{53}$ S. Moed, ${ }^{20}$ N. Moggi, ${ }^{6}$ M.N. Mondragon ${ }^{k},{ }^{15}$ C.S. Moon, ${ }^{25}$ R. Moore, ${ }^{15}$ M.J. Morello,,${ }^{15}$ J. Morlock, ${ }^{24}$ P. Movilla Fernandez, ${ }^{15}$ A. Mukherjee, ${ }^{15}$ Th. Muller, ${ }^{24}$ P. Murat, ${ }^{15}$ M. Mussiniz ${ }^{z}{ }^{6}$ J. Nachtman ${ }^{m},{ }^{15}$ Y. Nagai, ${ }^{53}$ J. Naganoma, ${ }^{56}$ I. Nakano, ${ }^{38}$ A. Napier, ${ }^{54}$ J. Nett, ${ }^{51}$ C. Neu, ${ }^{55}$ M.S. Neubauer, ${ }^{22}$ J. Nielsen ${ }^{e},{ }^{26}$ L. Nodulman, ${ }^{2}$ O. Norniella, ${ }^{22}$ E. Nurse, ${ }^{28}$ L. Oakes, ${ }^{40}$ S.H. Oh, ${ }^{14}$ Y.D. Oh, ${ }^{25}$ I. Oksuzian,,${ }^{55}$ T. Okusawa, ${ }^{39}$ R. Orava, ${ }^{21}$ L. Ortolan, ${ }^{4}$ S. Pagan Griso ${ }^{a a},{ }^{41}$ C. Pagliarone, ${ }^{52}$ E. Palencia ${ }^{f},{ }^{9}$ V. Papadimitriou, ${ }^{15}$ A.A. Paramonov, ${ }^{2}$
J. Patrick, ${ }^{15}$ G. Pauletta ${ }^{f f},{ }^{52}$ M. Paulini, ${ }^{10}$ C. Paus, ${ }^{30}$ D.E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{52}$ T.J. Phillips, ${ }^{14}$ G. Piacentino, ${ }^{44}$ E. Pianori, ${ }^{43}$ J. Pilot, ${ }^{37}$ K. Pitts, ${ }^{22}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{58}$ K. Potamianos, ${ }^{46}$ O. Poukhov* ${ }^{13}$ F. Prokoshin ${ }^{x}$, ${ }^{13}$ A. Pronko, ${ }^{15}$ F. Ptohos ${ }^{h},{ }^{17}$ E. Pueschel,,${ }^{10}$ G. Punzi ${ }^{b b},{ }^{44}$ J. Pursley, ${ }^{58}$ A. Rahaman, ${ }^{45}$ V. Ramakrishnan, ${ }^{58}$
N. Ranjan, ${ }^{46}$ I. Redondo, ${ }^{29}$ P. Renton, ${ }^{40}$ M. Rescigno, ${ }^{49}$ F. Rimondi ${ }^{z},{ }^{6}$ L. Ristori ${ }^{45},{ }^{15}$ A. Robson, ${ }^{19}$
T. Rodrigo, ${ }^{9}$ T. Rodriguez, ${ }^{43}$ E. Rogers, ${ }^{22}$ S. Rolli, ${ }^{54}$ R. Roser, ${ }^{15}$ M. Rossi, ${ }^{52}$ F. Rubbo, ${ }^{15}$ F. Ruffini ${ }^{c c},{ }^{44}$ A. Ruiz, ${ }^{9}$ J. Russ, ${ }^{10}$ V. Rusu, ${ }^{15}$ A. Safonov, ${ }^{51}$ W.K. Sakumoto, ${ }^{47}$ Y. Sakurai, ${ }^{56}$ L. Santi ${ }^{f f},{ }^{52}$ L. Sartori, ${ }^{44}$ K. Sato, ${ }^{53}$ V. Saveliev ${ }^{t},{ }^{42}$ A. Savoy-Navarro, ${ }^{42}$ P. Schlabach, ${ }^{15}$ A. Schmidt, ${ }^{24}$ E.E. Schmidt, ${ }^{15}$ M.P. Schmidt* ${ }^{59}$ M. Schmitt, ${ }^{36}$ T. Schwarz, ${ }^{7}$ L. Scodellaro, ${ }^{9}$ A. Scribano ${ }^{c c},^{44}$ F. Scuri, ${ }^{44}$ A. Sedov, ${ }^{46}$ S. Seidel, ${ }^{35}$ Y. Seiya, ${ }^{39}$ A. Semenov,,13 F. Sforza ${ }^{b b},{ }^{44}$ A. Sfyrla, ${ }^{22}$ S.Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{27}$ P.F. Shepard, ${ }^{45}$ M. Shimojima ${ }^{s},{ }^{53}$ S. Shiraishi, ${ }^{11}$ M. Shochet, ${ }^{11}$ I. Shreyber, ${ }^{34}$ A. Simonenko, ${ }^{13}$ P. Sinervo, ${ }^{31}$ A. Sissakian* ${ }^{13}$ K. Sliwa, ${ }^{54}$ J.R. Smith, ${ }^{7}$ F.D. Snider, ${ }^{15}$ A. Soha, ${ }^{15}$ S. Somalwar, ${ }^{50}$ V. Sorin, ${ }^{4}$ P. Squillacioti, ${ }^{15}$ M. Stancari, ${ }^{15}$ M. Stanitzki, ${ }^{59}$ R. St. Denis, ${ }^{19}$ B. Stelzer, ${ }^{31}$ O. Stelzer-Chilton, ${ }^{31}$ D. Stentz, ${ }^{36}$ J. Strologas, ${ }^{35}$ G.L. Strycker, ${ }^{32}$ Y. Sudo, ${ }^{53}$ A. Sukhanov, ${ }^{16}$ I. Suslov, ${ }^{13}$ K. Takemasa, ${ }^{53}$ Y. Takeuchi, ${ }^{53}$ J. Tang, ${ }^{11}$ M. Tecchio, ${ }^{32}$ P.K. Teng, ${ }^{1}$ J. Thom ${ }^{g},{ }^{15}$ J. Thome, ${ }^{10}$ G.A. Thompson, ${ }^{22}$ E. Thomson, ${ }^{43}$ P. Ttito-Guzmán, ${ }^{29}$ S. Tkaczyk, ${ }^{15}$ D. Toback, ${ }^{51}$ S. Tokar, ${ }^{12}$ K. Tollefson, ${ }^{33}$ T. Tomura, ${ }^{53}$ D. Tonelli, ${ }^{15} \mathrm{~S}$. Torre, ${ }^{17} \mathrm{D}$. Torretta, ${ }^{15} \mathrm{P}$. Totaro ${ }^{f f},{ }^{52} \mathrm{M}$. Trovato ${ }^{d d},{ }^{44} \mathrm{Y} . \mathrm{Tu},{ }^{43}$ F. Ukegawa, ${ }^{53}$ S. Uozumi, ${ }^{25}$ A. Varganov, ${ }^{32}$ F. Vázquez ${ }^{k},{ }^{16}$ G. Velev, ${ }^{15}$ C. Vellidis, ${ }^{3}$ M. Vidal, ${ }^{29}$ I. Vila, ${ }^{9}$ R. Vilar, ${ }^{9}$ J. Vizán, ${ }^{9}$ M. Vogel, ${ }^{35}$ G. Volpi ${ }^{b b},{ }^{44}$ P. Wagner, ${ }^{43}$ R.L. Wagner, ${ }^{15}$ T. Wakisaka, ${ }^{39}$ R. Wallny, ${ }^{8}$ S.M. Wang, ${ }^{1}$ A. Warburton, ${ }^{31}$ D. Waters, ${ }^{28}$ M. Weinberger, ${ }^{51}$ W.C. Wester III, ${ }^{15}$ B. Whitehouse, ${ }^{54}$ D. Whiteson ${ }^{c},{ }^{43}$ A.B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{15}$ S. Wilbur, ${ }^{11}$ F. Wick, ${ }^{24}$ H.H. Williams, ${ }^{43}$ J.S. Wilson, ${ }^{37}$ P. Wilson, ${ }^{15}$ B.L. Winer, ${ }^{37}$ P. Wittich ${ }^{g},{ }^{15} \mathrm{~S}$. Wolbers, ${ }^{15} \mathrm{H}$. Wolfe, ${ }^{37}$ T. Wright, ${ }^{32} \mathrm{X}$. Wu, ${ }^{18} \mathrm{Z}$. Wu, ${ }^{5} \mathrm{~K}$. Yamamoto, ${ }^{39}$ J. Yamaoka, ${ }^{14}$ T. Yang, ${ }^{15}$ U.K. Yang ${ }^{p},{ }^{11}$ Y.C. Yang, ${ }^{25}$ W.-M. Yao, ${ }^{26}$ G.P. Yeh, ${ }^{15}{ }^{15}$ K. Yi ${ }^{m},{ }^{15}$ J. Yoh, ${ }^{15}$ K. Yorita, ${ }^{56}$ T. Yoshida ${ }^{j},{ }^{39}$ G.B. Yu, ${ }^{14}$ I. Yu, ${ }^{25}$ S.S. Yu, ${ }^{15}$ J.C. Yun, ${ }^{15}$ A. Zanetti, ${ }^{52}$ Y. Zeng, ${ }^{14}$ and S. Zucchelli ${ }^{z 6}$ (CDF Collaboration ${ }^{\dagger}$)
${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6}$ Istituto Nazionale di Fisica Nucleare Bologna, ${ }^{z}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{9}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{10}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{11}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{12}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{13}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{14}$ Duke University, Durham, North Carolina 27708, USA
${ }^{15}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{16}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{17}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{18}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{19}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{20}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{21}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland ${ }^{22}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{23}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{24}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{25}$ Center for High Energy Physics: Kyungpook National University,
Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746,
Korea; Korea Institute of Science and Technology Information,
Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
${ }^{26}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{27}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{28}$ University College London, London WC1E 6BT, United Kingdom
${ }^{29}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

