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ABSTRACT 

During the 1° year of my PhD I have worked on the evaluation of similarity 

measures commonly used in many bioinformatics applications. The increasing 

amount of data available in public database requires the development of tools for 

analysing them, so proper evaluation of similarity is becoming very important. 

Regarding the methodology that can be employed to evaluate proximity measures 

we pay attention to the concept of intrinsic separation ability, i.e. how well a distance 

discriminates objects belonging to different classes based on distance. The work I 

performed with Prof Fogolari was focused on finding the best similarity measure, 

and to compare known proximity measures versus the fraction enrichment proximity 

score (FES - developed by us) to assess the similarity among experiments and to 

identify genes that mostly contribute to similarity. During the 2° year, supervised by 

Prof.ssa Romualdi of Padua, I have generated a ChIP-seq data analysis pipeline 

exploiting the heterogeneity of different algorithms with the aim to extend graphite 

(bioconductor package) pathways annotation. Specifically, given a ChIP-seq result of 

a transcription factor, pathways annotation was expanded adding to the network the 

transcription factor (node) whose target genes were already annotated in the 

pathway. To this aim, ChIP-seq ENCODE datasets (important resource to improve 

pathway annotation) were used. During the 3° year, collaborating with Prof. Tell, I 

have worked on ChIP-seq and RIP-seq data analysis. First of all, I have generated a 

ChIP-seq data analysis pipeline with the aim to identify target genes directly 

regulated by APE1 during oxidative stress condition. The identification of target 

genes was performed by ChIP-seq analysis in order to identify APE1 preferential 

promoter binding sites. Then, by using RIP-seq data, I investigated the biological 

significance of the RNA bound by APE1 using several online tools. Gene Ontology 

analysis of biological functions was performed using DAVID online tool 

(https://david.ncifcrf.gov/). Interactions among proteins were identified by STRING 

(http://string-db.org). miRNA/mRNA targets were identified by data mining in 

miRGate (http://mirgate.bioinfo.cnio.es.). Another work I have been involved, aimed 

at studying the mef2a binding sites (common and exclusive) of GM12878 (lymphoid cell 

type) and K562 (myeloid cell type) cell lines by data mining process.

https://david.ncifcrf.gov/
http://string-db.org/
http://mirgate.bioinfo.cnio.es/
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1  INTRODUCTION 

1.1  Next generation sequencing (NGS) 

The development of Next Generation Sequencing (NGS) technologies has modified 

the way to reason about scientific approaches in the research field [1]. NGS 

technologies (Figure 1) have permitted to perform experiments that previously were 

not technically possible as well as unfavorable by an economic point of view.  

The human genome has been mapped in a lot of individuals; the challenge is to 

understand how errors in functioning lead to disease [2]. In recent years, the isolation 

and study of individual genes in a model system (traditional approaches), has been 

overcome by the generation of big data sets exploiting new high-throughput 

technologies. The integration of genomic, epigenomic, transcriptomic and proteomic 

datasets gives the possibility to answer many long standing questions [2]. In general, 

DNA-protein interactions may be detected with ChIP-seq, RNA-associated 

interaction network may be assessed by RIP-seq or CLIP-seq and the functional 

effects of constitutive and regulated splicing may be studied by RNA-seq [3]. 

 

 

Figure 1: Next Generation Sequencing provides a wide range of applications [3]. 
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1.2  Epigenomics and cancer 

In 2003, after the completion of the Human Genome Project, it became clear that the 

information for life is encoded both in the DNA sequence and in the chemical 

modifications (EPIGEN project – www.supercomputing.it/project-description). 

These chemical modifications are deposited by enzymes on DNA and on its 

associated histone proteins (EPIGEN project -www.supercomputing.it/project-

description). In eukaryotic cells chromatin is the combination of DNA and proteins, 

chromatin states may play a role in determining the transcription directly by altering 

the packing of the DNA. An eukaryotic organism contains cells having the same 

genome, each cell type is characterized by a certain epigenetic profile, there are 

hundreds of thousands of chromatin alterations that are inheritable but reversibile.  

Genome-wide mapping of protein-DNA interactions, epigenetic marks and their 

modifications (that alter gene expression while the DNA remains unchanged), is 

required for a better comprehension of transcriptional regulation and cell 

differentiation [4]. A pattern altered by epigenetic modifications is crucial for a lot of 

common human diseases, including cancer During the years, the transcriptional 

silencing of tumour-suppressor genes by CpG-island-promoter hypermethylation 

has been explored in cancer cells [5]. Genetics and epigenetics cooperate at the stages 

of cancer development, this has been found thanks to the explosion of data resulting 

from the silencing of key regulatory genes [6].  

 

 

http://www.supercomputing.it/project-description
http://www.supercomputing.it/project-description
http://www.supercomputing.it/project-description


INTRODUCTION 

 

 
9 

 

1.3  ChIP-seq 

The comprehension of transcriptional regulation mechanisms is of fundamental 

importance to have a clear and more complete overview of cell behaviour [7]. 

Protein-DNA interactions play vital roles, thus, identifying the interaction between 

transcription factors (TFs) and their binding DNA is essential to understand many 

biological processes (such as development, drug response and disease pathogenesis) 

[7]. Determining transcription factor binding sites (TFBSs) is arduous because the 

DNA segments recognized by TFs are often short and dispersed in the genome, and 

the target loci of a TF vary among tissues and physiological conditions. Chromatin 

immunoprecipitation (ChIP) followed by massively parallel sequencing (ChIP-Seq) is 

a new technology, the most widely used, to map protein-DNA interaction in 

genomes [8] and it is based on the enrichment of DNA associated with a protein of 

interest (Figure 2). Its use in studying histone modifications or nucleosomes has been 

essential in epigenetics research [9]. ChIP-seq data of genome-wide transcription 

factor binding site and chromatin modification provide precious infomation for 

studying gene regulation [10]. Compared with ChIP-chip assay (ChIP followed by 

microarray hybridization) this new technology (NGS) provides relatively high 

genomic coverage, high resolution, low noise and greater sensitivity and specificity 

while requiring a much smaller amount of starting material [11]. 

 
Figure 2: Chip-seq flowchart. POI is the protein of interest. 
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1.3.1  Immunoprecipitation with antibodies 

In this technology (ChIP) cells are initially treated with a cross-linking agent (e.g. 

formaldehyde) that links DNA-interacting proteins to the DNA, then are lysed and 

the genomic DNA is isolated and sheared, usually by sonication, into a suitable 

fragment size distribution (200-600 bps, typically used for ChIP-seq) [12]. The protein 

and its bound chromatin fragments are immunoprecipitated using an antibody 

specific to the protein. The crosslinks are then reversed and the DNA fragment 

purified is assayed to determine the sequences bound by the protein (DNA sample 

called ChIP sample) (Figure 3). Usually a control sample is prepared in parallel using 

a similar protocol, an aliquot of sheared cell lysate is not immunoprecipitated but is 

processed normally (Input DNA). ChIP sample (compared to the input) is enriched 

in DNA fragments bound by the protein of interest. 

 

Figure 3: An overview of the chromatin immunoprecipitation (ChIP) procedure [12] 
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1.3.2 Amplification and Sequencing 

The experimenter has to proceed through the following steps [13]: 

 

Library preparation:  Libraries may be constructed by a mixture of adaptor-flanked 

fragments up to a few hundred base-pairs in length. DNA fragments (from 75 to 300 

bp fragments surrounding transcription factor binding sites or histone mark 

locations) are purified, ends repaired by adding A overhang and ligated by adapters. 

 

Cluster generation: (Illumina/Solexa – Solid Phase Amplification – one DNA 

molecule per cluster). Amplified sequencing features are generated by bridge PCR, 

both forward and reverse PCR primers are attached to a solid substrate. All 

amplicons (deriving from any single template molecule during the amplification) 

stay immobilized and clustered to a single physical location. Each cluster obtained 

consist of around 1.000 clonal amplicons. It could be amplified million of clusters in 

different locations within each of eight independent lanes that are on a single flow-

cell. The flow cell is a glass support (slide dimensions) that contains 8 lanes divided 

in 120 tile. The tiles are squares in which is possible to fix around 220.000 DNA 

molecole. 

 

Sequencing:  

The amplicons are single stranded and a primer is hybridized to a sequence flanking 

the region of interest. Each sequencing cycle (single-base extension with modified 

DNA polymerase) consists of the simultaneous addition of a mixture of four 

modified deoxynucleotide species, each one has one of four fluorescent labels and a 

reversible terminating moiety (3’ hydroxyl position). Subsequently, single-base 

extension, acquisition of images (four channels) and chemical cleavage of both the 

fluorescent labels and the terminating moiety was performed. High-throughput 

sequencing often generates millions of 75 to 100 bp sequences (called short reads) 

[14] (Figure 4). 
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Figure 4: Library preparation, cluster generation and high throughput sequencing 
(bitesizebio.com/13546/sequencing-by-synthesis-explaining-the-illumina-sequencing-technology).  

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj-4MSgj6nJAhUFbhQKHZyQAWcQjRwIBw&url=http://bitesizebio.com/13546/sequencing-by-synthesis-explaining-the-illumina-sequencing-technology/&psig=AFQjCNG5zDNcVSl6fa-S6DH4g4J3ynQTbg&ust=1448456514106828


INTRODUCTION 

 

 
13 

 

1.4  The analysis of ChIP-seq data 

In this part, I describe the several steps involved in the computational analysis of 

ChIP-seq data. A flowchart of the central steps in the ChIP-seq procedure is shown in 

Figure 5. 

 

 

Figure 5: Flowchart of the ChIP-seq procedure. After mapping the raw sequence reads to a 
reference genome, the unique mapped reads are used and the significant enriched regions 
are detected from ChIP data compared to the control data [15]. 
 

 

ChIP-seq experiments generate huge amount of raw data (sequence reads) and 

effective computational analysis are crucial for uncovering biological mechanisms 

[11]. The short reads (35 bp), generated by NGS platforms, are acceptable for ChIP-

seq, even if, for certain applications (e.g. de novo genome assembly), create serious 

difficulties [11]. These reads are short in length (around 25~30bp; the latest platform 

yields reads longer up to 50~100bp) and extreme high throughput (around 750MB to 

1GB per lane). For mammalian transcription factors (TFs) and chromatin 
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modifications, which are on the order of thousands of binding sites, 20 million reads 

may be adequate [16]. Most histone marks (broader factors) and proteins with more 

binding sites (e.g. RNA Pol II) will need more reads, up to 60 million for mammalian 

ChIP-seq [17]. Reads should be filtered by applying a quality cutoff, trimmed to 

avoid lower quality bases and then mapped to the reference genome, the uniquely 

mapped reads are retine [18]. The distribution of reads shows separate peaks of read 

density on positive and negative strands [19] (Figure 6). The next step will be to 

identify regions that are significantly enriched in the ChIP sample when compared to 

the control, peak calling generates a list of enriched regions (peaks) that will be 

annotated by associating the functionally relevant genomic regions, such as gene 

promoters, transcription start sites, intergenic regions, etc [18]. 

 

 
Figure 6: Fragments cross-linked to the protein of interest and read distribution around a 
stable binding position [19]. 
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1.5  Human apurinic/apyrimidinic endonuclease 1 (APE1) 

The human apurinic/apyrimidinic endonuclease 1 (APE1) is a crucial DNA repair 

protein that acts as central enzyme in BER pathway and as regulator of the 

intracellular redox homeostasis and redox transcriptional coactivator [20]. APE1 

acquires a vital role in the maintenance of genome stability by removing the 

damaged base cleaving the abasic site to allow repair [21]. As master regulator of 

cellular response to oxidative stress, by using direct and indirect mechanisms, it acts 

by regulating the expression of genes involved in the inflammatory process and 

chemoresistance through transcriptional and post-transcriptional mechanisms. An 

overlooked mechanism through which APE1 can regulate gene expression is through 

directly binding and processing specific mRNA [22]. It has also been demonstrated 

that APE1 stimulates DNA binding of transcription factors involved in cancer 

promotion and progression [23]. APE1 is an emerging target for combination therapy 

of different cancers (i.e. ovarian, prostate, neurologic, hepatic, breast, non-small cell 

lung cancer) [24]. 
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1.6  RNA-IP (RIP)-seq 

Physical and functional interactions are important information for functional 

genomics and biology in general [2]. A great interest in RNA-protein interactions is 

booming, not just in long-standing processes such as transcription, splicing and 

translation, but also in fields such as gene regulation by RNA interference and non-

coding RNAs (www.abcam.com). Interestingly, these aspects are currently 

contaminating also the field of DNA repair, in which an emerging role of RNA 

metabolism is establishing new paradigms. RNAs in cells are primarily associated 

with RNA-binding proteins (RNABPs) to constitute ribonucleoprotein complexes but 

RNA-protein interaction drives all the steps of RNA metabolism including: quality 

control, editing and degradation. The identification of sites where RNA-binding 

proteins interact with target RNAs using Next-generation sequencing (NGS) 

technologies opens new channels to understanding the vast complexity of RNA 

regulation [25]. Initially, to study RNA-protein complexes in their cellular 

environment, the immunoprecipitation combined with microarray analysis (RIP-

CHIP), was employed; subsequently, to increase the specificity and positional 

resolution, a new strategy called RIP-seq was introduced [26]. RNA 

immunoprecipitation (RIP) is an antibody-based technique, the immunoprecipitation 

with an antibody toward a protein of interest enriches for RNA molecules actively 

bound to the target protein (www.epigenie.com). In the past, RIP studies used an 

immunoprecipitation without an agent to cross-link RNA-binding proteins to the 

RNA but there were a lot of problems to solve. Now, to improve the stability of the 

interactions, cells or tissues can be treated with formaldehyde that generates protein-

RNA cross-links (www.epigenie.com). RNA combined with high-throughput 

sequencing (RIP-seq) is a strategy to produce transcriptome-wide maps of RNA 

binding with high accuracy and resolution, it is similar in principle to ChIP-seq, the 

main difference is that the RNA targets of the protein correspond to processed 

regions of the genome with different levels of expression [27]. At the present time, 

NGS technologies applied to IP samples do not allow to sequence the entire RNA or 

DNA molecules obtained from the IP, but only a short fragment at either or both 5’ 

ends [28]. High-throughput sequencing using ILLUMINA/Solexa platform (it has 

http://www.abcam.com/
http://www.epigenie.com/
http://www.epigenie.com/
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become the method of choice for this kind of experiments), produces millions of 

sequence reads whose length does not exceed 75-100 bps [28]. Bioinformatic expertise 

is required to reconstruct, from the short reads, which were the original RNA or 

DNA sequences bound by the protein and, also, whether the respective abundance 

estimated is due to a significant enrichment. 
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2  AIM OF THE THESIS  

The work I performed during the PhD program was focused on the generation of 

robust computational pipelines useful for Next Generation Sequencing (NGS) data 

analysis in order to manage a large amount of biological data, coming from both data 

mining and experiments that exploit several technologies (ChIP-seq, RIP-seq, RNA-

seq, and so on), aimed at obtaining reliable results. Comparing experiments from 

different technologies prompted refinement and testing of non-conventional 

similarity measures based on ranking the data. The last part of my work also dealt 

with data interpretation in the biological context. 
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3  MATERIALS AND METHODS 

3.1 Downloading of ChIP-seq data from the ENCODE site  

The ChIP-seq data of transcription factors I used are publicly available in the 

ENCyclopedia Of DNA Elements (ENCODE) site 

(https://genome.ucsc.edu/ENCODE/). The (ENCODE) project is an international 

research consortium, aimed at identifying all functional elements in the human 

genome sequence (https://www.encodeproject.org/). In 2007 researchers, after a 

pilot phase, started a second phase of technology development closed in September 

2012 with the generation of high throughput data on functional elements (Figure 1), 

signaled by several publications [29]. They noticed that 80.4% of the human genome 

displays some functionality in at least one cell type revealed by the production of 

1640 datasets focusing on 24 standard types of experiment within 147 different cell 

types. The consortium aims to annotate, using a correctly-annotated gene reference, 

all evidence-based gene features, including all protein-coding loci with alternatively 

transcribed variants, pseudogenes and non-coding loci with transcript evidence, in 

the whole human genome using a combination of manual annotation, computational 

analysis and experimental validation. 

 

Figure 1: ENCODE provides a wide range of data types (https://www.encodeproject.org/). 

https://genome.ucsc.edu/ENCODE/
https://www.encodeproject.org/
https://www.encodeproject.org/
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3.2  Quality control using FASTQC as tool 

Before starting with the computational analysis, it is important to assess the quality 

of the raw sequence data to identify possible sequencing errors or biases. FastQC is a 

freely available tool (www.bioinformatics.babraham.ac.uk/projects/fastqc) that 

provides a simple way to do some quality control checks on these raw sequence data 

through a modular set of analyses. It supports a lot of file formats (e.g. BAM, SAM).  

