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Abstract

The analysis of biological sequences is one of the main research areas of Bioinformatics.
Sequencing data are the input for almost all types of studies concerning genomic as well
as transcriptomic sequences, and sequencing experiments should be conceived specifically
for each type of application.

The challenges posed by fundamental biological questions are usually addressed by
firstly aligning or assemblying the reads produced by new sequencing technologies. As-
sembly is the first step when a reference sequence is not available. Alignment of genomic
reads towards a known genome is fundamental, e.g., to find the differences among organ-
isms of related species, and to detect mutations proper of the so-called “diseases of the
genome”. Alignment of transcriptomic reads against a reference genome, allows to detect
the expressed genes as well as to annotate and quantify alternative transcripts.

In this thesis we overview the approaches proposed in literature for solving the above
mentioned problems. In particular, we deeply analyze the sequence assembly problem,
with particular emphasys on genome reconstruction, both from a more theoretical point
of view and in light of the characteristics of sequencing data produced by state-of-the-
art technologies. We also review the main steps in a pipeline for the analysis of the
transcriptome, that is, alignment, assembly, and transcripts quantification, with particular
emphasys on the opportunities given by RNA-Seq technologies in enhancing precision.

The thesis is divided in two parts, the first one devoted to the study of local assembly
methods for Next Generation Sequencing data, the second one concerning the development
of tools for alignment of RNA-Seq reads and transcripts quantification. The permanent
theme is the use of paired reads in all fields of applications discussed in this thesis. In
particular, we emphasyze the benefits of assemblying inserts from paired reads in a wide
range of applications, from de movo assembly, to the analysis of RNA.

The main contribution of this thesis lies in the introduction of innovative tools, based
on well-studied heuristics fine tuned on the data. Software is always tested to specifically
assess the correctness of prediction. The aim is to produce robust methods, that, having
low false positives rate, produce a certified output characterized by high specificity.
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Preface

Very often, the challenges arising when addressing the resolution of biological problems
are of two types: (i) coping with difficult formalization of under-determined problems,
impossible to solve both exactly and completely, and (ii) working with biased data, whose
source of errors is sometimes unpredictable. In this thesis we focus on the analysis of
biological sequences, a topic including problems that often require to cope with both (i)
and (ii).

Methods employed to solve problems related to biological sequence analysis can be
grouped in two classes. The first one envisages the definition of a clean mathematical model
mimicking the real problem that, in spite of leading to instances that are computationally
intractable, have well-known algorithms for its approximate resolution; procedures falling
in this class can be identified as heuristics on the problem. Procedures belonging to
the second class are instead created starting directly from the data and see as goal the
understanding of the system behavior that can be inferred from them; such algorithms
may be referred to as heuristics on the data.

Both methods have their own merits and defects. On the one hand, a model is easy
to manipulate and strengthened solving procedures already exist, however, as the model
is different from reality, their output is not intended to be a solution of the real problem.
On the other hand, a procedure grounded on the data directly addresses the resolution
of the real problem, the shortcoming being the possibility of getting unexpected results
when input data differ from the dataset the procedure was designed on.

The contribution of this thesis should be intended as a collection of methods and
procedures aiming at solving biological problems in practice. We address the design of
algorithms that both work well on the data and use as much as possible information
coming from the data.
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Introduction

The application of Mathematics and Computer Science methods to the study of biological
problems cover several areas ranging from the design of algorithms on strings to the
modeling of biological systems. Even though first approaches towards such biological
applications are dated several decades ago, only recently Computer Science became a
fundamental support for biological studies, namely, with the advent of new machines able
to “read“, i.e., sequence, the code of life of every organism.

The term sequencing refers to a procedure for extracting information from a nucleic
acid or from a polypeptide, in the form of sequences of letters (i.e., nucleotides or amino
acids), possibly provided with quality values. Pioneer sequencing experiments were per-
formed by Frederick Sanger in the early 1950s with the sequencing of insulin. In the
1970s he started using the DNA polymerase to clone DNA fragments, and in 1977 he
proposed the chain-termination method, or capillary sequencing, that remained the un-
questioned sequencing technology for nearly 30 years. The throughput of Sanger method
was relatively low and expensive, a shortcoming that limited the application of sequencing
technologies in terms of both the number of organisms that could be sequenced and the
type of analyses that could be performed.

A new concept of sequencing experiment was proposed less than ten years ago with the
advent of Next Generation Sequencing (NGS) technologies. The difference with “Sanger
method” mainly lie in a massive level of parallelization, which allowed both to reach high
througput (up to millions of bases sequenced in a single run) and to decrease sequencing
costs. The production of large amounts of affordable data characterized by single-base
resolution and high technical reproducibility leaded to several consequences: (i) many labs
could afford sequencing experiments, (ii) advanced computing infrastructures are needed
to store and to analyze the data, and (ii) many more types of studies can now be done,
whereas the classical analyses could now reach higher sensitivity.

The goal of Bioinformatics is not only to apply computational methods to biology.
Nowadays, Bioinformatics has a completely pervasive role in all “omics” disciplines (e.g.,
genomics, transcriptomics, proteomics, etc.). Bioinformatic applications to clinical studies
are within our grasp and need fast, trustable, and automatized pipelines. For instance,
the 1000 Genomes Project [155] is aimed at sequencing a large number of organisms in
order to deeply annotate the patterns of genetic variation in human.

Software tools for bioinformatic applications have become the new “microscope” of life
scientists: almost all labs need advanced computer infrastructures to store and analyze
the enormous amount of data produced by state-of-the-art sequencing technologies. Thus,
the bioinformatic community is constantly called to produce cutting edge instruments
able to cope with large datasets when classical problems such as alignment and assembly
are addressed. Efficiency and memory constraints have stimulated broad research efforts
towards optimal data structures engineering and sophisticated algorithms design to min-
imize the search time (e.g., hash tables and suffix trees) or the RAM memory required
(e.g., FM-index and Burrows-Wheeler transform).

Extraordinary advances in cell biology have matured in the last decade thanks to new
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2 P. Introduction

sequencing technologies. In particular, the central dogma of molecular biology (Watson,
1958) and the simplified notion of eukaryotic gene as an alternation of exons and introns
(Gilbert, 1978), underwent several modifications after discoveries moved by the assembly
of the first human genome in 2001 [167], thanks to the possibility of studying several phe-
nomena with the high resolution offered by NGS data. Among the most important ones,
we mention the phenomenon of alternative splicing, which allows the production of differ-
ent trascripts (and hence different proteins) from the same gene; the sequencing of several
types of RNAs, that do not encode for proteins but instead influence gene expression; the
discovery of epigenetic modifications, that have a central role in gene expression but are
not encoded at the genomic level, such as post-transcriptional modifications.

The research of new algorithms that employ NGS data to tackle such bioinformatic
problems is continuously evolving and contribute to deepen our knowledge of biological
processes with a degree of precision that was impossible only ten years ago.

In this thesis we will exploit the potential of assembly not only in the reconstruction
of biological sequences, but also as an instrument able to provide a good starting material
for downstream analyses concerned with the understanding of the genome and of the
transcriptome. In the first part we will overview genome assembly methods and challenges,
and propose a new tool for accurate reconstruction of stretches of DNA identified by
couples of sequences known to lay at a certain distance (i.e., paired reads). In the second
part, we apply and extend the results previously obtained to the analysis of RNA-Seq
data. We will focus on both reads alignment against the reference genome, and transcripts
quantification using an existing annotation. The starting point for all applications is local
assembly of sequencing data. We will extensively show the benefits of such an approach
in three main bioinformatic problems: assembly, alignment, and coverage estimation.

I.1 Relevant problems and computational challenges in ge-
nomics and transcriptomics

The study of the structure of genomes is extremely important for a number of problems,
such as evolutionary studies, clinical applications, metagenomics, epigenomics, and many
others. From the computational point of view, the genome is a string (or a set of strings)
in the alphabet {A, C, G, T'}. Retrieving the complete DNA sequence of an organism using
only NGS reads, without any information on the genome, is the so-called de novo assembly
problem.

There are theoretical limitations that make de movo assembly problem intractable.
First approaches towards the formalization of sequence assembly were based on the def-
inition of genome as the shortest string that explains the set of reads extracted from it.
The corresponding combinatorial problem is called Shortest Superstring Problem (SSP)
and it easily seen to reduce to the Traveling Salesman Problem, hence to be NP-complete.

Further insights on the first formulation of the assembly problem pointed out the
inconsistence between the minimality of the solution of the SSP and the presence of repeats
in the genome. In fact, a solution of SSP, by definition, would report only one copy of each
(long) repeat, a feature that is not justified from a biological point of view. A proposed
variant to the SSP model consists in introducing some constraints [113], namely, requiring
each read to be used in the assembly a minimum number of times, thus allowing for repeats
to be reported more than once in the solution. Many other variants have been proposed.
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1.1. Relevant problems and computational challenges in genomics and transcriptomics 3

The repeated structure of the genome causes the assembly problem to be NP-hard even
if repeats are relatively short (i.e., comparable to reads length). Before NGS technologies
appeared on the market, read length was about 800 bp and assembly task was easier. A
common belief was that a complex genome structure could be disentangled by providing
higher coverages, that is, by increasing the redundancy of data. Unfortunately, with
shorter NGS reads, the number of repeats that are not spanned by a read increases.
This and several other considerations on the relation between read length and repeat size
clarified that genome assembly with short reads is harder as compared to assembly with
long ones, irrespective of coverage [126].

Several studies discussed the possibility to disambiguate repeats with NGS data, pro-
vided that long-range information on the genome sequence is available. In particular,
paired read sequencing has found several applications in genome assembly, both in the
detection of correctly assembled areas [116,134,179], and in the post-processing phase,
called scaffolding, in which assembled contigs are connected to one another [76].

In the literature, several algorithmic approaches have been proposed to solve the assem-
bly problem, most often based on one of the following schemata: overlap-layout-consensus
(OLC), de Brujin graph, and greedy. OLC assemblers [6,26,51,116,153] build an overlap
or string graph and compute a solution in terms of hamiltonian path. Approaches based
on de Brujin graphs [13,20,22, 23,96, 134,154, 179] visit the k-mer graph built from the
reads and find an eulerian path. Finally, greedy techniques [18,31,36,52,77,120, 160, 174]
employ a local strategy that extends the assembly as long as overlapping reads exist.

Assessing genome assembly correctness has recently attracted research efforts towards
the standardization of validation statistics, starting from recent competitions among as-
sembly tools. Nowadays statistical methods exists that evaluate not only assembly con-
tiguity and completeness, but expecially correctness, with [15,37, 56, 143] or without
[136, 170, 171] a reference genome. The continuing debate on the performances of as-
sembly tools, as a consequence, is motivating further efforts in improving software tools
and proposing new algorithmic approaches.

For several types of studies strongly based on resequencing (e.g., structural variants
calling and reconstruction), fundamental prerequisite is the availability of a reliable ref-
erence sequence. To this aim, genome assembly with NGS reads is, always more fre-
quently, supported by long-range information provided by either pair-end reads and mate-
pairs [102,183] (e.g., paired reads with insert size of ~ 250 < 600 bp up to several kbp,
respectively) or Third Generation Sequencing data [39]. Already far from the time when
assemblers were busy in a race to reach higher N50, the trend now is to concentrate on
sequence correctness.

The assembly of the genome is only the first step towards the comprehension of cell
functions. Identification of coding regions (i.e., genes) and quantification of their products
(i.e., transcripts) pose further bioinformatic challenges that are faced with ad hoc algo-
rithms. In eukaryotes, genes are organized in coding parts (i.e., exons) interspersed by
non-coding ones (i.e., introns), the latter being removed after transcription. Identification
of coding regions is challenging because alternative splicing allows for the production of
different transcripts from the same gene.

NGS reads extracted from a transcriptome, also called RNA-Seq reads, are on the
basis of numerous downstream analyses focused on genome annotation and transcripts
quantification. Issues concerned with the annotation problem are: understanding genes
structure, finding all types of expressed transcripts, detecting alternative splicing events,
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4 P. Introduction

and calling post-transcriptional modifications. From a computational point of view, these
problems can all be reconducted to assembly or alignment of RNA-Seq reads.

The reconstruction of the transcriptome de novo is performed with tools mainly derived
from existing instruments for genome assembly [12,25,150], even though the nature of the
problem is intrinsically different [50]. Tools developed from scratch exist as well [45,
132]. The lack of coverage information cannot be used here to disambiguate the assembly
and its non-uniformity along the transcriptome requires ad hoc designed heuristics. The
availability of a reliable reference genome can often ease transcriptome assembly task
[49,97,118,162,165] that, in this case, is based on RNA-Seq reads alignment against the
genome to find putative exons.

Accurate RNA-Seq reads alignment against the reference genome is the first step to-
wards reference-guided transcriptome assembly, novel splicing sites detection, and tran-
scripts quantification [173]. As RNA-Seq reads come from transcripts, mapping against
the genomic sequence should envisage the presence of large gaps, when a read spans an
intron. The importance of RNA-Seq reads alignment for the analysis of the transcrip-
tome stimulated several research efforts [1,41]. In the literature two main approaches
are found: exon-first [7,30,32,75,98,164, 172, 181], which use unspliced reads as an-
chors for exons detection and spliced reads for isoforms identification, and seed-and-
extend [4,8,17,34,99,103,135,176,177], which cut each read in seeds, align them separately,
and identify their correct placement using global mapping information.

Quantification is performed employing RNA-Seq reads alignment, whereas the task of
decomposing cumulative exons coverage into the expression levels of alternative transcripts
is usually addressed with a least square model that minimizes the discrepancy between
prediction (i.e., expression levels) and observation (i.e., exons coverage).

Very recently, a new research front emerged, addressing systematic evaluation of soft-
ware tools for RNA-Seq data analysis [40,158]. These studies are relevant in a scenario
in which, lacking any standardized method to compare software instruments, the choice
of the most suitable tool for a specific bioinformatic application is nearly casual or, at
most, is based on current trends. To the best of our knowledge, ground truth-independent
evaluation metrics have not been proposed yet, but, analogously to GAGE competition for
genome assembly evaluation [58], efforts towards unbiased comparison of state-of-the-art
tools for the analysis of the transcriptome are laying the foundations for the develop-
ment of a new research, targeted to RNA-Seq reads alignment, isoforms assembly, and
transcriptome quantification assessment.

1.2 The contribution of this thesis

With paired read we denote a couple of nucleotide sequences known to lay at an estimated
distance in the genome and with a given orientation. In this thesis we will make extensive
use of pair information. The lack of contiguity proper of short NGS reads can be partially
accomplished by this type of information. Paired reads are employed both to disambiguate
complex structures during assembly and to connect the assembled sequences during the
finishing (i.e., scaffolding) phase. Moreover, paired reads can aid accurate reads mapping
against a reference, by identifying pair-consistent alignments.

However, pair information is weaker than complete long range information (i.e., the
knowledge of the entire sequence lying between the two mates of a paired read) and,
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in some cases, single-base resolution would be extremely helpful. For instance, a single
paired read cannot be used alone to assess the correctness of an assembled sequence, nor to
connect two separate parts of an assembly. In other words, it is often necessary to provide
a threshold amount of evidences, in terms of paired reads, to infer that two sequences are
adjacent one another in the genome. Moreover, alignment of RNA-Seq reads against a
reference genome is only weakly supported by insert-size information.

In this thesis we deeply exploit the advantages of using pair information for various
applications, ranging from genomics to transcriptomics. In Part I we will propose a de
novo assembly tool, called GapFiller [123], to reconstruct inserts of a paired read library.
It is based on a seed-and-extend schema, in which every read is selected as seed and itera-
tively extended until its mate is possibly found. During assembly, a sequence is extended
with a consensus computed on overlapping reads. The search is speeded-up thanks to a
hash function that guarantees a low false positive rate [169]. The extension phase employs
refined clustering and trimming heuristics to guarantee assembly correctness. We will dis-
cuss the advantages of having longer in-silico built sequences in contexts in which sequence
correctness is of crucial importance. In particular, we will employ GapFiller output contigs
for genome assembly, as in [102,182], and for structural variants reconstruction.

Part II is devoted to the analysis of RNA-Seq data. In particular, we will introduce
two new approaches for RNA-Seq paired reads alignment and transcripts quantification,
respectively, both taking advantage of a preprocessing phase that allows transcripts recon-
struction from RNA-Seq paired reads [122]. The first pipeline is structured in three steps:
(i) inserts are assembled with GapFiller and, for each of them, the layout information
is stored (i.e., position and orientation of each read used for the assembly); (ii) inserts
are aligned against the reference genome and mapping is refined around splicing junc-
tions; and (iii) reads alignment is retrieved from inserts layout and multiple alignments
are either merged or disambiguated using pair information. Such insert-guided alignment
procedure is aimed at overcoming possible ambiguities or imprecisions arising from NGS
reads alignment around splicing junctions, using neighboring sequence information.

In the second method, similarly to most approaches to the estimation of expression
levels of alternative transcripts, we associate each gene a linear system of equations Mx =
¢, which puts in relation expression levels (x) with measured exons coverages (c). In order
to compute the components of ¢, we will employ the alignment pipeline described above.
The difference with state-of-the-art methods, which are usually based on the resolution
of a least square problem that minimizes |[Mx — c||, where x is an estimate of x, lie in
two aspects. First, each exon is associated a quality value, depending on length, coverage
uniformity, and coverage consistency with respect to other exons of the gene. Second, a
solution to the linear system is found by solving a minimal sub-system, whose equations
are associated to high quality exons, for which a unique solution exists.

Our aim is to provide methods that guarantee high specificity, that is, correctness of
predictions. For this reason, we will always test correctness of the proposed tools through
experiments on simulated data, but tests on real sequencing data will be performed as
well. Moreover, we will compare the performances with state-of-the-art tools for analogous
problems.
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Preliminaries

The cell is the smallest entity containing information for the development and the func-
tionalities of every living organism, and the genome is the collection of all DNA (Dehoxiri-
bonucleic Acid) molecules that are found in every cell. RNA (Ribonucleic Acid) is the
basis on which protein synthesis can occur.

The study of both DNA and RNA provides the fundamental material to answer a wide
multiplicity of biological questions.

One of the goals of the comparison of the genome of an organism with respect to
that of a different (although related) species, is the understanding of evolution through
the identification of events involved in the speciation process, that is, of the acquired
mutations.

Finding the differences in the DNA sequence within cells belonging to the same organ-
ism (or to multiple organisms of the same species) is often related to the comprehension
of the causes of the so-called “diseases of the genome”, which are driven by somatic mu-
tations. In this context, crucial information is supplied by the outcomes of the analysis
of the RNA content of the cells of interest. The ability of detecting both differences in
RNA content among diverse samples, or within the same cells at different conditions, and
aberrant DNA-to-RNA processes, is fundamental and require a continuous interchange of
the knowledge matured on DNA and RNA.

In the first part of this chapter, an overview of some fundamental concepts in genomics
is presented. In the second part, we describe the basic principles and applications of the
technologies employed to produce the genomic data, which constitute the row matter for
subsequent biological analyses.

1.1 DNA, genes, and RNA

DNA is a polymer that, up to mutations, remains almost unchanged during cell life, hence
we will refer to the genome of an organism as the set of DNA molecules contained in
its cells. RNA is produced from DNA and, differently from DNA, the RNA composition
widely changes depending on the cell life stage, on the environment, and on the tissue the
cell belongs to.

An important distinction among cells is based on the notions of prokaryote and eu-
kariote, depending on the absence or presence of a nucleus, respectively. Within eukary-
otic cells, each part (i.e., organelle), is separated from the cytoplasm by a membrane.
The organelles containing DNA are the nucleus, the mitochondrion, and the chloroplast.
Within the nucleus, the genome is structured into linear or circular DNA fragments named

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



8 1. Preliminaries
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Figure 1.1: The DNA structure of the polymer GACTG. The sugar and the phosphate group are repre-
sented with S and P, respectively.

chromosomes, which are embedded around a specific type of proteins (i.e., histones) to
form chromatine. Among linear chromosomes, shorter DNA sequences, called telomers,
are found, and their function is to protect DNA from degradation. Ribosomes are the
organelles responsible of protein synthesis.

1.1.1 The structure of DNA

The DNA, or deoziribonucleic acid, is a macromolecule constituted by two anti-parallel
polymers. The two DNA strands owe their names to Watson and Crick, who first theorized
the DNA structure by giving it the shape of a double helics [175].

A single DNA strand is composed by a chain of nucleotides, each of them constituted
by three elements: a sugar (deoxiribose), a phosphate group, and a nitrogen base (see
also Figure 1.1). There are four nitrogen bases: adenine (A), guanine (G), cytosine (C),
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Figure 1.2: The structure of an eukaryotic gene.

and tymine (T). Adenine and guanine are called purines, while cytosine and tymine are
dubbed pyrimidines.

Each strand is associated a direction: 5 — 3’ is called upstream, whereas 3’ — 5’ is
called downstream. The two strands stay together thanks to the hydrogen bonds among
complementary bases, namely, A-T and G-C. This means that if one strand is known,
the other one can be obtained by reading the nucleotide sequence towards the opposite
direction and substituting every base with its complementary one. The sequence defined
in this way is called the reverse complement. The process that builds a complementary
DNA sequence from a template is called DNA duplication.

DNA is constituted by both coding and non-coding regions, depending on the fact
of encoding for proteins or not, respectively. Within eukaryotic genomes, coding regions
are located in correspondence of genes, which, in turn, are constituted by protein coding
sequences, called erons, interspersed by non-coding ones, called introns (see also Figure
1.2).

Exons are the parts of an eukaryotic gene that contain protein coding sequence. At
the beginning of the first exon and at the end of the last exon of a gene, respectively, two
untranslated regions (UTR) are found. UTRs are transcribed into mature RNA but they
are not translated into proteins. The parts of exons that are converted into amino acids
constitutes the coding DNA sequence (i.e., CDS).

The various parts of a gene are separated from one another by means of short oligonu-
cleotides. At the beginning and at the end of the CDS, respectively, a start codon and a
stop codon are found. The canonical oligonucleotide pair identifying the boundaries of the
CDS is ATG-TAG, but non-canonical pairs can occur as well (e.g., GTG-TGA and TTG-
TAA). In correspondence of exon-intron and intron-exon boundaries, within the intronic
sequence, donor and acceptor dinucleotides are found. The canonical pair is GT-AG, but
other dinucleotides may occur, e.g., GC-AG and AT-AC.

1.1.2 From DNA to RNA: the role of genes

The RNA is a single-stranded molecule constituted by a chain of nucleotides. An RNA
nucleotide differs from a DNA one because the deoxiribose is replaced by ribose, and the
nitrogen base uracile (U) is found in place of the tymine (T). Due to its single-stranded
structure, RNA is not able to replicate itself and is produced from DNA in correspondence
of genes.

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



10 1. Preliminaries

In eukaryotic cells, different types of RNA exist [173] and they can be grouped in two
main classes: coding RNA and non-coding RNA. Coding RNA is the type of RNA that
is subsequently translated into proteins; it is also called messenger RNA (mRNA) and is
responsible of carrying pieces of RNA from the nucleus to the ribosomes, where protein
synthesis occur. Non-coding RNAs (ncRNAs) are not translated into proteins, instead
they have a functional role within the cell. Several types of ncRNA exist, some examples
are the following ones: transfer RNA (tRNA), which carries information, in terms of, single
amino acids, from the nucleus to the cytoplasm; ribosomal RNA (rRNA), which provides
the “instructions” for aminoacids encoding; and small RNAs, i.e., short sequences of ~ 20
bp that regulate gene expression and are located towards the upstream direction with
respect to the gene they refer to.

A single RNA molecule produced from a gene is called a transcript. Transcripts are
usually produced along the gene towards the sense strand (i.e., the 5 — 3’ direction),
that is also known as the coding strand, but antisense transcripts can also be produced
(i.e., towards the 3’ — 5" direction). Recent studies demonstrated that high percentages of
human genes (i.e. approximately three-quarters) have transcription potential [33]. After
transcription, the splicing process occurs in order to remove introns and gather the so-
called mature RNA. The set of all mature RNA molecules produced by a cell is dubbed
the transcriptome.

The various parts of a gene, and the specific DNA sequences placed outside of it, play
an important role in the processes involved in the production of the mature RNA starting
from a gene. The presence of the initiation factor (or promoter), located on the upstream
direction, supplies the RNA polymerase the instructions for starting transcription, whereas
the (distal) requlatory elements control the amount of RNA molecules to be produced [81].
Donor and acceptor dinucleotides are involved in the splicing process and determine the
location of the introns to be removed from the pre-RNA, whereas start and stop codons
identify the boundaries of the protein coding sequence.

The presence of specific sequences separating the different parts of an eukaryotic gene
may suggest ab initio prediction methods, that is, use information from the DNA sequence
to infer genes loci. However, methods based on the genomic sequence only shown low
effectiveness in the context of the genome annotation problem [85]. In fact, fundamental
information for this type of analyses is provided by the transcripts produced from each
gene [133], as well as the technologies employed to extract data from RNA (see also Section
1.2.3).

A problem that is put aside to the determination of genes structure consists in the
estimation of the amount of transcripts produced from a gene, called expression level.
The transcription process can lead to different amounts of transcripts for a single gene,
depending on the tissue and on the environment, and the expression levels of different
genes in the same condition can vary too. Indeed, some genes may not be expressed at
all, hence reconstructing the complete set of RNA molecules produced at a specific cell
life stage and under given environmental conditions is a very complex task. An overview
on the transcriptome assembly problem can be found in Section 5.3.

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



1.1. DNA, genes, and RNA 11

Replication
i i Gene
(DNA)
promoter J Transcription
Transcript
I R N [ — (pre-RNA)
5 cap “ Splicing ’— poly-A tail
7T T T 7T 1T ™ Ppliced transcript
(mRNA)
Translation
amino acid
Polypeptide
(protein)

Figure 1.3: The central dogma of molecular biology.

1.1.3 The central dogma of molecular biology VS the role of alternative
splicing in gene expression

The central dogma of molecular biology states that three fundamental processes occur
within a cell (see Figure 1.3): DNA replication (or duplication), DNA transcription (which
is followed by RNA splicing), and RNA translation.

DNA is able to replicate itself through the DNA duplication process, made by the
enzyme DNA polymerase. Such enzyme traverses a DNA template towards 5 —3’ direction
and creates a new stretch of DNA corresponding to the reverse complement of the template.

RNA can be created from DNA by means of the enzyme RNA polymerase, through
the process called transcription. Transcription converts stretches of DNA into pre-RNA,
through the enzyme RNA polimerase, and adds a 5 CAP (a guanine) immediately before
the 5" UTR. During or after transcription, the splicing process occurs, turning pre-RNA
into mature RNA through the removal of introns and eventually adding a poly-A tail after
the 3’ UTR.

Finally, translation is the process that synthesizes proteins from mature RNA by con-
verting triples of nucleotides into amino acids.

The central dogma also states that the DNA sequence contains all information for
the cell life and functions and that the processes changing the molecular structure (i.e.,
transcription and translation) are assumed to have one direction and that the only possible
path is DNA — RNA — protein.

The variety of functions found in mammals suggested that their gene content should
have been sensibly higher than that of simpler organisms, such as bacteria (see Table
1.1). Within the human genome, an amount of roughly 100,000 genes was estimated in
order to explain the multitude of functions carried out by human cells. Since just few
years before the completion of the Human Genome Project [62], very little was known
about the structure of the genomes and the relation among the processes occurring in the
cell. The assembly of the first human genome [167] clearly showed that the estimated
number of genes seems is not related with the organisms complexity, hence that a 1-
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to-1 correspondence between gene and protein is not possible. This belief was found to
be false as now we estimate that the human genome contains less than 25,000 genes, a
discovery suggesting that a more subtle characterization of the processes happening within
eukaryotic cells should be provided. Indeed, the complexity of genome structure is so huge
that even today the human genome, which is the most studied one, is yet to be completely
revealed.

Several studies carried out some doubts on the validity of the central dogma (see
[83]) also because it is not able to explain a lot of processes happening within a cell, for
instance: (i) RNA-to-DNA conversions are allowed, two examples of such a phenomenon
are the replication processes carried out by retroviruses and retrotransposons; (ii) several
types of RNA do not encode for proteins and may have, instead, a regulatory function;
(iii) some mechanisms are not encoded within the DNA sequence itself, but instead are
dependent on epigenomic information. The ENCODE Project [59] played a crucial role
in the characterization of transcripts and helped in understanding the human genome
function.

Table 1.1: Genome length and genes content of some eukaryotes

Organism Genome length (kbp) Number of genes®
Homo sapiens® 3,324,592 20, 769
Mus musculus® 3,480, 528 23,139
Danio rerio® 1,505, 582 26, 247
Drosophila melanogaster® 168,737 13,937
Arabidopsis thaliana® 119, 146 27,411
Picea albies® 19, 600, 000 28,354
Caenorhabditis elegans® 103,022 20, 532
Saccharomyces cerevisiae® 12,157 6,692

? protein coding genes

®source: Ensembl [67]

¢source: TAIR [65]

4 source: The Norway spruce genome sequence [130]

Alternative splicing

Given two sequences of pre-RNA transcribed from the same region of DNA, the resulting
mature RNA molecules, i.e., after splicing, can differ from one another. More precisely, the
splicing process is not limited to the removal of intronic sequences, in fact it can cause exons
or part of exons to be removed from the pre-RNA. In such a case, such exonic sequences are
not present in the resulting mature RNA. This phenomenon is named alternative splicing
and can show different patterns [112] (see Figure 1.4), which are possibly combined to
each other.

Alternative splicing makes it possible to generate different transcripts, and hence,
in case of mRNA, to encode for different proteins, starting from the same gene. Each
feasible pattern for a given gene is called gene isoform, which can be associated to a
specific protein isoform. Different types of transcripts produced from the same gene are
often called alternative transcripts.

Within mammalian genomes, a high percentage of genes allow multiple gene isoforms
(e.g., > 90% in human) characterized by high splicing complexity. Splicing patterns are
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Figure 1.4: Alternative splicing patterns

very different, for instance, among animals and plants. The complexity of an organism
is more related to the alternative splicing pattern, rather than to the gene content of its
genome [129] (see also Table 1.1).

The splicing pattern complexity makes it difficult both to identify the different isoforms
that are expressed by a single gene at the same time, and to quantify the expression level
of alternative transcripts. Moreover, as already mentioned, different patterns are not
mutually exclusive, e.g., exon skipping can be combined with (possibly multiple) events
of competing 5" or 3’ ends.

The concept of exron becomes ambiguous, because, as stated in Section 1.1.2, the
mature RNA is composed by the exons after the removal of introns. With this definition,
multiple choices are possible and each isoform has its own exons. A definition by Gerstein
and colleagues [42] says that “a gene is a union of genomic sequences encoding a coherent
set of potentially overlapping functional products [...] final, functional gene products
(rather than intermediate transcripts) should be used to group together entities associated
with a single gene”. In light of alternative splicing, an operational gene definition seems
to be the most sensible one. Pesole [133] propose the following definition: “a gene is
a discrete genomic region whose transcription is regulated by one or more promoters
and distal regulatory elements and which contains the information for the synthesis of
functional proteins or non-coding RNAs, related by the sharing of a portion of genetic
information at the level of the ultimate products (proteins or RNAs)”.

The above definitions state that the structure of a gene depends on the products of
the transcription process, hence the notions of gene and transcript are strongly connected.
Such an idea also suggests that the methods employed to analyze RNA are important
to study the gene structure, in particular the technologies allowing single-base resolution
(i.e., RNA-Seq, see Section 1.2.3) supply a powerful method to predict alternative splicing
sites, which would be nearly impracticable using ab initio prediction methods.

The ability of a gene to produce different proteins explains the complexity of cell
functions and solves the paradox deriving from the central dogma of molecular biology,
which states the existence of a 1-to-1 correspondence between genes and proteins. The
complexity of the gene structure, due to the presence of alternative splicing patterns,
of intronic genes, of paralogs, and of non-canonical splicing dinucleotides, pose several
challenges to both gene isoforms prediction and expression levels estimation and require
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both ad hoc computational methods and deeper analysis of the data.

However, the central dogma of molecular biology should not be hopelessly rejected; in
fact, it still represents the main channel through which the DNA is actually expressed.
It has been observed that, for differentially spliced genes, there exists an isoform whose
expression level dominates the other ones, at a given condition [33]. Moreover, there are
evidences for a gene to have one predominant transcript, that is (almost always) the one
that dominates the others [44].

1.2 Sequencing: extracting information from DNA and RNA

Sequencing is the process of extracting information from a nucleic acid in the form of
sequences of bases. The problem of reading the complete DNA sequence of an organism
is a task that strongly depends on the sequencing technology used. Due to technological
limits, it is impossible to estract a single, complete and eract genomic sequence from a
cell.

A DNA sequencer is a machine that reads stretches of DNA and reports its sequence
of bases. It allows automatized an parallel sequencing experiments. Fach sequence tag
outputted by a sequencer is called read, and each read contains the following information:
an (univocal) ID, a sequence of bases s in the alphabet X = {A, T, G,C}, and a quality
sequence ¢ containing a value for each base of s. Both s and ¢ have the same length |s|
and, for each i = 0,...,|s| — 1, ¢[i] is a function of the probability p; that the base si] is
incorrect. Depending on the sequencing technology used, the quality value is defined in
different ways, for example:

(1.2.1)

, —101logg pi (Sanger)
qli] =

—10log;p 1~ (Illumina Solexa)

A base within a read differing from the original sequence is called sequencing error.

The currently used approach is the Whole Genome Sequencing (WGS) [10], which
consists in extracting reads from random portions throughout the whole genome. The op-
posite approach consists in employing physical maps, i.e., selecting (overlapping) portions
on the genome, sequencing each of them separately, and subsequently merging them.

Sequencing can be used to extract information from both DNA and RNA and the data
produced are the basic material for a wide plethora of analyses. Different technologies
provide different types of data, both in terms of read length, nucleotide accuracy, and
error profile.

DNA sequencing approaches can be grouped in two categories: de novo sequencing and
resequencing. An important application of de novo DNA sequencing is de movo genome
assembly, that is the task of reconstructing the complete DNA sequence of an organism
starting from a set of reads, without using any other information. DNA resequencing
instead finds applications both in the analyses related to the comparison between the
genomics sequences of two organisms of the same species (expecially aimed at the dis-
covery of somatic mutations), or between two different species (mostly concerned with
evolutionary studies or reference-guided assembly).

RNA sequencing is employed for reference-guided or de novo transcriptome assembly
(depending on whether a reference genome is available or not), genome annotation, and
gene expression profiling. The latter ones require a reference genome and the methods used
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for isoforms expression level estimation may also require a (partial) genome annotation,
which is possibly refined using information provided by RNA sequencing data.

1.2.1 Sequencing technologies

The output of a sequencer is a set of reads obtained from a genome that is usually over-
sampled. The length of a read, and in general of a nucleotide sequence, is measured in
base pairs (bp).

The reads produced by sequencers are usually much shorter than the genome length;
for instance, bacteria genomes range from ~2 Mbp to ~5 Mbp, human genome is ~3 Gbp,
and plant genomes range from ~150 Mbp (Arabidopsis thaliana) to >100 Gbp (Paris
japonica). Read length, instead, varies depending on the technology used: nowadays it
ranges from 75 bp (sequencing by ligation) to an average of 1500 bp (single molecule
sequencing). For this reason, oversampling is necessary in order to be able to reconstruct
the genome of an organism de novo, but also to collect a reasonable number of evidences
for the analyses envisaged by resequencing projects [145,146].

