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On Exactitude in Science 

…In that Empire, the Art of Cartography attained such Perfection that the map of a 

single Province occupied the entirety of a City, and the map of the Empire, the entirety 

of a Province. In time, those Unconscionable Maps no longer satisfied, and the 

Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, 

and which coincided point for point with it. The following Generations, who were not 

so fond of the Study of Cartography as their Forebears had been, saw that that vast 

Map was Useless, and not without some Pitilessness was it, that they delivered it up to 

the Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are 

Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is 

no other Relic of the Disciplines of Geography. 

- Suarez Miranda, Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658 

translated by Andrew Hurley 

 

 

 

La duda es uno de los nombres de la inteligencia. 

Doubt is one of the names of intelligence. 

- Blas Matamoro (Ed.) Diccionario privado de Jorge Luis Borges (1979) 
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Abstract 

 

Soil organic matter (SOM) is a key soil component as it affects nearly all properties 

that are significant for the agronomical and environmental functions of soils. Soil 

organic matter is important to warranty the crop productivity needed to satisfy the 

food demand of the increasing global world population and to reduce greenhouse 

gases emissions and the consequent adverse environmental impact caused by climate 

change. 

The significant losses of SOM recorded worldwide in the last decades have raised 

concern about the necessity to recover and increase SOM levels. In particular, soil C 

sequestration, i.e. the long-term removal of CO2 from the atmosphere into the soil, has 

been proposed as a valuable strategy to guarantee the agronomical and environmental 

functions of soils ecosystems.  

Among the available soil management options fostering soil C sequestration, 

amendment is considered to be one of the more effective. The increased amount of 

organic residues applied to the soil in response to economical, legislative and social 

drivers has highlighted the need to optimize exogenous organic matter (EOM) 

amendment in order to increase its agronomical benefits and avoid potential adverse 

environmental effects. 

Soil organic C (SOC) models represent a reliable solution for an efficient 

management of EOM amendment, for their ability to simulate future trends in SOC 

and the possibility to study different climate and management scenarios. However, 

there are no soil C models specifically developed to evaluate the C sequestration 

potential of amended soils.  

The most widely utilized soil C model, the Rothamsted Carbon Model (RothC), does 

not allow C inputs to the soil deriving from crop residues and EOM to be discriminated 

and the quality of the organic matter entering in the soil is only defined by the ratio 

between decomposable and resistant organic materials. Previous research has 

indicated that, given the high variability in the composition and properties of EOMs, 

partitioning of EOM into a number of discrete pools and estimation of their functional 

characteristics are the main scientific challenges for reliable C modelling of amended 

soil. 
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Therefore, the main aim of this study was to devise an easy and reliable procedure 

for the optimization of the RothC model to improve the prediction of the long term C 

sequestration potential of EOM added to the soil at both local and regional scale by:  

-  developing an approach to use information derived from laboratory incubation 

experiments to define the size and functional properties of EOM pools. 

-  evaluating the relative potential of several EOMs in terms of soil organic C 

sequestration in relation to their chemical and physical characteristics, 

environmental conditions, agricultural management and future climate change. 

 

The following procedure was adopted to achieve this goal:  

- the source code of the RothC model was modified to allow assignment of 3 

additional entry pools of EOM (decomposable, resistant and humic-like) with 

specific decomposition rates. 

- an Excel version of the modified model was used to define partitioning factors 

and decomposition rates of EOM entry pools by fitting the cumulative 

respiration of soil amended with different EOMs (compost, bioenergy by-

products, anaerobic digestates, meat and bone meals, animal residues, crop 

residues, agro-industrial wastes, sewage sludges) during laboratory 

incubations. The fitting was obtained minimizing the difference between 

simulated and measured respiration by adjusting the size and the 

decomposition rates of EOM pools.  

- a procedure was devised for spatially explicit SOC modelling of amended soil 

under climate change by linking Geographic Information Systems, containing 

detailed information on soils, land use and climate, with the RothC model. 

- the model optimized for the simulation of organic C mineralization in amended 

soils was run in the long term (2001-2100) simulating soil additions of different 

EOMs at both site and national scale (Italy) under different future climate 

scenarios. 
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The main conclusions of the study were: 

- the modified Roth C model, considering discrete EOM pools with specific 

decomposition rate, is effective in predicting the net cumulative respiration 

from amended soil incubated under laboratory conditions. 

- utilizing a unique set of EOM parameters for EOM type resulted in a difference 

of less than 10% in the prediction of long term C evolution (100 years) of 

amended soil in comparison to a simulation performed with EOM specific 

parameters. 

- predicted climate change in the present century will speed up SOM 

decomposition leading to a generalized SOC decrease in Italian soil of 7.4%, on 

average, between 2001 and 2100. 

- EOMs greatly differed for their long term (100 years) soil C sequestration 

potential (range of annual rate of C sequestration potential 0.110-0.385 t C ha-1 

y-1). 

- soil C sequestration potential of compost applied for 100 years to all Italian 

agricultural land at a rate of 1 t C ha-1 y-1 and under climate scenario PCM B1 

was 6.15 Mt C ha-1 y-1 corresponding to 4.6% of the total annual greenhouse 

gases emissions in Italy. 

- soil C modelling of amended soil at national scale showed a great variability in 

long term (100 years) SOC accumulation potentials (1 order of magnitude) 

depending on combination of EOM type, environmental properties (soil, 

climate) and management options (land use and soil management). 

- spatial explicit modelling of amended soils allowed areas with greater potential 

for soil C sequestration to be identified, therefore providing useful information 

to optimize resources: 100 years of application of the whole compost produced 

in Italy to the land with the smallest and largest potential for C sequestration 

resulted in a mean SOC increment of 27 and 55 t C ha-1, respectively (i.e. 2-fold 

increment). 

- soil C modelling of amended soil at regional scale could be useful to identify the 

relative importance of the different factors favouring organic C storage in the 

soil: in the present study temperature had a major impact on determining the 

observed SOC evolution. 
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 The main innovative aspects of this work consist in: 

- modification of the RothC model to improve the capacity of simulating SOC 

trends in amended soil. 

- parameterization of the modified RothC by fitting respiratory curves from short 

term laboratory incubations of soil amended with EOM of different origin and 

properties. 

- deployment of a procedure for spatially explicit modelling of SOC in amended 

soil. 

 

Results of the present work highlighted the relevance of laboratory incubation 

experiments of amended soil for the improvement of SOC modelling of amended soils 

as a valuable tool for planning future land uses and policies aimed to foster soil C 

sequestration, reduce CO2 emissions and warranty the sustainability of agricultural 

ecosystems. 
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1. Introduction 

 

1.1 Exogenous organic matter (EOM) 

 

1.1.1 Agronomical and environmental importance of soil organic matter 

 

Soil organic matter (SOM) is one of the most important components of soil as it 

influences virtually all the properties of soil that control agricultural and environmental 

functions. It constitutes a great reservoir of C, N and other plant nutrients and plays an 

important role in improving physical, chemical and biological characteristics of the soil 

(Petersen et al., 2005a). Soil organic C (SOC) is the C content of SOM, which is mostly 

around 50 to 60%. The value of organic matter (OM) in enhancing soil quality from an 

agricultural point of view is well known and documented by a large number of 

scientific studies and experiments. Improved soil fertility by increased levels of OM 

allows costs and energy for tillage, irrigation and fertilization to be reduced and saved, 

because of improvements in important soil properties such as: soil structure, tilth, 

workability, water holding capacity (WHC), porosity, bulk density, cation exchange 

capacity, micro-organisms activity and fertilizer efficiency. An appropriate level of 

fertility limits exploitation of non-renewable resources (e.g. fossil fuels, phosphates) 

and excess of energy expenses (e.g. production of chemical fertilizers and pesticides, 

treatment and disposal of organic wastes). At the same time adequate SOM levels 

decrease soil sensitivity to erosion and compaction. 

 

The effects of SOM on soil fertility are relevant in the perspective of the anticipated 

increase of world population. At the present rate of increase (1.3% per year), world 

population is expected to reach 7.5 billion by 2020 and 9.4 billion by 2050 (Lal, 2006a). 

Most of the future increase in world population will occur in developing countries 

where environmental resources are scarce. It has been estimated that food production 

must be increased by 778 million tons (or by 2.5%) per year between 2000 and 2025 to 

meet the needs of the increasing population (Lal, 2006b). On the other hand, the 

amount of productive soil area that can be dedicated to agriculture is not expected to 

increase due to the fact that all the soil best suited for agriculture has already been 
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utilized. Moreover, in developed countries the top productive areas are decreasing as 

they are increasingly used for construction of urban and commercial areas. 

Consequently, the challenge to ensure sufficient food production for the increasing 

world population could be met only by enhancing soil fertility. To achieve this goal the 

presence of an appropriate SOM content is essential. 

 

Besides the positive effects on soil fertility, SOM plays a range of key environmental 

functions. In particular, SOM affects the quality of waters, regulates erosion processes 

and maintains a high degree of biodiversity, contributing to the sustainability and the 

equilibrium of anthropogenic and natural ecosystems. The unparalleled increase in the 

atmospheric concentration of the 3 main greenhouse gases (GHG), namely CO2, N2O 

and CH4 recorded in the last century and their negative environmental consequences 

on climate change has raised the attention of the scientific community on the role that 

SOM can exert in this context. Globally, the total quantity of organic C stored in the 

first 20 centimetres of soil is about 615 Gt, while the amount stored in the first meter 

is approximately 1550 Gt (Stockmann et al., 2013). The latter amount is roughly twice 

the content of C in the atmosphere (750 Gt) and 2.8 times the terrestrial biotic pool 

(560 Gt) (Lal, 2008). As a consequence, even slight changes in SOC content at world 

level present clear potential consequences for the atmospheric levels of GHG and the 

consequent climate change. For example, a variation of just 10% in the SOC global pool 

equals 30 years of anthropogenic emissions and could significantly affect 

concentrations of atmospheric CO2 (Kirschbaum, 2000). 

 

1.1.2 Losses of soil organic matter 

 

Despite the acknowledged agronomical and environmental importance of SOM, in 

the last decades a significant loss of SOC has been recorded worldwide, which has 

mainly been attributed to the cultivation of new land and the intensification of 

agricultural practices (Bellamy et al., 2005; Lal, 2004; Lal, 2006b). 

Cultivation of natural ecosystems (forests, pastures, etc.) and the intensification of 

agricultural systems are among the predominant global changes of the last century. 

These transformations were able to satisfy the food and fibre requirements of the 
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world’s population, but such requirements are expected to significantly increase in the 

21st century due to the foreseen increase in global population. Most of the best quality 

land is already used for agriculture, which implies that further possible expansion 

would occur on marginal land, unable to sustain high yields (Tilman et al., 2002). 

Therefore, satisfaction of the future needs could be guaranteed mainly by intensive 

production practices (Powlson et al., 2001). Indeed, agricultural intensification, 

characterized by high mechanization, chemical inputs, high yielding varieties and 

irrigation, has been able to increase global food production for the last 50 years. 

However, concerns have been raised over both the long-term sustainability and 

environmental consequences of the intensification of agricultural systems and the 

ability to feed the rapidly growing population in the 21st century (Matson et al., 1997). 

In areas of East and Southeast Asia, warnings of productivity decline due to the lack of 

resources (water) and increased susceptibility to disease and insects pests have been 

observed (Matson et al., 1997; Tilman et al., 2002). Moreover, it is now clear that 

expansion of agricultural land and intensification can have negative environmental 

consequences such as increased erosion, reduced biodiversity, pollution of water and 

eutrophication. In particular, with concern on the C cycle, conversion of natural 

systems to agricultural systems and intensive agriculture has resulted in a significant 

depletion of the SOC pool.  

Loss of organic C in cultivated soils is a worldwide phenomenon. Bellamy et al. 

(2005) estimated a mean C loss from soils across England and Wales of 0.6% y-1 

between 1978 and 2003. In the Mediterranean area 74% of the land is covered by soils 

containing less than 2% of SOC with a decrease estimated at around 50% of the 

original content (Van-Camp et al., 2004). Soil in the tropics and subtropics has lost 60-

80% of its SOC pool (Lal, 2006b). The global cumulative historic loss of C by cultivation 

is enormous and is estimated at 78 ± 17 Gt by Lal (2003) and 55 Gt by Cole et al. 

(1996). In the developed country, the recent growing demand for bioenergy 

production poses a further threat to SOM, as bioenergy crops removal may exacerbate 

SOM losses due to the lack of crop residues return to the soil. Traditional agricultural 

managements in developing countries, such as removal of crop residues and non-

utilization of manure in soil, exacerbate soil C loss (Lal, 2006b). 
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The reduction in SOC leads to a decrease in soil fertility and the onset of several 

degradative processes such as erosion, desertification, compaction and nutrient 

deficiency (Lal, 2004). It has been estimated that roughly 2 billion ha of land are 

affected by degradation, which is over 30% of all land on earth (Oldeman, 1994). The 

EU Commission has identified OM decline as one of the main threats to soils within 

Europe (Jones et al., 2004). There is considerable concern that, if SOM concentrations 

in soils are allowed to decrease too much, then the productive capacity of agriculture 

will be compromised. It has been estimated that 45% of European soils have a SOC 

content lower than 2%, which has been suggested as a critical level (Rusco et al., 2001; 

Loveland and Webb, 2003). 

Besides the impact on soil quality and productivity of agricultural ecosystems, SOC 

losses present a significant impact on atmospheric GHG levels: 1 Gt C loss is an 

equivalent to an atmospheric enrichment of CO2 by 0.47 ppmv (Lal, 2007). 

 

1.1.3 Soil C sequestration  

 

Due to the key agronomical and environmental functions of SOM, it is of the utmost 

importance for the sustainability of society to restore, maintain and increase SOM 

levels. 

In particular, the size of SOC reservoirs in soil has led to suggestions, from both 

scientists and politicians, that increasing the amount of SOM might be a potential 

strategy for tackling GHG emissions (Freibauer et al., 2004; Smith, 2004a) through the 

process of soil C sequestration. Soil C sequestration is defined as long-term (i.e. > 100 

years) or permanent removal of CO2 from the atmosphere into the soil (Stockmann et 

al., 2013). More precisely, according to Bernoux et al. (2006) “Soil C sequestration for a 

specific agro-ecosystem, in comparison with a reference, should be considered as the 

result for a given period of time and portion of space of the net balance of all GHG 

expressed in CO2 equivalent computing all emissions sources at the soil-plant-

atmosphere interface, but also all the indirect fluxes (gasoline, enteric emissions and 

so on)”. Soil C sequestration may have the potential to offset fossil-fuel emissions by 

0.4-1.2 Gt C y−1, corresponding to 5-15% of the global emissions (Lal, 2004). The term 

soil C sequestration therefore, implies a ‘lock up’ of C from atmospheric CO2 in the soil 
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either through accumulation of very stable C (e.g. charcoal) or by alteration of the 

relative magnitude of soil C pools with different residence time (Stockmann et al., 

2013). When C inputs are greater than losses, SOC accumulates in the soil and after 

microbial decomposition and transformations into stable SOM the additional C is 

sequestered into the soil. The inputs of OM include plant and animal residues. The 

losses from the soil include decomposition, leaching and erosion of OM and burning of 

crop residues. The potential for increasing C storage in cropland worldwide has been 

estimated at about 0.6-1.2 Gt C y−1 or 18-36% of the annual increase in C in the 

atmosphere (Lal, 2004). 

However, there are several indications that raise concern about the effectiveness of 

C sequestration in soil as a strategy to effectively address GHG emissions (Wanderer 

and Nissen, 2004). Soil C sequestration has a finite potential and a yearly increase in 

SOM can be sustained for only 50-100 years and, as soil tends to approach a new 

equilibrium, the increase in SOC slows down and eventually ceases (Powlson et al., 

2012). In addition, this theoretical potential is further decreased by several constraints 

such as: land suitability, unavailability of land and resources and socioeconomic 

restrictions. Due to this limitation, it was estimated that only 20% of the soil C 

sequestration potential is realistically achievable (Freibauer et al., 2004; Smith, 2004a). 

Another limitation is that C sequestration is not permanent and is reversible if the soil 

management leading to the increased SOC is not maintained (Powlson et al., 2011b). 

  Therefore, soil C sequestration can play only a minor role in the reduction of GHG 

emissions. It is widely recognized that if CO2 concentrations are to be stabilized at 

reasonable levels (450–650 ppmv), the main solution to avoid climate change is a 

drastic reduction in GHG emissions by finding new energy technologies that do not 

emit C. In fact, under the highest emission scenarios it was estimated that soil C 

sequestration can contribute to a reduction of only 2-5% of total GHG emissions in EU-

15 (Smith, 2004a).  

 

Notwithstanding these constraints, C sequestration still represents an attractive 

strategy for two main reasons.  

From the exclusive point of view of climate change, it is recognized that in order to 

achieve acceptable levels of GHG it is necessary to obtain their sudden decrease in the 
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next 20-30 years (IPCC - Intergovernmental Panel on Climate Change, 2000; Wanderer 

and Nissen, 2004). Carbon sequestration is likely to be particularly effective in reducing 

atmospheric CO2 levels in the first 20-30 years of its implementation and it should be 

included in any set of measures aimed to reduce atmospheric CO2 concentration, thus 

allowing time to be saved while technologies designed for the reduction of emissions 

of GHG are developed. During this critical period, C sequestration has been shown to 

be the most cost effective and feasible measure aimed at the reduction of GHG 

emissions (Marland et al., 2001). 

From a wider perspective it is essential to consider that soil C sequestration is only 

one of the many beneficial environmental and economical implications of appropriate 

SOM management. Improved SOM management, necessary to achieve the 

sequestration of C in soil, is likely to have marked positive impacts on soil quality, 

ecosystem functioning and economical sustainability (Lal et al., 1998; Dumanski, 2004; 

Powlson et al., 2011b).  

 

1.1.4 Soil amendment as management option to promote soil C sequestration 

 

1.1.4.1 EOM definition and production 

 

 There are several soil management options that can be set up to recover and 

increase SOM and, amongst land management options, soil amendment with 

exogenous organic matter (EOM) is considered to be one of the more effective ways of 

restoring SOC and offsetting climate change (Lal, 2004; Smith 2004a, b).  

 Exogenous organic matter is all OM of biological origin that is returned to the soil 

for the purpose of growing crops, improving soil quality and restoring or reclaiming 

land for future use. EOM includes organic residues from agricultural, urban and 

industrial origin as well as the products of their processing (Marmo et al., 2004). As 

such EOMs include a very wide range of bio-wastes from a considerable variety of 

sources. EOMs may have various forms (solid, liquid, pasty) and undergo a treatment 

before application to the soil. Their use in agriculture depends on the agronomic value 

(stabilization degree, content of OM and nutrients) and the absence of risks for health 

and environment (content of xenobiotics and pathogens). 
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 At European level, about 1200 million tonnes of EOMs are produced each year (with 

exclusion of crop residues), divided into 81% of animal origin, 9.5% of municipal wastes 

(sewage sludge, biowaste and green waste) and 9.5% of agro-industrial waste. 

However, more than 90% of EOMs applied to the soil (excluding crop residues) are of 

animal origin (Marmo, 2008). 

 In Italy, about 150 million tonnes of EOMs are produced every year divided in 87% 

manures, 4% agro-industrial wastes, 5% sewage sludges and 3% from municipal solid 

bio-wastes and green wastes. 

  

 The utilization of organic amendments is increasing due to enhanced social 

awareness about the importance of protecting the environment and the fact that 

current legislation promotes the recycling of organic wastes. Source separation of 

municipal solid wastes is becoming mandatory in all developed country and this 

generates increasing amount of organic wastes that need to be disposed in an 

environmental sound way. A further incentive for the agricultural recycling of organic 

residues is represented by the development of organic farming.  

Recently, legislative and environmental drivers favoured the agricultural recycling of 

a wider range of organic residues. Such residues are either not usually applied to soil 

or novel and therefore raise the issue of their impact on soil fertility and the 

environment. 

 First, the ban in early 2000 to utilize meat and bone meal for animal production as 

a consequence of the appearance of Transmissible Spongiform Encephalopathies 

(TSEs) has suggested soil application of not infected meat and bone meal and other 

animal residues as a sustainable solution for their disposal. 

Second, the constantly increasing interest in using renewable energy sources it is 

likely to produce considerable amounts of bioenergy by-products and poses the 

problem of their disposal. Such organic residues may still contain large amounts of 

organic C and a significant content of a wide range of nutritive elements. As a 

consequence they are very attractive as soil amendments or fertilizers and it is likely 

that the amount of bioenergy by-products that will be returned to the soil will 

significantly increase. However, bioenergy by-products are derived from a broad range 

of feed-stocks and present highly variable physicochemical characteristics and 



 
 
8 

therefore can affect the soil ecosystem in different and unpredicted ways (Cayuela et 

al., 2010). 

 Soil amendment is often referred as a win win strategy as it allows solving the 

problem of organic residues disposal, restoring SOM depleted soil and building up SOC 

stocks (Karhu et al., 2012). 

 

1.1.4.2 EOM decomposition 

 

 Soil organic C stocks in soil depend on the equilibrium between the OM entering in 

the soil (i.e. crop residues and EOM) and OM decomposition.  

 Soil organic matter decomposition is a complex multi stage process which is 

mediated by microorganisms, consisting in the breakdown of complex organic 

materials into simpler components and represents an important process that makes 

organically bound nutrients available for utilization and cycling (Franzluebber, 2004). 

Exogenous OM decomposition may be defined as the combination of 3 processes: 

- transformation: conversion of organic C from a chemical structure to another 

following enzymatic attack and chemical reactions  

- assimilation: incorporation of organic C into the tissues of the decomposer 

organisms 

- mineralization: conversion of organic C in CO2 by respiration 

 The rate of EOM decomposition in soil is critical to determine soil C accumulation 

and the effects on soil properties and nutrient cycling. EOMs decomposition after 

addition to the soil depends on their biochemical composition, the size and activity of 

soil microorganisms and by several environmental factors.  

 Exogenous OM of animal and vegetal origin consisting of several compounds with 

distinct degree of degradability: a) highly labile intercellular compounds such as 

proteins and sugars, b) moderately resistant structural compounds such as cellulose, 

hemicellulose and collagen, and c) resistant structural compounds such as lignin, 

polyphenols, lipids, cutin and keratin. The rate of decomposition of the whole EOM 

depends on the relative proportion of the different compounds (Franzluebber, 2004). 

Besides chemical composition, the processes that originated the by-products and the 

treatments they were subjected in order to transform and/or stabilize their OM are of 
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the greatest importance in determining the susceptibility of added organic residues to 

microbial degradation in the soil. As an example, composted EOMs decompose slowly 

when added to soil because they have already undergone a significant amount of 

decomposition during the composting process.  

 Soil microorganism plays a pivotal role in EOM breakdown and transformation. 

More than 90% of OM is decomposed by bacteria and fungi, but also meso- and 

macro-fauna play an important role by creating environmental conditions conducive to 

microbial decomposition. Bacteria generally dominate the initial phases of 

decomposition, because they can develop rapidly on easily degradable compounds (i.e. 

soluble sugars, globular proteins). Fungi dominate in the latest phases of the 

decomposition process as they are able to decompose more recalcitrant material that 

is for the most part unavailable to bacteria. 

Among the environmental factors affecting EOM decomposition, the main 

important are soil temperature, texture, humidity, pH and content of available 

nutrients. 

Moreover, it needs to be considered that climate change may vary the turnover of 

EOMs by altering the factors that regulate their decomposition. 

 EOM decomposition takes place in a wide range of time and intensity of the 

process. The first phase of decomposition is relatively fast in the case of not stabilized 

EOM and results in the loss of 15-66% of the organic inputs within one or two years 

after soil addition (Jenkinson and Rayner, 1977). Successively, the rate of 

decomposition slows down with about 90% of the added EOM decomposed in a period 

from 10 to 100 years. Finally, in the third phase of the process the whole EOM is 

decomposed with a turnover time from 100 to 1000 years. 

 The most common parameters utilized for the evaluation of EOMs in terms of their 

decomposability in the soil are C and N content and their ratio (C/N). Other 

parameters indicative of the degree of stabilization of EOMs are extractable organic C 

and N and the content of compounds of biological relevance (i.e. soluble fraction, 

cellulose, hemicellulose, cutin and lignin). The degree of stabilization of EOMs is 

further evaluated by determining C and N mineralization in incubation studies of 

amended soils. 
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1.1.4.3 EOM and soil C sequestration 

 

Regarding the role of amendment as a way to offset GHG emissions, it is important 

to acknowledge that soil application must represent an alternative fate to the current 

disposal option of EOM, as C sequestration is defined in terms of net balance of all SOC 

losses and gains. Since EOM was previously mostly disposed of to landfills or burned, 

soil amendment with EOM eliminates the corresponding emissions and this therefore 

constitutes a net contribution to climate change mitigation (Powlson et al., 2011b; 

2012). 

The rate of potential C sequestration by soil amendment in European soils has been 

estimated at 0.42 t C ha−1 y−1 (Smith et al., 2008) for manure/biosolid application and 

0.40 t C ha−1 y−1 by Freibauer et al. (2004) for amendment, although the increase in 

SOC necessarily decreases with time, as a new equilibrium value is approached 

(Powlson et al., 2012). Arrouays et al. (2002) evaluated the potential rate for C 

sequestration of compost to be in the range 0.23-0.55 t C ha−1 y−1 for a period of 20 

years of application. Powlson et al. (2012) evaluated at 5.1 t CO2-eq ha−1 y−1, the net 

CO2 saving due to SOC change for an application of green compost at a rate of 36 t 

fresh weight ha-1 y−1.  

The prerequisite for developing policies for increasing C sequestration by organic 

amendments is the availability of data and/or tools that can be used to demonstrate 

variations in C stocks due to changed management. Measuring changes in soil C stocks 

by repeated measurements is expensive (Mäkipää et al., 2008) and soil C modelling 

could be a cost effective option for verifying changes and approaching long-term 

effects of amendment, which are particularly relevant to evaluate the effect of 

repeated applications of EOM on SOC trends (Gabrielle et al., 2005). 

 

1.2 Soil C modelling of amended soil  

 

1.2.1 Soil C models 

 

Models are simplified representations of the reality with well defined boundaries 

(Smith and Smith, 2007). More specifically, soil C models accurately describe long-term 
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SOC trends under different climatic conditions and soil types (Smith et al., 1997). SOC 

models are predictive as they are generally used to anticipate a certain phenomenon, 

either for research purpose or as a tool to assist land users and decision makers in 

developing sustainable environmental policies. 

Soil C models are generally multi-compartmental, assuming that SOC is split in 

various pools with in turn decay according to first order kinetic, and dynamic, i.e. 

environmental variables vary with time. Dynamic models can be further divided in four 

classes (Paustian, 1994; Battle-Aguilar et al., 2011): 

- Process-orientated multi-compartment models: simulate the processes 

regulating the flow of energy and matter transformation. SOC pools, composed 

by fractions of SOM with similar chemical composition and degradability, are 

linked to each other by C flows and are characterized by different decomposition 

rates. Models in this category are the most widely utilized and include 

Rothamsted Carbon Model (RothC), CENTURY, NCSOIL, DAISY, CANDY and DNDC 

- Organism-orientated: simulate the flow of nutrients and energy in soil through 

various functional or taxonomic groups of biota 

- Integrated: link process to organisms orientated models 

- Cohort: convert SOM in different cohorts, items sharing some particular 

characteristics (e.g. age, origin), which are further divided into different pools 

(e.g. C, N). In these models SOM decomposition is not regulated by physical and 

biochemical processes, as in process-based models, but microbial physiology 

represents the main driving factor for SOM decomposition. 

 

 To date, more than 250 models for simulating SOC trends and nutrient cycling have 

been developed (Manzoni and Porporato, 2009). These models differ in assumptions 

and processes responsible for SOM transformation, but most of them divide SOM in 

different pools with distinct properties and decomposition rate. 

Simulation models allow studying experimental results by comparing predictions 

with measurements, and therefore checking the validity of the theory embedded in 

the models, which describes system behaviour (Cavalli and Bechini, 2011). 

Consequently they are an important tool to understand SOC dynamics and develop 
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management strategies to optimize inputs for C sequestration. Soil C models have the 

potential to: 

- compare the effects of different conditions 

- quantify expected results 

- describe the effect of complex factors as variations in the input  

- explain how the underlying processes contribute to the observed results 

- extrapolate results to other situations 

- make future projections of change in SOC under different management and/or 

climate scenarios 

 

In the framework of long term consequences of SOM management, models can be 

useful to investigate the effects of climate change and land use and management on 

SOM and support policy decision regarding C sequestration options. For this purpose 

reliable information on which management leads to the higher build up of C stocks is 

important and consequently, there is an urgent need to have reliable methods to 

measure changes in SOC and to evaluate trends in SOM content. In addition, methods 

leading to reliable, transparent and verifiable changes in soil C stock are at the basis of 

the inclusion of soil C sequestration from agricultural soils and land use changes 

among the measures internationally agreed under the Kyoto Protocol. 

However, SOC changes in soil tend to occur slowly and in temperate regions it is 

common for small changes to be undetectable within one or two decades even after a 

major change in agricultural practices. This is partly because the changes occur against 

a relatively large background content of SOC and partly because spatial variability 

makes changes in SOC difficult to measure (Powlson, 1996). 

Long term experiments are the ideal tool of detecting and quantifying slow change 

in SOM, but it is not feasible to conduct long term experiments covering all the 

possible combinations of climate and management options and providing results 

within a reasonable time. Soil organic C models are a reliable and practical solution to 

this problem as they can estimate C stocks, make projection of likely trends in SOC and 

estimate C storage potential for many different combinations of soil type, 

environment, land use, management options and climate change scenarios (Powlson, 

1996). They can be used to analyse specific pedoclimatic and management scenarios, 
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and to identify the solutions that maximise C storage in the soil (Cavalli and Bechini, 

2012). Thus models represent a tool to extrapolate current knowledge both in time 

and space. 

 

1.2.2 Modelling soil organic C in EOM amended soil  

 

1.2.2.1 Application of soil C models to amended soils 

 

In the context of predicting SOC sequestration levels that could be achieved by soil 

amendment, a key issue is the influence of EOM quality on the long term persistence 

of C added to the soil (Corbeels, 2001), as the size of the C pools and their 

decomposability will ultimately determine the amount of EOM C that will remain in the 

soil. 

EOM mineralization is an extremely complex process because organic materials 

added to the soil contain a wide range of organic substances. The biological 

decomposition of EOM depends on the decomposition rate of each one of the classes 

of the organic compounds present in the sample, which in turn depends on their 

content of N, S, soluble C, lignin and various carbohydrates. Such composition is 

extremely variable, since organic residues may have plant and animal origin and may 

have undergone different stabilization treatments, such as composting, desiccation, 

anaerobic digestion and physical separation. Decomposition rate is also affected by soil 

and environmental conditions.  

Process-oriented modelling offers in principle a unique mean of addressing the high 

variability in the properties of EOM, the effect of different pedoclimatic conditions and 

the complexity of mechanisms and the several factors affecting soil C mineralization. 

As a matter of fact, deterministic multi-compartmental C and N models have been 

applied also to the simulation of soil mineralization in soils amended with different 

EOM types. In models that simulate EOMs decomposition they are usually considered 

as several independent components differing in their decomposability. The aim of 

EOM decomposition modelling is to define the composition, size and specific rate of 

decomposition of such components and thereby be able to predict the rate of 
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decomposition of any EOMs, assuming that they only differ by the relative content of 

those components (Antil et al., 2011). 

The possibility to use multi-compartmental models to simulate SOC trends following 

EOM amendment in comparison to control plots is made possible by the linearity of 

these models, in which EOM pools decomposition are described by first order 

differential equations. This implies that: 

-  the evolution of X kg of input is X times the evolution of 1 kg of the input (addictive 

effect of C entering in the soil) 

-  the decomposition of a particular C pool is independent from the other pools 

- all other conditions being the same, the simulated difference in SOC stocks between 

amended and control soil is exclusively attributable to EOM addition and 

decomposition. 

The linearity of models simulating SOC accumulation due to EOM application avoids 

the difficult phase of estimating the initial size of SOM pools. This approach was 

followed by Henriksen and Breland (1999b) in a study about decomposition of crop 

residues in the field: as the authors were only interested in the simulated turnover of 

residue-derived C and N, they set to zero the initial values of the soil microbial biomass 

and humus pools. Similarly, Henriksen et al. (2007) found that the effect of calibrating 

the model with data from the control soil had a little effect on the predicted 

mineralization of plant residues. In their model, the only influence of soil on the 

simulated decomposition of crop residue would be through humus mineralization. 

However, the fraction of decomposed residue-derived C incorporate into humus is 

small and consequently, the effect of varying humus decomposition rate constant on 

predicted mineralization of EOM-derived material is presumably small. 

However, model linearity involves a number of simplifications, including the 

inability to take into account the influence of priming effect, that is the change in the 

rate of decomposition of the native SOM due to EOM addition (Fontaine et al., 2003). 

Such limitation is present, for example, in the RothC (Peltre et al., 2012) and CN-SIM 

models (Cavalli and Bechini, 2012). A non-linear approach is possible, but more 

complicated to implement and requires a scale-dependent description and location of 

C (Monga et al., 2008). 
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The reliability of models in predicting long term changes in SOC following soil 

amendment was recently demonstrated by Karhu et al. (2012), Plaza et al. (2012) and 

Peltre et al. (2012) who found good correlations between modelled and measured C 

stocks for different types and amounts of EOM.  