The QC report of results (summary graphs and tables) provides an overview of the 

areas where it’s possible to find errors originated both in the sequencer and in the 

starting library material. In the upper part of the HTML report there is a summary of 

the several modules run and a brief evaluation of the results for each module that 

could be entirely normal (green tick), slightly abnormal (orange triangle) or unusual 

(red cross) (Figure 2) based on individual base frequency and overall sequence 

randomness and diversity. 

 

 

Figure 2: A quick overview to see in which areas there may be problems 
(www.bioinformatics.babraham.ac.uk/projects/fastqc). 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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3.3  Trimming using TRIMMOMATIC as tool 

Technical sequences (known sequences coming from the technology such as 

adapters) should be eliminated during the library preparation but they usually can 

be found in NGS data even doing an optimal downstream analysis [30]. 

Trimmomatic is an efficient preprocessing tool , suitable to eliminate adaptors, that 

combines flexibility, correct handling of paired-end data and high performance. It is 

designed to work on paired-end data and it has been optimized for Illumina NGS 

data. This tool uses two processing steps to detect technical sequences within the 

reads: 

1. Simple mode  (Figure 3) – It works by finding a minimum overlap between 

the reads and the technical sequences to avoid false-positive findings. 

Exploiting the local alignment it aligns each read against each technical 

sequence.    

 

Figure 3: Simple mode putative sequence alignments [30] 
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2. Palindrome mode (Figure 4) – Exploiting the global alignment (total 

alignment score of the overlapping region), it aligns the forward and reverse 

reads, associated to their adapter sequences. Palindrome mode has some 

advantages in specificity and sensitivity respect to the simple mode but it may 

only be used with paired end reads. 

 

 

Figure 4: Palindrome mode putative sequence alignments [30]. 

 
 
 
 

3.4  Alignment of sequence reads 

Alignment of reads to a reference genome, using one of the availaible mappers such 

as Bowtie [31], Bowtie 2 [32], BWA[33], should allow for 2~3 mismatches, due to 

sequencing errors [15]. The percentage of uniquely mapped reads obtained by the 

mapper varies between organisms, and for human ChIP-seq data, above 70% is 

normal, whereas less than 50% might be cause for concern [18]. The problem of 

having a low percentage of uniquely mapped reads often is due either to too much of 

amplification in the PCR step, not sufficient read length, or technical issues with the 

sequencing platform, but if the protein binds frequently in regions of repeated DNA 

it may be impossibile to avoid [18]. Employing paired-end sequencing, to reduce the 
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mapping ambiguity, can help. Multi-mapping reads will be filtered out by most 

peak-calling algorithms, even if they can lead the discovery of novel binding sites 

[34]. After mapping, the assessment (strand cross-correlation [16] or IP enrichment 

estimation) of the signal-to-noise ratio (SNR), will detect several possible failure 

modes of ChIP-seq experiment (insufficient enrichment by immunoprecipitation 

step, poor fragment-size selection, insufficient sequencing depth) [18]. Some peak-

calling algorithms, such as SPP and MACS, perform the strand cross-correlation 

analysis. 

 

 

 

3.5  Identification of enriched regions (peak shift estimation and peak detection)  

The identification of regions, that are significantly enriched in the ChIP sample 

respect to the control, is the following step [11]. By using mapped reads (enriched 

near TFBSs), a model may be built to detect peaks, the tags (forward and reverse 

strand) are shifted 1⁄2 of fragment size, right or left [15]. The peaks can be found after 

modelling the shift size of reads and detecting the significant enriched DNA regions 

[15]. 

 

3.5.1  Peak shift estimation 

The alignment of the reads (75-100 bps) to the immunoprecipitated DNA fragment 

(200-600 bps, typically used for ChIP-seq) generates two peaks (one on each strand) 

that flank the binding location of the protein of interest (this is due to the limited 

reads size). Using these peaks, the binding site can then be interpolated (Figure 5).  

The algorithm needs a reference genome size (gsize), a sonication size (bandwidth) 

and a high-confidence fold-enrichment (mfold) that works by supposing totally N 

uniquely mapped reads are obtained in a ChIP sample [15].  

All the reads are shifted by d/2 (“d” is the distance between the summits of the two 

strand peaks (forward and reverse strand)) toward the 3’ ends to the mainly expected 

transcription factor binding sites [15]. 
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Figure 5: Sequencing of reads is possible from both ends of DNA fragments. Some 
sequenced short reads aligned with forward strands and other with reverse strands generate 
two peaks (upstream and downstream of TFBS). A new peak with potential binding sites is 
obtained by shifting all reads by d/2 (“d” is the distance between the summits of the 
forward and reverse peaks) [11]. 

 
 

3.5.2  Peak detection 

A crucial analysis for ChIP-seq is to predict the regions of the genome where the 

protein is bound by finding regions significantly enriched of mapped reads (peaks) 

[18]. Sensitivity and specificity can greatly affect the number and quality of the peaks 

called, therefore they have to be considered when choosing an appropriate peak-

calling algorithm. To improve specificity, duplicate reads should be removed before 

peak calling. The enrichment metrics (p-value or false discovery rate (FDR)), for 

some peak callers, might be affected by the sequencing depth and the statistical 

model used [18]. Therefore, employing  the same p-value or False Discovery Rate 

(FDR) threshold does not guarantee that the number of peaks called are equal across 

libraries and different peak callers [35]. Some peak callers, such as MACS [36], 

support both single and paired-end reads. In an interesting paper, Benjamini and 
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Hochberg (1995), introduced the concept of false discovery rate (FDR) as a new point 

of view on the problem of multiplicity. From this new point of view, a desirable error 

rate to control can be the expected relative amount of errors among the rejected 

hypotheses. 

Below I give a brief explanation of the typical peak callers used for the ChIP-seq data 

analysis. 

 

3.5.2.1   SPP peak calling algorithm  

The idea behind SPP method is described in the paper of Kharchenko et al, 2008 [19]. 

For the analysis of ChIP-seq data there are several specifically designed R packages 

tools, SPP is one of those. It exploits the cross-correlation profile to determine 

binding peak separation distance, and to evaluate if inclusion of tags having non-

perfect alignment quality improves the cross correlation peak 

(compbio.med.harvard.edu/Supplements/ChIP-seq/tutorial.html).  

SPP peak caller was specifically designed to detect protein-binding positions with 

high accuracy estimating the false discovery rate (FDR) (Benjamini and Hochberg 

(1995)) as the number of binding positions found in the ChIP dataset, divided by that 

in the control set [37]. The method used, called window tag density (WTD), extends 

positive and negative strand tags by the required DNA fragment length to define 

binding positions to those tags having a great number of overlapping fragments, and 

score positions determined by strand-specific tags [37]. 

 

3.5.2.2    MACS2 peak calling algorithm  

MACS peak caller [36] was designed to identify read-enriched regions from ChIP-seq 

data, it can be easily used for ChIP-seq data alone, or with control sample increasing 

the specificity [38]. MACS2 (update version of MACS) is specifically designed to 

process mixed signal types (https://github.com/taoliu/MACS). This computational 

method: 

1. Removes redundant reads derived from the overamplification of ChIP-DNA 

by PCR yielding more reliable peak calls; 

https://github.com/taoliu/MACS
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2. Adjusts read position based on fragment size distribution; 

3. Calculates peak enrichment using local background normalization. 

 

 

3.5.3  Assessment of reproducibility 

At least two biological replicates of each ChIP-seq experiment are required to assess 

the reproducibility of experimental results [39]. It is important to check the 

reproducibility of both the reads, measured by computing the Pearson Correlation 

Coefficient (PCC) of the read counts at each genomic position [40] and identify peaks 

using the Irreproducible Discovery Rate (IDR) analysis [41] (threshold IDR=0.05) to 

assess the rank consistency between replicates. To use the Irreproducible Discovery 

Rate (IDR) rather than the False Discovery Rate (FDR) or the p-value (enrichment-

based metric) makes the numbers of peaks more comparable across experiments [16]. 

For unrelated samples the range of PCC is usually 0.3-0.4, instead for replicate 

samples in high-quality experiments >0.9.  

Low values of PCC suggest one of both replicates can be of low quality [18]. Before 

computing the PCC it is very important to remove the artefact regions having high 

ChIP signals.  
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3.6  Visualization of sequence reads and signals  using IGV as tool 

Visualization of sequence reads and signals is an essential component of genomic 

data analysis. Integrative Genomics Viewer (IGV) [42] is a freely available desktop 

tool, written in Java programming language (runs on Windows, Mac and Linux), for 

the visualization and real-time exploration of genomic datasets aligned to the 

selected reference genome (Figure 7). IGV is designed to be accessible to 

bioinformaticians and bench biologist as well. It supports simultaneous viewing of 

multiple datasets (same or different types of data) and several genomic file formats: 

1.  Nonindexed formats - GFF [43], BED [44] and WIG [45]; 

2.  Indexed formats - BAM (sequence alignments); 

3.  Multiresolution formats - TDF, bigWig and BigBed formats [46]. 

 

 

 Figure 7: Example of aligned forward (orange) and reverse (blue) reads and the region of 
overlap (black) (www.nature.com/nmeth/journal/v6/n4/full/nmeth.f.247.html). 

 

 

http://www.nature.com/nmeth/journal/v6/n4/full/nmeth.f.247.html


MATERIALS AND METHODS 

 

 
30 

 

3.7  Peak annotation 

To associate the ChIP-seq peaks with functionally relevant genomic regions (gene 

promoters, transcription start sites, etc), a peak annotation is needed [18]. Regions 

can be manually examined by looking for associations with annotated genomic 

features using a genome browser where to upload peaks and reads in the 

appropriate format requested by the browser. A systematic analysis may be carried 

out by computing the distance from each peak to the nearest feature (TSS). 
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3.8  Pathway annotation (graphite bioconductor package) 

For the extension of graphite pathways annotation it is important to convert the 

EnsemblGeneID in EntrezGeneID since graphite uses EntrezGene IDs and Gene 

Symbols because of their widespread use and simplicity.  

Due to their different origins and specificity, switching from an ID to another it is 

possible to find no correspondence between them 

(https://www.bioconductor.org/packages/3.3/bioc/vignettes/graphite/inst/doc/

graphite.pdf). Biological interpretation is determined by the problem under study 

(motif discovery and analysis, Gene ontology (Gene set enrichment-style analyses), 

pathway analysis, etc.) and can also require to combine information from several 

experiments and data integration (it provides a more comprehensive complex picture 

of the biological system). Romualdi's research group has recently developed 

'graphite', a bioconductor package useful to convert pathway topology to gene 

network [47]. Graphite takes the information from several databases, interprets 

pathway formats and reconstruct the correspondent gene-gene networks considering 

specific biologically driven rules. A biological pathway can be represented through a 

network (graph) where different types of genes and their interactions are, 

respectively, nodes and edges of the graph.  

An appropriate representation of a pathway is important to enable efficient 

knowledge management and integration of data coming from several sources [48]. 

There are four categories of biological networks according to the nature of their 

nodes and their interactions: metabolic pathways, gene regulatory networks, 

molecular interactions and signaling pathways [49][50]. Graphite provides networks 

(graphs) from six public databases (KEGG [51], Reactome [52], Biocarta 

(www.biocarta.org), NCI/Nature Pathway Interaction Database [53], HumanCyc [54] 

and Panther [55]). 

https://www.bioconductor.org/packages/3.3/bioc/vignettes/graphite/inst/doc/graphite.pdf
https://www.bioconductor.org/packages/3.3/bioc/vignettes/graphite/inst/doc/graphite.pdf
http://www.biocarta.org/
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3.9  Fraction enrichment score (FES)  

Similarity (or conversely distance) measures are becaming important due to the ever 

increasing amount of data available in public databases. Distance definitions, include 

Minkowski's distances (e.g. Euclidean, Manhattan), and clustering algorithms has 

been addressed by some recent works [56] [57] [58]. This project was started by the 

idea that sometimes global similarity measures have limitations due to the fact that 

only a limited set of features is responsible for the similarity and relevant signal may 

be hidden in noise. Thus, exploiting the fraction enrichment method used in the field 

of protein structure predictions [59] [60] and the method proposed by Spang and 

coworkers [61], based on the similarity of ranking in two ordered lists of genes, we 

employed a similarity measure (fraction enrichment proximity score (FES)) with the 

ability to recover similarities between different datasets comparing experiments in 

order to identify genes that best contribute to similarity. This conclusion supports the 

use of rank based proximity measures to gain further insight in datasets 

comparisons, in particular on expression data obtained by different technologies (e.g. 

RNA-seq and microarrays). 
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4  RESULTS AND DISCUSSION 

Results of the different works I did in these 3 years are split in 4 sections, as you can 

see from the underlying paragraphs. 

 

4.1  Similarity measures based on the overlap of ranked genes are 

effective for comparison and classification of microarray data (see in 

section 7 – PUBLISHED PAPER) 

Similarity measures are central to many bioinformatics applications that aim at 

inferring novel knowledge from previous knowledge. Proper evaluation of similarity 

is more and more important due to the ever increasing amount of data available in 

public databases. We can exploit them by creating several interesting datasets. 

Regarding the methodology that can be employed to evaluate proximity measures 

we pay attention to the concept of intrinsic separation ability, i. e. how well a 

distance discriminates, so how well a distance is able to separate the objects 

belonging to different classes in a dataset .  

Among the similarity measures Pearson correlation coefficient, Sperman correlation 

coefficient, Kendall tau correlation coefficient, Canberra distance, Mahnattan 

distance, Euclidean distance were the known proximity measures, whereas fraction 

enrichment proximity score (FES) was the one studied by us. All comparisons have 

been performed using a software environment for statistical computing and 

graphics, “R”. FES is used to determine the degree of overlap between our 

experiment and other experiments. We tested its performance in robustness in 

separating replicate experiments from different unrelated experiments and different 

technologies (e.g. RNA-seq and microarrays).  

Here we use the similarity measure proposed by Spang and coworkers [61] (shifted 

and scaled to bring it in the range 0 to 1, and including a linear weight decay) and: 

 we compare its ability to recover similarities between different datasets with 

classical distances and for different choices of parameters and data pre-

processing; 

 we assess the relationship between such distance and the cardinality of ranked 
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genes with most significant overlap; 

 we assess the relationship between such distance and the p-value of the 

overalap; 

 we show that it is suited to compare data acquired with different technologies. 

In the latter scenario a hybrid method like the the normalized rank-magnitude index 

based distance [62], which combines ranks and magnitudes of data, shows similar 

results, confirming its usefulness in comparing data with different scales and ranges. 

Our results support the usefulness of similarity measures based on the overlap of 

ranked genes which perform as well or better as more traditional correlation 

measures for similarity recognition. 
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4.2  Computational analysis of ChIP-seq data and pathway annotation  

During a 15-month stay in the Bioinformatics Laboratory of Professoressa Chiara 

Romualdi of Padua and under her supervision, I have worked on a ChIP-seq 

computational pipeline exploiting the heterogeneity of different algorithms with the 

aim to extend Graphite pathways annotation (KEGG, Reactome, Biocarta, Panther 

databases). Specifically, given a Chip-Seq result of a TF, pathways annotation was 

expanded adding to the network the TF (nodes, if not already annotated) whose 

target genes were already annotated in the pathway. This was an interesting work 

because although the information available in pathway annotation represents 

valuable information, only 30%-40% of coding genes are annotated in at least one 

pathway. This represents a strong limit to pathway-based transcriptome analysis. 