Sequencing technologies differ from one another in terms of read length, throughput,
and per-base-cost (see [108,151]). So far, three families of sequencing technologies exist,
each of them showing main traits that signed a significant break with the preceding one.
First generation is the so-called traditional sequencing method, whereas Second and Third
are commonly addressed as Next Generation Sequencing. Third generation differs from
Second generation by means of the ability of sequencing a whole, single molecule in real
time.

First Generation Sequencing, also called capillary sequencing, was introduced in the
70s by Sanger [144]. This technology is able to output sequences of length up to ~ 9,000
bp, they are very expensive to produce and they have very low throughput, because
the amount of fragments that can be sequenced in parallel is very low. The high costs
demanded by traditional technologies do not only depend on the quantities of reagents, but
also on the large amount of human work required for each sequencing experiment (only a
number of 96 up to 384 capillaries can be sequenced at the same time) and infrastructures
maintenance [151]. The protocol requires first fragmenting the DNA and then cloning the
fragments into pools of plasmids, which then undergo cycle sequencing reactions. The final
data consist of reads of average length ~ 800 bp having up to 99.999% accuracy [151].

The traditional sequencing technology proposed by Sanger were the only one available
for approximately thirty years. In the early 2000s new technologies emerged, based on
different chemistry and with the aim of automatizing sequencing experiments in order
to make them affordable for a larger community of scientists. These Next Generation
Sequencing (NGS) technologies are grouped into two categories: Second Generation, and
Third Generation.

Second Generation Sequencing technologies have been introduced around 2004 with
pyrosequencing (Roche 454 [63]), followed by sequencing by synthesis in 2006 (Illumina
Solexa [71]), and sequencing by ligation in 2007 (Applied Biosystems SOLiD [64]). Since
the time they were commercialized [108], these technologies showed to be far cheaper
and to have much higher throughput compared to Sanger sequencing, however the reads
produced are shorter (see also Table 1.2).

Several studies addressing the potentialities, as well as the weaknesses, of NGS tech-
nologies have appeared in the last few years [2,101,108,109]. Even though read length is
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Table 1.2: Read length, throughput, and cost of major sequencing technologies

Instrument Read length ~ Throughput Run time Cost
(bp) per run (3/Gbp)
Sanger 3730x1" 400 =900 1.9 + 84 Kbp 20" + 3h 2,400,000
Roche 454GS FLX4 “ 700 0.7 Gbp 24h 10,000
Ilumina HiSeq 2000%° up to 150 600 Gbp 11 days 41
Applied Biosystems SOLiDv4“ 50 120 Gbp 7 + 14 days (SE-PE) 130
Pacific Biosciences RS® 1,500 100 Mbp 2h 2,000

“source: Liu et al. [101]
b source: Quail et al. [139]

shorter compared to that of traditional technologies, NGS became the unquestioned se-
quencing strategy because it allows single base resolution, high throughput, and extremely
lower costs [151]. Resequencing and gene expression profiling find lots of advantages in
NGS, while de novo assembly is still difficult due to shorter read length, sequencing errors,
and PCR artifacts (in the case of 454 and Illumina technologies). However, as the sequenc-
ing technologies are continuously improving, accurate and complete de novo assembly with
short reads has been possible since few years ago even for large genomes [11,43].

A task to be addressed when dealing with NGS data is to analyze the type and the
frequency of sequencing errors and, possibly, to correct the reads in order to reach an
ideal k-mer distribution (see also Section 2.2.2). It has been shown that the most common
sequencing errors are different for each technology, for instance, insertions and deletions are
proper of 454 and HeliScope, whereas nucleotide substitution is the type of error occurring
in Illumina data [151]. Also, error profile, that is, the error frequency as a function of the
position in the read, may vary among two different releases of the same vendor company.

Third Generation Sequencing has been introduced in 2009 [39], it is known as the
“True” Single Molecule Sequencing and the main vendor is Pacific Biosciences (PacBio).
This technology is able to produce uniformly distributed, very long reads (more than
1000 bp) [21]. The important shortcoming is that these reads are high error-affected
(say, nucleotide accuracy is a little less than 85% [27,140]), although sequencing errors are
uniformly distributed along the read. Some approaches have been proposed to correct these
long reads, for example by aligning reads from Second Generation Sequencing experiments
against them [84].

In this thesis, the algorithms and tools presented have been applied to Illumina se-
quencing data. Hence, we go into more details with the Illumina sequencing technology
in the following section.

Next Generation Sequencing-by-synthesis: the Illumina protocol

The most widely used technology nowadays is Illumina [71], which provides the so-called
sequencing-by-synthesis technology. The technology has improved throughout the years,
yelding reads up to 300 bp long (whereas the first reads were 25-36 bp long), thus opening
the successful application of such a technology to the assembly of extremely repetitive and
long genomes, especially when paired reads are provided [70].

The Ilumina protocol is structured in three main steps (see also Figure 1.5): (i) library
preparation, (ii) amplification, and (iii) sequencing. Step (i) consists in cutting the genome
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Figure 1.5: The Illumina sequencing protocol (Source: Illumina [71]).

into smaller pieces, called fragments. After fragments of the desired length are selected,
they are denaturated and both their tips are linked to an adapter, that is a short nucleotide
sequence that is attached at the beginning of each fragment. Step (ii) consists in firstly
attach the adapters on a solid support, that is provided with sequences that are the reverse
complement of the adapters. This is required in order for the fragments to bind with the
support. After that, fragments are amplified in order to produce multiple copies of the
same fragment. Finally, during step (iii) the fragments are sequenced. A dye is employed
to create a reverse complement sequence of the fragment to be read, base-per-base, within
the so-called base-calling step. In this phase, each read is extended of 1 nucleotide at each
cycle. As the fragment has been amplified (~ 1000 times), each base is created multiple
times. The reported base in a fixed position of the read is that occurring the highest
number of times, provided with a quality value representing the probability of that base
to be correct. Fragments are read from the 5’ end of the read and, after each base is read
and before reading the next one, the amplified fragments are cleaved. As the residues of
the cleavage procedure roll by, the read’s quality is espected to decrease while going to
3’ direction. Technology improvements allow to continuously increase the precision and
hence to reach higher read lengths.
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paired-ends

mate-pairs

Figure 1.6: Pairwise strand of paired-end and mate-pair read libraries.

1.2.2 Reads libraries

Beyond single-read sequencing, it is possible to generate pairs of sequences, called paired
reads, laying at an estimated distance and with known orientation. The process is known
as double-barrel sequencing and has been introduced yet with Sanger technology. With
[llumina sequencing, paired reads libraries are produced by bridging the same fragment,
previously attached to adapter sequences on both tips, within the solid support used then
for amplification. This method requires each read to “know” the reads that is coupled to
it in a pair.

Data produced with double-barrel sequencing are of two types: paired-ends and mate-
pairs. The sequence from which the paired reads are generated is called insert, and the
distance between the two further ends of the two reads (mates) is called insert size. Paired-
ends have short insert size (e.g., 200-500 bp for Illumina) and reads are inner stranded,
whereas mate-pairs have usually much longer insert size (several kbp) and reads are outer
stranded (see Figure 1.6).

Paired reads are more expensive to produce with respect to single reads data but
their availability is of unquestionable help in various contexts. Information provided by
paired reads is useful both in de novo assembly (e.g., to detect misassemblies and perform
scaffolding) and in resequencing projects (e.g., identify structural variants).

1.2.3 RNA-Seq: NGS for transcriptomics

Before the advent of NGS technologies, gene expression was usually analysed with mi-
croarrays [147] and Serial Analysis of Gene Expression (SAGE, see [166]). Such methods,
however, do not allow to detect new splice junctions or to discover novel genes. Sequencing
of Expressed Sequence Tags (ESTs) was the only available method for de novo transcrip-
tome reconstruction. RNA molecules are firstly converted to cDNA and then attached to
BAC clones to be sequenced. However, the application of ESTs Sequencing was limited
by the high costs required [109,118].

RNA-Seq is the method that uses Next Generation Sequencing to extract informa-
tion from RNA [131]. The procedure follows three main phases [173]: (i) a population of
RNAs is extracted from a cell, (ii) complementary DNA (i.e., cDNA) is produced from
RNA molecules through reverse transcription, and finally (iii) cDNA is fragmented, am-
plified, and sequenced. A different pipeline consists in fragmenting RNA directly and then
converting it into cDNA.

Within an RNA-Seq experiment, the ability of reading contiguous stretches of RNA
is limited by the technology used (i.e., size selection step), hence large RNA molecules
must be fragmented in order to be sequenced. For this reason, data redundancy is needed
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in order to reconstruct the initial RNA molecules (but also to have a high percentage of
covered RNA) and amplification is a required step. Prior amplification, RNA-to-cDNA
conversion is needed.

The potentialities of RNA-Seq technologies can be limited by the biases related to frag-
mentation and cDNA synthesis. ¢cDNA itself can be biased due to some errors occurred
during reverse transcription (e.g., in template switching, cDNA anneals to a molecule dif-
ferent from the initial RNA template) which can cause chimeric alternative transcripts [28].
The problems caused by cDNA synthesis [173] include non-uniformity of coverage across
transcripts and biases in transcript length. Concerning the former point, several studies
pointed out that RNA-Seq technologies tend to overrepresent the 5 end of transcripts.
In [118] Mortazavi and colleagues observed that, by performing fragmentation before re-
verse transcription, it is possible to reduce the biases related to non-uniform transcripts
coverage. Such biases cause incorrect transcriptome assembly as well as inaccurate gene
expression profiling.

Gene expression is usually measured by counting the number of reads aligned against
a precise transcript, normalized by the transcript length. This metric is called RPKM
(Read Per Kilobase per Million) and is defined, for each transcript, as follows:

. 1
RPKM — number of aligned reads - 10

. 1.2.2
(transcript length)(total number of reads) ( )

An accurate RPKM computation is difficult also because read mapping against the refer-
ence genome may be ambiguous (due to the presence of repeated regions and paralogs) or
requires to cope errors within the reads (sequencing errors) or within the reference genome
(incorrect transcript annotation).

Direct RNA sequencing with Third Generation technologies would not need cDNA
synthesis, openinig the possibility of reading a whole RNA molecule contiguously, avoiding
the numerous error-affected steps described above.

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



20

1. Preliminaries

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



Local assembly of paired reads

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



Sequence assembly

In genomics, the reconstruction of the original DNA sequence of an organism, or of that of
a closely related species, is the first fundamental step for a number of biological analyses.
Nowadays several reference genomes of different organisms are publicly available but the
Assembly Problem is yet to be a closed chapter.

Some statistical approaches [88] attempted to characterize the relation between read
length and genome coverage, trying to find some “conserved quantities” among genomes
that should guarantee the existence of a solution, that is, a contiguous sequence represent-
ing the genome.

The Next Generation Sequencing revolution has allowed to sequence the DNA of large
number of organisms and has enabled wide and thorough studies that helped the bioin-
formatic community to dramatically increase its knowledge on genome functions. In spite
of this, some studies concerned with assembly tools evaluation almost invalidated all the
efforts trying to formulate a “golden rule” for the optimal input for genome assembly al-
gorithms. In fact, the repeated structure of genomes made the assembly problem nearly
intractable at the time NGS reads (i.e., Second Generation) were extremely short and
biased, irrespective of coverage [126]; a hurdle that could be almost neglected working
with long and accurate data coming from traditional capillary sequencing.

It is broadly accepted that the assembly problem remains unsolved in practice because
of different data types and, especially, due to the extremely different lengths and structures
of the genomes that the bioinformatics community is asked to analyze. Tools for genome
assembly behave in different ways depending on the organism under study; moreover,
the tools must be designed to target platform-specific sequence biases, whereas the data
structures must be adapted both to the type and to the abundance of the data.

Classical approaches to the de novo assembly problem moved from the Shortest Super-
string Problem gave birth to several heuristic algorithms for its resolution, mainly based on
overlap graphs and k-mer graphs; greedy algorithms were proposed too, the most common
ones being prefix-trees and seed-and-extend techniques.

Nowadays, advances in sequencing technologies allow to reach much higher read length;
moreover, the lack of contiguity of NGS reads is now partly overcome with long-range
sequence information, mainly consisting of paired reads libraries, but some efforts towards
the integration of Third Generation Sequencing data.

Sequence assembly has found applications also to transcriptomic analyses. The theo-
retical problem is completely different and the traditional methods and tools applied to
genome assembly had to be revised and integrated in order to address a different type of
solution, but also to cope with the lack of coverage information.

The absence of a standard for genome assembly stimulated a field of research concerned
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with assembly evaluation. Starting with works by Phillippy [136] (amosvalidate) and
Salzberg [143] (GAGE project), in the last few years substantial efforts have been devoted
to the improvement of statistical methods for assembly projects validation, as well as to
the definition of a gold standard for the evaluation of genome assembly tools.

It is fair to say that, even though we are not able to perfectly reconstruct the complete
genome of an organism, both the ample choice of assembly tools and the sequencing
technologies improvements allowed to gain substantial knowledge on genomes’ structure.
Also, the availability of public databases [66, 68, 72] of biological information matured on
former projects, provides scientists with an enormous bulk of searchable data, resulting in
the possiblity of finding specific information for the type of analysis to be carried out.

2.1 The mathematical formulation of the assembly problem

In bioinformatics, the Assembly Problem (AP) is the task of reconstructing the genome g
given a set of reads extracted from g.

Under the simplifying assumptions of identifying a read with a string and of assuming
that no mismatches occur between a read and the genomic region from which it has been
extracted, the Assembly Problem can be stated as follows:

Definition 2.1.1 (Assembly Problem (AP)) Let ¥ = {A,C,G,T} and S C ¥* be a
finite set of substrings of an unknown string g € ¥*. Find g.

Notice that AP, stated in this way, allows to easily construct several solutions satis-
fying Definition 2.1.1 that are poorly relevant from a biological perspective (e.g., a string
obtained from the concatenation of all strings in S, kept in any order, is a solution of AP).

Intuitively, finding a good solution for AP means being able to select a string g the
sequences of S are likely to have been extracted from. First, some conditions on g should
be posed in order to limit the number of solutions; second, a unique solution should be
selected from the set of good ones.

In literature a common choice is the introduction of an objective function in order to
get an optimization problem from the feasibility problem. For each s € ¥*, we will denote
with |s| the length of s and, for each s’ € ¥*  we will say that s’ is a substring of s, and
we will denote it with s’ C s, if and only if |s'| < |s| and there exists i € {0,...,|s| —|¢|}
such that s[i,...,i+ |¢'| = 1] = s’. A new formulation for AP is given in Definition 2.1.2.

Definition 2.1.2 (Shortest Superstring Problem (SSP)) Let ¥ be a finite alphabet
and S C X* be a finite set of strings on %. Find § with the following properties:

e sCsforallseS;
e |5| is minimal.

A solution of SSP can be seen as a permutation o of the set S. Ambiguities are
overcome assuming that, for every couple of consecutive strings in the permutation o,
the maximum suffix-prefix overlap is taken. It can be shown that SSP is NP-hard [106],
but, in spite of this, most of the approaches to solve AP are based on this mathematical
formulation.
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From a practical point of view, an algorithm for solving AP needs some evidences
in order to safely put strings together (i.e., a minimum overlap is required). A further
refinement for the formulation of AP consists in adding an input constant k£ and requiring
the suffix-prefix overlap between each couple of consecutive strings in ¢ to be equal to or
greater than k. We may call this new formulation £SSP and its solution, in general, is a
set of strings g1, ..., gn.

kSSP can be seen as the problem of finding paths on a graph. Two possible formulations
involve the notions of de Brujin graph and string (or overlap) graph, in which nodes are
k-mers or reads, respectively. See Section 2.3 for a detailed overview of algorithms based
on these two models.

Even though the approach of minimizing the genome length is the most used one, the
biological meaning of that choice is not clear. In fact, repeats tend to be over-collapsed
by constraining the genome to be a minimum-length sequence that explains the set of
reads [113]. A possible way to overcome this limitation is to regard repeats as instances of
“representative sequences” and let the solution of AP to use them more than once. The
number of feasible solutions can be limited by providing paired reads information.

There are also some theoretical limits on the feasibility of assembly that depend on
both the dataset and the genome complexity. These two aspects will be discussed in the
following section.

2.1.1 The parameters of the assembly: read length and coverage

The ability of reconstructing the genome of an organism, given a set of reads, depends on
the amount of overlapping sequences and, thus, on the uniformity of reads sampling along
the genome. A minimum length k is required in order to make overlaps detectable and,
possibly, unambiguous.

Given an unknown genome g to be assembled from a set of N reads of length L, we
define the coverage as the following value

_NL

=T (2.1.1)

If a sequencing experiment extracts reads from random positions within the genome, then
¢ should be chosen in order to reach an expected contiguity level, taking into account also
the minimum overlap length k.

In this section we recall the article by Lander and Waterman [88] who proposed a
model for optimal fingerprinting of clones to get a contiguous genomic sequence starting
from a physical map. The authors claim that their reasoning applies also to de novo
genome assembly from shotgun sequencing experiments.

We will assume that every real overlap is also detectable, that is, if two reads r1 and ry
have been extracted from the genome at a distance d(ri,r2) < L — k, then any assembly
algorithm is able to find the d(r1,r2)-length overlap among r; and r9. In this hypotesis, we
can model the number of gaps in the assembled sequence as the number of events of finding
a new read, scanning the genome towards 5’ — 3’ direction, at a distance greater than L —k
from the previous one. Thus, a maximal contiguous sequence of reads overlapping each
other in the genome corresponds to an assembled sequence, named contig, returned as
output by the assembly algorithm.
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Figure 2.1: Number of contigs (in units of |g|/N) as a function of genome coverage. Curves are reported
for different values of k/L.

If the number of bases in the genome in which a read starts is low, then the sequencing
experiment can be modeled as a Poisson process in which an event corresponds to an
occurrence of a read that does not overlap the previous one. If the number of reads is NV
and the length of the genome is |g|, then the expected distance between the starting points
of two consecutive reads within the genome is %. Hence, given a read rp, the probability
of finding the consecutive read ry at a distance d = d(r1,r2) > L—k, i.e., 2 do not overlap
r1, is given by

N
Pd>L—k)=e otk (2.1.2)
In other words, P(d > L — k) represents the probability of finding a gap in the assembled
sequence, under the hypothesis that overlaps among the reads are all detectable. By
defining a boolean variable X representing the event that a gap occurs (X = 1) or not
(X =0), the expected number of gaps is given by

—N(L—k)
E(X)=NP(d>L—-k)=Ne , (2.1.3)
which can be rewritten as
B(X) = ’?ce‘cu‘f) (2.1.4)

and represents the expected number of sequences of the assembly (minus 1). In order
to avoid misassemblies, a minimum overlap k is required. Equation (2.1.4) tells that, by
increasing k, the number of available overlapping reads decreases and therefore a higher
value for ¢ is needed in order to reach the desired contiguity level.

Figure 2.1 depicts the expected number of gaps F(X) as a function of coverage and
read length, respectively. The graph suggests that results obtainable with long reads are
also reachable with short ones, provided that coverage has been properly increased.

2.1.2 The repeated structure of the genome

Although the considerations stated above are reasonable in the context of filling gaps
among sequences within physical maps or de novo assembly with long reads, several
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strong assumptions are not satisfied for most sequencing experiments, and for de novo
assembly projects related to them, that are nowadays performed. The reasons of previous
considerations are the following ones:

(i) the ratio N/|g| cannot be considered small, especially for NGS experiments; if this
hypothesis does not hold, then the Poisson distribution is not applicable;

(ii) the assumption that every real overlap is detectable is not always true, due to the
presence of both sequencing errors and repeats, and also because the value of k,
which is constrained to k < L, can lead to ambiguities especially for large and
highly repetitive genomes.

The consequences of the above considerations are that, with short and biased NGS reads,
a theoretical model for the optimal sequencing experiment for de novo genome assembly
does not fit with the data. Even without taking into account biases in the data and non-
uniformity of coverage, the presence of repeated sequences was shown to have a crucial
role in the existence of a solution for the assembly problem when read length does not
allow to span the repeats.

Nagarajan and Pop [126] proposed some theoretical results showing how the computa-
tional complexity of assemblying a genome relates with read length, coverage, and overlap
length. In the following we will denote with o(r1,r2) the length of the maximal overlapping
string between r; and 3.

Given a set of strings S and the overlap threshold k, the authors model AP as a
combinatorial problem on the string graph S Gk(G), whose definition is reported below.

Definition 2.1.3 (String graph SG*(S)) Given a set of string S and k € N, let G =
(V, E,w) be the labeled directed graph defined as:

o V=075,
e there exist a directed edge (r1,7m2) € E if and only if r1,ro € V and o(r1,ry) > k;
e cach edge (r1,7r2) € E is assigned a weight w(ry,re) = |r1| — o(r1,72).

The graph G is called overlap graph. For each path P :ry — ry,, we will denote with w(P)
the sum of the weights of edges of P, plus |r,|. The string graph SGF(S) is the graph
defined as:

o V(SGH(S)) ={r eV |Vr' e V\{r} +' € r}, i.e., reads contained within other reads
are discarded;

e E(SGF(S)) = {(r,7') € E|r,7 € V(SGF(S)) AVP : 1~ 7/, P # (r,7') = w(P) >
|r| + |r'| = k}, i.e., transitive edges are eliminated.

Thus, the string graph SG¥(S) contains only non-redundant information, in terms of
both reads and edges (i.e., those supported by a path are deleted from the graph, see also
Figure 2.2).

The problem of finding a solution to AP based on the string graph SG*(S) is modeled
with a generalization of the Traveling Salesman Problem (TSP) to arbitrary graphs, not
necessarily complete. The problem definition is as follows.
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Figure 2.2: Identification of a transitive edge (dashed arrow). In this example, (r1,73) is a transitive edge
because |r2| < o(r1,72) + o(ra,T3).

Definition 2.1.4 (Generalized TSP)) Given a labelled graph G = (V, E,w), find a
path P satisfing the following conditions:

e P wisits every node in V at least once;
e w(P) is minimal.

The authors provide a polynomial reduction from the SSP, which proves the NP-hardness
of the generalized TSP. They also consider the relation between read length and repeat
length, and between minimum overlap and read length as well. A repeat is defined here
as a maximal sequence of length at least k that occurs multiple times throughout the
genome. In this meaning, a repeat is a sequence repeat and not a biological repeat and
represents a substring that can cause overlap ambiguities among the reads.

They deduce that a solution of AP, stated as a generalized TSP, cannot be found in
polynomial time, unless P=NP, if either one of the following two conditions is satisfied:

o Riax < 2L —1;
o L — k>4,

where Rpax is the maximum length of a repeat. The two aforementioned results provide
a negative information for the assembly problem in practice: if we do not consider neither
sequencing errors nor objective functions (which reduce the solutions space), we still come
up with a theoretical problem that turns out to be intractable. The above results hold
for both long and short reads, but it is intriguing that the number of repeats increases
as the value of k decreases. In some sense, by increasing coverage, one can partially
compensate for the difficulty of assemblying a genome because k can be set to a higher
value. Unfortunately, the need of taking into account also approxzimate overlaps, due to
the presence of sequencing errors within NGS reads, introduces much more ambiguity
which can be overcome only requiring longer sequence information (e.g., using paired
reads). Biological repeats are not identical one another, but they still cannot be easily
disambiguated.

2.2 Input data preparation and preprocessing

The assembly of the sequencing data is often the first step for a number of biological anal-
yses. As described in previous section, before being able to start an assembly experiment,
it is necessary to decide the type of the data to be produced as well as their amount.
Moreover, a preprocessing step is useful most of the time, even necessary in some cases,
to prepare the data in order to get the best from a genome assembly pipeline. In the
following we describe the basics of the steps to be taken when a de novo assembly project
is to be performed.
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2.2.1 Design of sequencing experiments

When sequencing the genome of an unknown organism, it is usually possible to estimate
its length in advance (see [121]). This fact allows to decide (at least in theory) the amount
of reads of the input dataset that should guarantee a given coverage ¢ of the genome.
With an ideal sequencing experiment we would end up with a set of reads R such that
every base pair of G is covered by exactly ¢ reads in R. In practice a weaker request is
made, i.e., a good sequencing experiment is such that coverage is approximately uniform,
resulting in a small fraction of uncovered bases and in at most few events of highly covered
ones. Unfortunately, NGS technologies are not able to produce an adequately uniform
coverage [35].

Coverage uniformity, other than allowing to assemble a high percentage of the genomic
sequence, is useful in detecting repeated regions. A biological repeat is a fraction of the
genome that replicated itself throughout the genome during the evolution. Biological
repeats can be viewed as approximate sequence repeats. If a read » € R comes from a
repeated sequence, then we expect to find it, up to some mismatches, within another copy
of the same sequence occurring in the genome. Reads coming from an occurrence of a
repeat should align against other occurrences of the same repeat. As a consequence, we
expect to find higher coverages in correspondence of repeats with respect to the expected
one. Hence, uniform read sampling allows to better identifying repeats because a higher
coverage can be interpreted as a signal related to the genome structure, rather than to the
artifacts introduced in the data by the sequencing experiment.

The availability of paired read information allows to both check the correctness of
the assembled sequence. Indeed, the estimated insert size can be used, for instance, to
infer a draft genome assembly quality by aligning the paired reads against it and then
checking the distance between the aligned mates, as well as their relative orientation.
If the sequencing technology chosen produces short reads, then the PI should take into
account the fact that repeats would be difficult to disambiguate. Hence, the possibility of
paired read sequencing should be encouraged, if possible.

2.2.2 Data cleaning

Before reads are provided as input for bioinformatics tools, and hence used for biological
analyses, it is important to clean the dataset. Illumina workflow comprises an initial filter-
ing of the data outputted by the sequencer, that is intended to remove bad quality reads,
and also provides summary statistics that give an overview of the experiment outcome.
After sequencing, possibly with raw filtering provided by the vendor, one or more of the
following steps is often performed: filtering, trimming, and/or error correction.

When raw data are given, the first step is to discard low-quality reads (quality filtering)
and remove reads belonging to other genomes or organelles (contamination filtering). Due
to their error profile, lllumina reads can be also trimmed, that is, a read 3’ end is cut
if the quality of its bases is below a threshold. These procedures can be done using,
for example, a specific option of the tool ERNE [169]. Filtering (plus trimming) is an
important preprocessing step for genome assembly, however, there exists also assembly
tools that use quality information to improve the results (e.g., Phrap [31], QSRA [18]).

Several tools are available to perform error correction on Illumina data using the so-
called “read spectrum”. The idea is to firstly detect low-frequency k-mers (within the
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reads) and conveniently change few bases so that a minimum frequency is reached. Some
of the most recent tools are QUAKE [80], Hammer [114], and ALLPATHS [43].

An important way to assess the global quality of a dataset, instead, is to plot the reads’
k-mers distribution. This procedure can be done before or after cleaning the dataset. The
idea is that if the genome has been sequenced tens of times, then two peaks are expected in
the distribution: one in correspondence of the expected coverage and one in correspondence
of coverage 1. k-mers that cause this second peak are likely to be sequencing errors. As a
rule of thumb, a low number of k-mers occurring only few times suggests that the dataset
has a good global quality. A tool that performs k-mers distribution is Jellyfish [107].

2.3 Classical algorithmic approaches to the assembly prob-
lem

Heuristic approaches are mostly employed to tackle the difficult task of assemblying a
genome. Exact methods exists as well, and they are based on branch-and-bound schemata
that allow to explore the entire search space [127], but their application is restricted to
the assembly of bacteria genomes and they cannot cope with the task of assemblying
larger genomes. The set of contig sequences returned in output by an assembler is usually
finished by possibly connecting the sequences to each other to form scaffolds. To this aim,
mate pairs are commonly employed and sometimes the sequence between two consecutive
contigs is also filled using ad hoc tools.

In literature both graph-based and greedy approaches are found, often specifically
designed to handle read length and error profile of data produced by different sequencing
technologies. For instance, overlap graph-based assemblers are particularly suited for
relatively long reads (e.g., those produced by Roche 454), having been inherited from early
tools for the assembly of the data coming from traditional sequencing technologies [9]. In
contrast, approaches based on de Brujin graphs found application to short sequence tags,
such as the reads produced by the earliest Illumina sequencers appeared on the market
(e.g., Solexa). The idea of considering k-mers instead of reads turned out to be successful
because a minimum overlap length at a fixed position, actually covering a high percentage
of the read, was not required anymore, thus allowing to capture more information from the
common sequences but, in contrast, hindering the task of finding a read-coherent solution.
However, in the recent years, the improvements of sequencing technologies allowed to
reach higher read length and thus extended the field of application of tools based on
the overlap-layout-consensus paradigm. Greedy approaches, instead, look for the reads
that better extend the current partial assembly. Seed-and-extend techniques usually keep
extending a sequence, called seed, by selecting the best read (i.e., exhibiting the highest
similarity) among the overlapping ones. In this case, suffix-prefix and/or prefix-suffix
overlaps are searched in the set of available reads, with respect to the current sequence.
A more sophisticated approach consists in considering a set of overlapping reads. These
reads are either clustered together, resulting in a hybrid method between overlap-layout-
consensus and seed-and-extend, or used to validate the single-read extension. A greedy
algorithm allows to save memory because overlaps are computed on-the-fly, but, for the
same reason, the performances are usually slower compared to the search phase performed
by assembly tools based on the overlap-layout-consensus approach.

In the following we provide a brief description of the most common algorithmic ap-
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Figure 2.3: An example of overlap graph. The minimum overlap length is k = 6 and transitive edges are
represented by dashed arrows.

proaches to AP mentioned above, as well as some reference tools. See also [117,138,168,180]
for some overviews on the available de novo assemblers for NGS data.

2.3.1 Overlap-layout-consensus (OLC)

This technique is based either on the overlap graph or string graph (see Definition 2.1.3)
built with the reads and pairwise overlaps among them. Each node refers to a read,
possibly associated to a strand, and each edge represents a suffix-prefix overlap, or read
inclusion (see also Figure 2.3).

The graph is built once all overlaps are computed, hence all-against-all comparison is
required. The consequence is that the computational time demanded at this step grows
quadratically with the total number of reads. In order to speed up the computation, reads
are often indexed by k-mers and stored within a hash table. Overlaps are then searched
among couples of reads sharing a k-mer in a specific position. This strategy should allow
to find overlaps more quickly. It is worthwile to note that, for highly repetitive genomes,
the time complexity remains high as the number of reads sharing the same k-mer can be
large.

The resulting overlap graph, and the output of the assembly algorithm as well, depends
on the value of k. Indeed, a large k is more specific, but may prevent the detection of
overlaps affected by few mismatches; in contrast, a small k£ is more sensitive, but can
produce a non-negligible amount of false positives. Moreover, the minimum overlap length
required among two sequences must be adapted to both read error profile and read length.
For this reason, the tools based on the OLC strategy are often specifically designed for
either 454 data (e.g., Newbler [110], CABOG [116]) or short reads coming from Illumina
or SOLiD platforms (e.g., EDENA [51]).

The OLC paradigm envisages the following three main steps: (i) the computation of all
(or almost all) pairwise overlaps among the reads, (ii) the identification of chimeric reads
and/or incorrect paths, and (iii) the graph simplification through path compression and
transitive reduction. Steps (ii) and (iii) can be performed in reverse order and possibly
re-iterated on further smaller and simpler graphs.

The overlap computation is the most demanding step in terms of memory and time
consuption. For this reason, several techniques aimed at reducing the computational
requirements has been proposed: CABOG [116] tries to keep the size of the graph as small
as possible by keeping only the best overlaps, EDENA [51] uses only exact matches, FM-
assembler [152] (and its revised implementation SGA [153]) stores overlaps using the FM-

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



32 2. Sequence assembly

index, and PE-Assembler [6] computes overlaps considering only k-mers whose frequency
in the reads is similar to the expected one.

Once the graph is built, the layout is analyzed in order to remove errors and eliminate
redundancy. In order to remove incorrect information in the graph, either chimeric reads
are discarded [110] or incorrect paths are identified [51]. Repeats are often handled using
coverage information, but there exist also tools able to improve assembly quality using the
location of repeated sequences within the genome (e.g., MIRA [26]).

The graph can be simplified by looking at its structure. For example, maximal paths
without bifurcations suggest the presence of subsequences that can be unambiguously as-
sembled, the so-called linear contigs or unitigs. Minimus (AMOS) [157] is an example of
a tool that, after the removal of redundant reads and the transitive reduction, compresses
each maximal linear path into a single node. Unitigs can also feed a new overlap graph,
built by computing all pairwise overlaps between them. In this case, graph simplifica-
tion can be done in this last graph, possibly using other information (e.g., paired reads
alignment) and removing redundant edges.

Let us note that the obtained graph strongly depends on the minimum percentage of
identity between overlapping sequences. The presence of sequencing errors in the reads,
thus the need of detecting approrimate overlaps, requires an extension of the classical tran-
sitive reduction algorithm for overlap graphs [121]. Moreover, if the graph is simplified by
removing redundant nodes (i.e., reads included within others), the coverage information
employed for recognizing repeats is partially lost. Thus, heuristics for repeats disam-
biguation, that assume coverage uniformity along the genome, should be properly revised
in order to take into account also deleted reads. To make things worse, those heuris-
tics are intrinsically biased as NGS technologies often provide non-uniformly distributed
reads [117]. At this stage, some tools can take advantage from information deriving from
paired reads, if available, in order to simplify the overlap graph, for instance, retaining
only paired read-coherent paths. However, few tools use paired reads yet during the con-
struction of the graph, like PE-assembler [6].

The final graph, obtained after error correction, nodes compression, and transitive
reduction, represents a solution of AP [117], that is, a minimal number of paths that
explain the set of input reads.

2.3.2 de Brujin graph

Assembly tools based on de Brujin graphs are particularly suited for very short reads. At
the time when Illumina Solexa platforms were commercialized, read length was 36bp. Pro-
viding such short sequences as input for a tool based on OLC schemata would result into
highly fragmented assemblies, unless the reconstruction of short (e.g., bacterial) genomes
is addressed. Moreover, the higher coverages required to compensate for short read length
results in a huge amount of reads, which makes all-against-all overlaps computation im-
practicable.

In a de Brujin graph, nodes are defined by k-mers and edges are (k—1)-length overlaps
between k-mers. In theory, given an alphabet 3, the de Brujin problem consists in finding
a shortest superstring that contains each k-mer. The graph for the de Brujin Problem can
be defined in two different ways: the first one consists in placing a node for each k-mer
and an edge whenever a (k — 1)-length overlap between two k-mers occurs; the second one
states that k-mers correspond to edges and (k — 1)-mers correspond to nodes (connections
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Figure 2.4: An example of de Brujin graph with & = 3. Only read-coherent edges are reported.

between edges identify (k — 2)-length overlaps and a k-mer is the concatenation of nodes
connected to each other). In the first case, the solution to the de Brujin Problem is a
Hamiltonian path, whereas in the second formulation it corresponds to an Eulerian path.

When using de Brujin graphs for solving the Assembly Problem in practice, given the
value of k, the existence of all k-mers in the set of reads is not guaranteed. In this case,
the graph is defined by picking only occurring k-mers and related overlaps (see also Figure
2.4).