Table 1 reports some examples of soil C models that have been utilized to simulate 

SOC trends in amended soils at field scale. 
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Table1. Soil C models utilized for SOC simulation in amended soils. 
Model EOMs Application rate           

(y-1)

Simulation 
period (y)

Reference

RothC Chicken and dairy manure 170-670 kg N ha-1 2 Abbas and Fares, 2009 
RothC Cattle and pig FYM and slurry, broiler litter 0.6-7.0 t C ha-1 14 Bhogal et al., 2010

RothC FYM, WS, SS, sawdust, compost 6.5-30 t ha-1 11-52 Peltre et al., 2012 
RothC User defined User defined User defined Carbo-PRO web tool, 2012

RothC FYM 10-15 t fw ha-1 25 Yokozawa et al., 2010 

RothC Waste garden compost 5-45 t ha-1 15 Tits et al., 2014

C-simulator Waste garden and household waste compost 30 t ha-1 13 Tits et al., 2010

CN-SIM FYM 2 t C ha-1 52 Petersen et al., 2005

DAISY Oilseed rape straw 8 t ha-1 2 Mueller et al., 1997

DAISY WS, maize, blue grass 6 t fw ha-1 1 Mueller et al.,  1998  

DAISY FYM, WS, sawdust 6.5 t dm ha-1 35 Bruun et al., 2003 

DAISY MSW compost, SS, FYM, cattle slurry 200 kg N ha-1 50 Peltre et al., 2013

DAISY Compost 20 t ha-1 4.5 Gerke et al., 1999 

NCSOIL MSW compost 270 t dm ha-1 0.2 Mamo et al., 1999 

NCSOIL MSW compost 10-25 t dm ha-1 4 Gabrielle et al., 2005

NCSOIL FYM, Compost 2 t C ha-1 7 Noirot  et al., 2013

Cantis WS 8 t dm ha-1  (1.2 g C kg-1) 1 Garnier et al., 2003

TAO Compost, plant and animal wastes, manure 0.4-5.0 g C kg-1 0.5 Pansu and Thuriès, 2003

STICS Crop residues 2-5 g dm kg-1 0.5 Nicolardot et al., 2001

Yasso07 WS, FYM, green manure 2 t C ha-1 35 Karhu et al., 2012

DNDC WS, FYM, compost 0.03-0.5  t C ha-1 6 Sleutel et al., 2006b

CENTURY WS, FYM, sawdust, green manure 2 t C ha-1 30 Paustian et al., 1992

CQESTR WS, FYM, corn stalks 6.0-7.5 t dm ha-1 34 Plaza et al., 2012
3 pools model Organic compost 20-40% w:w 5 Vidal-Beaudet et al., 2012

FYM: farmyard manure; WS: wheat straw; SS: sewage sludge; MSW: municipal solid wastes; fw: fresh weight; dm: dry matter; w: weight  
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However, to date no models specifically dedicated to the simulation of added EOM 

have been developed, with the only exception of the TAO (transformation of added 

organic matter) model (Thuriès et al., 2002). Furthermore some soil C model, such as 

the CENTURY model, does not include inputs of stabilised organic C like composted 

products. This evidence and the huge variability in the composition and properties of 

EOMs highlight the fact that existing models need to be adapted and/or calibrated in 

order to improve their ability to reliably simulate SOM trends in amended soils (Plaza 

et al., 2012). 

 

1.2.2.2 EOM pools partitioning factors and decomposition rates 

 

For an effective use of EOM to promote soil C sequestration there is the need to 

optimize and develop models capable to describe the long term decomposition of 

EOM in soils and produce accurate and reliable predictions (Karhu et al., 2012). In this 

perspective, several authors have highlighted the importance of a proper 

characterization of EOM to decrease the uncertainty in model predictions of SOC 

trends in amended soil, as the quality of amendments is the most important factor 

controlling their decomposition in soil (Karhu et al., 2012; Nascimiento et al., 2012). 

However, the quality of organic inputs is an aspect that is not adequately considered in 

models to date and needs further investigation (Parshotam et al., 2001). 

Regarding EOM quality relevance in SOC modelling, most SOC models are based on 

the concept that decomposition can be adequately simulated by assuming different 

conceptual or functional pools of OM that decay according to first order kinetics with 

specific decomposition rate constants (Borgen et al., 2011).  

Organic matter in residues can be conceptually defined as a series of fractions that 

comprise a continuum based on decomposition rates. These fractions have been 

represented in simulations as kinetically defined pools with different turnover rates. 

The changes in size of EOM fractions during decomposition can be mathematically 

described but, to establish how good are models in depicting the natural process, 

meaningful fractions must be first isolated from EOM and then characterized. This is 

very difficult to achieve, as it represents an operational separation of a continuum. In 

the case of SOM, due to the huge number of components, a continuous distribution of 
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turnover times from days to millennia exists. Nevertheless, it has been demonstrated 

that SOM can be modelled reasonably well assuming only a few distinct pools 

(Towsend et al., 1997). Similarly, it could be expected for EOM to be also characterized 

by a continuum of decomposition rates, but that its decomposition could be 

reasonably simulated assuming few discrete pools. 

Therefore, an accurate partitioning of EOM into a number of discrete pools and 

estimation of their functional characteristics (i.e. initial C and N contents, 

decomposition rate) is of great importance to improve model predictions (Thuries et 

al., 2011). However, rigorous methods for establishing entry pools that account for the 

diversity of EOM applied to soils have not been developed yet (Peltre et al., 2012). This 

represents one of the major problems for a reliable SOC modelling of amended soil as 

this separation is challenging and no universally recognized methodology exists to 

perform this task. According to Petersen et al. (2005b), the uncertainty related to the 

fractionation of EOM into pools is one of the major weaknesses associated to the C 

modelling of amended soils. 

In particular, EOM is generally divided in pools using three different criteria 

(Mazzoleni et al., 2012).  

The first one is the chemical approach defining pools by difference in EOM chemical 

components. This approach has the advantage that chemical compounds (i.e., water-

soluble carbohydrates, holocellulose, and lignin) can be analytically determined. 

The second criterion is the kinetic approach which defines pools according to their 

decomposition rate. For example, the RothC model distinguishes two kinetically 

defined pools of plant residues: decomposable (DPM) and resistant (RPM) plant 

materials. 

The last criterion is the functional approach describing EOM as composed by 

metabolic (i.e. labile) and structural (i.e. resistant) pools. An example of this type of 

EOM characterization is represented by the CENTURY model in which EOM is 

partitioned in pools according to the lignin to N ratio of residues. 

The characterization of EOM pools has been addressed with different approaches. 

A first issue concerns the number of pools. 

Most C models identify two pools with different degrees of decomposition (i.e. a 

rapid and a slowly decomposing pool)(Pansu et al., 2003), as in the original concept of 
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the DAISY model (Mueller et al., 2003). This approach has been proved to be adequate 

in some circumstances to model C in amended soil. Double exponential decay models 

are an example of models with two EOM pools (e.g. O’Connell, 1997). The combination 

of a relative small labile pool with a larger, recalcitrant pool is a good description of the 

two phase decomposition of most plant residues: a rapid initial mass loss, followed by 

a stage with a slower loss rate. This type of models generally fits short-term 

decomposition trends of plant residues well. Fernandez et al. (2007) compared six 

different models in a study on EOM C mineralization and found that a model 

considering two organic pools with different degrees of biodegradability was the most 

appropriate to describe C mineralization kinetics for all the soils. 

Nevertheless, results from several researches suggest that, at least for certain types 

of EOM, a better description of C mineralization is achieved by assuming at least 3 

pools of EOM. Antil et al. (2011) underlined the disadvantage in the assumption that 

compost substrates comprise only two EOM pools, in that the soluble component that 

decomposes rapidly is usually very small, whereas the large insoluble component 

decomposes very slowly, resulting in extreme differences between the sizes and the 

rate constants of the two pools. Therefore compost mineralization is better estimated 

by partitioning EOM into three pools, which allows part of the insoluble material to 

decompose at an intermediate rate. Thuries et al. (2001) found that the best fit to 

measured CO2 evolution data from a soil amended with a range of EOMs such as 

compost, manures, plant and animal residues was given by a 3 compartments model. 

Similarly, Kabore et al. (2011) suggested that EOMs (or at least some of them) are 

accurately divided into three pools: very labile, intermediary resistant and stable 

compounds. In the model of Henriksen and Breland (1999a), EOM is split into three 

biochemical compartments which are then assimilated into five SOM compartments. 

Adair et al. (2008) investigated litter decomposition (26 litters in 27 different sites) and 

found that 3 initial litter pools representing different C qualities are needed to 

accurately describe decomposition. Farmyard manure, the only EOM which effect on 

SOM can be explicitly simulated with the current version of RothC model, is split into 3 

pools of different stability (decomposable, resistant and humified). A partitioning of 

residue in 3 different pools was also utilized by Probert et al. (2005) in modelling 

exercises performed with the APSIM model and by Corbeels et al. (1999), Hadas et al. 
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(2004) and Antil et al (2011) utilizing NCSOIL. Pansu et al. (2004), in a study about the 

comparison of 5 SOM models, concluded that the use of additional compartments 

resulted in improved long term predictions. Sierra and coauthors (2011) suggested that 

explicit representation of EOM heterogeneity in decomposition models, by its 

partitioning in different pools, is of fundamental importance to simulate processes 

related to long term C trends and to predict SOC stocks in amended soil. Exogenous 

OM is composed of substances with different chemical and physical properties and 

different levels of accessibility to microorganisms. The rate at which a substrate 

decomposes is determined by this combination between quality and accessibility. 

Moreover, materials with different properties will respond differently to 

environmental factors such as temperature and moisture, so the general response to a 

variation in the environment will depend on the relative proportions of substrates with 

different characteristics. For these reasons, representing EOM heterogeneity in models 

with a significant number of pools is likely to enhance the model performance. 

Another important issue regarding EOM pools characterization deals with the 

decomposition rate of each pool. This issue has been addressed in several ways. 

Some models adopt a single rate constant value for pools of native and exogenous 

OM. The native OM also includes the fresh plant residues produced above and 

underground, which constitutes the normal and cyclic input of organic C into the soil 

that, in steady state conditions, guarantees the stability of SOC stocks. This is the case, 

for instance, of RothC in which plant material and farmyard manure are both split into 

two pools of decomposable and resistant OM sharing the same rate constant of 10 y-1 

and 0.3 y-1 for decomposable and resistant pools, respectively. 

Other modelling approaches consider different decomposition rates for native and 

added organic pool, but assume the same decomposition rate for different EOMs. In 

this approach the decay rates of the two (or more) EOM pools are usually shared by all 

residues (Borgen et al., 2011), as in the original version of the DAISY model that 

assumed turnover rate of the rapidly and slowly decomposing EOM fairly constant 

throughout a wide range of added organic materials (Mueller et al., 2003). 

A third option regarding EOM pools decomposition rates considers that such 

parameters are specific for each kind of EOM and different from those of native SOM. 

Generally, in SOC models partitioning factors are specific, while decay rate are global 
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(shared), i.e. they are the same for each kind of pool, irrespective of the EOM 

considered. This implies that microbial communities responsible for EOM degradation 

have identical characteristics for all EOM, but this is not the case as different EOMs 

could selectively enhance or inhibit different components of microbial communities, 

resulting in altered decomposition capacity. As a matter of fact, Borgen et al. (2011) 

clearly showed that model predictions can be improved by identification of EOM 

specific decomposition rate. Similarly, in the final parameterisation of DAISY model, 

the turnover rate coefficients of rapidly and slowly decomposing EOM were markedly 

larger for grass and leguminous plant materials than the original turnover rates used 

for rape straw. This clearly indicates the inadequacy of the original assumption of two 

EOM-pools with predefined constant turnover for plant residues with very different 

properties (Mueller et al., 2003). Henriksen and Breland (1999a) and Henriksen et al. 

(2007) presented a model partitioning plant residues in 3 distinct pools 

(decomposable, structural, resistant) corresponding exactly to 3 chemically defined 

fractions. Such pools have distinct, but fixed (i.e. equal for all plant materials) 

decomposition rates. The only exception is represented by the structural pool which 

decomposition rate varies as a function of N availability for microbial growth. The need 

for individual adjustment of the decomposition rate invalidates the fundamental 

assumption that the specific decay rate constant of each defined pool maybe set a 

priori because it is uniform across litter qualities and support the fact that residue-

specific EOM pool decomposition rate enhances the performances of the model. The 

fact that the approach considering EOM specific decomposition rates has been proved 

to be superior in terms of model simulation of C dynamics in amended soils is not 

surprising given the great heterogeneity of EOM composition and properties. This fact 

points out to the need to define specific decomposition rates for each pool of different 

EOMs.  

On the other hand the approach addressing the issue of specific EOM pool 

decomposition rate implies an increased degree of model complexity and optimization 

requirements. 
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1.2.2.3 Methods to determine EOM pools partitioning factors and decomposition 

rates 

 

A major limitation of current simulation models describing SOM turnover is that the 

conceptualized pools do not directly correspond to experimentally verifiable fractions 

(Cambardella, 1998). Several approaches have been proposed in order to achieve this 

task, but no satisfactory method to partitioning EOM have been found to date. Three 

main approaches have been devised so far to accomplish this task based on chemical 

or kinetic subdivision of EOM. 

Partitioning based on the chemical properties of EOM is generally performed by 

stepwise chemical digestion (SCD) or near infrared reflectance spectroscopy (NIRS). An 

alternative to chemical analysis (or to using NIRS to predict such data) is to estimate 

EOM pool by model fitting to measured C and N mineralization.  

 

1.2.2.3.1 Stepwise chemical fractionation  

 

Chemical fractionation (stepwise chemical digestion (SCD)) is based on the 

fractionation of EOM in pools of different degradability meant to have a biological 

relevance (Shirato and Yokozawa, 2006; Henriksen et al., 2007; Borgen et al., 2011). 

The most common type of chemical fractionation is based on the method of Van 

Soest or its modifications. The Van Soest method was initially developed to evaluate 

forage digestibility (Van Soest, 1963) and was then adapted to the characterization of 

EOM (Linères and Djakovitch, 1993). This method enables the stepwise extraction of 

organic materials that are assimilated to “soluble”, “cellulose-”, “hemicellulose-”, 

“lignin- and cutin-” like compounds. This method is relatively rapid and simple, but 

presents the main disadvantage that these operationally defined fractions do not 

precisely correspond to the model pools. This hypothesis was supported by Hadas et 

al. (2004) who found that the lignin content normally determined in plant residues by 

the Van Soest procedure was considerably lower than the optimized, kinetically 

defined lignin-like pool of residues. Moreover, the fraction defined by SCD may be 

sometimes distributed on two different pools (Thuries et al., 2002). As an example, 

Parnaudeau (2005), in a study on the soil decomposition of sewage sludges, found that 
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the "soluble" fraction obtained by the Van Soest method includes also several organic 

compounds which are not biodegradable. The author concluded that the methods of 

fractionation of raw material do not appear relevant to the prediction of the 

decomposition of sludge. Furthermore, the hemicelluloses fraction derived from Van 

Soest method may be split between labile and resistant EOM fraction. This is due to 

the fact that hemicelluloses are a relatively large range of molecules with different 

degrees of degradability (heterogeneous group of linear or branched polysaccharides 

with a degree of polymerisation of about 100-200) (Thuries et al., 2002). A further 

problem is that EOM pools defined by SCD are based exclusively on material properties 

and therefore do not consider the possible effects of EOM interaction with soil. The 

relations between C mineralization and biochemical composition can be obscured by 

lack of available N in soil, as when residues with high C/N ratio are added to the soil 

(Trinsoutrot et al., 2000). 

Consequently it is not obvious how data from SCD should be analyzed in order to 

partition residue C and N into the different EOM pools of the model (Borgen et al., 

2011). In particular for models which includes 3 EOM pools, according to Antil et al. 

(2011) there are no availability of a chemical extractant that would fit an intermediate 

resistant pool. 

 

1.2.2.3.2 Near-infrared reflectance spectroscopy (NIRS) 

 

Near infrared reflectance spectroscopy (NIRS) measures the reflectance of samples 

in the spectral range between 800 and 2500 nm. The quantification of analytical 

characteristics based on NIRS requires multivariate statistical methods to fit the 

spectral response to sample properties in order to build predictive models. Once 

calibration has been developed, NIRS is a rapid, inexpensive and non-destructive 

method for sample characterization (Peltre et al., 2009). NIRS has been recently 

proposed as a means to rapidly determine EOM pools (Henriksen et al., 2007; Peltre et 

al., 2009; Borgen et al., 2011). 

This is the most promising technique for its simplicity and rapidity, but, so far, NIRS 

predictive models of EOM characteristic have been built mainly for few and relatively 

homogenous EOM sets and therefore there is the need to expand the range of EOMs 
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characterized by this technique (Peltre et al., 2009). Furthermore NIRS has the same 

limitation of the SCD method, i.e. the difficulty to establish a correlation between EOM 

pools defined by NIRS and model pools. 

 

1.2.2.3.3 Kinetically defined EOM pools 

 

EOM pools characteristics can also be determined by model calibration to measured 

C mineralization in amended soil. In this method determination of pool partitioning 

factors and decomposition rates is carried out by direct fitting of CO2 respiration 

curves obtained from incubation experiments (Barak et al., 1990). Fitting pool 

parameters in this way provides kinetically defined parameters that reflect the rate of 

C mineralization observed for each residue (Trinoustrot et al., 2000; Borgen et al., 

2011).  

In process-based models the relationship between amount of substrate and 

degradation rate is well recognized. Models assume that C in decomposable EOM 

follows a first-order reaction kinetics equation and that EOM CO2-C emission is 

proportional to the EOM C decay rate in soil. Therefore, the reaction rates can be 

easily estimated from laboratory experiments and directly used in process-oriented 

models (Battle-Aguilar et al., 2011). 

Calibration of models using CO2

Kinetic definition of EOM pools has been widely applied and was shown to produce 

good simulations, in particular with urban wastes compost-amended soils (Hadas and 

Portnoy, 1997; Mamo et al., 1999). Setia et al. (2011) adopted this approach to 

develop a decomposition rate modifier to be included into RothC in order to simulate 

CO

 evolution from incubation experiments was 

successfully achieved for NCSOIL (Corbeels et al., 1999), CANTIS (Garnier et al., 2003; 

Parnaudeau, 2005) and TAO (Thuriès et al., 2002) models. Kinetically-defined EOM 

pool partitioning was also performed by Hadas and Portnoy (1997), Mamo et al. 

(1999), Nicolardot et al. (2001), Hadas et al. (2004), Gabrielle et al. (2004, 2005), 

Petersen et al. (2005), Beraud et al. (2005), Gale et al. (2006), Peltre et al. (2009), Antil 

et al. (2011), Borgen et al. (2011), Cavalli and Bechini (2011) and Nett et al. (2011). 

2-C evolution from saline soils. Model parameters calibration for STICS was obtained 

from laboratory incubation experiments by Justes et al. (2009). The authors validated 
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the new parameters against another set of incubation data and found satisfactory 

results. 

 

Kinetically defined EOM pools provided reliable simulation of SOC in amended soil 

under field conditions. Gabrielle et al. (2005) demonstrated that parameterization 

obtained from laboratory incubations yielded a good simulation of C trends in a field 

study utilizing the NCSOIL model. Modelling of SOC based on partitioning of EOM by 

direct fitting of CO2 evolution incubation data was in a good agreement with SOC data 

of 4 years field experiment involving compost and farmyard manure amendments. 

Kaborè et al. (2011) found a very good agreement between C accumulation rate in a 

field experiment and the amount of stable C estimated with TAO model calibrated with 

incubation data and suggest that information from laboratory incubations could be 

useful for model adjustment. Vidal-Beaudet et al. (2012) showed the relevance of a 

simplified multi-annual evolution model separating EOM into labile and stable 

fractions and fitted with mineralization data obtained under controlled conditions to 

simulate SOC dynamics in amended soil under natural conditions. The approach 

involving model parameterization by soil incubation data of amended soil and model 

application at field scale has been recently successfully adopted by Peltre et al. (2013) 

and Noirot-Cosson et al. (2013).  

A similar approach to the direct kinetically fitting was followed by Tits et al. (2014) 

who determined the humification index of EOM, defined as the proportion of the 

added EOM still present in soil after one year in several field trials and incubation 

experiments. Successively, the authors established a relationship with decomposable 

and resistant plant material ratio (DPM/RPM) of RothC model by linear regression. 

 

A mixed chemical and kinetic approach to EOM pool partitioning was adopted by 

Peltre et al. (2012). The authors first calibrated model pools on the basis of the results 

of some long term experiment. Successively, they calculated a linear regression 

between EOM partitioning factors and biochemical properties of the residues and IROC 

defined as the amount of EOM-C mineralized after 3 days of incubation at 28 °C. This 

procedure represents an intermediate between SCD and incubation fitting as the 
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partition coefficients are based on a relationship with both chemical fractions and 

respiratory response of EOM. 

 

1.2.2.3.4 Comparison between kinetically and chemically defined EOM pools 

 

Several attempts have been performed to relate EOM pools determined chemically 

and by direct fitting of incubation data. 

Results have shown that kinetically derived fractions do not correspond exactly to 

the chemically defined pools, since there is some form of overlapping as demonstrated 

by Parneaudeau (2005), who found that the kinetically determined stable EOM pool 

includes the lignin fraction, but also some soluble compound with high stability 

towards decomposition. Similarly, De Neve et al. (2003) failed to find a significant 

relationship between Van Soest fractions and C mineralization of amended soil and 

attributed this to the high ash content of some of the wastes. Gabrielle et al. (2004) 

parameterized a model for C and N mineralization (NCSOIL) with two approaches: a 

biochemical index based on Van Soest organic matter fractions and CO2 data from an 

incubation experiment. Results clearly showed that the latter approach provided a 

better simulation of C and N mineralization in a compost amended soil. Simulations 

obtained by Borgen et al. (2011) and evaluated against an external validation dataset 

supported the hypothesis that kinetically defined partitioning enhances the predictions 

of mechanistic models compared to partitioning according to SCD. Such disagreement 

could be explained on the basis that net C mineralization trends result from (i) primary 

decomposition of residue C, (ii) incorporation of residue C into the microbial biomass 

developed from the residue, and (iii) secondary decomposition of microbial 

metabolites into which the C of the residue has been incorporated. Consequently, the 

relative weight of the C deriving from the residue by primary decomposition decreases 

during the course of decomposition. This is the main reason why only the initial rates 

of decomposition can be explained by the biochemical characteristics of the residues. 

Similarly, it is difficult to associate the decomposable and resistant pools of the model 

directly with the fractions measured in the residues as these two fractions also include 

the C of the residue that has been incorporated into the different SOM pools and is 

subjected to a further decomposition by the soil microorganisms (Trinsoutrot et al., 
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2000). There are further evidences that raise concerns about the reliability of 

biochemical fractionation as EOM pools partitioning method. For example, plant 

proteins stabilized by interaction with polyphenols or carbohydrates associated with 

lignin decompose more slowly than free proteins and carbohydrates. Furthermore, 

biochemical fractions may be differentially stabilized by interaction with soil 

components: proteins, for example, may be weakly adsorbed onto clay surfaces or 

strongly bound within organic complexes (Jans-Hammermeister and McGill, 1997). 

Some authors applied a procedure that is meant to take advantage of both chemical 

fractionation and respiration fitting by carrying out a regression analysis of kinetically-

defined partitioning parameters (dependent variable) against SCD-data (Borgen et al., 

2011).  

 

Exogenous OM soil mineralization depends not only from residue characteristics, 

but also from its interaction with soil properties and environmental conditions. Ideally, 

SOC models would take account of such interactions, so that kinetically-defined pool 

parameters represent only EOM properties. However, several studies have shown that 

SOC models are not able to fully resolve these interactions and that, on the contrary, 

kinetically fitted EOM pools incorporate such interactions (Cavalli and Bechini, 2012). 

This is not the case of SCD and NIRS optimized parameters that are exclusively based 

on EOM properties. As a result kinetically optimized parameters are preferable to 

chemically derived ones as they generally allow for a more accurate simulation of SOC 

trends in amended soils, even if this is might be obtained at the cost of a low 

generality. 

 

1.2.2.4 Relation between laboratory studies and field conditions 

 

Studies on C mineralization of amended soils are often preferentially conducted in 

the laboratory rather than in field conditions for logistic, technical and economical 

reasons. It is often assumed that results obtained in laboratory experiments can be 

extrapolated to field conditions. Nevertheless, concerns have been raised about the 

transferability of data collected in the laboratory to real conditions. Experiments in 

laboratory are carried out under controlled conditions, but environmental conditions 
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in the field may be significantly different. For example, laboratory incubations are 

typically performed with sieved soil in the absence of living plants under constant 

conditions of temperature and soil water content. The effects of physical disturbance 

(e.g. soil sieving) and differences in humidity, temperature and aeration with respect 

to the field conditions can significantly alter the microbial decomposition of organic 

matter (Oburger and Jones, 2009). Laboratory studies often do not take into account 

many factors and interactions that can influence SOM decomposition in situ (e.g. 

diurnal variation in temperature and soil water content, diurnally regulated plant C 

inputs)(Glanville et al., 2013). In laboratory studies, in order to standardize conditions, 

EOM is usually grounded and evenly distributed, while in the field much larger size and 

irregular distribution of the amendment affect decomposition. Further limitations of 

laboratory experiments that restrict the transposition of the results to a broader scale 

are represented by the small size of the samples and the short incubation periods. 

 

The above considerations imply that the results obtained in the laboratory are not 

necessarily expected to be similar to those obtained in the field. As a matter of fact 

different relationships between C mineralization in laboratory and field were reported 

in the literature. Lashermes et al. (2009) compared laboratory to field data in a study 

aimed to evaluate the amount of EOM remaining in the soil and found that EOM 

degradation was greater in the field than in the laboratory. This was unexpected as 

incubations are performed at optimal conditions for microbial activity. The authors 

attributed the greater mineralization to the variations in soil moisture as repeated 

drying and rewetting of soil-EOM mixtures enhances microbial activity and EOM 

mineralization. Conversely, Oburger and Jones (2009) compared C mineralization of 

low molecular weight C compounds in the field and in the laboratory and found a 

significant overestimation of field respiration. The authors attributed this to an 

increase in easily accessible C under laboratory conditions due to the severing of roots 

and hyphae in combination with additional aeration caused by the sampling procedure 

which might have changed the microbial metabolic activity. 

 

However, several studies have suggested that information obtained in the 

laboratory may still have a significant relation with results obtained at field scale.  
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Glanville and co-authors (2012), employing a more systematic approach with 

respect to Oburger and Jones (2011), demonstrated that the contribution of low 

molecular weight C components to soil respiration was highly reproducible between 

parallel studies performed either in laboratory and in the field. The authors suggest 

that laboratory-based C mineralization data can be used for accurate estimation of 

kinetic parameters to reliably parameterize C models. Results of the work of Henriksen 

and Breland (1999b) support the hypothesis that decomposition is similar under 

laboratory and field conditions and that decay rate constants estimated under 

controlled conditions are directly transferrable to a field situation provided that they 

are adjusted by temperature and moisture response functions. Similar conclusion were 

drawn by Garnier et al. (2003) who demonstrated that it is possible to extrapolate data 

from soil incubations to field conditions. 

Evaluation on how potential rates obtained in the laboratory compare to actual 

field rates can be useful in evaluating which are controls over field rates and constrains 

of microbial potentials (Schimel et al., 2006). Laboratory studies can also give 

important information on the relative difference between treatments and their 

ranking in terms of potential C sequestration. Laboratory measurement of SOC 

mineralization have been shown to be a sensitive indicator of SOC changes long before 

they could be measured in the field (Paul et al., 1999).  

Fernandez et al. (2007) underlined the fact that even if carried out over short time 

periods, the use of laboratory methods involving incubation of soil-waste mixtures 

under controlled conditions can supply accurate information about C mineralization 

dynamics. In addition, C mineralization data obtained can be fitted to kinetic models, 

which allow calculating the fraction of potentially mineralizable C and its 

mineralization rate and, therefore, the real benefits of applying these organic wastes 

to soil. Hernández and Almendros (2012) found that soil C mineralization under 

laboratory conditions was a good predictor of C loss in the field. The results of their 

work suggested the possibility of predicting the sensitivity of SOC to biodegradation 

from laboratory incubation experiments, which results of interest for modelling global 

change scenarios. 
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The ability to realistically model the field evolution of CO2 is based on the analytical 

determination of the SOC components involved in SOC dynamics. Such determination 

is not feasible in the field as in situ fluxes of CO2 are too complex to allow for the 

determination of SOC pool sizes. These characteristics can be best determined under 

constant conditions in the laboratory (Paul et al., 2009). Incubation studies allow the 

effect of a single factor on the variable of interest to be isolated, avoiding the 

confounding effect of other factors and this has been shown to be of value for 

estimation of the response in the field and to modelling purposes. 

 

1.2.2.5 Additional value of laboratory incubation studies 

 

Incubation experiments for the actual measurement of EOM pool parameters 

despite all their merits in terms of accuracy and precisions are usually labour and time 

consuming. Nevertheless, the development of automated and high-throughput 

laboratory methods to measure soil respiration (Mondini et al., 2010; Garcia-Palacios 

et al., 2013) had significantly decreased the work involved in the measurement of soil 

respiration and increased the measurement precision and accuracy, allowing for the 

realization of complex experimental designs taking into account the effects of multiple 

factors. The time necessary for the incubation is compensated by the possibility to 

obtain, with relative easiness, additional information useful for a better knowledge of 

the EOM characteristics and the chemical and biochemical properties of the amended 

soil, such as N mineralization, GHG emissions, nutrient availability and microbial pool 

status. 

Incubation experiments on C mineralization provide information about the maturity 

and degree of transformation of added organic materials (Vidal-Beaudet et al., 2012). 

Additional information for EOM characterization can be provided by high frequency 

measurements of soil respiration. For instance, in the study of Mondini et al. (2007) 

materials with similar chemical composition showed a very distinctive respiration 

pattern related to their different structural composition. Moreover, an accurate 

mineralization dynamics curve could be useful to depict specific soil to residue 

interaction (Cayuela et al., 2008). 
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Usually incubation experiments of amended soil are carried out to characterize 

agronomic and environmental properties of organic residues. In these experiments 

several parameters are measured, among these N mineralization. The N and C cycles 

are closely linked (Shaffer et al., 2001), therefore incubation studies on C and N 

mineralization trends of amended soils can be useful to provide insight on potential N 

mineralization of residues, as for example in the study of Song et al. (2011), who 

studied the relationships between CO2 efflux and net N mineralization in a laboratory 

incubation experiment performed using an alpine meadow soil. The relationship 

between EOM C mineralization and available mineral N is difficult to establish as it is 

regulated by many residue, soil and environmental factors. This is reflected by the 

difficulty to simultaneously model EOM C and N mineralization (Cavalli and Bechini, 

2012). Nevertheless, several studies have shown that characterization of amendments 

and short term laboratory incubations determining OM decomposition and net mineral 

N release were capable to provide good estimates of field available N for the first 

growing season. For instance, Flavel and Murphy (2006) found a significant 

relationship between CO2-C evolution and gross N mineralization (R2 = 0.95) in an 

incubation study of soil amended with different residues. Several other studies 

reported a good agreement on N mineralization data between laboratory and field 

studies, indicating that mineralization rates derived from laboratory incubations can 

provide an accurate estimation of in situ N mineralization (Goncalves and Carlyle, 

1994; De Neve and Hofman, 1998; Haney et al., 2001).  

Since the availability of easily degradable substrate and the occurrence of anaerobic 

conditions within the soil are important factors regulating the emission of the 

environmental harmful N2O and CH4 gases, information on C mineralization may be 

useful to understand the mechanisms and the environmental conditions leading to the 

generation of GHG. Further information on the mechanisms responsible for GHG 

generation can be achieved utilizing automated systems which allows to 

simultaneously detect the dynamics of several gases such as N2O, CH4, CO2, CO and 

NH3 (Mondini et al., 2010). 

Soil respiration is an important aspect of soil quality and an indicator of biological 

soil fertility (Staben et al., 1997). The respiratory response of amended soils can be 

useful to evaluate potential negative effects of EOM on the microbial pool due to the 
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presence of organic and/or inorganic pollutants or due to the generation of phytotoxic 

substances related to the low degree of stability of EOM. Furthermore it can be useful 

to detect polluted and degraded soil. 

The C and N mineralization ratio has been proposed by Dilly et al. (2003) as an 

indicator of the biologically active C and N pools in the soil. Application of such ratio to 

amended soil could give information on the quality of available organic substrate, the 

complex connections existing between C and N mineralization of organic residues and 

the temporal dynamics of nutrients mobilization and immobilization. 

 

1.3 Spatially explicit modelling of soil organic C 

 

Soil organic C models have been successfully tested and applied under several 

conditions, but many SOC models, as in the case of RothC, are point based and 

perform simulation of SOC one site at a time.  

Nevertheless, to assist land managers and policy makers to plan future land-use 

with the aim of restoring and increasing C stocks and for inclusion of soil C 

sequestration among the allowed measures within the Kyoto Protocol, more 

information needs to be provided by SOC modelling at the regional scale. With 

spatially explicit application the model is used in a similar way to when it is applied at 

the site scale, except that the model is run many times with different sets of inputs 

associated with a particular area of space, with might be a cell of a grid or a polygon 

representing an area of space (Smith and Smith, 2007). This can be obtained by linking 

Geographic Information Systems (GIS), which contain detailed information on soils, 

land use and climate, with a dynamic simulation model for the turnover of organic C in 

soil. GIS is not only necessary to format the inputs, but also to visualise the outputs 

and it allows for more flexible manipulation of the data and graphical display of the 

outputs in a spatial form (Fallon et al., 1998). 