Thus, the presence of ChIP-seq ENCODE data 

(https://genome.ucsc.edu/ENCODE/) represents an important resource to improve 

pathway annotation. To create a robust ChIP-seq computational pipeline I 

downloaded from Encode site six raw datasets (fastQ) (Table 1): 

 

Cell line Hela-s3 Cell line Hela-s3 

Transcription Factor: Pol2 Transcription Factor: STAT1 

2 runs: Pol2_Rep1, 

             Pol2_Rep2 

2 runs: STAT1_Rep1,  

             STAT1_Rep2 

1 input: SRR357521 1 input: Standard Input 

                           Table 1: Encode six raw datasets 

 

The choice of these two datasets (Polymerase II (POL2) and Signal Transducer And 

Activator Of Transcription 1 (STAT1)) was done because they are well characterized 

Transcription Factors. Preprocessing of ChIP-seq data is important to assess the 

quality of the raw reads [18]. FastQC is a tool 

(www.bioinformatics.babraham.ac.uk/projects/fastqc) suitable to identify possible 

sequencing errors or biases. Before mapping the reads onto a reference genome, it is 

also necessary to trim the end of reads that are of low quality (the trimming was 

done using trimmomatic tool [30]). The millions of short sequence reads (75-100 bps) 

https://genome.ucsc.edu/ENCODE/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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are mapped to the reference genome (Ensembl75/hg19), we tested three different 

alignment algorithms (BWA [33], Bowtie [31], Bowtie2 [32]) and at the end we 

decided to use the new version of Bowtie (Bowtie2). Using Bowtie2 we tried several 

options in order to be sure to have only uniquely aligned reads. The identical reads 

are a problem to solve, sometimes they are noise (experimental artefact) and not 

signals [18]. Peaks (regions with high read densities) are identified by peak-calling 

algorithms. These algorithms exploits different statistical models to obtain the p-

value and the false discovery rate (FDR) (Benjamini and Hochberg (1995)), 

therefore, significance values from different peak-calling algorithms are not directly 

comparable [35]. For our work we decided to converge on two peak callers (SPP [19] 

and MACS2 (https://github.com/taoliu/MACS)) to be used in parallel for all 

analysis testing three different q-values  cut-off (0.01, 0.05 and 0.1). The q-value [63] 

is a measure of statistical significance in terms of the false discovery rate (FDR) rather 

than the false positive rate (FPR) as the p-value. We compared our results with the 

results obtained by the analysis performed by Anshul Kundaje alongside the 

ENCODE Binding working group 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeATfbsUniform). They treated the two 

replicates of each transcription factor as a pool of replicates. The Encode site 

(https://genome.ucsc.edu/ENCODE/) is not a mere deposit of ChIP-seq raw 

datasets but it is also a repository of analyzed data. 

Below I report the table of the number of peaks called by the three peak callers 

(Table 2), I explained above. 

 

Transcription 

Factors 

Run MACS2 SPP Uniform Peak Calling  

(pool of two replicates for TF) 

POL2  Rep_1 23049 26504  

15736 
POL2  Rep_2 16920 19556 

STAT1 Rep_1 11215 19954  

12629 

 

STAT1 Rep_2 18780 28224 

Table 2: Number of peaks called by the three peak callers. 

https://github.com/taoliu/MACS
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeATfbsUniform
https://genome.ucsc.edu/ENCODE/


RESULTS AND DISCUSSION 

 

 
37 

 

Peak calling gives a list of enriched regions where the protein of interest should be 

directly or indirectly associated with DNA [64]. Data visualization and exploration 

was done using the Integrative Genomics Viewer (IGV) desktop tool [42], converting 

the WIG files obtaned from SPP peak caller in TDF files (useful to visualize reads 

density). Our interest was to find the nearest features such as genes calculating the 

distance from the center of the peak to the transcription start site (TSS). The peaks 

were annotated using Ensembl75 [65] as database of gene annotation. A ChIP-seq 

peak annotation script was created suited for our purposes; target genes were found 

calculating the distance from the transcription start site (TSS) of the gene to the center 

of the peaks and selecting only peaks falling in a genomic region of 2kb from the TSS. 

A table with the number of genes closest to peaks called by the three peak callers is 

reported in the table below (MACS2 (https://github.com/taoliu/MACS), SPP [19] and 

Uniform Peak Calling) for the two transcription factors we decided to study (Table 

3). 

 

Transcription 

Factors 

Run MACS2 SPP Uniform Peak Calling  

(genes in common between the two replicates) 

POL2 Rep_1 22550 26224  

14486 

 

POL2 Rep_2 16354 10286 

STAT1 Rep_1 5292 16803  

4738 

 

STAT1 Rep_2 15452 22297 

Table 3: Number of genes closest to peaks called by three peak callers. 

 

 

 

 

Considering the target genes identified we compare the results of the caller across 

replicates (Table 4, 5). 

 

https://github.com/taoliu/MACS
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SPP (Pol2-Rep_1 vs Pol2-Rep_2) 

peaks in common between the two replicates 18620 peaks 

peaks (associated to the same gene) 17530 peaks 

peaks (call different genes) 1020 peaks 

peaks  (no associated to genes) 580 peaks 

genes in common between the two replicates 12774 genes 

Table 4: Studying of the sensitivity and specificity of SPP peak caller. 
 

 

MACS2  (Pol2-Rep_1 vs Pol2-Rep_2) 

peaks in common between the two replicates 15282 peaks 

peaks (associated to the same gene) 14081 peaks 

peaks (call different genes) 881 peaks 

peaks  (no associated to genes) 320 peaks 

genes in common between the two replicates 9578 genes 

Table 5: Studying of the sensitivity and specificity of MACS2 peak caller 

 

 

I have also checked the peaks width distribution of the three peak callers (MACS2 

(https://github.com/taoliu/MACS), SPP [19] and Uniform Peak Calling), as one can 

see from the density plots below (Figures 1, 2), in order to see how large were the 

binding regions found by the three peak callers. During the first check, using POL2 

as transcription factor, we noticed that the width of peaks called by SPP [19] was 5-6 

times larger than that called by the other two peak callers (MACS2 

(https://github.com/taoliu/MACS) and Uniform Peak Calling). In order to understand 

whether the result was confirmed, I performed the peak calling analysis a second 

time with another transcription factor (STAT1) and even in this case we obtained the 

same result (Figures 3, 4). 

https://github.com/taoliu/MACS
https://github.com/taoliu/MACS
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Figure 1: Width distribution of the three peak callers. Blue line SPP, Red line MACS2, Black 
line Uniform Peak Calling (pool of two replicates). 

 

 

Mean of the distribution of peaks width (Pol2-Rep_1 - POL2) 

 - MACS2 = 481.905 

 - SPP = 2698.953 

 - Uniform Peak Calling = 504.1407 

 

 Median of the distribution of peaks width (Pol2-Rep_1  - POL2) 

 - MACS2 = 331 

 - SPP = 2310 

           - Uniform Peak Calling = 544 
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Figure 2: Width distribution of the three peak callers. Blue line SPP, Red line MACS2, Black 
line Uniform Peak Calling (pool of two replicates). 
 

 

Mean of the distribution of peaks width (Pol2-Rep_2 - POL2) 

 - MACS2 = 499.6151 

 - SPP = 3130.317 

 - Uniform Peak Calling = 504.1407 

 

 Median of the distribution of peaks width (Pol2-Rep_2  - POL2) 

 - MACS2 = 339 

 - SPP = 2459 

           - Uniform Peak Calling = 544 

 
 
 
 
 
 

 

Density Plot 
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Figure 3: Width distribution of the three peak callers. Blue line SPP, Red line MACS2, Black 
line Uniform Peak Calling (pool of two replicates). 
 

 

Mean of the distribution of peaks width (STAT1_Rep1 - STAT1) 

 - MACS2 = 361.6215 

 - SPP = 1702.674 

 - Uniform Peak Calling = 880.051 

 

 Median of the distribution of peaks width (STAT1_Rep1 - STAT1) 

 - MACS2 = 321 

 - SPP = 1880 

 - Uniform Peak Calling = 724 

 
 
 
 
 

 

 
  



RESULTS AND DISCUSSION 

 

 
42 

 

Figure 4: Width distribution of the three peak callers. Blue line SPP, Red line MACS2, Black 
line Uniform Peak Calling (pool of two replicates). 

 

 

Mean of the distribution of peaks width (STAT1_Rep2 - STAT1) 

 - MACS2 = 360.8803 

 - SPP = 1984 

 - Uniform Peak Calling = 880.051 

 

 Median of the distribution of peaks width (STAT1_Rep2 - STAT1) 

 - MACS2 = 313 

 - SPP = 2027 

 - Uniform Peak Calling = 724 
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We tried different SPP [19] parameter settings but we obtained the same results, a 

peak width extremely large with respect to the other method.  This larger peak of 

course influences also the target annotation. Given the odd results of SPP [19] we 

decided to abandon this peak caller in favour of MACS [36] that shows a more 

similar results with the ENCODE consortium data. Summarising, during this project 

I used several algorithms of alignment (BWA [33], Bowtie [31] and Bowtie 2 [32]) and 

peak callers to compare their performance. From the results obtained we decided to 

use the new version of Bowtie (Bowtie2) for alignment and MACS2 

(https://github.com/taoliu/MACS) as peak caller (one of the most used peak 

callers) because the results were more similar to the Uniform peak calling algorithm 

(used by the Encode Binding working group). Testing several algorithms and tuning 

their functions I have generated a robust ChIP-seq computational pipeline used for 

analysing the transcription factors raw datasets of 22 cell lines downloaded from the 

Encode site (https://genome.ucsc.edu/ENCODE/). All Encode data are freely 

available for download and analysis. In this table I report the number of transcription 

factors used for each of the 22 cell lines downloaded (Table 6). 

Cell lines Description Tissue Karyotype Number  of 
transcription 

factors 

HELA-S3 cervical carcinoma Cervix Cancer 54 

GM12878 B-lymphocyte, lymphoblastoid Blood Normal 77 

A549 epithelial cell line derived from a lung carcinoma tissue Epithelium Cancer 24 

GM12891 B-lymphocyte, lymphoblastoid, Epstein-Barr Virus 
transformed 

Blood  8 

GM08714 lymphoblastoid cell line, Instability of heterochromatin of 
chromosomes 1, 9, and 16 with variable combined 
immunodeficiency 

Blood  1 

GM18526 lymphoblastoid,Epstein-BarrVirus transformed Blood  2 

HCT-116 colorectal carcinoma Colon Cancer 5 

HEK293 embryonic kidney, cells contain Adenovirus 5 DNA Kidney  5 

H1-hESC embryonic stem cells Embryonic Stem 
Cell 

Normal 49 

HEPG2 hepatocellular carcinoma Liver Cancer 59 

K562 chronic myelogenous leukemia Blood Cancer 100 

MCF-7 mammary gland, adenocarcinoma.  Breast Cancer 7 

NB4 acute promyelocytic leukemia cell line.  Blood Cancer 3 

NT2-D1 malignant pluripotent embryonal carcinoma  Testis Cancer 3 

PANC 1 pancreatic carcinoma Pancreas Cancer 4 

PBDE peripheral blood-derived erythroblasts Blood  2 

PBDE FETAL peripheral blood-derived erythroblasts from 16-19 week 
human fetal liver 

Liver Normal 1 

https://github.com/taoliu/MACS
https://genome.ucsc.edu/ENCODE/
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RAJI Lymphoma Blood Cancer 1 

SH-SY5Y metastatic neuroblastoma Brain Cancer 2 

U2os Osteosarcoma Bone Cancer 2 

MCF 10A-Er-Src mammary gland, non-tumorigenic epithelial, inducible cell 
line, derived from the MCF-10A parental cells and contain 
ER-Src, a derivative of the Src kinase oncoprotein (v-Src) that 
is fused to the ligand-binding domain of the estrogen 
receptor (ER) 

Breast  5 

HUVEC umbilical vein endothelial cells 
 

Blood Vessel Normal 8 

Table 6: Number of transcription factors used for each of the 22 cell lines. 

 

As I have previously written, in Encode there are also the Unipk files 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeATfbsUniform) (derived from 

the peak detection done by the Encode working group using the Uniform Peak 

Calling algorithm) I have downloaded and used to compare the results with my data 

analysis. The peaks found in common were annotated using Ensembl75 [65] as 

database of gene annotation. To find target genes I have created a peak annotation 

script narrowing the research for transcription factors binding site to a region of 2 Kb 

near the TSS. These results were employed for working on the pathways annotation 

using graphite bioconductor package. To extend kegg pathways annotation using 

transcription factors, we need first to convert pathways into gene network (graphical 

structure in which a node represents a simple element such as a gene/protein) [47]. 

In fact, while pathway nodes could consist of multiple entities (protein complexes, 

gene family members and chemical compounds), we need to consider each single 

component of complexes and gene family separately [66]. Once converted to gene-

gene network we added a transcription factor in Kegg pathway if its target genes 

(nodes) were already present in the pathway annotation. It is known that ChIP-seq 

data finds lots of false positive bindings, thus we decide to use a data-driven strategy 

to filter potential false positives. For this task we used the gene expression levels 

(RNA-seq data) derived from the Expression Atlas database 

(http://www.ebi.ac.uk/gxa/experiments/E-GEOD-26284) available on the same cell 

lines we used for the ENCODE data. This database contains a table with listed the 

Fragments Per Kilobase Of Exon Per Million Fragments Mapped (FPKM) of 9 out of 

22 Encode cell lines used for the analysis. If the TF and its target genes are both 

expressed in its cell lines (we used different cut-off, greater than 5, 10, 20 FPKM) then 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeATfbsUniform
http://www.ebi.ac.uk/gxa/experiments/
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the edge is added to the pathway, otherwise it is filtered off. To have an idea of how 

many edges and transcription factors we are going to add to each pathway for the 9 

cell lines considering the three FPKM cut-off, some statistics were evaluated (mean, 

median, min and max). The results are reported in the following 6 tables (Tables 7, 8, 

9, 10, 11, 12). 

9 Cell lines Description n° of pathways n° of edges Mean Median Min Max 

H1-hESC Embryonic stem cells 197 4611 23,4061 18 1 117 

A549 Lung Carcinoma 102 1007 9,87255 7 2 30 

K562 Chronic Myelogenous Leukemia 199 21948 110,291 87 1 557 

MCF-7 Mammary gland, adenocarcinoma 130 442 3,4 3 1 13 

HCT-116 Colorectal Carcinoma 26 29 1,11538 1 1 3 

HeLa-S3 Cervical Carcinoma 189 6889 36,4497 29 1 146 

GM12878 B-lymphocyte 188 12377 65,8351 51 2 290 

HUVEC Umbilical vein endothelial cells 101 206 2,0396 2 1 6 

HEPG2 Hepatocellular Carcinoma 189 6688 35,3862 29 1 164 

Table 7: Total number of edges to add to the several pathways listed considering an FPKM cut-off of 
10 and mean, median, min and max of edges to add to each pathway of each cell line. 

 

9 Cell lines Description n° of pathways n° of edges Mean Median Min Max 

H1-hESC Embryonic stem cells 226 15830 70,0442 54 1 359 

A549 Lung Carcinoma 165 3047 18,4667 15 2 65 

K562 Chronic Myelogenous Leukemia 227 84547 372,454 281 1 1812 

MCF-7 Mammary gland, adenocarcinoma 187 1681 8,9893 7 1 40 

HCT-116 Colorectal Carcinoma 58 72 1,24138 1 1 3 

HeLa-S3 Cervical Carcinoma 226 27543 121,872 83,5 2 629 

GM12878 B-lymphocyte 225 46916 208,516 157 2 1115 

HUVEC Umbilical vein endothelial cells 189 1278 6,7619 6 1 34 

HEPG2 Hepatocellular Carcinoma 225 25911 115,16 90 1 635 

Table 8: Total number of edges to add to the several pathways listed considering an FPKM cut-off of 2 
and mean, median, min and max of edges to add to each pathway of each cell line. 

 

9 Cell lines Description n° of pathways n° of edges Mean Median Min Max 

H1-hESC Embryonic stem cells 229 20650 90,1747 67 1 454 

A549 Lung Carcinoma 173 3860 22,3121 18 2 84 

K562 Chronic Myelogenous Leukemia 229 106974 467,135 343 7 2230 

MCF-7 Mammary gland, adenocarcinoma 197 2000 10,1523 8 1 50 

HCT-116 Colorectal Carcinoma 66 102 1,54545 1 1 5 

HeLa-S3 Cervical Carcinoma 229 35563 155,297 109 3 773 

GM12878 B-lymphocyte 229 60005 262,031 196 3 1345 

HUVEC Umbilical vein endothelial cells 199 1588 7,9799 6 1 37 

HEPG2 Hepatocellular Carcinoma 229 33764 147,441 112 2 777 

Table 9: Total number of edges to add to the several pathways listed considering an FPKM cut-off of 
0.5 and mean, median, min and max of edges to add to each pathway of each cell line. 
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9 Cell lines Description n° of pathways 
 

Mean Median Min  Max 

H1-hESC Embryonic stem cells 197 
 

1,88051 1 1 17 

A549 Lung Carcinoma 102 
 

1,5374 1 1 5 

K562 Chronic Myelogenous Leukemia 199 
 

2,61224 2 1 27 

MCF-7 Mammary gland, adenocarcinoma 130 
 

1,26648 1 1 6 

HCT-116 Colorectal Carcinoma 26 
 

1,11538 1 1 3 

HeLa-S3 Cervical Carcinoma 189 
 

2,04664 1 1 17 

GM12878 B-lymphocyte 188 
 

2,15103 1 1 23 

HUVEC Umbilical vein endothelial cells 101 
 

1,22619 1 1 4 

HEPG2 Hepatocellular Carcinoma 189 
 

1,84751 1 1 18 

Table 10: Mean, median, min and max of transcription factors to add to each pathway of each cell line 
considering an FPKM cut-off of 10. 