A definition of AP that both uses combinatorial properties of graphs and takes into
account practical issues, can be found in [126]. The idea is that each read must be used at
least once and the solution of the assembly problem must not “break” paths corresponding
to reads. This problem is called de Bruijn Superpath Problem and is NP-hard, but, in
some cases, a solution can be found in polynomial time (depending on the relation between
the size of a maximal repeat and read length).

Several problems arise when using this method: as for OLC approach, DNA double-
stranded nature complicates the graph definition and requires either to use two nodes for
each sequence and then reconcile the assembly on a unique strand, or to add constraints
on the edges that can be used to enter into a node and exit from it. The presence of
repeats generates cycles in the graph, hence the information provided by the graph should
be integrated by reads sequences or paired reads in order to disambiguate the “right”
path. Finally, sequencing errors may introduce k-mers or overlaps that do not exist in the
genome, hence the graph should be pruned in correspondence of unsafe paths (e.g., spurs
and bubbles) [117].

Various approaches based on de Brujin graphs are found in literature. The first pro-
posed assembler in this category was Euler [134], designed for Sanger reads and then
adapted for short NGS sequences (Euler-SR [22]). It first preprocesses the dataset us-
ing the so-called spectral alignment (see Section 2.2.2) in order to discard or correct the
reads. Once the graph is built, several operations are performed. First, short repeats are
resolved using spanning reads: in practice, a repeats collapse can be found in the graph
as a sub-path common to several paths,a situation that can be resolved by splitting the
repeat into the paths it belongs to. Second, a similar approach is used for long repeats
spanned by paired reads inserts. Sequencing errors are treated using information on the
error profile, that is, the part of the read more subsceptible of being incorrect (the 3’ end
for most platforms). In Euler, this collection of heuristics is implemented for two graphs
built using two values of k. The final assembly is obtained by taking paths with edges
representing both sensitive (small k) and specific (large k) overlaps.

Velvet [179] is a widely used assembler for short reads; differently from Euler, it does not
perform read filtering, instead it iteratively eliminates spurs from the graph, considerably
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reducing its size. This reduction is done without any spectral alignment, but using a
weight for each k-mer, corresponding to the number of reads in which it occurs. Low
frequency k-mers are not added to the graph. The graph is further simplified by reducing
each linear path into a single node that corresponds to a unitig. Then, bubbles (i.e.,
branches that converge after few nodes) are resolved by taking the most supported path,
the other one is deleted and the reads supporting it are re-aligned. Unsafe connections are
finally removed by looking at low supported paths. Long reads information, if available, is
used to connect nodes in the graph. In order to perform scaffolding, mate pairs are used
to identify couples of long (unique) contigs. These pairs are filled with short (repeated)
contigs in order to fill the gap among the long (unique) ones.

ABySS [154] is an assembler particularly suitable for working with short reads and
large amounts of data, as it allows a distributed computation. Each node of the graph
represents both a k-mer and its reverse complement. Similarly to Euler and Velvet, ABySS
simplifies the graph by removing low covered paths and resolving bubbles. Contigs are
built using only highly supported paths. Mate pairs information is used only in a second
stage and serves both to disambiguate repeats and to merge contigs.

ALLPATHS [20] uses the read spectrum to perform error correction: “trusted” k-mers
are those exhibiting high frequency and high base quality (provided by the reads). These
k-mers are employed for error correction. First, perfect overlaps are computed in order
to get unitigs. Then the graph is built and spurs are eliminated. Once the “unipaths”
(i.e., paths corresponding to unitigs) are corrected, they are used as seeds to build the
assembly. The algorithm works on subgraphs and finds overlaps independently on each
of them. The result is that ambiguities are preserved. After assembly, small disconnected
components, as well as paths not supported by paired reads, are eliminated.

SOAPdenovo [96] is an assembler that firstly corrects reads using k-mer frequencies.
The implemented algorithm is similar to Euler and Velvet’s, but it requires less memory.
First, SOAPdenovo builds a de Brujin graph, then it removes small incorrect paths, and
resolves bubbles in a Velvet-like fashion. It also uses paired read information to get
trusted contigs, mapping all reads against the assembly (even those not used for building
the contigs), and removing transitively reducible edges.

Ray [13] is a parallel assembler that takes as input a mixture of read libraries (both
short and long reads). Meraculous [23] is designed for paired reads libraries; differently
from other assemblers based on de Brujin graphs, it does not perform explicit reads cor-
rection, but, instead, it uses information provided by paired reads.

2.3.3 Greedy

The greedy methods employed by assembly algorithms sensibly changed when turning from
the assembly of bacterial genomes with Sanger reads to the assembly of large eucharyotic
genomes with NGS reads. The greedy term refers to the fact that decisions are taken
locally and no information on the global contig being constructed is used. The first greedy
assembler found in literature is probably TIGR Assembler [160], which was proposed by
Sutton and colleagues yet in 1995. A similar approach was the one used in Phusion [120].
In brief, the method consists in computing exact sequence matches between all reads pairs,
overlaps are then assessed in a Smith-Waterman fashion [156], and possibly the sequences
are joined. The difference with the OLC paradigm lies on the fact that overlaps are
considered starting from the highest scoring one, where the score of a sequence depends
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Figure 2.5: An example of prefix tree of 3-mers.

on the number of occurrences in the dataset. This procedure is repeated iteratively until
no more merging is possible. Such a method cannot disambiguate genome repeats, thus
it can easily generate misassemblies.

A common technique adopted by greedy assemblers for NGS data is the so-called
seed-and-extend. The basic implementation of a seed-and-extend assembler consists in
repeatedly picking up a seed (it can be either a read or a previously assembled contig) and
extending it using the best overlapping read. The standard method is that implemented
in SSAKE [174]. A read is attached to the current contig only if the overlap score is above
a threshold and then it is removed from the set of available reads. The procedure stops
when either no more overlaps are found or ambiguities (i.e., multiple extensions) occur.
Hence, this method requires the computation of all, or almost all, the overlaps between the
seed’s tips and all the available reads. The procedure described above has the advantage
of being relatively quick, as it does not necessarily require all-against-all comparisons, but
it is still unable to detect repeats and thus it should be refined in order to perform “safer”
extensions.

The basic seed-and-extend technique can be modified by considering more than a read
at each extension step. The approach followed by Jeck and colleagues [77] in VCAKE
envisages the computation of a consensus string through a “base calling” step in which
the highest represented base is selected, in the set of overlapping reads, at each position.
Threshold parameters should be set in order to avoid adding a new base if the probabil-
ity of being incorrect is high. A different approach that uses information from multiple
overlapping reads is that implemented in SHARCGS [36]. Every time a read r perfectly
matching the current contig C' is detected, it undergoes a validation phase. The set of
read is searched in order to extract all reads matching the overlap between C' and r. If all
reads found in this phase also match both C and r, then C is extended with r.

Phrap [31] implements a greedy algorithm that massively uses quality values (produced
by Phred, the so-called Phred scores). It performs assembly by picking the highest quality
sequence portions, instead of computing a consensus sequence. Another method that
employs quality values to improve the assembly is QSRA [18].

A different approach is that implemented in SHORTY [52]. The tool is designed
to handle SOLiD data and the key factor of the algorithm is the usage of paired read
information. The idea is to identify overlapping reads by looking at matching k-mers.
In particular, the authors define a search procedure that make use of the left-mers and
right-mers (i.e., k-mers belonging to the 5" and the 3’ mates, respectively) belonging to
candidate reads and that overlap the seed read and its mate, respectively.

The choice of suitable data structures to store the reads and, especially, to efficiently
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search for overlaps, is an important task concerning the design of seed-and-extend algo-
rithms. Indeed, differently from OLC methods, no information on pairwise reads overlaps
is stored and, thus, they must be re-computed every time.

Reads are commonly indexed and stored within a hash table. Suffix-prefix overlaps
require efficient search of putative overlapping reads by looking at their prefix. For this
reason, sometimes a good choice can be that of storing fixed-length read prefixes into prefix
trees, or tries. The currently adopted definition of prefix tree is that given by Knuth in
1973 [82]. A prefix tree is a labelled tree in which the label of the root is empty whereas
the label of every other node is a letter (see also Figure 2.5). The labelling is done in such
a way that each distinct root-leaf path identifies a prefix, and vice-versa. Several greedy
assemblers use prefix-trees, e.g., SSAKE [174], VCAKE [77], SHARCGS [36], SHORTY
[52], and QSRA [18].

2.4 Judging the results: methods for sequence assembly
evaluation

Many challenges are related to the comprehension of the genome of an organism: finding
structural variants, identifying genes, and characterizing the transcriptome. These tasks
should be addressed in order to answer important biological questions related to evolution
and disease understanding. For these reasons, being able to both obtain a reliable reference
genome and assess its correctness are mandatory skills for the bioinformatics community.
The availability of assembly validation methods would also constitute a starting point for
the definition of independent and standard metrics to evaluate assembly tools.

Genome assembly evaluation is a quite new research subject that criticizes the achieve-
ments of the last 10 years, with the aim of reconstructing a genome in a more careful way,
now that more and more genomes are being sequenced every day. The main research lines
focus on the production of benchmark datasets and on the standardization of assembly
evaluation statistics.

Although several tools for genome assembly are available and several projects based
on such tools have been carried out, a very lively discussion on how to validate new
assemblies and, in general, on how to estimate assemblers’ output recently started. All
assembly tools are based on a small number of algorithms and differ from one another only
in matter of details that, very often, relate to how they deal with errors, inconsistencies,
and ambiguities. As a consequence, an increasing number of studies is now being published
aiming, on the one hand, at evaluating de movo assemblers and assemblies and, on the
other hand, at criticising the results achieved so far.

Assemblathon first [37] and second [15] editions, dnGASP [56], and GAGE [143] try
to assess the performances of existing tools triggering an assembly evaluation competition
among several bioinformatics groups. Even though these competitions succeeded in giving
a fairly complete overview of assemblers potentialities, they are almost always based on
specific (often already sequenced) genomes or on simulated data, leaving open the question
of whether the same tools would have had the same performances when run on different
datasets (i.e., different genomes or real reads). In fact, evaluation on simulated datasets
is inherently biased by the capabilities of the read simulator to faithfully reproduce error
schemata [170].

Recently proposed assemblies carried out using NGS data only (usually Illumina reads),
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are at the center of a lively debate. Alkan in [2] criticised two of the major late NGS
achievements: the assemblies of the Han Chinese and Yoruban individuals [96], both se-
quenced with Illumina reads. For example, Alkan identified 420.2 Mbp of missing repeated
sequences from the Yoruban assembly and estimated that in both assemblies almost 16%
of the genome was missing.

More than four years after the so-called NGS revolution started, it is extremely clear
that de movo assembly needs extensive and standardized validation steps. NGS break-
through allowed to sequence a number of new species and individuals thought to be im-
possible only few years ago. While, on the one hand, an increasing number of people
keeps sequencing and assemblying genomes using available assemblers and short reads, on
the other one, day after day, a larger community criticises and casts doubts on assembly
achievements.

2.4.1 Statistics for genome assembly evaluation

The resulting collection of sequences representing the assembly of an organism should be
evaluated with respect to three parameters: (i) contiguity, i.e., the result of the ability
of putting sequences together, (ii) completeness, i.e., the fraction of genome that the
tool successfully reconstructed, and (iii) correctness, i.e., the degree of accuracy of the
assembled sequences with respect to the real genome. It is clear that statistics related to
different evaluation parameters can be conflicting. For instance, high assembly contiguity
can be reached without concerning about the accuracy of the assembled sequences, but
correctness is likely to collapse if such an approach is adopted.

A widely used, often inflated, measure to assess assembly contiguity is N50. Given
a set of contigs ci,...,c, sorted by non-increasing length, N50 is the minimum & such
that Zle |ci| is at least 50% of the cumulative contigs length. NG50 is defined similarly,
with the difference that the percentage is computed with respect to the estimated genome
length.

Other widely used statistics are the total assembly length, the number of contigs, and
the mean contig length. These measures are concerned with contiguity and completeness
only, but, being easy to compute, they are often used alone to hurriedly decide which result
is the best among the output of different assembly tools, telling nothing about contigs
correctness. Recently, some studies started to criticise the way in which the evaluation of
assemblies and assemblers is carried out [128,170].

Correctness estimation, if a reference genome is absent, usually requires the reads to
be mapped against the assembly. Assembly quality can be retrieved by computing reads
coverage (see (2.1.1)) and checking if it is similar to the expected one. Suspicious regions
are those exhibiting aberrant coverage profiles: lower coverage may indicate a misassembly
or repeat expansion, whereas higher coverage is a signal of repeat collapse. If paired reads
libraries are provided, further additional information can be collected. For instance, a
region with a high number of correctly aligned reads with their mates being unmapped,
is an indication that a misassembly may have occurred; paired reads mapped at unex-
pected distances (i.e., different from the expected insert size) or with wrong orientation
witness instead putative sequence expansions/compressions or inversions, respectively. If
the reference genome is available, more accurate statistics can be computed, allowing to
pointwise check for the presence of mismatches, insertions, deletions, repeats expansions
and compressions [87].
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Even though several features can be computed, deciding which is the best one among
various assemblies is a non-trivial question to answer. This is mainly due to the difficulty
of establishing a trade-off between completeness, contiguity, and correctness, but also to
the fact that some measures can be related one another, resulting in a biased judgment
of the ability (or incapability) of a tool in solving some problematic situations. Recently
some research efforts have been devoted to the design of methods aimed at either (i) stan-
dardizing genome assembly validation, providing tools able to automatize the computation
of the features commonly used to detect misassemblies (i.e., amosvalidate [136]), and (ii)
simplifying the assembly evaluation, by reducing the statistics to those actually retaining
all information [170]. It is important to note that both methods are reference-independent,
thus both of them can be employed to evaluate assemblies of newly sequenced organisms.
The attempt to minimize the number of significant features is useful in the context of
assembly tools comparison, which effectiveness was tested on datasets already evaluated
on NGS assembly competitions [171].
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paired reads libraries

The recent Next Generation Sequencing (NGS) breakthrough and the consequent tremen-
dous increase in data production, have been accompanied by the appearance of a multi-
tude of pipelines able to assemble the (relatively) short sequences (i.e., reads) produced
by state-of-the-art sequencers.

In the last two years more than 20 new assemblers (see [117] for an up-to-date overview)
have been proposed, more than doubling in size the population of the assemblers designed
for long Sanger reads. Despite the practical and theoretical problems involved in assem-
bling complex genomes using only short sequences [126], several de novo assembly projects
based exclusively on NGS data have started. Among the most popular ones we mention the
Panda genome project [94], the assembly of specific human Individuals [96] (Han Chinese
and Yoruban), and several other species [54].

In this chapter we go back to basics and introduce GapFiller, a tool for local assembly
of paired reads. Our main goal is to obtain a set of correct in-silico built sequences that
can hence be used for further analyses. In the following we present the general idea of the
algorithm, a detailed description of the implemented heuristics, and the data structures
employed to speed up the assembly phase.

3.1 Enhance assembly quality using insert information

The lack of contiguity proper of short NGS reads can be partially accomplished by insert
size information, when paired reads libraries are available (see also Section 1.2.2). Paired
reads are employed both to disambiguate complex structures during assembly (e.g., Euler
[134], CABOG [116], and Velvet [179]) and to connect the assembled sequences during the
finishing (i.e., scaffolding) phase [76]. Using paired reads directly provides information
on the estimated distance between the two mates, but both the exact insert size and the
complete (i.e., ungapped) insert sequence are unknown. Due to the weakness of this type
of information a single paired read cannot be used alone to assess the correctness of the
assembled sequence, nor to connect two separate parts of an assembly. In other words, it
is often necessary to provide a threshold amount of evidences, in terms of paired reads, to
infer that two sequences are adjacent one another in the genome.

In literature, a handfold of recently proposed techniques successfully employ inserts
assembly to either decrease assembly problem complexity [183] or increase assembly con-
tiguity and correctness [102].
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The assembler MaSuRCA [183] is aimed at reconstructing a genome starting from a
mixture of data (Illumina, 454, and Sanger reads) resulting in a highly heterogeneous
input. The assembly of short Illumina reads, together with pair information, allows to
get slightly longer sequences, that can hence be used to feed a de Brujin graph-based
tool, together with original reads produced by other technologies. The dataset complexity
reduction allowed to cope with reads coming from the sequencing of the loblolly pine [70],
whose genome length is estimated to be ~ 22 Gbp.

The pipeline ARF-PE [102] is based on external assembly and alignment tools (i.e.,
Velvet [179] and SOAP2 [95]) and provides a set of insert starting from a paired reads
library. Reads are first assembled and inserts are identified by aligning paired reads against
the contigs. Then, the obtained inserts are used as input for an assembly software.

3.1.1 Close the gap between paired reads with a seed-and-extend tech-
nique

Our proposed tool, GapFiller [123], is a local de novo assembler. It takes paired reads as
input and returns a set of contigs, corresponding to the assembled inserts.

Closing the gap within paired reads is a strategy already used by software packages like
SHERA [142] and FLASH [104]. However, these tools are able to work with “overlapping
libraries” only, that is, libraries whose insert size is shorter than twice the read length.

The innovative feature of GapFiller is the possibility to produce a highly reliable output
that is certified correct. Indeed, we label as trusted only those contigs for which there are
evidences that the gap between the two mates has been filled and we will demonstrate that
false positives are extremely rare. Moreover, we will show that the sequences produced
generate a genome coverage consisting of evenly distributed long contigs. Hence, contigs
assembled with GapFiller find application in numerous downstream analyses, e.g., improve
a whole genome assembly and reconstruct structural variants (see Section 3.5). In Part 1T
we will further discuss the applicability of our method, with particular emphasys on the
employment of contigs layout information.

Our method is based on a seed-and-extend schema (see also Section 2.3.3) aimed at
closing the gap between the two mates of a paired read. Similarly to other seed-and-extend
based tools like SSAKE [174], SHARCGS [36], QSRA [18], and TAIPAN [149], GapFiller
selects one read and tries to extend it using reads that overlap for a significant region. The
main drawback of seed-and-extend assemblers is their inherent incapability to cope with
complex (i.e., repetitive) genomes. We employ a refined extension phase that (i) considers
more than a read at each extension step, and (ii) identifies problematic positions in the
consensus sequence and treat them in a different way in order not to introduce errors.
The assembler TAIPAN [149] is implemented to stop its extension phase in presence of
a repeat, but, like all other full-fledged assemblers, it is not designed to output certified
contigs.

The seed-and-extend technique employed in GapFiller is realized by computing and
analysing all—or almost all—the overlaps between the seed tips and the available reads.
The reads used for an extension are those with the highest alignment score. The com-
putation bottleneck of seed-and-extend assemblers lies in their capability to quickly cope
with all the alignment scores to be determined.

GapFiller begins by storing all useful reads in a memory efficient data structure that
allows to readily compute overlaps between the contig under construction and the remain-
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ing available reads. In a second phase each seed read (possibly belonging to a new set of
paired reads) is selected one after the other and used to start an extension phase. Such
phase halts when a stop condition is reached. Depending on the stop condition, the contig
produced is labelled as trusted or non-trusted.

3.2 The algorithm

In this section we will describe the hashing technique employed for overlaps search, the
steps performed during the extension phase, and the stop criteria that make the extension
halt. High output accuracy is reached thanks to both the refined extension phase, which
computes the consensus in two stages, and the stop criteria, which assigns the trusted
attribute only to contigs that are likely to be correct inserts.

3.2.1 The hashing technique
Let ¥ be an alphabet and ¥* be the set of the words from ¥. For every S € ¥* we will

denote with |S| the number of characters of S and with S[p,...,p+1—1] the sub-sequence
of S starting in p € {0,...,|S| — 1} and of length I € {0,...,|S| — p}. We will refer to
Slp,...,p+1—1] as prefix if p =0, suffix if p+ 1 =S|, and as the p-th character of S if

[ =1, and we will simply write S[p].

In order to quickly identify overlaps between the contig under construction and the
reads’ tips, we use an approach closely related to the one presented in [169] based on an
Hamming-aware hash function. The idea is that, by representing a string of length [ as a
base-|X| number, expensive char-by-char comparison can be often replaced by fast integer
(or bit-string) comparison. However, for practical values of [, the integers to be compared
would not fit in a memory word. For this reason, as in the classical Karp-Rabin exact
string matching algorithm [79], we can work with numbers modulo ¢ considering equality
modulo ¢ only as an indication (i.e., a necessary condition) that pairs of strings may be the
same. In other words, we operate with the strings fingerprints. Policriti et al. proposed
in [137] an extension of the approach by Karp and Rabin, introducing a technique to deal
with mismatches, based on the idea of replacing simple fingerprints comparison with a
more articulated test. In particular they noticed that, by choosing g to be a Mersenne
(prime, when possible) number (i.e., ¢ = 2 — 1, for some w € N), to check whether
two strings align against each other at a small Hamming distance can be implemented in
average linear time.

Given a string S € ¥* and its base-|X| numerical representation s € N, let us define
the hash function fr: ¥* — {0,...,¢— 1} as

S = fu(S):=s mod g, (3.2.1)

where ¢ is a number of the form ¢ = 2% — 1, for some w € N. The value f(5) is called
the fingerprint of the sequence in S € ¥* coded with s.

In our context, the use of fy significantly reduces the size of the set employed in the
search of the overlapping reads. Every read r, as well as its reverse-complement, is indexed
by the fingerprint of a substring of length b, starting at a fixed position z in r (see also
Figure 3.1).

Formally, given a set of reads R, a sequence S, a maximum allowed Hamming distance
k, the set Z(k, q) of the witnesses (i.e., the Hamming sphere of radius k around S, see [137]
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v y+b—1

s LIITTTTTTT] \‘\ [ 11 \4\ L] fu(Sly,...,y+b-1])
x z+b—1

ro L] T \4\ [T 7] — fuCrlz,...;z+b0-1))

Figure 3.1: Fingerprint computation on b-length substrings. When looking for overlaps between S and r,
the fingerprints are computed on the substrings r[z,...,z+b—1] and S|y, ...,y+b—1], respectively, where
x and b are set before the contig’s extension phase. We require an (almost) exact b-length match between
r and S in order to include 7 in the set of putative overlapping reads, by setting fu(r[z,...,z +b—1]) =
fu(Sly,...,y+b—1]). Using such a method, the suffix-prefix overlaps that can be detected are those of
length I > x 4+ b.

for more details), a fixed value b for the length of the substring on which the fingerprint
is computed in r, and two positions z and y, the following set

R(S,z,y) :={r e R| (fu(rlz,...,x+b—1]) = fu(Sly,...,y+b—1])) modqe Z(k,q)}

(3.2.2)
contains at least all the reads r € R such that the hamming distance between r[z, ...,z +
b—1] and S[y,...,y + b — 1] is not greater than k. False positives can be present but, as
showed in [137], their amount is limited. On this ground the search for reads overlapping
S can be restricted to those belonging to R(S, z,y), for some z,y € Z.

As far as GapFiller is concerned, we set k = 0 as default, meaning that we search for
eract b-length substrings in the reads (i.e., rlz,...,2 +b—1] = S[y,...,y + b — 1], for
some z and y). As a consequence, better quality output will be obtained if we select a
position x in r such that the average base quality is expected to be the highest possible.
This point will be further discussed in Section 3.3.1.

3.2.2 The assembly phase: contig extension

In the contig extension phase, each read is selected in a loop and used as seed in order
to create a new contig. Once a seed read is selected, the suffix-prefix overlaps with other
reads are computed and, if a sufficiently high level of global similarity is reached, they are
clustered in a consensus string, which is subsequently used to perform further extensions.
The procedure continues while enough overlapping reads exist and the consensus string is
highly representative of the clustered reads. If either one of the previous two conditions is
not met, the extension phase stops, the current sequence is returned in output, and the
loop continues.

Before the extension phase some parameters are set: the minimum overlap length L
and the maximum shift A: an overlap between the current contig suffix and the read prefix
is considered only if the overlap length [ belongs to the interval [L, L + A].

GapPFiller builds a cluster every time a contig is to be extended with the overlapping
reads. In particular, GapFiller uses only those reads aligning against the contig suffix with
at most 0 mismatches (where 0 := 6(l) is a function of the overlap length ) and requires
at least m reads in order to compute a consensus string. Notice that b < L < [ holds,
hence suffix-prefix overlaps might occur with more than & = 0 mismatches (see Section

3.2.1).
Let R be the set of input reads for GapFiller and rg € R be a seed read. At stepi =10
the current sequence is initialized with the seed Sy := r9. Denoting by S; the current
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Step 2. .T.he consensus string is computed for AACICCTGTTACCCGGCTT] s;
every position covered by at least m = 2 reads.
The characters rounded in gray and red lay on [CICICIAIGICITIGIAITIG] 1
low-represented and non-represented positions, ACTCGGQCTTAT o
respectively. In presence of ambiguities (i.e.
characters with the same representation rate) [CICICIGICITTATCGI 3
we choose the one belonging to the first read [CCCGGCTTATTGG
encountered, from left to right.
ACCCGIGCTTATGG ¢
i A Il L |
Step 3. Reads with mismatches in corre- [A[A/CICICITIGITITIA/CICCIGIGICITIT] Si
spondence of low-represented positions are dis- COCAGCTGATC "
carded, hence they do not contribute to reach ) ]
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non-represented position, regardless on whether ]
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Step 4. The reads still alive after Step 3 are [A/A/CCICTIGITITIA/CIC CIGIGICITIT] Si
used to compute the final consensus string Crew. [AICITICIGIGICITITIAIT] o
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the extended contig S;y1 is obtained. [AICICICIGIGICITITIAIT] Crew
(A[A[CICICITIGITITIAICICICIGIGICITITIAIT] Sit1

Figure 3.2: GapFiller extension phase. An example with § =2, m =2, 71 = 0.3 and T> = 0.5.

contig at the generic i-th step of the algorithm, the procedure to build S;;; is described
in the following.

Step 1. Overlapping reads selection

Reads are selected according to their similarity with the current contig S; (see Figure 3.2,
Step 1). At this point, every read overlapping S; for [ € [L, L+ A] characters with at most
0 mismatches is selected.

Let us denote with R(S;,1) the set of the putative overlapping reads with respect to
the l-suffix of S;, selected by their fingerprint values (see (3.2.2), with y = |S| — 1 + =z,
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for some values of x € {0,...,0 — b}). For every fixed value of [, the set of the reads
overlapping the [-suffix of S; with at most § mismatches is defined as

R(S;, 1) == {r € R(Si,1): dgg (r[0, ..., 1 — 1], S:[|Ss| — 1,...,]Si| —1]) < &} (3.2.3)
where d: ! x ©! — R is the Hamming distance. The set of all the overlapping reads

will be denoted by
L+A

R(S) = | R(Si,1). (3.2.4)
=L

Given a read r € 7%(5%, l), we define its starting and ending positions as
I(r) :=|S;| =1 F(r)y:=1I(r)+|r] — 1. (3.2.5)

I(r) and F(r) represent the position of the read r with respect to the current contig .S;,
therefore we set I(S;) = 0. For instance, in the case depicted in Figure 3.2, we have
R(Si,8) = {r1,ra} and R(S;) = {r1,r2,r3,ra}, I(r1) =10 and F(r;) = 20.

Step 2. Reads clustering and consensus string computation

This phase consists of the computation of the consensus string obtained from the set of
reads R(S;) (see (3.2.4)). Notice that, in order to compute reliable extensions, we require
the number of reads to be at least m, a parameter that may depend on the dataset used.
If there exists no [ such that the l-suffix of S; is covered by at least m reads of R(S;),
then the procedure stops. Otherwise, the starting and ending positions of the consensus
string C' with respect to S; can be computed, thanks to (3.2.5). In practice, we let the
consensus string start from the leftmost reads, i.e., those covering the longest suffix of S;
(see, for instance, the read ry in Figure 3.2) and end at the rightmost position in which
the number of reads is at least m. More precisely, the starting and ending positions of C
are defined as

I(C) = min{I(r): r e R(S)};

F(C) = max{F(r):r € R(S;) A {1 € R(S;): F(+') > F(r)}| > m},
respectively. If F(C) > |S;| — 1 then the procedure continues, otherwise it stops as S;
cannot be further extended. Looking at Figure 3.1 we have I(C) =9 and F(C) = 21 and
the procedure continues since F'(C) > F(S;+1) = 17.

More p}"ecisely, for every position j, GapFiller selects the most occurring character in
the reads R(.S;) covering j, and the majority consensus string C' is computed (see Figure

3.2, Step 2). For every X € ¥ and for every j = I(C),..., F(C) we define the number of
occurrences of the character X in position j with respect to .S; as

o(X,5) = {r € R(S;): I(r) <j < F(r)Ar[j — I(r)] = X}|. (3.2.6)

The consensus string C' is defined, for every j = I(C),..., F(C), by setting C[j — I(C)]
equal to the highest occurring character, i.e., the X € ¥ with the highest number of
occurrences in position j

Clj—1(C)] := X, 7).
7 = I(C)] := argmax o (X, j)
Loosely speaking, the character selected on a particular position of the consensus string is

the most occurring character in the reads on that position. Thus o(C[j — I(C)],j) is the
number of occurrences of character C[j — I(C')] on position j.
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Step 3. Consensus-based reads selection

At this point we need to check whether (i) a read r is highly representative of the consensus
C and (ii) the extension is “safe”. Every character of the consensus string is assigned a
flag indicating how it is representative of the reads from which it is built. We simply define
the representation rate of the position j as

(j) = a(Cli—1(C)].J) 7
{r e R(Si): I(r) <j < F(r)}]

(3.2.7)

where o(-) is defined in (3.2.6). We set two threshold values 77 and 7% such that 0.25 <
T1 < Ty < 1 (notice that m(j) € [0.25,1] as |X| = 4) and we distinguish three types of
positions in the consensus string;:

j is non-represented < 7w(j) < T
j is low-represented < Ty < 7(j) < Tb
Jj is high-represented < mw(j) > Ts.

The reads used to build the consensus C are filtered and trimmed, depending on
the presence of low-represented and non-represented positions, respectively. The idea
is that on low-represented positions we need a minimum percentage of reads matching
the consensus string, and that on non-represented positions the extension in considered
to be unsafe, thus it should be halted. Reads differing from C' in correspondence of
low-represented positions are discarded and the remaining ones are also trimmed if a
non-represented position occurs (see Figure 3.2, Step 3).

In practice, we do not consider a read r if it does not match the consensus string on
a low-represented position, i.e., r[j — I(r)] # C[j — I(C)], for some j such that 7(j) <
T5. Clearly, this applies to non-represented positions as well. Then, we trim every read
overlapping any non-represented position of C. More precisely, if j,o+ is the first non-
represented position occurring in r (i.e. 7(jnot) < 11), we consider 70, ..., jnot — (1) — 1]
instead of r.

After unsafe reads are discarded and the remaining ones are trimmed, a new set of
reads, that can be denoted by ﬁnew(&), is finally obtained (see Figure 3.2, Step 3). Every
read in ﬁnew(Si) is both matching the consensus string C' on each low-represented position
and not covering any non-represented one. Using this mechanism we take into account
only the most representative reads and do not extend the contig with a consensus character
when its representation rate is too low.

Step 4. Final consensus string computation and contig update

After previous step, the new set of overlapping reads ﬁnew(Si) is obtained. A new consen-
sus string Chpey is computed, considering only the reads obtained at Step 3, and possibly
the current contig is extended (see Figure 3.2, Step 4). The extension is done only if the
number of reads is at least m and F'(Chew) > |S;| — 1 holds. In this case, a new contig
Sit1 is built

Sit1:=Si[0,..., I(Cpew) — 1].Cpew

and the (i + 2)-th extension phase restarts from S;y;. Otherwise the algorithm stops and
the contig S; is returned.
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3.2.3 Stop criteria and contigs labelling

The algorithm described in Section 3.2.2 may potentially extend a contig for an arbitrarily
large number of times, without checking any “global” property of the current sequence.
With our method the extension phase halts if at least one of the following conditions is
met: (i) the available overlapping reads for the consensus C are less than m; (ii) the
available overlapping reads for the new consensus Ci,¢,, are less than m; (iii) contig length
exceeds the maximum length; (iv) the seed-mate has been found.

Let S; be the contig obtained at the i-th step, starting from the seed read rg. Criterion
(i) applies when the consensus string C' does not exceed the current contig. This means
that there are no more than m — 1 overlapping reads, or that they are too short. In such
a case, the contig produced is labelled as NO_MORE_EXTENSION.

Criterion (ii) applies when the consensus may have been produced as consequence of the
presence of reads belonging to different genomic locations. More precisely, this situation
is likely to appear when the consensus extension is “trying” to exit from a repeat. In
this case, either too many reads are discarded (due to the presence of low-represented
positions) or a significant trimming of them has been performed (as some non-represented
positions occur far before the end of the consensus). In such a situation, the extension is
halted and the contig is labelled as REPEAT_FQOUND.

Criterion (iii) is satisfied as [Sj4+1| > Lmax, where Ly, is fixed at the beginning of
the algorithm and is usually set to the maximum insert size, plus a tolerance value. In
such a situation, we could have been able to continue the extension but, however, we
could not find the seed-mate. This suggests that the contig produced may be wrong or,
at least, that it contains a high number of unreliable bases. When the maximum allowed
length is exceeded, the computation is halted and the contig, labelled as LENGTH_EXCEED,
is returned.

Criterion (iv) is used to stop the extension as the mate 7 of the seed rg is found. At
the generic i-th step, every p € {0,...,|S;| — |Fo|} is checked to see whether the following
condition is satisfied

A (Silp, ..., p + |Fo| — 1],70) < M, (3.2.8)

where M is the maximum number of mismatches allowed between 7, and S;. Inequality
(3.2.8) is satisfied if and only if the mate is found in S; at position p with no more than M
mismatches. This control is performed on-the-fly and hence the positions already checked
at the ¢-th step will not be re-checked. The mate-check criterion is used as a guarantee
of correctness of the whole contig. This is in contrast to previous criteria, which are used
to detect and prevent errors introduced in the extension phase. From this point of view,
criteria (i) and (ii) can be seen as strictly local, since no information collected during
previous steps is used. In this last case the contig returned is labelled as MATE_FOUND.

3.3 Implementation

In this section we will take a closer look at the data structures designed for our algorithm
and at their implementation. GapFiller core is the module working during the extension
phase. At this point, we assume that the set R has already been trimmed and possibly
filtered.
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Figure 3.3: GapFiller data structures. The data structure used for GapFiller implementation is composed
of three arrays: H AS H counter, whose length depends on the parameter g used to compute the fingerprints;
Reads and HASHwvalues, whose lengths depend on the number of reads in R. HASHwvalues is divided
in blocks, each of them corresponding to a fingerprint value; each HASHwvalues’ entry contains a pointer
to an element of Reads and a boolean value indicating whether the read has been reverse-complemented
or not.

All the data must be stored in the main memory, thus a careful engineering of the data
structures is required. In the hypothesis to work with Illumina reads, we can also assume
the following [151]: (i) the base quality profile decreases while going towards the end of
the read, and (ii) sequencing errors in the form of INDELs are extremely rare. Hence,
we decide to compute the read fingerprint on the position that should exhibit the lowest
error-rate, and to restrict the search to reads that differ from one another only in terms
of sequence mismatches.