${ }^{30}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{31}$ Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T $2 A 3$
${ }^{32}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{33}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{34}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{35}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{36}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{37}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{38}$ Okayama University, Okayama 700-8530, Japan
${ }^{39}$ Osaka City University, Osaka 588, Japan
${ }^{40}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{41}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ${ }^{a a}$ University of Padova, I-35131 Padova, Italy
${ }^{42}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
${ }^{43}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{44}$ Istituto Nazionale di Fisica Nucleare Pisa, ${ }^{b b}$ University of Pisa,
${ }^{c c}$ University of Siena and ${ }^{\text {dd }}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{45}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{46}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{47}$ University of Rochester, Rochester, New York 14627, USA
${ }^{48}$ The Rockefeller University, New York, New York 10065, USA
${ }^{49}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,
${ }^{e e}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{50}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{51}$ Texas A $\mathcal{M} M$ University, College Station, Texas 77843, USA
${ }^{52}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ${ }^{f f}$ University of Trieste/Udine, I-33100 Udine, Italy
${ }^{53}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{54}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{55}$ University of Virginia, Charlottesville, VA 22906, USA
${ }^{56}$ Waseda University, Tokyo 169, Japan
${ }^{57}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{58}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{59}$ Yale University, New Haven, Connecticut 06520, USA
(Dated: February 1, 2011)