 

9 Cell lines Description n° of pathways 
 

Mean Median Min  Max 

H1-hESC Embryonic stem cells 226 
 

3,42 2 1 53 

A549 Lung Carcinoma 165 
 

2,01122 1 1 13 

K562 Chronic Myelogenous Leukemia 227 
 

6,03003 3 1 96 

MCF-7 Mammary gland, adenocarcinoma 187 
 

2,34777 2 1 16 

HCT-116 Colorectal Carcinoma 58 
 

1,10769 1 1 3 

HeLa-S3 Cervical Carcinoma 226 
 

4,41111 2 1 60 

GM12878 B-lymphocyte 225 
 

4,77954 3 1 86 

HUVEC Umbilical vein endothelial cells 189 
 

1,96918 1 1 12 

HEPG2 Hepatocellular Carcinoma 225 
 

3,63153 2 1 54 

Table 11: Mean, median, min and max of transcription factors to add to each pathway of each cell line 
considering an FPKM cut-off of 2. 

 

9 Cell lines Description n° of pathways 
 

Mean Median Min  Max 

H1-hESC Embryonic stem cells 229 
 

3,8 2 1 63 

A549 Lung Carcinoma 173 
 

2,15 1 1 14 

K562 Chronic Myelogenous Leukemia 229 

 

7,11926 3 1 118 

MCF-7 Mammary gland, adenocarcinoma 197 
 

2,53807 2 1 19 

HCT-116 Colorectal Carcinoma 66 
 

1,17241 1 1 4 

HeLa-S3 Cervical Carcinoma 229 
 

5,20536 3 1 71 

GM12878 B-lymphocyte 229 
 

5064275 3 1 104 

HUVEC Umbilical vein endothelial cells 199 
 

2,21478 1 1 13 

HEPG2 Hepatocellular Carcinoma 229 
 

4,22737 2 1 64 

Table 12: Mean, median, min and max of transcription factors to add to each pathway of each cell line 
considering an FPKM cut-off of 0.5. 
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To visualize the molecular interaction networks created I used an R package called 

Rcytoscape useful to export the network to Cytoscape (www.cytoscape.org). 

Cytoscape [67] is an open source software specifically built to manage biological 

network complexity. Several pathways have a huge number of nodes and edges, thus 

an efficient system of visualization is needed.  

In order to evaluate the impact of this inclusion on the topological pathway analysis 

[66] we use a benchmark dataset (in which a true positive result is known). The 

topological pathway analysis was performed by Clipper (a tool freely available as an 

R package), a novel algorithm for pathway analysis that implements a two-step 

empirical approach according to the exploitation of graph decomposition into a 

junction tree, then the reconstruction of the most relevant signal path is performed 

[66]. Clipper chooses significant pathways based on statistical tests on the means and 

the concentration matrices of the graphs. It identifies the signal paths mostly 

associated to a specific phenotype. The basic idea is that despite the increase in 

pathway annotation the true results should continue to be identified by the statistical 

method.  

The benchmark dataset we used for the analysis was published by Chiaretti et al. 

[68]. This dataset characterizes gene expression signatures in acute lymphocytic 

leukemia (ALL) cells. Different genetic mechanisms drive to ALL malignant 

transformations coming from distinct lymphoid precursor cells (committed to both 

T-lineage or B-lineage differentiation). The frequencies of specific molecular 

rearrangements and chromosome translocations are different in adults and children 

with B-lineage ALL. In about 25% of adult ALL cases the BCR break-point cluster 

region and the c-abl oncogene 1 (BCR/ABL) gene rearrangement is found, instead, in 

pediatric ALL cases is much less frequent (the data are available at the bioconductor 

site (http://www.bioconductor.org/help/publications/2003/Chiaretti/chiaretti2/)). 

Expression values, coming from Affymetrix technology, were normalized by robust 

multiarray analysis (rma) and quantile normalization. These expression values 

consist of 37 observations from patients with BCR/ABL gene rearrangement and 41 

observations from patients without rearrangements.  

http://www.bioconductor.org/help/publications/2003/Chiaretti/chiaretti2/)
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Focusing on chronic myeloid leukaemia (CML) pathway, that includes exactly 

BCR/ABL fusion gene, we want that the analysis identifies a path starting from 

BCR/ABL toward the oncogene TP53 (Figure 5). 

 

 

Figure 5: Clipper results on chronic myeloid leukaemia (CML) KEGG pathway obtained by 
Martini et al [66]. This figure shows the CML pathway with complexes belonging to the sub-
path identified colored in red or green according to their expression. 
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The BCR/ABL fusion protein, in chronic myeloid leukaemia (CML) cells, is involved 

in the accumulation of p53, and neutralize the inhibitory activities of p53 by 

modulating the p53-MDMD2 loop [69]. By modulating this loop, c-Abl and its 

oncogenic forms decide the particular kind and extent of the cellular response to 

DNA damage. 

We applied Clipper analysis on chronic myeloid leukaemia (CML) pathway in which 

different list of TF-target genes edges have been included (according to the three 

expression cut-off previously described). In all the three extended chronic myeloid 

leukaemia (CML) pathway annotations we identified the same path starting from the 

chimera gene through the TP53 gene. The results of this pilot project were 

encouraging, showing that despite the extension of pathway topology and then the 

increase in the number of parameters to be estimated, the statistical method is still 

robust and efficient in the identification of the true result. This could be the starting 

point to determine new strategy for pathway annotation extentions. 
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4.3  Identification of target genes directly regulated by APE1 

during oxidative stress condition (ChIP-seq analysis) 

The work, I performed under the supervision of Professor Tell, aimed at studying the 

transcriptional and post-transcriptional mechanisms responsible for the gene-

regulatory functions of APE1. APE1 has transcriptional regulatory activity 

modulating gene-expression through redox-based co-activating function on several 

transcription factors involved in cancer promotion [22]. The research group of 

Professor Tell has recently demonstrated APE1 involvement in SIRT1 transcription 

through the direct binding to nCaRE elements found in SIRT1 promoter [22]. They 

demonstrated that APE1 is part of a multi-protein complex, which includes hOGG1, 

Ku70 and RNA Pol II and regulates SIRT1 promoter activation during early response 

to oxidative stress. Based on these findings, deep sequencing high-throughput 

studies might provide new insights in the comprehension of the role of APE1 in the 

transcriptional regulation of mammalian genes. The identification of target genes 

directly regulated by APE1 during oxidative stress condition was performed by deep 

sequencing approaches, as ChIP-seq analysis, in order to identify APE1 preferential 

promoter binding sites. HeLa cell clones, in which the endogenous APE1 protein 

expression was previously knocked down through inducible expression of stable 

short hairpin RNA targeting APE1 mRNA, were used and re-expressing an ectopic 

Flag-tagged siRNA-resistant wild type APE1 cDNA [70]. Chromatin 

immunoprecipitation was performed using an anti-FLAG resin in order to recover 

only the APE1 flag-tagged protein [22]; scramble clones, which do not express the 

ectopic protein, represent the negative control. Library preparation and high-

throughput DNA sequencing was performed at IGA (Istituto di Genomica 

Applicata), using the Illumina HiSeq platform. Only the DNA coming from WT 

clones treated or not with H202 (0.5 mM for 15 minutes) was sequenced; scramble 

clones were considered as internal control of negative immunoprecipitation. I have 

generated a ChIP-seq data analysis pipeline exploiting the heterogeneity of different 

algorithms. The idea is to couple ChIP-seq and RNA-seq analysis to identify potential 

genes directly regulated by APE1 binding to their promoters. Raw data were 
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subjected to quality control analysis using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc). In order to avoid low quality 

data, adapters were removed and lower quality bases were trimmed by trimmomatic 

[30]. The quality-checked reads were mapped to the human reference genome 

Ensembl 75/hg19. Peak calling to identify APE1 preferential promoter binding sites 

was performed by using MACS2 (https://github.com/taoliu/MACS) algorithm. After 

the annotation of peaks the first control was to check APE1 binding site to SIRT1 

promoter as an internal control readout. Since there was an apparent enrichment in 

APE1 binding in proximity of SIRT1 transcription start site (TSS), I have created a 

peak annotation script to narrow the research for APE1 binding site to a region of 2 

Kb close to the TSS to find genes potentially regulated by APE1 under stress 

condition. The peaks were annotated using Ensembl75 [65] as database of gene 

annotation. The figure 6 indicates the number of genes found in the two datasets 

(HeLa treated and non-treated with H2O2) and the amount of genes found in 

common in the two conditions. 

 

Figure 6: Number of APE1 genes target found in common between the two datasets of HeLa 
treated or not with H2O2. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/taoliu/MACS
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In the following table the list of APE1 target genes found in common between the 

two datasets of HeLa treated or not with H2O2 is reported (Table 13). The 

corresponding chromosome, gene symbol and type are indicated (59 genes). The 

complete lists of APE1 target genes (HeLa treated and non-treated with H2O2) are 

present in APPENDIX - section 5. 

 

Chromosome Gene Symbol Type 

2 AC009299.4 Pseudo gene 

5 ADAMTS12 protein_coding 

1 ANKRD20A14P unprocessed_pseudogene 

5 C6 protein_coding 

8 CCAT1 lincRNA 

17 CDC27 protein_coding 

2 CDC27P1 Pseudo gene 

5 CDH12 protein_coding 

5 CDH18 protein_coding 

5 CDH9 protein_coding 

5 CTD-2306M5.1 lincRNA 

16 CTD-2522B17.8 Pseudo gene 

5 CTD-2533K21.4 lincRNA 

5 CTD-3007L5.1 lincRNA 

5 DAB2 protein_coding 

5 DNAH5 protein_coding 

5 DROSHA protein_coding 

Y DUX4L16 Pseudo gene 

Y DUX4L17 Pseudo gene 

16 FAM157C processed_pseudogene 

22 FAM230B processed_pseudogene 

4 FRG1 protein_coding 

14 IGHV1-68 IG_V_pseudogene 

22 LA16c-83F12.6 lincRNA 

5 NADK2 protein_coding 

1 NBPF10 protein_coding 

1 NBPF14 protein_coding 

1 NBPF8 protein_coding 

5 NNT protein_coding 

1 NOTCH2NL protein_coding 

8 PCMTD1 protein_coding 

5 RICTOR protein_coding 

5 RNA5SP177 rRNA 

4 RP11-1281K21.6 Pseudo gene 

7 RP11-1324A7.2 processed_pseudogene 

5 RP11-192H6.2 lincRNA 

9 RP11-262H14.1 lincRNA 

9 RP11-318K12.3 Pseudo gene 

5 RP11-321E2.6 processed_pseudogene 

1 RP11-353N4.5 lincRNA 
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1 RP11-417J8.1 lincRNA 

1 RP11-417J8.2 lincRNA 

5 RP11-42L13.2 Pseudo gene 

1 RP11-435B5.5 lincRNA 

4 RP11-463J17.1 lincRNA 

5 RP11-53O19.1 Antisense 

11 RP11-56P9.5 Pseudo gene 

16 RP11-626K17.5 unprocessed_pseudogene 

1 RP11-763B22.9 unprocessed_pseudogene 

9 RP11-764K9.1 lincRNA 

9 RP11-764K9.4 unprocessed_pseudogene 

5 RP11-774D14.1 lincRNA 

5 RPL36AP21 Pseudo gene 

1 SEC22B processed_pseudogene 

10 SIRT1 protein_coding 

5 SPEF2 protein_coding 

5 TARS protein_coding 

5 UBL5P1 Pseudo gene 

22 XXbac-B33L19.3 Antisense 

Table 13: List of APE1-target genes found in common between the HeLa treated and non-
treated with H2O2 datasets. 
 
 

Remarkably, among these genes, long non-coding RNA (lincRNA), microRNA 

(miRNA) and small nuclear RNA (snRNA) are present in addition to some protein 

coding genes. In 2009, Prof. Tell’s Lab published a work [71], in which they combined 

both mRNA expression profiling and proteomic analysis to determine the molecular 

changes associated with APE1 loss-of-expression induced by siRNA technology, 

using the same cellular model used in the present study. Through this approach, a 

role of APE1 in cell growth, apoptosis, intracellular redox state, cytoskeletal structure 

and mitochondrial function was suggested. To identify genes showing changes in 

their expression due to APE1 silencing, they compared the gene expression profiles 

of WT and APE1 knocked-down cell clones by using the human Affimetrix 

GeneChip (HG-U133 PLUS2) comprising a representation of over 20.000 genes. The 

data analysis (normalization and summarization) was performed by using 

RMAExpress algorithm [72]. Differential expression in response to siRNA treatment 

was calculated by exploiting the function of Cyber-T algorithm [73] and a false-

discovery correction was applied to these p-values to obtain a q-value [63]. A gene 

was considered to be differentially expressed in APE1-deficient HeLa cells when the 

q-value was less than 0.05 and the fold change (FC) was greater than or less than 1.5. 
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By exploiting these criteria, 1126 genes were identified as differentially expressed 

(550 up-regulated and 576 down-regulated). 

Comparing these up and down-regulated genes with the list of APE1 target genes 

(ChIP-seq analysis) five target genes among the down-regulated (DAB, NNT, SIRT1, 

TARS, OSMR) were found. Due to the poor correlation between ChIP-seq and gene 

expression data, it is conceivable to hypothesize that post-transcriptional 

mechanisms may be the main responsible for the gene-regulatory functions of APE1. 
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4.4  Identification of APE1-RNA interactome network through 

RNA-IP (RIP) analyses 

APE1 regulates the expression of tumor-progression genes through transcriptional 

effects and post- transcriptional mechanisms [74]. Deep sequencing approach based 

on RIP-seq analysis was planned with the aims at implementing current translational 

approaches for cancer treatment which rely on APE1 (an essential protein for the 

maintenance of genome stability) as a target molecule, providing a complete list of 

target genes, mRNA, miRNA and ncRNA that are directly regulated by APE1 during 

cell response to genotoxic treatment in cancer cells and that could specifically 

mediate cancer cell resistance to chemotherapy. Based on the results obtained 

through the previous ChIP-seq approach, a RIP-seq strategy was used to identify the 

RNA molecules directly regulated by APE1 in order to test whether post-

transcriptional mechanism may explain the gene-regulatory functions of APE1. 

RNA-bound by APE1 from HeLa cell clones, expressing an ectopic APE1 FLAG-

tagged form in place of the endogenous one [70], was purified using an anti-FLAG 

antibody. APE1 binding to RNA was tested using three independent 

immunoprecipitations and to reduce potential false positives, a negative control was 

used. FLAG-APE1 was efficiently affinity-purified exclusively from HeLa cells 

immunoprecipitated with the resin carrying the FLAG antibody, this was confirmed 

by Western blot analysis. RNA bound to APE1 was then subject to library 

preparation, sequencing and bioinformatic analysis, done by Istituto di Genomica 

Applicata (IGA). TruSeq Stranded Total RNA with Ribo-Zero Human/Mouse/Rat 

(Illumina, San Diego, CA) was used for library preparation. RNA samples and final 

libraries were quantified by using the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, 

CA) and quality tested by Agilent 2100 Bioanalyzer RNA Nano assay (Agilent 

technologies, Santa Clara, CA). Libraries were then processed with Illumina cBot for 

cluster generation on the flowcell and sequenced on single-end mode using the 

HiSeq2500 (Illumina, San Diego, CA). The CASAVA 1.8.2 version of the Illumina 

pipeline was used for processing raw data for both format conversion and de-

multiplexing. Raw sequence files were subjected to quality control analysis using 
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FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters 

were removed, in order to avoid low quality data, by Cutadapt [75] and lower 

quality bases were trimmed by ERNE [76]. The quality-checked reads were processed 

using the TopHat version 2.0.0 package (Bowtie 2 version 2.2.0) as FASTQ files 

[77][78][79]. The reads were mapped to the human reference genome GRCh37/hg19. 

Reads abundance was evaluated and normalized by using Cufflinks [78] for each 

gene. Differential enrichment analysis, between RNA-immunoprecipitated and 

input, and statistical significance evaluation of detected alterations were obtained 

using Cuffdiff as algorithm [78]. The biological significance of three lists of RNAs 

bound by APE1 were investigated, and analysed in different manners. By comparing 

2 out of 3 lists (normalized using geometric and quartile normalization) a list of 

RNAs found in common was generated.  