3.3.1 Data structures

The basic idea is to pre-compute as much as possible of the useful information on the reads,
in order to speed up the computation of the overlaps needed to perform the extension
phase. Suppose that GapFiller is working at the (i + 1)-th step of an extension, with
i > 0, and let S; be the current contig. When constructing the consensus string C' (see
Figure 3.2, Step 1) we are always interested in obtaining overlaps between suffizes of S;
and prefizes of reads belonging to R.

In order to compute overlaps, GapFiller employs a hashing schema based on the one
implemented in ERNE [169]. In particular, a data structure similar to the one proposed
in [137] is built (see also Figure 3.3).

The basic idea behind GapFiller is the possibility to obtain in a fast and efficient way
the set of reads whose prefixes overlap a suffix of the partial contig under construction.
Therefore we used the ERNE hash function to find reads that are likely to overlap a suffix
of S;. Those reads are subsequently checked to see if they actually overlap S; or not.
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Figure 3.4: Reads selection by fingerprint 1 = 1 L 1

values. The substring on which the fin- [AACICICITGTTACICICGGCTT] Si

gerprint is computed must belong to the CCCAGOTGATA 1 (forward)
reads’ L-prefix in order to be independent

on the overlap length I. The fingerprint [ACTCGGCTTAT] r2 (reverse)
is computed on the leftmost substring of CICAGOTTATCE 7y (reverse)

length b for forward-stranded reads, and
on the rightmost b-length substring for CCCGGCTTATTGIG ri (forward)
—

reverse-complemented ones. b

Overlaps between reads and the the current contig can take place on both strands,
thus reads must be stored together with their reverse complement. With the goal to save
as much memory as possible, reads are represented as arrays of integers, so that a base
needs 2 bits instead of 8 (A—00, C—01, G—10, T—11). The data structure used to
compute overlaps and to construct contigs is built from the reads. Three arrays are used
to represent in a compact way the reads stored in R and to compute overlaps among them:

1. HASHcounter: it is an array of pointers to HASHwvalues. In position i it stores
the first position in H ASHvalues such that a read r or its reverse complement has
a prefix whose fingerprint is .

2. HASHwalues: each array entry stores the reads location in the array Reads to-
gether with a boolean value indicating whether the fingerprint has been computed
from the original read or from its reverse complement. For this reason the size of
HASHuvalues is twice the number of reads in R;

3. readsMwulti: this array stores the reads and other useful information, like paired
read location, paired read order (first or second in a pair), and read status (used,
not used, etc.).

The memory requirements for GapFiller depends on the implementation. A detailed de-
scription is reported in Section 3.3.4.

3.3.2 Fingerprints computation

Each read fingerprint is computed on a precise substring of length b (see (3.2.2)). As
pointed out in Section 3.2.1, the fingerprint of » € R should be computed on the position
x such that the (expected) average base quality is as high as possible and the substring
rlz,...,z+b—1] falls into the contig suffix, independently on the overlap length [. For these
two reasons, having the lllumina error-profile in mind, we choose x = 0 if r is considered
on its forward strand, z = L — b if r has been reverse-complemented (see Figure 3.4).

In order to compute the overlaps between the current contig S; and the reads, one
has to compute the fingerprints of the substrings of length b starting from y, for every
ye{|Si|—L—-A,...,|Si| — L} if original-stranded reads are searched, and for every y €
{|Si| =A—=b,...,|Si|—b} if reverse-complemented ones are to be extracted. Let us indicate
with s, the fingerprint computed from S;j[y, ...,y +b—1] (see Figure 3.4). GapFiller uses
this number to retrieve reads whose I-length prefix (I = |S;| —y for forward-stranded reads,
I =|Si| —y+ L —b for reverse-complemented ones) is likely to match a substring of .S; close
to the sequence end. In particular GapFiller accesses all HAS Hwvalues positions between
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class Reads {
vector <uint8_t> read;
vector <uint8_t> readRC;
uint16_t information;

};

typedef struct {
uint32_t id : 31, strand : 1;

} readOriented;

class Hash {
vector <Reads> readsMulti;
vector <readOriented> HASHvalues;
vector <uint32_t> HASHcounter;

};

HASH counterls,| and HASH counter[s, + 1] and, subsequently, accesses readsMulti to
identify the set of candidate overlapping sequences R(S;, 1) (in Figure 3.3 GapFiller scans
all positions between k and r — 1 of HASHwvalues). Finally, the set R(S;,1) is used to
compute 7@(5’13 [), the set of real overlapping reads. This is done by checking all candidate
reads singularly. Due to the fact that only a limited number of mismatches is allowed in
this phase and that the employed hash function guarantees a low false positive rate, this
step is extremely fast.

3.3.3 The program

GapFiller is written in C++ and the source code can be downloaded from [61]. It has
been tested in Linux Operating Systems (CentOS and Ubuntu).

The program accepts both sequences (i.e., FASTA and FASTQ format) and alignment
(i.e., SAM and BAM) files. GapFiller output consists of two main files, a FASTA file
containing contigs sequences, and, possibly, a binary file containing contigs layout (i.e.,
information on reads placement and orientation within each contig, see Chapter 4).

3.3.4 Memory requirements

In this section we provide a detailed estimate of the physical memory required by the
algorithm, in the hypothesis that it is run on a 32-bit architecture.

The core of the implementation is a hash table, of parameter k, that stores a dataset
R of reads of length |r|. The data structure is implemented with class Hash.

The sizes of readsMulti, HASHvalues, and HASHcounter are |R|, 2|R|, and 22*, re-
spectively. During the algorithm, a single object of class Hash is used, and the additional
RAM memory required by the assembly phase is nearly negligible (each contig is processed
one at-a-time and then deleted).

Consider readsMulti first, whose size in bytes depends on that of class Reads. Mem-
bers read and readRC are employed to store the numerical representation of read sequences
in the original strand and in their reverse-complement, respectively. More precisely, each
component of read (of readRC) is filled with 4 characters belonging to the original (reverse-
complemented) sequence. Thus, the number of elements of read is given by [|r|/4].
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In the worst case, the memory occupied by read is 4[%] The same reasoning ap-
plies to readRC. Taking into account the 12 + 12 + 4 = 28 additional bytes required by
class vector and information, the memory required to store an object of class Reads
is given by 8(%] + 28 that, multiplied by |R|, provides the RAM memory used by
readsMulti.

Concerning HASHvalues, consider that readOriented occupies 4 bytes, hence the over-
all memory is 8|R|. Finally, HASHcounter is stored in 4 - 22* bytes.

Summing up all contributions, we obtain the following estimate for the total memory
required by an object of class Hash

AR <2P|r|4/4w +9> 4. 9%

For instance, the RAM memory required for a dataset of 100 bp-long reads, using k = 15,
is approximately 100|R| + 4 - 230 bytes.

3.4 Results on simulated data and analysis of correctness

GapFiller outputs a set of labelled contigs. The label describes the level of reliability of
the sequence, in particular we divide GapFiller output in two sets: positive/trusted con-
tigs are those labelled MATE_FOUND, while negative/non-trusted contigs are those labelled
NO_MORE_EXTENSION, REPEAT_FOUND, LENGTH_EXCEED. Trusted contigs are those that we
consider certified correct and can therefore be used in subsequent analysis. Non-trusted
contigs are defined in this way because we were not able to find the seed-mate and hence
we have no way to estimate their correctness.

We decided to perform experiments on both simulated and real data. Despite being
aware that results on simulated datasets are strongly connected with the ability of read
simulators to successfully reproduce realistic error schemata [170], we are also conscious
that they are the only way to precisely estimate the reliability of assembled reads. In
contrast, experiments on real datasets are necessary in order to test the applicability of
our tool.

We simulated NGS experiments on five bacterial genomes, producing four coverages for
each of them, in order to show how GapFiller performances scale at different coverages.
Moreover, in order to test correctness, we aligned each output contig against a precise
region of the reference, as seed reads’ coordinates and orientation are known.

The experiments on real datasets were performed on public data, for which the results
obtained by various assemblers are public as well. In this case, we first checked the
correctness of GapFiller output contigs and then used them as input for an assembler for
long reads.

3.4.1 Generation of simulated libraries

The reference genomes used for simulated experiments were downloaded from NCBI web-
site [72] and we used SimSeq, the reads simulator employed in Assemblathon 1 [37], to
generate paired reads coverages. More specifically, we performed our experiments on five
bacterial genomes (see Table 3.1).

We generated a library (see Table 3.2) constituted by 100 bp-length paired reads,
with insert size 600 + 200 bp, using error profiles provided by SimSeq for reads 1 and
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Table 3.1: Reference genomes for simulated datasets.

Organism Genome length (bp)
Alcanivorax borkumensis 3,120, 143
Alteromonas macleodii 4,412,282
Bacillus amyloliquefaciens 3,980, 199
Bacillus cereus 5,699, 545
Bordetella bronchiseptica 5,339,179

Table 3.2: Simulated paired reads libraries.

Read length (bp) Insert size (bp) coverage 1 coverage 2 coverage 3  coverage 4

100 600 =+ 200 30x 50x 70x 90 x

2, respectively. In particular, we obtained 20 simulated datasets generating, for each
organism, four paired-ends coverages: 30x, 50x, 70x, and 90x. The reasons behind this
choice lie on the fact that, on the one hand, we need at least a 30x coverage in order to
provide GapFiller an adequate reads distribution, and, on the other hand, we noticed that
coverages equal or higher than 100x do not appreciably increase GapFiller performances.

3.4.2 Dataset preparation

In order to avoid the generation of wrong contigs, it is of utmost importance to use
only good-quality reads over the entire extension phase. Several tools are available to
perform error correction on Illumina data using the so-called “read spectrum” (consider
QUAKE [80], Hammer [114], and ALLPATHS [43] just to mention the most recent ones).
Other tools discard reads or try to improve their reliability using quality information
(ERNE [169] and QSRA [18]).

Our approach, when we are given raw data, is to first trim (and possibly filter) the
reads on the ground of quality information using erne-filter (refer to [169] for details),
and to eliminate Ns from the reads sequences. An optional subsequent step consists in
correcting the reads with a tool specifically designed for this purpose, like QUAKE [80].

An important way to assess the global quality of a dataset is to plot the k-mers
distribution of the reads. This can be easily done using Jellyfish [107]. If the genome
has been sequenced tens of times, then two peaks are expected: one in correspondence
of the expected coverage and one in correspondence of coverage one. k-mers composing
this second peak are likely to be sequencing errors. As a rule of thumb, a low number of
k-mers occurring only once suggests that the dataset has a good global quality.

3.4.3 Design of experiments

We used simulated data in order to evaluate the ability of GapFiller to correctly recon-
struct the gap between two paired reads and to assess the reliability of the output classifi-
cation (ND_MORE_EXTENSIUN, REPEAT_FOUND, LENGTH_EXCEED, MATE_FUUND). In particular
we used these datasets—easy to build and validate—to explore how coverage affects Gap-
Filler extension phase.

GapPFiller performances rely on the choice of three crucial parameters: the minimum
overlap length L, the slack A, and the length b of the substring on which the fingerprint
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is computed. We decided to set L = 50 and A = 40, as reads length is approximately
100 bp for every library used for the experiments. The value of b identifies the length of a
substring on which we (almost always) require an exact matching between read and contig
(see Figure 3.4), due to the fact that the employed hash function has a low false-positives
rate (see (3.2.2)). We set b = 20 because we observed that a greater value of b (i.e., close
to L) dramatically prevents GapFiller to find even few-mismatch-affected overlaps.

The parameters T} and T5, necessary to discern among high /low /non-represented po-
sitions in the consensus string (see Section 3.2.2), are set to 77 = 0.6 and 75 = 0.9. Recall
that when a position in the consensus string has a representation rate lower than 77, all
the reads are trimmed on that position; instead, if the representation rate is lower than
T5, only the reads not matching the consensus string are dropped. The value of m, the
minimum number of reads required in order to compute the consensus string, has always
been set to 2. We chose not to let m depend upon coverage, since the number of reads
after Step 3 strongly depends on the parameters used (say, 71 and T5).

We set the maximum length of a contig to be much greater than the expected average
insert size, i.e., 1800 bp (see also Table 3.2). We allowed for the presence of mismatches
when looking for the seed-mate in the contig being constructed with parameter M. In all
the performed experiments we set M = 10 (i.e., approximately 10% of the reads’ length).
This choice is justified by the fact that the data simulated with SimSeq have a quite high
amount of low-quality bases even far from the rightmost positions within the reads. The
value of §, representing the maximum number of mismatches allowed when computing
overlaps, depends on the overlap length [ and was set to M1/|r|, where |r| is the average
read length.

3.4.4 Output validation

The post-processing phase of GapFiller output is aimed at both quantitative and quali-
tative analysis. The first one is focused on evaluating the amount of trusted contigs our
tool is able to produce, the second one on results validation. The main goal is to compare
the performances on different input datasets and coverages.

Due to their nature, experiments on simulated data allow to precisely estimate correct-
ness by aligning a contig in the exact place where it is supposed to occur in the reference
genome. More precisely, we used the Smith-Waterman alignment algorithm [156], assign-
ing a score of 1 to a match, —1 to a mismatch, and —2 to an indel. For instance, let us
consider a contig S generated by extending a seed read r, and suppose that r has been
extracted from the genome G at position x, on the forward strand. To test its correctness,
S is aligned against Gz, z + |S| + g — 1], where g is the maximum number of allowed
indels, depending on a user-defined threshold for the alignment score. We say that S is
correctly aligned if and only if the ratio between the best alignment score of S against
Glz,z+ |S|+ g — 1] and |S] is at least 0.95 (for instance, we allow up to 5 mismatches, 1
indel and 1 mismatch, or 3 indels every 200 bp, on average). For this particular choice of
the alignment score, g is fixed to be [3|S]/200].

Alignments performed in this way allowed us to divide contigs in four subsets: true
and false positives and true and false negatives, depending on the contigs classification
and correctness:
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Table 3.3: GapFiller performances on simulated datasets.

30x 50x 70x 90 x
Organism Output Time  Output Time Output Time Output Time
Alcanivoraz 80x 25’45 141x 53'14"”  199x 1h30723"  279x 2h01'03"
borkumensis
Alteromonas 83 % 30’55 146x 1n12'12"  203x 2h05'36”  262x 3h12'36"
macleodii
Bacillus 87x 26'40"  154x 1h01'24"  216x 1h47'51"  278x 2h44'52"
amyloliquefaciens
Bacillus 86 % 3554 151x 1h20°50"  213x 2h21728"  274x 3h36'37"
cereus
Bordetella 87x% 3527”7 153x 1n19'34"  215x 2h19'01"  276x 3h35'01”
bronchiseptica

Aligned Unaligned

Trusted True Positive (TP)  False Positive (FP)
Non-trusted False Negative (FN) True Negative (TN)

This gave us the possibility not only to estimate the percentage of correctly reconstructed
contigs, but also to evaluate GapFiller ability to discern between trusted and non-trusted
ones.

3.4.5 Computational requirements and output correctness assessment

All the experiments were performed on a 8 CPU (2500 GHz) and 32 GB RAM machine.
All of them required no more than 5.2 GB RAM memory. See Table 3.3 for the time
requirements and for the output coverage produced for each experiment.

The experiments performed show how GapFiller performances improve as coverage
increases (see Figure 3.5 and Table 3.3). From the histograms in Figure 3.5 we can clearly
appreciate how the number of true positives increases with coverage, reaching an average
value of 99% when coverage is above 50x. In a specular way, we can see that the number
of false negatives decreases as coverage increases. Table 3.3 shows how a higher input
coverage allows us to produce a higher output coverage composed by trusted contigs.

The simulated datasets allowed us to show how GapFiller is able not only to correctly
reconstruct the gap between paired reads, but also to correctly flag the generated contigs
as trusted (i.e. MATE_FOUND) and non-trusted (all other cases). Going into more detail,
we observed that the majority of non-trusted contigs are labelled NO_MORE_EXTENSION,
meaning that GapFiller stops a contig extension depending on some input dataset features
(low covered regions and/or error-affected reads). An important result obtained from these
datasets is that the percentage of uncovered bases is negligible, being strictly less than
0.1% even with low input coverages (e.g., 30x).

3.5 Applications

In light of the high accuracy reached by running GapFiller with different input coverages
of simulated reads, we further analyzed the behavior of our tool in real scenarios. In par-
ticular, we employed sequencing data extracted from Staphylococcus aureus, Rhodobacter

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



54 3. GapFiller: a local assembly tool for paired reads libraries

100~ 95% 914 o o h 100 |- 93% 93% 93% h
] 89% — =2 8
80| g 80 |- g
% @
R .2
Z 60 1 Ze0f g
Q =}
< o
X 4ol 1 Faof 1
20 [ g 20 - g
5% 9% 6% 6% 6%
0 0% 0% 0% 1% 0% 0% 1% 0% 0% 0% 0% 0 ﬁm;% 0% [ 1% 0%[].0% 0%[].0%
T T T T T T T T
30 50 70 90 30 50 70 90
coverage coverage
(a) Alcanivoraz borkumensis. (b) Alteromonas macleodii.
| | | | |
v Y Y v
100 - 939 98% 99% 99% B 100 goo 97% 98% 98% B
80| g 80 |- g
“ 7
R R
= 60 4 £ 601 A
=] =}
o <
X0 4 Faof 8
20 [ g 20 - g
5% , 6% 20 20 59
0 1% 0% 0% 1% 0% 0% 1% 0% 0% 1% 0% 0 1% 1% 0% 2% 0% 0% 2% 0% 0% 2% 0%
T T T T T T T T
30 50 70 90 30 50 70 90
coverage coverage
(c) Bacillus amyloliquefaciens. (d) Bacillus cereus.
| | |
98% 98% 98% ] 00 true positives

100 [ o3

[0 false positives
80 |- i [0 false negatives
5 00 true negatives
Z 60 a
3
o
S |
20 B
5% .
0 lﬁfo,—‘ 0% ()%lﬁ% 0% U%ﬁ" 0% l]%rl_/Tl‘ 0%
T T T T
30 50 70 90
coverage

(e) Bordetella bronchiseptica.

Figure 3.5: Results on 5 simulated datasets. The five histograms represent, for each dataset, the true
positives, false positives, false negatives, and true negatives rates for different input coverages. In order
to decide if a (positive or negative) contig is either true or false, it is aligned against the reference on the
exact positions in which it is supposed to occur.

sphaeroides, and Vitis vinifera genomes, respectively. We employ the former two libraries
for a de novo assembly pipeline in which GapFiller is used as a preprocessing step. The lat-
ter instead is used within a resequencing project, in particular we use our tool to assemble
insertions in a resequenced variety with respect to the reference.

For the first application we know the ground truth, hence it is possible to precisely
evaluate the results. We thoroughly discuss GapFiller output accuracy in the first part of
the following section.
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Table 3.4: Reference genomes and libraries for real datasets (ALLPATHS error-corrected).

Organism Genome Library Avg read Insert size Coverage
len (bp) len (bp) (bp)

Staphylococcus 2,903, 081 Fragment 101 180 29x

aureus Short jump 96 3500 32X

Rhodobacter 4,603,060 Fragment 101 180 31x

sphaeroides Short jump 101 3500 29x

Table 3.5: GapFiller performances on real datasets.

Fragment Short jump + fragment
Organism Output  Time  Output coverage Time
Staphylococcus aureus 26 % 08'25" 517x 3h34'01”
Rhodobacter sphaeroides 28 % 08'43" 230x 5h27'21"

3.5.1 Whole genome assembly

In this section we will discuss the ability of GapFiller to produce accurate contigs from
real data, and we analyze the results of a two-step assembly pipeline that sees GapFiller
as a tool able to produce long in-silico sequences, that are subsequently used to feed an
assembler for long reads.

The sequencing data for S. aureus and R. sphaeroides were dowloaded from GAGE
website [58] (see Table 3.4). It is important to notice that the datasets provided by
GAGE, together with the assembly results described in [143], represent the first available
benchmarks that can be used to evaluate new instruments like GapFiller. These data
represent state-of-the-art Illumina sequences, they are freely available, and they come
with a reference sequence, a set of assemblies obtained with state-of-the-art assemblies,
and with a set of evaluation scripts.

Fragment (paired-ends) and short jump (mate-pairs) libraries are available, and cor-
rected data are provided as well. In our case, we choose to use ALLPATHS-corrected
reads. For both datasets, we combined the two libraries in two ways: in a first attempt
we ran GapFiller using only reads from the fragment library, while in a second experiment
we used both libraries, but we selected seeds from the short jump dataset only, creating
in this way contigs of average length 3,500 bp. In particular, we set the maximum length
of a contig to be much greater than the expected average insert size, i.e., 550 bp and 4500
bp for GAGE fragment and short jump libraries, respectively (see also Table 3.4). The
other options were set to the same values as for the experiments on simulated data (see
Section 3.4.3).

GapFiller was run on a 8 CPU (2500 GHz) and 32 GB RAM machine, requiring no
more than 5.8 GB RAM memory. See Table 3.5 for the time requirements and for the
output coverage produced for each experiment.

When using a real dataset reads provenance is unknown, so in this case we tested
output correctness by aligning the contigs against the reference genome using BLAST. We
set the percentage of identity to be at least 95% and the hit length to be 100% of contig
length, in order to accept an alignment. We are interested in extracting two pieces of
information from alignments: the number of trusted contigs that correctly align against
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Table 3.6: Validation of GapFiller output on GAGE datasets. The experiments performed with both short
jump and fragment libraries are done by picking the seeds from the short jump library only. We state that
a contig is aligned against the reference if the alignment is a single hit covering 100% of contig length and
the percentage of identity is at least 95%. The statistics are computed on trusted contigs.

Fragment Short jump + fragment
Organism Avg ctg Aligned Aligned Genome Avg ctg Aligned Aligned Genome
len (bp) ctg len cvg len (bp) ctg len cvg
Staphylococcus 182 99.48%  99.47%  98.12% 3648 98.74%  98.76%  95.00%
aureus
Rhodobacter 188 99.91%  99.92%  98.65% 3736 98.20%  98.22%  74.12%

sphaeroides

Table 3.7: Comparison statistics on Staphylococcus aureus. All percentages are referred to the true genome
size.

Assembler # Ctg NGH0 Chaff Dupl Comp Indels Indels Inv  Rel
% % % <5bp > 5bp

ABySS 301 29198 6.71 23.06 0.98 20 9 3 2
ALLPATHS-LG 59 96740 0.03 0.03 1.26 4 12 0 4
Bambus2 108 50192 0.00 0.01 1.27 56 164 2 11
MSR-CA 93 59152 0.02 0.71 0.88 23 10 6 7
GapFiller4+PHRAP 90 42398 0.00 0.28 1.07 12 4 0 3
SGA 1253 4005 21.34 0.01 1.26 2 2 1 3
SOAPdenovo 106 288184 0.35 1.42 1.39 25 31 1 16
Velvet 161 48440 0.46 0.14 1.31 6 14 5 9

the reference, as in the simulated case, and the coverage profile, as it is useful in order to
estimate the percentage of genome reconstructed by GapkFiller.

Table 3.6 shows GapFiller results on Staphylococcus aureus and Rhodobacter sphaeroides
datasets. For both of them we run GapFiller twice: a first time using only reads from
fragment library and a second time using reads from short jump library as seeds and reads
from both libraries to close the gap. From Table 3.6 we can also see that, in both situ-
ations, GapFiller is able to reconstruct the insert with the expected size. Moreover, the
amount of aligned trusted contigs is comparable to that obtained when simulated datasets
are used as input (see Figure 3.5). The percentage of reconstructed genome is extremely
high in S. aureus (for both experiments) and R. sphaeroides when fragment library is used
alone. When reads from short jump library are used as seeds, instead, there is almost 26%
of reference missing. This could have been caused either by a bias in the library (non-
uniform mate-pairs distribution) or by the presence of difficult-to-assemble areas larger
than the insert size.

In order evaluate GapFiller capabilities when used on real data, we extracted a ran-
dom 10x coverage from the set of S. aureus output contigs (in particular from those ob-
tained using short jump reads as seeds) and a random 15X coverage from R. sphaeroides
output contigs (10x and 5x from those obtained using seeds from fragment and short
jump libraries, respectively). Both coverages have been assembled with PHRAP [31], a
well-known Overlap-Layout-Consensus assembler (see also Section 2.3.1), with default pa-
rameters. We compare our results with respect to those achieved with other assembly
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Table 3.8: Comparison statistics on Rhodobacter sphaeroides. All percentages are referred to the true
genome size.

Assembler # Ctg NG5O Chaff Dupl Comp Indels Indels Inv Rel
% % % <5bp > 5bp

ABySS 1916 5872 1.67 10.07 0.49 278 34 2 17
ALLPATHS-LG 203 42455  0.01 0.38 0.33 150 37 0 6
Bambus2 176 93198  0.00 0.00 0.25 149 363 0 5
CABOG 321 20211 0.00 0.12 0.71 145 24 1 9
MSR-CA 394 22128  0.02 1.05 0.53 179 32 1 8
GapFiller+ PHRAP 1584 7809 0.12 0.49 0.76 158 14 2 7
SGA 3073 2284 3.49 0.05 0.98 114 5 0 5
SOAPdenovo 204 131681 0.44 1.07 0.54 155 406 0 8
Velvet 583 15665  0.55 0.29 0.96 148 27 0 8

tools and presented in GAGE [143]. It is worth noting that the assemblies presented in
GAGE should be considered the best achievable assemblies with the employed tools. In
order to obtain a comparison as fair as possible we employed the same scripts used by
Salzberg and colleagues in [143]. It is important to say that the presence of a reference
sequence for both the assembled genomes allows us to compute the real number of errors
and mis-assemblies.

Tables 3.7 and 3.8 show the most important statistics obtained in the validation phase.
For what concerns S. aureus assemblies, we can see that our assembly has a connectivity
level (i.e., number of contigs and N50) higher than that of many other widely used assem-
blers (e.g., Velvet), moreover the number of small contigs (i.e., chaffs), and the number of
wrongly assembled repeats (i.e., duplications and compressions) is always comparable and
often better than the other assemblies. The most important columns, however, are the
last four, showing the number of errors (the ideal assembler should have 0 everywhere).
GapFiller4+PHRAP not only is one of the assemblies with the fewest number of indels,
but is also the one having less relocations (3) and inversions (0). These latest two types
of errors are the most dangerous ones, due to the fact that they are the result of merging
two completely different genome areas.

Results showed in Table 3.8 for R. sphaeroides are similar: this time GapFiller+PHRAP
has a lower connectivity level (however greater than SGA and ABySS, two widely used
assemblers). Also in this case our assembly is not seriously affected by indels (opposite
to SOAPdenovo that has more than 550 indels). Concerning inversions and relocations,
GapFiller+ PHRAP performances are comparable to that of the other assemblers.

3.5.2 INDELS reconstruction

A difficult problem in resequencing projects is the identification, reconstruction, and val-
idation of inserted regions within an unknown genome, with respect to a reference one.
In most organisms, many structural variants are found in highly repetitive regions of the
genome, making their identification difficult.

Recent studies demonstrate the feasibility of detecting structural variants using next-
generation, paired-end sequencing reads [115]. In this section we will show the applicability
of GapFiller in the complete or, at least, partial reconstruction of inserted sequences in
a reference genome. We assume that a set of putative insertions location is known. No-
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Figure 3.6: The three-step procedure for INDELs reconstruction.

tice that, however, reconstructing completely or at least both ends straddling the inserted
sequence provides further evidence for the presence of an insertion event. Both recon-
struction and validation are still weak in existing tools.

GapkFiller is a tool developed to fill the gap between paired reads produced by NGS
technologies, but, as a matter of fact, it can be applied to whatever pair of sequences
known to lay at an estimated distance, as long as a set of uniformly distributed short
reads are provided as input to fill the gap.

In [125] we proposed a pipeline to reconstruct and validate insertions in a resequenced
individual. The procedure is divided in three main phases (see also Figure 3.6): the first
one consists in detecting the insertion location and the reads aligning around them, the
second one in building contigs straddling the borders of putative insertions, and the third
one in filling the gap between them.

The task of determining putative insertions location is left to an external program
(BreakDancer [24] in our case). Retrieving the reads placed nearby insertion points is
then performed in-house using samtools [60]. More specifically, if insertions in organism
A with respect to organism B are to be investigated, we first extract locations of putative
insertions. Then the reads of A are aligned against the reference B and those mapping
next to insertions are extracted, as well as their mates, with the proper orientation.

GapPFiller is then run twice: a first time to fill the gap between the extracted paired
reads in order to reconstruct the borders of each insertion, and a second time to reconstruct
the sequence between the trusted contigs produced. In the latter phase we treat contigs
on the left and on the right side of an insertion as if they were the two pairs of a paired
read, respectively, and GapFiller output will be a super-contig. The event that the super-
contig obtained starting from the left contig finally matches the right one, represents an
evidence that we have reconstructed the desired sequence. Clearly, the level of confidence
is a function of the number of super-contigs for each putative insertion (see also Table 3.9).
Moreover, as an important byproduct, we have the assembly of the missing sequence.
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Table 3.9: Statistics on assembled insertions: Sangiovese versus PN40024.

Left tips  Right tips  Both tips

Assembled tips 2103 2200 1220
Average tips length (bp) 300 298 311
Average number fo evidences 11.5 10.5 11.4
Assembled insertions - - 111
Minimum insertion length - - 1002
Maximum insertion length - - 6714
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structed tips length. Notice that the average insert of different lengths. The number of contigs on

size is ~ 400 bp and reads length is ~ 100 bp. both tips is the average value between those oc-
curring on left and right tips.

Figure 3.7: Statistics on insertions reconstruction.

In order to check correctness we tested our pipeline on a real dataset, consisting of a
~ 30x coverage of paired reads from the Vitis vinifera variety PN40024 (~ 480 Mbp),
for which the reference genome is known. The reads length is ~ 100 bp and the average
insert size is ~ 400 bp. Using BreakDancer we extracted pairs of coordinates on the
reference corresponding to deletions on the resequenced variety Sangiovese. This way we
simulated insertions in PN40024, with the advantage of being able to check if the sequences
assembled by GapFiller were correct, by simply aligning them against the reference.

As a preliminar validation step, for each sequence S identifying a putative insertion
we computed the maximal tails of S covered by the trusted contigs produced in the first
phase, i.e., we consider only the contigs consisting of paired reads whose gap has been
successfully filled. In particular, we identified ~ 1200 simulated insertions for which we
were able to correctly assemble at least 150bp on both tails (see also Figure 3.7). The
average number of evidences (i.e., the minimum number of contigs on both left and right
insertion borders) and the average reconstructed insertion tips are reported in Table 3.9.

The second phase is more difficult as we attempt to reconstruct repetitive regions.
For a few pairs of left and right contigs we were able to entirely reconstruct the inserted
sequence, with respect to the reference genome PN40024.

Pairs of contigs are extracted from those for which both tails are assembled. We
obtained that the gap between left and right tips is completely filled in 111 cases. The
correctness of the assemblies has been proved by aligning the super-contigs against the
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reference, requiring the percentage of identity to be at least 98%.

3.6 Summary and conclusions

GapFiller is a local de novo assembly tool for paired reads libraries. It employs a hash
table to store the reads and implements a refined seed-and-extend algorithm for inserts
assembly. The employed algorithm, thanks to the refined heuristic implemented in the
extension phase for consensus computation, allow to correctly reconstruct the sequence
lying between the two mates of a paired read. GapFiller does not try and does not aim at
assembling a whole genome but, instead, it aims at providing as output a set of insert-size
contigs certified correct.

The above considerations are supported by experiments on simulated data. In fact,
results show that the false positives rate is nearly negligible and that the inserts built
produce a uniform genome coverage. These facts mean that GapFiller output correct
sequences and that the heuristics employed allow to globally reconstructs also repeated
sequences.

GapPFiller can realize a preprocessing step, as the contigs produced can be used as input
for an assembler for long reads; as an opposite strategy, it can also be used to partially
assemble structural variations within an NGS resequencing project. Moreover, it can be
employed to join the contigs produced by a de novo assembler (i.e., perform gap filling
after the scaffolding phase).

The promising outcomes of the studies exploited in this chapter open the possibility
to use our method in diverse contexts requiring accurate biological sequence analysis.
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Layout computation for local
assembly

In Chapter 3 a local assembly tool was presented and some applications of this instrument
were proposed. For non-trivial applications, however, the availability of the layout of con-
tigs, that is, the complete information on the reads used for assembly, could be extremely
important.

Consider, for example, the benefits of having additional information on how contigs
have been built in a genome assembly project that uses as input the inserts produced by a
preprocessing step (see Section 3.5.1). This would translate into an increase in precision,
with respect to a “blind” procedure that uses pre-assembled sequences along the same
lines of a shotgun assembly method.

A completely different field of application, which requires the availability of reads
position within assembled contigs to allow further analyses, is that of RNA-Seq insert
assembly. In this context, having an instrument for correct reads positioning is impor-
tant for gene expression estimation purposes, which require prior alignment against the
reference genome. The general problem of RNA-Seq reads mapping will be described in
Section 5.2, whereas Chapter 6 will be focalized on a new approach to this task that uses
insert information.

The above applications both enbody much importance in the field of biological sequence
analysis and, thus, need robust computational methods for their tackling. In this chapter
we focalize on efficient implementation and storage of contig layout in the context of
GapkFiller, but analogous ideas could be used for any local assembly tool.

4.1 Layout information and the problem of redundancy

An assembly tool like GapFiller is local in two aspects. First, it does not aim to assemble
very long stretches of DNA (i.e., chromosomes), but instead to build slightly longer se-
quences with respect to input reads. Second, GapFiller does not choose any location for
the processed reads within a specified assembled sequence, resulting in the possibility of
finding the same read, and, in general, the same set of reads, within many contigs. The
latter consideration points out the high degree of redundancy of information concerned
with layout representation.

The layout L,.(C) of a contig C'is a set of 4-uples of the form r = (id, start, len, strand),
where id € Z is the (univocal) read identifier, start € Z is the position of the read within
the contig, len € ZT is the read length, and strand € {+,—} is the read strand with
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respect to the contig. If a sorting of the 4-uples is set, field start can be equivalently
replaced by the distance of the read from the one previously used in the contig, which will
be referred to as dist.

The problem of storing layout information for de novo genome assembly has been
treated yet in the context of algorithms based on the Overlap-Layout-Consensus paradigm
(see Section 2.3.1). In this scenario, layout information is at the center of the assembly al-
gorithm, in which paths on the overlap graph (or string graph), representing the assembled
sequences, are built from the reads. Such paths can be directly translated into layout using
information embedded in the graph structure. Because all-against-all overlaps among the
reads are computed before the solution can be built, the amount of memory required for
assembly tools based on the OLC paradigm is typically very huge (i.e., up to quadratic in
the dataset size).

In the context of local assembly, the technique used to join reads together can be of any
type (in our case, we follow a greedy approach with GapFiller), and layout information
can be provided at a later stage. This means that some fake overlaps are thrown away
before the layout is computed, thanks to the assembly phase. However, this little reduction
cannot compensate for the amount of data to be stored globally. In fact, each contig is
assembled independently from the other ones and, thus, contains repeated information
that is impossible to quantify. The global size of layout information depends on read
distribution, exact insert size, and percentage of reconstructed inserts, quantities that are
unknown until all contigs have been assembled.