The observation of the $Y(4140)$ structure in $B^{ \pm} \rightarrow J / \psi \phi K^{ \pm}$decays produced in $\bar{p} p$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $J / \psi \phi$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19 ± 6 (stat) ± 3 (syst) resonance events, and resonance mass and width of $4143.4_{-3.0}^{+2.9}$ (stat) ± 0.6 (syst) MeV / c^{2} and $15.3_{-6.1}^{+10.4}$ (stat) ± 2.5 (syst) MeV / c^{2} respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.

PACS numbers: $14.40 . \mathrm{Gx}, 13.25 . \mathrm{Gv}, 12.39 . \mathrm{Mk}$

The existence of exotic mesons beyond $q \bar{q}$ has been dis-

*Deceased

${ }^{\dagger}$ With visitors from ${ }^{a}$ University of Massachusetts Amherst, Amherst, Massachusetts 01003, ${ }^{b}$ Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ${ }^{c}$ University of California Irvine, Irvine, CA 92697, ${ }^{d}$ University of California Santa Barbara, Santa Barbara, CA $93106{ }^{e}$ University of California Santa Cruz, Santa Cruz, CA 95064, ${ }^{f}$ CERN,CH1211 Geneva, Switzerland, ${ }^{g}$ Cornell University, Ithaca, NY 14853, ${ }^{h}$ University of Cyprus, Nicosia CY-1678, Cyprus, ${ }^{i}$ University College Dublin, Dublin 4, Ireland, ${ }^{j}$ University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, ${ }^{k}$ Universidad Iberoamericana, Mexico D.F., Mexico, ${ }^{l}$ Iowa State University, Ames, IA 50011, ${ }^{m}$ University of Iowa, Iowa City, IA 52242, ${ }^{n}$ Kinki University,