Among the 980 RNAs found in common, 58 TOP RNAs (Table 14) were selected by 

filtering for a stringent enrichment score (-log2 Fold Change > 1.5) between 

immunoprecipitated and input. These list of predicted RNAs bound by APE1 (p-

value<0.01 was considered as statistically significant) will be also employed in order 

to validate RIP-seq result. 

 IP INPUT -log2FC 

SNORD116-13 72.2457 0 -inf 

MIR221 21.0948 0 -inf 

LOC100506125 0,874775 0 -inf 

MIR3687 10423.8 5031.77 -4.37268 

MIR3648 309.496 42.7413 -2.85622 

OR52D1 1.66786 0.242483 -2.78204 

MIR612 850.086 150.976 -2.49329 

C18orf42 0,895509 0,162174 -2,46517 

ASPDH 0,911141 0,181801 -2,32532 

GPBAR1 0,890021 0,201756 -2,14123 

SNX32 0,921882 0,212446 -2,11748 

PGLYRP1 1.27535 0.296553 -2.10454 

ODF3B 1.78384 0.43536 -2.0347 

PRR25 1.09965 0.273491 -2.00748 

SCARNA17 47.8104 12.1262 -1.9792 

LINC00482 1.33362 0.340439 -1.96988 

MROH5 0,803101 0,205053 -1,96958 

LRRC29 1.38985 0.357534 -1.95878 

IGFALS 1.20681 0.313766 -1.94344 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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LOC100129722 1,01895 0,275218 -1,88844 

CYP2D6 1.68907 0.460822 -1.87395 

ZBTB32 1.50059 0.410849 -1.86885 

LOC101928012 0,877419 0,246859 -1,82958 

SYNE4 0,777649 0,218795 -1,82954 

TMC4 1.44218 0.409115 -1.81767 

LENEP 4.08686 1.16539 -1.81018 

NRADDP 0,905055 0,260275 -1,79797 

SNORD116-27 413.405 121.029 -1.7722 

LOC101927310 0,724191 0,214842 -1,75309 

HSPB7 0,692839 0,209781 -1,72363 

TTYH1 1.18448 0.364538 -1.70011 

LINC00939 0,688149 0,21183 -1,69982 

GBGT1 0,778062 0,240896 -1,69147 

MXRA8 3.47094 1.07996 -1.68435 

ISLR 0,700077 0,219845 -1,67103 

LOC100507006 1.49488 0.470257 -1.6685 

ROPN1L-AS1 2.11249 0.667305 -1.66253 

GPR17 1.49431 0.474197 -1.65592 

IBA57-AS1 2.72828 0.87469 -1.64115 

RBP5 7.78252 2.5188 -1.6275 

RXFP4 2.95414 0.956859 -1.62636 

SPOCK2 1.26015 0.409317 -1.6223 

FOSB 5.33284 1.8214 -1.54986 

TERC 1616.51 554.393 -1.5439 

LOC101928865 1,23993 0,429148 -1,53071 

SEMA4G 1.30355 0.452726 -1.52573 

ASB16 5.23649 1.82678 -1.51929 

IGFN1 10.3131 3.61827 -1.51111 

BLACE 3.17273 1.11363 -1.51046 

TCTEX1D4 2.62219 0.921433 -1.50882 

LOC101928674 4.34574 1.52784 -1.50811 

SMG1P7 25.005 8.79335 -1.50773 

LINC00896 6.46334 2.2761 -1.50572 

MORN1 2.46161 0.869182 -1.50187 

PLIN4 0,743159 0,264117 -1,49249 

CRYGS 1.44813 0.516535 -1.48726 

OR13H1 5.74983 2.05198 -1.4865 

IGSF5 0,812588 0,290421 -1,48438 

Table 14: 58 TOP RNAs selected among the 980 RNAs by filtering for a stringent enrichment 
score (-log2 Fold Change > 1.5) between immunoprecipitated and input. 



RESULTS AND DISCUSSION 

 

 
58 

 

Differentially expressed genes obtained upon APE1 silencing [71] were compared to 

the list of 58 RNAs bound by APE1. This comparison showed no relationship 

between RNAs bound by APE1 and the expression levels of the corresponding genes 

(Figures 7, 8).  

 

Figure 7: Comparison between the 58 TOP RNAs and the up-regulated genes (399) obtained 
upon APE1 silencing [71]. 

 

Figure 8: Comparison between the 58 TOP RNAs and the down-regulated genes (439) 
obtained upon  APE1 silencing [71]. 
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Since we were interested in APE1 post-transcriptional activity on genes involved in 

chemoresistance, among the 58 TOP RNAs of our list, we focused the attention on 

miR-221 which has been associated to tumoral progression and in particular with 

breast cancer chemoresistance. Furthermore, we decided to include in the study also 

miR-222, because it is encoded in the same genomic cluster as miR-221 and its 

expression is found to be often coregulated with miR-221 in different type of cancers. 

miRNA 221 and miRNA 222 are pre-miRNA (stem-loop sequence), processed by the 

DICER in the cytoplasm, thus producing 2 mature miRNA. miRNA 221 produces the 

miRNA-221-3p and the miRNA-221-5p. mi-RNA 222 produces the miRNA-222-3p 

and the miRNA-222-5p.  

To find a list of mRNA targets for these two miRNAs, miRGate, a curated database 

of human, mouse and rat miRNA-mRNA targets was used [80]. We then inspected 

how many of the known miRNAs 221 and 222 target mRNAs are present in the list of 

APE1-dysregulated genes. Since miRNA 221 and miRNA 222 are paralogues, their 

common mRNA targets were compared with the list of up and downregulated genes 

obtained upon APE1 silencing [71] (Figures 9, 10, 11, 12). 

 

  
Figures 9, 10: miRNA-221-3p e miRNA-222-3p common target genes vs up and down-
regulated genes. In the first image 38 target genes are in common with the upregulated 
genes, in the second image 35 target genes are in common with the downregulated genes 
obtained upon APE1 silencing in a previous study [71]. 
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Figures 11, 12: miRNA-221-5p e miRNA-222-5p common target genes vs up and down-
regulated genes. In the first image 17 target genes are in common with the upregulated 
genes, in the second image 17 target genes are in common wih the downregulated genes 
obtained upon APE1 silencing in a previous study [71]. 

 
 

Therefore, a good correlation between the mRNA targets of miRNA-221 and miRNA-

222 and the genes dysregulated upon APE1 silencing [71] is apparent. These data 

would suggest that one important mechanism through which APE1 may control 

gene expression is through its activity on miRNA processing. 
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RNA candidates to validate (qRT-PCR) 

Among the list of predicted 58 TOP RNAs, four RNA candidates were selected (miR-

221, APE1 mRNA itself, FOSB (FBJ murine osteosarcoma viral oncogene homolog 

B) and TERC (telomerase RNA component) RNA) and validated through qRT-PCR 

analysis (Figure 13). Primer sequences were designed accordingly to the peak region 

identified with the sequencing analysis. These selection was based on already 

established biological association between APE1 protein and the target gene of the 

above mentioned miRNAs (i.e. PTEN)[81][82], the role of APE1 in its own 

transcription [83] and on AP-1 function [84], as well as the role of APE1 in telomere 

maintenance [85].  

 

 

Figure 13: Realtime PCR validation of four RNA targets identified by RIP-seq. In the 
figure is presented the fold percentage of the amount of immunoprecipitated target RNA 
relative to that present in total input RNA. Resin, HeLa cell extracts immunoprecipitated 
with resin not having the anti-FLAG antibody; APE1, immunoprecipitated material of a pool 
of three replicates. 
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Gene ontology enrichment analysis 

For a more global analysis of APE1 targets, gene ontology analysis was performed 

uploading on DAVID online tool [86] different lists of the 980 APE1-associated RNAs 

trying several IP enrichment cut-off to find the best biological enrichment (adjusted 

p-value<0.05 was considered as statistically significant). Among the several 

enrichment cut-off tested, the minimum FPKM (expression value) useful to find the 

best biological enrichment was 10. The 347 RNAs, found respecting this criterion, 

were compared by the analysis tool (DAVID) with RNAs present in particular 

functional categories in order to identify the enriched categories. APE1-associated 

RNAs were grouped into annotation clusters (considering the best enrichment score 

and adjusted p-value) for biological process (Figure 14), molecular function (Figure 

15) and cellular component (Figure 16) to determine their functions. In the following 

pie-chart, the percentage of these RNAs in the TOP functional categories is reported. 

 

 

Figure 14: Distribution of APE1-RNA targets in the TOP five functional annotation clusters 
identified by DAVID enrichment analysis [86] based on Gene Ontology terms of biological 
processes. The list of RNAs for each of these clusters was curated for an IP enrichment cut-
off>10 and an adjusted p-value<0.05. 
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Figure 15: Distribution of APE1-RNA targets in the TOP two functional annotation clusters 
identified by DAVID enrichment analysis [86] based on Gene Ontology terms of molecular 
functions. The list of RNAs for each of these clusters was curated for an IP enrichment cut-
off>10 and an adjusted p-value<0.05. 

 

 

Figure 16: Distribution of APE1-RNA targets in the TOP five functional annotation clusters 
identified by DAVID enrichment analysis [86] based on Gene Ontology terms of cellular 
component. The list of RNAs for each of these clusters was curated for an IP enrichment cut-
off>10 and an adjusted p-value<0.05. 
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These functional categories are related to APE1 and also to one another, indeed the 

majority of the RNAs are found across more than one category. The individual APE1-

RNA targets found within the TOP categories (curated for an IP enrichment cut-

off>10 and an adjusted p-value<0.05) of biological processes, molecular function and 

cellular component will be then curated by searching on GeneCards Human Gene 

Database (http://www.genecards.org/).  

http://www.genecards.org/
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Protein interactome network of APE1 

In the past, human protein interaction have provided an interesting platform to 

investigate the functional arrangement of the cells [87][88]. Therefore, data mining-

based annotations of this large amount of protein-protein interactions (PPIs) have 

been established to bring to a more comprehensive understanding of molecular 

function and biological processes [89]. The aim of STRING database (http://string-

db.org) is to make available a crucial evaluation and integration of protein-protein 

interactions, physical and functional associations are included. Exploiting this known 

tool, an interaction network between APE1 and its known 106 interactors was 

generated (proteins interaction network) (Figure 17). 

 

Figure 17: The string network is dedicated to functional associations between proteins [89]. A 
set of 106 proteins, known to be APE1 interactors, is plotted as a network , different line 
colors between the proteins represent the particular kinds of evidence for the functional 
association. Protein nodes bigger show the information of 3D protein structure. 

http://string-db.org/
http://string-db.org/
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Recent development has pointed out that protein-protein interactions are only a 

component of the molecular actors in cells, since an expanding list of noncoding 

RNAs (ncRNAs) are actively involved in multiple biological processes (e.g. fat 

metabolism, cell death) [90] [91]. A new regulatory RNA system has been discovered 

by several investigations (RNAs are able to regulate each other by competing for 

shared ncRNAs) [92] [93]. For example, MD1 (ncRNA) can induce miR-133 and 

miR135 to regulate the expression of MAML1 and MEF2C acting as a competing 

endogenous RNA (ceRNA) to control the kinetic of muscle differentiation in human 

and mouse myoblasts [94]. Therefore, particular attention should be taken on the 

study of RNA-associated (RNA-RNA/RNA-protein) interaction. 

 
 
 

RNA-protein interaction 

The APE1 ability to RNA could be mediated by some of the APE1 protein interacting 

partners. This hypothesis was also strengthened by the observation that interaction 

of APE1 with NPM1 was destabilized upon treatment with RNAse A [70] [95]. In 

literature it was reported that some of the 106 proteins bound by APE1 (e.g. NPM1, 

STAT3, etc) also bind RNAs; starting by this, our aim was to understand if among the 

980 RNAs bound by APE1, here could be some recognized also by some of the 

known APE1 protein-interacting partners. By using an interesting online free tool 

called RAID [96], a screening of all 106 proteins bound by APE1 was done and we 

found that 3 proteins  (SFPQ, p53, PCNA) interact with 3 out of 980 RNAs of our list 

(in order NEAT1, H19, TERC). The results of this preliminary work, reported in the 

following table (Table 14), open thus the question of whether, the RNAs bound by 

APE1 plays a biological role in modulating the APE1 protein interactome network. 

These data suggest that APE1 regulates the gene expression through post-

transcriptional mechanisms mediated by ncRNAs. 
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Proteins RNA-BINDING RNAs RNAs of our list (980 RNAs) PMID 

ACTN1 NO 
 

  
 

AID NO 
 

  
 

ANP32A NO 
 

  
 

ANP32C NO 
 

  
 

AP-4 NO 
 

  
 

APP SI BACE1-AS NO 18587408 

ARIH2 NO 
 

  
 

ASCL2 NO 
 

  
 

BASP1 NO 
 

  
 

CAPNS1 NO 
 

  
 

CCDC124 NO 
 

  
 

Cdk5 NO 
 

  
 

CKII NO 
 

  
 

DNA Lig I NO 
 

  
 

ERAL1 NO 
 

  
 

FEN1 NO 
 

  
 

GAL1 NO 
 

  
 

GzmA NO 
 

  
 

GzmK NO 
 

  
 

hAPN NO 
 

  
 

HDACs NO 
 

  
 

HHV8GK18_gp81 NO 
 

  
 

HIF-1 alpha NO 
 

  
 

HMG2 NO 
 

  
 

HMGA-1 NO 
 

  
 

HMGA-2 NO 
 

  
 

hMYH NO 
 

  
 

hnRNP-F NO 
 

  
 

HnRNP-H NO 
 

  
 

hnRNP-K SI p21 NO 20673990 

hnRNP-L NO 
 

  
 

hnRNP-U SI 
GADD45A, HEXIM1, HOXA2, 
IER3, NHLH2, TNFalpha, ZFY NO 17174306 

hnRNP-UL1 NO 
 

  
 

HOX3 NO 
 

  
 

hS3 NO 
 

  
 

Hsp70-1 NO 
 

  
 

Hus1 NO 
 

  
 

K2C8 NO 
 

  
 

KIF11 NO 
 

  
 

KRT8 NO 
 

  
 

Ku Antigen p70 NO 
 

  
 

Ku Antigen p80 NO 
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MDM2 SI TP53 NO 19106616 

MEP50 NO 
 

  
 

MOES NO 
 

  
 

MPG NO 
 

  
 

MYH9 NO 
 

  
 

MYO1C NO 
 

  
 

NAE1 NO 
 

  
 

NCL SI 
RNY1, RNY3, BCL2, BCL2L1, IL2, 
LINE-1, REN, SLS2-A7, MBII-52 NO 

 
NM23-H1 NO 

 
  

 
NPM1 SI 

 
NO 

 
NUDT3 NO 

 
  

 
OGG1 NO 

 
  

 
p21 NO 

 
  

 
p300 NO 

 
  

 

p53 SI/NO 
MEG3, TP53TG1, MIR34A, MIR34C, 

PLAU, PLAUR, SERPINE1 H19 23222637 

PABP1 NO BCYRN1, BC1 NO 
 

PCNA SI 
 

TERC 17932748 

Pol b NO 
 

  
 

POLR3D NO 
 

  
 

PRDX6 NO 
 

  
 

PRP19 NO 
 

  
 

PRPS1 NO 
 

  
 

PRPS2 NO 
 

  
 

PSMG1 NO 
 

  
 

Rad1 NO 
 

  
 

Rad9 NO 
 

  
 

Rev SI Rev response element (RRE) NO 8703216 

RIC8A NO 
 

  
 

RL14 NO 
 

  
 

RL3 NO 
 

  
 

RL4 NO 
 

  
 

RLA0 NO 
 

  
 

RNF4 NO 
 

  
 

RSSA NO 
 

  
 

SET NO 
 

  
 

SFPQ SI 
 

NEAT1 19720872 

SIRT1 NO 
 

  
 

SK2 NO 
 

  
 

SMD1 NO 
 

  
 

SPTB2 NO 
 

  
 



RESULTS AND DISCUSSION 

 

 
69 

 

SRPK1 NO 
 

  
 

SRPK2 NO 
 

  
 

STAT3 SI 
 

NO 
 

SUMO1 NO 
 

  
 

SUMO2 NO 
 

  
 

TCEB1 NO 
 

  
 

TCF21 NO 
 

  
 

TCP1-alpha NO 
 

  
 

TCPA NO 
 

  
 

TDG NO 
 

  
 

TERF21P NO 
 

  
 

THRAP3 NO 
 

  
 

TRAF2 NO 
 

  
 

TRF1 NO 
 

  
 

TRF2 NO 
 

  
 

TRX NO 
 

  
 

TWF2 NO 
 

  
 

TXNRD1 NO 
 

  
 

Ubc9 NO 
 

  
 

Ubiquitin C NO 
 

  
 

XPOT NO 
 

  
 

XRCC1 NO 
 

  
 

YB1 NO 
 

  
 Table 14: List of 106 proteins (known interactors of APE1). RNA-protein association between 

these proteins and the 980 RNAs of our list was investigated. 
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5  APPENDIX 

In the following table the complete list of APE1 RNA-target genes in HeLa cells under 

basal conditions is reported. The corresponding chromosome, gene symbol and type are 

indicated (157 genes). 