The consequences of the above considerations are as follows: on the one hand, the huge
amount of overlaps to be stored by an OLC-based assembly tool may be upper limited,
but cannot be reduced much (up to transitive reduction); on the other hand, the memory
required by a local assembly tool for the storage of contig layout information can be
unexpectedly high, but, as its amount is basically due to redundancy in the representation,
it can be substantially reduced.

In the following we describe a method for representing in a compact way the layout of
each contig produced by a local assembly tool, tacking advantage of high redundancy of
layout information, provided that it is represented in a convenient form.

4.2 A greedy method for condensed layout computation

With the aim of minimizing resources usage, being able to represent the layout in a
condensed way concerning the number of its elements is a fundamental issue. If the layout
of each contig is retrieved independently from the other ones, there is no way to reduce the
size of layout information under a limit posed by the minimum number of bytes needed
to store a single element (i.e., the number of reads times the size of an element).

The idea is to use a global list containing each pair (id, strand) only once. The layout
L,(C) of a single contig C' will then be computed by accessing sublists of the global one.
Clearly, this solution would be advantageous only if contig layouts share long chains.

Such an approach is not aimed at finding the best possible solution, that is, the minimal
layout representation. Notice that the minimization of memory and disk requirement is
of interest here, hence a method that computes the global layout list once all contigs
layouts are available may be unfeasible. In fact, the purpose is to compute the global list
on-the-fly while contigs are assembled.
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In the following we describe a procedure that computes a loss-less condensed layout
for each contig that is minimal in the hypothesis of using information on a single contig
(i.e., that currently being assembled) at-a-time.

4.2.1 General view of the algorithm

Our approach consists in letting contigs layout depend on other contigs’, with the aim of
identifying maximal common parts shared by several layouts. We make use of a structure
Layout_list that contains all reads used to assemble a contig, and of a condensed layout
structure L;(C) that contains pointers to elements in Layout_list, so that the original
layout L, (C') can be easily accessed by scanning precise portions of the list.

In the following we will assume each layout L,(C) to be sorted in lexicographic order
with respect to the triple (start, strand,id) (we suppose + precedes — in the ordering).
Because a read is univocally identified by its ¢d, and because the same read would not be
re-used in C' at the same position and with the same strand, the elements of L,(C') are
all pairwise distinct with respect to the ordering defined above. The importance of this
fact is essential to reach high condensation of the layout, a point that will be examined in
detail throughout this chapter.

Both the sorting of L,(C) and the redundancy of the data (i.e. high coverages, proper
of NGS experiments) are crucial to effectively shrink the size of L;(C).

The structure of Layout_list will depend on the order in which contigs are assembled,
and is built by inserting each contig layout L, (C') properly, following an iterative procedure
that simultaneously guarantees the requests below:

(i) irredundancy of representation;

(ii) conservation of contig information;
(iii) efficiency in original layout retrieval;
(iv) minimality of contigs representation.

Request (i) is met through the list representation described above.

Point (ii) refers to the fact that bifurcations in the assembly (e.g., contigs sharing the
prefix but not the suffix) are maintained; in other words, we do not make any choice but, in
contrast, report exactly information provided by contigs as they were stored independently.
The approach described here that takes advantage of a global list only affects the layout
representation, not its structure.

Request of point (iii) is met with a simple modification in L;(C') that, providing direct
access to Layout_list, allows to retrieve L,(C) with a number of operations that is linear
in the number of reads of the layout.

Point (iv) is addressed by representing the layout of a contig in a minimal number of
pieces, that is, those needed to handle bifurcation events or when a new chain of elements
of L,(C) is added to Layout_list.

The procedure to build Layout_list on-line assures also a minimal consumption of
RAM memory; indeed, the additional memory requirement at each list update step is due
to the information stored for a single contig, which is nearly negligible compared to the
data structure employed.
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4.2.2 Overview of GapFiller data structure and some considerations on
layout representation

Let us consider the data structure used by GapFiller to store the reads in the hash table
(see Figure 3.3).

Array readsMulti contains information on the reads. More precisely, readsMulti[i]
contains the sequence of the i-th read in the dataset and other information on the read
(i.e., read length, first or second read in the pair, read used as seed).

Array HASHwvalues contains pairs of the form (4,s) where ¢ is the position of the
read in the array readsMulti and s is the strand. Each element of HASHuvalues (i.e.,
a “stranded” read sequence) is associated a fingerprint, and elements with the same fin-
gerprint are grouped in contiguous windows within the array. The number of elements
with fingerprint < f is reported in HASH counter|f]. Hence, pairs with fingerprint f are
found in HAS Hvalues between positions HASH counter|f —1] and HASH counter|f]—1
(array indexes are 0-based).

In order to store the layout in a compact way, elements of HASHwvalues can be used,
because complete information on the reads can be easily retrieved from readsMulti. In
fact, for each read r used to assemble C, it suffices to store two pieces of information:
an index i in HASHwvalues and a distance d. Index ¢ allows to retrieve id, length, and
strand of the read (with respect to C'), whereas d represents the distance of r from the
read previously used in C (d is set to 0 if r is the first read). Hence, using pairs of the form
(i,d), instead of 4-uples of the form (id, dist,len, strand), for each element of the layout,
allows to store all needed information. The ordering of the elements in a single contig
layout is determined by the extension phase of GapFiller algorithm and corresponds to
the lexicographic ordering described in Section 4.1.

4.2.3 Data structures

The rules for the retrieval of contigs layout information from the dynamic list are depicted
in Figure 4.1. We use two structures to store global information on the layout:

1. Layout_list is a list in which each element contains a pair (i, dist), where i is the
position in HASHvalues and dist is the distance (in base pairs) from previous
element in Layout_list;

2. Pointer is an array of size 2|R|, where the element at position ¢ is a pointer to the
element of Layout_list containing ¢ in the first component.

Array Pointer is needed for direct access to the elements of Layout_list containing a given
index. Elements in Pointer are in 1-to-1 correspondence with elements in HAS Hvalues.

The distance between two consecutive elements in Layout_list represents their distance
(possibly infinite) in the layout of some contigs. In particular, given two indexes i1 and iy
in HAS Hwvalues, there exist two consecutive elements containing ¢ and iy in Layout_list
if the following conditions hold:

(a) both ¢; and iy are used in some contigs (i.e., reads that are not used in any contig
are not added to Layout_list);

(b) the distance dist between i; and i is finite if and only if there exists a contig C' such
that 47 is followed by io at distance dist.
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Figure 4.1: The dinamic data structure employed to efficiently store the layout of GapFiller contigs.
The structure Layout_list is built sequentially every time a new contig is assembled (and its layout is
retrieved). After the list is possibly updated with contig information, a new structure L;(C) is built,
storing all information contained in L,(C'). More precisely, an array of pairs of pointers to Layout_list is
built, so that changes in the list do not affect pointers validity. Modifications are performed in such a way
that sublists pointed by L;(C) in some previous steps are not destroyed.

The condensed layout of a contig C, i.e., L;(C), stores local information on the layout
of C in terms of sublists in Layout_list. More precisely, each element of Contig_sublists
is a triple containing two pointers to Layout_list, pointing to the starting and ending
elements of a sublists, and an integer, representing the distance from previous sublist.

Condition (b) guarantees the minimality of the representation. In fact, requiring in-
stead all contigs to satisfy (b) can cause an increase of the size of L;(C). Setting to +oo
each distance that is not supported by any contig containing i1 and i9, or either one of
them, requires to store information on the distance between i; and 72 in a new element
of L;(C), otherwise it would be lost. This is not necessary if the distance provided by the
first contig containing both i; and i is maintained within Layout_list. In other words,
by minimizing the number of elements (i, dist) such that dist = +o0, the size of the repre-
sentation of each contig layout is also minimized (modulo the order in which each contig
is processed in the construction of Layout_list).

Layout_list is built iteratively by considering each contig at-a-time. The useful feature
of using a list is that a condensed representation of the layout of a contig C' that makes
use of Layout_list can be computed on-the-fly and can be retrieved at the end of the
computation of all contigs. A branching occurring in a contig C’ with respect to a contig
C that has been processed previously may introduce changes in Layout_list, but the
sublists pointed by the condensed layout of C' are not modified, hence L,(C) can still be
retrieved from L;(C).

In the following we will describe an iterative algorithm that minimizes the size of the
condensed layout of each contig, in the hypothesis that contigs are processed in the same
order in which they are assembled. This approach does not require to store all contigs in
main memory and we expect to see an increase in the size of the condensed layout as the
number of assembled contigs grows.
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4.3 An iterative algorithm for computing contig layout

In this section we describe the procedure that, starting with an empty global list, updates
it iteratively by adding contig layout information, using one contig at-a-time. Before going
into the details of the algorithm for the computation of the global list and the condensed
contig representation, we introduce some notation.

4.3.1 Definitions and notations

The algorithm for the computation of condensed layout takes as input the complete infor-
mation on the reads used to assemble C, provided with orientation and pairwise distance.
As mentioned above, an index in HASHwvalues is sufficient to retrieve ID and strand of
a read. Let us denote with 2|R| the size of HASHwvalues (i.e., twice the number of reads
in the dataset). The layout of C represented by reads, which is referred to as L,(C), will
be denoted with the following

((i1,d1), .., (15, dg), -y (Bmsdim)) 45 € {1,...,2|R|} j=1,...,m, (4.3.1)

where 7, are positions in HASHwvalues, di = 0, and d; is the distance between the read
indexed by 7;_1 and the read indexed by i;, for every j = 2,...,m.

Elements of Layout_list are pairs (i, dist) as well. Elements of Layout_list are accessed
through pointers, hence the structure Pointer is needed in the implementation. In partic-
ular, Pointer[i] provides direct access the element of Layout_list that contains an index
. In this formalization, however, we do not make use of Pointer, which is only needed
in the Layout_list construction phase. In fact, we will show that, once the condensed
layout L;(C) is available, it is possible to retrieve L,(C') using information from L;(C)
and Layout_list with a number of operations that is linear in the size of L,(C). We will
make use of the following notation for Layout_list:

((i1,81), ., (igs Ok, -, (i1,0)) i€ {l,...,|R]} k=1,...,L, (4.3.2)

where dj, € ZT U {+00}.

We define sublist to be a contiguous subsequence S := ((igy,0k,),-- -, (ik,, Ok, )) Of
Layout_list such that §; # +oo for all elements of S except for the first one. S is also
mazimal if it cannot be further extended towards either left or right directions.

The condensed layout of C, denoted by L;(C), is represented in terms of sublists as

<(p17p/17D1)7"'7(phap/haDh)7'"7(pTap'/r-7DT)> h:17"'7r7 (433)

where py,, p), are pointers to elements of Layout_list.

The meaning of the above notation is as follows. The sublist delimited by p;, and
p), constitutes a chain in L,(C'), for each h. L,(C') can be retrieved by scanning the r
entries of L;(C), which globally contain exactly the m elements of L,(C'). The idea is
that information on i; is all contained in Layout_list, whereas distances between elements
belonging to different sublists of Layout_list are retrieved from L;(C'). More precisely, we
(a) guarantee that elements internal to sublists are equal to those of L,.(C), and (b) store
the distance between elements of L,(C') belonging to different sublists (i.e., the last one
of sublist h and the first one of sublist h 4+ 1) within an additional field (i.e., Dj11).
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In particular, a given element (i}, d;) € L,(C) can be determined iteratively by previous
one in L,(C) using the recurrence reported in (4.3.4), where pair (i(p),d(p)) denotes the
element of Layout_list pointed by p:

(11,d1) = (i(p1),0) (4.3.4a)
oogy = S+ )0+ 1)) YhpeFE, _ .
s &) {(i(ph+1),Dh+1) 3h: pp = pl, =1 =ilpe), =2 om (4:34D)

In (4.3.4b) we made use of pointer arithmetic, that is, py + 1 points to the element in
Layout_list that immediately follows the element pointed by pi. The above equations
show that, given L;(C) and Layout_list, the original layout L,(C') is computed in ©(m).

4.3.2 On-the-fly procedure for global list update and condensed layout
computation

In this section the procedure to build Layout_list starting from a set of contigs is described.
In the following we will assume that Layout_list is the partial global list computed until
step n and that C is the contig assembled at step n + 1, whose layout L,(C) is given by
(4.3.1). The output of the algorithm will be (i) the Layout_list at step n + 1, updated
with layout information provided by L,(C), and (ii) the condensed representation of the
layout, in terms of sublists of Layout_list, that is, L;(C).

The general idea of the algorithm is to either integrate missing information (i.e., reads
that have not been inserted in Layout_list yet) or modify Layout_list structure in order to
maintain the number of generated maximal sublists as lower as possible. Condensed layout
L;(C) can contain sublists that are not maximal, but the modifications in Layout_list due
to the integration of L,(C) are such that the increase in the number of maximal sublists
can be only due to insertion of new reads. This means that, once they are assigned,
distances among elements of Layout_list cannot be modified, unless they are equal to
+00. As a by-product, the size of the condensed layout already computed does not change
when new contigs are introduced.

In the algorithm, every time a new layout L, (C') is considered, we identify two (possibly
empty) chains C; and Cy within L, (C), either satisfying one of the following two properties,
respectively: Pi, stating that no elements of the chain belong to Layout_list, and Po,
stating that the chain corresponds to a sublist of Layout_list.

Notice that we can restrict ourselves to the case in which C; and C, are maximal with
respect to either P; or P, properties, respectively, meaning that they cannot be further
extended in L,(C) to longer chains without violating the property. Hence, there are three
distinct cases:

Case 1: any element of C,; do not belong to Layout_list, whereas those of Cs do;
Case 2: all elements of C,; belong to Layout_list, whereas those of C do not;

Case 3: both elements of Cy and C; belong to Layout_list, but the corresponding sublists
are not consecutive to each other.

In order to identify C; and C;, use two pairs of pointers, (pq,p;) and (ps,pl), repre-
senting start and end, respectively, of sublists in Layout_list. We suppose that elements
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of L,(C) still missing in Layout_list are previously stored in a temporary list with the
same structure, so p, and p, are well-defined, and we assume 6(p,) = +00 or 6(ps) = +00,
respectively. We will also denote with j(g) and j(s) the positions in L,(C) in which i(p,)
and i(ps) are found, respectively (notice that j(¢) and j(s) can be obtained in an iterative
manner, similarly to (4.3.4), hence we can assume that they can be accessed in constant
time, because they will be used only after a scan of L,(C) has been performed).

At the beginning of the algorithm, the Layout_list computed at step n is available
and the layout L,(C) of the (n + 1)-th contig C' is given in input. In the following we
describe the update of Layout_list and the construction of the condensed layout L;(C') at
the generic iteration, within step n + 1, identified by maximal chains C; and C; of L, (C).

Case 1: forward insertion

With the aim of minimizing the number of sublists created, it would be desirable to insert
Cs immediately before Cy in Layout_list. This is possible if and only if p, points to the
first element of a maximal sublist, that is, d(ps) = +oo. In such a situation, Cy is inserted
before Cs and §(ps) is set to dj(s). The triple (pg, ps, dj(q)) is inserted in Ly(C).

If, instead, d(ps) < +oo, then a putative branching is found (e.g., different sequences
sharing the suffix). In such a case, Cj is inserted after the last element of Layout_list and
two triples are inserted in Li(C): (pg, Pl dj(q)) and (ps, v, dj(s))-

Case 2: backwards insertion

This case is analogous to previous one, with the difference that here we attempt to insert
Cs right after Cy. In order to do that, either p’q points to the last element of the list, or
py + 1 is such that §(p; + 1) = +oco. In this case, the triple (pg,pj,dj()) is inserted in
Li(C).

The case in which (5(pr + 1) # +o0o causes Cs to be inserted at the end of Layout_list.
Hence, the triples (pg, ), dj(q)) and (ps, ps, dj(s)) are added to Li(C).

Case 3: sublists relocation

In this case both C; and Cy are present in Layout_list as sublists, but they are not
consecutive to each other. The idea here is that C' may contain evidences for Cy and Cj
to be joined and, as a consequence, for the number of maximal sublists of Layout_lists to
be decreased. Indeed, ps points to the beginning of a maximal sublist and joining Cj; and
Cs will cause d(ps) to be set to the distance between elements in L, (C').

Following the rule telling that we can move sublists only if they do not break contiguous
pieces of layout, we check the value of (p,) and §(ps), and, in case neither p;, nor p point
to the last element of Layout list, we also check the value of (p;, + 1) and §(p} + 1).

More precisely, Cs can be placed right after Cj only if the following three conditions
hold:

(a) either pj, points to the last element of Layout list or §(py, + 1) = 400;
(b) 6(ps) = +o0;

(c) either p) points to the last element of Layout_list or §(p}, + 1) = +o0.
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Similarly, C, can be placed right before Cs only if (a), (b’), and (c) conditions hold, where
(b)) 0(pq) = +o0.

If either one of previous sets of conditions are met, then §(ps) is set to dj(s) and the triple
(Pg, Py dj(q)) is added to L;(C). Otherwise, Layout_list remains unchanged and the two
triples (pg, Py, dj(g)) and (ps, ps, d;(s)) are both added to L;(C).

Contig C' is scanned until p/, points to the last element of Layout_list. At this point,
L;(C) constitutes a succint representation of the layout of C. Indeed, iterating trough the
elements of Layout_list delimited by pointers in L;(C) allows to retrieve full information
contained in L, (C), as described in Section 4.3.1. Notice that every time a break is gener-
ated (cases 1 and 2), the distance of the element following the breakpoint is not changed,
hence the layout of a contig containing the sublist covering the breakpoint remains valid.
On the other hand, the layout of a contig that generates the break is available too, because
information on the distance between the two elements around the breakpoint is stored in

Li(C).

The overall procedure for the computation of Layout_list requires a linear scan of all
contigs. If M is the sum of the sizes of L,(C), with C varying in the set of assembled
contigs, then the procedure described above takes time ©(M). Indeed, the operations
performed on elements of Layout_list at each iteration (i.e., either case 1, 2, or 3) are in
constant number, thus they do not increase the computational complexity.

4.4 Resources requirements

In this section we analyse the resources usage of the algorithm described in previous
section. Moreover, when propose a method for efficiently store the layout information for
each contig in main mamory, in order to be used for further applications, in such a way
that the hash table is not needed.

The code was written in C++ as a part of GapFiller module. In the following we will
assume that the software is run on a 32-bit machine.

4.4.1 RAM memory usage for layout data structure

The data structure used for the implementation of the layout is composed of Layout_list
and Pointer. The memory required to store contig layout is negligible, because at any
stage of the algorithm, at most one contig is processed and stored.

Each entry of Layout_list contains two fields: a position in HASHwvalues and an
integer representing the distance from previous element. Value 400 is represented with
a value larger than each “finite” distance. Elements of Pointer instead, are pointers to
elements of Layout_list.

The layout produced by GapFiller is useful for further applications and should be
stored in such a way that it can be easily retrieved without re-creating the data structure,
hence, it should not depend on HAS Hvalues indexes, nor on pointers to Layout_list. For
this reason, we make use of a new structure Layout_vector containing the same elements of
Layout_list in the same order, but represented as 4-uples of the form (id, dist, len, strand)
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instead of pairs (id, dist). In this way, sublists pointed by elements of L;(C) can be directly
accessed and the knowledge of the hash table is not needed. Conversion from Layout_list to
Layout_vector and from pairs to 4-uples is done in linear time with the size of Layout_list
and the sum of the sizes of L;(C), for each contig C, thanks to HASHvalues and to an
additional array in the data structure for Layout_vector.

typedef struct {
uint32_t index;
uintl6_t dist;
} list_element;

typedef list <list_element>::iterator list_pointer;

class Layout_list {
list <list_element> list;
vector <list_pointer> pointer;

};

typedef struct {
readOriented index;
uintl6_t dist;
uint16_t length;

} read_layout_list;

class Layout_vector {

vector <read_layout_list> layout_vector;
vector <uint32_t> positions_in_list;
Layout_list * layout_list;

};

The data structures for the layout computation are implemented with class Layout_list

and class Layout_vector. After Layout_list is computed, its content is transferred to
Layout_vector in order to allow the representation of L;(C) as pairs of positions in the ar-
ray. Elements of Layout_vector are also converted into a t-uple that does not depend on the
hash table. The data structure Layout_vector is implemented with class Layout_vector.

Within class Layout_list, list and pointer contain up to 2|R| elements, where
R is the set of input reads (indeed, elements of 1ist represent pairs (id, strand)). Struc-
ture list_element occupies 8 bytes in memory (due to padding after dist), whereas
list_pointer is stored in 4 bytes. Hence, the overall RAM memory required by class
Layout_list is approximately (8 +4) - 2|R| = 24|R| bytes.

Concerning class Layout_vector, positions_in_list has size 2|R| and its i-th el-
ement is the position in Layout_list in which the i-th element of HASHwvalues is found.
Apart from the space required by pointers, the overall memory required by Layout_vector
is (844)-2|R| bytes, where elements of layout_vector contribute for 8 bytes each, whereas
a single element of positions_in_list is stored in 4 bytes. Hence, the RAM memory
required by Layout_list and Layout_vector is approximately the same. Because elements
of Layout_list are iteratively erased while Layout_vector is built, the overall memory
required by the procedure is still ~ 24|R| bytes.
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4.4.2 Compact layout storage with parametric type size

The overall information on the layout of each contig is available from Layout_vector and
L;(C). We denote with m the number of elements of Layout_vector, with m < 2|R|, each
elements being of the form (id, dist, len, strand). Information to be stored for L;(C') con-
sists of (i) contig ID, (ii) number of elements, (iii) triples (start, end, strand) representing
sublists. L;(C) contains r elements, with r < |R].

In order to efficiently store Layout_vector and L;(C) structures, we use two ideas: (1)
print unformatted output in order to minimize bits padding, and (2) use only the strictly
necessary number of bits to store each piece of information. All entities are processed
before output is printed, and maximal values for data sizes are known. In the following
we will denote with |¢| the maximal number of bits needed to store any value of q.

The minimum amount of bits needed to store Layout_vector is m(|id|+|dist|+|len|+1).
Similarly, L;(C) needs at least r(|start|+|end|+ |dist|) bits to be stored. A minimal waste
of resources is guaranteed using unformatted data structures, that is, employing the bits
actually needed for each field and using the ones that are possibly left to store further
information. Based on this idea, we define an ad hoc succint output format.

In general, a data structure S can be stored in an unformatted way into an array v of
b bytes. Each element of v is a block that cannot be broken into smaller pieces, that is,
a waste of up to 80 — 1 bits can occur in the form of padding at the end. Thus, the total
amount of bytes needed to store S is given by b[|S|/8b].

For simplicity, we choose b as the minimal number of bytes needed to store the largest
element among id, dist, len, r (notice that contig ID is always smaller than the maximal
value for id). In realistic scenarios, we never exceed 32 bits, hence we set b = 4.

Consider an NGS experiment that outputs a set R of length 100. In this case, we have
lid| = [logy |R|] and |dist| < |length| = 7, and the size of Layout_vector is at most |R/|.
Hence, the disk space required by Layout_vector is approximately 4[|R|([logy |R|+15)/32]
bytes.

4.5 Summary and conclusions

In this chapter the problem of efficient storage and retrieval of assembly layout informa-
tion is analyzed. In particular, we focused on local assembly, where layout information is
not crucial for overlap computation, nevertheless it can be important for further applica-
tions in which local assembly is used as a preprocessing. Our approach would be worth
applying in the hypothesis of high redundancy of the data: in such a context, it is possible
to identify quite long conserved chains in constant space. High coverages of NGS data
seem the ideal environment for the success of our method, that we aim to use with both
genomic and transcriptomic data. RNA-Seq reads, in particular, present the difficulties
of having extremely divergent coverages, due to high variability in gene expression levels.
We accurately estimated the resources requirements and, even though it is not possible to
predict in advance the space occupied by our condensed layout representation, we expect
to dramatically decrease disk space requirements.

GapFiller is provided with a light data structure to store all the reads, a fast over-
lap search method employed with a well-suited hash function, and, finally, an efficient
algorithm to store layout information in a condensed way. Our conclusion is that Gap-
Filler, being able to output correct sequences, constitutes a valuable add-on in a number
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of genomic and transcriptomic studies; indeed, its efficiency and low memory require-
ments, substantially lower with respect to traditional de novo assembly algorithms, make
it practically usable as a preprocessing step.
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RNA-Seq data analysis

The understanding of the transcriptome is of utmost importance for a full comprehen-
sion of cells metabolism. RNA-Seq technologies allow to tackle all issues related to the
comprehension of the transcriptome: de novo or reference-based assembly, novel isoforms
annotation, and transcripts quantification. Despite the intrinsic biases related to the mul-
tiple steps required by libraries preparation for sequencing, RNA-Seq technologies carry
many advantages for transcriptomics studies. For this reason they have been established
as the standard method for massive-scale analyses.

The main problems related to the comprehension of gene expression are: finding genes
loci, identifying alternative transcripts, and estimating transcripts abundances. The avail-
ability of both a reference genome and, possibly, a partial annotation provide important
knowledge that, together with RNA-Seq data, allow to tackle the above mentioned prob-
lems with a degree of precision (i.e., single-base resolution) that was impossible at the
time microarray technologies were the main source of information for these types of study.
RNA-Seq allows various types of analysis even when the annotation is completely missing,
as EST sequencing, but at a fraction of cost and with higher throughput. In the first
section of this chapter we discuss how the intrinsic limitations of RNA-Seq technologies,
especially on reads length, are usually partially overcome providing suitable coverage and
paired reads libraries.

The main purpose of this chapter is to give an overview of methods and tools for reads
alignment and splicing junctions detection, transcriptome assembly, in presence of either a
reference genome and/or an existing annotation, and transcripts abundances estimation.

Evaluation of assembly and alignment with RNA-Seq data are complicated tasks and
their standardization is still lacking in literature. Consider that genome assembly, for
which both coverage information and total assembly length are usually known or can be
quite accurately estimated, pose several challenges for evaluation and are still at the center
of significant research efforts.

At the end of this chapter we address validation issues in the context of transcriptomic
analyses, with particular attention at some approaches proposed in literature attempting,
if not to design statistical methods for transcriptome reconstruction evaluation, at least
to compare state-of-the-art tools, either in the context of RNA-Seq reads alignment (and
splicing sites detection as well) or concerning the task of assemblying the transcriptome.
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5.1 Applications of RN A-Seq: genome annotation and tran-
scripts quantification

When RNA-Seq experiments are performed, two main applications are usually envisaged:
annotation and quantification. The genome annotation problem is concerned with under-
standing of genes structure, finding all types of expressed transcripts in a sample, detecting
alternative splicing events, and calling post-transcriptional modifications (e.g. , structural
variants, RNA editing, allele-specific expression, etc.).

Quantification is commonly measured in RPKM units (see also Section 1.2.3) and
represents the amount of molecules produced for each type of transcripts.

Annotating new transcripts and refining an existing annotation are tasks that, before
the advent of the so-called NGS technologies, could be solved with EST sequencing. The
expensiveness of traditional sequencing technologies limited the application of cDNA se-
quencing to transcriptome assembly, whose outcome, due to low throughput proper of
EST sequencing, is not reliable especially for extremely low expressed transcripts. What
made the matter even worse is that some low expressed transcripts may be produced by
alternative splicing of highly expressed genes, making their identification almost impossi-
ble.

Concerning expression levels estimation, the most widely used technique were those
based on microarrays. Such technology is quite cheap but several defects limit their
application. If, on the one hand, microarrays allow to find expression levels of a set of
target genes, the result strongly depends on an existing annotation and the output, in
general, lacks in precision. Indeed, microarray-based technologies suffer from the so-called
non-specific cross-hybridization among genes within the same sample, and also do not
allow to precisely detect transcripts abundances.

RNA-Seq reads alignment allows the identification of exons, the annotation of splicing
sites, and the computation of expression levels. The latter problem is usually addressed
by counting the reads aligned onto gene sequences, normalized by the exons total length
[165]. A major challenge consists in the computation of expression levels of alternative
transcripts, as the reads must be assigned to the right isoform they come from, a task that
is particularly difficult for genes whose alternative transcripts only slightly differ from
one another. For the above reason, capturing almost all the reads coming from a certain
region, possibly with gaps, is of crucial importance.

5.1.1 Design of RNA-Seq experiments

The ability of both correctly detect new isoforms and compute accurate expression levels
not only depends on specific care in the algorithms and tools designed to tackle these
tasks, but also on the steps taken at the library preparation stage. Issues concerning both
the sample or tissue from which RNA is extracted and the type of analyses one wants to
carry out require targeted RNA-Seq library preparation.

Among the problems related to the RNA sample, we mention the high level of ribosomal
RNA content, the level of degradation, and the RNA amount, the latter being a serious
issue for important types of studies (e.g., in cancer). Library preparation must also be
performed to target the specific problems to be studied, for instance, paired reads are
usually required if accurate reads mapping is considered a central step (e.g., for novel
splicing sites detection, which require single-base resolution) and are unavoidable for gene
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fusion events discovery [105]. Moreover, normalized ¢cDNA libraries may help accurate
transcripts reconstruction, whereas may not be suitable for quantification purposes. For
the same reason, duplicate reads removal is recommended for the former task, whereas can
introduce biases in the latter one (duplicate reads can be either an effect of PCR biases
in presence of low GC-content or the product of highly expressed genes).

Also considering RNA-Seq data yield is fundamental. Even though it is not possible
to accurately estimate transcriptome coverage, being it a possible and, in fact, standard,
issue, concerning studies on RNA it is only possible to foresee the transcriptome complexity
by looking at genome length [161]. For instance, trancriptome assembly do not require
deep coverage, at least if the main form of each expressed genes is to be analyzed. Instead,
for the comprehensive discovery of alternative splicing events, including extremely low
expressed transcripts, and for the detection of rare variants, Principal Investigators should
foresee an amount of reads that roughly doubles the dataset size ideal for the former
problem.

Entering into the details of the issues of preparing sequencing libraries for RNA-Seq
experiments is beyond the scope of this thesis. However, knowledge of the practical design
of such experiments enables us to both target the solution to the biological problem with a
know-how of the data we are going to use, and design realistic simulated library that should
allow us to precisely evaluate our results, with an eye towards the actual applicability of
our methods to real RNA-Seq experiments.

5.2 RNA-Seq reads alignment and splicing sites detection

The most widely used approach addressing the analysis of the transcriptome when a
reference genome is available and the annotation is either partial or absent, is to directly
align the cDNA reads against the genome. Tools addressing this task need to map the
reads allowing large gaps. Indeed, splicing junctions can be identified by gaps in the
alignment delimited by donor-acceptor dinucleotide pairs among exons (see also Figure
1.2). Moreover, the end of a transcript can be identified by the presence of a poly-A tail
(i.e., a monomer of As or Ts) within a read.

NGS technologies initially provided very short reads (e.g., 25-36 bp for Illumina Solexa),
hence gapped alignment was nearly impracticable due to ambiguity (i.e., read sub-sequences
coming from consecutive exons may be extremely short). Recent sequencing technologies
improvements allowed production of longer reads (i.e., up to 150 bp for Illumina HiSeq
and up to 300 bp for Illumina MiSeq) and made it possible to perform safer spliced align-
ment. Moreover, if paired reads are provided, additional information on reads location is
available and can aid mapping.

Several tools have been proposed in the last few years addressing the problem of
efficiently mapping RNA-Seq reads against a genome. This task is not trivial because
of the subtle trade-off between alignment sensitivity and junction prediction specificity.
Allowing for errors in the alignment is mandatory in order to cope with errors within RNA-
Seq reads sequences, however, the combination of short query length (i.e., a fragment of
a read in case of split alignment) and approximate mapping could result in the extreme
difficulty of unambiguously locate reads on the reference. For these reasons, new techniques
for RNA-Seq reads mapping have been proposed to specifically and efficiently address
gapped alignment. The available tools can be roughly divided into two classes: exon-
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first and seed-and-extend. The former alignment paradigm often take advantage from an
external tool for ungapped reads alignment, whose speed and precision is crucial for further
alignment steps. Some fast tools for genomic reads alignment are Bowtie [89], BWA [91],
and ERNE [169]).

In Section 5.2.1 and 5.2.2 we put forward a brief overview of software tools for RNA-
Seq reads mapping belonging to the two classes mentioned above, which do not require
an annotation as input (see also [1,40,41]). The vast majority of tools for splice map-
ping report also unspliced reads, a feature that is useful for subsequent expression levels
quantification, other than splicing sites prediction.

5.2.1 Exon-first alignment methods

The exon-first spliced alignment paradigm was the first one proposed to specifically handle
RNA-Seq reads, yet in 2008, with QPALMA [30]. The general idea of the exon-first
algorithm is as follows: (i) reads are aligned against the reference without allowing gaps,
then (ii) contiguous alignments are merged to form clusters on the reference genome,
identifying putative exons, and finally (iii) reads that turn out to be unmapped at step
(i) are employed to connect clusters and to predict splicing sites. Among the tools based
on the exon-first paradigm we cite also Tophat [164], SpliceMap [7], MapSplice [172],
HMNMsplicer [32], SOAPsplice [75], PASSion [181], and TrueSight [98]. Some of them
employ a hybrid approach, that is, they use an exon-first approach for ungapped reads
mapping and align split reads in a seed-and-extend fashion; it is the case of QPALMA,
SpliceMap, MapSplice, HMMsplicer, and TrueSight.

QPALMA implements an alignment technique based on the tool Vmatch [74]. The
first step of unspliced alignment is performed, but before flagging a read contiguously
mappable against the genome as “unspliced”, futher checks are performed. The idea is
that a read may be incorrectly flagged if r spans a splice junction that falls next to one
of the read’s tails. The second step involves spliced alignment of reads that are still
unmapped, or they are found to have been incorrectly mapped contiguously. Vmatch is
employed again to align one half of the read first, and depending on the result each read is
classified as either low-quality or spliced. In the latter case, alignment is done in a Smith-
Waterman-like fashion. A refinement of the traditional algorithm is proposed, namely, the
authors set optimal parameters for the dynamic programming procedure by solving an
optimization problem that maximize parameters value in case of wrong alignments. The
last step consists of splicing junctions refinement. This is done through a Support Vector
Machine (SVM) [119] trained on a database of known splicing junction.

Tophat is a widely used aligner for RNA-Seq reads and is the main module based
on Bowtie. The procedure consists in first aligning the reads without allowing any gap.
Locations of the reads in the genome are then used to create clusters that identify putative
exons locations. The assembly step is performed with a reference-guided assembler (i.e.,
MAQ [93]). Clusters are further extended beyond their ends; at this point, pairs of
consecutive clusters can be either joined or not. In the latter case, k-mers adjacent to
the ends of two consecutive clusters are employed to find splicing junction locations. This
phase is performed employing reads that result to be unmapped by Bowtie and that match
those k-mers.

SpliceMap differs from the standard exon-first method, because it starts by mapping
half-reads against the reference genome instead of the entire read sequences. The authors
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use an external tool for unspliced alignment (e.g., ELAND or SeqMap). The idea that,
if a read spans exactly one splice junction, then at least one of its halves must map con-
tiguously. By setting to 25 the minimum length of a fragment that can be unambiguously
mapped against the genome, the procedure starts by dividing each read into disjoint 25
bp-long fragments (half-reads). Half-reads are aligned independently, “exonic hits” are se-
lected depending on their location in the genome, and possibly (locally) multiply aligned
reads are discarded. Exonic hits are used to feed a seed-and-extend algorithm that expands
each half-read location base-by-base, until a splicing nucleotide is found. The remaining
part of the read that result to be unmapped is then placed at a certain distance from the
seed, using a hash function to efficiently search for matching along the genome. SpliceMap
allows also the employment of paired reads to enhance the specificity of splicing junctions
prediction.