GIS-linked modelling is a useful tool for large scale studies of SOC trends, allowing 

actual estimates of regional soil C sequestration to be improved (Falloon et al., 1998a). 

Using dynamic SOC models at the regional scale allows the site characteristics, climatic 

conditions and land use to be taken into account and makes it possible to analyse the 

sensitivity of particular combinations of the soil and weather characteristics to 
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variations in climate, land-use and management and to identify regions with most 

potential for C sequestration. Spatially explicit soil C model based approaches are also 

very flexible and amenable to a range of different scenarios. It is also important to 

note that the combination of the separated modelled impact of specific climate and C 

sequestration scenarios does not equal the simultaneous predicted effect of the same 

climate and C sequestration scenarios, i.e. models predict interactions between 

management, soil and climate that are non linear and non additive (Falloon and Smith, 

2009). 

 

To date, spatially explicit versions of SOC models have concentrated on the effects 

of land-use change. The integration of RothC with soil land use and climate data in a 

GIS environment was successfully illustrated by Falloon et al. (1998a; 2002; 2006), 

Smith et al. (2005, 2006) for European cropland grassland and forest, Smith et al. 

(2007) for European Russia, Parshotam et al. (1995) for New Zealand, Wan et al. (2011) 

for China and Jones et al. (2005) at global level.  

 

However, information on the spatial variability for storage of C derived from 

different EOMs in contrasting soils is lacking. Indeed, experimental partitioning of CO2 

fluxes from different EOM pools allows the results of their modelling to be scaled up 

from point measurements to ecosystem, regional and global scales. Since SOC storage 

is controlled by a variety of biogeophysical, climatic, and management factors, 

dynamic models which integrate the main mechanisms governing SOC turnover with 

information on the spatial variability of such factors is the most suitable tool for 

predicting SOC changes at regional level due to the application of EOM with different 

properties. 

Large scale regional modelling of SOC in amended soils could provide useful 

information to predict the C sequestration and GHG emissions offsetting potential of 

contrasting EOMs, identify the relative importance of the different factors in the SOC 

evolution observed and highlight the combination of factors more conducive to the soil 

storage of added C. This in turn would allow planning land use management and 

agronomical practices enhancing soil C sequestration. Because EOM availability is 

generally limited with respect to the land suitable for amendment, large scale spatial 
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modelling of soil organic C can suggest ways to optimize such resources by identifying 

the areas with the greatest potential for the accumulation of SOC from EOM. 
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1.4 General aims and objectives  

 

The main aim of this thesis was to combine laboratory data and discrete soil C 

modelling in order to find a simple and accurate way of predicting soil C sequestration 

potential of EOM at site and regional scale. 

 

To achieve this goal the following procedure was pursued: 

 

Firstly, the source code of the widely utilized RothC dynamic soil C model was 

altered in order to allow for the definition of 3 additional entry pools of exogenous 

organic matter: DEOM (decomposable), REOM (resistant), HEOM (humic-like 

substances) with specific decomposition rates. The above modifications were 

performed in order to improve the predictive power of the model, given the high 

variability in the composition and the properties of EOM that could be applied to the 

soil. 

 

Secondly, a simple and reliable method was identified to estimate partition 

coefficients and decomposition rates of EOM pools based on kinetically defined 

fractions derived from fitting to respiration data of amended soil incubated in the 

laboratory. 

 

Finally, a spatially explicit version of the modified RothC was deployed to assess at a 

national scale the potential for C storage of EOM-amended agricultural soil under 

different climate scenarios. 

 

More specifically the objectives of the work were to: 

 

- modify the RothC model to make it suitable for simulating the soil C sequestration 

potential of amended soils  

- optimize RothC for a range of different EOMs by fitting the respiratory curve 

obtained from laboratory incubation of amended soils 

- deploy a spatial explicit version of RothC 
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- assess future SOC change under climate change scenarios 

- evaluate the variability of different EOMs in terms of their soil C sequestration 

potential  

- assess at a national scale the potential for C storage of EOM added to the soil  

- predict at a national scale the variability in the projected changes of SOC in EOM 

amended soils 

- identify area with major potential for C sequestration by soil amendment 

- elucidate the interaction of factors more conducive to soil C sequestration. 
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2. Materials and Methods 

 

2.1 Incubation experiments 

 

2.1.1 Soils used for incubations 

 

The soils used for the incubation experiments of this thesis were sampled from 

agricultural areas in the Mediterranean area and specifically in Northern Italy and 

Southern Spain. The soils were sampled at 5-20 cm depth with an auger and several 

subsamples were pooled together to obtain a representative soil sample. Location, 

classification and main physico-chemical characteristics of the soils are shown in Table 

2.  

The soil were sieved moist through a 2 mm aperture grid and stored (5 °C) until the 

beginning of the experiments. Before the starting of the incubation experiments, the 

soils were pre-conditioned by incubation under aerobic conditions for 7 days at the 

same temperature and water content adopted for the incubation experiment (Tables 4 

- 9). 

The range of soils includes soils of widely different texture and pH. A part from 

Gorizia, Bueriis and Lodi, the soils were characterized by low contents of organic C and 

N and a reduced pool of soil microbial biomass. 

The Spanish soils were all degraded soil either due to erosion processes and/or 

heavy metal pollution.  
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Table 2. Main physico-chemical characteristics of soils used for incubations. 

Location Country Soil 

code

Soil use Classification (USDA) Sand 

(%)

Silt 

(%)

Clay 

(%)

pH CaCO3 

(g kg
-1

)

SOC          

(g kg
-1

)

NTOT            

(g kg
-1

)

SOC/ 

NTOT

Cmic   

(µg g
-1

)

S. Martino Italy SM Arable Fluventic Eutrudept 69 28 3 8.3 740 10.5 1.2 8.8 114

Gorizia Italy GO Meadow Typic Hapludalf 37 48 15 7.8 46 25.4 2.4 10.6 795

Bueris Italy BU Arable Humic Dystruptet 6.0 48 46 7.0 - 32.0 4.5 7.1 269

Lodi Italy LO Meadow Mollic Hapludalf 67 21 12 6.7 - 22.0 2.1 10.5 205

Reana Italy PE Arable Typic Dystruptet 55 28 17 6.5 - 15.9 1.2 13.3 118

Ribis Italy RI Arable Typic Dystruptet 54 32 14 4.6 - 8.1 1.3 6.2 65

Codroipo Italy CO Arable 27 58 15 7.1 - 19.0 2.0 9.5 350

Jumilla Spain JU Olive orchard 52 21 27 8.0 415 10.4 1.0 10.4 119

Alquife Spain AL Disused mine 53 30 17 8.5 1.3 2.5 0.9 2.8 10

Llano de la Perdiz Spain LL Arable 32 17 51 7.0 0.5 9.2 1.1 8.4 146

SOC: soil organic C; NTOT: total N; Cmic: soil microbial biomass C  
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2.1.2 EOMs used for incubations 

 
The following 8 different types of EOM were considered: 

 

Compost (CO):  

VSC:  compost from vine tree prunings.  

HWC:  compost from the separate collection of household organic wastes. 

GWC:  compost from green wastes. 

CMC:  compost from a mixture of 62% winter wheat straw + 32% cotton cardings + 6% 

meat and bone meal (dry weight basis). Samples were taken after 3, 9 and 92 

days of composting. 

CBC:  compost from a mixture of 62% winter wheat straw + 32% cotton cardings + 3% 

meat and bone meal + 3% hoof and horn meal (dry weight basis). Samples were 

taken after 3, 9, 21 and 92 days of composting. 

 

Bioenergy residues (BE): 

BR:  wheat starch by-product obtained after bio-ethanol production.  

RSM:  rapeseed meal from biodiesel production. 

GWB:  green waste biochar produced by continuous slow pyrolysis at 550 °C.  

 

Anaerobic digestates (AD): 

PS:  digestate from anaerobic digestion of pig slurry. 

OW:  digestates from anaerobic digestion of different mixtures of two-phase olive 

mill waste (TPOMW) and liquid manure. 

 

Meat and bone meals (MM): 

Commercially available samples of meat and bone meal (MM) were selected for 

their incubation with soil. Two bovine (BV1, BV2), a defatted bovine (DE), a swine (SW) 

and a mixture of swine/bovine (SB) MMs were used in this study.  

MM derived from residues of slaughtering operation that were reduced to a 

diameter minor than 50 mm and subjected to an autoclave treatment at 133 °C for 20 

min and 0.3 MPa. Defatted MM derived from MM treated to reduce its lipid content. 
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The variability of MMs properties is due to their different compositions (they are 

obtained from a mixture of carcass trimmings, inedible offal, lipids and bones from 

different animals) and to the production process itself (temperatures, separation 

methods). 

 

Animal residues (AR):  

HL:  hydrolysed leather, a slow release N fertiliser derived from hydrolysed animal 

proteins. 

BLM:  blood meal, organic fertiliser allowed for organic farming obtained by spray 

drying at low temperatures the fresh whole blood from animal processing 

plants. 

HHM:  horn and hoof meal, organic fertiliser produced by the drying of horns and 

hooves from animal processing plants. 

 

Crop residues (CR):  

CC: cotton carding waste, derived from the process of preparing the fibres of 

cotton for spinning and was supplied by Cascamificio Friulano Srl (Remanzacco, 

Udine, Italy). 

WS:  winter wheat (Triticum aestivum L.) straw was collected after harvesting at 

Reana (Udine, Italy). 

 

Agro-industrial wastes (AW): 

TPOMW: two-phase olive mill waste, semisolid sludge generated during the extraction 

of olive oil by the two-phase centrifugation system. 

 

Sewage sludges (SS): 

WW:   wastewater sludge, sewage sludge from an urban wastewater treatment plant. 

 

All the residues were solids, with the exception of digestates from liquid manure 

and TPOMW. 

The main features and properties of the studied EOMs are reported on Table 3. 
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Table 3. Main chemical characteristics of EOMs used for incubations. 
EOM type EOM type 

code

EOM EOM Code pH OM         

(%)

TOC             

(%)
NTOT                      

(%)

TOC/ 

NTOT

WSC            

(g kg
-1

)

WSN          

(g kg
-1

)

NH4
+             

(mg kg
-1

)

NO3
-           

(mg kg
-1

)

Vine shoots compost VSC 7.7 65.4 34.5 1.5 23.2 9.8 0.6 101 2018

Household waste compost HWC 8.3 64.2 34.4 2.3 14.9 5.9 0.7 226 1777

Green waste compost GWC 7.5 51.9 28.2 2.2 12.8 6.8 2.2 1400 800

CC + WS + SB II_3 CMC II 7.9 90.6 42.7 1.6 27.2 23.1 2.7 627 2397

CC + WS + SB III_9 CMC III 7.9 89.3 41.3 2.1 19.6 28.3 3.7 96 2821

CC + WS + SB M_92 CMC M 8.1 82.2 39.9 3.5 11.3 12.4 1.8 254 2195

CC + WS + BLM + HHM II_3 CBC II 7.7 93.3 43.5 1.7 25.7 20.3 1.9 434 1901

CC + WS + BLM + HHM III_9 CBC III 7.9 91.2 42.9 1.9 22.0 21.9 2.4 281 2256

CC + WS + BLM + HHM IV_21 CBC IV 7.9 87.5 42.3 2.8 15.2 23.6 2.5 134 2155

CC + WS + BLM + HHM M_92 CBC M 7.7 83.2 40.6 3.7 10.9 11.3 3.4 59 4169

Bioethanol residue BR 4.2 91.9 48.5 6.2 7.8 202.5 12.8 1153 1.9

Rapeseed meal RSM 6.2 92.5 45.9 6.0 7.7 74.4 2.4 180 13.4

Greenwaste biochar GWB 7.5 98.3 86.3 0.3 345 0.1 0.0 17 0.4

Pig slurry digestate PS 8.5 74.6 37.9 4.4 8.7 38.7 11.6 5361 2.5

TPOMW + manure OW 1 8.2 75.8 43.6 3.4 13.0 23.1 1.78 17322 11048

TPOMW + manure (55 °C) OW 2 8.1 76.7 48.7 3.5 13.9 25.1 1.81 20118 14318

Liquid manure OW 3 8.2 68.6 44.1 3.1 14.5 13.6 0.94 690 7902

TPOMW OW 4 7.9 76.9 49.1 3.0 16.1 17.7 1.07 18744 10905

Bovine MBM 1 BV1 6.5 70.9 38.5 8.4 4.6 52.1 12.4 631 1692

Bovine MBM 2 BV2 6.3 65.5 33.9 8.2 4.1 35.7 9.0 410 1314

Swine MBM SW 6.7 78.6 41.4 9.0 4.6 114.5 29.0 530 4721

Mixed swine bovine MBM SB 5.9 81.8 43.1 9.4 4.6 60.5 17.1 359 4165

Defatted bovine MBM DE 6.4 59.4 29.9 8.4 3.6 34.3 9.9 435 1714

Hydrolyzed leather HL 5.2 80.0 42.0 13.2 3.2 34.7 23.2 6360 3135

Blood meal BLM 6.7 90.8 52.6 16.4 3.2 118.9 37.9 122 3547

Horn and Hoof meal HHM 7.5 80.0 51.3 17.0 3.0 13.7 5.0 1887 1058

Cotton cardings CC 6.2 88.0 45.2 1.5 30.5 37.8 2.4 303 2005

Wheat straw WS 6.5 89.1 49.6 0.3 198 15.7 0.8 66 879

Agro-industrial w. AW Two-phase olive mill waste TPOMW 5.3 94.1 53.0 1.3 41.1 4.1 1.1 122 0

Sewage sludges SS Wastewater sludge WW 6.8 70.9 38.4 4.8 8.0 7.97 1.64 1677 2286

Mean 7.1 80.1 43.8 5.0 30.6 36.3 6.8 2670 3107
Minimum 4.2 51.9 28.2 0.3 3.0 0.1 0.0 17 0
Maximum 8.5 98.3 86.3 17.0 345 203 37.9 20118 14318

OM: organic matter; TOC: total organic C; NTOT: total N; WSC: water soluble C; WSN: water soluble N

Compost: roman numerals refer to stages of the process, numbers refer to days of composting, M: mature compost

Animal residues AR

Crop residues CR

Compost CO

Bioenergy by-

products
BE

Anaerobic 

digestates

Meat and bone 

meals

AD

MM
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As a whole 30 different EOMs were utilized for the incubation experiments. They 

were considerably distinct in terms of chemical composition, origin and 

stabilization/transformation processes to which they were subjected.  

According to these criteria they were arbitrarily classified in 8 different EOM type: 

compost, bioenergy by-products, anaerobic digestates, meat and bone meals, animal 

residues, crop residues, agro-industrial wastes and sewage sludges (Table 3). 

Most of the EOMs presented an alkaline pH, while the organic wastes with a pH < 

5.2 were bioethanol residue, hydrolyzed leather and two-phase olive mill waste.  

The total organic C (TOC) concentration ranged between 28.2% and 53.0%, except 

for green waste biochar, which had a TOC content of 86%. Green waste biochar, 

bioethanol residue and rapeseed meal had a concentration of organic matter higher 

than 91%.  

Total N varied between 0.3% and 17%, mainly according to the EOM origin. As a 

matter of fact, vegetal derived EOM as compost, crop residues, two-phase olive mill 

waste and green waste biochar presented low levels of total N (0.3-2.3%). On the other 

side, EOM of animal origin (meat and bone meals, blood meal, horn and hoof meal) 

showed high values of N (8.2-17%). 

As a consequence of the variability in C and N content the C/N ratio ranged 

between 3 (horn and hoof meal) to almost 200 (wheat straw) and 345 (green waste 

biochar).  

The differences among EOMs were also highlighted by the content of soluble C and 

N. The concentration of easily available C (WSC) was extremely variable, varying from 

0.1 to 203 g kg-1. The EOMs showing the highest contents of easily degradable C and N 

were bioethanol residue and blood meal. 

As a whole, high concentrations of mineral N (NO3
− and NH4

+) were found for liquid 

digestates. On the other side, bioenergy by-products were characterized by very low 

amounts of NO3
-.  

 

2.1.3 Amended soils incubation experiments 

 

The solid residues were ground and sieved (<0.5 mm) to homogenize their particle 

size before application. The residues were thoroughly mixed with pre-conditioned 
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moist soil samples (50 g dry weight basis) and aerobically incubated in the dark in 130 

ml plastic jars in a thermostatic chamber. In the case of liquid residues soil were pre-

incubated at such humidity that after EOM addition they were brought to the moisture 

content required for incubation (Tables 4 - 9). 

Unamended soils were also included as a control. Each treatment was replicated 

two times. The moisture levels in the jars were checked weekly by measuring weight 

loss, and deionised water was added when necessary to maintain constant moisture. 

Incubation conditions (soil type, rate of residue, soil water content, temperature 

and incubation time) are reported on Tables 4-9. 

As a whole, more than 30 incubations were performed utilizing 30 different 

residues and 10 soils with contrasting properties. 

 

2.1.4 Soil CO2 measurement  

 

CO2 evolution was measured every 4 h on aliquots of moist soils by means of an 

automated system for gas sampling and measurement (Mondini et al., 2010). The 

system generally operates as an “open chamber” system in which the plastic jars (130 

ml) containing the moist soil samples are continuously aerated at a constant flow rate 

(20 ml min-1) by means of an air pump. At regular time intervals, a single jar is made a 

“dynamic close chamber” for a selected accumulation period (usually in the range 10-

60 min) by means of two appropriate valves (Vici Valco Instruments). During the 

accumulation period the air is continuously recycled in the selected jar by means of a 

peristaltic pump. The gas concentration in the closed chamber is automatically 

measured at the beginning and the end of the accumulation period by a gas 

chromatograph (Varian, CP2003) and the difference between the final and initial 

measurements provides the rate of gas production for the selected accumulation time. 

The system is operated by dedicated software and can operate with up to 16 samples 

(Mondini et al., 2010)(Figure 1). 
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Figure 1. Diagram of chromatographic system for soil CO2 sampling and 

measurement. 

 

The ‘apparent’ net C mineralisation (carbon derived from the residues) was 

calculated as the difference between the CO2-C produced by the residue amended soil 

and that produced over the same period by the unamended control soil. The results 

are expressed as a percentage of the added carbon. 

 

2.2 RothC soil C modelling 

 

2.2.1 Description of the RothC soil C model  

 

The Rothamsted Carbon model (RothC) is the first multi-compartmental model to 

be developed (Coleman and Jenkinson, 1996; Jenkinson and Rayner, 1977) and is one 

of the most widely used models simulating SOC trends (Jenkinson et al., 1991; McGill, 

1996) because it requires relatively few parameters and input data.  

It describes the dynamics of SOM by splitting it into five compartments with 

different turnovers, namely decomposable plant material (DPM), resistant plant 

material (RPM), soil microbial biomass (BIO), humified organic matter (HUM) and inert 

organic matter (IOM). Each compartment, except IOM, follows first-order decay 
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kinetics, i.e. each pool is considered well-mixed and chemically homogeneous and the 

decomposition rate is assumed to be controlled by the available substrate. The 

proportion of organic matter decomposed per unit time is therefore constant and 

equal to the decomposition (or kinetic) rate constant (K). Carbon inputs are divided 

into compartments of labile (DPM), resistant (RPM) and humified (HUM) organic 

matter, with partitioning coefficients (f) depending on the nature of the inputs. At each 

monthly period, part of each compartment is decomposed according to its specific 

decomposition rate. Part is mineralized as CO2 and the rest is transferred to the 

compartments BIO and HUM. The proportion of the decomposed pool converted to 

CO2 and (BIO + HUM) is determined by the clay content of the soil. The ratio CO2/(BIO 

+ HUM) is calculated by the equation: CO2/(BIO + HUM) = 1.67(1.85 + 1.60 exp(-0.0786 

%clay)).The part transferred to (BIO + HUM) is divided into 46% of BIO and 54% of 

HUM. The rate constants are modified at each period by three multipliers, depending 

on the temperature, the moisture deficit of soil and the presence/absence of 

vegetation. 

 

The RothC model was initially calibrated with results from several Rothamsted long-

term experiments leading to partition coefficients for plant material (fDPM 59% and fRPM 

41% of plant material-TOC) and farmyard manure (fDPM 49%, fRPM 49% and fHUM 2% of 

farmyard manure-TOC) (Coleman and Jenkinson, 1996). Such partitioning has 

frequently been used to simulate the effect of agricultural managements (e.g. manure 

application) on changes in SOC stocks (Peltre et al., 2012). 

The RothC model has been evaluated and optimized for a variety of ecosystems 

including croplands, grasslands and forests (e.g. Coleman et al., 1997; Smith et al., 

1997; Falloon and Smith, 2002; Johnston et al., 2009; Powlson et al., 2011a) and in 

various climate regions, including semi-arid environments (Jenkinson et al., 1999; 

Skjemstad et al., 2004; Farina et al., 2013). It has also been used to make SOC 

predictions following application of exogenous organic matter (Yokozawa et al., 2010). 

Due to extensive previous benchmarking (e.g. Smith et al., 1997) no further model 

testing is presented here. 
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2.2.2 Modification of the RothC model  

 

A modification to the model is proposed, involving two additional pools of EOM 

with different degree of decomposability (decomposable EOM, DEOM and resistant 

EOM, REOM). Such pools decompose with specific decomposition rates (KDEOM and 

KREOM), that may be different from those of plant input. Decomposed EOM is split in 

CO2, BIO and HUM. The proportion of decomposed EOM that goes to CO2, BIO and 

HUM is regulated in the same way as for the entry pools of plant residue. 

Furthermore, for some materials characterized by the presence of a stable organic 

matter pool, part of EOM (HEOM) is directly incorporated into the HUM pool. 

Compost, anaerobic digestates and agro-industrial wastes were the EOMs partitioned 

in 3 EOM pools in this study.  

The Carbon flow of the modified model is reported in Figure 2. 
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Figure 2. Structure of the modified RothC model. 

 

2.2.3 Calibration of RothC EOM pools parameters with incubation data 

 

Data from several incubation experiments of replicated design were applied for 

parameter estimation. To enable inverse modelling of the incubation trials, an Excel 

version of the RothC model (26.3 version) was utilized. The Excel version of the model 

was tested for correctness under several RothC standard scenarios.  

All simulations were run as difference with the control treatment (i.e. only the CO2 

derived from EOM was simulated). Thus the initial size of the soil organic pools was 
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virtually set to zero, including the size of the inert OM pool (IOM). This was possible 

because in the RothC model, the C trend of each pool is described with first order 

kinetics. The fate of total soil C is the sum of the fate of the C of the different pools. 

Therefore, the difference of CO2 evolution between soils with and without EOM 

application corresponds to the CO2 derived from the additional input of OM in the soil. 

It was therefore assumed that the decomposition of humified SOM was unaffected by 

the decomposition of added residues (i.e. no priming effect was caused by EOM 

application to the soil).  

Inverse modelling was conducted by changing individual partition coefficients and 

decomposition rate constants of the EOM pools by stepwise iteration (using Excel-

Solver) until maximum agreement between measured and calculated amounts of CO2 

was achieved assuming as a criteria the smallest sum of squared residuals (SSR). For 

each EOM and incubation conditions, an ’individual’ fitting procedure was used to 

minimise the difference between observed and simulated values.  

No default values other than the partition coefficients and the decomposition rate 

constants of the different C pools of EOM were taken into account for inverse 

modelling. 

The 5 parameters considered (fDEOM, fREOM, fHEOM, KDEOM, KREOM) were optimized 

simultaneously, considering the following constraints in order to avoid physically 

unrealistic parameter estimates: 

fDEOM + fREOM + fHEOM = 1 

fHEOM < 0.3 for anaerobic digestates and agro-industrial wastes 

KREOM > 0.15 y-1 

kDEOM < 230 y-1 

fHEOM was set to a maximum of 0.3 in the case of digestate according to the values 

found by Cavalli and Bechini (2011; 2012) after model calibration for soil amended 

with pig digestate. KREOM was set to a minimum of 0.15 y-1 according to the 

modification proposed by Skjemstad et al. (2004). kDEOM was set to a maximum of 230 

y-1 according to maximum values found by Thuries et al. (2001) utilizing a 3 EOM pools 

model for 14 different plant residues, compost and manures. This constraint was not 

considered in the case of blood meal as the respiration curves present a very steep 

initial phase, an indication of a decomposable pool characterized by high degree of 
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decomposability. This is supported by results of Thuries et al. (2001) who found a 

decomposition rate constant of 243 y-1 for the labile pool of animal residues. 

 

2.2.4 Statistics 

 

The accuracy of the model to simulate C mineralization was assessed according to 

the criteria proposed by Smith et al. (1996), utilizing the worksheet MODEVAL 2.0 for 

Windows (Smith et al., 1997). 

The association between simulated and measured value (i.e. the percentage of total 

variance in the observed data that is explained by the predicted data) was evaluated 

by the sample correlation coefficient (R).  

The percent term for the total difference between measured and simulated value, 

proportioned against the mean observed values, was considered by calculating the 

root mean square error (RMSE). The lower limit for RMSE is 0, which denotes no 

difference between measured and simulated values.  

The consistent errors or bias in the model was evaluated by the mean difference 

(M) between measured and simulated data. Because M does not include a square 

term, simulated values above and below the measurements cancel out and so any 

inconsistent errors are ignored. 

The error in the simulation as a proportion of the measurement was evaluated by 

the relative error (E), expressed as the mean error percentage over all the 

measurements. 

 

2.2.5 Sensitivity analysis 

 

To study the sensitivity of SOC values predicted by the modified RothC model 

towards the quality of EOM inputs over the experimental timescale a model exercise 

was performed utilizing weather (average climate data for 1960-2000) and land 

management data for the S. Martino soil. 

After an equilibrium run (see section 2.3.3), the model was run for 100 years 

utilizing the same model inputs, but assuming a yearly addition of EOM at a rate of 1 t 

C ha y-1. Two scenarios were simulated, i.e. addition of household compost (HWC) and 
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mixed swine bovine meat and bone meal (SB). For each EOM model runs were 

performed utilizing the optimized parameters from respiration data under standard 

laboratory incubation conditions (defined as: 20 °C, 40% water holding capacity (WHC), 

0.5% w:w application rate and 30 days incubation period) and then individually varying 

each parameters at arbitrary values, while maintaining constant the other parameters. 

A sensitivity index (SI) was calculated according to Ng and Loomis (1984) as: 

 

Sensitivity index (SI) = % change in output variable / % change in input variable  

 

The input variables were DEOM/REOM; DEOM/HEOM; REOM/HEOM; KEOM and 

KREOM, while the variation in SOC with respect to the baseline (SOC at equilibrium) was 

considered as the output variable. A large value of SI indicates that the model output 

variable is relatively insensitive to changes in the input variable; a small SI value 

indicates that the model output variable is sensitive to changes in the input variable. A 

SI value of 1 indicates that changes of 1% in the input value result in a change of 1% in 

the output variable. Negative SI values indicate that increasing the input value 

decreases the output value; positive SI values indicate that increasing the input value 

increases the output value. 

 

2.3 Regional modelling of amended soils 

 

2.3.1 Data sets 

 

The geographic window, within which the study was performed, covers the area: 

longitude 6.750 E to 18.417 E, latitude 36.750 N to 46.917 N. The GIS platform used 

was ARC Map 9.3. 

Information on soil properties and spatial distribution and land use classes were 

derived from the Soil Geographical Database of Europe (SGDBE) (European Soil 

Database, 2004). The database represents a digital version of the 1:1000000 Soil Map 

of Europe and it presents geometric and semantic components, soil information being 

presented in the form of Soil Map Units (SMUs), with each polygon unit on the map 

being assigned to a single SMU. Each SMU comprises a number of soil types or Soil 
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Typological Units (STUs) which are associated together within the SMU landscape, but 

cannot be separated spatially at the 1:1000000 map scale. The number of SMU 

polygons for Italy was 1314.  

Mean SOC stocks in t C ha-1 to 25 cm depth (calculated from percentage of C 

content and bulk density) and the clay content in the soil upper layers were derived 

from SPADE2 soil profile analytical database for Europe (Hannam et al., 2009). SPADE 2 

was developed to be used in conjunction with the SGDBE database, providing the soil 

property data for each STU. The window contained 295 representative soil profiles. 

SPADE2 also provides the dominant and secondary (when present) land use class 

according to the Corine Land Cover nomenclature for each STU. In the database 22 

different land class uses are present of which 10 were present in the STU associated 

with Italy. Of these, 6 represent agricultural land uses classes (grassland, arable, 

horticulture, vineyards, olive trees and industrial crops), covering 63.8 % of the total 

land. 

Monthly temperature and precipitation data for Italy were extracted from CRU 1.0 

(for the range 1901-2000) and TYN SC 1.2 (for the range 2001-2100) European climate 

databases at a 10’ x 10’ resolution downloaded from the Climate Research Unit of the 

University of East Anglia (Mitchell et al., 2004). The climate data for the geographic 

window (Italy) were extracted utilizing the TETYN software (Solymosi et al., 2008).  

Monthly climate values for 2001-2100 were provided using outputs from 3 different 

Global Circulation Models (GCMs), namely HadCM3, PCM, and GCM2 (Mitchell et al., 

2004), forced by 4 different CO2 emissions scenarios as defined in the IPCC Special 

Report on Emissions Scenarios (SRES)(Nakicenovic et al., 2000) for a total of 12 

different climate scenarios (Nakicenovic et al., 2000; Smith and Powlson, 2003). The 

emissions scenarios estimate future concentrations of GHG in the atmosphere to 

which climate is sensitive based on assumptions about patterns of economic and 

population growth, technology development and other factors. 

The A1 scenario (‘world markets’) describes a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, and the 

rapid introduction of new and more efficient technologies. The A1 scenario family 

develops into three groups that describe alternative directions of technological change 
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in the energy system. In particular, the FI (‘fossil fuel intensive’) group poses emphasis 

on the intensive use of fossil fuels.  

In the A2 scenario (‘provincial enterprise’) economic development is primarily 

regionally oriented and per capita economic growth and technological change are 

more fragmented and slower than in other storylines. 

The B1 scenario (‘global sustainability’) describes a convergent world with the same 

global population trend as in the A1 scenario, but with rapid changes in economic 

structures towards a service and information economy, with reductions in material 

intensity, and the introduction of clean and resource-efficient technologies.  

The B2 scenario (‘local stewardship’) describes a world with a continuously 

increasing global population at a rate lower than in A2, intermediate levels of 

economic development, and less rapid and more diverse technological change than in 

the B1 and A1 storylines.  

Monthly potential evapotranspiration (ET) for each point of the 10’ x 10’ grid for the 

1901-2100 period were calculated from temperature, precipitation and diurnal 

temperature range data according to the Hargreaves method (Allen et al., 1998). 

For the modelling exercise, averaged monthly values of climatic data for the period 

1901-2000 and averaged decennial values for the period 2001-2100 were utilized. 

Point layers containing the meteorological data were created in ArcMap with each 

layer consisting of 1191 grid points (Figure 3). 
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Figure 3. Representation of the point layer associated to climate data for Sicily. 

 

2.3.2 Layer linkages  

 

An ArcMap built-in functionality was utilized to find the centre of all SMU polygons. 

The SMU centres were then linked through a spatial join to the nearest point of the 

meteorological layer, resulting in a linked soil mapping unit/meteorological layer 

constituted by 1314 polygons (Figure 4). 
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Figure 4. Linked soil mapping unit/climate layer for Sicily. 

 

The SMU/climate layer were then linked with the soil and land use data through a 

query operated in MS Access utilizing information provided by the geographic and 

semantic components of SGDBE. This provided a linked soil, land use and 

meteorological database constituted by 10130 rows representing a unique 

combination of soil, land use and meteorology. Simulations were performed for each 

of the 10130 combination of climate and soil data. 

 

2.3.3 Running the modified RothC model  

 

RothC input and setup files were created for each one of the unique 10130 

combinations of soil, land use and meteorology data. RothC was run and the model 

output was loaded into Excel, Access and SPSS for analysis, and into ArcMAP for 

visualization. 
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For each combination of soil, land use and climate data, the initial C content of the 

different SOC pools and the annual plant addition to the soil were obtained by running 

the RothC model to equilibrium (Coleman and Jenkinson, 1996) using average climate 

data for 1990-2000 and by using the clay and SOC content provided by the SPADE2 

data base. 

The monthly distribution of plant input was calculated in two stages. Initially, the 

total annual plant input was assumed to be 1 t C ha-1 and the proportions of plant 

material added to the soil in each month were set to describe the typical pattern of 

inputs for each land use class. After RothC was run to equilibrium, the annual C input 

was adjusted to give the measured soil C content provided in the soils database using 

the following equation: 

Preq = Pi x [(Cmeas – IOM)/(Csim – IOM)] 

where Preq is monthly C input, Pi is the initial monthly total C addition (the sum of the 

proportions of the C input in the first equilibrium run is 1), Cmeas is the measured soil C 

given in the soils database, Csim is the simulated soil C after the equilibrium run, and 

IOM is the C content of the inert organic matter fraction in the soil (all in t C ha-1). The 

size of the IOM fraction was set according to the equation given by Falloon et al. 

(1998b):  

IOM = 0.049 x Cmeas
1.139 

Having determined the plant additions and C contents of SOC pools, the simulations 

were run between 2001-2100 using the predicted climate and land use data. 

Two predicted land management scenarios were chosen for estimation of C 

sequestration potential: annual addition of EOM at a rate of 0 (baseline) and 1 t C ha-1. 

In the case of compost this correspond to an application rate corresponding to 9.1 t fw 

ha-1 according to the mean water and C content of green waste compost in Italy (CIC, 

Italian Composting Association, 2000). 