Higashi-Osaka City, Japan 577-8502, ${ }^{\circ}$ Kansas State University, Manhattan, KS 66506, ${ }^{p}$ University of Manchester, Manchester M13 9PL, England, ${ }^{q}$ Queen Mary, University of London, London, E1 4NS, England, ${ }^{r}$ Muons, Inc., Batavia, IL 60510, ${ }^{s}$ Nagasaki Institute of Applied Science, Nagasaki, Japan, ${ }^{t}$ National Research Nuclear University, Moscow, Russia, ${ }^{u}$ University of Notre Dame, Notre Dame, IN 46556, ${ }^{v}$ Universidad de Oviedo, E-33007 Oviedo, Spain, ${ }^{w}$ Texas Tech University, Lubbock, TX 79609, ${ }^{x}$ Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, ${ }^{y}$ Yarmouk University, Irbid 211-63, Jordan, ${ }^{g g}$ On leave from J. Stefan Institute, Ljubljana, Slovenia,
cussed for many years [1], but evidence for such mesons has not been clearly established. The recent discoveries of states with charmonium-like decay modes 2 5] that do not fit into the overall charmonium system have introduced challenges to the conventional $q \bar{q}$ meson model. The possible interpretations beyond $q \bar{q}$ such as hybrid ($q \bar{q} g$) and four-quark states ($q \bar{q} q \bar{q}$) have revitalized interest in exotic mesons in the charm sector [6-11].

Recently, the CDF collaboration has reported evidence for a narrow structure near the $J / \psi \phi$ threshold in $B^{+} \rightarrow J / \psi \phi K^{+}$decays produced in $\bar{p} p$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ 12]. Charge conjugation is implied throughout this letter. Since the mass of this state, termed $Y(4140)$, is well beyond the threshold of open charm-pair production, the expected branching fraction into this channel for conventional charmonium is tiny. The structure is the first observed charmonium-like object decaying into a pair of quarkonium states ($c \bar{c}$ and $s \bar{s}$) with a relative narrow width, a possible signature for an exotic meson [7, 11, 13, 14]. The Belle collaboration has searched for this $J / \psi \phi$ structure without a firm conclusion near the $J / \psi \phi$ threshold [15].

In this Letter, we report a further study of the structures in the $J / \psi \phi$ system produced in exclusive $B^{+} \rightarrow$ $J / \psi \phi K^{+}$decays with $J / \psi \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$ reported in Ref. [12]. This analysis is based on a sample of $\bar{p} p$ collision data collected by the CDF II detector with an integrated luminosity of $6.0 \mathrm{fb}^{-1}$. This analysis includes the data used in, and supersedes the results of Ref. 12].

The CDF II detector has been described in detail elsewhere [16]. The important components for this analysis include the tracking, muon, and time-of-flight (TOF) systems. The tracking system is composed of a silicon-strip vertex detector surrounded by an open-cell drift chamber system (COT) located inside a solenoid with a 1.4 T magnetic field. The COT and silicon-strip vertex detector are used for the measurement of charged-particle trajectories and decay locations. In addition, the COT provides ionization energy loss information, $d E / d x$, used for kaon discrimination, while the TOF system provides complementary kaon discrimination information. The central muon identification system is located radially outside the electromagnetic and hadronic calorimeters and consists of two sets of drift chambers and scintillation counters. The central detector covers the pseudorapidity region $|\eta| \leq 0.6$ and detects muons with $p_{T} \geq 1.4 \mathrm{GeV} / c$ [17], and the outer part covers the region $0.6<|\eta|<1.0$ and detects muons with $p_{T} \geq 2.0 \mathrm{GeV} / c$.

In this analysis, $J / \psi \rightarrow \mu^{+} \mu^{-}$events are recorded using a dedicated three-level dimuon trigger. The first trigger level requires two muon candidates with two COT tracks that extrapolate to track segments in the muon detectors. The second level applies additional kinematic requirements to the muon pair candidate. The third level requires the invariant mass of the $\mu^{+} \mu^{-}$pair to be within
the mass range of 2.7 to $4.0 \mathrm{GeV} / c^{2}$. The trigger requirements are confirmed offline.

We apply the same requirements described in the previous analysis [12] to the current data. We form $B^{+} \rightarrow$ $J / \psi \phi K^{+}$candidates by combining a $J / \psi \rightarrow \mu^{+} \mu^{-}$candidate, a $\phi \rightarrow K^{+} K^{-}$candidate, and an additional charged track, which are consistent with originating from a common point. The three hadronic tracks must be identified as kaon candidates by using a log-likelihood ratio estimator. This quantity reflects how well a candidate track can be positively identified as a kaon relative to other hadrons with its $d E / d x$ and TOF information and must exceed 0.2 [18]. The reconstructed masses of the J / ψ and ϕ meson candidates must lie within 50 and $7 \mathrm{MeV} / c^{2}$ of their nominal values, respectively. In the final B^{+}reconstruction the $\mu^{+} \mu^{-}$mass is constrained to the known J / ψ mass [1] and the B^{+}candidates must have $p_{T}>4 \mathrm{GeV} / c$. In addition, we require $L_{x y}\left(B^{+}\right)>500 \mu \mathrm{~m}$ for the $B^{+} \rightarrow J / \psi \phi K^{+}$candidate, where $L_{x y}\left(B^{+}\right)$is the projection onto $\vec{p}_{T}\left(B^{+}\right)$of the vector connecting the primary interaction point, determined for each event using prompt tracks, to the reconstructed B^{+}decay point.