MapSplice employs a similar method with respect to Tophat and SpliceMap, because
alignments are assembled before performing splicing sites prediction. The difference con-
sists in the technique employed for alignment. Contiguous and spliced alignments are
performed simultaneously. Indeed, MapSplice performs a “tag alignment phase” by first
splitting each read in a number of tags and then mapping them against the reference.
The alignment type (i.e., contiguous or split) is determined by the location of tags in the
genome. Differently from SpliceMap, that sometimes considers multiple alignments to be
unsafe, MapSplice allows multiple alignments for each tag and discerns among them using
splicing information. More precisely, in the “splice inference” phase, the best alignments
are found by maximizing both alignment quality and splicing site confidence. Thus, splic-
ing sites prediction is done without assuming any hypothesis on splicing dinucleotides, nor
setting any threshold on introns size.

HMDMsplicer is addressed at finding only spliced alignments. Indeed, it uses Bowtie to
map reads against the reference genome, hence reads successfully aligned are not consid-
ered for the subsequent steps. Unmapped reads are cut in two pieces (called read-halves
by the authors) that are aligned independently. The splicing position is inferred using
a Hidden Markov Model (HMM) [38] trained on a subset of read-halves aligned to the
genome. Each read-half alignment is extended with the remaining part of the read; the
same procedure is done independently on the other read-half referred to the same read.
At this point, read-halves alignment are possibly merged to find the final read mapping.
From spliced alignment a set of junctions is found and each element is assigned a score
based on read alignment.

SOAPsplice employs the Burrows-Wheeler transform [19] to improve on space con-
suption while storing the reference sequence and efficiently search for reads placement.
Two different algorithms are employed, for spliced and unspliced alignment, respectively.
Firstly, SOAPsplice tries to align RNA-Seq reads contiguously. The reported hit is the
best one obtained in terms of number of mismatches or number of indels. Reads that that
cannot be mapped in a single hit are divided in two parts (or more than two, if reads are
longer than 50 bp) and the 5’ tail is aligned first. The algorithm tries to find the longest
read prefix that can be aligned without (large) gaps. Then, the remaining part of a read
is searched, giving suitable criteria for the choice of the best alignment when multiple
hits are reported, in terms of number of mismatches/indels, distance with the mapped
fragment, and splicing dinucleotides (priority is given to the canonical pair GT-AG).

PASSion takes as input only paired reads libraries and is structured in five steps. The
first one consists in aligning reads with SMALT [73]. The second step is the creation of
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the so-called islands, which are maximal contiguous areas on the genome that are covered
by some reads, through the samtools pileup command. Islands are further extended on
both sides to incorporate intron neighbouring sequences. The third step consists in reads
remapping. More precisely, paired reads such that only one mate has been mapped at
first step are aligned on islands through a pattern-grow algorithm. The procedure consists
in finding two alignments for each unmapped mate, one for the left tail and one for the
right tail, respectively, that are extended until the entire read sequence is covered. If
this happens, then a gapped alignment is found. In the fourth step splicing junctions are
filtered, that is, gapped alignments found at previous step are retained only if read depth
is beyond a threshold. In the fifth and last step each splicing junctions is refined so that
its boundaries match a dinucleotide pair (i.e., GT-AG, GC-AG, or AT-AC).

TrueSight uses a different approach that jointly employs read mapping quality and
sequence coding potential to retain only trusted splice junctions. A useful feature of this
tool is that spliced mapping is not limited to a single spanned junction. On the contrary,
the algorithm allows to find multiple junctions spanned by a single read. This feature is also
present in TopHat, MapSplice, and PASSion. TrueSight uses Bowtie for alignment. First,
entire reads are aligned without gaps. They are not re-considered for gapped alignment,
however, they are included in the regression model employed for splicing sites prediction.
Spliced aligment is performed for reads that cannot be mapped contiguously, with a seed-
and-extend technique. Reads are cut into pieces that are aligned against the genome. If
multiple alignments are found for those read pieces, then every possible combination is
considered. For every spliced read, an anchor is selected and the alignment is extended
starting from the anchor and following the path that allows to reach the highest alignment
score.

5.2.2 Seed-and-extend alignment methods

Seed-and-extend alignment tools, differently from those based on the exon-first approach,
employ reads alignment in both unspliced and spliced forms at the same time. Some
aligners based on this idea are MapNext [8], SuperSplat [17], GSNAP [177], SplitSeek [4],
ABMapper [103], STAR [34], CRAC [135], Subread [99], and OLego [176]. Some of them
use a more refined technique, called multi-seed, that employs more than one seed for each
read. Tools based on this idea are described at the end of this section.

The commonly used technique is to identify substrings of a read, called seeds, and to
map them independently against the genome. The alignment is then extended to find
splicing junctions. Multiple alignments are handled in different ways, and the position a
read is associated to is defined either by selecting the best seed or by considering features
that can help in finding the best alignment depending also on the location of other reads.
Depending on the algorithm used, seeds are used to index either the set of reads or the
genome, which are stored in a hash table or in a suffix array.

MapNext is based on the observation that, if a read is aligned with no more than &
mismatches, then by dividing it into k 4+ 1 seeds, at least one of them must be aligned
without errors. Each seed and is stored in a hash table, each seed entry being provided
with the list of reads it comes from and the position within them. The algorithm works as
follows: the text (i.e., the reference genome) is scanned base-by-base on seed-length sliding
windows. Each time a window in the reference is considered, the corresponding sequence
is searched in the hash table. Then, each read containing the current seed is checked in
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order to see if the alignment can be extended beyond the seed sequence. If a read turns
out to be successfully mapped in the reference, it is employed to map other reads in order
to create a cluster. The procedure described above is employed first in the ungapped case
and in a second moment to map reads allowing gaps in the alignment. Splicing sites are
detected by looking both at the annotation, if provided, and at the canonical splicing
dinucleotides (i.e., GT-AG).

SuperSplat indexes the reference genome with variable-length k-mers. More precisely,
for each position in the genome, each k-mer of length ¢ < k < 7 is stored. Hence, there are
1—c+1 k-mers for each position. Reads alignment is performed in the following way. Each
read is searched in the reference by looking at variable-length k-mers both in the left tail
and in the right tail of the read. More precisely, if a read has length m, the “left search”
consists in looking at all k-mers belonging to the (m — ¢)-length prefix, whereas the “right
search” is performed by looking at variable-length k-mers belonging to the (m — ¢)-length
suffix of the read. All k-mers found are checked for intron-consistency: if the distance
between the left block of k-mers and the right one is intron-size-consistent, then the gap
is flagged as a putative read split.

GSNAP is a tool especially designed to allow for the presence of errors in alignments.
In particular, it can handle multiple mismatches, long indels, and gaps due to splicing
junctions. The general idea is to look at approximate mapping as the problem of aligning
a pattern against a set of sequences, each of them differing from the text in terms of
errors that should be tolerated. This allows to treat more easily both sequence variations
and spliced alignments. Furthermore, splicing junctions prediction is performed with a
probabilistic model based on an existing annotation. The mapping is done once short
k-mers (namely, 12 bp long) are computed to index the reference genome.

SplitSeek is aimed at predicting splicing junctions only. The algorithm works by first
identifying, for each input read, two non-overlapping “anchors”. Anchors are aligned
separately against the genome and their mapping is then extended. Each split aligned
read is stored and represents an evidence for a splice junction. Reads for which some
anchors cannot be aligned may be due to the fact that a splice junctions falls within the
unmapped anchor. In this case, putative junctions found at previous step are scanned
to see if the anchor overlaps any of them. Finally, junctions are grouped together and
splicing points are refined. Splicing junctions are distinguished by indels and reported in
different outputs.

STAR is a mapping algorithm that, differently from most methods for splice mapping,
aligns split reads direclty to the reference genome. This means that a preliminary un-
gapped alignment phase, based on either whole reads sequences, as for exon-first aligners,
or seed extracted from the reads, as for seed-and-extend mapping methods, is not needed.
The alignment procedure is based on the so-called Maximal Mappable Prefix (MMP). The
algorithm finds, for each read and for each position in the read, the maximal substring
that exactly matches a substring in the reference. Once an MMP is found, the algorithm
tries to extend it to find an alignment for the whole read. If this is not possible, then the
MMP is used as “anchor” and the alignment is determined by allowing mismatches and
indels. Anchors are selected in order to generate a minimum number of loci that support
the alignment. In this phase, paired read information is employed to select pair-consistent
alignments.
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Multiseed methods

ABMapper uses a suffix array to store all k-mers of the reference sequences. For each
read r, two seeds are selected, the first one (A) at distance k from the beginning of r, the
second one (B) at distance k from the end of r. A and B are aligned against the genome
and then the alignment is extended. In the extension phase, two scenarios can happen:
(i) extensions encounter each other, or (ii) extensions starting from A and B eventually
stop as they cannot be merged to form a contiguous alignment. In the latter case, only
“good” alignments are considered, that is, those covering the entire read sequence. At the
end, spliced alignments are refined around the stop points by looking for the presence of
canonical (GT-AG) and semi-canonical (GC-AG, AT-AC) splicing junctions.

CRAC assumes that the input (i.e., the reference genome and the reads) satisfies two
properties. The first one says that, given a genome G, it is possible to determine a value
for k such that on average the probability of that a sequence of length k is found in G once
is high. The second one says that, because sequencing errors involve a single read whereas
structural variants involve the genomic sequence, reads overlapping in the genome should
differ in terms of sequencing errors, and, in contrast, they should differ in the same way
with respect to the genome but they should be equal to each other in correspondence of
structural variations. The algorithm infers mapping by basically looking at k-mers profile.
Location profile is the frequency of a k-mer in the genome, whereas the support profile is
the frequency of a k-mer in the reads. These two profiles help in determining the “type
of difference” between genome and reads, and hence to defining the correct read location.

Subread propose the seed-and-vote paradigm to efficiently report contiguous and gapped
alignments. The idea is to first divide each read into overlapping and evenly distributed
seeds, called subreads. subreads are aligned separately against the genome and, instead
of considering only the best seed, each subread is considered and its contribution to read
alignment is expressed in term of “votes”. Before performing alignment, the reference
genome is indexed by short k-mers, which are stored in a hash table. For each read, only
specific subreads are considered (i.e., high repetitive ones are discarded) and they are
aligned without mismatches. Then, each aligned subreads votes for some positions in the
genome. A set of subreads voting for the same positions is called consensus set. The read
is aligned against the position having the larger consensus set. The determination of the
best consensus set is dependent on threshold values. In case of spliced reads, multiple
consensus sets can be selected. In particular, a maximum of two positions in the genome
can be selected for each read. Lastly, reads are aligned entirely by extending subreads and
junctions are filtered to eliminate those supported by few reads.

OLego, analogously to MapSplice, uses a multiple seed-and-extend approach. The
alignment algorithm is similar to that implemented in BWA [92]. The approach con-
sists in first aligning reads contiguously. For those resulting to be unaligned, substrings
called seeds are selected. Seeds do not overlap each other and they are evenly distributed
throughout the read. Then, seeds are aligned and particular care is devoted to seeds that
are unmapped but their neighbouring seeds in the read are mapped instead. Such a sit-
uation is a signal of a putative small exon. Splicing junctions are predicted based on a
regression model.
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5.3 Transcriptome assembly and gene expression estimation

Reconstructing the transcriptome means retrieving the complete collection of RN A molecules
produced by a cell, or by a population of cells, in a specific condition. The transcriptome
is constituted by highly fragmented molecules and varies in time and space, differently
from the genome, which is a single molecule, or a set of few long molecules, that remain
more or less the same during cell life (up to mutations). For these reasons, the de novo
transcriptome assembly problem, that is, the task of reconstructing the complete tran-
scriptome of a cell without a reference genome, is a completely different problem with
respect to de novo genome assembly.

The nature of RNA pose several challenges to transcriptome assembly, concerning both
sequence structure (e.g., alternative transcripts) and dataset characteristics (e.g., amount
and distribution of RNA-Seq reads). Classical problems related to the assembly of the
transcriptome are the detection of alternative isoforms and expression level quantification.
The consequence is that, while working with transcriptomic data, no coverage information
is available and it has to be inferred from the data.

A method addressing transcriptome assembly should be able to identify the different
isoforms of the same gene, for organisms in which alternative splicing is allowed. In
practice, instead of selecting the most sensitive path when a bifurcation in the assembly
occurs, the correct output should contain both of them, that is, a transcriptome assembly
tool should be able to assemble alternative transcripts separately and entirely.

Another problem hindering transcriptome assembly is the presence of repeated se-
quences in the form of paralogs, i.e., genes with similar sequences, but, having different
genomic locations, with different sets of transcripts. This scenario is similar to the detec-
tion of repeats in genome assembly, with the further difficulty of not having any coverage
information to disambiguate repeated regions.

Different expression levels and alternative splicing patterns make assembly very com-
plex, as the amount of reads on a specific region can be due to either expression level
or PCR artifacts and overlapping genes can be erroneously clustered together whereas a
correct transcript reconstruction would require them to be assembled separately. When
working with NGS data, one should keep in mind that RNA-Seq process is characterized
by many sources of bias (see Section 1.2.3).

In the last few years, transcriptomic data analyses attracted much attention. The
available tools for transcriptome assembly with RNA-Seq reads seem to leave significant
room for improvements because, in practice, they are not able to solve the problem in a
satisfactory way [148]. Probably due to the well-known difficulty of correctly and com-
pletely assemble a reliable reference genome from NGS reads, or simply because sometimes
the reconstruction of the whole genome is not of primary interest, several tools for de novo
transcriptome assembly started to appear since less than three years ago. Clearly, if nei-
ther a reference genome nor a reference transcriptome are available, the only way to study
RNA is to assemble the transcriptome de novo. In this case no information on coverage
can be used, but normalized RNA-Seq libraries exists in order to ease assembly task. As-
sembling RNA-Seq reads into complete transcripts, however, may aid in addressing the
problem of recognizing overlapping genes. For instance, the situation in which a gene is
completely contained into the intron of another gene cannot be recognized by aligning
reads against the genome directly.

De novo assemblers have been often employed for the reconstruction of the transcrip-
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tome when a reference genome was not available, such as for Saccharomyces pombe [45,182]
and whitefly [45], or to improve the existing annotation, as in the case of Drosophila
melanogaster [182], Camelia sinensis [182], and Aedes aegypti [159]. Reference-guided
methods have been recently proposed as well, finding application especially on the anal-
ysis of the transcriptome and of gene expression for organisms whose genome is already
well-studied (e.g., human [97] and mouse [48,97,165]) and, possibly, a draft annotation is
also available.

Tools for transcriptome assembly, especially those requiring a reference genome, are of-
ten provided with a method for computing the expression levels of the assembled isoforms.
A different task consists in the so-called differential expression. Input for such problem
are two (or more) RNA samples for which finding the subset of genes (or gene isoforms)
which expression level is significantly different between the two samples is of interest. The
above statement means that a statistical method is needed in order to assess that the
difference in expression is actually representing a biological change, taking into accout
various sources of errors, related both to the tool or pipeline employed for transcripts
quantification (e.g., incorrect RNA-Seq reads mapping, erroneous assignment of reads to
their correct isoforms) and to the biases introduced by the cDNA library preparation and
sequencing (e.g., uneven transcripts coverage, overrepresentation of GC-rich regions dur-
ing PCR amplification, sequencing errors, reverse transcription biases). Among methods
for differential expression analysis we cite edgeR [141], DESeq [5], and Cuffdiff [163].

In Section 5.3.1 and 5.3.2 we describe the algorithms commonly adopted and we provide
an overview of some of the available assembly tools for RNA-Seq data.

5.3.1 Reference-guided assembly algorithms

It is important to say that, if transcriptome assembly is done either to obtain a complete
catalog of genes or, instead, to retrieve the complete transcriptome to understand which
genes are expressed and which ones are not, there is still some work to be done after
assembly. First, transcripts should be mapped against a reference in order to detect the
genes they come from. Second, a tool for transcriptome assembly should output both
the sequences and the expression level, for each gene (or isoform). These two tasks are
addressed using accurate mapping methods, so that reads are hopefully assigned to the
correct isoform, and allowing gaps in the alignment to enable (alternative) splicing sites
identification (see [14,164]).

A way to avoid the post-processing phase described above is to perform assembly and
reads mapping at the same time, using a reference genome, when available. In this scenario,
reads extracted from the transcriptome can be aligned against the reference, allowing
large gaps in the alignment; then, the mapping can be used to retrieve the assembly.
Examples of tools based on this strategy are Cufflinks [165], Scripture [49], IsoLasso [97],
and Traph [162]. We must cite ERANGE [118] as well, for the importance of the work
by Mortazavi and colleagues in the field of RNA-Seq data analysis; however the approach
they use, requiring substantial information from an existing annotation, differs from the
one employed by the above mentioned tools. A reference-based annotation-independent
tool for transcriptome reconstruction and expression estimation usually (i) maps the reads
against the genome with an alignment software (usually Tophat [164]), (ii) retrieves exons
location employing information coming from gapped alignment, and then (iii) selects a set
of transcripts for each predicted locus, possibly provided along with the expression level.
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Cufflinks [165] was proposed by Trapnell and colleagues. Crucial for this method is the
concept of fragment: a fragment is a location of a read or an insert (identified by the two
mates of a paired read) within the genome. The first step consists in mapping the reads
against the genome using TopHat, which allows fragments identification. The second step
consists in detecting sets of compatible fragments, each of them ideally covering a single
transcript. Then, redundant fragments are eliminated and a graph is built with those
that are still available. Finally, a minimum set of transcripts is computed by finding a
minimum path cover in the graph. A statistical method, based on maximum likelihood
estimation model, was developed, aimed at inferring transcripts abundancies.

Scripture [49] maps the reads against the genome with TopHat and uses information
from both contiguous and gapped alignments to build a connectivity graph. The nodes of
a connectivity graph are the positions (i.e., bases) in the reference genome, whereas the
edges are the connections between contiguous bases either within the genome sequence
or within a spliced read. In this way, both genomic and transcriptomic information is
represented. The subsequent step consists in weighting all connections, which is done by
computing reads alignment likelihood within windows sliding troughout the genome. The
third step consists in merging the exons found at previous step into transcripts, which are
subsequently refined at the final stage by incorporating paired reads information.

IsoLasso [97] follows the approach used in [49] to find the candidate isoforms, and then
uses a statistical framework to infer which isoforms are expressed and which are not, and
quantifies their expression level too. The difference of the approach by Li and colleagues
with respect to previously described methods consists in the usage of a constrained least
square problem. The model is based on an n X m matrix for each gene, where n is the
number of candidate isoforms and m is the number of exons, and on a vector of n variables
x, each component representing the expression level of the respective isoforms. The opti-
mization problem is defined in such a way that the solution x should meet the following
objectives: (i) the error between the estimated expression levels and the observed coverage
is minimal and (ii) the number of expressed isoforms per gene is also minimal. A problem
with this method in particular, which has important shortcomings on other reference-
guided assembly methods as well, is represented in the bias introduced by uncertain reads
mapping (especially for short sequences) and by uneven transcripts coverage. A method
strongly based on exons coverage may suffer of such events, but least square models can
be customized by either adding constraints (e.g., evidence for connections between exons
provided by gapped reads alignment) and/or properly weighting exons according to the
“degree of confidence” of coverage estimation (e.g., depending either on exon length or on
its location within the gene).

Traph [162] implements an algorithm for finding the min-cost flow on a graph. It
works without any knowledge on the transcriptome and the procedure is divided in two
steps: exons detection and transcripts annotation. The advantage of using a network flow
method lies on the fact that the computation of expression levels is embedded in the effort
for finding expressed transcripts, which are viewed as paths in the graph traversed by some
flow. The determination of the exon graph is done using TopHat, which allows to find the
splicing sites thanks to gapped reads alignment. TopHat is employed also to compute the
average exons coverage. Once exons are found, and their coverage has been computed, a
labelled directed graph G = (V, E, w, v) is built for each gene. Each node in V' corresponds
to an exon and is assigned a weight representing the average exons coverages. Each edge
in F corresponds to the adjacency relation between two exons and is assigned a weight
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equal to the number of reads spanning the junction. A graph built in this way is acyclic
and the computation of a min-cost flow on GG, where the cost is represented by the error
of expression estimation with respect to coverage data, can be computed in polynomial
time. The authors prove that a partition in paths exploiting the flow is also computable
in polynomial time. The paths reported, provided by the units of flow associated to them,
represent the transcripts and their expression level returned in output.

It is fair to say that, even though a reference-guided transcriptome assembly algorithm
can benefit from genomic information, at the same time it may hinder the detection of
either gene fusion events (i.e., exons belonging from different genes that are put together
during transcription) or some alternative splicing pattens such as intron retention (i.e.,
introns that are not removed during the splicing process and thus are still present in
mature RNA, see also Figure 1.4). Again, a de novo approach is the only feasible stategy
to address the transcriptome assembly of organisms for which the reference genome and/or
the annotation are either partial or absent.

5.3.2 De novo assembly algorithms

Heber and colleagues [50] tried to formalize the reference-independent transcriptome as-
sembly problem. They proposed a mathematical model similar to the de Brujin problem
(see Section ), with the difference that the solution is a graph, rather than a path. The
authors work in the hypothesis of EST input data (i.e., transcriptomic reads sequenced
with traditional technologies), but their reasoning applies to RNA-Seq as well. They no-
ticed that algorithms for de novo genome assembly are not suitable for EST datasets:
the reason is that such algorithms perform reads clustering, with the aim of maximizing
output contiguity. Such an approach is not suitable for transcriptome assembly, because
(i) the transcriptome is not a single sequence and (ii) overlapping transcripts should not
be clustered together (in fact, they may constitute an evidence for alternative splicing
patterns). Following the approach of Heber and colleagues, an algorithm for de novo
transcriptome assembly takes as input a de Brujin graph built from EST sequences and
extracts the splicing graph described in Definition 5.3.1.

Definition 5.3.1 (Splicing graph) Let T = {t1,...,t,} be the set of all transcripts for
a gene g and let V; be the set of genomic positions associated to t;, for each i =1,...,n.
The splicing graph of T is the directed graph G = (V,E) such that V = |J;_, Vi and
(v,w) € E if and only if v and w are contiguous genomics positions for some t;.

The idea is that, through the splicing graph, one could retrieve all the splicing patterns
of the set of transcripts. After the graph has been built, the problem of identifying paths
associated to the actually expressed isoforms should be addressed. Hence, the Transcript
Assembly Problem can be defined as follows.

Definition 5.3.2 (Transcript assembly problem) Let ¥ = {A,C,G,U}, R C ¥* be
a finite set of strings extracted from an unknown set T C X*, and G be the splicing graph
associated to T'. Find T.

Given the splicing graph G for a gene g, the transcript assembly problem is solved once
the paths associated to expressed isoforms are detected. The task of obtaining G starting
from the set of reads R, also called Graph Reconstruction Problem, can be addressed
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using a de Brujin graph built with the k-mers occurring in the reads. The solution of this
problem consists in finding a set of paths covering all the edges of the de Brujin graph,
similarly to the Eulerian path approach. In order to produce a set of transcripts consistent
with the data, information from genomic sequence, mRNA, ESTs, and proteins, may be
employed [178]. The solution of the problem will be a minimal set of transcripts that is
consistent with the observations.

Approaches for de novo transcriptome assembly are either inherited from former tech-
niques for genome assembly or built from scratch to tackle the intrinsic different nature
of this problem. Similarly to de novo genome assembly tools, algorithms for 454 reads
are mostly based on the OLC paradigm, whereas RNA-Seq reads produced by Illumina or
SOLiD platforms are commonly assembled with software tools based on de Brujin graphs.

Most of OLC-based assemblers commonly used for transcriptomic data [86] are some
of those that have already been designed for genomic data, such as, MIRA, its new version
miraEST [25], CAP3, and SOAPdenovo. TGICL [132], instead, has been developed ad
hoc for transcriptome assembly. More precisely, TGICL is a local assembler that clusters
reads using a graph in which each node is a sequence and edges represent alignments;
its output is then used to feed an external tool (i.e., CAP3) in order to obtain the final
assembly.

The de Brujin graph approach for transcriptome assembly differs from the classical
algorithm designed for genome assembly. In the latter case, the “ideal” k-mer length is
selected depending on the dataset used, expecially on coverage, and it is usually possible
to set a value for k£ that lead to optimal results. In the context of transcriptome assem-
bly, instead, different values of k allow to reconstruct transcripts at different ranges of
expression levels. More precisely, large values of k allow to specifically assemble highly
expressed transcripts, whereas small values of k£ are more suitable to sensitively capture
lowly expressed transcripts. For these reasons, an optimal strategy, actually adopted by
most assembly tools, is to vary the value of k within the pipeline [182]. Some de Brujin
graph-based assemblers have been developed on the basis of existing tools for de novo
genome assembly, for instance, Oases [150] (i.e., the adaptation of Velvet to handle RNA-
Seq reads) and Trans-ABySS [12] (i.e., the version of ABySS for transcriptomic data).
The implementation of Oases and Trans-ABySS substantially changed with respect to the
genome assembly algorithms they grow out of; in the following, we spend some more words
to describe these approaches.

Oases [150] performs different assemblies for different values of the hash word length £,
and the outputs are finally merged. For each fixed value of k, the first two phases of Velvet
are used: the hash and the graph construction. Then, a draft assembly is built by visiting
the graph without solving ambiguities. At this step a set of short contigs is produced.
Heuristics performed by Velvet to solve ambiguities in the assembly cannot be used in this
context, because uniform read coverage is a required assumption. In Oases the graph is
clustered and trimmed in the following way: if two paths start and end in the same nodes,
and the sequences associated to them are similar to each other, then the two paths are
clustered together to build a single path, taking the highest coverage path as a consensus;
very low covered edges are deleted, as well as those having much lower coverage with
respect to the other edges exiting from the same node. Then, the contigs obtained after
the merging step are connected using both reads and paired reads information. In the latter
case, insert size variation is taken into account. Every connection is associated a weight,
that is higher for direct (read-based) connections and lower for indirect (paired read-
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based) ones. Connections are discarded if the corresponding weight is too low (namely,
lower than the weight assigned to a single read connection). Finally, putative splicing
events are identified, looking at the topology of the graph. Some topologies are easy to be
solved exactly, whereas for complex ones an heuristic algorithm is used. The procedure
described above is repeated for all k-mer values and the transcripts built are stored. All
the transcripts obtained, after redundancy elimination, are used to build a graph with
parameter Ky,erge- The assembly built on this final graph is the set of transcripts outputted
by Oases.

There are also several pipelines that use Velvet as a subroutine, possibly launched
several times with different k-mer values, and employ some heuristics to obtain a more
accurate assembly, with respect to the result obtainable with a single run, with fixed k.
Among these approaches we cite Rnnotator [111] and Multiple-k [159].

Trans-ABySS [12] is the transcriptome assembly version of ABySS. This tool allows
diversification in the assembly algorithm in order to capture different expression levels.
This is done by requiring variable amounts of reads supporting paths in the de Brujin
graph.

A tool that was designed ex novo for the transcriptome assembly problem is Trinity
[45]. The approach followed by Trinity envisages the construction of a de Brujin graph
using a fixed value of k. Being strongly based on k-mer frequencies, Trinity is well-suited
for the reconstruction of highly expressed transcripts. The tool is composed by three
modules: Inchworm, Chrysalis, and Butterfly. Inchworm creates a k-mer dictionary from
the reads. First, it excludes low-frequency and low-complexity (i.e., tandem) k-mers;
second, it selects seed k-mers iteratively, starting from the most frequent ones; third,
every k-mer seed is extended on both 5’ — 3’ and 3’ — 5’ directions. All the k-mers used are
then deleted from the dictionary and the procedure goes on until the dictionary is empty.
Then, Inchworm clusters k-mers as long as there are neither ambiguities, nor available
overlapping k-mers. This is equivalent to finding linear paths on de Brujin graphs built
with k-mers. The output of Inchworm is a set of linear contigs. Chrysalis, starting
from the linear contigs generated by Inchworm, uses k-mers information to group together
overlapping contigs. For every maximal group of overlapping contigs, a de Brujin graph is
built. Then, Chrysalis uses reads information to validate contigs, i.e., a read is assigned
to the contig sharing the highest number of k-mers. Finally, Butterfly compresses the
graph by storing each maximal linear path within a single node, and deletes short paths
(i.e., spurs). The graph obtained is a sequence graph. Every edge is assigned a weight
corresponding to the number of reads supporting it, i.e., the number of reads sharing
the highest number of k-mers with the contig corresponding to the edge. A dynamic
programming-based procedure is then used to identify the paths that are best supported
by the reads, requiring contiguity and using paired reads information. These paths are
the assembled transcripts returned in output.

5.4 Evaluation of methods for RNA-Seq data analysis

When a transcriptome assembly project starts, one of two major objectives is usually
addressed: (i) quantify the expression level of transcripts and (ii) obtain a complete catalog
of all the genes of an organism. Problem (i) is hindered by the presence of paralogous genes
because, even being able to discern among very similar transcripts instead of clustering
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them together, assigning the correct expression level to each of them (see Equation 1.2.2)
is a hard task. Problem (ii) is nowadays unsolved, in the sense that there are very few
organisms for which the set of all genes is completely known. Moreover, all the different
functions of a cell cannot be explained by gene complexity. Alternative splicing is the key
in this scenario, allowing for the production of different transcripts from the same gene
(see also Section 1.1.3). Hence, gene prediction problem is extremely difficult even when
a high-quality reference genome is available.

Several issues have to be taken into account when judging tools for RNA-Seq data
analysis, but literature still lacks of standardized methods for evaluation when the ground
truth is unknown. Some attempts have been made towards transcriptome assembly evalu-
ation [16,148], but they cannot be considered as standardized approaches to this problem.
This point will be discussed in Section 5.4.1

Extensive evaluation of both mapping and assembly tools on simulated data has re-
cently been addressed by RGASP competition [69], and some simulation pipelines have
been recently proposed as well. We review some features of RNA-Seq libraries simulation
in Section 5.4.2 and describe the approaches towards tools comparison in Section 5.4.3.

5.4.1 Draft approaches to transcriptome assembly evaluation

Among the problems related to transcripts assembly and genes identification, a funda-
mental task to be addressed is results validation. Different approaches should be used
instead of standard contiguity measures (e.g., N50, mean contig length, and total contig
length), for the following reasons: (i) the transcriptome is highly fragmented, (ii) alterna-
tive transcripts, or transcripts originated from paralogs, must be kept separated, and (iii)
transcriptome length is unknown and impossible to estimate.

For both genome and transcriptome assembly, an important aspect is sequence correct-
ness. If a reference genome is available, then a partial indication of assembly correctness
can be achieved by aligning the transcripts against the DNA sequence, possibly allowing
large gaps in order to account for introns. The availability of a complete annotation,
i.e., the location of each gene within the genome provided with the set of feasible iso-
forms, allows for the computation of more accurate statistics, although the question of
whether a transcript correctly mapped against the reference transcriptome is actually ex-
pressed in the dataset or not remains open. If neither a reference genome nor a reference
transcriptome are available, assembly evaluation is much more difficult. A possible way to
assess correctness consists in aligning single or paired reads against the assembly. Uniform
read coverage throughout the transcript can be seen as a positive signal towards sequence
accuracy. However, even though paired reads mapping can help evaluating genome assem-
bly, insert-size information may not be particularly informative when trying to unveil the
structure of alternatively spliced genes.

Few attempts, although not representing a standard for evaluation, have been pro-
posed by Brautigam et al. [16] and by Schliesky et al. [148]. The former work is devoted
to assemblers evaluation: the authors simulate reads libraries with 0, 3, and 5 sequencing
errors per reads, respectively, and run several assemblers using the simulated reads as in-
put. However, they computed poor statistics, namely, few contiguity measures (e.g., N50),
the percentage of uncovered transcriptome, and the number of hybrids (that is, incorrectly
reported transcripts). Simulated data were generated from Arabidopsis thaliana, for which
the transcriptome is well-studied and annotated. The aim of the work by Brautigam and
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colleagues was not to design a standard evaluation method, but instead to provide an in-
dication of which assembler was best suited for the assembly of a transcriptome of interest
based on the knowledge of a closely related species.

The work proposed by Schliesky and colleagues, instead, is aimed at assemblies evalu-
ation and represents a fair attempt to both standardize the validation pipeline and provide
a public set of reference-independent evaluation scripts. In this work a database of an-
notated transcriptomes is needed in order to compute the following statistics: (i) number
of unigenes (i.e., contigs) that match the reference, (ii) number of hybrids (misassemblies
and read-through), and (iii) consistency of assembled unigenes with the reads. Also, reads
coverage of assembled transcripts helps to estimate correctness (e.g., uneven read coverage
and regions supported by few reads, may suggest that misassemblies occurred). The merit
of the work by Schliesky and colleagues lies on the fact that they both provide a clear
and public evaluation pipeline and employ real data, resulting in a realistic method for
transcriptome assembly projects evaluation.

5.4.2 Simulation pipelines for RNA-Seq experiments

In order to evaluate the ability of software tools to correctly predict splicing junctions in
real scenarios, including reverse transcription and alternative splicing events, sequencing
errors, polymorphism, and indels, some RNA-Seq simulation pipelines have been devel-
oped. Among available tools we cite flux simulator [53] and BEERS [46].

Flux simulator is mainly devoted to the customization of the RNA-Seq library genera-
tion, including several parameters that allow simulation of template switching or antisense
transcription. It also allows to customize expression levels variation among alternative
isoforms. For these reasons, it can be used to test assembly tools in presence of complex
splicing patterns.

BEERS was developed to specifically address the evaluation of the performances of
spliced reads alignment tools in presence of problematic regifons. Concerning this last
point, to be as much realistic as possible, BEERS generates a synthetic transcriptome
by extracting random genes from public annotation repositories and generates alternative
isoforms by randomly excluding exons. The useful feature of BEERS in terms of alignment
evaluation consists in the careful labelling of “wrong” predictions in terms of indels location
(e.g., monomers of different lengths) and in the effort of levelling differences among tools’
outputs.

The RNA-Seq unified mapper (RUM), developed by the same authors of BEERS, is
a pipeline for RNA-Seq reads alignment based on Bowtie and BLAT. The element of
novelty of RUM, with respect to other alignment methods, lies on the fact that multiple
alignment positions are disambiguated using information from both the transcriptome and
paired reads. BEERS detects splicing junctions by checking for 11 different dinucleotide
pairs, which are called characterized splice signals by the authors.

5.4.3 Comparison of tools for RN A-Seq

Due to the large amount of tools available for RNA-Seq reads assembly and mapping,
the need of a standardized evaluation of aligners performances on real data gave birth to
the RGASP [69] competition, started about one year ago. The target of the competition
was to analyze the capabilities of transcriptome assemblers and spliced aligners with NGS
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reads (i.e., [llumina) sequenced from mammalian transcriptomes (i.e., human and mouse).
The importance of this project lie on the fact that the data employed, both simulated and
real, are publicly available, as well as the evaluation scripts used to compute evaluation
statistics.