The model was run for each of the 8 EOM type defined in Table 3 utilizing as a 

parameters the mean of the model parameters for all incubations performed with the 

same EOM type (Table 14). The model was run to the year 2100 for the 12 climate 

scenarios considered and for the two land management scenarios described above 

giving 24 combinations of climate x management scenarios. For each polygon, the 

change in SOC under the baseline run was subtracted from the change in SOC under a 
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land management scenario including EOM addition to give the net soil C sequestration 

due to the change in land management.  

Application of EOM was only considered for agricultural land use classes. Soils with 

natural land use classes were therefore excluded from the simulations. Similarly, 

organic soils with a SOC content > 200 t ha-1 were also excluded from simulation as 

RothC has not been parameterised for organic soils (Coleman and Jenkinson, 1996). 

Consequently, land for which EOM addition was simulated was 60 % of total land. 

The procedure devised for spatial explicit modelling of SOC in amended soil is 

represented in figure 5. 

 

 

Figure 5. Diagram of the procedure devised for regional SOC modelling in amended 

soils (after Parshotam et al., 2005). 

 

2.3.4 Data treatment 

 

Model runs were performed for each combination of STU and Land Use within each 

SMU (10130 combinations). This was done in order to obtain the higher amount of 

information possible from the available data. 

However, the SPADE database does not provide information on the percentage of 

land covered by each land use classes. Conversely these information is provided for 
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each STUs within the corresponding SMU, but nevertheless STUs cannot be separated 

spatially at the 1:1000000 map scale. Therefore, for visualization it is necessary to 

obtain a reduction of available information at SMU level. This was obtained for SOC 

utilizing the following criteria: 

Land use: the fraction of STU area that is occupied by their defined dominant and 

secondary land use was estimated according to Hannam et al. (2009). In the case of 

STU presenting only the dominant land use that use was attributed to 80% of the total 

area of the STU. In the case of STU presenting both dominant and secondary land use 

it was assumed that the STU is covered by 60% from the dominant land use and 30% 

from secondary land use.  

STU: SOC content of each SMU was calculated operating a weighted average of the C 

content of each STU, considering the STU’s percent area distributions within the SMU 

reported in the SGDBE database. 
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3  Results and Discussions  

 

3.1  EOM soil mineralization 

 

3.1.1  CO2 emission trends of EOM amended soils 

 

As a whole, the respiration pattern of 224 duplicate EOM amended soil samples was 

measured during laboratory incubations. 

The rate of CO2 evolution from soil was greatly affected by the type of amendment. 

As an example, Figure 6 shows the CO2 evolution trends of organic materials with 

different degree of stabilization in two contrasting soils. In general, EOM characterized 

by high contents of easily degradable OM (i.e. animal residues, bioenergy by-products) 

caused a rapid and significant increase in the rate of CO2 evolution that peaked within 

2-3 days after the amendment and was followed by a decreasing trend.  

On the other hand, the CO2 emission patterns of more stable material (i.e. compost) 

were characterized by a continuously decreasing trend throughout the whole period of 

incubation. Some materials were characterized by a bimodal pattern of respiration 

rate, indicating the presence of pools of OM with different degree of degradability. 
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Figure 6. Trends of CO2 emission from S. Martino (a) and Reana (b) soils amended 

with EOM of different degree of degradability. 

a 

b 

b
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3.1.2 Cumulative net C mineralization of EOM amended soils 

 

The cumulative net C mineralization, i.e. the total CO2-C derived exclusively from 

EOM decomposition, greatly varied as a function of the different EOMs and incubation 

conditions. Range and mean values of net C mineralization for the different EOM 

types, as defined in the material and methods section, are reported in Table 4 which 

summarizes results from all the incubations performed utilizing different conditions, 

those carried out under standard laboratory conditions (20 °C, 40% WHC, 0.5% 

application rate and 30 days incubation period) and those utilized for model 

optimization. 

 

Table 4. Cumulative extra CO2-C emitted in amended soil (% of added C) for EOM 

type for all incubations, incubations performed under standard conditions 

and incubations utilized for model optimization. 

EOM type

Mean Min Max n Mean Min Max n Mean Min Max n

Biochar 0.02 0.01 0.04 4 0.02 0.01 0.04 4
Compost 3.7 0.9 11.1 34 3.0 0.9 6.6 19 3.7 0.9 11.1 34
Bioenergy by-products 12.9 6.9 16.8 20 12.8 6.9 16.8 10 13.2 6.9 16.0 17
Anaerobic digestates 3.8 0.8 7.2 27 4.0 0.8 7.1 10 3.8 0.8 7.2 25
Meat and bone meals 16.8 7.8 38.6 93 21.3 18.1 25.9 3 16.8 0.6 3.5 92
Animal residues 13.1 5.0 21.1 33 16.8 11.0 21.1 14 13.5 5.0 21.1 30
Crop residues 8.5 3.0 18.4 10 10.4 5.1 18.4 6 5.6 3.0 7.4 8
Agro-industrial wastes 10.0 6.0 17.5 3 6.3 6.0 17.5 3 6.3 6.0 6.6 2
Sewage sludges 4.8 3.8 6.0 4 4.8 3.8 6.0 4 4.8 3.8 6.0 4
Total cases 228 69 212

All incubations Standard conditions 
incubations

Incubations utilized for  
model optimization

CO2-C (%) CO2-C (%) CO2-C (%)

 

 

Considering all the incubations performed, extra CO2-C varied in the range 0.01-

38.6% of the C added with EOM (Table 4). 

In the case of compost, incubations were performed with samples taken at different 

periods of the stabilization process. Considering only the stable compost, sampled at 

the end of the stabilization process, EOM mineralization ranged from 0.9 to 4.3%, with 

a mean value of 2.1% (Table 7).  

According to mean values of net C mineralization obtained under standard 

laboratory conditions, the different EOM types can be ranked as follows (values in 
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parenthesis are the percentage of added C emitted as CO2-C): biochars (0.02%) < stable 

composts (2.0%) < composts at different degree of stabilization (3.0%) < anaerobic 

digestates (4.0%) < sewage sludges (4.8%) < agro-industrial wastes (6.3%) < crop 

residues (10.4%) < bioenergy by-products (12.8%) < animal residues (16.8%) < meat 

and bone meals (21.3%).  

This classification is in agreement with results of similar studies on the 

decomposability of EOMs of different origin and nature. Thuries et al. (2001) 

investigated the soil C mineralization of 17 EOMs and found the following rank of 

mineralization rates: animal residues > plant residues > compost. Similar results were 

presented by Lashermes et al. (2009) in a mineralization study of 440 EOMs. In this 

case, the EOM type with the higher potential for soil C conservation was the anaerobic 

digestate, followed by composted manure. On the other side of the range of EOM 

degradability were animal residues.  

The EOMs studied in this research were characterized by significant differences in 

their composition, especially in the content of the different forms of N. These 

differences would likely influence the behaviour of the residues once applied to the 

soil. So for instance, the two first generation biofuels (BR and RSM) largely differed in 

their water soluble C and N and extractable NH4
+. The composted materials were 

characterized by different C/N ratio, extractable NH4
+ and total P. 

Besides residue properties, net mineralization was affected by incubation 

conditions, in particular soil characteristics, temperature of incubation and rate of 

EOM application.  

 

Values of net C mineralization (expressed as percentage of added C) measured in 

the present study for compost amended soil are difficult to compare with those found 

in similar studies, as different conditions regarding temperature of incubation, 

application rate, soil water content, length of incubation and method of CO2 

measurement were used. Similar values to the ones recorded in this study were 

reported by De Neve et al. (2003), who measured CO2-C values of 1.8, 8.1 and 8.8% of 

added C for green waste compost, vegetable, fruit and garden waste compost and 

spent mushroom compost, respectively, after 39 days of incubation at 21 °C and 80% 

WHC. Similarly, Thuries et al. (2001) found net mineralization of about 6% for a stable 



 
 

63 

compost after 30 days of incubation at 28 °C and 75% WHC. Hadas and Portnoy (1997), 

after 4 weeks of incubation at 30 °C and 60% WHC, measured values of net CO2-C of 

2.5 and 6% for cattle manure and municipal solid waste (MSW) compost amended soil, 

respectively. Flavel and Murphy (2006) measured the following amounts of net CO2-C: 

7.7, 7.3, 11.0 and 6.9%, for straw, two green waste composts and a vermicompost, 

respectively, after 70 days of incubation at 15 °C and 75% WHC. Busby et al. (2007) 

found values in the range 0.5-1.5 and 4.8-15.5% for composted and non composted 

MSW amended soils, respectively after 30 days of incubation at 25 °C and 85% WHC. 

Hartz et al. (2000), in a study on C mineralization of 19 manures and compost, 

measured values in the range 5-17.5% of added C after 28 days of incubation at 25 °C 

and 25-kPa. Francou et al. (2008) incubated soil amended with green wastes mixed 

with bio-wastes and paper-cardboard for 28 days at 28 °C and 80% field capacity and 

recorded values of net mineralization in the range 5-12% of the added C. 

 

The total extra CO2-C evolved after 2 weeks in the soils amended with meat and 

bone meals in the present study ranged between 7.8 and 38.6% (Table 4). Comparing 

these results with other previous C mineralization studies of residues characterized by 

low values of C/N ratio, they are in the range of poultry manure (16%) or pig slurry 

(19%) according to a 20-day incubation study performed at 22 °C by Levi-Minzi et al. 

(1990). Jones (1999) studied the mineralization of a mixture of 15 14C-labelled amino 

acids in different soils incubated at 18 °C and found a production of CO2-C between 

10% and 25% of total added C. 

 

Regarding by-products from bioenergy production, values of C mineralization 

recorded in the present study were significantly lower to the ones measured by 

Cayuela et al. (2010). This dissimilarity can be attributed to the different conditions 

utilized for the incubation, as these authors incubated the soil at higher water content 

(80% water filled pore space vs 40% WHC) and this might have favoured the 

mineralization process. Nevertheless, the organic residues showed the same relative 

differences in CO2 production. 
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3.2 Model modification and optimization 

 

3.2.1 Model modification 

 

Generally soils receive two main forms of C inputs: 

- Plant (crop) residues from the current land management. Such inputs 

contribute to maintain SOC content at equilibrium 

- EOM represented by compost and/or other agricultural or industrial organic 

residues 

The standard RothC model does not distinguish between these two inputs, i.e. the 

DPM and RPM pools include both plant residues and EOMs, notwithstanding their 

widely different nature. This limitation of the standard RothC model is highlighted by 

the results of Tits et al. (2014) who utilized RothC to simulate 30 years of compost 

addition. The quality of EOM in their work was addressed by calibrating DPM/RPM 

ratio with the SOC content of a long term experiment, but in this case DPM/RPM ratio 

encompassed not only EOM quality, but also the quality of input material (crop 

residues). Consequently, the calibrated DPM/RPM ratio was site specific as the ratio 

depended not only from compost properties, but also by the crop type and 

management of the site utilized for calibration. The fact that the same pool structure is 

used to represent organic materials that widely differ in composition and 

decomposition pattern (e.g. crop residues vs. compost) simplifies model structure, but 

is likely to generate less accurate results (Cavalli and Bechini, 2011). 

The standard RothC model allows for the simulation of soil amended with farmyard 

manure, but its partition coefficients in DPM, RPM and HUM are fixed in the model 

and cannot be varied unless the user modifies the original source code. Such partition 

coefficients are 0.49, 0.49 and 0.02 for DPM, RPM and HUM, respectively. The 

decomposition rates for the DPM and RPM pools of plant residues, EOMs and 

farmyard manure are shared and fixed at 10 and 0.3 y-1, respectively. 

 

In the modified model, the subdivision of EOM in 3 pools, with the more stable one 

directly incorporated into the humus pool of SOM (Figure 2), is conceptually similar to 

that of the CNSIM model (Petersen et al., 2005b; Pedersen et al., 2007). In this model 
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EOM is partitioned in 3 pools, namely metabolic (decomposable), structural (resistant) 

and recalcitrant (humic-like EOM), with the latter directly incorporated into the soil 

humic pool. Petersen et al. (2002) indicated that OM from slurry and farmyard manure 

is generally assumed to contribute relatively more to SOM build-up than plant residues 

and this is modelled In the CNSIM model by transporting a fraction of added manure 

directly into the slow native OM pool. The occurrence of an EOM pool directly 

incorporated into the soil humic substances is supported by the findings of Peltre et al. 

(2013). The authors found that soil amended with farmyard manure accumulated 

similar proportions of C with size >50 µm and 0-50 µm, which was attributed to the 

presence in the manure of a fraction of labile C, together with a fraction of stabilized C 

directly incorporated into the humified fraction of SOC. The assumption that the stable 

EOM pool is directly incorporated into stable soil humus is also in agreement with the 

results of Nicolardot et al. (2001), who found that NCSOIL model tends to overestimate 

residue-derived CO2 production and attributed this to the structure of the model that 

encompasses assimilation of the whole residue by the soil microflora. The authors 

suggest that models allowing for direct incorporation into stable SOM of a proportion 

of residue-C (resistant compounds such as lignin), instead of microbial incorporation, 

are more reliable for predicting long term C trends and that such models are more 

indicated to the simulation of long term SOM evolution. 

The characteristic of HEOM in terms of degradability was considered to be similar to 

the soil HUM pool and for this reason, in the present thesis, it was assigned the same 

decomposition rate. This assumption was made on the evidence that certain EOM, 

such as composts, are characterized by the presence of substances resistant to 

decomposition which properties resemble those of soil humic substances and for this 

reason are frequently identified as humic-like substance (Sanchez-Monedero et al., 

1999; Wu and Ma, 2002). 

Other residues, such as olive mill wastes, have a large content of lignin whose 

transformation before soil application produces a stable OM. As an example, the 

aerobic degradation of olive mill wastewaters takes place through typical humification 

pathways involving polyphenol condensation and the condensation of lignin 

degradation moieties with N compounds, generating an effluent rich in stable OM 

similar to the soil humic substances (Fakharedine et al., 2006). Decomposed 
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lignocellulosic wastes such as TPOMW have a high C sequestration potential due to the 

amount and quality of their humic-like substances (Serramia et al., 2010). 

 

The reliability of the proposed model modification, i.e. the partitioning of EOM in 3 

pools with specific pool parameters for each EOM, is sustained by the results of 

Falloon (2001), who utilized either the standard and a modified version of RothC to 

simulate C trends in a long term experiment (45 years) dealing with soil amendment 

with sewage sludge. The conventional version of RothC only accounts for additions of 

OM to soils in terms of either plant residues or farmyard manure. Using the standard 

model version and treating the sewage sludge as an input of farmyard manure to soil,  

resulted in a significant underestimation of SOC increases in the amended soil. A 

modified version of the model was then used, assuming that sewage sludge was 

composed of 10% DPM, 70% RPM, and 20% HUM (rather than the values of 49% DPM, 

49% RPM and 2% HUM used for farmyard manure). Running the modified RothC, 

resulted in a much closer agreement between modelled and measured SOC trends. 

The specific partitioning factors for sewage sludge reflect the evidence that this 

organic residue is composed of a greater proportion of resistant and humified organic 

material and less decomposable organic material compared to farmyard manure 

(McGrath and Brookes, 1986). Further support to the effectiveness of the proposed 

modification of the model structure derives from the work of Incerti et al. (2011) who 

found that a model with 3 EOM pools satisfactorily described the pattern of litter 

decomposition. The authors compared a 3 pools model with a 2 and 1 pools models 

and found better description of decomposition rate by the 3 pools model. 

Furthermore, the authors found an enhancement of the predictive ability of the 3 

pools model by varying the decomposition rate of the intermediate pool as a function 

of the lignin content. Accordingly, several authors have demonstrated that the 

performance of a dynamic C model in simulating SOC in amended soils is increased by 

a specific parameterization for the EOM added to the soil (Gabrielle et al., 2004; 

Petersen et al., 2005b; Cavalli and Bechini, 2011, 2012; Peltre et al., 2012). Heitkamp et 

al. (2012) showed that changing the partition coefficient between decomposable and 

resistant OM fractions of crop residues allowed the model predictive power to be 

increased. Glanville et al. (2012), in a study on decomposition of low molecular weight 
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C components performed either in laboratory and in the field, found a very close 

resemblance in the partition coefficients, while mineralization rate constants showed 

the greatest variation between experimental conditions. This supports the importance 

to parameterize not only the partition coefficient, but also the decomposition rate, 

since this seems an important factor causing the different behaviour of EOMs in soil. 

Plaza et al. (2012) concluded that the CQESTR model performance to predict SOC 

trends in amended soil could be improved by including additional parameters allowing 

for a better differentiation of EOM with contrasting degree of stability.  

As a whole, these results support the hypothesis that specific EOM partitioning 

coefficients and decomposition rates increase model performance, as reported by 

Probert et al. (2005) who successfully modified the APSIM model so that any input of 

organic material could be specified in terms of both its fractionation into the three 

EOM pools of the model and the C/N ratio of each pool (previously it has been 

assumed that all pools have the same C/N ratio). Accordingly, the model modification 

proposed in the present study was based on the hypothesis that this would improve 

the ability of the model to simulate long term SOC trends in amended soils. This 

consideration was supported by the fact that preliminary tests have shown that the 

original model was not capable to adequately simulate the respiration of amended soil 

during laboratory incubations. This is not unexpected given the high variability in terms 

of chemical composition, origin and properties of EOM. In addition, it has to be 

considered that new treatments and processes for animal and vegetal residues are 

being developed (i.e. bioenergy process), generating new by-products which behaviour 

into the soil are not well known and understood (Cayuela et al., 2010). 

 

EOM partitioning in two or three pools depends on its composition and properties. 

Petersen et al. (2003), in an investigation on the soil decomposition of plant residues, 

showed that the rate of CO2 evolution generally peaked shortly after amendment and 

then gradually became fairly constant, indicating that a fraction of the added material 

is relatively slowly decomposable. Splitting the added organic matter between two 

compartments EOM1 and EOM2, the latter representing the most easily 

decomposable material, has been shown to represent well this mechanism. 
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On the other side, Cavalli and Bechini (2011) in a study on soil mineralization of 

liquid dairy manure found that a good agreement between the simulated and 

observed dynamics of CO2 respiration (characterised by an initial rapid phase of C 

mineralisation and a successive slower phase of CO2 release) was obtained by 

partitioning the added C input into three pools (EOM1, EOM2 and NOM) with different 

decomposition constants. 

 

3.2.2 Sensitivity analysis 

 

To test the effect of modifications carried out on the standard RothC model, a 

sensitivity analysis (SA) was performed to assess the effects of varying EOM model 

parameters on outputs. This analysis allows the parameters which have a major impact 

on the simulated C accumulation following EOM addition to be identified. 

The analysis was performed by varying a single parameter at a time within a certain 

range, keeping constants the remaining. The initial values of the parameters were 

derived from a model parameterization under standard conditions for two EOMs, 

characterized by the presence or not of HEOM. More specifically the two EOMs were a 

mixed swine bovine meat and bone meal (SB) and a household waste compost (HWC). 

In the case of SB, characterized by two EOM pools, the parameter presenting the 

greatest effect on the simulated SOC was KREOM (Table 5; Figure 7). The SI index is 

negative indicating an inverse relationship between the parameter and the output. 

This result is in agreement with findings of Stamati et al. (2013) who demonstrated 

that total plant litter input and the RPM decomposition rate constant were the RothC 

parameters with the highest sensitivity. 
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Table 5. RothC EOM pool parameters sensitivity analysis for meat and bone meal 

amended soil. 

Parameter 
varied

fDEOM fREOM fDEOM/fREOM KDEOM            

(y-1)

KREOM            

(y-1)

SOC               
(after 100 y)

SOC-EQ C sequestration 
potential              

(t C ha y-1)

SI

0.90 0.10 9.00 27.3 0.36 42.28 5.28 0.053 -120.7
0.80 0.20 4.00 27.3 0.36 42.58 5.58 0.056 -60.4
0.70 0.30 2.33 27.3 0.36 42.88 5.88 0.059 -40.4
0.60 0.40 1.50 27.3 0.36 43.17 6.17 0.062 -30.3
0.50 0.50 1.00 27.3 0.36 43.47 6.47 0.065 -24.4
0.40 0.60 0.67 27.3 0.36 43.77 6.77 0.068 -20.5
0.30 0.70 0.43 27.3 0.36 44.07 7.07 0.071 -18.0
0.21 0.79 0.26 27.3 0.36 44.34 7.34 0.073
0.10 0.90 0.11 27.3 0.36 44.67 7.67 0.077 -12.7
0.01 0.99 0.01 27.3 0.36 44.93 7.93 0.079 -11.8
0.21 0.79 0.26 1 0.36 44.53 7.53 0.0753 -37
0.21 0.79 0.26 3 0.36 44.39 7.39 0.0739 -138
0.21 0.79 0.26 5 0.36 44.35 7.35 0.0735 -530
0.21 0.79 0.26 10 0.36 44.34 7.34 0.0734 -1937
0.21 0.79 0.26 15 0.36 44.34 7.34 0.0734 -3005
0.00 0.39 0.00 20 0.36 44.34 7.34 0.0734 -3924
0.21 0.79 0.26 27.3 0.36 44.34 7.34 0.0734
0.21 0.79 0.26 40 0.36 44.34 7.34 0.0734 -8532
0.21 0.79 0.26 50 0.36 44.34 7.34 0.0734 -12201
0.21 0.79 0.26 60 0.36 44.34 7.34 0.0734 -17576
0.21 0.79 0.26 70 0.36 44.34 7.34 0.0734 -19126
0.21 0.79 0.26 27.30 0.15 47.94 10.94 0.109 -1
0.21 0.79 0.26 27.30 0.20 46.40 9.40 0.094 -2
0.21 0.79 0.26 27.30 0.25 45.47 8.47 0.085 -2
0.21 0.79 0.26 27.30 0.30 44.85 7.85 0.079 -2
0.21 0.79 0.26 27.30 0.36 44.34 7.34 0.073
0.21 0.79 0.26 27.30 0.40 44.08 7.08 0.071 -4
0.21 0.79 0.26 27.30 0.50 43.62 6.62 0.066 -4
0.21 0.79 0.26 27.30 0.75 43.00 6.00 0.060 -6
0.21 0.79 0.26 27.30 1.00 42.69 5.69 0.057 -8
0.21 0.79 0.26 27.30 1.25 42.51 5.51 0.055 -10
0.21 0.79 0.26 27.30 1.50 42.39 5.39 0.054 -12
0.21 0.79 0.26 27.30 2.00 42.25 5.25 0.052 -16
0.21 0.79 0.26 27.30 3.00 42.11 5.11 0.051 -25

fDEOM/fREOM

KDEOM

KREOM

 

EQ:       SOC at equilibrium = 36.9996 t ha-1 
SOC-EQ:      SOC after 100 years - SOC at equilibrium 
SI (sensitivity index):  % change in output variable / % change in input variable  
Added C:     1.0 t ha-1 y-1 
Values in red refer to simulation performed with initial values of the parameters derived from 
a model calibration under standard conditions 
 

Moreover, SI for KREOM is not constant and displays the lowest absolute values in 

correspondence to the lowest values of KREOM. Consequently, SOC values predicted 

with RothC are more sensitive to differences in KREOM at smaller values of the 

parameter. 
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The model output is sensitive to KDEOM only at very low values (< 1). In all the 

optimizations performed the minimum KDEOM value was 11. For values larger than 10 

the sensitivity analysis showed that differences in KDEOM resulted in negligible 

differences in the SOC accumulated. This is due to the fact that at high mineralization 

rates of DEOM, such pool is nearly completely mineralized before the successive EOM 

addition in the following year. In fact, for KDEOM = 10 y-1 the DEOM half life, i.e. the time 

required for half of the pool to decompose, is 0.07 y-1 (Six and Astrow, 2002). 
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Figure 7. RothC EOM pool parameters sensitivity analysis for a meat and bone meal 

amended soil. 

 

The model displayed a moderate sensitivity to variations in the fDEOM/fREOM ratio. 

Variation of the ratio from 9 to 0.11 resulted in 2.4 C t ha–1 increase, with larger 

differences at lower values of the ratio. 
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In the case of EOM characterized by 3 pools, typically the composted substrates, the 

most influential parameter on the model output was the fREOM/fHEOM ratio, especially at 

lower values (i.e. high contents of humic-like substances) (Table 6; Figure 8). This is not 

unexpected given the well known slow degradation rate of humic substances. 

For the same reason (increase of HUM pool) the model output is also sensitive to 

variations in the fDEOM/fHEOM ratio; such sensitivity is higher at low values of the ratio.  

Variations in KREOM presented a moderate effect on the model output. Changing the 

value from 0.75 to 0.15 resulted in a SOC increase of 2.31 t C ha-1, corresponding to 

3.3% of the initial value. 

 

During SA, variations in model outputs are related to variation in model inputs, 

highlighting the contribution of each parameter and of parameters interactions on 

model output variations. Therefore SA helps in selecting the most important 

parameters that need to be varied during parameter optimisation. 
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Table 6. RothC EOM pool parameters sensitivity analysis for household waste 

compost. 

Parameter 
varied

fDEOM fREOM fHEOM fDEOM/ 

fREOM

fDEOM/ 

fHEOM

fREOM/ 

fHEOM

KDEOM                     

(y-1)

KREOM                     

(y-1)

SOC               
(after 
100 y)

SOC-EQ C sequestration 
potential              

(t C ha y-1)

SI

0.01 0.39 0.61 0.01 0.01 0.63 43 0.35 71.55 34.55 0.346 -586
0.01 0.38 0.61 0.03 0.02 0.62 43 0.35 71.54 34.54 0.345 -631
0.02 0.37 0.61 0.06 0.04 0.61 43 0.35 71.51 34.51 0.345
0.09 0.30 0.61 0.30 0.15 0.49 43 0.35 71.29 34.29 0.343 -638
0.19 0.20 0.61 0.95 0.31 0.33 43 0.35 70.98 33.99 0.340 -975
0.29 0.10 0.61 2.90 0.48 0.16 43 0.35 70.68 33.68 0.337 -1959
0.34 0.05 0.61 6.80 0.56 0.08 43 0.35 70.52 33.52 0.335 -3922
0.53 0.37 0.10 1.43 5.30 3.70 43 0.35 47.77 10.77 0.108 -209
0.43 0.37 0.20 1.16 2.15 1.85 43 0.35 52.43 15.43 0.154 -104
0.33 0.37 0.30 0.89 1.10 1.23 43 0.35 57.08 20.08 0.201 -69
0.23 0.37 0.40 0.62 0.58 0.93 43 0.35 61.73 24.73 0.247 -52
0.13 0.37 0.50 0.35 0.26 0.74 43 0.35 66.39 29.39 0.294 -41
0.02 0.37 0.61 0.06 0.04 0.61 43 0.35 71.51 34.51 0.345
0.01 0.37 0.62 0.03 0.02 0.60 43 0.35 71.97 34.97 0.350 -42
0.02 0.88 0.10 0.02 0.20 8.80 43 0.35 49.34 12.34 0.123 -20.9
0.02 0.78 0.20 0.03 0.10 3.90 43 0.35 53.69 16.69 0.167 -10.5
0.02 0.68 0.30 0.03 0.07 2.27 43 0.35 58.03 21.03 0.210 -7.0
0.02 0.58 0.40 0.03 0.05 1.45 43 0.35 62.38 25.38 0.254 -5.2
0.02 0.48 0.50 0.04 0.04 0.96 43 0.35 66.73 29.73 0.297 -4.2
0.02 0.37 0.61 0.06 0.04 0.61 43 0.35 71.51 34.51 0.345
0.02 0.28 0.70 0.07 0.03 0.40 43 0.35 75.42 38.42 0.384 -3.0
0.02 0.18 0.80 0.11 0.03 0.23 43 0.35 79.77 42.77 0.428 -2.6
0.02 0.37 0.61 0.06 0.04 0.61 43 0.15 73.16 36.16 0.362 -12
0.02 0.37 0.61 0.06 0.04 0.61 43 0.20 72.44 35.44 0.354 -33
0.02 0.37 0.61 0.06 0.04 0.61 43 0.25 72.00 35.00 0.350 -40
0.02 0.37 0.61 0.06 0.04 0.61 43 0.30 71.71 34.72 0.347 -47
0.02 0.37 0.61 0.06 0.04 0.61 43 0.35 71.51 34.51 0.345
0.02 0.37 0.61 0.06 0.04 0.61 43 0.40 71.35 34.35 0.344 -70
0.02 0.37 0.61 0.06 0.04 0.61 43 0.50 71.14 34.14 0.341 -85
0.02 0.37 0.61 0.06 0.04 0.61 43 0.75 70.85 33.85 0.338 -126
0.02 0.37 0.61 0.06 0.04 0.61 43 1.00 70.70 33.70 0.337 -167
0.02 0.37 0.61 0.06 0.04 0.61 43 1.25 70.62 33.62 0.336 -209
0.02 0.37 0.61 0.06 0.04 0.61 43 1.50 70.56 33.56 0.336 -251
0.02 0.37 0.61 0.06 0.04 0.61 43 2.00 70.49 33.49 0.335 -336
0.02 0.37 0.61 0.06 0.04 0.61 43 3.00 70.43 33.43 0.334 -507

fDEOM/fREOM

fDEOM/fHEOM

fREOM/fHEOM

KREOM

 

EQ:       SOC at equilibrium = 36.9996 t ha-1 
SOC-EQ:      SOC after 100 years - SOC at equilibrium 
SI (sensitivity index):  % change in output variable / % change in input variable  
Added C:     1.0 t ha-1 y-1 
Values in red refer to simulation performed with initial values of the parameters derived from 
a model calibration under standard conditions 
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Figure 8. Roth C EOM pool parameters sensitivity analysis for household waste 

compost amended soil. 

 

3.2.3 Model optimization by fitting respiration data  

 

Model optimization is an essential step for model testing and development; its 

purpose is to achieve a good fit between simulated model outputs and corresponding 

experimental observations. This objective is achieved by exploring different 

combinations of parameters and identifying the solutions that provide the best 

agreement between measured and simulated variables. 

In a preliminary test, the possibility to optimize the model following the procedure 

performed by Peltre et al. (2012), i.e. changing only the partition coefficients of EOM 

entry pools and leaving constant the decomposition rates, was investigated. Results 

showed that it was not possible to achieve a satisfactory fitting of the respiratory curve 

only by varying the proportion of DEOM, REOM and HEOM. 



 
 
74 

The optimization procedure was therefore carried out by simultaneously varying 

the partition coefficients for DEOM, REOM and HEOM and the decomposition rate 

constants for DEOM and REOM. Tables 7-12 show the incubation conditions and the 

model parameters obtained by fitting the model to the CO2 measured during the 

different incubations. In the tables are also reported the values of the statistical 

indicators utilized to evaluate the model goodness of fit. 

As an example of curve fitting, Figure 9 reports measured and simulated net CO2-C 

evolution for meat and bone meal and hydrolyzed leather added to the S. Martino soil 

incubated under standard conditions. 
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Figure 9. Examples of model fitting to measured respiration curves of meat and bone 

meal (left) and hydrolyzed leather (right) amended soil incubated in 

laboratory. 

 

As a whole the model was able to fit very well the respiratory response of the 

amended soils, as indicated by the statistical indicators (Tables 7-12). The mean 

correlation coefficient (R) for all incubations was 0.995 and was higher than 0.945 for 

all but one EOM. The root mean square error (RSME) was on average 4.5%, while the 

relative error (E) ranged between -16.4 and 3.5% (Tables 7-12). The goodness of the fit 

was also underlined by the very low values of M (on average -1.2 µg CO2-C g-1). As a 

comparison, Cavalli and Bechini (2011) calibrated CNSIM model for five different liquid 

dairy manures and obtained RMSE values in the range 3-17%. 
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Mean values of partition coefficients of added organic C optimized for compost 

amended soils found in the present work (fDEOM: 0.03; fREOM: 0.44; fHEOM: 0.53; Table 7) 

were in a very close agreement to values of 0.08, 0.40 and 0.52 for labile, resistant and 

stable EOM pools, respectively, found by Kaborè et al. (2011) for composted substrates 

utilizing the TAO model. Partition coefficients and decomposition rates for composted 

materials were also similar to those estimated by Thuries et al. (2001), utilizing a 

model with 3 compartment of EOM and two specific mineralization rate for labile and 

resistant EOM to fit measured CO2 values. These authors found f values of 0.03, 0.18 

and 0.79 for decomposable, resistant and stable EOM, and decomposition rates of 146 

and 5.7 y-1 for decomposable and resistant EOM pools, respectively.  

There was an increase of HEOM and a decrease in KREOM in soil amended with 

compost samples of increasing age. Therefore the model parameters were in 

agreement with the increase in organic matter stabilization normally occurring during 

the composting process. Similar results were obtained by Kaborè et al. (2011) who 

found that the TAO model was able to quantify changes in compost EOM pools 

according to trends reported in the literature with increasing composting time.  

 

The stable HEOM pool in compost substrates in the present study was on average 

53% of total EOM and this was in agreement with previous works dealing with OM 

fractionation of composted organic materials. Lashermes et al. (2012), in a study on 

OM fractions of compost, found that the most recalcitrant fraction of organic C 

remained constant throughout the entire process representing 48% of TOC in the 

initial mixture and 78% of TOC in the final composts. Similar results were observed in 

reactors with larger volume or in industrial plants (Bernal et al., 1998; Doublet et al., 

2011).  