The invariant mass spectrum of the selected $J / \psi \phi K^{+}$ candidates is shown in Fig. [1(a). It is fit with a Gaussian signal function with its root-mean-square (RMS) width fixed to the mass resolution of $5.9 \mathrm{MeV} / c^{2}$ obtained from Monte Carlo (MC) simulation [19] and mean fixed to the nominal B^{+}mass [1] and a linear background function. The B^{+}yield is 115 ± 12 (stat) events, a 53% increase over the previous analysis. This increase in yield, for an integrated luminosity increased by a factor of 2.2 , is reduced by a trigger rate limitation at the higher instantaneous luminosities for the later data-taking period. The yield increase in the complementary mode $B^{+} \rightarrow J / \psi \pi^{+} \pi^{-} K^{+}$is $51.8 \pm 2.4 \%$, consistent with the yield increase in $B^{+} \rightarrow J / \psi \phi K^{+}$channel.

We then select B^{+}signal candidates with a mass within $\pm 3 \mathrm{RMS}\left(\pm 17.7 \mathrm{MeV} / c^{2}\right)$ of the nominal B^{+} mass. Events with a mass within $[-9,-6]$ RMS or $[+6,+9]$ RMS of the nominal B^{+}mass are called B sideband events. They are normalized into the B^{+}signal region assuming a linear background distribution. The J / ψ signal, checked by removing its mass constraint, contains almost no background. Figure 1(b) shows the invariant mass distribution of the $K^{+} K^{-}$pairs from $J / \psi K^{+} K^{-} K^{+}$candidates inside the B mass window and in the B sidebands before applying the restriction on the $K^{+} K^{-}$mass. The clear ϕ signal inside the B mass window and almost featureless $K^{+} K^{-}$mass distribution in the B sideband indicate that the $B^{+} \rightarrow$ $J / \psi K^{+} K^{-} K^{+}$final state is well described as $J / \psi \phi K^{+}$. In none of the candidate events do both $K^{+} K^{-}$combinations from the three-kaon final state fall into the ϕ mass window.

Fig. 2 shows the mass difference $\Delta M=$

FIG. 1: (a) The mass distribution of $J / \psi \phi K^{+}$; the solid blue line is a fit to the data with a Gaussian signal function and linear background function. (b) The $K^{+} K^{-}$mass distributions inside the B mass window (black solid) and in the B sidebands (red dotted).
$m\left(\mu^{+} \mu^{-} K^{+} K^{-}\right)-m\left(\mu^{+} \mu^{-}\right)$for events in the B^{+} mass window. Events from reference 12] and from new data are shown in (a) top and bottom. In the $Y(4140)$ signal region ($\Delta M<1.07 \mathrm{GeV} / c^{2}$), the new data agree within 1σ of the expectation (6 events compared to 7.3 expected). Over the entire examined region the two data sets are consistent at the 7% probability level. We have investigated the consistency of particle ID for the two data sets using the $B^{+} \rightarrow J / \psi K^{+}$channel and see no discrepant effects. In (b) and (c), we display ΔM distributions for the events in the B signal and sideband in the combined data sample. We restrict our study to events with ΔM smaller than $1.56 \mathrm{GeV} / c^{2}$ to avoid appreciable combinatorial backgrounds from misidentified $B_{s}^{0} \rightarrow \psi(2 S) \phi \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right) \phi$ decays 12]. An enhancement is observed near the $J / \psi \phi$ threshold from the B^{+}signal while there are no events in the ΔM range below $1.1 \mathrm{GeV} / c^{2}$ from the combinatorial background estimated from B sideband events.