Evaluation performed by Steijger and colleagues [158] allowed to rather fairly evaluate
the performances of tools for transcripts reconstruction and quantification with RNA-Seq,
even though the competition was quite unbalanced towards reference-based assembly tools.

Engstrom and colleagues [40] evaluated the results in terms of alignment yield, reads
mapping accuracy, and splicing sites detection precision. The main conclusions of the
study are concerned with the fact that (i) the performances of the same tool do not
sensibly change between simulated and real data, nor with the availability or not of an
annotation, (ii) the false positives rate of splicing sites prediction is quite high for all tools,
and (iii) high mapping accuracy is reachable, but often at the price of low sensitivity
(mainly depending on parameters strictness and/or fixed values for the maximum number
of mismatches and indels length). The above statement suggests that there is still some
room for improvement for spliced mapping tools.

The main problem with exon-first spliced aligners is that they often map reads without
gaps first, and in a second step they perform gapped alignment with reads so far unmapped.
This can lead to an unbalance towards ungapped alignment in spite of gapped one, result-
ing in a possible under-representation of splicing junctions. Concerning seed-and-extend
methods, instead, seed length must be constrained to be greater than a minimum value in
order to guarantee alignment “safety”. This limitation could cause a bias in splicing sites
coverage estimation, or even prevent their detection, especially if they are spanned by low
expressed transcripts.

Very few tools take into account the issues mentioned above, by either using an exist-
ing annotation (e.g., QPALMA), looking at the k-mer profile (e.g., CRAC), or collecting
information on the other reads’ mapping (e.g., Subread). However, transcriptomic infor-
mation is not always available and, moreover, it can prevent novel splicing sites detection.
k-mers or reads mapping profile can only provide global information, that is, can guide a
mapping tool to an output such that exons are uniformly covered. Paired read information
is used by existing tools only to discern among multiple alignments (usually for spliced
reads), but, in contrast, if inserts are available they could provide more precise information
on mapping. In Section 6.1 we will deepen this reasoning with a massive usage of paired
reads, by accurately assemblying inserts before performing RNA-Seq reads alignment. Of
course, this approach requires a careful local assembly algorithm, able to output correct
in-silico sequences.
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RNA-Seq reads alighment and
splicing sites detection

The comprehension of the complex machinery that allows for the production of mature
RNA from a set of expressed genes requires accurate isoforms annotation and expression
levels estimation. The first steps for any downstream analysis lie in both precisely detecting
splicing sites and accurately quantifying expressed transcripts. Hence, the potential of
RNA-Seq technologies is deployed at the alignment stage, and reads mapping constitutes
the basis on which almost all analyses are carried out. For this reason, in the last few
years, several tools especially addressing high-throughput RNA-Seq reads alignment have
been proposed [100].

In this chapter we introduce a new method that specifically addresses accurate junc-
tions prediction and reads mapping sensitivity. The idea is to overcome the limitations
of exon-first and seed-and-extend alignment method, as described in Section 5.4. To the
best of our knowledge, there does not exist a spliced aligner that explicitly addresses the
problem of optimally selecting among ungapped and gapped alignments for the same read.
Exon-first methods are intrinsically incapable to prefer a gapped alignment in spite of a
contiguous one, as most tools usually align reads in two stages, mapping firstly without
gaps and then reconsidering only unaligned reads for spliced alignment. Seed-and-extend
methods are, in fact, most suitable for this problem and may hope to be more sensitive
with splicing junctions prediction.

Our approach is based on the idea that a tool or a pipeline for transcriptomic reads
alignment should meet the following objectives: (i) safely map short reads fragments
around splicing sites, (ii) improve as much as possible the amount of uniquely mapped
reads, and (iii) depend as little as possible on annotation for new splicing events detection.
We attempt to meet these three objectives by firstly assembling inserts using an RNA-Seq
paired read library and subsequently “guiding” reads mapping against the genome, using
the collected information on reconstructed inserts.

6.1 An insert-guided alignment technique

Having a method able to guide alignment using correct and longer in-silico built sequences
is an important issue for addressing correct location of RNA-Seq paired reads on the
refererence genome. To this aim, a whole transcriptome assembly is not needed and, in
fact, this is not even the best solution. The methods usually employed for genome as well
as for transcriptome assembly adopt heuristics that put together sequences in order to
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Figure 6.1: The three-steps pipeline
for RNA-Seq reads alignment.

All inserts from an RNA-Seq paired
reads library are assembled with Gap-
Filler. Using a specific GapFiller op-
tion, the layout is stored for each in-
sert (i.e., ID, position, length, and
strand of each read used for assembly).
Inserts are then aligned with BLAST
against the reference genome and the
best hits are selected. Gapped align-
ments are also refined around the gap
by looking for the presence of splic-
ing dinucleotides. Reads mapping is
retrieved from inserts alignment and
GapFiller layout. In case of multiple
alignment, paired read information is
used to select the best read location.

obtain higher connectivity, often causing a drop in sequence correctness. We, therefore,
propose a method that builds slightly longer—with respect to NGS reads—sequences,
exhibiting a high level of accuracy. Our aim is to improve downstream RNA-Seq reads
mapping, using information coming from the alignment of assembled in-silico sequences
encompassing them.

The idea of firstly assemblying NGS paired reads into longer sequences as a prepro-
cessing step has been shown to be advantageous in various contexts, especially for de
novo assembly purposes [183]. Using a local reads assembly method within an alignment
pipeline is a new idea that may be particularly useful for RNA-Seq input data because of
the large number of gaps introduces, which hinder mapping accuracy.

Our pipeline goes through with the following three-steps: (1) the assembly of paired
reads into insert-contigs, (2) the mapping of the inserts-contigs against the reference
genome, and finally (3) the retrieval of RNA-Seq reads position in the reference by insert-
contigs’ layout and alignment (see also Figure 6.1).

Step (1) is done with GapFiller (see also Chapter 3). GapFiller takes as input a
paired reads library and outputs a set of insert-size contigs. GapFiller output correctness
has been extensively tested and aligning such longer and reliable sequences, instead of
RNA-Seq reads themselves, significantly improves the overall quality of the pipeline. Step
(2) is performed using BLAST and, if multiple hits are found for a single contig, they
might be selected and refined. Hits selection is done with a greedy algorithm aimed at
finding a set of hits covering the highest percentage of the contigs sequence. Then, if
short overlaps occur among selected hits, donor-acceptor dinucleotide pairs are searched
within the reference sequence and the alignment is trimmed accordingly. Step (3) requires
information both from (1) and (2). During step (1), the position of the reads within the
assembled contigs (i.e., the layout) is stored. Hence, for each read, the location within the
contigs is combined to the coordinates of the contigs’ alignment against the genome. This
allows to derive the mapping locations of each read from contigs’ alignment and layout
information.

Our alignment pipeline first assembles inserts, then aligns them against the reference,
and finally goes back to the data to retrieve reads alignments. Hence, our method requires
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both (i) a good quality reference genome and (ii) an RNA-Seq paired reads library. The
reasons why we chose this three-steps computation is the following. On the one hand,
direct RNA-Seq reads alignment against the reference genome may be inaccurate due to
small query length. On the other hand, RNA-Seq data analyses often require to quantify
exons coverages, which cannot be computed directly from sequences produced in-silico.
The assembly technique used by our central module, GapFiller, allows to easily store the
layout of each contig, resulting in the possibility of either (i) keeping only the reads be-
longing to correctly assembled inserts, and, once contigs are aligned against the reference,
(ii) eliminating redundant coverage by retaining only one copy of a read at each alignment
position.

6.1.1 Inserts assembly and layout

GapFiller [123] is a tool designed to close the gap between the two mates of a paired read.
See Section 3.2 for details on the algorithm. GapFiller is conceived to work with Illumina
data and should behave better on reads whose sequence quality is higher on positions
close to 5 read tail (see also Section 3.3.2). However, it can be used to assemble different
reads of different types and lengths. Every contig outputted by GapFiller is classified into
trusted, if the mate of the seed read has been found, non-trusted, otherwise. Only a trusted
contig is a sequence that we consider correct and hence can be used for further analyses.
In the following, such a sequence will be called insert-contig. GapFiller insert-contigs have
been shown to be highly accurate at various coverage depths and insert lengths, both with
simulated and real NGS genomic data [123].

The criteria used to extend the consensus sequence are based on relative abundances
computed on-line and are not sensitive to even significant changes in coverage depth.
Moreover, GapFiller allows to simply retrieve the layout of the reads actually employed
during the assembly. These two characteristics turn out to be, theoretically and practically,
very useful in dealing with an assembly-guided alignment method for RNA-Seq data. It is
fair to say that, however, GapFiller performances are supposed to suffer from extremely
low reads coverages (i.e., very low expression levels). In such cases direct RNA-Seq reads
mapping is preferable to any assembly-guided alignment technique and can always be used
in addition to our pipeline on the subset of reads that result to be unmapped after the
pipeline.

During assembly, the full information on the reads used to assemble every insert-contig
is computed on-the-fly at each extension step. Let R C Z be the set of the input reads
(univocally identified by their IDs). For each contig C, we consider its layout L,(C) (see
Section 4.1). We implement L, (C') as an array L containing the following information for
each component L[k]:

L[k].id is the read ID;

L[k].start is the starting position of the read in C;
L[k].length is the read length;

L[k].strand is the read orientation within C'.

Field L[k|.length is maintained so that all information needed for alignment is stored in
the layout data structure. Indeed, the read sequence is not needed, as explained in detail in
Section 6.1.3. Contig layout allows to retrieve reads position from insert-contigs alignment
against the genome.
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6.1.2 Insert-contigs alignment against the reference

The presence of introns interspersing exonic sequences cause large gaps to occur while
aligning insert-contigs against the reference genome. To address this issue, we use a
gapped aligner for “long” sequences (i.e., longer than the input reads). In our case we use
BLAST [3], but any other gapped aligner would serve the purpose. BLAST provides us
with a set of hits for each insert-contig. Given an insert-contig C, we proceed as follows.
The first step consists in selecting a minimal set of consistent (i.e., feasibly coming from
consecutive exons) hits covering the highest possible fraction of C. A further step is
performed whenever C' cannot be aligned almost entirely with a single hit (i.e., the set
of consistent hits contains more than one element). In this case, the hits boundaries
are refined in correspondence of the positions in which splicing dinucleotides are possibly
found. In the following we provide detailed description of insert-contigs alignment selection
and refinement around splicing sites.

Hits selection

BLAST outputs multiple hits for a single contig, due either to repeats within the genome,
or to splicing events. We will refer to insert coordinates as the positions of a hit with
respect to the insert-contig, and to reference coordinates as the positions of a hit in the
reference. Given an insert-contig C, the insert coordinates of the hits associated to C
make it possible to distinguish repeats from splicing events. Indeed, if two hits overlap for
a significant region in C, then a sensible explanation is that the hits fall into two distinct
occurrences of the same repeated sequence; otherwise, the two hits are the result of the
alignment of two different sequences that are not contiguous in the reference. The latter
case suggests that the break in the insert-contig is probably due to a splicing event. Given
an insert-contig C, we define H as its alignment array. A single component in H consists
of the information on a single hit. Assuming C' has n hits, for each 1 < i < n, HJ[]
maintains the following fields:

Hii].ref is the reference sequence name;
Hi].q_start is the hit start in the insert-contig;
H{i].q-end is the hit end in the insert-contig;
H{i].t_start is the hit start in the reference;
H{i].t_end is the hit end in the reference.

From the above information, we stored an additional boolean field H[i].strand representing
the strand of the alignment of H|[i] with respect to the reference. H[i].strandis set to TRUE
if and only if H[i].t_start < HJi].t_end and to FALSE if and only if H[i].t_start > H|[i].t_end
(case H[i|.t_start = HJi].t_end do not occur in practice).

To select an optimal consistent subset of {H|[1],..., H[n]}, we define a consistent set
of hits to be an ordered set (H[i1],..., H[iy]) such that

(a) Hlip].ref = Hlig|.ref;
(b) Hlip).strand = H [i].strand;

(¢) Hlip).q_start < Hlips1].q_start;
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Figure 6.2: Compatible and incompatible hits for a single insert-contig alignment.

(d) Hlip].t-end + maz_intron_size > H[ip41].t_start,
(d’) Hlipy1)-t_start + maz_intron_size > Hip].t_end,

where (a) and (b) hold for each h,k = 1,...,m, whereas (c), (d), (d’) hold for each
h=1,...,m — 1. Conditions (a) and (b) state that two hits are compatible only if they
belong to the same reference sequence and are on the same strand. Condition (c) defines
the order on the set of hits and condition (d) states that two hits cannot be farther from
each other than the maximum intron size. Condition (d’) is analogous to (d) in case of
reverse alignments.

In practice, we chose to use an “approximate sorting” algorithm, that is, we allow for
a little violation ¢§ in the ordering;:

(¢’) Hlip].q-start < H[ipy1].q-start+ 9.

Condition (c¢’) turns out to be useful at the alignment selection step. The above conditions
guarantee consistency; we say that (H[i1],..., H[iy]) is also optimal if m is minimal
among all the consistent sets of hits that cover every position covered by the whole set
{H[1],...,H[n]}. In practice, we want only one hit for each region in the insert-contig,
up to short overlaps. We define a parameter A representing the maximum overlap among
consecutive hits of a minimal consistent set, so we get the following additional condition:

(e) Hlip].q-end < Hlipy1].q-start+ A,

for h =1,...,m — 1. If previous condition does not hold, then we say that the two hits
overlap. In such a case, only one must be kept, i.e., the highest quality one.

Hits approximate sorting according to ¢_start is obtained using a stable algorithm
(see [29]). The reason we use a stable algorithm is that BLAST output hits for non-
increasing quality values, and we expect high-quality BLAST hits to be those better
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covering the insert-contig they refer to. More precisely, we want hits with g_start values
differing from each other for at most § to be reported in the same order as given by
BLAST. This is done in order to keep the sequence in the reference that best fits with
a subsequence of the insert-contig, whenever multiple hits with similar ¢_start values are
found. Clearly, this choice influences the selection of following hits.

The procedure for selecting an optimal consistent set of hits works iteratively as follows.
Every time a new hit HJ[i| is considered, it is compared with the previous one and, if
conditions (a), (b), and (e) do not hold, then the hit is neglected. Otherwise, each following
hit H[j] is considered: if H[j] precedes H|[i] in the approximate ordering (with respect to
condition (c’)), then it is inserted immediately before H[i] and the algorithm restarts from
H{[j]. At the end, an approximate ordering of non-overlapping hits (with respect to (e))
is returned.

Alignment refinement around splicing sites

When the optimal consistent set (H[i1],..., H]iy]) found at previous step contains more
than one element, overlaps among consecutive hits should be eliminated, so that “artificial”
redundancy is not introduced in the alignment. Cases to be considered at this points are
those in which Hi;].q_end > H[i;11].q-start, for some j =1,...,m—1. An overlap occurs
every time an insert-contig spans a splicing junction in which either an intron prefix is
identical to the right exon prefix of the same length and/or an intron suffix is identical the
left exon suffix of the same length. Overlaps of few dinucleotides can happen quite often,
but, having a reference genome available, the correct splicing site position can be found
by checking the presence of donor/acceptor dinucleotides pairs, in particular we considere
the dinucleotide pairs GT-AG, GC-AG, and AT-AC. If a unique couple of dinucleotides is
found in the reference, then we can set the position of the intron unambiguously; otherwise,
we opt for trimming the whole overlapping sequence.

More in detail, given (H[i1], ..., H[im]), let j be such that H[i;].q_end > H[i;11].q-start,
hence the length of the overlap between H[i;| and H[ij41] is | = H[i;].q_end—H[ij11].q_start+
1. Let G be the reference sequence associated to H|[i;].ref. Donor and acceptor are searched
within two regions of length [, respectively:

G[H][ij].t_.end—1, ..., H[i].t_end + 1];
G[H[ij{.ﬂ.hSlf@ﬂf - 2, ey H[ijﬂ].t,start—i— [ — 1]

This case refers to forward alignment; reverse complement case is analogous except for i;
in place of i;41 and f_end in place of t_start, and vice versa. The two above regions in
the reference are scanned simultaneously from left to right one position at a time, and
the current dinucleotide pair is compared to the splicing dinucleotides (see also Figure
6.3). If short indels are present, reference subsequences may have different lengths and
dinucleotides positions are searched accordingly.

Finally, if exactly one splicing dinucleotide pair is found, the alignment is refined in
correspondence of the dinucleotides position, and the new alignment will be such that
Hlij].q-end+ 1 = Hlij11].q_start. Otherwise, the whole overlapping sequence is trimmed
and this will cause a gap within the insert-contig. In any case, the new hits do not overlap
within the insert-contig, hence redundancy is eliminated.
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Figure 6.3: Redundancy elimination through splicing dinucleotides check.

6.1.3 RNA-Seq reads alignment from insert-contigs layout and align-
ment

The layout and the refined insert-contig alignments computed as above are then used to
determine reads alignments. Before entering into some detail of the method, let us briefly
discuss how we deal with the fact that that we may have multiple alignments for a given
read, as well as multiple hits for a given alignment. Each hit can be identified by an in-
terval whose boundaries represent the alignment coordinates. Moreover, since alignment
redundancy has been eliminated, intervals are also pairwise disjoint. An alignment can
be seen as a set of intervals lexicographically ordered with respect to the first coordinate.
Alignments are not necessarily pairwise disjoint, but must be distinct (this will be thor-
oughly discussed in Subsection 6.1.3). From this point of view, mapping a read r € R
against the genome could result into a collection A of ordered sets of disjoint intervals. If
A = (), then we say that r is unmapped, otherwise we say that r is mapped. In the latter
case, if | A| = 1 then we say that r is uniquely mapped, otherwise we say that r is multiply
mapped. Given r € R, we implemented A as an array A. We refer to global coordinates as
the positions in the reference sequence, and to local coordinates as the positions in the read
(reference and insert coordinates, respectively, of 6.1.2). Each component A[j] contains
the following fields:

Alj].ref is the reference sequence;

Alj].coord are the global coordinates;

y

N

J

].

].

].loc_coord are the local coordinates;

Alj].read_strand is the strand of the read in the insert-contig;
]

Alj].contig_strand is the strand of the contig in the reference.
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There is an univocal correspondence between elements of A[j].coord and elements of
Alj].loc_coord. If C is the insert-contig containing r from which the alignment A[j] is
derived, then A[j].read_strand = L[k|.strand, where L[k].id = r, and A[j].contig_strand =
Hii].strand, where H is the alignment array of C'. We say that the alignment of A[j] with
respect to the reference is forward if and only if A[j].read_strand = Al[j].contig_strand,
reverse otherwise.

Reads alignment extraction

Each time a contig C is selected, the alignment of every read contained in the layout L of
C is processed. Given a read r used to assemble C, let L[k] be the information on r (i.e.,
L[k].id = r) and let A be the alignment array of r. Also, let H be the alignment array
for C. Information provided by H and L is sufficient to retrieve the alignment of r. If A
contains j — 1 alignments, with 7 > 1, then the current alignment should be used to fill
Alj]. In particular we obtain:

Aljl.ref = H[1].ref;
Aljl.read_strand = L[k|.strand,
Alj].contig_strand = H|[1].strand.

Notice that fields .ref and .strand are the same for each component of H. Concerning
Alj].loc_coord, it suffices to select the hits of H overlapping r in the layout. Such hits are
those satisfying one of the following conditions:

L[k].start < HJi|.q-start < L[k].start + L[k].length — 1;
L[k].start < H[i|.q-end < L[k].start + L[k].length — 1.

Pairs (H[i].q-start, H[i].q-end) are directly added to A[j].loc_coord, except for the first and
last intervals, which are intersected with [L[k].start, L[k].start + L[k].length — 1]. If the
alignment H is forward, then the components of A[j].coord are computed by operating
a simple change of coordinates. In the case the alignment is reverse, the situation is a
bit more complicated because insert and reference coordinates arrays must be scanned
in opposite directions. At the end, A[j] will contain two ordered sets of local and global
coordinates, respectively, referred to the reference (in fact, information on alignment strand
is kept within A[j].read_strand and A[j].contig_strand). If j = 1 then the procedure goes
on by considering the successive read L[k + 1].id in the layout. Otherwise, the alignment
Al[j] must be compared with the existing ones, and possibly deleted, before continuing
with L[k + 1].id. This point is discussed below.

Multiple alignments and redundancy elimination

In the following, criteria to decide whether or not A[j] is a new alignment for r are
presented. There are two cases in which the decision is easy to take: (i) A[j].coord is
disjoint from any other A[j'].coord, or (ii) A[j].coord = A[j’].coord, for some j' < j. In
case (i), the alignment is kept, whereas in case (ii), the alignment is discarded, as it is
identical to a previously reported one. Only alignments that are distinct from every stored
alignment should be added to A, otherwise they are neglected or, at most, used for refining
an existing alignment. Given a read r, let A[j’] and A[j”] be two alignments for r. We
say that A[j'] and A[j"] are redundant if and only if:
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(a) Alj'].ref= A[j"].ref,
(b) A[j'] and A[j"] have the same strand;

(¢) Alj'].coordnA[j"].coord # () and contains the same number of intervals in A[j'].coord
and A[j"].coord, respectively;

(d) internal coordinates of A[j'].coord N A[j"].coord are the same;
(e) the relative position of boundaries is the same.

We say that A[j’] and A[j”] are distinct otherwise. Condition (c) states that A[j'] and
A[j"] must share a non-empty sequence and that a gap occurs in A[j'] if and only if it
occurs also in A[j”], that is, there must not be gaps in the exonic sequence. Condition (d)
states that the alignment coordinates must be the same, at least for those lying on intron
boundaries. Condition (e) puts in relation local coordinates with global coordinates. Two
alignments may come from the same region even though their boundaries are different; in
contrast, two alignments may be different even if they come from the same region. The
important point here is that the difference between global and local coordinates must
be the same, not the absolute positions. If A[j] is found to be distinct from any other
alignment for r, then it is maintained. If A[j] is found to be redundant with respect to a
previously added alignment A[j*], then A[j*] should be updated using information coming
from A[j]. Update is performed whenever one of the following two scenarios occurs: (i)
Alj] extends A[j*], or (ii) A[j*] highlights a splicing event that A[j] did not find. In all
other cases, A[j*] remains unchanged. Case (i) occurs when the first (the last) overlapping
sequence of A[j] starts before (ends after) the starting coordinate (the ending coordinate)
of A[j*]. Case (ii) arises when A[j] presents a gap in the reference sequence that is not
present in A[j*]. In other words, A[j].coord contains more elements than A[j*].coord. This
means that, for A[j], BLAST finds a better alignment by splitting the insert-contigs into
an additional hit; this possiblity did not occur when processing A[j*] because the length of
the insert-contig subsequence beyond the gap was too short. In case (i), A[j*] is extended
by keeping the new first (last) interval of A[j]. In case (ii), A[j*] is modified by adding
a new hit to the alignment provided by A[j]. At this point, regardless whether A[j] has
been used to refine A[j*], it is eliminated from the alignment array A.

Paired reads-guided alignment selection

After all insert-contigs have been processed, the final alignment array of each read in the
library is available. We decided to choose a single alignment for each multiply mapped
read, keeping, however, the information on whether the alignment was originally unique or
not. The criteria we use take advantage of paired reads information in order to recognize
pair-compatible alignments. If multiple pair-compatible alignments are found, we choose
one of them at random. Given a paired read (r,7’), let A and A’ be their associated
alignment arrays. Suppose that both A and A" are non-empty and that at least one among
A and A’ contains more than one element. We say that A[j] and A'[j'] are pair-compatible
if and only if the following hold:

(a) Alj]-ref= A'[j'].ref,
(b) Alj] and A’[j'] have opposite strand;
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(c) if A[j] is forward, then A’[j'] starts after A[j] but not farther than maz_intron_size+
msert_size;

(¢’) if A[j] is reverse, then A[j] starts after A’[j'] but not farther than maz_intron_size +
msert_size;

If no pair-compatible alignments are found, then a random alignment is selected. Oth-
erwise, non-compatible alignments are discarded and the random choice is done on pair-
compatible ones only.

6.1.4 Implementation

The algorithm has been implemented in C++ and requires as input the layout computed
by GapFiller. We employed the same data structures described in Section 4.4 to retrieve
the layout from the condensed representation.

The total disk space required to store layout information may be very huge and, in
general, unpredictable. This is particularly true when dealing with RNA-Seq data, because
being able to accurately estimate the amount of information to be stored, means being
able to quantify expression levels in advance. For this reason, using a method to store
the layout of each contig in a condensed way, as explained in Chapter 4, turns out to be
crucial in tacking insert-guided alignment of RNA-Seq data.

Moreover, we used information on the dataset in order to store layout information in
a succint way, to minimize the disk space required (see also Section 4.4.2).

6.2 Results

In this section we evaluate the results otained with our pipeline. The goal is to accu-
rately measure the accuracy of our method in both detecting splicing sites and mapping
reads with gaps. Our assembly-first approach, together with the careful exons bound-
aries detection, is specifically addressed to ambiguity reduction. This characteristic of the
method should allow to reach high specificity in junctions prediction, and high precision
in alignment.

In order to completely characterize the output of our pipeline, we test on simulated
data. We employ an external tool for RNA-Seq libraries simulation, deeply analyze the
type of detected junctions, collect statistics on reads alignment, and compare the per-
formances with other three state-of-the-art tools for gapped alignment and splicing sites
detection. Moreover, we compare the performances on different organisms in order to
evaluate the ability of tools to cope with different gene structure and alternative splicing
patterns.

6.2.1 Datasets

We performed experiments on simulated RNA-Seq paired reads. The reference genomes
we tested on were Arabidopsis thaliana and Homo sapiens chromosome 1. For simulating
RNA-Seq libraries we employed Flux simulator [57]. We simulated expression, library con-
struction, and sequencing. The location of each read in the genome is provided, allowing
us to precisely check the performances of our pipeline. For A. thaliana, Flux simulator was
run with different values of parameter EXPRESSION_K ranging from —0.3 to —0.8, which
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determines the variability in differential expression levels [47]. Each simulation produced
~ 5 M reads.For human chrl, RNA-Seq paired reads libraries were simulated varying cov-
erage instead of expression level. We simulated libraries ranging from 1 M to 5 M reads.
Reads length has been set to 100 bp in all simulations.

6.2.2 Design of experiments

An input preprocessing was performed. We eliminate Ns from the reads sequences and
discarded reads shorter than 30 bp. Reads resulting to be unpaired after preprocessing
are discarded. The first step of the pipeline is to run GapFiller on the paired reads
selected at the preprocessing stage. For all datasets, we set the minimum overlap length
(parameter overlap) to be 30 bp and we required 1 overlapping read at each extension
step (parameter extThr). We also stored the reads information for each insert-contig
produced (option layout). The output consists of a FASTA file of insert-contigs and a
text file containing the layout. The second step consists of insert-contigs alignment against
the reference genome. BLAST was run requiring a percentage of identity of 95%. After
hits selection and alignment refinement, we kept only insert-contigs whose sequence was
covered by hits for at least 98% of their length. During the third step the reads alignment
is retrieved. The output consists of alignment files (in BED and BAM format, respectively)
and of a text file containing information on the discovered junctions.

6.2.3 Analysis of correctness

We evaluated our results in terms of (i) junctions prediction accuracy and (ii) reads align-
ment precision. We did not perform extensive tests, but the results we obtained were
highly encouraging. In particular, we did thorough analysis of our pipeline performances
on simulated data. The results from the first step of the pipeline, i.e., the assembly of
insert-contigs with GapFiller, are reported in Table 6.1. Discarded insert-contigs are those
whose aligned sequence (with respect to the genome) is below 98%. We observed that this
was mainly due to the presence of a splicing dinucleotide at the beginning (at the end) of
an insert-contig. However, this does not sensibly affect the number of mapped reads (see
Tables 6.4 and 6.5).

Concerning junctions evaluation, we wanted to test the ability of our pipeline both
to identify splicing events and to correctly report junctions. At the second step of our
pipeline, the presence of dinucleotide pairs GT-AG, GC-AG, and AT-AC is checked. We
flag wvalidated every junction for which the dinucleotide pair is (uniquely) found, non-
validated otherwise. A junction annotated in the reference will be referred to as canonical if
it is delimited by either GT-AG, GC-AG, or AT-AC, non-canonical otherwise. A schematic
view of the above classification is reported in the following table:

GT-AG/GC-AG/AT-AC other dinucleotides

annotated junction canonical non-canonical
predicted junction validated non-validated

A wvalidated junction provides information on the exact donor and acceptor dinu-
cleotides, whereas a non-validated junction is an evidence that a splicing event occurred,
with no precise information on its location. A true positive (TP) is consequently defined
as a junction found by our method that is actually annotated. We distinguish among four
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Table 6.1: Simulated datasets. Reads selected after preprocessing and insert-contigs assembled by Gap-
Filler.

library size assembled insert-contigs discarded insert-contigs

A. thaliana 4,994,194 2,418, 328 258,155
4,993, 886 2,425,671 255,370

4,994, 868 2,435,295 254,765

4,995,236 2,440,141 251,375

4,999, 262 2,428,268 248,080

4,996, 600 2,439,987 273,541

4,993,894 2,427,707 269,980

H. sapiens chr 1 970, 262 435,668 85,067
1,930, 878 889,416 174,709

2,934,638 1,361,972 272,156

3,831,788 1,770,762 353,741

4,895,284 2,311,954 465,542

types of TP, depending both on the annotation type (canonical /non-canonical) and on the
prediction type (validated /non-validated):
Canonical Non-canonical

Validated TP1 TP2
Non-validated TP3 TP4

Cases TP1 and TP3 refer to junctions whose position can be exaclty determined by our
method, as they are identified by canonical dinucleotides. Cases TP2 and TP4 instead
are junctions that cannot be determined precisely. In particular, cases TP1 and TP4 are
those expected, i.e., a canonical junction correclty flagged validated, and a non-canonical
junction that is not validated. In case TP2, our pipeline was able to refine the annotation,
by finding a canonical pair of dinucleotides near a junction reported as non-canonical.
Case TP3 instead, is a canonical junction that is not validated by our method; if our
approach is accurate, then the number of TP3 should be low. Of course, we want FP to
be low as, in the case of simulated data, they represent uncorrectly predicted junctions.

The results on Arabidopsis thaliana and human chrl are reported in Tables 6.2 and 6.3,
respectively. Accuracy is extremely good, as FP rate is below 0.4% for all experiments on
A. thaliana, and below 0.6% for those on chrl, respectively. This shows high accuracy in
the alignment technique, which is a consequence of mapping insert-contigs onto the genome
instead of RNA-Seq reads directly. Insert-contigs alignment reduces the number of gap
opens outside introns, hence allows for robust splicing events identification. We noticed
also that the amount of TP3 is quite low, especially for chrl, meaning that when our
pipeline detects a canonical splicing event, it is able to precisely identify its location most
of the times (i.e., more than 98% for A. thaliana and 92%-95% for chrl, respectively).
A further consideration is in order on case TP2, that is, junctions annotated as non-
canonical but validated. We found that our pipeline was able to refine the annotation of
few junctions, for A. thaliana, and of up to 5% of the non-canonical predicted junctions,
for human chrl. Moreover, we noticed that the performances of our pipeline only slightly
change with expression variability (A. thaliana) or dataset size (human chrl).

As far as reads alignment is concerned, we computed accurate statistics on the ability
of our method, especially when gaps occur. To this aim, we compared our BED file with
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Table 6.2: Simulated experiments on A. thaliana. Junctions prediction statistics.

TP FP

TP1 TP2 TP3 TP4  Total
21604 411 317 20156 42488 | 110
20439 387 302 18667 39795 | 141
17764 358 272 16534 34928 | 110
17624 316 263 16157 34360 | 76
16131 326 237 15097 31791 | 109
15994 288 219 15124 31625 | 104
14326 271 211 13239 28047 | 89

Table 6.3: Simulated experiments on H. sapiens chr 1. Junction prediction statistics.

TP FpP

TP1 TP2 TP3 TP4  Total
152 385 8 7420 7965 | 43
157 473 10 8776 9416 | 48
169 530 16 9526 10241 | 53
192 527 10 10030 10759 | 64
189 514 17 9574 10294 | 59

Table 6.4: Simulated experiments on Arabidopsis thaliana. Percentage of correct reads alignment reported
by our pipeline.

aligned (%) 97.82 9799 97.88 98.03 97.68 98.01 97.34
perfect (%) 86.45 86.64 86.37 86.79 87.82 86.61 87.54
reference (%) 99.14 9930 99.45 99.23 99.50 99.02 99.44
start (%) 97.84 9793 98.02 98.03 9855 97.51 97.97
end (%) 96.90 96.87 97.06 96.80 97.47 96.76 97.01
strand (%) 99.38  99.55 99.38 99.49 99.67 99.49 99.60

hits number (%) 99.43 99.44 99.42 99.41 99.42 99.31 99.36
hits length (%) 87.92 88.08 87.70 88.20 88.70 88.04 88.83
hits start (%) 89.70 89.92 89.56 90.05 90.39 89.94 90.37

Table 6.5: Simulated experiments on H. sapiens chrl. Percentage of correct reads alignment reported by
our pipeline.

aligned (%) 90.29 92.89 94.07 94.17 94.98
perfect (%) 77.52 7795 7550 76.38 77.98
start (%) 92.47 9327 91.34 91.56 93.14
end (%) 90.06 90.58 88.77 88.83 90.32
strand (%) 96.78 96.86 96.13 96.45 97.12

hits number (%) 98.90 98.91 98.90 98.83 99.00
hits length (%) 82.61 82.28 81.28 82.06 82.67
hits start (%) 88.70 88.45 88.00 88.36 88.81
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that provided by the simulation pipeline. The results of the comparison are reported in
Tables 6.4 and 6.5. Concerning A. thaliana datasets, we observed that more than 97% of
the reads is aligned against the reference. Beyond rough statistics, i.e., the percentage of
reads correclty matching reference chromosome and strand, we observed that our method
performs very well in splitting the reads in the right number of hits (hits number field).
This means that we have been able to detect reads spanning a splicing sites most of the
times, and this translates into more than of 99% correctly split reads. The worst values
are for the number of perfect alignments and for the exact length and location of the
hits of a single read alignment. This is due to the presence of non-canonical junctions
(see also Table 6.2), which caused a little misplacement of splicing dinucleotides. Reads
mapping evaluation metrics for chr 1 are reported in Table 6.5. In this case, notice that the
percentage of aligned reads increases with the library size (see also Table 6.1). This means
that the more insert-contigs are available, the more chances to align a read are found. And
such alignment maintain the same degree of accuracy; indeed, the statistics on alignment
correctness, computed with respect to the number of aligned reads, do not depend on the
library size. The determination of reads position in the reference is not as good as for A.
thaliana, because the splicing patterns are more complicated and tend to hinder correct
alignment. Indeed, the number of discarded insert-contigs (i.e., those aligned for less than
98% of their length) is quite high, due to the pervasive presence of short tails that cannot
be safely mapped by BLAST. Similarly to the results on A. thaliana, we found out that the
split alignments were correctly detected, whereas the exact alignment coordinates suffer
from the high percentage of non-canonical splicing sites (see also Table 6.3).