The mean percentage of HEOM in compost (53%) was similar to lignin contents 

reported in the literature. Lignin, assumed as proxy for the HEOM pool, in compost 

produced from TPOMW, manure and green wastes ranged from 30 to 54% of total 

organic matter (Sanchez-Monedero et al., 1999). Thuries et al. (2002) measured C 

lignin contents in compost up to 54% of TOC.  

Lower values of humified pool for compost were reported by Peltre et al. (2012), 

which fitted EOM partition coefficients in the RothC DPM, RPM and HUM entry pools. 
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They obtained values of 0.0, 0.8 and 0.2 for DPM, RPM and HUM, respectively, for 2 

compost produced by bio-wastes and green wastes and for 2 peats. Nevertheless, they 

set a threshold partitioning coefficient of 0.2 for the HUM pool and the fact that the 

optimal solution for HUM pool corresponded to the boundary fixed by the authors 

indicates that the optimization algorithm had sought the optimal solution outside the 

allowed parameter space, thus underling a structural problem of adapting the model 

to this data set. 

In general the decomposition rate of DEOM was very high in comparison to the 

original decomposition rate of Roth C for DPM. For example, mean KDEOM for vine 

compost was on average 72 y-1 (n = 34), a value remarkably higher than the standard 

value of 10 y-1 for decomposable plant material (DPM) utilized by the standard RothC. 

This indicates that also in the case of a well stabilized EOM as compost, the labile pool, 

albeit small, is characterized by a high degree of decomposability. This is reflected by 

the steep slope of the first part of the respiration curve; the model to adequately 

simulate the measured curve needs to impose an high value to the decomposition rate 

constant of the labile pool, as this parameters mainly regulates the initial slope of the 

cumulative respiratory curve.  

In the case of incubations performed with biochar, the results of the optimization 

procedure were not satisfactory. Also for some soil amended with a low dose of 

anaerobic digestate (100 kg N ha-1) it was not possible to satisfactorily fit the 

respiration data. Such incubations were therefore excluded from the model 

optimization study. The lack of fit of the model to the respiration data is mainly 

attributable to the fact that the OM of these materials was highly stable and released 

very low amounts of CO2, close to the detection limit of the chromatography system 

and with a high degree of variability. RothC cannot be applied to soils containing large 

amounts of recent inert organic matter, such as charcoal (Falloon, 2001), material 

whose composition and properties resemble those of biochar. Furthermore, for highly 

stable materials is advisable to select high rates of EOM application in order to 

improve the reliability of the respiration measurement. 
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Table 7. Kinetic fit for EOM pools of compost. 
EOM Phase Days Soil Temp   

°C
WHC EOM  rate      

% 
 C rate 

µg g-1
fDEOM fREOM fHEOM KDEOM KREOM SSR     

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%
VSC M 30 SM 20 40 0.5 1725 0.02 0.39 0.59 45 0.35 42 1.3 0.9994 0.33 0.11 3.0
VSC M 30 PE 20 40 0.5 1725 0.02 0.44 0.54 58 0.25 193 2.9 0.9972 -0.03 -0.01 2.8
VSC M 32 LL 20 40 0.5 1725 0.00 0.44 0.56 150 0.15 137 9.5 0.9756 0.25 0.02 0.9
VSC M 29 AL 20 40 0.5 1725 0.01 0.30 0.69 224 0.18 25 3.5 0.9957 -0.05 -0.01 1.0
HWC M 30 SM 20 40 0.5 1720 0.02 0.37 0.61 43 0.35 40 1.3 0.9995 0.31 0.11 3.0
HWC M 32 SM 20 40 0.5 1720 0.02 0.33 0.65 43 0.15 36 1.6 0.9990 0.19 0.06 2.6
HWC M 32 SM 20 40 0.5 1720 0.02 0.34 0.63 41 0.15 87 2.6 0.9976 0.27 0.09 2.5
HWC M 35 SM 30 40 0.5 1720 0.02 0.30 0.68 74 0.15 179 3.2 0.9930 0.15 0.06 2.6
HWC M 35 SM 30 40 0.5 1720 0.01 0.35 0.64 93 0.15 334 5.6 0.9825 0.19 0.06 2.1
HWC M 36 SM 10 40 0.5 1720 0.02 0.34 0.64 44 0.15 20 2.1 0.9995 1.53 0.28 1.6
HWC M 36 SM 10 40 0.5 1720 0.02 0.37 0.60 35 0.15 10 1.4 0.9996 0.22 0.04 1.8
HWC M 28 SM 20 20 0.5 1720 0.01 0.31 0.68 118 0.29 65 3.8 0.9932 -0.41 -0.09 1.6
HWC M 28 SM 20 30 0.5 1720 0.01 0.53 0.46 127 0.19 35 3.0 0.9958 0.74 0.14 1.5
HWC M 34 SM 20 40 0.1 344 0.02 0.28 0.70 54 0.86 6 2.3 0.9987 0.39 0.04 4.3
HWC M 34 SM 20 40 0.25 860 0.02 0.28 0.70 54 0.39 17 2.4 0.9984 0.42 0.07 2.6
HWC M 30 PE 20 40 0.5 1720 0.02 0.30 0.68 69 0.40 293 3.6 0.9952 -1.46 -0.50 2.8
HWC M 32 LL 20 40 0.5 1720 0.01 0.29 0.70 222 0.16 13 1.7 0.9979 0.16 0.02 1.4
HWC M 30 AL 20 40 0.5 1720 0.01 0.26 0.72 72 0.46 46 2.5 0.9981 0.64 0.14 2.0
GWB M 13 PE 20 40 0.75 2115 0.01 0.52 0.47 200 0.42 21 2.7 0.9978 0.72 0.13 1.3
GWB M 13 GO 20 40 0.75 2115 0.01 0.40 0.59 200 0.15 10 1.9 0.9983 0.28 0.05 1.0
CMC II 37 JU 20 40 0.5 2135 0.04 0.89 0.07 38 0.31 115 0.8 0.9998 -0.02 -0.02 6.1
CMC III 37 JU 20 40 0.5 2063 0.05 0.63 0.32 28 0.33 173 1.0 0.9997 -0.10 -0.08 6.0
CMC M 37 JU 20 40 0.5 1993 0.002 0.31 0.69 105 0.36 48 3.1 0.9983 0.41 0.06 1.4
CBC II 37 JU 20 40 0.5 2174 0.07 0.74 0.19 22 0.23 94 0.7 0.9999 -0.03 -0.03 6.6
CBC III 37 JU 20 40 0.5 2124 0.07 0.59 0.34 18 0.16 651 2.1 0.9989 -0.35 -0.27 5.6
CBC IV 37 JU 20 40 0.5 2117 0.05 0.57 0.38 16 0.23 3981 6.5 0.9952 -0.98 -0.62 4.9
CBC M 37 JU 20 40 0.5 2031 0.01 0.35 0.64 99 0.38 113 3.1 0.9979 -0.68 -0.15 1.9
CMC II 37 JU 30 40 0.5 2135 0.06 0.84 0.10 45 0.37 494 1.0 0.9996 0.02 0.03 9.6
CMC III 37 JU 30 40 0.5 2063 0.06 0.62 0.32 30 0.38 590 1.3 0.9994 0.00 0.00 8.5
CMC M 37 JU 30 40 0.5 1993 0.01 0.21 0.78 62 0.57 181 2.9 0.9982 0.21 0.07 2.7
CBC II 37 JU 30 40 0.5 2174 0.09 0.71 0.20 21 0.33 1897 1.7 0.9990 0.18 0.30 11.1
CBC III 37 JU 30 40 0.5 2124 0.07 0.65 0.28 21 0.37 953 1.6 0.9997 -0.02 -0.03 9.3
CBC IV 37 JU 30 40 0.5 2117 0.05 0.55 0.40 17 0.21 2512 3.8 0.9967 0.28 0.24 6.2
CBC M 37 JU 30 40 0.5 2031 0.01 0.26 0.73 190 0.52 283 3.2 0.9975 0.08 0.03 3.0

mean 0.03 0.44 0.53 79 0.30 403 2.7 0.9968 0.11 0.01 3.7
minimum 0.00 0.21 0.07 16 0.15 6 0.7 0.9756 -1.46 -0.62 0.9
maximum 0.09 0.89 0.78 224 0.86 3981 9.5 0.9999 1.53 0.30 11.1
WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil; M: mature compost; roman numerals refer to phases of the composting process

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 8. Kinetic fit for EOM pools of bioenergy by-products. 
EOM Days Soil Temp   

°C
WHC EOM  rate      

% 
 C rate 

µg g-1
fDEOM fREOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%
BR 30 SM 20 40 0.5 2425 0.12 0.88 147 0.68 30347 4.3 0.990 -1.47 -4.27 15.1
BR 30 PE 20 40 0.5 2425 0.15 0.85 145 0.37 8416 2.2 0.995 0.17 0.50 14.3
BR 34 SM 20 40 0.1 485 0.12 0.88 115 0.52 252 2.5 0.996 0.30 0.17 14.5
BR 34 SM 20 40 0.1 485 0.11 0.89 124 0.52 233 2.6 0.995 0.29 0.16 13.7
BR 32 LL 20 40 0.5 2425 0.11 0.89 113 0.29 1835 1.3 0.998 -0.01 -0.02 10.9
BR 29 AL 20 40 0.5 2425 0.20 0.80 81 0.15 152617 9.5 0.985 -0.42 -1.39 16.8

RSM 36 SM 10 40 0.5 2295 0.04 0.96 136 1.20 5211 5.0 0.993 -0.43 -0.54 8.2
RSM 36 SM 10 40 0.5 2295 0.04 0.96 186 1.36 6075 5.3 0.991 -0.26 -0.33 8.5
RSM 30 SM 20 40 0.5 2295 0.11 0.89 44 0.32 3128 2.0 0.998 -0.04 -0.09 11.8
RSM 32 SM 20 40 0.5 2295 0.15 0.85 65 0.33 3102 1.9 0.998 0.07 0.20 14.7
RSM 32 SM 20 40 0.5 2295 0.16 0.84 71 0.32 2583 1.5 0.999 0.14 0.42 16.0
RSM 35 SM 30 40 0.5 2295 0.13 0.87 108 0.18 3467 1.9 0.996 0.00 -0.01 13.5
RSM 35 SM 30 40 0.5 2295 0.14 0.86 125 0.17 5010 2.2 0.994 0.21 0.61 14.0
RSM 28 SM 20 20 0.5 2295 0.17 0.83 72 0.24 1060 1.2 0.999 -0.04 -0.12 15.1
RSM 28 SM 20 30 0.5 2295 0.15 0.85 70 0.33 822 1.1 0.999 -0.04 -0.10 14.3
RSM 30 PE 20 40 0.5 2295 0.12 0.88 90 0.32 3373 1.9 0.998 -0.14 -0.32 12.0
RSM 34 SM 20 40 0.25 1148 0.13 0.87 69 0.37 239 1.1 0.999 0.00 0.00 14.4
RSM 34 SM 20 40 0.1 459 0.13 0.87 75 0.41 78 1.6 0.999 -0.08 -0.04 14.1
RSM 32 LL 20 40 0.5 2295 0.07 0.93 49 0.15 810 1.6 0.999 -0.16 -0.19 6.9
RSM 29 AL 20 40 0.5 2295 0.11 0.89 77 0.15 92204 11.5 0.989 -6.44 -13.70 9.6

mean 0.12 0.88 98 0.42 16043 3.1 0.996 -0.42 -0.95 12.9
minimum 0.04 0.80 44 0.15 78 1.1 0.985 -6.44 -13.70 6.9
maximum 0.20 0.96 186 1.36 152617 11.5 0.999 0.30 0.61 16.8
WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error 

M: mean difference; CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 9. Kinetic fit for EOM pools of anaerobic digestates. 
EOM Days Soil Temp   

°C
WHC EOM  rate      

% 
 C rate 

µg g-1
fDEOM fREOM fHEOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C     

%

PS 36 SM 10 40 0.50 1895 0.02 0.84 0.15 40 0.86 621 5.0 0.9961 -0.58 -0.2 3.9
PS 36 SM 10 40 0.50 1895 0.00 0.70 0.30 187 1.52 727 5.4 0.9953 0.14 0.1 4.1
PS 30 SM 20 40 0.50 1895 0.08 0.62 0.30 26 0.15 345 1.5 0.9995 -0.25 -0.2 7.1
PS 32 SM 20 40 0.50 1895 0.06 0.64 0.30 38 0.21 122 1.1 0.9996 0.11 0.1 6.5
PS 32 SM 20 40 0.50 1895 0.07 0.63 0.30 52 0.21 305 1.6 0.9989 -0.40 -0.4 6.8
PS 35 SM 30 40 0.50 1895 0.05 0.65 0.30 73 0.15 1328 3.6 0.9892 -0.35 -0.3 5.8
PS 35 SM 30 40 0.50 1895 0.04 0.66 0.30 84 0.15 701 2.8 0.9951 1.47 1.2 5.4
PS 28 SM 20 20 0.50 1895 0.04 0.81 0.14 72 0.32 235 2.2 0.9986 -0.32 -0.2 5.1
PS 28 SM 20 30 0.50 1895 0.04 0.66 0.30 69 0.37 126 1.6 0.9991 -0.19 -0.1 5.0
PS 30 PE 20 40 0.50 1895 0.04 0.90 0.06 70 0.28 98 1.0 0.9996 0.05 0.0 5.3
PS 34 SM 20 40 0.10 379 0.05 0.75 0.20 55 0.43 13 1.7 0.9990 0.25 0.0 7.2
PS 34 SM 20 40 0.25 948 0.05 0.65 0.30 57 0.44 45 1.4 0.9993 0.16 0.1 6.7
PS 32 LL 20 40 0.50 1895 0.03 0.67 0.30 41 0.15 111 1.5 0.9991 -0.02 0.0 3.4
PS 29 AL 20 40 0.50 1895 0.05 0.73 0.22 47 0.16 303 2.2 0.9987 -0.12 -0.1 4.9

OW1 21 SM 20 40 0.75 325 0.00 0.70 0.30 270 0.15 7 18.8 0.9446 2.67 0.0 0.8
OW1 26 SM 20 40 1.50 649 0.01 0.83 0.16 64 0.17 5 3.0 0.9989 0.58 0.0 2.0
OW1 10 CO 20 40 1.50 649 0.01 0.78 0.21 260 0.15 9 4.81 0.9919 3.39 0.1 1.6
OW2 13 SM 20 40 0.75 347 0.01 0.83 0.16 151 0.20 2 5.1 0.9943 0.95 0.0 3.3
OW2 23 SM 20 40 1.50 693 0.02 0.79 0.19 151 0.44 1 1.6 0.9995 -0.20 0.0 3.9
OW2 7 CO 20 40 1.50 693 0.01 0.69 0.30 267 0.17 6 3.9 0.9967 0.93 0.1 1.6
OW3 26 SM 20 40 0.75 362 0.00 0.70 0.30 280 0.15 51 37.2 0.7938 1.08 0.0 0.9
OW3 22 SM 20 40 1.50 723 0.01 0.69 0.30 72 0.15 39 9.2 0.9878 -1.60 -0.1 1.8
OW3 7 CO 20 40 1.50 723 0.01 0.69 0.30 279 0.15 9 5.5 0.9903 1.18 0.1 1.2
OW4 26 SM 20 40 0.75 404 0.01 0.69 0.30 280 0.15 31 13.8 0.9645 1.75 0.1 1.4
OW4 22 SM 20 40 1.50 807 0.01 0.84 0.15 230 0.39 48 7.7 0.9892 0.24 0.0 2.8
OW4 7 CO 20 40 1.50 807 0.01 0.69 0.30 330 0.15 9 3.6 0.9943 0.55 0.1 1.7
OW4 13 PE 20 40 1.50 807 0.02 0.68 0.30 229 0.19 116 7.9 0.9793 3.16 0.5 2.1

mean 0.03 0.72 0.25 140 0.30 201 5.7 0.9849 0.54 0.0 3.8
minimum 0.00 0.62 0.06 26 0.15 1 1.0 0.7938 -1.60 -0.4 0.8
maximum 0.08 0.90 0.30 330 1.52 1328 37 0.9996 3.39 1.2 7.2
WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2
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Table 10a. Kinetic fit for EOM pools of meat and bone meals. 
EOM Days Soil Temp   

°C
WHC EOM rate           

µg C g-1

EOM rate    

kg N ha-1
fDEOM fREOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%
BV1 14 PE 20 40 961 800 0.15 0.85 89 1.15 1449 3.8 0.997 -1.05 -1.12 15.5
BV1 14 PE 25 40 961 800 0.21 0.79 90 1.41 507 1.5 0.999 -0.15 -0.23 22.1
BV1 12 BU 20 40 240 200 0.19 0.81 51 0.20 359 11.2 0.992 -6.37 -1.22 12.8
BV1 12 BU 20 40 480 400 0.17 0.83 64 0.18 1619 11.8 0.991 -6.69 -2.58 12.3
BV1 12 LO 20 40 240 200 0.31 0.69 83 0.22 359 5.1 0.997 -1.83 -0.77 24.3
BV1 12 LO 20 40 480 400 0.33 0.67 81 0.15 1377 4.7 0.996 -1.38 -1.23 25.5
BV1 13 GO 20 40 120 100 0.26 0.74 64 0.15 34 3.9 0.997 0.38 0.07 20.3
BV1 13 SM 20 40 120 100 0.27 0.73 71 0.43 102 6.0 0.996 -2.21 -0.43 23.1
BV1 13 GO 20 40 240 200 0.23 0.77 74 0.15 121 4.1 0.996 -0.67 -0.21 17.9
BV1 13 SM 20 40 240 200 0.24 0.76 65 0.35 413 7.3 0.996 -3.59 -1.15 19.8
BV1 13 GO 20 40 480 400 0.24 0.76 74 0.15 588 4.3 0.996 -0.72 -0.46 18.7
BV1 13 SM 20 40 481 400 0.24 0.76 65 0.33 1796 7.4 0.996 -3.75 -2.46 20.2
BV1 14 SM 20 40 961 800 0.16 0.84 66 0.23 6376 9.9 0.993 -6.28 -5.52 13.5
BV1 14 PE 25 40 240 200 0.18 0.82 79 0.16 36 2.3 0.998 -0.18 -0.05 15.3
BV1 14 SM 25 40 240 200 0.15 0.85 83 0.15 121 4.7 0.997 -1.90 -0.48 13.1
BV1 14 PE 25 40 481 400 0.18 0.82 77 0.49 219 2.8 0.999 -0.91 -0.53 15.9
BV1 14 SM 25 40 481 400 0.16 0.84 75 0.20 706 5.5 0.996 -2.50 -1.31 14.4
BV1 14 SM 25 40 961 800 0.22 0.78 55 0.15 2654 4.2 0.995 -0.15 -0.20 18.3
BV1 13 PE 20 40 114 100 0.14 0.86 85 1.45 6 2.2 0.999 -0.22 -0.03 15.4
BV1 13 PE 20 40 228 200 0.13 0.87 109 1.03 13 1.7 0.999 -0.005 -0.001 13.4
BV1 14 SM 20 40 114 100 0.15 0.85 82 0.45 13 3.2 0.998 -0.77 -0.09 14.3
BV1 14 SM 20 40 228 200 0.14 0.86 85 0.32 54 3.4 0.997 -0.72 -0.16 13.1
BV1 14 SM 20 40 455 400 0.14 0.86 100 0.69 440 4.4 0.997 -1.70 -0.83 14.5
BV1 14 SM 20 40 683 600 0.15 0.85 92 0.62 739 3.9 0.998 -1.56 -1.13 14.5
BV1 13 PE 20 40 455 400 0.17 0.83 88 0.89 100 2.1 0.999 -0.16 -0.08 15.9
BV1 13 PE 20 40 683 600 0.15 0.85 90 0.53 224 2.4 0.998 -0.26 -0.17 13.7

WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 10b. Kinetic fit for EOM pools of meat and bone meals. 
EOM Days Soil Temp   

°C
WHC EOM rate           

µg C g-1

EOM rate    

kg N ha-1
fDEOM fREOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%

SB 9 BU 20 40 211 200 0.63 0.37 13 0.15 150 8.9 0.994 -4.74 -0.85 16.1
SB 9 LO 20 40 211 200 0.60 0.40 52 0.32 88 2.5 0.999 -0.66 -0.33 38.6
SB 9 SM 20 40 211 200 0.45 0.55 40 0.26 189 5.3 0.998 -2.66 -0.90 27.2
SB 16 RI 15 40 211 200 0.45 0.55 42 0.41 283 4.4 0.997 -0.82 -0.31 28.7
SB 13 RI 20 40 211 200 0.37 0.63 42 0.20 409 7.7 0.997 -3.60 -1.22 25.1
SB 16 JU 15 40 211 200 0.17 0.83 56 0.15 540 16.1 0.991 -11.18 -1.63 11.6
SB 16 PE 15 40 211 200 0.15 0.85 75 0.23 127 6.8 0.995 -2.65 -0.44 11.7
SB 18 SM 15 40 211 200 0.15 0.85 83 0.26 633 13.4 0.989 -8.08 -1.46 12.5
SB 9 GO 20 40 211 200 0.36 0.64 48 0.15 214 6.3 0.994 -0.54 -0.16 22.6
SB 13 JU 20 40 211 200 0.20 0.80 58 0.18 169 8.1 0.996 -3.98 -0.82 14.5
SB 13 PE 20 40 211 200 0.24 0.76 50 0.25 52 3.8 0.999 -1.72 -0.42 17.4
SB 27 JU 20 40 2460 2220 0.19 0.81 58 0.90 6498 1.8 0.999 -0.15 -0.52 20.0
SB 27 LO 20 40 2460 2220 0.30 0.70 77 0.30 41474 2.9 0.996 -0.35 -1.84 25.9
SB 26 SM 20 40 2460 2220 0.21 0.79 27 0.36 16202 3.9 0.997 0.75 2.11 18.1
SB 26 SM 20 40 4920 4440 0.07 0.93 101 0.92 27626 3.4 0.996 0.08 0.33 12.8
SB 26 SM 20 40 9840 8880 0.10 0.90 73 0.27 44765 2.4 0.998 -0.34 -2.58 10.2
SW 10 SM 20 40 259 200 0.34 0.66 75 0.23 889 6.7 0.996 -3.97 -1.87 26.8
BV2 14 PE 25 40 903 800 0.20 0.80 131 1.62 562 1.7 0.998 -0.06 -0.09 21.7
BV2 16 PE 15 40 193 200 0.15 0.85 93 0.16 149 7.2 0.993 -2.56 -0.43 12.2
BV2 18 SM 15 40 193 200 0.16 0.84 81 0.21 211 7.5 0.994 -2.83 -0.53 13.5
BV2 16 PE 15 40 386 400 0.16 0.84 83 0.18 538 6.7 0.994 -2.11 -0.73 12.8
BV2 18 SM 15 40 386 400 0.16 0.84 69 0.15 708 7.2 0.996 -3.55 -1.26 13.3
BV2 13 PE 20 40 226 200 0.21 0.79 77 0.50 67 3.5 0.998 -1.24 -0.35 17.7
BV2 10 SM 20 40 226 200 0.16 0.84 77 0.15 86 4.8 0.995 -0.92 -0.19 12.8
BV2 13 PE 20 40 451 400 0.22 0.78 83 0.26 636 5.4 0.997 -2.52 -1.42 17.5
BV2 10 SM 20 40 451 400 0.15 0.85 94 0.17 945 8.3 0.995 -4.58 -1.81 12.5
BV2 14 PE 20 40 903 800 0.18 0.82 94 0.22 1231 3.7 0.995 -0.45 -0.46 14.8
BV2 14 SM 20 40 903 800 0.16 0.84 75 0.18 3783 7.8 0.995 -4.71 -4.04 13.4
BV2 14 PE 25 40 226 200 0.19 0.81 105 0.35 24 1.8 0.998 -0.09 -0.03 16.2
BV2 14 SM 25 40 226 200 0.15 0.85 104 0.30 64 3.5 0.997 -1.05 -0.26 13.7
BV2 14 PE 25 40 451 400 0.19 0.81 95 0.22 129 2.1 0.998 -0.22 -0.13 16.3
BV2 14 SM 25 40 451 400 0.16 0.84 98 0.20 681 5.5 0.995 -2.23 -1.16 14.3
BV2 14 SM 25 40 903 800 0.20 0.80 81 0.18 1779 3.7 0.998 -1.70 -2.08 17.3

WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 10c. Kinetic fit for EOM pools of meat and bone meals. 
EOM Days Soil Temp   

°C
WHC EOM rate           

µg C g-1

EOM rate    

kg N ha-1
fDEOM fREOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%

DE 9 GO 20 40 187 200 0.23 0.77 76 1.34 52 3.9 0.998 -0.96 -0.23 19.5
DE 9 BU 20 40 187 200 0.28 0.72 31 0.40 108 9.4 0.993 -4.89 -0.70 13.7
DE 12 BU 20 40 374 400 0.18 0.82 42 0.33 638 11 0.992 -5.63 -1.49 11.7
DE 9 GO 20 40 93 100 0.31 0.69 87 0.28 55 6.6 0.996 -3.57 -0.53 23.3
DE 9 SM 20 40 93 100 0.44 0.56 48 0.76 13 2.7 0.999 -0.25 -0.04 30.9
DE 9 SM 20 40 187 200 0.38 0.62 52 0.15 62 3.4 0.998 -0.58 -0.18 26.0
DE 9 LO 20 40 187 200 0.50 0.50 56 0.15 70 2.9 0.998 -0.45 -0.17 32.6
DE 9 SM 20 40 374 400 0.32 0.68 60 0.17 494 5.4 0.998 -3.36 -1.82 23.1
DE 9 GO 20 40 374 400 0.26 0.74 62 0.15 201 4.2 0.996 -0.64 -0.28 18.0
DE 12 LO 20 40 374 400 0.34 0.66 71 0.15 595 4.0 0.998 -1.34 -0.93 26.2

BV2 13 PE 20 40 87 100 0.17 0.83 85 1.66 3 1.7 0.999 0.02 0.00 18.2
BV2 14 SM 20 40 87 100 0.17 0.8301 73 0.39 7 2.8 0.998 -0.42 -0.04 15.3
BV2 14 SM 20 40 175 200 0.18 0.82 83 0.43 38 3.0 0.998 -0.73 -0.16 16.5
BV2 14 SM 20 40 349 400 0.17 0.83 88 0.63 253 3.9 0.998 -1.50 -0.63 16.5
BV2 14 SM 20 40 524 600 0.20 0.80 68 0.16 481 3.5 0.999 -1.46 -0.93 17.1
BV2 13 PE 20 40 175 200 0.17 0.83 91 1.00 7 1.4 0.999 0.00 0.00 16.1
BV2 13 PE 20 40 349 400 0.19 0.81 73 0.46 45 1.8 0.999 -0.21 -0.08 16.0
BV2 13 PE 20 40 524 600 0.19 0.81 73 0.31 85 1.7 0.999 -0.18 -0.10 15.6
BV2 9 SM 20 40 211 200 0.14 0.86 58 1.40 12 2.6 0.999 -0.23 -0.04 13.7
BV2 14 PE 25 40 844 800 0.15 0.85 121 1.36 210 1.5 0.999 0.03 0.04 17.0
BV2 16 PE 15 40 216 200 0.10 0.90 64 0.19 27 4.6 0.996 -1.11 -0.12 7.9
BV2 18 SM 15 40 216 200 0.10 0.90 74 0.20 56 5.6 0.996 -2.32 -0.30 8.5
BV2 16 PE 15 40 431 400 0.10 0.90 62 0.22 125 5.0 0.997 -1.65 -0.37 7.8
BV2 18 SM 15 40 431 400 0.12 0.88 62 0.16 268 5.8 0.997 -3.05 -0.83 9.4
BV2 13 PE 20 40 211 200 0.17 0.83 71 0.50 35 3.4 0.997 -1.08 -0.23 14.7
BV2 13 PE 20 40 422 400 0.15 0.85 62 0.17 58 2.7 0.999 -0.83 -0.29 11.8
BV2 9 SM 20 40 422 400 0.16 0.84 57 0.20 55 3.2 0.999 -1.22 -0.37 11.5
BV2 14 PE 20 40 844 800 0.12 0.88 97 0.61 213 2.3 0.998 -0.20 -0.14 11.1
BV2 14 SM 20 40 844 800 0.12 0.88 64 0.16 522 4.2 0.997 -1.61 -0.94 9.9
BV2 14 PE 25 40 211 200 0.14 0.86 96 0.35 7 1.4 0.999 0.04 0.01 12.5
BV2 14 SM 25 40 211 200 0.13 0.87 84 0.18 11 1.9 0.998 -0.17 -0.03 11.5
BV2 14 PE 25 40 422 400 0.14 0.86 96 0.38 22 1.2 0.999 0.00 0.00 12.4
BV2 14 SM 25 40 422 400 0.12 0.88 99 0.19 174 4.0 0.997 -1.65 -0.60 10.7
BV2 14 SM 25 40 844 800 0.16 0.84 74 0.19 1972 5.4 0.995 -2.87 -2.57 14.0

mean 0.21 0.79 74 0.41 1928 4.7 0.997 -1.77 -0.70 16.8
minimum 0.07 0.37 13 0.15 3 1.2 0.989 -11.18 -5.52 7.8
maximum 0.63 0.93 131 1.66 44765 16.1 0.999 0.75 2.11 38.6
WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 11. Kinetic fit for EOM pools of animal residues. 
EOM Days Soil Temp   

°C
WHC EOM  rate      

% 
 C rate        

µg g-1
fDEOM fREOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%

HL 27 JU 20 40 0.5 2288 0.12 0.88 92 1.09 27066 5.4 0.997 -3.88 -9.59 15.8

HL 27 LO 20 40 0.5 2288 0.21 0.79 82 0.35 14820 2.5 0.997 -0.30 -1.08 19.5

HL 25 SM 20 40 0.5 2288 0.13 0.87 28 0.58 8953 3.7 0.997 -0.05 -0.09 13.5

BLM 26 SM 20 40 0.5 2874 0.04 0.96 132 1.20 35527 7.9 0.983 -1.33 -2.72 12.2

BLM 27 JU 20 40 0.5 2874 0.06 0.94 144 0.87 38469 7.3 0.980 1.34 2.90 11.0

BLM 7 JU 20 40 0.5 2874 0.15 0.85 111 0.15 16407 9.4 0.991 -3.18 -6.55 10.7

BLM 27 LO 20 40 0.5 2874 0.22 0.78 110 0.45 75279 4.3 0.989 -0.43 -2.12 20.4

BLM 26 SM 20 40 1.0 5749 0.07 0.93 99 0.16 57885 6.3 0.983 -0.85 -2.80 7.2

BLM 26 SM 20 40 2.0 11497 0.05 0.95 131 0.15 99517 5.9 0.981 -0.81 -3.67 5.0

BLM 35 JU 10 20 0.5 2631 0.07 0.93 189 0.57 12399 5.4 0.993 -1.16 -1.58 6.8

BLM 35 JU 10 30 0.5 2631 0.07 0.93 139 0.15 11499 5.8 0.987 -0.15 -0.18 5.8

BLM 35 JU 10 40 0.5 2631 0.09 0.91 111 0.15 21366 6.3 0.985 0.68 1.04 7.2

BLM 36 JU 20 20 0.5 2631 0.10 0.90 185 0.63 4693 1.9 0.998 -0.18 -0.42 11.2

BLM 36 JU 20 30 0.5 2631 0.09 0.91 189 0.60 5951 2.2 0.996 -0.15 -0.35 11.4

BLM 36 JU 20 40 0.5 2631 0.10 0.90 155 0.80 11305 2.4 0.996 -0.15 -0.44 14.9

BLM 35 JU 30 20 0.5 2631 0.12 0.88 261 0.37 4466 1.8 0.996 0.55 1.51 12.6

BLM 35 JU 30 30 0.5 2631 0.12 0.88 259 0.24 3266 1.6 0.996 -0.05 -0.14 12.1

BLM 35 JU 30 40 0.5 2631 0.13 0.87 208 0.34 4569 1.6 0.997 -0.05 -0.15 15.1

BLM 27 JU 20 40 0.5 2692 0.15 0.85 119 0.69 17033 2.9 0.995 -0.32 -1.07 15.8

BLM 27 LO 20 40 0.5 2692 0.19 0.81 247 0.82 13951 2.0 0.995 -0.10 -0.43 19.7

BLM 25 SM 20 40 0.5 2692 0.07 0.93 284 1.21 16804 3.9 0.992 -0.21 -0.53 13.9

HHM 27 JU 20 40 0.5 2975 0.40 0.60 11 0.15 116849 8.6 0.998 -6.16 -19.78 20.3

HHM 27 LO 20 40 0.5 2975 0.28 0.72 25 0.15 126675 6.3 0.994 -0.90 -3.81 21.1

HHM 25 SM 20 40 0.5 2975 0.33 0.67 14 0.15 728880 20.2 0.987 -13.64 -44.80 20.6

HHM 35 JU 10 20 0.5 2565 0.04 0.96 12 2.51 56817 21.8 0.988 -16.44 -11.77 6.3

HHM 35 JU 10 30 0.5 2565 0.08 0.92 38 0.55 53050 17.9 0.990 -13.34 -11.26 6.3

HHM 35 JU 10 40 0.5 2565 0.14 0.86 17 0.28 10226 7.0 0.998 -3.71 -3.53 6.8

HHM 36 JU 20 20 0.5 2565 0.24 0.76 15 0.15 82303 9.3 0.996 -5.36 -10.73 13.8

HHM 36 JU 20 30 0.5 2565 0.22 0.78 15 0.15 61902 7.3 0.997 -3.62 -8.05 14.4

HHM 36 JU 20 40 0.5 2565 0.24 0.76 14 0.15 79363 7.0 0.998 -4.64 -12.00 16.6

HHM 35 JU 30 20 0.5 2565 0.13 0.87 13 0.29 19209 7.1 0.998 -4.35 -6.25 10.9

HHM 35 JU 30 30 0.5 2565 0.16 0.84 23 0.23 79358 8.8 0.993 -3.86 -9.11 14.6

HHM 35 JU 30 40 0.5 2565 0.19 0.81 18 0.20 58410 6.2 0.996 -2.71 -7.73 17.3

mean 0.15 0.85 106 0.50 59826 6.6 0.993 -2.71 -5.37 13.1

minimum 0.04 0.60 11 0.15 3266 1.6 0.980 -16.44 -44.80 5.0

maximum 0.40 0.96 284 2.51 728880 21.8 0.998 1.34 2.90 21.1
WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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Table 12. Kinetic fit for EOM pools of crop residues, agro-industrial wastes and sewage sludges. 
EOM Days Soil Temp   