We model the observed threshold structure by an S wave relativistic Breit-Wigner (BW) function [21] convoluted with a Gaussian resolution function with the RMS fixed to $1.7 \mathrm{MeV} / \mathrm{c}^{2}$ obtained from MC. Three-body phase space (1) is used to describe the background shape. There is still a small B_{s}^{0} contribution (3.3 ± 1.0 events) in the ΔM distribution up to 1.56 GeV . The MC shape of the B_{s}^{0} contribution is normalized to this area and added to the three-body phase space. The parameters from an unbinned likelihood fit to the ΔM distribution, as shown in Fig. [2(b), are given in Table To test the hypothesis that the structure has zero width (weak decay), we also fit the ΔM distribution to a zero-width peak, using a single Gaussian with RMS given by the expected mass resolution $\left(1.7 \mathrm{MeV} / c^{2}\right)$, plus phase space background. The statistical significance for a non-zero width determined by the likelihood ratio between these two fits is 3.7σ, favoring a strong decay (non-zero width) rather than a weak decay for this structure.

FIG. 2: (a) The mass difference, ΔM, between $\mu^{+} \mu^{-} K^{+} K^{-}$ and $\mu^{+} \mu^{-}$, in the B^{+}mass window. Top-data from Ref. [12], bottom-new data. (b) A fit to the combined data assuming $Y(4140)$ only. (c) A fit to the combined data assuming two structures. This fit, including the second peak, lowers the 3-body phase space background under the first peak and increases its yield and significance with negligible effect on its resonance parameters. The shaded histogram is the data from the B sideband. The dotted blue curve is the predicted background contribution, the dash-dotted black curve is the predicted B_{s}^{0} contamination, and the solid red curve is the total unbinned fit.

The combinatorial background contains primarily misidentified ϕ candidates, as can be seen in Fig. [(b). These two tracks with a ϕ-like mass will be combined with a real J / ψ, and an additional kaon candidate, all having a common vertex and forming a B mass. We model this component with phase space. To check this assumption, we performed several studies in which we relaxed cuts that would not influence the mass-difference distribution of events from the B mass region: loosened vertex requirements or loosened $L_{x y}$ cuts. These studies show that the combinatoric background from the B sideband region is consistent with 3 -body phase space. We can now conclude that the flat background hypothesis used in the previous paper [12] was overly conservative.

We determine the significance of the structure at the $J / \psi \phi$ threshold based on simulation. We generated 8.4×10^{7} mass spectra (119 events for each, corresponding to the number of observed events) drawn from a three-body phase-space-like distribution, and search for the most significant fluctuation in each spectrum in the mass range of 1.02 to $1.56 \mathrm{GeV} / c^{2}$, with widths in the range of resolution up to $120 \mathrm{MeV} / c^{2}$ [12]. We evaluate $2 \Delta \ln \mathcal{L}=-2 \ln \left(\mathcal{L}_{0} / \mathcal{L}_{\text {max }}\right)$ value for each generated spectrum, where \mathcal{L}_{0} and $\mathcal{L}_{\text {max }}$ are the likelihood values for the null hypothesis fit and signal hypothesis fit. Both fits use three-body phase space to describe the background. There are 19 generated spectra with a $2 \Delta \ln \mathcal{L}$ value greater than or equal to the value (34.9 obtained in the data assuming the $Y(4140)$ structure only [23]) obtained in the data. The resulting p-value, taken as the fraction of the generated spectra with a $2 \Delta \ln \mathcal{L}$ value greater than or equal to the value obtained in the data,
is 2.3×10^{-7}, corresponding to a significance greater than 5.0σ [24].

The mass of this enhancement is $4143.4_{-3.0}^{+2.9} \mathrm{MeV} / c^{2}$ after adding the J / ψ mass [1] to the ΔM calculation. To study the systematic uncertainties of the mass, width, and yield, we repeat the fit to the ΔM distribution using a non-relativistic BW and P-wave relativistic BW for signal. Other systematic uncertainties were also considered, including assuming the existence of the second structure, varying the mass resolution and B_{s}^{0} component amplitude, as well as the systematic uncertainty due to the particle identification. The resulting systematic uncertainties for the measured quantities are shown in Table I.

TABLE I: The fit results for $J / \psi \phi$ resonance near threshold. The first uncertainty is statistical, and the second one is systematic.