 

Chromosome Symbol_gene Type 

2 ABC7-43041300I9.1 Pseudo gene 

2 AC009299.4 Pseudo gene 

5 AC010455.1 miRNA 

22 AC011718.2 lincRNA 

2 AC018867.1 protein_coding 

7 AC027269.2 lincRNA 

16 AC092291.1 Pseudo gene 

4 AC118282.1 miRNA 

5 ADAMTS12 protein_coding 

4 AF146191.4 lincRNA 

1 AL583842.2 miRNA 

1 AL732363.1 miRNA 

1 ANKRD20A14P unprocessed_pseudogene 

19 ARHGEF18 protein_coding 

5 C5orf34 protein_coding 

5 C6 protein_coding 

5 C9 protein_coding 

8 CCAT1 lincRNA 

17 CDC27 protein_coding 

2 CDC27P1 Pseudo gene 

5 CDH10 protein_coding 

5 CDH12 protein_coding 

5 CDH18 protein_coding 

5 CDH6 protein_coding 

5 CDH9 protein_coding 

1 CEP170 protein_coding 

11 CEP57 protein_coding 

9 CNTRL protein_coding 

9 CR786580.1 miRNA 

5 CTD-2010I22.2 lincRNA 

5 CTD-2057J6.1 Pseudo gene 

5 CTD-2066L21.3 lincRNA 

5 CTD-2116N24.1 lincRNA 

5 CTD-2118P12.1 lincRNA 

5 CTD-2134P3.1 lincRNA 

5 CTD-2151L9.2 Pseudo gene 

5 CTD-2201E9.1 lincRNA 

5 CTD-2218G20.2 lincRNA 

5 CTD-2234B20.1 lincRNA 

5 CTD-2272G21.3 Pseudo gene 

17 CTD-2303H24.2 retained_intron 

5 CTD-2306M5.1 lincRNA 
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5 CTD-2353F22.1 Antisense 

16 CTD-2522B17.8 Pseudo gene 

5 CTD-2533K21.4 lincRNA 

5 CTD-2636A23.2 Antisense 

5 CTD-3007L5.1 lincRNA 

5 DAB2 protein_coding 

5 DNAH5 protein_coding 

5 DROSHA protein_coding 

Y DUX4L16 Pseudo gene 

Y DUX4L17 Pseudo gene 

16 FAM157C processed_pseudogene 

22 FAM230B processed_pseudogene 

5 FBXO4 protein_coding 

4 FRG1 protein_coding 

5 FYB protein_coding 

5 GUSBP1 processed_pseudogene 

1 HMCN1 protein_coding 

14 IGHV1-68 IG_V_pseudogene 

22 IGKV1OR22-5 IG_V_pseudogene 

8 KCTD9 protein_coding 

5 KIAA0947 protein_coding 

12 KLRC3 protein_coding 

22 LA16c-83F12.6 lincRNA 

5 LIFR-AS1 Antisense 

10 LINC00843 lincRNA 

10 LIPA processed_pseudogene 

5 LMBRD2 protein_coding 

5 MARCH11 protein_coding 

5 MARCH6 processed_pseudogene 

1 MIA3 protein_coding 

9 MIR1299 miRNA 

5 MTRR processed_pseudogene 

5 NADK2 protein_coding 

1 NBPF1 processed_pseudogene 

1 NBPF10 protein_coding 

1 NBPF14 protein_coding 

1 NBPF16 protein_coding 

1 NBPF24 nonsense_mediated_decay 

1 NBPF8 protein_coding 

1 NBPF9 processed_pseudogene 

3 NCK1 protein_coding 

20 NCOR1P1 processed_pseudogene 

5 NIPBL processed_pseudogene 

5 NIPBL protein_coding 

5 NNT protein_coding 

1 NOTCH2 protein_coding 

1 NOTCH2NL protein_coding 

5 NPR3 protein_coding 

5 NSUN2 processed_pseudogene 

11 OR4C5 protein_coding 

6 OR4F7P Pseudo gene 
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5 OSMR protein_coding 

5 OXCT1 protein_coding 

8 PCMTD1 protein_coding 

1 PDE4DIP protein_coding 

3 PIK3CB protein_coding 

1 PLA2G4A protein_coding 

5 PMCHL1 processed_pseudogene 

5 PRKAA1 protein_coding 

8 RAB2A protein_coding 

5 RICTOR protein_coding 

8 RN7SL250P misc_RNA 

5 RNA5SP177 rRNA 

18 ROCK1P1 processed_pseudogene 

5 RP1-137K24.1 lincRNA 

5 RP1-167G20.1 lincRNA 

5 RP11-113I22.1 lincRNA 

8 RP11-1195F20.7 Pseudo gene 

5 RP11-122C5.3 Antisense 

5 RP11-1250I15.3 lincRNA 

4 RP11-1281K21.6 Pseudo gene 

7 RP11-1324A7.2 processed_pseudogene 

1 RP11-14N7.2 lincRNA 

5 RP11-192H6.2 lincRNA 

9 RP11-262H14.1 lincRNA 

1 RP11-277L2.5 lincRNA 

12 RP11-313F23.4 lincRNA 

9 RP11-318K12.3 Pseudo gene 

5 RP11-321E2.6 processed_pseudogene 

1 RP11-353N4.1 lincRNA 

1 RP11-353N4.5 lincRNA 

1 RP11-417J8.1 lincRNA 

1 RP11-417J8.2 lincRNA 

5 RP11-42L13.2 Pseudo gene 

1 RP11-435B5.3 lincRNA 

1 RP11-435B5.5 lincRNA 

5 RP11-454P21.1 lincRNA 

4 RP11-463J17.1 lincRNA 

5 RP11-473L15.2 Antisense 

5 RP11-480D4.6 lincRNA 

5 RP11-53O19.1 Antisense 

5 RP11-549K20.1 lincRNA 

11 RP11-56P9.5 Pseudo gene 

16 RP11-626K17.5 unprocessed_pseudogene 

1 RP11-763B22.9 unprocessed_pseudogene 

9 RP11-764K9.1 lincRNA 

9 RP11-764K9.4 unprocessed_pseudogene 

5 RP11-774D14.1 lincRNA 

1 RP11-782C8.2 lincRNA 

5 RP11-855C21.1 sense_intronic 

5 RPL32P14 Pseudo gene 

5 RPL36AP21 Pseudo gene 
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1 SEC22B processed_pseudogene 

10 SIRT1 protein_coding 

5 SPEF2 protein_coding 

1 SRGAP2C unprocessed_pseudogene 

5 TARS protein_coding 

5 UBE2V1P12 Pseudo gene 

5 UBL5P1 Pseudo gene 

4 UGT2A1 processed_pseudogene 

8 USP17L8 Pseudo gene 

11 USP47 protein_coding 

22 XXbac-B33L19.3 Antisense 

5 ZDHHC11 protein_coding 

5 ZFR processed_pseudogene 

 

 

 

In the table below the complete list of APE1 RNA-target genes in HeLa cells upon H2O2-

treatment is reported. The corresponding chromosome, gene symbol and type are 

indicated (209 genes). 

 

Chromosome Symbol_gene Type 

5 AC004237.1 Antisense 

7 AC006159.3 lincRNA 

22 AC008079.9 Antisense 

2 AC009299.4 Pseudo gene 

2 AC027612.3 Pseudo gene 

2 AC097374.2 processed_pseudogene 

5 AC106771.1 miRNA 

4 AC118282.1 miRNA 

4 AC118282.2 miRNA 

4 AC118282.3 miRNA 

17 AC126365.1 transcribed_unprocessed_pseudogene 

5 ADAMTS12 protein_coding 

5 ADCY2 processed_pseudogene 

8 AF228730.1 miRNA 

10 AL031601.4 Pseudo gene 

1 AL121985.1 Pseudo gene 

9 AL353626.1 miRNA 

9 AL353626.2 miRNA 

9 AL353763.1 miRNA 

9 AL353763.2 miRNA 

20 AL441988.1 miRNA 

1 AL583842.1 miRNA 

1 AL583842.2 miRNA 

1 AL645608.2 protein_coding 

1 AL732363.1 miRNA 

1 ANKRD20A12P transcribed_unprocessed_pseudogene 

1 ANKRD20A14P unprocessed_pseudogene 

2 ANKRD36 protein_coding 
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2 ANKRD36 retained_intron 

21 BAGE2 processed_pseudogene 

9 BMS1P11 unprocessed_pseudogene 

5 C6 protein_coding 

5 C7 protein_coding 

9 CBWD7 protein_coding 

8 CCAT1 lincRNA 

17 CDC27 protein_coding 

2 CDC27P1 Pseudo gene 

Y CDC27P2 Pseudo gene 

5 CDH12 protein_coding 

5 CDH18 protein_coding 

5 CDH9 protein_coding 

9 CDKN2B-AS1 Antisense 

8 CHD7 protein_coding 

21 CR381653.1 miRNA 

21 CR381670.1 miRNA 

21 CR392039.1 miRNA 

21 CR392039.2 miRNA 

9 CR786580.1 miRNA 

9 CR848007.2 Pseudo gene 

20 CST9 protein_coding 

7 CTA-298G8.2 Pseudo gene 

Y CTBP2P1 Pseudo gene 

5 CTC-305H11.1 lincRNA 

5 CTD-2061E9.1 lincRNA 

5 CTD-2113L7.1 Antisense 

5 CTD-2127O16.2 Pseudo gene 

5 CTD-2143L24.1 lincRNA 

5 CTD-2161F6.2 lincRNA 

5 CTD-2194L12.2 lincRNA 

5 CTD-2194L12.3 lincRNA 

5 CTD-2272G21.3 processed_pseudogene 

5 CTD-2306M5.1 lincRNA 

14 CTD-2311B13.7 lincRNA 

5 CTD-2318H23.1 lincRNA 

16 CTD-2522B17.8 Pseudo gene 

5 CTD-2533K21.4 lincRNA 

5 CTD-3007L5.1 lincRNA 

5 DAB2 protein_coding 

3 DNAH12 protein_coding 

5 DNAH5 protein_coding 

5 DROSHA protein_coding 

Y DUX4L16 Pseudo gene 

Y DUX4L17 Pseudo gene 

Y DUX4L18 Pseudo gene 

Y DUX4L19 Pseudo gene 

5 EGFLAM-AS2 Antisense 

5 EGFLAM-AS4 Antisense 

15 ELMO2P1 transcribed_unprocessed_pseudogene 

16 FAM157C processed_pseudogene 
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20 FAM182A lincRNA 

22 FAM230A protein_coding 

22 FAM230B processed_pseudogene 

10 FAM24A protein_coding 

4 FRG1 protein_coding 

20 FRG1B nonsense_mediated_decay 

20 FRG1B protein_coding 

5 GHR nonsense_mediated_decay 

15 HERC2P3 processed_pseudogene 

14 IGHV1-68 IG_V_pseudogene 

2 IGKV1OR-1 IG_V_pseudogene 

5 IL7R processed_pseudogene 

22 KB-1183D5.13 lincRNA 

7 KMT2C protein_coding 

22 LA16c-83F12.6 lincRNA 

3 LINC00969 lincRNA 

11 MICALCL protein_coding 

9 MIR1299 miRNA 

4 MLLT10P2 Pseudo gene 

15 MYO1E protein_coding 

5 NADK2 protein_coding 

15 NBEAP1 transcribed_unprocessed_pseudogene 

1 NBPF1 protein_coding 

1 NBPF10 protein_coding 

1 NBPF12 protein_coding 

1 NBPF14 protein_coding 

1 NBPF20 protein_coding 

1 NBPF8 protein_coding 

1 NBPF9 protein_coding 

5 NNT protein_coding 

1 NOTCH2NL protein_coding 

17 NSF protein_coding 

14 OR4N2 protein_coding 

Y PABPC1P5 Pseudo gene 

8 PCMTD1 protein_coding 

5 PLCXD3 protein_coding 

1 PPIAL4F Pseudo gene 

8 PXDNL protein_coding 

9 RABGAP1 protein_coding 

5 RANBP3L protein_coding 

5 RICTOR protein_coding 

2 RNA5SP100 rRNA 

5 RNA5SP177 rRNA 

X RNA5SP503 rRNA 

1 RNA5SP60 rRNA 

10 RNU2-42P snRNA 

5 RNU6-738P snRNA 

18 ROCK1P1 Pseudo gene 

9 RP11-111F5.3 lincRNA 

5 RP11-122F24.1 lincRNA 

4 RP11-1281K21.6 Pseudo gene 
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4 RP11-1281K21.7 processed_pseudogene 

7 RP11-1324A7.2 processed_pseudogene 

17 RP11-1407O15.2 protein_coding 

5 RP11-152K4.2 Antisense 

5 RP11-184E9.1 lincRNA 

5 RP11-192H6.2 lincRNA 

4 RP11-241F15.3 Pseudo gene 

9 RP11-262H14.1 lincRNA 

9 RP11-318K12.3 Pseudo gene 

5 RP11-321E2.6 processed_pseudogene 

9 RP11-350D23.4 Pseudo gene 

1 RP11-353N4.5 lincRNA 

5 RP11-360I2.1 lincRNA 

1 RP11-417J8.1 lincRNA 

1 RP11-417J8.2 lincRNA 

1 RP11-417J8.3 lincRNA 

1 RP11-417J8.6 lincRNA 

3 RP11-423E7.1 Pseudo gene 

1 RP11-423O2.5 lincRNA 

1 RP11-423O2.7 lincRNA 

5 RP11-42L13.2 Pseudo gene 

5 RP11-432M8.13 Pseudo gene 

1 RP11-435B5.5 lincRNA 

1 RP11-435B5.6 lincRNA 

1 RP11-435B5.7 lincRNA 

5 RP11-447B18.1 lincRNA 

4 RP11-463J17.1 lincRNA 

5 RP11-480D4.5 Pseudo gene 

5 RP11-484L7.1 Pseudo gene 

5 RP11-53O19.1 Antisense 

5 RP11-53O19.2 lincRNA 

6 RP11-552E20.1 lincRNA 

11 RP11-56P9.4 unprocessed_pseudogene 

11 RP11-56P9.5 Pseudo gene 

5 RP11-589F5.4 Pseudo gene 

16 RP11-626K17.5 unprocessed_pseudogene 

16 RP11-67H24.2 lincRNA 

5 RP11-730N24.1 lincRNA 

5 RP11-730N24.2 lincRNA 

1 RP11-763B22.9 unprocessed_pseudogene 

9 RP11-764K9.1 lincRNA 

9 RP11-764K9.4 unprocessed_pseudogene 

5 RP11-774D14.1 lincRNA 

1 RP11-782C8.1 lincRNA 

1 RP11-782C8.4 lincRNA 

1 RP11-782C8.5 lincRNA 

10 RP11-96F8.1 Pseudo gene 

1 RP3-395P12.2 lincRNA 

20 RP4-610C12.1 Antisense 

1 RP4-669L17.10 lincRNA 

1 RP5-968D22.3 lincRNA 
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5 RPL36AP21 Pseudo gene 

7 SAMD9 protein_coding 

1 SEC22B processed_pseudogene 

1 SELP protein_coding 

5 SEMA5A protein_coding 

5 SEPP1 protein_coding 

11 SESN3 protein_coding 

10 SIRT1 protein_coding 

5 SLC1A3 protein_coding 

22 SLC9B1P4 Pseudo gene 

16 SMG1P1 transcribed_unprocessed_pseudogene 

5 SNORD81 snoRNA 

7 SP4 protein_coding 

5 SPEF2 protein_coding 

5 TARS protein_coding 

4 TMEM128 protein_coding 

5 TTC23L nonsense_mediated_decay 

5 UBE2D2 protein_coding 

5 UBL5P1 Pseudo gene 

1 VAMP4 protein_coding 

5 WDR70 protein_coding 

1 WI2-3658N16.1 transcribed_unprocessed_pseudogene 

17 WIPI1 processed_pseudogene 

22 XXbac-B33L19.3 Antisense 

1 ZBTB41 protein_coding 

5 ZNF131 processed_pseudogene 

5 ZNF622 protein_coding 

3 ZNF717 processed_pseudogene 
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Abstract. Similarity (or conversely distance) measures are at the heart of most bioinformatic appli-
cations. When the similarity involves only a small subset of features out of many, global similarity
measures may be significantly affected by noise. Selecting only a subset of (putatively relevant) fea-
tures for comparison is a widespread solution to the problem albeit affected by arbitariness and manual
intervention. The problem is becoming more and more important due to the increasing amount of ex-
perimental data available. In recent years measures based on ranking similarities between two datasets
have been proposed. Here, we use one of the proposed rank similarity measures, sharing some aspects
with the fraction enrichment score used for protein structure prediction and the Gene Set Enrichment
Analysis and test its performance in classifying experiments.
The discrimination ability of the similarity measures based on the overlap of ranked genes tested here
compares well or better with standard measures of similarity. This conclusion supports the use of rank
based proximity measures to gain further insight in datasets comparisons, in particular on expression
data obtained by different techonologies (e.g. RNA-seq and microarrays).