°C
WHC EOM  

rate      
% 

 C rate        

µg g-1
fDEOM fREOM fHEOM KDEOM KREOM SSR         

µg C g-1

RMSE 
%

R E            
%

M         

µg C g-1
CO2-C 

%

CC 26.7 LO 20 40 0.5 2529 0.09 0.91 75 1.53 2433 1.3 0.9996 0.21 0.62 17.4
CC 26.8 JU 20 40 0.5 2529 0.04 0.96 94 0.65 535 1.6 0.9993 0.21 0.24 7.2
CC 25.9 SM 20 40 0.5 2529 0.08 0.92 32 0.16 9406 6.0 0.9927 -3.23 -4.14 7.4
CC 25.9 SM 20 40 1.0 5058 0.04 0.96 72 0.31 6851 3.1 0.9959 -0.17 -0.35 5.7
CC 25.9 SM 20 40 2.0 10116 0.03 0.97 148 0.29 5785 1.8 0.9982 0.19 0.65 4.6
WS 26.7 LO 20 40 0.5 2748 0.17 0.83 26 0.94 8610 2.2 0.9990 -0.34 -1.06 18.4
WS 26.8 JU 20 40 0.5 2748 0.04 0.96 48 0.30 464 1.9 0.9991 -0.22 -0.20 5.1
WS 25.9 SM 20 40 0.5 2748 0.08 0.92 37 0.17 46962 12.9 0.9878 -6.62 -8.79 7.2
WS 25.9 SM 20 40 1.0 5495 0.05 0.95 28 0.15 14186 5.2 0.9944 -0.87 -1.56 4.8
WS 25.9 SM 20 40 2.0 10991 0.02 0.98 42 0.15 2561 1.8 0.9990 -0.02 -0.04 3.0

Agro-industrial wastes (AW)
TPOMW 26.7 LO 20 40 0.5 2796 0.06 0.75 0.19 230 2.40 1593 1.2 0.9995 -0.23 -0.60 17.5
TPOMW 26.5 JU 20 40 0.5 2796 0.03 0.79 0.19 119 0.81 845 1.8 0.9990 0.10 0.12 6.6
TPOMW 24.8 SM 20 40 0.5 2796 0.05 0.76 0.19 132 0.31 2978 3.3 0.9952 -1.60 -2.07 6.0

Sewage sludges (SS)
WW 28.8 SM 20 40 0.5 1920 0.04 0.96 45 0.31 177 1.2 0.9995 0.13 0.10 6.0
WW 28.8 PE 20 40 0.5 1920 0.04 0.96 83 0.26 203 1.5 0.9989 0.09 0.06 4.9
WW 28.8 LL 20 40 0.5 1920 0.03 0.97 62 0.15 260 2.0 0.9981 -0.10 -0.06 3.8
WW 28.8 AL 20 40 0.5 1920 0.04 0.96 62 0.15 1181 4.4 0.9975 3.49 2.19 4.5

CR mean 0.06 0.94 60 0.47 9779 3.8 0.9965 -1.08 -1.32 8.5
minimum 0.02 0.83 26 0.15 464 1.3 0.9878 -6.62 -8.79 3.0
maximum 0.17 0.98 148 1.53 46962 12.9 0.9996 0.21 0.65 18.4

AW mean 0.05 0.77 0.19 160 1.17 1805 2.1 0.9979 -0.57 -0.85 10.0
minimum 0.03 0.75 0.19 119 0.31 845 1.2 0.9952 -1.60 -2.07 6.0
maximum 0.06 0.79 0.19 230 2.40 2978 3.3 0.9995 0.10 0.12 17.5

SS mean 0.04 0.96 63 0.22 455 2.3 0.9985 0.90 0.57 4.8
minimum 0.03 0.96 45 0.15 177 1.2 0.9975 -0.10 -0.06 3.8
maximum 0.04 0.97 83 0.31 1181 4.4 0.9995 3.49 2.19 6.0

WHC: water holding capacity; SSR: sum of squared residuals; RMSE: root mean square error; R: coefficient of correlation; E: relative error; M: mean difference 

CO2-C: cumulative net CO2-C emission in amended soil 

For EOM code refer to material and methods section and Table 3, for soil code refer to Table 2  
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As a whole, the results of the respiration curve fitting suggest that for a reliable 

simulation of C mineralization in amended soils under laboratory conditions there is 

not only the need to partition EOM into a number of discrete pools, but also to find 

specific decomposition rates for such pools. 

 

The calibration of EOM parameters was soil and incubation condition-specific, to 

enable the model to find the best fit of measured data. Consequently, failures to 

simulate C trends can be attributed exclusively to the inadequacy of the model 

structure to accurately describe soil respiration. The results of the optimization 

procedure indicated that the modified RothC model is capable to adequately describe 

short term net CO2-C evolution from amended soils, utilizing time steps of 1 day or 

lower, a much shorter time interval with respect to the one usually employed by the 

model (1 month). 

 

3.2.4 Generality test 

 

An interesting point concerning the applicability of the proposed method is to verify 

if a specific optimization can be used to simulate CO2 evolution from different 

incubation conditions and/or similar EOMs. 

Theoretically, kinetically defined pools would represent an intrinsic property of the 

residue not dependent from soil properties and environmental conditions as these 

interactions would be taken into account by the model. For instance, RothC considers 

variations in temperature and water content by a pool decomposition rate modifying 

factor. Furthermore, the model adjusts the output in relation to soils with different 

properties by considering their clay content, as this regulates both the partitioning 

between C evolved as CO2 and remaining in the soil and the water retention capacity 

of top soil. 

The results of the optimization procedure showed that EOM related parameters do 

not exclusively depend on residues properties, as demonstrated by the variability in 

partitioning factor and decomposition rate for the same EOM incubated under 

different conditions. This indicates that the interactions between EOM and incubations 

conditions can not be completely explained through the model and that the optimized 
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parameters incorporate information about such interactions. Similar conclusions were 

drawn by Cavalli and Bechini (2011), who found that optimized values parameters 

were highly variable for the same manure applied to different soils. As an example the 

partitioning coefficient of decomposable EOM in their study ranged between 0.01 and 

0.43 for the same manure optimized separately for 3 different soils. 

However, to perform soil and environmental conditions specific optimization for 

each EOM is not feasible and would narrow the applicability of the method. Use of a 

unique set of parameters for the same EOM or EOM type would result in enhanced 

model generality. This would be reached at the expenses of an increase in the error 

between the measured and simulated C mineralization, but if the error in the SOC 

sequestration is kept within a reasonable limit, this would increase the range of 

applicability of the optimized model (Petersen et al., 2005b). 

The generality of the optimized model, i.e. the possibility to use a common set of 

parameters for the same EOM or EOM type, was investigated with different tests. 

 

A first test to estimate the capacity to simulate data sets different from those 

utilized for the calibration was performed by calculating the mean of the model 

parameters for: 

− all incubations performed with the same EOM 

− all incubations performed with the same EOM type  

Incubations presenting a non satisfactory fit between simulated and measured CO2 

evolution and outliers of the model parameters were excluded from the calculation. 

The percentage of total incubations excluded was 6.7% of total. 

Tables 13 and 14 report the mean of pool parameters, together with the coefficient 

of variation of standard error. Hess and Schmidt (1995) suggested a value of 50% of 

this parameter as threshold value for an acceptable model fit. 

The mean parameter estimates, obtained from the different incubations for the 

same EOM, showed always a relative standard error smaller than this threshold value, 

with a single exception (Table 13). In the case of fDEOM the coefficient of variation of the 

standard error was on average 15%, with a value higher than 50% in the case of stable 

compost CMC VII. Nevertheless, the value of fDEOM for this compost was very low 

(0.004) and therefore the contribution of this pool to the accumulation of C in soil 
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should be considered negligible. Ranges of relative standard error were 0.2-18.1, 0.1-

20.3, 1.1-3.3 and 5.1-44.3% for fREOM, fHEOM, kDEOM and kREOM, respectively. 

Also in the case of mean model parameters for EOM type (Table 14) the coefficients 

of variation of the standard error were always lower than the threshold indicated by 

Hess and Schmidt (1995). 

 

A second criterion to evaluate the generality of the optimized model was to utilize 

the mean pool parameters obtained from the different incubations for the same EOM 

type to fit the respiration curves measured for every EOMs included in this EOM type. 

As expected, the goodness of the fit significantly decreased in comparison to specific 

EOM optimization. Assuming a threshold value of E lower than 30%, around 27% of the 

total incubations gave a non satisfactory fit when utilizing the mean parameters (data 

not shown). This is an indication that the model is not capable to fully explain the 

combined effects of residue composition and incubation conditions and that such 

interactions are incorporated, for a certain extent, in the value of the parameter. 

Analysis of incubation conditions for the cases presenting an unsatisfactory fit was 

useful to identify which conditions resulted in an effect on C mineralization that the 

model was not able to completely separate from the effect of residue properties. 

The main incubation conditions not resolved by the model were low temperature, 

soil type and rate of application. 

Several incubations presenting a low fit when using mean EOM-type parameters 

were carried out at temperatures of 10 or 15 °C. Most of the incubations (14 out of 27, 

corresponding to 62.5%) carried out at these temperatures showed a bad fit. It is 

interesting to note that only 8% (3 out of 37) of incubations carried out at a 

temperature > 25 °C failed to be properly simulated by the model utilizing mean 

parameters. The model structure includes a rate modifying factor for temperature, 

which ideally takes into account the effect of the temperature on the decomposition 

rate. Results suggest that the rate modifying factor, under the conditions of the 

present study, performed satisfactorily at near standard temperatures, while it was 

less effective in adjusting the decomposition rate at low temperatures. The inadequacy 

of the temperature modifying factor incorporated in SOM models has been 

demonstrated in studies on the temperature dependence of SOM decomposition. 
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Table 13. Mean RothC EOM pool parameters for different EOMs. 

EOM type EOM N. Exc. Inc. fDEOM fREOM fHEOM KDEOM KREOM fDEOM fREOM fHEOM KDEOM KREOM fDEOM fREOM fHEOM KDEOM KREOM

VSC 4 0 4 0.01 0.39 0.59 119 0.23 0.005 0.032 0.03 42.09 0.04 41.1 8.1 5.7 35.3 19.2
HWC 14 0 14 0.02 0.33 0.65 78 0.28 0.002 0.018 0.02 13.46 0.05 8.5 5.3 2.7 17.3 18.8
GWC 2 0 2 0.01 0.31 0.69 145 0.45 0.001 0.043 0.04 45.50 0.07 10.0 14.0 6.6 31.5 15.9
CMC II 2 0 2 0.05 0.87 0.08 42 0.34 0.009 0.025 0.02 3.18 0.03 16.6 2.9 20.3 7.6 8.2
CMC III 2 0 2 0.06 0.63 0.32 29 0.35 0.005 0.006 0.00 1.20 0.02 8.2 1.0 0.5 4.1 6.6
CMC M 2 0 2 0.004 0.26 0.74 83 0.46 0.002 0.047 0.04 21.77 0.11 58.3 18.1 6.0 26.1 22.8
CBC II 2 0 2 0.08 0.73 0.19 22 0.28 0.014 0.015 0.00 0.24 0.05 17.4 2.1 0.6 1.1 17.2
CBC III 2 0 2 0.07 0.62 0.31 20 0.26 0.001 0.031 0.03 1.47 0.10 2.0 5.0 9.8 7.4 39.3
CBC IV 2 0 2 0.05 0.56 0.39 16 0.22 0.001 0.012 0.01 0.66 0.01 2.2 2.2 2.6 4.0 5.1
CBC M 2 0 2 0.01 0.31 0.69 145 0.45 0.001 0.043 0.04 45.50 0.07 10.0 14.0 6.6 31.5 15.9
BR 6 1 5 0.12 0.88 129 0.47 0.007 0.007 7.36 0.07 5.8 0.8 5.7 14.4
RSM 14 2 12 0.13 0.87 76 0.27 0.007 0.007 6.51 0.03 5.5 0.8 8.5 9.6
PS 14 2 12 0.05 0.70 0.25 57 0.25 0.004 0.024 0.02 4.92 0.03 7.4 3.5 9.1 8.6 12.9
OW 13 0 13 0.01 0.74 0.25 220 0.20 0.002 0.018 0.02 23.34 0.03 13.7 2.5 7.2 10.6 13.5
BV1 26 0 26 0.19 0.81 78 0.47 0.011 0.011 2.68 0.08 5.5 1.3 3.4 16.7
SB 16 0 16 0.29 0.71 56 0.33 0.043 0.043 5.51 0.06 14.8 6.0 9.8 17.9
BV2 40 4 36 0.16 0.84 81 0.29 0.005 0.005 2.24 0.03 3.3 0.6 2.8 10.3
DE 10 0 10 0.32 0.68 59 0.39 0.031 0.031 5.29 0.12 9 5 9 31.5
HLM 3 0 3 0.15 0.85 67 0.67 0.030 0.030 19.82 0.22 19.7 3.6 29.4 32.5
BLM 15 1 14 0.10 0.90 164 0.40 0.012 0.012 14.27 0.07 11.2 1.3 8.7 17.0
BLM2 3 0 3 0.13 0.87 217 0.90 0.034 0.034 50.12 0.16 25.3 3.9 23.1 17.3
HHM 12 2 10 0.23 0.77 16 0.19 0.027 0.027 1.42 0.02 11.7 3.6 8.6 9.6
CC 5 1 4 0.05 0.95 87 0.35 0.012 0.012 24.14 0.11 25.0 1.2 27.9 30.1
WS 5 1 4 0.05 0.95 39 0.19 0.011 0.011 4.34 0.04 23.1 1.1 11.2 18.2

Agro-industrial w. TPOMW 3 1 2 0.04 0.78 0.19 126 0.56 0.011 0.011 0.0001 6.76 0.25 28.7 1.5 0.1 5.4 44.3
Sewage sludge WW 4 0 4 0.04 0.96 63 0.22 0.002 0.002 7.75 0.04 4.7 0.2 12.3 18.5

Total (N.) 223 15.0 208 mean 15.0 4.2 6.0 13.5 18.6
Total (%) 100 6.7 93.3 minimum 2.0 0.2 0.1 1.1 5.1

maximum 58.3 18.1 20.3 35.3 44.3
N.: number of incubations; Exc./Inc.: number of incubations excluded/included from the calculation of the mean
For EOM code refer to materials and methods section and Table 3

Standard error (SE) Coefficient of variation of SE (%)

Bioenergy by 
products
Anaerobic 
digestates

Vegetal residues

Compost

Meat and bone 
meals

Animal residues
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Table 14. Mean RothC EOM pool parameters for EOM type. 

EOM type N. Excl. Incl. fDEOM fREOM fHEOM KDEOM KREOM fDEOM fREOM fHEOM KDEOM KREOM fDEOM fREOM fHEOM KDEOM KREOM

Compost CO 34 0 34 0.03 0.44 0.53 79 0.30 0.004 0.031 0.034 11 0.027 14.6 6.9 6.4 13.8 8.8
Bioenergy by-products BE 20 3 17 0.13 0.87 92 0.33 0.006 0.006 8 0.035 4.3 0.6 8.5 10.4
Anaerobic digestates AD 27 2 25 0.03 0.74 0.25 220 0.20 0.004 0.018 0.018 23 0.027 14.9 2.5 7.2 10.6 13.5
Meat and  bone meals MM 93 4 89 0.21 0.79 74 0.41 0.011 0.011 2 0.039 5.1 1.4 2.8 9.5
Animal residues AR 33 3 30 0.15 0.85 110 0.41 0.015 0.015 16 0.056 10.0 1.8 14.5 13.7
Crop residues CR 10 2 8 0.05 0.95 63 0.27 0.007 0.007 15 0.060 15.7 0.8 23.2 22.0
Agro-industrial wastes AW 3 1 2 0.04 0.78 0.19 126 0.56 0.011 0.011 0.0001 7 0.249 28.7 1.5 0.1 5.4 44.3
Sewage Sludges SS 4 0 4 0.04 0.96 63 0.22 0.002 0.002 8 0.040 4.7 0.2 12.3 18.5

Total (N.) 224 15 209 mean 12.2 2.0 4.6 11.4 17.6
Total (%) 100 6.7 93 minimum 4.3 0.2 0.1 2.8 8.8

maximum 28.7 6.9 7.2 23.2 44.3
N.: number of incubations; Exc./Inc.: number of incubations excluded/included from the calculation of the mean
For EOM code refer to materials and methods section and Table 3

EOM 
code Coefficient of variation of SE (%)Standard error (SE)
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Bauer et al. (2008) showed that patterns of C loss were poorly described if the 

RothC temperature response function was used for the decomposition of all C pools 

and that data prediction was significantly improved by using different temperature 

response functions for the decomposition of different OM pools. These findings 

suggest that the temperature dependence of OM decomposition cannot be fully 

described with the simple approaches usually employed in most laboratory 

experiments and modelling approaches, but that a more complicated interplay 

between the temperature dependence of decomposition rates and temperature 

effects on the chemical recalcitrance of different organic matter fractions exists. 

 

Some incubations with low fit were carried out with soil presenting distinctive 

characteristics. Several unsatisfactory fits of the respiration curve were obtained when 

utilizing the Spanish soils AL and LL. Both are degraded soils with extremely low values 

of SOM and soil microbial biomass and, especially for the AL soil, highly polluted by 

heavy metals. It is likely that soil degradation caused changes in the size, composition 

and function of soil microbial biomass affecting, in turns, the mineralization rate of 

EOM. The effects of heavy metal contamination on SOM decomposition are well 

known. In particular, heavy metals reduce microbial biomass size and substrate 

utilization efficiency and, consequently, impair the capacity of microorganisms to 

degrade the organic inputs entering the soil (Giller and McGrath, 1998).  

An another soil with peculiar properties was the Bueriis soil characterized by an 

extremely high content of clay (46%) and silt (48%). The influence of soil texture on C 

mineralization has been widely studied. Several authors have previously reported 

greater mineralization rates for different organic materials in soils with large sand 

contents (Coté et al., 2000; Khalil et al., 2005). Generally, high clay contents limit 

microbial activity due to sorption of the decomposing substrate onto mineral particles 

and incorporation into soil aggregates (Khalil et al., 2005). Furthermore, the particular 

texture of Bueriis soil reduces soil porosity limiting air and water availability, pivotal 

factors in determining the rate of EOM microbial decomposition. Roth C adjusts for soil 

texture impact on decomposition by considering the effect of the clay content on 

available water content and the partitioning between CO2 evolved and the (BIO+HUM) 
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formed during decomposition. It is likely that this simple regulation is not sufficient to 

fully take into account the complex interactions of EOM with clay particles. 

A fourth soil with specific properties was the Lodi soil characterized by an high 

content of sand (67%) and limited amount of clay (12%). Sand presents an opposite 

effect with respect to clay, enhancing the rate of decomposition due to the increased 

porosity of soil that warranties aerobic conditions which are favourable for SOM 

decomposition. As a matter of fact, the percentage of added C which was mineralized 

in this soil was significantly higher with respect to the others soils, all other incubation 

conditions being the same. It has to be considered that the S. Martino soil presents an 

even more marked sandy texture (69% soil, 3% clay) than the Lodi soil. Nevertheless, 

when compared to the Lodi soil, it emitted lower amount of net CO2-C. This can be 

explained on the basis of the higher total N and microbial biomass C content in the 

Lodi soil. Both these factors may affect the rate of EOM decomposition. Incubations 

carried out at low soil mineral N concentrations have shown that the decomposition 

rate of plant residues is decreased, as N availability affects the decay rate of residue C 

pools. In fact, C and N cycles in soil are strongly linked due to the simultaneous 

assimilation of C and N by the decomposing microflora (Recous et al. 1995; Mary et al 

1996). Since OM decomposition is one of the most essential soil functions controlled 

by soil biota, nature and abundance of soil microorganisms exert a key role in 

determining the rate of EOM transformation in soil (Andren et al., 2004).  

 

Generally, the model responded well to application rates, with a few exceptions 

likely related to the fact that high loads of EOM may have created unfavourable 

conditions for microbial decomposition. In the case of meat and bone meals and blood 

meals, application of large N rates (800 kg N ha-1 or 80 t dm ha-1) in the San Martino 

soil caused limited decomposition, which was attributed to potential toxic effect due 

to the release of NH3 from highly decomposable EOMs. In fact, Tenuta and Lazarovitis 

(2004) demonstrated a toxic effect of NH3 released during the mineralization of meat 

and bone meal applied at 2% (w/w) on the pathogen Verticillium dahliae. The dose 

applied by Tenuta and Lazarovitis (2004) corresponds with the largest meat and bone 

meal dose in the present study. These authors demonstrated that the accumulation of 

NH3 in soil following microbial degradation of N-rich amendments depends upon soil 
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properties. In this study, the high NH4
+ concentration obtained after amendment with 

animal meals, and the chemical properties of the soil used (alkalinity, high sand 

concentration, low organic matter content) probably moved the equilibrium to the 

basic form (NH3) and favoured its accumulation. 

A low rate of decomposition was recorded in the case of plant materials added at a 

rate of 2% (w:w) corresponding to a field rate of 80 t dm ha-1. In this case it is likely 

that the addition of high amounts of EOM characterized by a high C/N ratio (30 and 

198 for cotton and wheat straw, respectively) to a N depleted soil (0.12%) may have 

reduced N availability, which resulted in the slowing down of the decomposition 

processes. The role of C/N ratio on C decomposition is well known. Cayuela et al. 

(2009) reported a rapid N immobilization in soil with a noticeable decrease of soluble 

N, NH4
+ and NO3

- concentration after addition of plant materials and suggested N as 

limiting factor for microbial growth, in particular for fungi and the synthesis of 

exracellular enzymes for polymer degradation. 

Poor fits were also recorded for EOM added at low rates or for slowly decomposing 

substrates. This is the case of anaerobic digestates which are materials characterized 

by low amounts of degradable C and consequently with a slow decomposition in the 

soil. Consequently, the combination of low dose of application and slow degradation 

resulted in limited CO2 emissions close to the detection limits of the measurement 

system and therefore inadequate to produce statistically robust results. 

 

A successive evaluation on the range of applicability of the optimized model was 

performed by comparing the output of a long term model simulation utilizing 

parameters derived from a specific EOM optimization with a simulation using a 

common set of parameters. The simulation was performed assuming a scenario of soil 

amendment with different EOMs at a rate of 1 t C y-1 for 100 years. This evaluation was 

performed in two steps.  

In the first step, a simulation performed with model parameters derived from an 

EOM amended soil incubated at standard conditions (San Martino soil, 20 °C, 40% 

WHC, 0.5% w:w, 30 days of incubation) was compared with a simulation carried out 

with mean parameters from all the incubations with the same EOM under different 

conditions (e.g. soil type, temperature, water content, rate of EOM application and 
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length of incubation). The results of this comparison are reported in Table 15 and show 

that the difference in terms of SOC accumulation after 100 years of EOM addition was 

in the range -8.6 - 4.9%. 

In the second step the model simulation with specific parameters was compared 

with the model prediction utilizing mean parameters for each of the 8 EOMs type 

previously defined (Table 3). In this case, the mean parameters not only reflected the 

different incubation conditions, but also the properties of similar type of EOM (e.g. 

cotton cardings and wheat straw for the crop residues EOM type). Also in this case the 

difference in predicted SOC content after 100 years of continuous amendment 

between the two model parameterization was acceptable, being in the range -9.2 - 

4.7% (Table 16), i.e. the error in SOC by taking the mean values of the parameters 

instead of the specific ones was less than 10%. 

 

The results of the generality tests for the optimized model provided useful 

information as they allowed potential model flaws to be outlined and enabled 

identification of knowledge gaps that may require attention for further improvements 

of the model. 

Results of model optimization showed that the modified RothC is capable to achieve 

a very good fitting between measured and modelled cumulative respiration, but also 

that the optimized parameters depend not only on EOM properties, but also from 

incubation conditions, mainly temperature, soil properties and rate of application. 

Similar conclusions were drawn by Askri (2011). As a matter of fact, less satisfactory 

results were obtained when trying to identify a common set of parameters for 

different EOMs type, classified on the basis of their origin or chemical properties. 

However, analyses performed to test the generality of the optimized parameters on 

the long term SOC evolution (i.e. 100 years) have shown that using a common set of 

parameters for each EOM type resulted in errors lower than 10%. This suggests that 

EOM pools parameters values are mainly determined by the properties of the residues 

and only for a lower extent by soil properties and other environmental factors, in 

agreement with findings of Antil et al. (2011) who, in a study on soil mineralization of 

composted manures and sewage sludges, found much larger differences among 

organic materials than among soils. The authors therefore assumed that rates of CO2 



 

 
 
94 

release from the organic amendments were mostly typical of the materials and very 

little dependent on the soil or environmental conditions. 

 

 The results of the tests for the applicability of the model to different data sets 

clearly indicate that there is a trade off between precision and accuracy on one side 

and range of applicability on the other. A choice needs to be made between the 

capability to acceptably simulate a large number of measurement series and that to 

excellently simulate a few measurement data sets. However, depending on the aim of 

the research and/or availability of time and resources the user can decide which 

aspect of the simulation should prevail. 
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Table 15a. Results of RothC simulation of 100 years of amendment utilizing EOM specific and mean parameters. 

EOM type EOM EOM                 
code

fDEOM fREOM fHEOM KDEOM KREOM SOC                 

t C ha-1

Difference m-s 
%

Vine shoots compost  (VS) VS_CO_m 0.01 0.392 0.59 119 0.23 71.5 1.3
VS_CO_s 0.02 0.39 0.59 45 0.35 70.6

Household waste compost (HW) HW_CO_m 0.02 0.33 0.65 78 0.28 73.5 2.8
HW_CO_s 0.02 0.37 0.61 43 0.35 71.5

Green waste compost (GW) GW_CO_m 0.01 0.46 0.53 200 0.29 68.4 4.9
 GW_CO_s 0.01 0.52 0.47 200 0.42 65.2

CMC CMC_CO_m 0.004 0.26 0.74 83 0.46 76.9 2.3
CMC_CO_s 0.002 0.31 0.69 105 0.36 75.1

CBC CBC_CO_m 0.01 0.31 0.68 145 0.45 74.4 2.2
CBC_CO_s 0.01 0.35 0.64 99 0.38 72.8

Bioethanol residue (BR) BR_BE_m 0.12 0.88 129 0.47 43.9 1.6
BR_BE_s 0.12 0.88 147 0.68 43.3

Rape seeds meal (RSM) RM_BE_m 0.13 0.87 76 0.27 45.5 1.2
RM_BE_s 0.11 0.89 44 0.32 45.0

Pig slurry digestate (PS) PS_AD_m 0.05 0.70 0.25 57 0.25 56.7 -6.5
PS_AD_s 0.08 0.62 0.30 26 0.15 60.6

Two-phase olive mill waste digestate (OW) OW_AD_m 0.01 0.74 0.25 220 0.20 57.8 5.1
OW_AD_s 0.01 0.83 0.16 64 0.17 54.9

s: model parameters derived from specific incubation under standard conditions
m: model parameters derived from the mean of all the incubations for the specific EOM
Simulation scenario: 100 years of EOM addition: 1 t C ha-1 y-1

For EOM code refer to material and methods section and to Table 3

Anaerobic 
digestates (AD)

Compost        (CO)

Bioenergy by-
products (BE)
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Table 15b. Results of RothC simulation of 100 years of amendment utilizing EOM specific and mean parameters. 

EOM type EOM EOM                 
code

fDPM fRPM fHUM KDPM KRPM SOC                 

t C ha-1

Difference m-s 
%

Bovine meat and bone meal (BV1) BV1_MM_m 0.19 0.81 78 0.47 43.8 -4.9
BV1_MM_s 0.16 0.84 66 0.23 46.0

Mixed swine bovine meat and bone meal (SB) SB_MM_m 0.29 0.71 56 0.33 44.3 -0.1
SB_MM_s 0.21 0.79 27 0.36 44.3

Bovine meat and bone meal (BV2) BV2_MM_m 0.15 0.85 84 0.36 44.5 -5.7
BV2_MM_s 0.16 0.84 75 0.18 47.2

Defatted bovine meat and bone meal (DE) DB_MM_m 0.26 0.74 68 0.50 43.5 -8.6
DB_MM_s 0.20 0.80 68 0.16 47.6

Hydrolyzed leather (HL) HL_AR_m 0.15 0.85 67 0.67 43.2 -0.6
HL_AR_s 0.13 0.87 28 0.58 43.5

Blood meal (BLM) BM_AR_m 0.10 0.90 164 0.40 43.5 1.9
BM_AR_s 0.04 0.96 132 1.20 42.7

Horn and hoof meal (HHM) HM_AR_m 0.23 0.77 16 0.19 46.5 -1.1
HM_AR_s 0.33 0.67 14 0.15 47.0

Cotton cardings (CC) CC_CR_m 0.05 0.95 87 0.35 44.9 -7.4
CC_CR_s 0.08 0.92 32 0.16 48.5

Wheat straw (WS) WS_CR_m 0.05 0.95 39 0.19 47.6 -1.0
WS_CR_s 0.08 0.92 37 0.17 48.1

Two-phase olive mill waste (TPOMW) TPOMW_AW_m 0.04 0.78 0.19 126 0.56 52.0 -2.7
TPOMW_AW_s 0.05 0.76 0.19 132 0.31 53.5

Wastewater sewage sludge (WW) WW_SS_m 0.04 0.96 63 0.22 46.8 3.3
WW_SS_s 0.04 0.96 45 0.31 45.3

s: model parameters derived from specific incubation under standard conditions
m: model parameters derived from the mean of all the incubations for the specific EOM

Simulation scenario: 100 years of EOM addition at 1 t C ha-1 y-1

For EOM code refer to material and methods section and to Table 3

Agro-industrial 
wastes (AW)

Sewage sludges (SS)

Meat and bone 
meals (MM)

Animal residues 
(AR)

Crop residues (CR)
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Table 16. Results of RothC simulation of 100 years of amendment utilizing EOM specific and EOM-type parameters. 

EOM type EOM EOM                  
Code

fDEOM fREOM fHEOM KDEOM KREOM SOC               

t C ha-1

Difference m-s 
(%)

Vine shoots compost  (VSC) VSC_CO_s 0.02 0.39 0.59 45 0.35 70.6 -3.4
Household waste compost (HWC) HWC_CO_s 0.02 0.37 0.61 43 0.35 71.5 -4.6
CMC CMC_CO_s 0.00 0.31 0.69 105 0.36 75.1 -9.2
CBC CBC_CO_s 0.01 0.35 0.64 99 0.38 72.8 -6.2
Green waste compost (GWC) GW_CO_s 0.01 0.52 0.47 200 0.42 65.2 4.7

CO_m 0.03 0.44 0.53 79 0.30 68.2
 
Bioethanol residue (BR) BR_BE_s 0.12 0.88 147 0.68 43.3 3.6
Rape seeds meal (RM) RM_BE_s 0.11 0.89 44 0.32 45.0 -0.4

BE_m 0.13 0.87 92 0.33 44.8

Pig slurry digestate (PS) PS_AD_s 0.08 0.62 0.30 26 0.15 60.6 -4.8
Two-phase olive mill waste digestate (OW) OW_AD_s 0.01 0.83 0.16 64 0.17 54.9 5.0

AD_m 0.02 0.73 0.25 220 0.20 57.7

Bovine meat and bone meal (BV1) BV1_MM_s 0.16 0.84 66 0.23 46.0 -4.4
Mixed swine bovine meat and bone meal (SB) SB_MM_s 0.21 0.79 27 0.36 44.3 -0.7
Bovine meat and bone mea (BV2) BV2_MM_s 0.16 0.84 75 0.18 47.2 -6.8
Defatted bovine meat and bone meal (DE) DB_MM_s 0.20 0.80 68 0.16 47.6 -7.6

MM_m 0.21 0.79 74 0.41 44.0

Hydrolyzed leather (HL) HL_AR_s 0.13 0.87 28 0.58 43.5 1.6
Blood meal (BLM) BM_AR_s 0.04 0.96 132 1.20 42.7 3.6
Horn and hoof meal (HHM) HM_AR_s 0.33 0.67 14 0.15 47.0 -6.1

AR_m 0.15 0.85 110 0.41 44.2

Cotton cardings (CC) CC_CR_s 0.08 0.92 32 0.16 48.5 -5.4
Wheat straw (WS) WS_CR_s 0.08 0.92 37 0.17 48.1 -4.6

CR_m 0.05 0.95 63 0.27 45.8

Two-phase olive mill waste (OW) OW_AW_s 0.05 0.76 0.19 132 0.31 53.5 -2.7
AW_m 0.04 0.78 0.19 126 0.56 52.0

Wastewater sewage sludge (WW) WW_SS_s 0.04 0.96 45 0.31 45.3 3.3
SS_m 0.04 0.96 63 0.22 46.8

s: model parameters derived from specific incubation under standard conditions
m: model parameters derived from the mean of all the incubations for EOM type

Simulation scenario: 100 years of EOM addition at 1 t C ha-1 y-1

For EOM code refer to material and methods section and to Table 3

Compost (CO)

Meat and bone 
meals  (MM)

Animal residues 
(AR)

Crop residues (CR)

Agro-industrial 
wastes (AW) 

Sewage sludges (SS)

Bioenergy by-
products (BE)

Anaerobic 
digestates (AD)
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3.2.5 Limitations and uncertainty of the proposed model modification and 

optimization  

 

3.2.5.1 Limitations of kinetically defined EOM pools derived from incubation data 

 

Kinetically defined pools are conceptual OM residue fractions that are determined 

by fitting the decomposition model to experimental data on organic residue 

mineralization. Such pools do not directly correspond to experimentally verifiable 

fractions and this may lead to uncertainties on how to transpose these conceptual 

pools to different types of EOM (Corbeels, 2001). 