$\Delta M\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	Width $\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	Yield
$1046.7_{-3.0}^{+2.9} \pm 0.6$	$15.3_{-6.1}^{+10.4} \pm 2.5$	$19 \pm 6 \pm 3$

The relative trigger and reconstruction efficiency $\epsilon\left(B^{+} \rightarrow Y(4140) K^{+}\right) \times \epsilon(Y(4140) \rightarrow J / \psi \phi) / \epsilon\left(B^{+} \rightarrow\right.$ $J / \psi \phi K^{+}$) is determined to be 1.1, using an S-wave BW with mean and width values determined from data to represent the $Y(4140)$ structure and a three-body phase space kinematics for the $B^{+} \rightarrow J / \psi \phi K^{+}$decay. Thus the relative branching fraction $\mathcal{B}_{\text {rel }}=$ $\mathcal{B}\left(B^{+} \rightarrow Y(4140) K^{+}\right) \times \mathcal{B}(Y(4140) \rightarrow J / \psi \phi) / \mathcal{B}\left(B^{+} \rightarrow\right.$ $J / \psi \phi K^{+}$) including systematic uncertainties is $0.149 \pm$ 0.039 (stat) ± 0.024 (syst).

An excess above the three-body phase space background shape appears at approximately $1.18 \mathrm{GeV} / c^{2}$ in Fig. 2 (b). Since the significance of $Y(4140)$ is greater than 5σ, we assume the existence of the $Y(4140)$ with the parameters given in Table \square and background given by three-body phase space, and we test for the existence of a possible structure around $1.18 \mathrm{GeV} / c^{2}$ as shown in Fig. 2 (c). The signal PDF for the second structure is an S-wave relativistic BW function [21] convoluted with a Gaussian resolution function with the RMS fixed to $3.0 \mathrm{MeV} / c^{2}$ obtained from MC . For the second structure $-2 \ln \left(\mathcal{L}_{0} / \mathcal{L}_{\text {max }}\right)$ is 16.8 , where \mathcal{L}_{0} and $\mathcal{L}_{\text {max }}$ are the likelihood values for the null hypothesis fit assuming the $Y(4140)$-only and signal hypothesis fit assuming the $Y(4140)$ and a second structure near ΔM $\simeq 1.18 \mathrm{GeV} / c^{2}$. The p-value determined by a simulation similar to the $Y(4140)$ investigation is 1.1×10^{-3}, which corresponds to a significance of 3.1σ. The fit returns a yield of 22 ± 8 events, a ΔM of $1177.7_{-6.7}^{+8.4}$ MeV / c^{2}, and a width of $32.3_{-15.3}^{+21.9} \mathrm{MeV} / c^{2}$ for the structure near $\Delta M \simeq 1.18 \mathrm{GeV} / c^{2}$. Refitting the ΔM distribution with a second structure produces negligible changes in the mass and width of the $Y(4140)$. The yield of
the $Y(4140)$ increases by one event. We evaluated the systematic uncertainties for the second structure in the same way as for the $Y(4140)$ structure and found systematic uncertainties of $1.9 \mathrm{MeV} / c^{2}$ for the mass and $7.6 \mathrm{MeV} / c^{2}$ for the width. The mass of the second structure is $4274.4_{-6.7}^{+8.4}($ stat $) \pm 1.9$ (syst) MeV / c^{2} after including the world-average J / ψ mass.