1 Introduction

Similarity measures are central to many bioinformatic applications that aim at inferring novel
knowledge from previous knowledge. Proper evaluation of similarity is more and more important
due to the ever increasing amount of data available in public databases. For entities that can
be represented by a vector of numerical features, some similarity measures have emerged as a de

facto standard. The interplay of distance definition and clustering algorithms has been thoroughly
addressed by some recent works (Giancarlo et al., 2010, 2013; Jaskowiak et al., 2014). Distance
definitions include Minkowski’s distances (e.g. Euclidean, Manhattan) and dissimilarity measures
based on correlation (e.g. Pearson, Spearman correlation).
Sometimes however global similarity measures have limitations due to the fact that only a limited
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set of features (out of many) is responsible for the similarity and relevant signal may be hidden in
noise.
In the field of protein structure predictions, for instance, the true structure is not known and
typically many predictive molecular models are proposed which must be screened and evaluated
according to some scoring function. It is important to assess how one’s own quality score of pre-
dictive models relates to the true quality of the models (e.g. measured by coordinates root mean
square deviation (RMSD) with respect to the true native structure). A straightforward comparison
of quality scores with RMSDs, however, is not particularly significant because the interest is in close
to native predictive models, whereas for wrong predictions it is not important how much distant
from the target structure they are. In other words it is not important if the RMSD is 8.0 Å or 15
Å so long as in both cases the prediction is considered wrong.
The test of scoring functions is typically performed on decoy sets which deviate from the true native
structure. If non-native models in the set are many more than native-like models, global similarity
measures will fail to detect the best scoring function because the signal will be hidden by noise.
Similarly if only a small subset of genes is differentially expressed in two microrarray experiments
the non-differentially expressed gene set will introduce noise on global similarity measures.
Non-global similarity measures based only on a subset of genes (features) are to be preferred in
this respect and indeed, at least in the field of microarray data analysis, have reached widespread
use. On the other hand these methods require often the use of cutoffs or a threshold value to select
e.g. significant fold-changes.
In recent years to overcome the limitations of global measures of similarity a number of approaches
based on rank-rank correlation have been proposed (Yang et al., 2006; Plaisier et al., 2010; Antosh
et al., 2011, 2013). A simple way to apply this principle is to select a gene set from the experi-
ment (typically the most over/under-expressed genes) and check for over-representation of terms
belonging to some biologically relevant set (e.g. terms with some gene Ontology annotation, or be-
longing to the same biological pathway). This over-representation analysis amounts to a comparison
between one’s own experiment (the experiment under analysis, idealized by a set of differentially
expressed genes) and an ideal experiment where only genes belonging to a certain class are differ-
entially expressed.
Two important solutions to the problem have been proposed in the past. In the field of protein
structure predictions the problem has been addressed by considering the so called ”fraction enrich-
ment” (Wang et al., 2004; Fogolari et al., 2005). In practice the 10% best scoring predictions are
considered and the overlap with the 10% best models is evaluated. The choice of 10% is arbitrary
and should be tuned to the set of models with some internal method.
In the field of microarray data experiments the Gene Set Enrichment Analysis (Mootha et al., 2003;
Subramanian et al., 2005) measures the enrichment of a set of genes (derived from and thus ideally
representing a microarray experiment) in the experimentally most over/under-expressed genes. The
idealization process is only on the experiment at the source of the reference gene set, whereas all
the results of the experiment under analysis are considered. Similar ideas are used in standard
overrepresentation analyses, e. g. as implemented in the server David (Huang et al., 2009).
Albeit the two above mentioned approaches are different they share common principles and effective
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ways to combine the ideas underlying the two methods in a single method have been proposed. In
particular Spang and coworkers (Yang et al., 2006) proposed a global similarity measure based on
the similarity of ranking in two ordered lists of genes.
Here we use the similarity measure proposed by Spang and coworkers (Yang et al., 2006) (shifted
and scaled to bring it in the range 0 to 1, and including a linear weight decay) and:
1) we compare its ability to recover similarities between different datasets with classical distances
and for different choices of parameters and data pre-processing;
2) we assess the relationship between such distance and the cardinality of ranked genes with most
significant overlap;
3) we assess the relationship between such distance and the p-value of the overalap;
4) we show that it is suited to compare data acquired with different technologies.
In the latter scenario a hybrid method like the the normalized Rank-Magnitude index based dis-
tance (Campello and Hruschka, 2009), which combines ranks and magnitudes of data, shows similar
results, confirming its usefulness in comparing data with different scales and ranges.
Our results support the usefulness of similarity measures based on the overlap of ranked genes
which perform as well or better as more traditional correlation measures for similarity recognition.

2 Methods

2.1 Fraction Enrichment (FE)

Given a set of ne experiments testing ng common genes we refer to d[k, i] as the k−th gene sampled
in the i − th experiment. Data have been taken: i) as they are; ii) processed by centering; iii)
processed by centering and scaling by their standard deviation. Centering and scaling is performed
by averaging across the experiments and computing the root mean square deviation of genes across
experiments, as detailed below. Results are reported for the three kinds of processing.
After suitable processing, data corresponding to each experiment are sorted. Then for each value
1 ≤ m ≤ ng we count how many genes are found in the first m sorted genes that are common to
two sorted subsets. This quantity (typically, but not here, divided by m) is defined as the fraction
enrichment corresponding to level m,ng. Thus, if Si,m is the set of first m sorted genes of the set of
genes S sampled by experiment i, the fraction enrichment (FE) at level m,ng of set Si with respect
to the set Sj is:

FEm,ng(i, j) = |Si,m ∩ Sj,m| (1)

Here we use this definition without further normalization.

2.2 Fraction Enrichment p-value (FEP)

In principle the behaviour of the FE or of its sum up to the mth level could be used to select the
top scoring genes and to assess the p-value of the enrichment. In other words a p-value is defined in
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the present case as the probability that, given ng genes, taking randomly two sets of m genes each,
they share FEm,ng genes or more in common. The p-value could be computed in principle for each
m and the minimum FE p-value (FEP) could be used as a measure of similarity. The computation
of the p-values at each level based on the hypergeometric distribution is obviously not practical,
but the burden of computation can be scaled down by a factor n evaluating the p-value only at
multiples of n. In practice at intervals of n = 50 the p-value of having FEm,ng common genes in two
randomly chosen sets of m genes out of a set of ng genes is computed and the most signficant level
(discretized by this procedure at n, 2n, 3n...) is chosen corresponding at the minimum p-value. For
the minimum p-value the number of common genes is also recorded. Note that p-values are used
here only for this purpose and therefore they are not corrected here for multiple testing.

2.3 Fraction Enrichment sum (FES)

In an approach inspired by that used in the Gene Set Enrichment Analysis (GSEA) (Mootha et al.,
2003; Subramanian et al., 2005), the fraction enrichments are summed over m and the result is
normalized relative to the minimum and maximum possible values of the sum. Since no p-value
computation is performed the calculation is performed at each level.
The maximum FE is obtained when the two sets have exactly the same order. In this case the FE
is:

FEm,ng = m

and the sum of all FEm,ng up to the kth term is:

∑

m=1,k

FEm,ng =
k(k + 1)

2

The minimum FE is obtained when the two sets have exactly the opposite order. In this case if
⌊
ng

2
⌋ is the largest integer lesser or equal to

ng

2
and ⌈

ng

2
⌉ is the smallest integer larger or equal to

ng

2
:

FEm,ng = 0 m ≤ ⌊
ng

2
⌋

FEm,ng = 2(m− ⌈
ng

2
⌉) + 2(

ng

2
− ⌊

ng

2
⌋) m > ⌊

ng

2
⌋

and the sum up to the kth value is:

∑

m=1,k

FEm,ng = 0 k ≤ ⌊
ng

2
⌋

∑

m=1,k

FEm,ng = (k − ⌈
ng

2
⌉)(k − ⌈

ng

2
⌉+ 1) + 2(k − ⌊

ng

2
⌋)(

ng

2
− ⌊

ng

2
⌋))

k > ⌊
ng

2
⌋
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The sum of FE’s will be larger if common genes are found in the first positions of the ordering. In
practice it turns out that summing the FE’s is equivalent to weighting the common genes according
to the list scanning level at which they are found present in both sets.
In order to have a single value representing the similarity between two experiments, the Fraction
Enrichment Sum (FES) is defined as:

FES =

∑

m=1,ng
FEm,ng −min

max−min
(2)

with

max =
ng(ng + 1)

2

and

min = (
ng + ng mod 2

2
)(
ng − ng mod 2

2
+ 1)

2.4 Distance based on Fraction Enrichment sum (DISFES)

The summation scheme discussed in the previous section is a particular form of the weighting
scheme proposed by Spang and coworkers (Yang et al., 2006). Instead of simple summation they
introduced a weighting scheme decreasing with increasing m in the above equation 2. The weight
proposed is exponentially decreasing with a parameter α equal to the decay rate, i. e.:

FESα =

∑

m=1,ng
FEm,nge

−αm −min

max−min
(3)

When the parameter α is set to 0 we recover equation 2. The only modification adopted here is
that the summation is shifted and scaled in such a way that its range is 0 to 1.
We tested also a linear weighting scheme where the weight decreases linearly to zero in k terms.

FESα =

∑

m=1,k FEm,ng

m−k+1

k
−min

max−min
(4)

The corresponding dissimilarity measure, defined as DISFES , is obtained as:

DISFES = 1−
(FES + FESr)

2
(5)

where FESr is the FES for the reverse sorting of both gene expression sets. This choice amounts
to giving an equal importance to up-regulated (at the top of the list) and down-regulated (at the
bottom of the list) genes (Yang et al., 2006).
Different choices, not followed here, involve taking only FES or FESr in the formula for distance.
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2.5 Choice of parameters

Both exponential (Eq. 3) or linear (Eq. 4) weighting employ a parameter, α or k, respectively.
For the exponential weighting Spang and coworkers suggest an adaptive procedure which however
cannot be adopted only on the ranked gene lists, but rather maximizes the area under curve in
ROC analysis, which assumes knowledge of the true classification of data.
We suggest here to perform the analysis with α = 0 and to use FEP to assess the cardinality (m
in Eq. 1) of the sets leading to the most significant overlap (i.e. the lowest FEP). If we refer to the
latter value of m as mopt, the parameter α should decay significantly after the first mopt positions.
A reasonable choice for α is thus α = 1

mopt
. A similar rationale has been adopted by Graeber and

coworkers (Plaisier et al., 2010) and Neretti and coworkers (Antosh et al., 2013), whose optimal
choice of overlapping sets is based on maximization of probability values.
The linear weighting scheme is somewhat more rigid, but similarly we may take k = 2mopt.

2.6 Comparing sorted lists

Genes are sorted by their expression in time O(ng log ng). Once two sorted list of genes are obtained
(say list1 and list2), the fraction enrichment for all m levels and its sum is computed in time O(n)
by keping track of the found genes in two boolean vectors, say found1 and found2. The two boolean
vectors are initialized at 0. The lists are scanned in parallel for the first element, then the second,...,
the kth, ... the last element. Everytime a gene is found in list1 (list2) the corresponding element
in found1 (found2) is set to 1 and the same element in found2 (found1) is checked. If the same
element was already set to 1, it means that the same gene had been already found and the number
of common genes up to that level is incremented by 1. This operation is performed in time O(n).
If ne experiments are to be compared all-against-all, sorting must be performed ne times, whereas
the comparison of sorted genes must be performed ne(ne + 1)/2 times. In this respect it is conve-
nient to choose a cut-off on the weight for the comparison when using weighting of contributions.
For instance if the weight is scaled linearly down to zero in k terms, only k terms will be considered
in the comparison of sorted genes. Similarly for the exponentially decaying weight terms beyond
two or three decay lengths could be ignored, making sometimes the computation significantly faster.

2.7 Data processing

When explicitly mentioned data were centered and normalized across experiments (notation as
in the above paragraph, d[k, i] is the expression level of the k − th gene sampled in the i − th
experiment) so that:

d[k, i]←

(

d[k, i]− d[k]
)

σd[k]

with d[k] and σd[k] the mean and the standard deviation of d[k, i] over all experiments, respec-
tively. The rationale for centering the data about the average expression was to remove obvious
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similarities in ranking of genes due to overall expression levels, and to compare deviations from
average expression levels. Normalization was chosen to bring all variations with respect to average
to a common scale.

2.8 Test sets

We considered two different test sets for which classification is available and that have been used
also by other authors to assess similarity measures, and a test set including data obtained by both
RNA-seq and microarray technologies. In particular:
i) the first set is a collection of 35 experiments compiled from the literature (de Souto et al., 2008;
Jaskowiak et al., 2013). The data are provided in tabular form by the same authors and allow
straightforward comparison with the similarity measures studied by the same authors (Jaskowiak
et al., 2013). These data sets were obtained using single-channel Affymetrix chips (21 sets) and
double-channel cDNA (14 sets) microarrays. Each of the 35 sets includes a variable number of
experiments (22 to 248, with average 90), each experiment within a set is classified according to
tumor type or status. The number of classes for each set ranges from 2 to 14 with average 3.5. All
references are reported in the original papers (de Souto et al., 2008; Jaskowiak et al., 2013).
ii) the second set is the set of 950 expression data for 19204 genes made available by Bioinformat-
ics GridTM (caBIG) of the National Cancer Institute (downloaded from https://cabig.nci.nih.gov/
caArray GSKdata/ and presently available from ftp://caftpd.nci.nih.gov/ pub/ caARRAY/ in the
directory transcript profiling/). The platform used for all experiments was Affymetrix GeneChip
HG-U133 Plus2, and the experiments were normalized using the MAS5 algorithm (Lim et al., 2007).
The comparisons for the latter set are more challenging because no selection of genes is performed.
For each experiment annotation indicates replicates and different tissue and cancer or normal types.
We consider here three classifications:
1) each set including one or more replicate experiments constitutes a single class. The test on this
set of experiments is able to measure how well very similar experiments are separated from other
experiments;
2) all sets coming from the same tissue constitute a single class.
3) all sets coming from the same tissue and same cancer type constitute a single class.
The latter tests are able to measure how well less similar experiments are recognized as similar;
We will refer to these first two datasets as de Souto and GSKdata, respectively.
iii) the third set of data includes both RNA-seq and microarray absolute expression levels. The
latter set has been chosen to show the usefulness of rank based similarity measures compared to
other commonly employed measures, when different techniques are used for the assessment of ex-
pression levels. The set consists of data collected on Human CCR6+ CD4 memory T cells at two
hours intervals following stimulation with Anti-CD3/CD28 (Zhao et al., 2014). For each technique
(RNA-seq and microarray) and each time interval data have been acquired in duplicate. Overall
correspondence between data could be found for 9603 genes. RNA-seq count data have been log2-
transformed after the addition of 1 pseudo-count, before use in the analysis. We will refer to this
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set as Zhao.