EOM pools estimated by SCD or NIRS are exclusively defined on the basis of residue 

properties, independently from incubation conditions. Theoretically, this could 

represent an advantage due to the relative simplicity and speed of these methods and 

would allow for a broad range of applicability of the optimized parameters as 

chemically defined fractions may be transposed to different EOMs.  

However, as well demonstrated by the results of this and previous researches 

(Cavalli and Bechini, 2011, 2012; Petersen et al., 2005b) current soil C models are not 

able to fully resolve the interactions of the residue with soil properties and incubation 

conditions. Partitioning and decomposition rate parameters obtained by fitting the 

measured C mineralization trajectory observed for each EOM incorporate such 

interactions and would lead to a more reliable simulation of SOC in amended soil. On 

the other hand, the wider applicability of EOM characterization by SCD and NIRS is 

obtained at the expense of a lower accuracy. 

 

3.2.5.2 Uncertainty of optimized EOM parameters 

 

The calibration procedure used a classical least squares optimization method as in 

most studies dealing with calibrations of SOC models (Gabrielle et al., 2004; Hadas et 

al., 2004; Borgen et al., 2011; Peltre et al., 2012). This method does not allow the 

uncertainty of model parameters or model predictions to be assessed as in Bayesian 

and Monte Carlo methods (Juston et al., 2010). However, it can be assumed that the 

uncertainty is limited since the model was run on differences in soil C between EOM 
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amended and control soil. As a result it was not necessary to estimate the initial size of 

the soil C pools, which is a considerable source of uncertainty for model predictions 

(Christensen, 1996). In particular, RothC is especially sensitive to the estimation of IOM 

pool (Falloon et al., 2000). The hypothesis that avoiding estimation of SOM pools limits 

the uncertainty in model predictions of C mineralization in amended soils is supported 

by the findings of Kaborè et al. (2011) who applied the TAO model, calibrated for 

Mediterranean area, to a West African area without any change in the calibrated 

model parameters, apart from EOM partitioning obtained from biochemical 

characterization of the wastes, and obtained satisfactory agreement between 

simulated and measured values of C mineralization from an incubation experiment. 

 

3.2.5.3 Long term SOC modelling against simulation of short term decomposition 

 

One of the major concerns about the proposed optimization method is the fact that 

the classical RothC model was originally developed and validated on long-term data 

and not focused on the short-term turnover of easily degradable organic matter. 

Petersen et al. (2005b) indicated that short-term changes in SOM are very difficult to 

portrait, as this requires extra complexity and parameters or excessively long term 

incubations. This drawback is often inherent when using a relatively simple model, as 

in the case of RothC, to represent highly complicated processes. As a matter of fact, 

calibrated models with good generality for long-term data set are generally not able to 

simulate well short-term data series. Nevertheless, Petersen et al. (2005b) showed 

that satisfactory agreements between measured and simulated values could be 

achieved also in short term experiments by excluding some limitations from the long-

term data calibration; such exclusion needs to be performed with caution as the 

enhancement in the model prediction ability might be reached at the cost of lower 

generality and biological realism. 

Coppin et al. (2006) estimated the capacity of the RothC model in the prediction of 

C turnover on a laboratory scale and obtained a good correspondence between 

simulated and measured CO2 emissions from 3 soils incubated in the laboratory for 35 

days. The authors concluded that “although the RothC model was designed to predict 

C fluxes in soils on a large spatial and temporal scale, these results showed that it can 
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be used within a laboratory as an experimental gauging tool”. Moreover, Setia et al. 

(2011) adopted an approach for the optimization of RothC similar to the one presented 

in this study. The authors successfully utilized incubation data from amended soils to 

calculate a decomposition rate modifying factor specific for saline soils. Simulation of 

short-term changes in CO2 respiration or N mineralization has been proved successful 

(Petersen et al., 2005b; Borgen et al., 2011; Cavalli and Bechini, 2011), even less 

satisfactory results were obtained when searching for simultaneous simulation of both 

processes (Cavalli and Bechini, 2012). Moreover, values for the DPM/RPM ratio usually 

utilized in the original RothC model (i.e. 1.44 for crop and grasses, 0.25 for deciduous 

or tropical wood land, 0.67 for unimproved grassland and scrubland) were estimated 

by fitting the RothC model to measured respiration data of plant material decaying in 

soil microcosms (Jenkinson and Rayner, 1997). 

There are relatively few applications of RothC to investigate short term aspects of 

the soil C cycle, and the observed data available for such studies have largely been 

used in calibrating the models themselves. However, an optimization procedure based 

on model fitting to respiratory curves obtained from laboratory incubations of 

amended soil has been successfully adopted for several other soil C models (CNSIM, 

NCSOIL, TAO).  

In non amended soils, RothC was used to simulate CO2 respiration from a forest soil 

(Gu et al., 2004) and respiration data from soil incubation were utilized by Scharnagl et 

al. (2010) and Schadel et al. (2013) for inverse estimation of RothC pools. 

Several authors have successfully used first order equations to fit respiration curves 

of amended soil in order to characterize and evaluate EOM (Bernal et al., 1998; 

Gilmour et al., 1998; Pansu and Thuries, 2003; Sleutel et al., 2005; Thuries et al., 2011). 

Such kind of equations regulates the C input in most of the more complex soil organic 

matter models such as NCSOIL, Century, DAISY, Verberne and RothC. 

 

3.2.5.4 Discrete against cumulative respiration data 

 

The procedure adopted to derive partition coefficients and decomposition rates of 

EOM pools involves fitting of simulated CO2 to the cumulative net CO2 measured. The 

main problems with fitting cumulative data are: a) experimental loss of one measured 



 

 
 

101 

increment implies complete loss of that replication and b) errors from subsequent 

increments are added to those previous increments therefore accumulating errors. 

Fitting respiration rates (incremental data) reduces the interdependence of 

observation errors (Cabrera et al., 2005). Also Sleutel et al. (2005) and Hess and 

Schmidt (1995) made reference to the advantage of using discrete in comparison to 

cumulative data. 

Notwithstanding the fact that the measurement system utilized in this study 

provided a large number of discrete and independent data, it was not possible to use 

incremental data as RothC output provides cumulative amounts of CO2. 

However, while the above remarks are certainly valid in case of few measurement 

points or measurement points taken after large time intervals, the high frequency of 

the measurements allowed by the automatic system used in this study (1 

measurement every 4 hours) overcomes the problems related with the loss of some 

measurement as it permits to track with a sufficient degree of confidence a reliable 

trend of soil respiration.  

As for the accumulation of errors the system used in this study presented a high 

accuracy and precision, since standard deviation was always very low. 

The high number of measurements allows significant phases of the respiration 

curves (i.e. lag phases, peaks of maximum respiration) and outliers to be highlighted 

and minimize the weight that each sampling point (and the related error) has on the 

total cumulative respiratory response. 

 

3.2.5.5 Incubation time and conditions 

 

Sleutel et al. (2005) raised the question about the importance of the incubation 

period used to parameterize the model, as too short incubation times may lead to 

inaccurate evaluations of EOM pools. These authors found that an incubation time of 

about 50 days was the minimum period that allowed stable organic C to be estimated 

within less than 3% of the true value for all organic materials when using a second 

order model. Conversely, when utilizing a parallel first order model the minimum 

incubation time for reaching a satisfactory fitting for residues such as pig slurry, 

compost and farmyard manure was in the range 34-52 days, while for other materials 
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(anaerobic compost, white clover residues, heifer slurry) the model could be fitted only 

with a longer incubation time (< 100 days). In addition, these authors found that a 

parallel first order model performed best in estimating stable organic C. It is worth to 

note that the incubations described in their work were carried out at 16 °C. One 

possible shortcut to reduce the incubation time is the use of higher incubation 

temperatures as the mineralization rates increase significantly. Consequently, higher 

incubation temperatures, such the one used in most of the experiments in this study 

(20 °C) would reduce the time needed for a satisfactory fitting. Cayuela et al. (2008), in 

a study on soil amended with meat and bone meals, showed that there was a Q10 of 

about 2 for incubations performed in the temperature range 15-25 °C. According to 

the rate modifying factor of Roth C, 30 days of incubation at 20 °C would correspond to 

44 days at 15 °C in terms of the emission of the same amount of cumulative extra CO2-

C. Sleutel et al. (2005) advised against the risk that high incubation temperatures could 

modify the soil microbial community and the amount of labile C and suggested that 

mineralization studies need to be carried out at temperatures that occur in the soil for 

longer period. In this perspective, a temperature of 20 °C is not unrealistic for 

Mediterranean countries like Italy and Spain, and is not expected to give unrealistic 

conditions from microbial biomass. 

The indications of Sleutel et al. (2005) do not agree with suggestions of Lashermes 

et al. (2009) who recommend incubation temperatures enabling to detect the 

maximum mineralization potential of the residue. However, in the latter case 

mineralization data are indirectly utilized together to biochemical fractions in a 

multivariate regression to derive EOM partitioning factors. 

The results of the present study agree with the indications of Sluetel et al. (2005) to 

perform incubation studies at temperatures similar to those found under field 

conditions. As a whole, an incubation time of 30 days should be considered as a 

reasonable trade off between the accuracy of the information obtained in terms of C 

and N mineralization and EOM chemical and biochemical properties and the demand 

for saving costs, time and space in the laboratory. This statement is supported by the 

work of Gale et al. (2006) who have shown that an incubation period of 28 days at 22 

°C is enough for determining whether a single or two rate decomposition constants 

(rapid and slow decomposition) are appropriate to represent EOM decomposition 
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kinetics for use in C models. Hernandez and Almendros (2012) utilized an incubation 

period of 30 days and found a significant relationship between the average CO2-C 

emitted per unit of soil weight and SOC. The authors suggest that results from 

laboratory incubation experiments could be representative of natural conditions and 

that the CO2 released under laboratory conditions could be of interest to establish soil 

resilience levels based on the susceptibility to mineralization of SOC forms. 

For what concerns N mineralization, Gale et al. (2006) pointed out that short-term 

laboratory incubations that determine net available N released from amendments 

after 28 days of incubation at room temperature (approximately 22 °C) have value in 

providing improved estimates of field plant available N for the first growing season. 

Justes et al. (2009), in a laboratory study of N mineralization of catch crop residue, 

have shown that the relationship between measured and simulated N mineralization 

remains the same either considering data after 28 or 156 days of incubation. 

 

3.2.5.6 Multiple combinations of fitting parameters  

 

In RothC, as in many other SOM models, the amount of C associated with each pool 

decomposes following an exponential decay. In theory these pools are of defined size 

that should not change with environmental conditions or with the procedure used to 

fit the model with the data. Cabrera et al. (1995) underlined a series of potential 

pitfalls in multiple pool models with exponential decay. Research has shown that pools 

and rate constants in the exponential models are inversely related which suggests that 

the same fit to available data could be obtained by increasing one parameter while 

decreasing the other. These observations indicate that caution should be kept in 

considering the estimated parameters, as different combination of pool size and 

decomposition rate giving a good fit to respiratory curve may result in significant 

differences in SOC when the model is run over long term period (100 years). 

Research has also shown that increasing the incubation time can increase or 

decrease the size of a pool while having the opposite effect on rate constants. 

Moreover, increasing the number of pools may sometimes improve the goodness of fit 

to the incubation data, but it also increases the degree of uncertainty of the 

parameters.  
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These problems with exponential models suggest that they need to be used 

judiciously when trying to identify pools of defined, fixed size. One possible solution 

proposed by some authors to overcome such downsides is to fix rate constants, while 

allowing pool sizes to vary to fit the data. Thuries et al. (2001) obtained satisfactory fits 

to respiration curves utilizing a parallel first order 3 compartment models with fixed 

decomposition rates. 

In this study, univocality in the optimized parameters was sought by simultaneously 

fitting 3 pools and 2 decomposition rate, maintaining constant incubation time and 

HEOM decomposition rate and by imposing constraints to partition coefficients and 

decomposition rates according to scientific data in order to obtain pool parameters 

biologically meaningful. In addition, relationships between pool size and 

decomposition rate were always not significant (data not shown) and this suggests that 

the optimized parameters reflect a unique solution.  

 

3.2.5.7 Effect of added and native N on EOM decomposition 

 

Results of generality test suggested that both native and residue added N might 

affect the rate of EOM decomposition in soil. This is not surprisingly given the close link 

between the C and N cycles (Shaffer et al., 2001). RothC does not consider the fate of 

added N, but other models allow for the effect of N on C decomposition. As an 

example, the C/N ratio of EOM represents the main parameters with regulates the 

organic residue decomposition in the PASTIS model (Garnier et al., 2003). Other C and 

N models have demonstrated the importance to consider N dynamics effects in 

regulating the decomposition of added organic matter. Moreover, several studies have 

shown that a satisfactory modelling of both C and N mineralization in amended soil is a 

very difficult task (Mueller et al., 2003; Cavalli and Bechini, 2012). Nevertheless, Karhu 

et al. (2012) demonstrated that the observed changes in SOC stocks in response to 

different organic amendments could be simulated satisfactorily well utilizing the 

Yasso07 model that, similarly to RothC, does not include the direct impact of N on the 

decomposition processes.  
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3.2.6 Methodological problems related to soil CO2 measurement from laboratory 

incubations  

 

A problem often overlooked by researchers dealing with soil respiration studies is 

potential bias introduced by the method of CO2 evolution measurement (Heinemeyer 

et al., 1989). 

Reliable modelling strongly relies on the quality of the input data. In the case of the 

present study, accurate CO2 evolution measurements during incubation experiments 

are of the utmost importance as they ultimately define the EOM pool partition 

coefficients and decomposition rates. 

Soil respiration is difficult to measure and many studies have demonstrated 

differences among methodologies and the biases that can be introduced if the 

methodologies are not correctly applied. 

As a matter of fact, no standard method for measuring soil respiration exists and 

very few studies deal with the comparison of different respiration methods utilized in 

the laboratory. Furthermore, researchers are not always aware of the effects that the 

method adopted to measure CO2 may have on results and the consequent 

interpretation of the experiment. A comparison among 3 methods of measuring C 

mineralization in the laboratory was carried out by Alavoine et al. (2008) who 

underlined the necessity to standardize measurements and to optimize incubation 

parameters in order to improve the accuracy of the measurement method. 

The method most frequently used to measure soil respiration in the laboratory, due 

to its simplicity, is based on the trapping of evolved CO2 in an alkaline solution 

followed by titration. However, Jensen et al. (1996) demonstrated that such method 

underestimates actual soil surface CO2-flux when rates are high and overestimates CO2 

emissions when rates are low (1.6 g CO2-C m-2 d-1). The accuracy of methods using 

alkali traps compared to infrared gas analyzers for CO2 quantification has been 

extensively reviewed (Ewel et al., 1987; Bekku et al., 1997; Rochette et al., 1997), with 

the general conclusion that alkali traps often yield underestimates of high fluxes and 

overestimates of low fluxes (Nay et al., 1994). This was attributed to the fact that 

under the last circumstance, CO2 adsorption by the alkaline solution lowers its 

concentration below ambient levels, thus enhancing the flux diffusion gradient (Nay et 
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al., 1994). The opposite is meant to happen at larger fluxes of CO2. Concerns about the 

utilization of the closed chamber method with passive trapping of CO2 for the 

evaluation of soil respiration were raised by Garnier et al. (2003), who found 

consistent lower amounts of simulated with respect to measured CO2 and attributed 

such discrepancy to an overestimation due to the utilization of a close chamber 

method. In terms of EOM potential to build up SOC stocks, the overestimation of soil 

respiration at low rates by CO2 trapping in alkaline solution appears of concern, as this 

method may lead to an underestimation of the soil C sequestration potential of stable 

EOMs, like compost and biochars. 

Sanci et al. (2009), by means of a calibration system, demonstrated the validity of 

the closed dynamic chamber method, as the one utilized in this work, for soil 

respiration measurements. Furthermore, the reliability of the system employed in the 

present study has been proved by a series of laboratory tests (Mondini et al., 2010). 

The distribution of EOM C among pools by fitting either field or laboratory C 

mineralization data is the reference method to initialize soil C models, as underlined by 

Gabrielle et al. (2004). A standardization of respiration measurements is also 

important because results from incubations are used to derive, modify, calibrate and 

make hypothesis on the structure of models. Furthermore some authors have 

developed equations to derive EOM pools from SCD and NIRS analyses based on 

regressions with pool parameters obtained by fitting respiration data (Hadas et al., 

2004). As a consequence the consistency of respiration measurements can affect also 

the reliability of pool partitioning obtained from chemical fractionation procedures 

and NIRS analyses. 
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3.3 Long term modelling of amended soils 

 

3.3.1 Climate change  

 

Changes in temperature, precipitation and ET for Italy, between 2001 and 2100, 

predicted by the 12 different climate scenarios used for the modelling runs are 

reported in Table 17. The mean predicted increase in temperature in 2100 with 

respect to the baseline (2001) is 3.2 °C (range 1.5-6.0 °C). Evapotranspiration is also 

expected to increase, on average, by 14.1 mm month-1 (range 5.7-28.6 mm month-1), 

while, on the whole, precipitation decreases by 1.7 mm month-1. There are significant 

differences amongst climate scenarios, as the changes in precipitation range from 

negative (-7.7 mm month-1 for HadCM3 A1FI) to slightly positive (1.9 mm month-1 - 

CGM2 B1). The climate scenario with the greater variation with respect to the baseline 

is HadCM3 A1FI and the one with the lowest was PCM B1. Considering the emissions 

scenarios, A1FI and B1 showed the larger and smaller increase of temperature and ET, 

respectively. 

 

Table 17. Variations in climate parameters for Italy between 2001 and 2100 for 

different climate scenarios. 

Climate parameter Mean

A1FI  A2  B1  B2  A1FI  A2  B1  B2  A1FI  A2  B1  B2  

Temperature (°C) 6.0 4.9 2.9 3.4 3.2 2.7 1.5 1.9 4.2 3.5 1.9 2.4 3.2

Precipitation (mm mo-1) -7.7 -5.9 -4.9 0.0 -0.8 -0.4 -0.3 -1.0 -2.0 -1.3 1.9 1.8 -1.7

Evapotransp. (mm mo-1) 28.6 22.9 14.6 16.6 16.6 10.5 5.7 7.4 16.6 13.8 6.9 8.8 14.1

HadCM3 PCM CGM2

 

mo: month 

 

3.3.2 Climate impacts on soil organic carbon in Italian land  

 

Total SOC stocks in all Italian soils estimated in the present study were 1703 Mt for 

a depth of 25 cm, corresponding to a mean SOC content for unit area of 62.8 t C ha-1. 

These values are in a good agreement with those estimated by Lugato et al. 

(2014)(1723 Mt; 56.3 t C ha-1; 30 cm depth). 
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Results on the variation of SOC (Mt) in all Italian soils from 2001 to 2100, for the 

different climate scenarios and a business as usual management, are reported in Table 

18. Results show, keeping land use constant, a net loss of SOC for all the climate 

scenarios examined. The total loss of SOC for the whole country (with exclusions of 

soils with SOC > 200 t ha-1) was, on average, 99.25 Mt (range 48-153 Mt) 

corresponding to 7.44% of the initial SOC content (1334 Mt). The total amount of SOC 

at the beginning of the simulation in agricultural land was 748 Mt and it decreased to 

694 Mt with a simulated loss of 54 Mt, corresponding to 7.2% of the content initially 

present. 

 

Table 18.  Losses of soil organic C (SOC) in Italian soils between 2001 and 2100 for 

different climate scenarios. 

Mean

A1 FI A2  B1  B2  A1 FI A2  B1  B2  A1 FI A2  B1  B2  

SOC losses (Mt) -132 -118 -48 -94 -84 -99 -59 -71 -153 -127 -93 -112 -99

%  of initial SOC -9.9 -8.9 -3.6 -7.0 -6.3 -7.4 -4.4 -5.3 -11.5 -9.5 -7.0 -8.4 -7.4

HadCM3 PCM CGM2

 

 

The range of variation in the different climate scenarios was considerable, with 

losses ranging from 3.6% to 11.5% of the initial SOC content, with a coefficient of 

variation of 31%. Considering only the climate models, the largest losses were 

recorded for CGM2 and the lowest for PCM. In the case of SRES scenarios, major losses 

were always recorded for A1FI, while the SRES scenario with the lowest losses was B1. 

The percentage of SOC loss for the different agricultural land managements was 

larger for industrial crops (11.1%), vineyards (10.1%) and horticulture (10.0%) and 

smaller for grassland and arable soils at about 6.3%. Amongst non agricultural land 

management practices, forestry showed an average loss of 7.7%. Considering the total 

C losses for the different land management, larger losses were recorded in the order: 

forest, grassland and arable soils (forest 42.5 > grassland 26.8 > arable 17.0 Mt). This 

reflects the fact that the cumulated C initially present under these three land 

management accounted for 90.3% of the total SOC in Italy. 
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Contrasting data are reported in the literature concerning the effect of climate 

change on SOC stocks in the long period.  

Lugato et al. (2014) in a recent simulation study utilizing the CENTURY model, 

tested against state-of-the-art top-soil data sets, found a moderate (<2.5 t C ha-1), but 

net, decrease of SOC in the Mediterranean area by the end of 21st century. This value 

is within the same order of magnitude of the average per area SOC loss simulated in 

this study (4.4 t C ha-1; data not shown). The projected overall decrease in SOC stocks 

in this research is in agreement with the results obtained by Smith et al. (2005), in a 

study on future SOC changes in all Europe (8% and 12% SOC losses for cropland and 

grassland, respectively). Higher SOC losses (18.4% by 2100) were predicted in 

Mediterranean areas by Carta (2011) in a simulation performed with RothC for the 

whole Sardinia island under a climate change scenario. Soil organic C changes for a 

business as usual scenario for Italy simulated in this study were consistent with SOC 

losses simulated by Muñoz-Rojas et al. (2013) using a regression model. These authors 

predicted SOC losses in Southern Spain for the period 2000-2100 ranging from 3.4% to 

13.0%, depending on the climate scenario considered. A significant SOC decrease (0.15 

t C ha-1 y-1) was also simulated by Sleutel et al. (2006a) in Flemish cropland soils for the 

period 1990-2012 utilizing the DNDC model. The rise in temperature anticipated by the 

different climate scenarios is likely to be the main factor responsible for the 

anticipated increase in the rate of SOC mineralization (Davidson and Janssens, 2006). 

Similarly, Kirschbaum (2000) and Lal (2008b) concluded that global warming is likely to 

enhance rates of C decomposition.  

On the other hand, Gottschalk et al. (2012) reported a moderate to null increase of 

SOC stocks for Europe by 2100 in a simulation study performed with RothC and 

attributed this to plant net primary productivity (NPP) increase equalling or prevailing 

losses due to higher SOC decomposition. Fuentes et al. (2012), in a study utilizing the 

CENTURY model for regional estimation of SOC stock changes under climate change in 

Northeastern Spain over an 80 years period (2007- 2087), predicted an increase in SOC 

storage for all the tested climate change scenarios (4.9-10.4% with respect to the 

initial SOC value). Lugato and Berti (2008) performed a simulation using the CENTURY 

model in a long term experiment located in North-Eastern Italy for the period 2008-

2080 under different projected climate scenarios according to 4 GCMs. SOC changes 
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for business as usual scenario were positive for 3 GCMs climate predictions (1.15 t C 

ha-1) and slightly negative for the remaining climate scenario (- 0.22 t C ha-1; HadCM3). 

These contrasting results on the long term effect of climate change on SOC stocks 

depend on the relative importance attributed to the increase in plant net primary 

productivity and organic matter decomposition, which combination ultimately 

determines the long term SOC balance. An agreed conclusion is that a better 

knowledge about the sensitivity of soil respiration to temperature is the critical 

element for a reliable quantification of soil C responses to climate change (Gottschalk 

et al., 2012).  

 

3.3.3 Potential C sequestration and GHG offsetting of soil amendment 

 

The results of the simulations performed at national scale with the model optimized 

for 8 different EOM types and 12 climate scenarios are reported in Table 19. 

 

Table 19.  Modelled soil C sequestration potential for different EOM type and 

climate scenarios in Italian soils amended for 100 years at a rate of 1 t C 

ha-1 y-1. 

GCM SRES

scenario CO BE AD  MM AR CR AW SS Mean SD CV

(%)

A1FI 0.375 0.116 0.253 0.106 0.108 0.129 0.197 0.141 0.178 0.095 53.1
A2 0.378 0.118 0.256 0.107 0.109 0.131 0.199 0.144 0.180 0.095 52.8
B1 0.395 0.126 0.271 0.114 0.117 0.141 0.210 0.156 0.191 0.098 51.4
B2 0.383 0.120 0.261 0.109 0.111 0.134 0.202 0.147 0.183 0.096 52.3

A1FI 0.385 0.121 0.262 0.110 0.112 0.135 0.204 0.149 0.185 0.097 52.2
A2 0.386 0.121 0.263 0.110 0.112 0.135 0.204 0.149 0.185 0.097 52.3
B1 0.397 0.128 0.273 0.115 0.118 0.143 0.211 0.158 0.193 0.099 51.2
B2 0.394 0.126 0.270 0.114 0.116 0.141 0.209 0.155 0.191 0.098 51.5

A1FI 0.372 0.116 0.252 0.105 0.107 0.128 0.196 0.141 0.177 0.094 52.9
A2 0.379 0.119 0.258 0.108 0.110 0.132 0.200 0.145 0.181 0.095 52.6
B1 0.389 0.124 0.266 0.112 0.115 0.138 0.206 0.152 0.188 0.097 51.7
B2 0.384 0.121 0.262 0.110 0.112 0.135 0.203 0.149 0.185 0.096 52.1

Mean 0.385 0.121 0.262 0.110 0.112 0.135 0.203 0.149 0.185
SD 0.008 0.004 0.007 0.003 0.004 0.005 0.005 0.006
CV (%) 2.1 3.3 2.6 3.1 3.1 3.6 2.3 3.8
GCM: general circulation model; SRES: special report on emissions scenarios
SD: standard deviation; CV: coefficient of variation
For EOM type code refer to materials and methods section and Table 3

CGM2 

SOC sequestration rate (t ha-1 y-1) 

EOM type

HADCM3 

PCM 
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The contrasting EOM types significantly differed for their potential to build-up SOC 

stocks. Yearly C sequestration potential varied from 0.110 to 0.385 t C ha-1 y-1. 

Exogenous OM quality had a great impact on the portion of added C ultimately 

remaining in the soil, as the same amount of added C resulted in a 3.5 fold difference 

in SOC sequestration potential. As expected, the largest C sequestration was predicted 

in compost amended soil, while the smallest was anticipated in the soil amended with 

meat and bone meals and animal residues. Bioenergy by-products showed values of 

yearly sequestration rates very similar to animal residues (0.12 t C ha-1 y-1).  

The potential of compost for soil C accumulation is widely recognized (Smith et al., 

2004) and is mainly attributed to the presence of humic-like substances, whose 

extreme diversity and lack of regular polymeric structures impair efficient enzymatic 

degradation (De Nobili et al., 2001). 

A good potential for SOC sequestration was recorded for anaerobic digestates (0.26 

t C ha-1 y-1) and agro-industrial waste (two-phase olive mill waste) (0.20 t C ha-1 y-1). In 

the case of anaerobic digestates the degradation of cellulose, soluble starch and 

glucose in the acidogenic phase of the anaerobic process leads to the formation of a 

partially stabilized residue. The potential of two-phase olive mill waste as a C source to 

promote C sequestration is well recognized and mainly attributed to its high content of 

ligno-cellulosic substances (Sanchez-Monedero et al., 2008). 

On the other side, meat and bone meals, animal residues and bioenergy by-

products are the EOMs less indicated to foster C sequestration. Respiration trends in 

soil amended with these organic substrates showed a peak of maximum respiration 2-

3 days after soil additions indicating an exponential phase of microbial growth, 

sustained by the high content of easily degradable substances in the organic residues 

(Figure 6). In fact, these EOMs can be considered as effective fertilizers, due to their 

significant content of nutritive elements (Cayuela et al., 2010; Galvez et al., 2012).  

 

A significant exponential relationship was found between the cumulative 

respiration of amended soil under standard laboratory conditions and the mean 

potential for C sequestration of each EOM type (Figure 10). 

 



 
 
112 

y = 0.55x-0.57

R² = 0.80

0.00

0.10

0.20

0.30

0.40

0 5 10 15 20 25

EO
M

 s
oi

l C
 s

eq
ue

st
ra

ti
on

 p
ot

en
ti

al
 (t

 C
 h

a-1
y-1

)

CO2-C mineralization (% of added C)  

Figure 10.  Relationship between net CO2-C mineralization and soil C sequestration 

potential for 8 different EOM type. 

 

These results suggest that the net C mineralization of residues during laboratory 

incubation is an indicator of their potential for C sequestration, but that such 

relationship is not linear. The occurrence of a stable C pool (humic substances-like) 

greatly enhances the capacity of the residue to build up SOC stocks. 

 

The different climate scenarios had a moderate effect on the C sequestration 

potential predicted by the model for the different EOMs. The coefficients of variation 

of mean yearly sequestration potential for the 12 climate scenarios were in the range 

2.1-3.8% depending on the EOM type. The variability was larger among SRES emission 

scenarios (c.v. range 1.9-3.5%) than among GCMs models (c.v. range 1.3-2.2%). 

Considering SRES emission scenarios, B1 was the one promoting the larger EOM C 

accumulation, while smaller sequestration potentials were recorded for A1FI. This is 

consistent with the anticipated consequences of these scenarios on climate change 

(Table 17).  
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A significant inverse relationship was found between the increase in temperature 

and evapotranspiration for each of 12 climate scenarios and the soil C sequestration 

potential of  amended soil (Figure 11). 
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Figure 11.  Correlations between changes in temperature (T) and evapotranspiration 

(ET) predicted by 12 different climate scenarios between 2001 and 2100 

and mean C sequestration potential of amended Italian agricultural soils. 

 

No significant relationship was found between changes in precipitation and C 

sequestration potential. This could be explained on the basis that changes in T and ET 

predicted by all 12 climate scenarios were always positive, while in the case of 

precipitation contrasting estimates (i.e. positive and negative variations) were 

provided by the different scenarios (Table 17). Furthermore, it has to be considered 

that an adequate soil water content increases SOM decomposition, but in the 

presence of an optimal temperature, i.e. the effect of precipitation on SOM 

mineralization is best elucidated by considering the interaction of precipitation and 

temperature (Smith et al., 2005), as indicated by the significant relationship between 

potential SOC sequestration and ET.  

 

For each EOM type, the annual C sequestration potential reported in Table 19 is the 

mean of the simulations performed including all the combinations of soil, land use and 

climate data present at the national level for which EOM application was considered 

(7392 combinations). The variability in the potential to build up SOC stocks considering 
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all combinations was enormous. As an example, in the case of compost and for climate 

scenario PCM B1, minimum and maximum annual SOC increases were 0.22 and 0.62 t 

C ha-1 y-1. Therefore, applying the same amount of C as compost either in the best and 

less suitable land for C sequestration resulted in about 3-fold difference in the 

estimated level of SOC measured after 100 years of EOM application. Considering all 

the combinations between the different EOM type and the sites of application, the 

variability in the potential for C sequestration further increased, spanning over 1 order 

of magnitude (range 0.06-0.62 t C ha-1 y-1). This range of potential C sequestration rate 

refers to SOC accumulation for EOM type and site with the smallest potential for C 

accumulation and EOM type and location with the largest capacity to build up SOC 

stocks.  

 

The potential yearly C sequestration rate per unit area found in the present study 

for compost (0.385 t C ha-1 y-1) is similar to the values reported by Smith et al. (2005) 

for compost (0.4 t C ha−1 y−1), Smith et al. (2008) for manure/biosolid application (0.42 

t C ha−1 y−1) and Freibauer et al. (2004) for amendment (0.40 t C ha−1 y−1) in European 

soils and Yokozawa et al. (2010) for Japanese arable soils (0.30 t C ha−1 y−1). The Carbo-

PRO web-tool for simulation of C sequestration in amended soil developed by INRA 

and based on RothC (Carbo-PRO, 2012) gives a maximum yearly sequestration 

potential of 0.27 t C ha-1 y-1 for a yearly application of 1 t C ha-1 of compost with a good 

degree of stability for a period of 100 years. Model parameterization of the web-model 

was based on biochemical properties of EOM evaluated by the Van Soest method. 

Thuries et al. (2002) suggest that in very stable compost part of the lignin pool can be 

transformed in soluble humic substances resistant to microbial degradation. 