In summary, the increased $B^{+} \rightarrow J / \psi \phi K^{+}$sample at CDF enables us to observe the $Y(4140)$ structure with a significance greater than 5σ. Assuming an S-wave relativistic BW, the mass and width of this structure are measured to be $4143.4_{-3.0}^{+2.9}$ (stat) ± 0.6 (syst) $\mathrm{MeV} / \mathrm{c}^{2}$ and $15.3_{-6.1}^{+10.4}$ (stat) ± 2.5 (syst) MeV / c^{2}, respectively. They are consistent with the previous report ($m=4143.0 \pm$ 2.9 (stat) ± 1.2 (syst) $\mathrm{MeV} / c^{2}, \quad \Gamma=11.7_{-5.0}^{+8.3}$ (stat) \pm 3.7 (syst) $\mathrm{MeV} / \mathrm{c}^{2}$ [12]. The relative branching fraction is determined to be $\mathcal{B}_{\text {rel }}=0.149 \pm 0.039$ (stat) ± 0.024 (syst). Light meson vector-vector threshold enhancements have been seen [22]. We do not know of any non-exotic mechanism for producing a threshold enhancement involving a pair of heavy quarkonium states, but we cannot exclude the possibility. We also find evidence for a second structure with a mass of $4274.4_{-6.7}^{+8.4}$ (stat) ± 1.9 (syst) MeV / c^{2}, a width of $32.3_{-15.3}^{+21.9}($ stat $) \pm 7.6$ (syst) MeV / c^{2} and a yield of 22 ± 8 events. The significance of the second structure is estimated to be approximately 3.1σ.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We wish to thank E. Eichten, S. Brodsky and C. Quigg for helpful discussions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
[1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[2] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 072001 (2004); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 93, 162002 (2004); B. Aubert et al. (BABAR Collabora-
tion), Phys. Rev. D 71, 071103(R) (2005).
[3] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 94, 182002 (2005); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 101, 082001 (2008).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 212001 (2007); X. L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007); S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 100, 142001 (2008); R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 78, 072004 (2008); P. Pakhlov et al. (Belle Collaboration), Phys. Rev. Lett. 100, 202001 (2008).
[6] E. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69, 094019 (2004); E. Eichten, S. Godfrey, H. Mahlke, and J. Rosner, Rev. Mod. Phys. 80, 1161 (2008).
[7] S. L. Zhu, Phys. Lett. B 625, 212 (2005); F. Close and P. Page, Phys. Lett. B 628, 215 (2005).
[8] E. S. Swanson, Phys. Lett. B 588, 189 (2004).
[9] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys. Rev. D 72, 031502(R) (2005); D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 58, 399 (2008).
[10] Yu. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D 77, 054025 (2008); P. Hasenfratz, R. R. Horgan, J. Kuti, and J. -M. Richard, Phys. Lett. B 95, 299 (1980); S. Perantonis and C. Michael, Nucl. Phys. B347, 854 (1990); C. Bernard et al., Phys. Rev. D 56, 7039 (1997); X. Liao and T. Manke, arXiv:hep-lat/0210030
[11] N. V. Drenska, R. Faccini, and A. D. Polosa, arXiv:hepph/0902.2803v1.
[12] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242002 (2009).
[13] F. E. Close et al., Phys. Rev. D 57, 5653 (1998); F. E. Close and S. Godfrey, Phys. Lett. B 574210 (2003).
[14] X. Liu and S. Zhu, Phys. Rev. D 80, 017502 (2009); N. Mahajan, Phys. Lett. B 679, 228 (2009); Z. Wang, Eur. Phys. J. C 63, 115 (2009); T. Branz et al., Phys. Rev. D 80, 054019 (2009); R. Albuquerque et al., Phys. Lett. B 678, 186 (2009); X. Liu, Phys. Lett. B 680, 137 (2009); G Ding, Eur. Phys. J. C 64, 297 (2009); J. Zhang and M. Huang, Phys. Rev. D 80, 056004 (2009); F. Stancu, J. Phys. G 37, 075017 (2010);
T. Branz et al., arXiv:1001.3959 [hep-ph]; K. Yamada, arXiv:1002.0410 [hep-ph].
[15] J. Brodzicka for the Belle Collaboration, Lepton Photon 2009; C. P. Shen et al., Phys. Rev. Lett. 104, 112004 (2010).
[16] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006).
[17] We use a coordinate system in which the proton beam direction is defined as the z axis. The angle θ is the usual polar angle. We define the pseudorapidity as $\eta \equiv$ $-\ln \left(\tan \frac{\theta}{2}\right)$. The transverse momentum is defined as $p_{T}=$ $p \sin \theta$, where p is the momentum measured in the tracking system.
[18] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006).
[19] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 082002 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 182002 (2008).
[20] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 071103 (2008).
$[21] \frac{d N}{d m} \propto \frac{m \Gamma(m)}{\left(m^{2}-m_{0}^{2}\right)^{2}+m_{0}^{2} \Gamma^{2}(m)}$, where $\Gamma(m)=\Gamma_{0} \frac{q}{q_{0}} \frac{m_{0}}{m}, q$ is the daughter momentum in the mother rest frame, and the 0 subscript indicates the value at the pole mass.
[22] Z. Bai et al. (Mark III Collaboration), Phys. Rev. Lett. 65, 1309-1312 (1990); Z. Ajaltouni et al. (DM2 Collaboration), Phys. Lett. B 241, 617-622 (1990); M. Ablikim et al. (BES Collaboration), Phys. Lett. B 662, 330335 (2008); M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett. 96, 162002 (2006); C. Liu et al. (Belle Collaboration), Phys. Rev. D 79, 071102 (2009); M. Ablikim et al. (BES Collaboration), Phys. Rev. D 77, 012001 (2008).
[23] The $2 \Delta \ln \mathcal{L}$ is 40.6 if allowing the existence of the second structure around ΔM of $1.18 \mathrm{GeV} / c^{2}$.
[24] Monte Carlo studies indicate that fits with small numbers of signal events tend to return statistical uncertainties that underestimate the true uncertainties, an effect that asymptotically decreases as the sample size becomes larger. Such an underestimate of the fitted parameter uncertainties does not influence the evaluation of the signal significance, which depends only on the background fluctuation probability.