6.2.4 Comparison with state-of-the-art tools

Comparison were done with respect to three tools for RNA-Seq reads mapping and splicing
junctions detection, i.e., TopHat [164], SpliceMap [7], and PASSion [181]. Evaluation of
the performances of the four tools are reported in Figure 6.4. Concerning junctions predic-
tion (left column), we observed that PASSion reports many events, and that our pipeline
has the lowest FP rate. PASSion actually reports more junctions than those predicted,
and we observed that some of them are redundant, resulting both in an overestimation of
the splicing pattern complexity, and in a high FP rate (e.g., nearly 20% for chrl dataset).
As far as reads alignment is concerned (right column), we noticed that our method is ex-
tremely sensitive and precise in mapping simulated reads. Also the other tools behave well
on A. thaliana simulated dataset; we cannot say anything about PASSion, for which we
were not able to compute the actual number of uniquely mapped reads. Another impor-
tant point is that our pipeline behaves quite well on both A. thaliana and H. sapiens chrl
datasets, thanks to GapFiller, which do not make assumption of the input data type. In
contrast, it is quite evident that TopHat and SpliceMap performances are strongly related
with the specific organism.

6.3 Conclusions and future work

In this chapter, we discussed a new method for RNA-Seq reads alignment and splicing
sites detection. The idea of guiding alignment through the layout of assembled inserts
allowed to reach high precision.
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(b) H. sapiens chrl simulated data.

Figure 6.4: Comparison of tools performances on junctions detection (left column) and reads alignment
(right column). Reads uniquely mapped by PASSion are not reported.
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Results on simulated data show that our method turns out to be powerful in detecting
splicing events, and to correclty validate canonical junctions. This allows to align the
RNA-Seq reads in the correct number of hits. Such a feature is of utmost importance for
junctions quantification, and, more broadly, for gene expression estimation.

We conclude that our method can cope with different (and complex) splicing pattern
types. Future work will include the employment of a more sophisticated technique to
choose the best alignment for each multiply mapped read, beyond the pair-compatibility
check, and exploiting organism-related heuristics. More in general, the proposed technique
can be extended to broader applications (i.e., larger datasets) by employing a method for
eliminating redundancy from the layout.
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Estimating expression levels of
alternative transcripts

When both a reference genome and an annotation are available, there are still challenging
issues that can be addressed starting from raw RNA-Seq reads. Among the most impor-
tant ones we mention the problem of estimating expression levels of gene isoforms and
identifying which isoforms are differentially expressed within different RNA samples. The
latter strongly depends on the ability of accurately quantifying transcripts abundances
for each dataset, other than on the statistical model employed, and computing correct
expression levels envisages as previous step a careful mapping procedure that assigns each
exon the correct number of reads.

An accurate estimation of exons coverage depends not only on the algorithm or tool
employed for RNA-Seq reads mapping, but also on intrinsic biases of RNA-Seq libraries.
On the one hand, the presence of mismatches and short indels can be partially accom-
plished by specifically designed algorithms for NGS reads mapping, on the other hand,
uneven transcripts coverage is difficult to threat during the alignment phase.

Variability of transcripts coverage by RNA-Seq reads is seen, at the genomic level, as
an increase or drop in coverage along exons. This fact can be erroneously interpreted as
an evidence for either alternative isoforms to be expressed simultaneously, or the detection
of a new isoform that was not yet annotated. Thus, ad hoc methods should be employed
to take into account biases in transcripts coverage, possibly identifying exons that should
not be included in the model for the computation of expression levels.

In the following we briefly recall the insert assembly-based alignment technique pro-
posed in previous chapter, and discuss a new method that, by identifying a subset of
high-quality representative exons for each gene, allows to retrieve the expression level of
each isoforms by simply solving a system of linear equations.

7.1 A parsimony approach to transcripts quantification

It can be reasonable to identify, when possible, regions of transcripts in which reads are
correctly mapped or accurately assembled. In some cases, when the goal of estimating
expression levels is addressed, it is not necessary to assemble all exons completely, or
consider all reads alignments. Intuitively, the exon-isoform structure of a gene should
allow to identify one or more subsets of exons such that the knowledge of cumulative
exons coverage is sufficient, at least in theory, to retrieve the expression level of each
isoform. This would translate into the possibility of estimating the expression level of all
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Figure 7.1: A possible pipeline that takes as input (i) RNA-Seq reads libraries and (ii) an annotation of
esons and isoforms, and returns as output the etimated expression levels of isoforms.

isoforms of a gene by looking at a key number of exons.

A first observation in this respect is that, given a gene G and an exon F belonging to
only one isoform I of GG, then the expression level of I should be equal to the coverage of E
with RNA-Seq reads. Exon F is characteristic of I and, in principle, it suffices to get the
expression level of I. In the following we extend this reasoning in two directions. First,
we do not require characteristic exons in order to compute expression level, instead we
assume that the exon-isoform structure can be represented as a full-rank binary matrix.
Second, we introduce a measure of the quality of an exons in order to introduce only good
ones in our linear model.

The idea is to divide the analysis into three steps, which are depicted in Figure 7.1
[122]. Step 1 consists in computing cumulative expression levels of exons, using either
an alignment algorithm specifically designed for RNA-Seq data, or an assembly tool from
which reads layout can be retrieved. In our case we employ the local assembly-guided
pipeline introduced in Chapter 6.

Step 2 consists in computing a system of linear equations (e.g., a linear system defined
by a linear matrix M) for each gene, which states the relationship between expression
levels of isoforms and cumulative expression levels of exons. Notice that step 1 and step
2 can be run independently.

Finally, step 3 consists in solving the linear systems provided at step 2 using the data
computed at step 1; the output should be the expression levels of the isoform of each gene.
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7.1.1 General definitions

The computational problem of estimating expression levels regards the collection of alter-
native isoforms of a gene as a family of sets that overlap each other in correspondence of
common genomic sequences. Each isoforms sharing some sequence F will contribute to
genomic coverage with its transcript abundance, or expression level. We will refer to £
as exon, despite £ may be a fraction or a concatenation of exons. The fundamental re-
quirement is that F should not be broken into distinct isoforms. We opt for the definition
of exon as a maximal sequence with previous property, that also do not span any splicing
junction.

A gene G can be identified by an ordered set of exons, i.e., G = (E1,...,Ey), and
its isoforms 7 = {I1,..., I, }, by the set of ordered subsets I; C G, for each j =1,...,n.
Given GG with m exons and n isoforms, let us define its associated m x n boolean matrix

M = (M;;), as follows:
My = { RSl (7.1.1)

0 otherwise.

In this formalism the estimated exons coverages can be represented as a vector ¢ € (RT)™
whereas the (unknown) expression levels of isoforms as a vector of variables x € R".

At this point, a possible—and, actually, the most widely used—approach to determine
x consists in using the following system:

Mx = c. (7.1.2)

Note that, if exons exact coverages were known, then the following identity

n
=Y (7.1.3)
j=1
Eiel;
would hold for all i =1,...,n.

In this context, system (7.1.2) gives us the possibility to study a space of possible
solutions. Moreover, a solution exists if ¢ is a linear combination of the columns of M,
with unicity guaranteed whenever rank(M) = n.

In real cases, however, the entries of ¢ are known only in estimate and may introduce
inconsistencies. For this reason, the solution to (7.1.2) is often searched using a least-
square approach and providing a suitable objective function to be minimized together
with a set of constraints to be satisfied. The objective function can be seen as a measure
of the error between Mx and ¢, where X is an approximate solution, while the constraints
represent additional knowledge we may have on the system’s solutions.

7.1.2 Approximate solutions to the linear system associated to a gene

In the literature several studies have been carried out in order to define a suitable model
formulation [90,97,165]. High accuracy in the model description, together with an (often
complex) statistical machinery for parameters estimation (possibly requiring hypotheses on
reads distribution), is of undeniable importance to reach the best possible precision of the
solutions, see [163]. However, even integrating such techniques, a least-square formulation
is intrinsically not able to cope with the structure of the problem, as well as with the
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Figure 7.2: A gene G with four exons and three isoforms. In order to retrieve the expression levels of Iy,
I, I3 only 3 exons are necessary. Sets {E1, E2, Ex} and {E», Es, E4} are individually sufficient to retrieve
Z1, T2, x3 from exons coverages.

structure of its sub-problems. Moreover, bad quality coverage estimates may affect the
accuracy of the final solution. On this last aspect we observe that, clearly, any method
for expression levels estimation would suffer from reads biases and coverage irregularities.
Nevertheless, being able to compute both local and global information on the gene, using
single exons features and their relationships with other exons in the gene, respectively,
may aid accurate solution computation. In our approach, instead of adding constraints or
penalty terms within the linear model, we introduce a quality parameter measuring both
local and global exon’s coverage accuracy.

In general, in order to be able to establish the expression level of the isoforms of a
gene, not all exons coverages are necessary. The structure of a gene can allow to identify
sets of exons such that knowledge on their cumulative expression level is sufficient, at least
in theory, to deduce the expression level of each isoform.

The interpretation of our general approach to find a solution to (7.1.2) can be given
as follows. If the exons and the isoforms of a gene GG are known, then it is possible to
check whether the structure of G allows to retrieve the expression levels of each isoform
from the knowledge of exons coverage by means of RNA-Seq reads. Moreover, when the
previous hypothesis holds, one can also identify minimal sets of exons that, in principle,
are individually sufficient to retrieve the expression levels of all isoforms. At this point,
a criterion to select the best subset of exons can be introduced. A crucial point is that
of finding a quality function that best describes the level of reliability of each exon as a
function of, e.g., length, coverage uniformity, and coverage consistency with respect to
other exons. This point is discussed in Section 7.3.4.

A mandatory step to be done before expression levels computation, consists in esti-
mating the entries of coverage vector ¢ precisely. To this aim, we propose a method that
circumvents the problem of short RNA-Seq reads mapping against the reference genome by
firstly assemblying them into longer sequences, by actually defining an indirect alignment
technique. The details of RNA-Seq reads alignment and coverage computation phase are
given in the next section.

7.2 Computation of exons coverage

Our aim here is to accurately estimate cumulative expression levels of exons to ease the
computation of expression levels of isoforms. At this step we want to provide a method
that is hopefully more robust than simply aligning RNA-Seq reads agaist the reference
genome directly. Our approach tends to provide correct rather than complete output,

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



7.2. Computation of exons coverage 113

because in our model is crucial to get precise exons coverage estimation. Once we have
cumulative expression levels, we can use them in our model and then compute expression
levels of isoforms.

7.2.1 Assembly-guided RNA-Seq reads alignment

Our mapping technique relies on an indirect method that firstly assembles RNA-Seq paired
read inserts and then retrieves reads alignments from contigs layout (see also Section 6.1).
We work in the hypothesis that a reference genome is available, but at this stage an input
annotation is not required.

We employ GapFiller [123] to provide a local assembly of insert sequences. The advan-
tages of GapFiller are: (i) it is designed to assemble a genomic sequence identified by its
ends (i.e., reconstruct inserts from paired reads), (ii) it allows to retrieve the layout, and
(iii) it is able to output correct sequences (i.e., high specificity). If the seed-and-extend
technique employed for the assembly eventually reaches the mate of the seed read, the
obtained sequence is considered correct and is called insert-contig.

In the context of transcripts abundances estimation, information provided by inserts
is a valuable one for precise alignment, but exons coverage cannot be computed directly
from ireconstructed sequences, despite being accurate. As a consequence, going back to the
reads is mandatory. The assembly technique used by GapFiller allows to simply store the
layout of each insert-contig C, that is, the position and orientation of each read employed
for the assembly. Contigs layout allow to either keep only reads belonging to correctly
assembled inserts, and eliminate redundant coverage by keeping only one copy of a read.

Insert-contigs are first aligned against the genome using BLAST [55] (but a different
tool for gapped alignment can be employed as well). Then, high quality alignments are
extracted from BLAST output and reads locations on the genome are computed combining
layout and alignment information. For each insert-contig C', BLAST hits are sorted by
non-increasing score and non-overlapping hits are selected in succession until C' is almost
completely covered. If multiple hits are selected, then they are refined in correspondence
of putative splicing junctions by checking for the presence of donor-acceptor dinucleotide
pairs.

At this point, reads location is retrieved and multiple alignments are disambiguated
in different ways, and, depending on their relative position, they are either merged or dis-
carded if they turn out to be pair-compatible. If, after previous checks, multiple alignments
still exist, a single one is reported at random.

7.2.2 Coverage computation from reads alignment

Fach read is assigned a precise region in the genome in order not to introduce coverage
artifacts, as stated in previous section. Coverage is computed by plotting reads abundances
on the reference. More precisely, a WIG file is generated that reports, for each position x
in the genome, the number of reads covering .

At this point, genome annotation is needed in order to compute cumulative exons
coverages. For each exon F, reads abundancies are computed at nucleotide resolution.
Coverage is then estimated in two steps: (i) the average coverage on fixed-length subse-
quences of E is computed, and (ii) the final coverage estimate for F is computed by keeping
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the average again, neglecting minimum and maximum peaks. This method should allow
to reduce the standard deviation of average exons coverage.

7.3 Maximum quality linear sub-system

Let us consider a gene G with four exons and three isoforms, as depicted in Figure 7.2.
Based on notation given in Section 7.1.1, we have

r1+x3=0C
T+ X2 =Co
1+ 23 =cC3 (7.3.1c
To + x3 = cy4. (7.3.1d

Not all equations are needed to solve the system, for instance, equations (7.3.1a), (7.3.1b),
and (7.3.1d) are sufficient to obtain a solution. However, the constraint ¢; = ¢3 imposed
by Equation (7.3.1c) may not be satisfied by the solution z of the sub-system defined by
(7.3.1a), (7.3.1b), and (7.3.1d). In contrast, the uniqueness of a solution depends on the
existence of at least 3 independent equations. These two aspects are related to (i) the
coverage uniformity along transcripts, and (ii) the gene structure.

If the exons and the isoforms of a gene GG are known, then it is possible to check
whether the isoforms/exons structure of G allows to retrieve the expression levels of each
isoform from the knowledge of exons coverage by means of RNA-Seq reads. Moreover,
in case previous hypothesis holds, one can also identify every minimal set of exons that,
in principle, are individually sufficient to retrieve the expression levels of isoforms. It
must be stressed that a correct quantification of expression levels of isoforms strongly
depends on the data. In the ideal case, three equations are enough but, in practice, it is
more reasonable to check the consistency of RNA-Seq reads coverage for each gene, for
example, in terms of constraints violation (e.g., when ¢; # c3).

Based on previous example, the existence of a solution depends on the accuracy of
expression levels estimation. Hence, it should be reasonable to identify good quality exons
on which transcripts abundances should be computed.

It is fair to say that the applicability of our method depends on genes structure. In
other words, we must check whether it is possible to find a unique solution to the linear
system (step 2). In practical scenarios, we observed that the percentage of genes that are
intractable with our method is negligible. An example is Arabidopsis thaliana, for which
32665 out of 32678 genes can be analyzed with our method.!

7.3.1 Definitions and notations

In the following, we assume exonic sequences to be disjoint from one another. This is
not a restriction, as genes with overlapping exons can be reduced to this definition by
simply splitting exons in correspondence of overlaps. In general, E; may be fractions or
concatenations of “true” exons. We will identify with F; a maximal contiguous sequence
such that, for all j = 1,...,n, either E; is a subsequence of I; or the overlap of E; and I;
sequences is the empty string.

!Source: TAIR, [65]
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We will denote with M; the i-th row of M, that is, a row vector with n components.
Given a set of indexes H C {1,...,m}, we will indicate with [My]pecp the | H|xn submatrix
of M whose rows are the ordered rows of M with indexes in H.

7.3.2 Problem definition

Given a gene G, in our model we want to retrieve the expression levels x; of I;, for each
j = 1,...,n, knowing the annotation, identified by M, and the estimated coverages of
exons, identified by vector c. The method we propose targets two problems: (i) treats the
cases in which the linear system Mx = ¢ has no solutions, and (ii) copes with coverage
biases, that is, equalities of the form (7.1.3) that are not satisfied, for some 4.

The case in which Mx = c¢ has infinite solutions, corresponds to the situation in which
there is not enough information to indentify the expression levels for each isoform. If this
is due to incomplete annotation, isoforms prediction methods should be used to provide a
new set of alternative isoforms. Otherwise, there is no way to extrapolate the expression
levels, unless there are evidences for some components of x to be null. In the following,
therefore, we will suppose that rank(M) = n holds.

In our model it is realistic to take into account the fact that different n xn full-rank sub-
matrices of M may lead to different solutions. The idea to deal with this kind of situations
is to define an objective function F', on the set of exons, suitable to jointly represent (i)
the relevance of each exon within the gene, and (ii) the balance among coverages estimates
within sets of exons. Given a set of indexes H C {1,...,m}, we identify {E},}nem as an
optimal set of exons if

e it maximises F’,
e it completely characterizes the set of isoforms Z, and
e has minimal cardinality.

The idea is to define x as the solution of the following square sub-system
M;x =¢, heH, (732)

whose existence and uniqueness is guaranteed by the hypotheses on M and by the min-
imality of H. As a consequence, once H is selected, x is completely determined and we
can define the problem of finding the expression levels as follows.

Definition 7.3.1 Let G be a gene and let Mx = ¢ be the linear system associated to
it, with M defined as in (7.1.1) and ¢ € (RT)™. Let F: {1,...,m} — R. Suppose that
rank(M) = n.

We define H as the collection of sets of linearly independent rows of M, namely:

H:={H C{1,...,m} | |[Hl =nArank([Mplpen) = n}. (7.3.3)
An optimal subset of exons for G is {E}}hen, where H is a solution of

maximize F(H)

7.3.4
HeH. ( )
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When a set H satisfying the above definition is found, the solution x of the linear system
[Mp]henx = [cp]nen will be an assignment of the expression level to each isoform.

Notice that, by using an additive function F(-), a solution of Problem 7.3.4 can be
obtained by adding elements to H iteratively, starting from the empty set and checking
at each step whether rank([Mp]ycrugy) > rank([Mp]her), where i is the element to be
added.

Proposition 7.3.2 The problem P stated in Def. 7.3.1 is polynomial in m.

Proof. As already observed, problem P can be solved with a greedy algorithm, that
is, by firstly sorting the elements of {1,...,m} by non-decreasing values of F(i) and
then selecting a new index ¢ to be added to the current set H iteratively, such that
rank([Mp]pemugiy) > rank([Mp]ner). The check to be done at each step can be per-
formed with Gauss-Jordan elimination, whose complexity is O(|H|?) € O(n3). The order-
ing of {1,...,m} is O(mlogm) and the number of operations globally required by the itera-
tive procedure is O(mn3). Hence the complexity of solving P is O(m(logm+n?)) € O(m?*)
as n < m from hypotheses. d

A possible definition for F' is a linear combination of two functions w and p:
F(i) := aw(i) — bp(7) (7.3.5)

where a,b € RT. For each i = 1,...,m, w(i) represents the weight of exon E;, while p(7)
represents the penalty associated to E; with respect to other exons, in terms of coverage
incompatibility.

For each exon E;, we compute the standard deviation o; from the average coverage c;.
Given E;, a suitable definition for w(i) should depend either on the exon length L(E;), on
the coefficient of variation %;, and, possibly, on the standard deviation o;. More precisely,
w(i) should be directly proportional to L(E;) and inversely proportional to Z:.

The penalty value p(i) should take into account the differences in (mean) coverage
among exons that are related to each other, weighted accordingly. Let us denote with
Z(E) the set of isoforms E belongs to. If E; and E; are such that Z(E;) C Z(E}), then one
should expect that ¢; < ¢;. Otherwise, the difference ¢; — ¢; represents an inconsistence
and should appear in the penalty term. Either cases Z(E;) C Z(Ej), Z(E;) D Z(Ej), and
Z(E;) = Z(E;) can be all considered, or some of them solely may be taken into account in
p(i). An exon E will have high penalty if heavy exons are inconsistent with E. If average
inconsistencies measured for F; and FE; are equal to each other, and F; is related with
more exons compared to F;, then p(i) should be slightly lesser than p(j).

7.3.3 A heuristic algorithm based on exact solution of max-quality full-
rank square sub-system

As stated in Def. 7.3.1, one can think of providing a solution of the problem of determining
the expression levels of alternative transcripts with a parsimony approach. However,
several considerations should be done in order to provide solutions that fit well with the
biological context. Just to mention a few ones: (i) only not-too-short exons should be
used for the computation of cumulative expression levels, (ii) exons with expression level
equal to zero must be treated in special way, and (iii) high coverages on 5’ side may be
due to cDNA production artifacts.
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In particular task (iii) should be treated very carefully: on the one hand, point (ii)
suggests not to discard low expression levels in spite of higher quality exons whose coverage
is zero; on the other hand, several studies pointed out the need of treating expression also
in light of the location the reads are coming from. A tool for transcripts abundances
estimation should meet both these task, for instance Guttman and colleagues [49] address
this task by suitably designing lab experiments.

In our method, we firstly discard short exons from each gene’s linear system. As most
of Arabidopsis thaliana genes are slightly different from one another, discarding exons of
length < 30 bp results into the impossibility of disambiguating ~ 3% of all genes. This is
due to the fact that the exons discarded make the associated isoforms/exons matrix’ rank
to be lower than the maximum. Such a situation, however, would cause problam to any
method whose goal is to compute expression levels for each alternative isoform separately.

In order to maximize sensitivity, we decided to adopt a heuristic that should avoid low
covered transcripts to be seen as not expressed. The idea is that, if a set of exons belong
to the same set of isoforms, that is, the set Z(FE) for some E, then at most one exon E’
such that Z(E’") = Z(F) will be selected for the square sub-system. Moreover we observed
that, if such exon has both high quality and zero coverage, then the cumulative expression
levels of all the isoforms of Z(FE) will be zero. Hence, we decided to discard all exons E
that have coverage 0, if and only if there exist E’ such that Z(E’) = Z(FE) of coverage
> (. This choice would clearly increase the amount of false positives, but we also observed
that, concerning the problem of expression levels prediction, missing expressed isoforms is
a more serious problem than that of declaring as expressed isoforms that are not.

A problem arising from the combinatorial technique used to solve the linear system
is the possibility to generate negative solutions. These are the effect of incompatibilities
among exons coverages and may be corrected by slightly modifying the coverages within
the neighborhood defined by (a multiple or a fraction of) the standard deviation. An
incompatibility between two exons should result in an increase in the penalty value of the
exons involved. The idea is to change the coverage and then re-compute penalties. An
improvement will be measured as a decrease in the penalty value of the new system with
respect to the previous one. Then, a solution computed on such a system should be better
than the previous one (in terms of amount of negative components).

The method described above can be applied in two ways, that is, either on all solution,
or only on those exhibiting negative components. In the former case, the benefit will consist
in potentially improving every solution, but, as a drawback, the possibility of taking into
account worse exons could lead to worse solutions. It is a matter of experimental results to
decide which approach would work well: a uniform one, applied massively to all solutions,
but with the risk of involving bad quality information that one should have wanted to
disregarsd, or a particularized one, used on special cases only, but with the inherent
impossibility of improving the large part on solutions quality.

7.3.4 Definition of objective functions

Several objective function of the form (7.3.5) can be defined. Concering the weight function
w(-), we choose to emphasize exons length and coverage uniformity. As already mentioned,
we exclude short exons (i.e., shorter than a threshold value Ly, for exons length) from the
computation of the solution. Concerning coverage, we estimate the standard deviation,
and we denote it with o;, from the average exons coverage obtained from RNA-Seq reads
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location (see Section 7.2.2).

In practice, we want the weight of exon E; to be direclty proportional with respect to
its length L(E;) and inversely proportional with respect to the coverage standard deviation
;. Three definitions of w(-) satisfying the above requirements are as follows:

WD (i) = L(E;) (1 3 ﬁ);

Lmax C;
. a; 1
w® (i) = L(E;) <1 — ;) m; (7.3.6)

w® (i) = 1og(LL(fj)) (1- %) log(al+2)

where L ax is the maximal exon length in the gene. If negative quantities occur, we set
them to zero so that all weights are non-negative.

The penalty function p(-) is defined, for each exons, considering coverage consistency
with other exons in the same gene. The idea is to put in relation F; with “comparable”
exons. More precisely, we can say something about coverage relation among E; and FEj
only if one of the following holds: Z(E;) = Z(E;), Z(E;) C Z(Ej), or Z(E;) D Z(Ej).

For each i, we define as H; the set of indexes in {4, ..., m} such that exon E}, is “related
to” exon E;, for h € H;. We also denote with w(H;) the sum of the weights of E}, for
all h € H;. A possible way to define the penalty p(i) for exon Ej; is to put in relation ¢;
with ¢y, for each h € H;. Set H; can be defined in different ways, depending on the choice
to consider, for two exons E; and Ej, either equality, inclusion, or both relations among
Z(E;) and Z(E;). Depending on the choice of taking into account either the cardinality of
|H;| or the coverage standard deviation, we define two penalty functions:

pV0) = s 3 wnlles = nl =)

Y hem,;
oy _ 2 N (730
P (1) W) Z wp|e; — cpl.

heH,

Quantities p® (i) were defined in 3 different ways, by changing the set H;.

Obviously, there is a wide variety of reasonable objective functions to be used. We
mentioned here a few ones that aim at characterising exons “as such”, as well as in relation
with other exons within the same gene. This characterisation is important in order to be
able to select a good set of exons, which, in turn, are crucial for good expression levels
estimation.

7.4 Results

Different objective functions were tested, varying both weight and penalty functions, and
the coefficient of their linear combination. More precisely, by combining different choices
of w(-) and p(+), based on Equations 7.3.6 and 7.3.7, we get 12 different objective functions.
For each of them, we tried 13 couples of values for parameters a and b.

The statistics showed in the following are average results obtained using different ob-
jective functions, on simulated RNA-Seq reads libraries. Some comparisons are reported
with the tool Cufflinks, which performs both reads alignment and transcripts abundances
estimation.
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7.4.1 Datasets

We report here the results obtained on five RNA-Seq experiments simulated using Flux
Simulator [57] on Arabidopsis thaliana genome (TAIR10_cdna_20101214_updated) and
using annotation TAIR10_GFF3_genes.gff (see [65]). For each experiment, we generated
paired reads datasets with read length 100 bp and insert size ~ 250 bp. All parameters for
simulation were set to the default values, except for the exponent of the modified Zipf’s law
employed to generate transcripts expression profile [47]. More precisely, we set parameter
EXPRESSION_K to five different values comprised between 0.6 and 0.9, as reported in the
Supplementary Material [47] (namely, —0.6, —0.65, —0.7, —0.75, and —0.8, respectively).
We simulated expression, library construction, and sequencing. In this way, we know
exactly both the expression level of each isoform, and the location of each read in the
transcript it has been extracted from.

As A. thaliana genes exhibit splicing patterns that are completely different from that
of mammalian genes, we decided to perform experiment on human data as well [66, 78].
We expect to find differences in both isoforms number and alternative splicing complex-
ity. Even though we expect much higher isoforms numerosity for a mammalian gene, we
believe that our method would behave better on them, thanks to the alternative splicing
complexity. It is quite difficult for us to output correct values for genes with a number of
exons that is extremely higher than the number of isoforms: in our case, it would translate
into a selection of very few exons (and corresponding cumulative expression levels) from
a very larger set.

7.4.2 Results evaluation

In order to provide a comparison with existing tools, we launched Cufflinks [165] on the
datasets described above, after alignment performed with TopHat [164].

We decided to quantify the results using the RPKM metric. Transcripts abundances
was computed by firstly extracting the reads provenance, provided by Flux Simulator,
and then calculating isoforms coverages with the method described in Section 7.2.2. Our
pipeline outputs a mean coverage value for each isoform, so we needed to convert the
output to RPKM. Let T be a transcript. By denoting with L the (average) read length,
with N the library size, and with ¢ the coverage of T', and recalling the definition of RPKM
(see Equation 1.2.2, we have:

m10° mL c10?
PKM= ——' c= — PKM = )
R Nt ST TR IN

(7.4.1)

Clearly, the normalization obtained using the above equation introduces imprecisions in
the results, due, for instance, to the fact that read lengths are not all the same within
the library. In Figure 7.3 an overview of the dataset type is reported. The number
of low expressed transcripts (i.e., with RPKM ranging in [1,4]) is the largest one and
hence require a highly sensitive method for their quantification. Figure 7.4 depicts the
response of our pipeline to different expression levels. The mean error rate € is defined
as 100 - |[R — R|/R, where R is the ground truth and R is the estimated RPKM. Values
reported for € are computed by taking the average on the results obtained with the different
objective functions. As espected, it drops as coverage increases. On Figure 7.5 the number
of isoforms is reported as a function of the mean error rate. Notice that the high abundance
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of isoforms are estimated with an error rate < 10%. It is proper to say here that some
solutions cannot be found by our method as negative values for expression levels are
reported. Their amount is ~ 850 over 40, 000 isoforms and they are due to imprecision in
coverage estimates.

A comparison with Cufflinks performances is showed in Table 7.1. Our method intro-
duces fewer false positives, however we cannot reach Cufflink’s ability to capture down-
regulated isoforms.

Table 7.1: FP and FN comparison statistics. Values for Cufflinks are computed on coverage and FPKM
values reported on FPKM tracking file.

Our pipeline Cufflinks

k FP FN FP FN
—0.60 1409 6967 2938 861
—-0.65 1391 7121 2902 837
—0.70 1294 7308 2868 839
—0.75 1340 6919 2959 860
—-0.80 1117 7366 2756 914

Statistical significance of expression levels measurements is difficult to achieve, also be-

cause of the non-standardized metrics used to represent them. Indeed, RPKM is reported
in different ways (e.g., the count of reads mapping onto a trascript is normalized either
to the total number of mapped reads or to the library size); moreover, Cufflinks reports
FPKM instead of RPKM (using fragments instead of reads). A different approach can be
that of evaluating expression levels with respect to coverage. In this context, at least for
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methods that report it, the standard deviation from the mean coverage can be used as an
indication of the seriousness of expression levels estimation errors. This reasoning can be
used when exact expression levels are known. The idea is that, if exact expression is x
and its standard deviation is o, then the goodness of the estimated expression & can be
related to either the distance from x, and to the fact whether & belongs to [x — ko, z + ko]
or not (where k is a parameter that can be varied in order to set the evaluation more or
less strict).

Another statistic that can be computed is the consistence with global gene expression,
that is, compute the error | ), Z; — >, x;|. In case the gene has a complex structure,
such a statistics can assess whether the method succeeds at least in computing the gene
expression accurately. We can also think of defining a sort of entropy of the splicing pattern
of a gene. In our formulation, entropy = 0 should be assigned to a gene with a single exon;
the highest entropy, instead, should be assigned to a gene with several isoforms, each of
them differing a little from one another.

An indirect method for evaluating the results consists in looking at the variation in
the expression profiles of the isoform within a gene. Thorough studies pointed out that, at
least for human genes, very few isoforms are really important within a gene [33,44]. Hence,
a possible way to compute indirect and unbiased statistics on expression level estimation
methods may consist in evaluating the results with an eye of what realistic scenarios look
like. Also, this point of view applied to experiments on simulated reads may help in
evaluating a method exactly but, in some sense, less artificially.

7.5 Summary and conclusions

We developed a new annotation-guided method for quantification of isoforms expression
levels. The elements of novelty of our approach lie on a layout-guided alignment technique,
and to a combinatorial algorithm that finds a heuristic solution to the linear system
associated to a gene by reducing the problem to that of finding an optimal solution to a
high-quality sub-problem.

The pipeline we built consists in the following steps:

1) inserts assembly with GapFiller;
2) perform trusted contigs alignment against the reference genome;

3) compute exon coverages;
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4) define the linear system for each gene and solve it.

Concerning step 1), we store insert-contigs layout (see 6.1.1). Alignment of insert-
contigs performed in step 2) is then used to retrieve reads location on the genome, thanks
to layout information. In order not to introduce coverage artifacts, at step 3) a single
alignment for each read is retained, moreover, non-uniformity of coverage is reduced by
neglecting exon subsequences exhibiting peaks in coverage. At step 4), a linear system
is defined for each gene, following the definition of exons reported in Section 7.3.1 and
employing coverage values computed at previous steps.

The last part of our pipeline allow for further development ad refinement. For instance,
we can try different and more sophisticated objective functions. Most importantly, we must
define a heuristic aimed at correcting solutions that exhibit negative components: this can
be done by computing a set of solutions—each corresponding to a square sub-system—
instead of a single one, or by refining coverage estimates within the neighborhood defined
by coverage standard deviation. We believe that adding combinatorial information on the
biological meaning of the problem is a key point that, possibly, can be refined at a second
stage of RNA-Seq data analysis with suitable statistical methods.

Tesi di dottorato di Francesca Nadalin, discussa presso I’Universita degli Studi di Udine.



Conclusions

In this thesis we studied several problems concerned with the analysis of biological se-
quences. Paired reads play a key role in the analyses, allowing to connect contiguous
stretches of DNA or RNA, validate an assembly, aid reads alignment with respect to a ref-
erence, and find structural variations among genomes. Sharpening pair information with
insert assembly, makes GapFiller a useful tool for a number of biological applications,
ranging from genomics to transcriptomics. The availability of the contiguous nucleotide
sequence between two pairs allows, in fact, more accurate, i.e., specific, predictions. To
reach this goal, sequence correctness is of utmost importance and we adopt refined heuris-
tic that allowed to get a certified output that does not need validation.

The application of GapFiller to de novo assembly as a preprocessing step yielded re-
sults comparable to that obtained with state-of-the-art assemblers on public real datasets.
Moreover, sequence correctness has been extensively tested on simulated data and the
result was that the false positives rate was always almost negligible.

Using paired reads to enhance reads alignment against a reference genome is a widely
employed technique that allow to disambiguate multiple mapping locations and recognize
pair-incompatible alignments. Concerning the task of mapping RNA-Seq reads against the
reference genome, insert-size information is useless when paired reads come from different
exons, moreover, gaps occurring within reads spanning splicing junctions make alignment
harder and resource-demanding.

Concerning applications to RNA-Seq data analysis, we employ insert information to
both guide RNA-Seq reads alignment, employing the layout of reconstructed inserts, and
recognize pair-compatible alignments. We deeply analyzed the ability of our alignment
method to annotate splicing junctions, without requiring prior annotation information,
but using instead a combination of inserts alignment and dinucleotides check on putative
splicing sites. By aligning inserts and then retrieving reads position on the genome, the
method turns out to be the highest specific one among the set of tools we tested, and it
has shown high alignment accuracy by correctly recognizing spliced and unspliced reads.
Application of our RNA-Seq reads alignment method to the computation of expression
levels of alternative transcripts is outlined within a linear system that represents the
exon-isoform structure of each gene. Still focusing on accuracy, we proposed a parsimony
approach to the problem that employs only the necessary information on exons coverage.
To this aim, we introduced a general method to compute such information on a set of high-
quality exons. Even though this last method needs further improvement in the detection of
low expressed isoforms, we observed good precision in the computation of RPKM values.
Moreover, the proposed method is very general, hence it can be extended towards various
directions.

Summarizing the main findings, we stress again the importance of taking advantage
of information coming from data to the highest possible level. We focused on the massive
usage of paired reads, and found out that this approach allows to obtain accurate pre-
dictions, by implicitly eliminating what is inconsistent (i.e., pair-incompatible) with the
data.
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