2.9 Comparison and classification of gene expression data

The power of the DISFES to identify related experiments was assessed by the Intrinsic Separation
Ability (ISA) as defined by Giancarlo et al. (Giancarlo et al., 2010, 2013) and used by Jaskowiak
et al. (Jaskowiak et al., 2013). This test has the advantage of singling out the effect of the distance
definition from the effect of the clustering algorithm, although the two are not independent (Gian-
carlo et al., 2010, 2013; Jaskowiak et al., 2014).
The ISA of each similarity measure is assessed following the cited authors by building the receiver
operating characteristic curve (ROC) and measuring the area under the curve (AUC). In practice
ROCs are built by considering for all pairs of experiments (i, j) their distance D(i, j) and a binary
vector I(i, j) which is 1 if class(i) == class(j) and 0 otherwise. Then the distance threshold for pre-
dicting whether two experiments belong to the same class is varied and for each threshold the true
positive classification rate is plotted vs. the false positive classification rate. The area under this
curve is the AUC. A better than random classifier has AUC over 0.5. The AUC has the advantage
of condensing in a single figure the performance of the various distance based classificators. Further
details are given in the cited references (Giancarlo et al., 2010, 2013; Jaskowiak et al., 2014).
The separation from the mean (expressed in standard deviation units, i. e. the so-called z-score)
of the FEP or FES within a group sharing the same annotation versus other experiments was also
tested, but it was less significant, because strongly dependent on the test set and was not further
considered. In order to compare the performance of DISFES with widely used and accepted dis-
tance measures (D) (Giancarlo et al., 2010) we considered for two vectors a and b:
i) the 1-norm of the difference vector (Manhattan distance)

Da,b =
∑

i

|ai − bi| (6)

ii) the 2-norm of the difference vector (Euclidean distance)

Da,b =

√

∑

i

(ai − bi)2 (7)

iii) Pearson correlation (r)

Da,b = 1− r = 1−

∑

i(ai − ā)(bi − b̄)

nσaσb
(8)

where n is the number of components, ā and b̄ are the average of a and b components, respectively,
and σa and σb are the standard deviations of vectors a and b, respectively.
iv) Spearman correlation (i.e. Pearson correlation on ranks, ρ)
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Da,b = 1− ρ = 1−

6
∑

i∆
2
i

n(n2 − 1)
(9)

where ρ is Spearman’s correlation, ∆i is the difference in ranks of ai and bi.
Note that Spearman correlation uses sorted list of genes, as FES does, but it uses the differences
in rank (instead of the proximity as in FES) and each item contributes only once to the statistics,
whereas each item contributes many times, with different weights in FES.
v) Kendall rank correlation coefficient (Kendall’s τ)
This is obtained by checking any possible pairs of components (i, j) on the two vectors a and b.
The observations are defined as concordant if
(ai > aj and bi > bj) or (ai < aj and bi < bj)
and discordant if
(ai > aj and bi < bj) or (ai < aj and bi > bj)
We thus define the distance:

Da,b = 1− τ = 1−
nc − nd

1

2
n(n− 1)

(10)

where nc and nd are the numbers of concordant and discordant pairs of observations.
Kendall tau could not be used on all sets because the complexity of its implementation in the func-
tion cor() in R is O(n2

g), although algorithms with complexity n log n have been reported (Knight,
1966; Christensen, 2005; Campello and Hruschka, 2009). Using R the running time on the large
GSK dataset (ng = 19204,ne = 950) was unpractical. However we tested its behaviour on the test
set used by Jaskowiak et al. (de Souto et al., 2008; Jaskowiak et al., 2013) described above and
the results where almost overlapping with the results obtained using Spearman correlation with
correlation coefficient 0.998. We reasonably expect that its application to the larger set of data
would result in similar performance as Spearman correlation.
vi) Normalized Rank-Magnitude index
This measure was introduced and tested by Campello and coworkers’ (Campello and Hruschka,
2009) as a sensitive measure of correlation for data acquired with different technologies and scales.
One of the vectors to compare is ranked (low indices are assigned to the lowest magnitude com-
ponents) and the normalized Rank-Magnitude index (RM) uses the scalar product of the ranks of
the first vector with the second vector:

Da,b =
2
∑

iRank(ai)bi −RMmax −RMmin

RMmax −RMmin

(11)

where RMmax and RMmin are the maximum and the minimum of the scalar product of the ranks of
the first vector with the second vector, assuming the ordering of the first vector components in the
most favorable or most unfavorable way, respectively. As can be seen the distance is not symmetric
for an exchange of a and b and it has been symmetryzed by: Da,b = Db,a ←

Da,b+Db,a

2
.

All distances (D) have been transformed in similarity measures (s) in the range 0 to 1 by equation:

s =
D −min(D)

max(D)−min(D)
(12)
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for use as predictors of two experiments belonging to the same class.

3 Results and discussion

3.1 Comparison of similarity measures

The results obtained on the first two datasets considered here, GSK and de Souto datasets, are
summarized in Table 1 where the ten (or more for equal values) best results are highlighted in
boldface.We report in the table the area under curve (AUC) of the receiver operating characteristic
(ROC) curve.
It is apparent from the table that among the standard distances those based on Pearson and Spear-
man correlations are in all cases the best performing. Scaling the expression levels by the average
root mean square deviation from the average (over the set of experiments considered) has effect
but it is dependent on the analysed set as could be expected.
For the DISFES dissimilarity measure centering the data on the average expression levels of the
data set considered improves always the performance, whereas scaling has effects which depend on
the set.
The effect of the parameter α is in turn dependent on centering and scaling of the dataset.
For all choices of α, however, a performance comparable to the well established Pearson and Spear-
man correlations is observed.
The classification of experiments in the GSK dataset allows to assess the performance of the dis-
similarity measures in discriminating very similar (repicates) and less similar (cell types and cell
and tumor types) expression sets.
For the best choice of α (0.001) the DISFES dissimilarity measure classification is comparable or
better than the Pearson and Spearman correlations based classification.
The test performed with the normalized Rank-Magnitude index based distance (Campello and Hr-
uschka, 2009), which uses both ranks and values, show results similar to DISFES using the best
parameter choices, confirming the power of such distance.
The AUC constructed with the best performing similarity measures on GSK dataset have been
compared using the DeLong statistical test (DeLong et al., 1988) as implemented in the R package
pROC (Robin et al., 2011).
The results are reported in Table 2. It is seen that most pairs of AUCs are significantly different.
Exceptions are for DISFES with exponential decay constant 0.001 on centered data and Pearson
correlation on scaled data, Rank-Magnitude index on centered data, DISFES with exponential
decay constant 0.001 on centered and scaled data and DISFES with linear decay in 1000 steps
on centered and scaled data. The latter is in turn equivalent to DISFES with exponential decay
constant 0.001 on centered and scaled data.
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3.2 DISFES correlates with the statistical significance of fraction enrichment

The correlation of the DISFES dissimilarity measure with the minimum p-value corresponding
to the overlap of genes sampled at discrete intervals was checked. The results are reported in
Figure 1. It is seen that a strong similarity is always corresponding to a minimum p-value close
to zero. The tests are reported for the centered and scaled GSK datasets for the three parameters
α = 0, 0.001, 0.01. Both the minimum p-value and its logarithm are reported in Figure 1. Although
minimum p-values are not corrected here for multiple testing, even with the most conservative
correction the picture would not change significantly.

Fig. 1. Logarithm of the minimum p-value (upper panels) and minimum p-value (lower panels) versus DISFES

dissimilarity measure for the GSK centered and scaled datasets. Logarithm values lesser than -750 were plotted at
-750. The parameter α is 0, 0.001, 0.01 for the left, center, and right panels, respectively. Each point in the figure
corresponds to the similarity between two experiments.

3.3 The number of genes contributing to similarity

Although the DISFES is a global measure of dissimilarity it is interesting to check the number of
common genes corresponding to the minimum p-value. This gives an idea of the number of genes
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most contributing to the similarity between two sets.
The results are reported in Figure 2. The figure reports also the detail at the closest similarity. It
is seen that in all cases only a few hundred of genes are shared by the sets for which the p-value is
minimum, which is in line with the the typical number of genes considered over- or under-expressed
in microarray experiments. These numbers could be however linked with the specific GSK dataset.

Fig. 2. Number of common genes corresponding to the minimum p-value versus DISFES dissimilarity measure for the
GSK centered and scaled datasets. The parameter α is 0, 0.001, 0.01 for the left, center, and right panel, respectively.
In the lower panels the detail at closest similarities is reported. Each point in the figure corresponds to the similarity
between two experiments.

3.4 Application to data obtained with mixed technologies

Finally, we challenged DISFES with a dataset where expression levels are assessed by RNA-seq
and microarray on the same samples. The set consists of 24 experiments (12 microarray and 12
RNA-seq) for each sample and there are two replicates for each technique. The design of the exper-
iments allows one to test detection of similarities when data obtained with different techniques are
considered and to check also the effect of technique versus sample similarity. The data considered
here are not ratios of expression levels, but absolute values obtained from the supplementary tables
accompanying the paper of (Zhao et al., 2014).
The results are reported in Table 1. Two kinds of analyses are performed, first data obtained with
microarrays are compared with data obtained with RNA-seq (first value in Table 1), then all data
are analysed at the same time (values in parentheses in Table 1).
As expected measures based on differences like Euclidean or Manhattan distances perform poorly
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and scaling definitely improves the performances. The computed AUCs are smaller when all data
are considered together, because similarity in absolute values due to the same experimental tech-
nique overcome the similarity in relative expression levels.
Standard correlation measures perform better. Both Spearman and Pearson correlation can classify
exactly scaled data. Pooling all data together decreases the performance as discussed above for both
Pearson and Spearman correlation.
The performance of DISFES depends on the decay parameter chosen, but can classify exactly
data (for the choice k = 1000 on centered and scaled data, also when pooled). Similar results are
obtained using the normalized Rank-Magnitude similarity, also using ranks, on scaled and scaled
and centered data.

4 Conclusions

The results reported in this paper show that similarity measures based on the overlap of ranked
genes are as effective (or better) as the well established Pearson and Spearman correlation measures
in identifying similarities between expression gene sets.
The scheme proposed by Spang and coworkers (Yang et al., 2006), slightly adapted here, shows
that for all close similarities the corresponding p-values for the overlap of ranked genes are close
to zero, thus supporting the soundness of the approach. The number of genes contributing to the
similarity, for the GSK dataset studied here, is in the range of 200-300 genes, consistently with
the typically adopted choice of over- or under-expressed gene sets, according to different criteria.
The latter observation suggests that the parameter that enters FES should be chosen as to weight
significantly more the first few hundreds ranked genes (i.e. α ≈ 0.01–0.001).
Pearson and Spearman coefficients are able to detect linear relationships while FES measure could
be able to detect similarities in more complex scenarios. Expression values derived from the same
technologies (such as microarrays) are characterized by a clear linear relationship; similar samples
have similar expression trend on the same range of values. Thus, in the context of microarray data
classification the similar performance of FES with Pearson and Spearman coefficient is expected.
However we would expect that FES would guarantee a better performance whenever samples are
measured with different technologies such as a combination of RNA-seq and microarray. The re-
sults on a dataset containing RNA-seq and microarray data for the same samples are confirming
this expectation showing that FES based measures could be useful for comparing different types
of experiments. Similar results are reached for another rank-based distance tested here, i.e. the
normalized Rank-Magnitude index.
Meta-analysis, that is the combination of different expression studies on the same biological prob-
lem, with the aim to increase sample size and then statistical power, would certainly benefit of the
use of these types of similarity measure.
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GSKdata de Souto Zhao
AUC AUC AUC

Distance replicate type and tissue tissue

Euclidean 0.985 0.758 0.701 0.678 ± 0.125 0.736 (0.429)
Manhattan 0.983 0.737 0.688 0.680 ± 0.123 0.678 (0.447)
Pearson 0.985 0.767 0.734 0.718 ± 0.139 0.913 (0.362)
Spearman 0.984 0.767 0.731 0.701 ± 0.133 0.965 (0.345)
Euclidean scaled 0.978 0.709 0.657 0.659 ± 0.115 0.991 (0.979)
Manhattan scaled 0.980 0.712 0.666 0.667 ± 0.118 1.000 (0.983)
Pearson scaled 0.997 0.786 0.786 0.701 ± 0.123 1.000 (0.997)
Spearman scaled 0.996 0.783 0.785 0.695 ± 0.121 1.000 (0.995)
Rank-Magnitude 0.984 0.768 0.732 0.710 ± 0.134 0.946 (0.351)
Rank-Magnitude centered 0.996 0.793 0.799 0.716 ± 0.127 1.000 (1.000)
Rank-Magnitude centered and scaled 0.997 0.785 0.786 0.699 ± 0.121 1.000 (0.995)
DISFES (α = 0) 0.982 0.751 0.720 0.690 ± 0.131 0.965 (0.345)
DISFES centered (α = 0) 0.993 0.780 0.782 0.697 ± 0.120 1.000 (0.992)
DISFES centered and scaled (α = 0) 0.995 0.780 0.781 0.691 ± 0.116 1.000 (0.995)
DISFES (α = 0.001) 0.943 0.733 0.620 0.694 ± 0.128 0.972 (0.343)
DISFES centered (α = 0.001) 0.993 0.787 0.797 0.698 ± 0.120 1.000 (0.982)
DISFES centered and scaled (α = 0.001) 0.996 0.788 0.785 0.691 ± 0.116 1.000 (0.995)
DISFES (α = 0.01) 0.943 0.657 0.620 0.709 ± 0.128 0.869 (0.741)
DISFES centered (α = 0.01) 0.996 0.786 0.800 0.711 ± 0.122 1.000 (0.850)
DISFES centered and scaled (α = 0.01) 0.996 0.781 0.762 0.692 ± 0.116 1.000 (0.998)
DISFES linear (k = 10) 0.886 0.587 0.595 0.634 ± 0.100 0.500 (0.650)
DISFES linear centered (k = 10) 0.997 0.713 0.661 0.630 ± 0.095 0.500 (0.500)
DISFES linear centered and scaled (k = 10) 0.995 0.590 0.448 0.584 ± 0.083 0.500 (0.500)
DISFES linear (k = 100) 0.972 0.607 0.636 0.706 ± 0.125 0.852 (0.725)
DISFES linear centered (k = 100) 0.997 0.777 0.778 0.702 ± 0.120 0.595 (0.572)
DISFES linear centered and scaled (k = 100) 0.995 0.742 0.699 0.671 ± 0.110 0.877 (0.886)
DISFES linear (k = 1000) 0.988 0.704 0.691 0.700 ± 0.128 0.999 (0.680)
DISFES linear centered (k = 1000) 0.997 0.777 0.778 0.700 ± 0.120 1.000 (0.969)
DISFES linear centered and scaled (k = 1000) 0.997 0.788 0.778 0.691 ± 0.116 1.000 (1.000)

Table 1. Summary of the results (see text for details). First column: distance used for classification; second to fourth
columns: AUCs corresponding to classification based on experimental replicate, same type of tumor and tissue, same
tissue for GSK dataset; fifth column: average and standard deviation of the AUCs obtained on the 35 sets included
in the de Souto dataset; sixth column: AUC for the Zhao dataset when only data obtained with different techniques
(RNAseq and microarray) are compared. In parentheses AUCs are reported when all data are pooled together.
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For Peer Review
 O

nly/Not for Distribution

P PS S SS RM RMC RMCS F0.001 F0.001C F0.001CS F1000 F1000C F1000CS

P - = 2.2E-16 2.2E-16

PS 2.2E-16 - 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16 = 2.2E-16 1.1E-08

S = - 2.2E-16 2.2E-16

SS 2.2E-16 2.2E-16 - 2.2E-16 2.2E-16 2.2E-16 2.9E-04

RM 2.2E-16 2.2E-16 - 2.2E-16 2.2E-16

RMC 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16 - 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16 1.2E-08

RMCS 2.2E-16 2.2E-16 2.2E-16 2.2E-16 - 2.2E-16 = 2.2E-16 1.4E-06

F0.001 - 2.2E-16

F0.001C 2.2E-16 = 2.2E-16 2.8E-05 2.2E-16 = 2.2E-16 - = 2.2E-16 7.4E-12 =

F0.001CS 2.2E-16 1.2E-06 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16 = - 2.2E-16 9.3E-13 =

F1000 -

F1000C 1.4E-08 3.1E-08 1.6E-06 2.2E-16 2.2E-16 -

F1000CS 2.2E-16 4.4E-03 2.2E-16 2.0E-10 2.2E-16 1.4E-05 2.2E-16 = = 2.2E-16 1.7E-15 -

Table 2. Comparison of classifiers based on different distances: P - Pearson correlation, S - Spearman correlation,
PS - Pearson correlation on scaled data, SS - Spearman correlation on scaled data, F0.001 - DISFES with exponential
decay constant 0.001 , F0.001C - DISFES with exponential decay constant 0.001 on centered data, F0.001CS - DISFES

with exponential decay constant 0.001 on centered and scaled data, F1000 - DISFES with linear decay in 1000 values,
F1000C - DISFES , with linear decay in 1000 values on centered data, F1000CS - DISFES with linear decay in 1000
values on centered and scaled data. The p-value (if smaller than 0.05) is reported. The presence of a p-value in a cell
of the matrix means that a classifier based on the distance in the row performs better and is significantly different
from the classifier based on the distance in the column. Conversely a void cell indicates that the classifier based on
the distance in the column performs better and is significantly different from the classifier based on the distance in
the row. If the two classifiers are not significatly different an equal sign is reported.
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