Consequently, biochemical fractions based on the Van Soest method may lead to an 

overestimation of the labile fraction and an underestimation of the stable fraction, 

mainly responsible for the build up of SOC stocks. 

Peltre et al. (2012) reported values of potential C sequestration in compost 

amended soil similar to those evaluated in the present study. However, such values 

were calculated considering a period of application of 20 years and it is well known 

that the effectiveness of strategies such as compost application in building up SOC 

stocks tends to decrease after several decades, as the soil approaches saturation 
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(Stockmann et al., 2013). The most stable compost in the study of Peltre et al. (2012) 

presented partition coefficients of 0, 0.8 and 0.2 for DPM, RPM and HUM respectively. 

These values seem not to properly reflect the nature of stable composts when 

considering that in mature composts lignin contents (determined with the Van Soest 

method) range from about 30% up to 54% of OM (Sanchez-Monedero et al., 1999; 

Thuries et al., 2002; Francou et al., 2008; Doublet et al., 2011). The lignin content can 

be assumed as a proxy for the resistant pool of EOM, as suggested by Thuries et al. 

(2002) who employed a model assuming 3 pools of EOM (labile, resistant and stable) in 

which the stable fraction was associated to the lignin fraction determined with the Van 

Soest method. 

Sleutel et al. (2006b) reported a rate of SOC increase of 0.49 t C ha-1 y-1 for a yearly 

application of 10 t of compost. Such values are difficult to compare to the ones 

presented in this study due the very short simulation period (6 years). Nevertheless 

the authors underlined that DNDC only considers EOM quality in terms of C/N ratio 

and does not take into account the recalcitrance of OM in compost. As a consequence 

the authors suggest that the sequestration potential of compost in their work may 

have been underestimated. 

 

Regarding the potential of soil amendment to offset GHG emissions at national 

level, Table 20 reports the total amount of SOC sequestered in the soil after 100 years 

of consecutive application of EOM at a rate of 1 t C ha-1 to all the area of agricultural 

land in Italy. Results showed a high variability in the increase of SOC stocks ranging 

from 175 to 615 Mt, depending on the EOM type. The percentage of increase with 

respect to the baseline varied from 25.1% for meat and bone meal to 88.6% for 

compost amended soils. 
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Table 20.  Modelled total SOC increment (Mt) in Italian agricultural land amended for 100 years with different EOMs at a rate of 1 t C ha-1 y-1 

and for different climate scenarios. 

SRES

scenario

CO BE AD MM AR CR AW SS CO BE AD MM AR CR AW SS CO BE AD MM AR CR AW SS Mean SD CV

(%)

A1FI 600 184 404 168 171 204 316 223 620 193 420 176 180 215 327 236 592 182 398 166 169 201 312 220 287 146 50.9

A2 605 186 408 170 173 206 319 226 617 191 417 174 178 213 325 233 604 186 407 170 173 206 318 226 289 147 50.8

B1 634 200 432 182 186 223 336 245 633 200 432 182 186 223 335 245 620 195 421 177 181 217 328 238 302 150 49.8

B2 615 192 417 175 178 213 325 234 628 198 428 180 183 220 332 242 612 191 415 174 177 212 323 233 296 148 50.2

Mean 613 191 415 174 177 212 324 232 625 196 424 178 182 218 330 239 607 188 410 172 175 209 320 229
SD 15 7.2 13 6.1 6.3 8.6 8.7 9.9 7.5 4.0 6.6 3.4 3.5 4.8 4.5 5.5 12 5.7 9.9 4.8 5.0 6.8 6.9 7.8
CV (%) 2.5 3.8 3.0 3.5 3.6 4.1 2.7 4.3 1.2 2.1 1.6 1.9 1.9 2.2 1.4 2.3 2.0 3.0 2.4 2.8 2.9 3.3 2.2 3.4
GCM: general circulation model; SRES: special report on emissions scenarios
SD: standard deviation; CV: coefficient of variation
For EOM code refer to materials and methods section and Table 3

GCM 

SOC increment (Mt) SOC increment (Mt) SOC increment (Mt)

HADCM3 PCM CGM2
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The annual rate of GHG emissions for Italy in 2011 was estimated by the European 

Environment Agency (EEA, 2013) to be 133 Mt CO2-C equivalent y−1. Therefore, the 

range of average annual potential of C sequestration in Italy in response to the 

application of EOM estimated in the present work (1.75-6.15 Mt C y−1) only represents 

1.3-4.6% of the total annual GHG emissions in Italy. Therefore, even in the non realistic 

hypothesis to apply compost, which presents a high potential for C sequestration, to all 

the agricultural land of Italy, the contribution of soil amendment in tackling GHG 

emissions is limited. These results are in agreement with those of Smith (2004a) who 

concluded that C sequestration can play only a minor role in offsetting GHG emissions. 

On the other hand it is important to consider that even if soil C sequestration by EOM 

application has little benefit for climate change mitigation, the increase in SOC content 

is likely to have significant beneficial impacts on soil quality and ecosystem functioning 

(Powlson et al., 2011b). 

 

The validity of the approach proposed in this study could only be validated by 

comparing the results of the simulation with data from long term experiments dealing 

with EOM amendment. Due to the lack of validation of the optimized model, the 

model based analysis of amended soil cannot be interpreted in terms of absolute 

values for certain sites and management practices. Nevertheless, it may help to 

quantify relative differences due to the application of different EOM type to specific 

sites under constant conditions in a complex system. Furthermore, the results of this 

study suggest a wide range of variation in C sequestration potential as a consequence 

of long term amendment with contrasting EOMs in sites characterized by a large range 

of pedoclimatic conditions and land use. 

It is important to note that a sensitivity analysis performed by Falloon (2001) on the 

standard RothC showed that the model is relatively insensitive to variations in the 

quality of C inputs, as varying DPM/RPM ratio for plant inputs from 0.1 to 2.0 (i.e. 20 

fold variation) resulted in a SOC decline from 29.0 to 24.3 t ha-1 (i.e. 16% variation). 

Conversely, varying both partition coefficients and constant decomposition rates in the 

modified model caused variations in the yearly rate of SOC accumulation up to 86%: 

addition of 1 t C ha-1 y-1 of either vine shoots compost or bioethanol residue for 100 
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years under the climate scenario CMG2 A1FI gave an annual C sequestration rate of 

0.47 and 0.25 t C ha-1 y-1, respectively. 

 

3.3.4 Spatially explicit modelling of SOC in amended soils  

 

The procedure adopted in this work allows the intensity in SOC changes due to 

variations in climate, land use and soil management to be visualized on a map. As an 

example, on Figure 12 is reported a map of Italy showing the expected increase in SOC 

stocks (expressed in t C ha−1) that could be achieved in 2100 due to repeated addition 

of compost to all agricultural land for a specific climate scenario (PCM B1).  
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Figure 12. Map of modelled increase in soil organic C (SOC, t ha−1) after 100 years of 

compost addition (1.0 t C ha−1 y−1) to all the soils with agricultural land 

use (climate scenario PCM B1). The increase in SOC refers to the business 

as usual scenario in 2100. 
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Areas with a SOC increase of 51-62 t C ha−1 are all located in the mountain areas of 

Northern Italy characterized by grassland land use. The places on the map with the 

SMUs having a SOC increase in the range 41-50 t C ha−1 are mainly situated in the 

eastern portion of Po valley. The main areas with an intermediate SOC accumulation 

potential (31-40 t C ha-1) are situated in: (i) the river Po valley, (ii) the coastal area of 

Emilia Romagna, Abruzzo, Marche and Apulia, (iii) the area between Apulia and 

Basilicata, (iv) the interior part of Tuscany, (v) central Sicily, and (vi) western part of 

Sardinia.  

 

Figure 13 shows the simulated increase in SOC stocks considering compost addition 

only to arable soils, in order to simulate realistic compost application to the more 

accessible flat areas. The arable land with higher sequestration potentials is located in 

the North-Western part of Italy 
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Figure 13. Map of modelled increase in soil organic C (SOC, t ha−1) after 100 years of 

compost addition (1.0 t C ha−1 y−1) to arable soils (climate scenario PCM 

B1). The increase in SOC refers to the business as usual scenario in 2100. 
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On the basis of the simulations performed for the whole agricultural land, further 

simulations were performed by applying EOMs to either the land with the greatest or 

lowest C storage potential. The area interested in the simulation was estimated on the 

basis of the predicted total production of compost in Italy in 2020 (1800000 t; CIC -

Italian Composting Association, 2010). According to mean analytical data for compost 

produced from food wastes (CIC - Italian Composting Association, 2000) and an 

application rate of 1 t C ha-1 y-1, this amount could be spread on 213750 ha of 

agricultural land. Therefore, model runs were performed for the climate scenario PCM 

B1 simulating 100 years of annual additions of different EOMs to 213750 ha of either 

the area with the greatest or lowest potential for C sequestration, as determined by 

simulations performed on the whole agricultural land. In the case of compost, results 

showed an average increase of SOC per unit area of 55.7 and 26.9 t C ha−1 for the land 

with the greatest and lowest C sequestration potential, respectively. In the case of 

meat and bone meal the simulated increases of SOC after 100 years of amendment 

were 18.9 and 7.2 t C ha−1, respectively. Similar simulations were performed for the 

climate scenario CGM2 A1FI and the results for compost were 52.4 and 26.3 t C ha-1 

and for meat and bone meal 16.5 and 6.8 t C ha-1 for the area with the greatest and 

lowest C sequestration potential, respectively (Table 21). The two climate scenarios 

were selected on the basis that they resulted in the largest (PCM B1) and smallest 

(CGM2 A1FI) C sequestration potential of added C (Tables 19; 20). 

 

Table 21. Modelled mean SOC increments (t C ha-1) after 100 years of soil 

amendment with different EOM type to the Italian agricultural area 

(213750 ha) with the largest and smallest potential for soil C sequestration. 

Climate  Land potential for SOC sequestration

scenario CO BE AD MM AR CR AW SS

PCM B1 Land with largest SOC sequestration potential 55.7 22.0 42.4 18.9 19.5 25.8 30.5 29.4

Land with smallest SOC sequestration potential 26.9 7.8 17.7 7.2 7.3 8.6 14.0 9.3

Ratio 2.1 2.8 2.4 2.6 2.7 3.0 2.2 3.2

CGM2 A1FI Land with largest SOC sequestration potential 52.4 18.9 38.4 16.5 17.0 21.9 28.1 24.9

Land with smallest SOC sequestration potential 26.3 7.4 17.2 6.8 7.0 8.1 13.5 8.8

Ratio 2.0 2.5 2.2 2.4 2.4 2.7 2.1 2.8

For EOM code refer to materials and methods section and Table 3

EOM type

SOC increment (t ha-1)
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Therefore the characteristics of the agricultural land in terms of soil properties, 

climate, soil use and management have a dramatic impact on the potential amount of 

added C stored in the soil. Considering the interaction between EOM quality and site 

the range of variability in C sequestration further increases. Therefore, spatially explicit 

modelling of SOC allows for the evaluation of the effects of the interactions between 

EOM and site properties.  

 

The estimated annual production of compost for 2020 in Italy is 1800000 t. At a rate 

of 1 t C ha−1, this could be applied to 213750 ha, representing about 1.26% of the total 

Italian agricultural land (17041540 ha; Sambucini et al., 2010). Considering the mean 

annual C sequestration rate predicted by the simulation performed with the modified 

RothC (0.385 t C ha−1 y-1; Table 19) the total C that can be sequestered every year in 

soil by compost amendment is about 82300 t (corresponding to less than 0.1% of the 

annual rate of GHG emissions for Italy). This value is consistent with an amount of 

98200 t of C estimated by Arrouyas et al. (2002) for France considering the actual 

compost production of France. 

Taking into account the limited potential production of compost, it is clear that the 

studied scenario (compost application to all agricultural land) does not reflect a 

realistic option. However, the creation of a link between spatial data and a dynamic 

soil C cycle model represents an effective tool for land managers and policy makers to 

optimize the resources that are available. A simulation considering compost addition 

to all agricultural land, despite compost scarcity, is significant as it enables obtaining a 

spatial representation of the potential of land for C sequestration that can provide 

useful information for the best utilization of the resources. In fact, application of the 

estimated production of compost for 2020 to either the soil presenting the largest or 

the smallest C sequestration potential resulted in a 2.1 fold difference in SOC increase. 

Therefore maps such as those reported in Figure 12 and 13 can provide guidance as to 

where compost might best be applied. 

 

The capacity of a soil to accumulate SOC depends on the complex interrelations 

between several factors such as climate, soil properties and land use, the relative 

importance of which may vary at different spatial and temporal scales. Spatially explicit 
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modelling indicates the location of areas where the combination of these factors could 

result in the largest increase in SOC, and can also be useful in elucidating the role of 

interactions between factors in determining future SOC stocks. 

A key interaction is that between temperature and precipitation. It is well known 

that there is a direct relationship between temperature and the rate of SOC 

decomposition due to the effect of temperature on microbial metabolism. Carbon 

mineralization in soil is also affected by soil water content, which is influenced by 

precipitation. In particular, both low and high water content may constrain C 

decomposition. Low water contents may temporarily or permanently offset the effect 

of temperature on decomposition by reducing the thickness of soil water films, which 

in turn inhibits extracellular enzyme activity and decreases substrate availability 

(Davidson and Janssens, 2006). Leiros et al. (1999) showed that the effect of a 2 °C 

temperature increase is roughly countered by a concurrent 10% decrease in soil 

moisture content. On the other hand, also an excessive soil water content can 

decrease the rate of C decomposition because of impedance to gaseous transport in 

the soil (Gabriel and Kellman, 2011). It is therefore important to consider how the 

interaction of both factors may affect SOC decomposition as demonstrated by previous 

studies. Smith et al. (2005) found that the most important factors regulating SOC 

mineralization are temperature and precipitation as in their study decomposition was 

faster in regions were temperature increased greatly, but soil moisture remained high 

enough to allow decomposition. Similarly, Fantappiè et al. (2011) found that the 

interaction of temperature and precipitation had a significant effect on SOC variations 

recorded in Italy between 1961 and 2008. In the present study, while there is a general 

inverse correlation between SOC increase and temperature (Figure 11), there are also 

some noteworthy exceptions to this behaviour, with soils that have a high potential for 

C sequestration located in areas characterized by high temperatures, such as Southern 

Italy (Figure 12). However, these areas are characterized by smaller amounts of 

precipitation, and the constraint exerted by low humidity on SOC decomposition could 

explain why areas with a significant potential for C sequestration were located in the 

hottest regions of Italy. The relevance of soil moisture as an important factor driving C 

mineralization has been highlighted by Fuentes et al. (2012) in a simulation study 

performed in Northeastern Spain for the period 2007-2087. The semiarid conditions 
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prevailing in most part of the modelled area constrained microbial activity when the 

amount of water supplied by rainfall was reduced. This fact associated with NPP 

increase due to enhanced CO2 concentration explained, according to the authors, the 

predicted increase in SOC stocks in the modelled area. 

The combined effect of temperature and precipitation on SOC accumulation could 

also be seen in the SMU with the greatest SOC increases that are all located in the 

alpine region of Northern Italy (Figure 12), characterized by high precipitation values 

and low temperatures. These results are in agreement with findings of Saby et al. 

(2008) and Lemenih and Itanna (2004), who demonstrated a trend in SOC that is 

directly proportional to the mean annual precipitation and inversely proportional to 

the mean annual temperature. 

Another important interaction in determining SOC accumulation is between land 

use and climate. It is well known that grassland favours C accumulation by comparison 

with arable soils, mainly due to greater return of plant residues, high root biomass and 

lack of disturbance in grassland soils. Goidts et al. (2009) reported for Southern 

Belgium a mean SOC content of 36.4 and 92.2 t C ha−1 for cropland and grassland, 

respectively. In this work, all the SMUs with the largest SOC increase (50-60 t C ha−1, 

for compost amended soils) are represented by grassland and are located in areas 

characterized by low temperatures and high precipitation. Temperature interacts with 

precipitation in determining grassland distribution by adjusting water demand and 

consequently water availability. Increases in temperature result in enhanced soil 

evaporation and plant transpiration and consequently, for the same precipitation 

value, the water balance becomes more negative. In fact, Smit et al. (2008) found that 

grassland productivity was directly correlated with precipitation and inversely 

correlated with temperature. Therefore, the higher SOC increase per unit area 

recorded for grassland soil could be attributed to the combination of the higher plant 

inputs and the climatic conditions favouring a low rate of C mineralization. 
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3.3.5 Limitations and uncertainty of long term modelling of amended soil at regional 

scale under climate change 

 

Regional modelling of amended soil under climate change is affected by different 

limitations and sources of uncertainty. Since the main aim of this study was to devise a 

procedure to model the C sequestration due to EOM application at both local and 

regional scale under climate change, limitation and sources of uncertainty related to 

simulations performed at site scale on unamended soils will not be discussed here. 

Limitations and sources of variability related to the proposed procedure for model 

modification and optimization were already discussed in the section 3.2.5.  

 

3.3.5.1 Effect of increased net primary production on soil C sequestration 

 

The predicted increase in the atmospheric CO2 concentrations as a consequence of 

climate change is likely to raise the net primary production (NPP), due to the positive 

effect of CO2 on photosynthesis efficiency (CO2 fertilization effect). The increase in NPP 

could lead to a larger input of organic inputs in the soil enhancing soil C sequestration 

(Jastrow et al., 2005). It has to be considered that RothC does not present a plant 

module and consequently does not consider the effects that an elevated CO2 

concentration may have on plant NPP and plant residues returns to the soil, which 

could have considerable impacts on predicted SOC contents in future scenarios.  

Nevertheless, Petersen et al. (2002) showed that a simple SOM model (C-tool) 

devoid of a plant growth sub-model, as in the case of RothC, was able to precisely 

mimic the results obtained from the complex agro-ecosystem model DAISY, therefore 

demonstrating that the prediction of SOM turnover can be satisfactorily performed 

without the need to include the complexity of an integrated soil-plant-atmosphere 

model. 

In addition, there are evidences that the predicted positive effect of increased levels 

of CO2 on soil C sequestration could be limited by several constraints. Ainsworth and 

Long (2005) reported that large-scale free-air CO2 enrichment (FACE) experiments 

resulted in much smaller increases in crop yield than previously reported by enclosure 

experiments. Berthelot et al. (2001) showed that the additional C sequestration due to 
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fertilization effect only slightly reduces the negative impact of climate on the 

terrestrial storage. They predicted that at global scale the additional CO2 would lead to 

an extra storage in soil C of only 16 Gt by the end of the present century. The increase 

in NPP may be limited by lack of nutrients and water, soil fertility constraints (Lal, 

2008b) and/or CO2 levels approaching saturation (Lal, 2008b; Muñoz-Rojas et al., 

2013). 

 

3.3.5.2 Sources of uncertainty of regional modelling of amended soil under climate 

change 

 

Uncertainty of SOC regional modelling are mainly associated with measurement 

and/or evaluation of input parameters, prediction of future climate scenarios and 

effect of climate change on C cycle and other factors controlling SOC stocks.  

 

3.3.5.2.1 Input parameters 

 

A first source of uncertainty in regional modelling is related to the measurement 

and/or estimation of initial parameters for the model, in particular C input from crop 

residues and soil properties. 

A particular matter of concern for the reliability of C modelling in Mediterranean 

areas is the evaluation of C input from plant residues. To measure C inputs directly is 

difficult and costly, so several authors estimated them from yields or by inverse 

modelling, as in the case of the present study. RothC, when used in inverse mode, 

predicts how much C must enter the soil each year to maintain the measured or 

estimated SOC stock. However, Coleman et al. (1997) and Jenkinson et al. (1999) 

reported that in some dry warm regions the annual return of C required by the model 

was too large and unrealistic compared to the modest levels of crop yield in these 

regions. This unrealistically low C input is probably due to the fact that in dry warm 

regions the model simulates a larger soil water moisture content than the actual, 

resulting in higher decomposition rates of SOM. This limitation was confirmed by 

Farina et al. (2013) who found that accurate RothC simulations of the measured soil C 

in a rotation experiment in a semiarid area of Southern Italy could be obtained only if 
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the C inputs to the soil were set to unrealistic large values. This drawback can be 

overcome by utilizing a modified version of the model specifically developed to 

improve the simulation of SOC patterns in semiarid regions by reducing SOM 

decomposition rates in the soil (Farina et al., 2013). 

A further source of uncertainty is related to the inherent heterogeneity of soil that 

can result in large variability in the measured C contents and other soil properties. 

Sleutel et al. (2006a), in a study about regional SOC modelling in Belgium, found that 

the DNDC model simulated well SOC stock changes for the whole study area, although 

some deviations from measured values were recorded for specific area. The authors 

suggested that good simulation of spatial variation in SOC changes is feasible provided 

extensive validation and calibration of the model at the field scale. In this perspective 

the utilization of RothC represents a sound base as this model has been extensively 

validate for different climate, soil properties and management scenario (Smith et al., 

1997). Moreover, it has to be underlined that the same soil and climate data sets and 

methodological approach utilized by Smith et al. (2007) in their work dealing with 

projected SOC stock in the current century for the whole Europe under climate change 

were utilized in the present study. Finally, an advantage in the use of RothC for 

spatially explicit SOC prediction is represented by the fact that the model requires 

relatively few and easily measured input parameters. As a consequence input data are 

often available at different scale and this represents a guarantee in terms of the 

quality of input data with respect to other models requiring input parameters more 

numerous and/or laborious to obtain. 

 

3.3.5.2.2 Prediction of future climate scenario 

 

A second source of variability in regional modelling under climate change is related 

to errors in the prediction of future climate scenario. Specifically for areas of complex 

topography, like the Mediterranean region, application of GCMs might result in 

considerable biases in the prediction of precipitation and temperature (Giorgi and 

Lionello, 2008). In particular, precipitation involves local processes of larger complexity 

than temperature, generally resulting in less robust projections than those for 

temperature (Muñoz-Rojas et al., 2013). Precipitation usually shows an orographically 
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induced fine scale structure lacking in the global model at broader scale. Nevertheless, 

Giorgi and Lionello (2008) have shown that projections of a range of global and 

regional climate model for the Mediterranean area were generally consistent with 

each other at the broad scale and that the variations in climate were robust across 

forcing scenarios and future time periods.  

 

3.3.5.2.3 Effect of climate change on SOC cycle and stocks 

 

Finally, an important source of variability can be attributed to the effect of climate 

change to a range of anthropic and natural factors affecting SOC cycle and stocks 

(Fuentes et al., 2012; Lugato and Berti, 2012; Muñoz-Rojas et al., 2013). 

A first source of variation is related to land management modifications that farmers 

could adopt to counteract the negative impacts of climate change: variations in crop 

rotation, crop genetics, cropping systems, land use, period of planting and harvesting, 

irrigation and technology (machinery, herbicides, breeding). In this study a fixed 

management was intentionally used to make a clearer comparison among different 

EOMs and better elucidate the effects of climate change in terms of C sequestration 

potential. 

In RothC the impact of temperature on the decomposition is the same for the 

different pools and consequently the Q10 of labile and resistant pools does not change 

with the increasing temperature. Recent studies suggest that temperature sensitivity 

on SOC decomposition changes according to SOC pools and, consequently, variations 

in the response of different C pools to warming could not be adequately predicted by 

the model (Lugato and Berti, 2008). Nevertheless, there is still controversy about the 

relationship between temperature sensitivity of SOC decomposition and degree of 

stability of different C fraction and further researches are necessary to clarify this 

important aspect for SOC cycle (Lugato and Berti, 2008). Others possible impacts of 

variation in the climate are changes in residue and microbial communities composition 

that could affect the rate of EOM microbial decomposition. Climate change may also 

alter the rate and magnitude of emission of GHGs from arable land. Modelling studies 

by Olesen et al. (2004) showed that total GHG emission increased with increase in 

temperature and precipitation. 
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RothC is a model based on a first-order decomposition kinetics, implying a direct 

relation between C input and soil C stock, which could increase without limit as C input 

levels increase. Powlson et al. (2012) underlined that high rates of SOM accumulation 

can be sustained only for a limited period, albeit long, as a result of the saturation of 

different mechanisms ensuring EOM protection against decomposition (Six et al., 

2002). This consideration is very important when the simulations are projected in the 

long term (Lugato and Berti, 2008) and an effect of C saturation on the potential of C 

sequestration cannot be excluded a priori. However, there are two reasons that give 

confidence on the fact that conditions for C saturation were not met for the 

simulations conditions selected in the present work. 

First, results of some researches point out to the fact that deviations from a linear 

relationship between added EOM and SOC accumulation occur only for high yearly rate 

of C applications. For example, Heitkamp et al. (2012) showed that such deviation take 

place for yearly additions of 2.5 t C y-1, while Gulde et al. (2008) observed an increase 

in SOC content with manure application rate up to 120 t fresh weight ha-1 y-1, but no 

additional C sequestration was found for manure application rate of 180 t fresh weight 

ha-1 y-1. Such application rates are markedly higher than the 1.0 t C y-1 dose utilized in 

the simulations of the present work. 

Secondly, due to the increase in the rate of SOM decomposition caused by the 

anticipated climate changes, the model simulations predict a decrease in the rate of 

SOC accumulation in amended soil for the last decades of the 21st century and in some 

cases the added EOM could not compensate for the increased rate of SOC 

decomposition and SOC stocks begin to decrease (Mondini et al., 2012). Therefore the 

effect of climate change on the increase in SOM decomposition, especially in the last 

period of the present century, suggests that SOC stocks predicted by the model for 

2100 in amended soils are likely to be far from conditions conducive to saturation. 

 

A quantification of all sources of uncertainty was beyond the scope of the present 

work as the main objective of the thesis was to develop a procedure for simulation of 

SOC stocks in amended soil and to identify relative differences in C sequestration 

potential of several EOMs. Indeed, all these aspects need to be considered before 
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application of regional modelling of amended soil as reliable, transparent and 

verifiable method to measure changes in soil C stock.  

Nevertheless, several simulation runs were performed with EOM characterized by 

different values of EOM pool parameters and under different climate scenarios and 

such values can be taken as probability distributions for input variables, e.g. the range 

of values that such variables can assume. The results of the simulations performed 

could give an indication about the uncertainty as it possible to evaluate how, given the 

range of variability in the inputs, this is propagated along the model and it is translated 

into variability in the model output. 

As an example, the variability of EOMs utilized in the present study results in an 

uncertainty of prediction (expressed as 90% confidence interval of the mean; Stamati 

et al., 2013) in C sequestration potential higher than 80%. Considering the variability in 

the composition within the same EOM type, uncertainty in model prediction of C 

sequestration rate for compost and meat and bone meal amended soil was 17.8 and 

26%, respectively. These results suggest that uncertainty in the long term prediction of 

SOC in amended soil is large when considering the huge variability in the properties of 

EOMs applied to the soil, but uncertainty in model prediction is limited when 

considering a specific kind of EOM. 

By contrast the effect of variations in climate change on C sequestration potential of 

amended soils presented a limited effect on the variability of the output model as 

uncertainty associated with different simulation performed for the same EOM type 

under different climate scenario was lower than 6%. 

Variability in climate change prediction presented a much larger impact on the 

uncertainty in SOC losses simulated by the model for a business as usual land 

management scenario as this was higher than 51%. 

The variability in the long term regional prediction of SOC trends under climate 

change estimated in the present study is in agreement with overall uncertainty in the 

model between 65.6 and 70.8% evaluated by Stamati et al. (2013) in a long term RothC 

simulation of C sequestration potential following conversion from cropland to set-

aside. 
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4. Conclusions 

 

Soil organic matter is a key soil component as it affects nearly all properties that are 

relevant for the agronomical and environmental functions of soils. SOM is important to 

guarantee the soil fertility needed to satisfy the increasing demand of food from the 

global world population and to offset GHG emissions and the consequent detrimental 

environmental consequences caused by climate change. 

 

The significant losses of SOM recorded worldwide in the last decades have raised 

the concern of researchers and policy makers on the necessity to recover and increase 

SOM levels. In particular, soil C sequestration, i.e. the long-term (> 100 years) or 

permanent removal of CO2 from the atmosphere into the soil, has been proposed as a 

valuable strategy to guarantee the agronomical and environmental functions of soils 

ecosystems. There are several soil management options that foster C sequestration 

and among these soil amendment is considered to be one of the more effective. The 

actual European legislation, promoting EOM recycling in agriculture, and the 

appearance of increasing amount of organic wastes from bioenergy processes have 

raised the attention of researchers to the need of optimizing EOM application to soil in 

order to increase its agronomical benefits and avoid potential detrimental 

environmental effects. 

 

Soil organic C models represent a valuable tool for the optimization of soil 

amendment, for their capacity to predict future trends in soil organic C and the 

possibility to study different scenarios. However, there are no soil C models specifically 

developed to simulate C trends in amended soils or evaluate the C sequestration 

potential of different EOMs. In general, soil C models have not been extensively 

calibrated in EOM treated soils. 

 

The above considerations represent the rationale from which originates the main 

aim of this study, that is to devise an easy and reliable procedure for the optimization 

of a dynamic C model to evaluate the C sequestration potential of EOM added to the 

soil at both local and national (Italy) scale. 
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For this purpose the RothC soil C model was either modified by introducing specific 

EOM pools and calibrated utilizing respiratory curves from laboratory incubation of 

amended soil and a procedure was devised for spatially explicit SOC modelling of 

amended soil under climate change. 

 

The main outputs  of this study were: 

- the modified RothC model, considering discrete EOM pools with specific 

decomposition rate, is effective in simulating the net cumulative respiration 

from amended soil incubated under laboratory conditions 

- utilizing a unique set of EOM parameters for EOM type resulted in a 

difference of less than 10% in the prediction of long term C evolution (100 

years) of amended soil in comparison to a simulation performed with EOM 

specific parameters  

- predicted climate change in the present century will speed up SOM 

decomposition leading to a generalized decrease in SOC. Despite the 

uncertainty associated with the different climate scenarios, the results 

clearly show that SOC in Italian soil will decrease significantly by 7.4%, on 

average, between 2001 and 2100 

- results of long term (100 years) model simulations indicated that EOMs 

greatly differ for their soil C sequestration potential (range of annual rate of 

C sequestration potential 0.110 - 0.385 t C ha-1 y-1) 

- soil C sequestration potential of compost applied for 100 years to all Italian 

agricultural land at a rate of 1 t C ha-1 y-1 and under climate scenario PCM B1 

was 6.15 Mt C ha-1 y-1 corresponding to 4.6% of total annual GHG emissions 

in Italy 

- spatial explicit modelling of amended soil indicated a high variability in long 

term (100 years) potential of SOC accumulation (1 order of magnitude) due 

to the combination of EOM type, environmental properties (soil, climate) 

and management options (land use and management) 

- large scale spatial modelling of soil organic C can suggest ways to optimize 

resources by identifying the areas with the largest potential for EOM 

accumulation: 100 years of application of the whole compost produced in 
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Italy to the land with the smallest and largest potential for C sequestration 

resulted in a mean SOC increment of 27 and 55 t C ha-1, respectively (i.e. 2-

fold increment)   

- spatially explicit modelling of SOC in amended soils could be useful to 

highlight the relative importance of the different factors in the SOC 

evolution observed: in the present study temperature had a major impact on 

determining SOC accumulation 

- soil C modelling is amenable to simulate different scenarios of climate, land 

use and management and therefore can assist decision makers to develop 

strategies that favour C retention of EOMs. 

 

The main innovative aspects of this work consist in: 

- modification of the RothC model to improve the capacity of simulating SOC 

trends in amended soil 

- parameterization of the modified RothC by fitting respiratory curves from 

short term laboratory incubation of soil amended with EOM of different 

origin and properties 

-  spatially explicit modelling of SOC in amended soil under climate change. 

 

It has been shown by several authors that there are considerable differences in the 

turnover rates and substrate utilisation efficiencies of EOM between laboratory and 

field conditions. Consequently, the transfer of the optimized parameters resulting 

from laboratory study to field sites has to be done with caution. Hence, the potential 

of C sequestration of different EOMs evaluated with the procedure described in this 

study needs to be validated with results from long term experiments dealing with soil 

amendment with different EOMs. This step is essential to ensure the transferability to 

field conditions of the proposed procedure for the evaluation of soil C sequestration in 

amended soil and represents the main future development of the present work. 

 

Nevertheless, the value of this study is relevant for the improvement of soil C 

modelling applied to soils amended with different EOMs. Even if the simulation results 

need to be validated with field data, the suggested conceptual changes to the model 
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structure, such as the introduction of EOM separate pools and decomposition rates, 

may be directly transferable to field conditions. This highlights the importance of 

laboratory experiments on soil decomposition of EOM in providing useful information 

to improve the structure and the performances of existing models to simulate SOC 

trends in amended soils and to cover and understand main knowledge gaps in terms of 

environmental factors and soil processes that regulate EOM decomposition in the soil. 

Moreover, the results of the present laboratory based study quantify the relative 

differences of the different types of EOM in their potential to build up SOC stocks and 

therefore can be useful to identify EOM properties and environmental conditions more 

conducive to soil C sequestration.  

 

Results of the present study highlight the importance of a narrower integration 

between laboratory incubation and field studies to enhance the capability of models to 

predict soil C sequestration potential of EOM and to adopt environmental and 

agricultural management options that favour soil C retention of EOMs.  

 

The findings of this and similar studies will be useful to improve the reliability of 

soil C modelling as a valuable tool for farmers, researchers and policy makers 

interested to plan future land uses with the aim of increasing soil C sequestration, 

reducing GHG emissions and warranting the sustainability of agricultural ecosystems. 
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