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Abstract

In order to efficiently check the originality of images and videos from the all-day context,
in the last ten years the scientific discipline known as Image Forensics, whose goal is
exploit the knowledge from the science of Image Processing to answer questions that
arise in the forensic scenario, has developed at a growing rhythm. The objective of this
doctoral study is to actively contribute to this research field developing an approach
devoted to recover the coefficients of the JPEG quantization matrix used to compress
an image at the time of shooting (i.e., when the image has been created), when for some
reasons this information is no more available in the Exif metadata. This scenario may
include the primary quantization coefficients of an image that has been doubly JPEG
compressed, or the retrievial of the compression matrix of an uncompressed image previ-
ously JPEG compressed, since in both these cases the values of the primary compression
steps are lost.

Once we are able to distinguish which is the “compression history” of a digital image, in
particular the quantization matrix used for the first compression, it is possible to exploit
this information both for Image Forgery Identification and Image Source Identification,
two of the main areas of Multimedia Forensics science.

Although some papers allow taking an overview to the state of the art about Image
Forensics methods, the need to include all the approaches in the various subsets of this
research area necessarily prevents to explore in depth every one of them. Our purpose
is to fill this gap regarding the approaches in the DCT domain, that has never been
covered as a stand-alone topic.

The impact of visual information in everyday life, and the main problems that arises in
a forensics scenario dealing when the so-called “digital evidences”, will be exposed in the
introductory sections of this thesis. It will follow a short look to the JPEG compression
algorithm, the DCTransform and the traces (that we will call “errors”) left during the
various stages of a typical forgery pipeline, since they will be used in a lot of approaches
illustrated in the following sections. The work will go on with a chronological list of the
most important papers in the field of interest, before its core part exposed in Chapter
5, whose contents has been published in the three following papers:

e Fausto Galvan, Giovanni Puglisi, Arcangelo R. Bruna and Sebastiano Battiato:
First quantization coefficient extraction from double compressed JPEG images.
Presented to International Conference on Image Analysis and Processing - ICIAP
Naples (Italy), vol. 8156, pp 783 - 792, (2013).

e Giovanni Puglisi, Arcangelo R. Bruna, Fausto Galvan and Sebastiano Battiato:
First JPEG quantization matriz estimation based on histogram analysis. Pre-
sented to the 20th International Conference on Image Processing - ICIP Melbourne
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(Australia), pp. 4502 - 4506, (2013).

e Fausto Galvan, G. Puglisi, A.R. Bruna, and Sebastiano Battiato. First quantiza-
tion matriz estimation from double compressed JPEG images. In IEEE Transac-
tions on Information Forensics and Security, 9(8):1299 - 1310, (2014).

The work ends with a list of open problems in this research field, followed by some
conclusive considerations.
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The increasing importance of
images in everyday life

Prima ancora che nella realtd la storia, a volte, nasce nella nostra testa.
Solo successivamente diviene un fatto storico.

A .Prosperi

Nowadays our whole life is becoming increasingly more reliant upon images, and virtu-
ally all our video memories are stored in real-time in our devices, to the cloud (often
without the user realizing it), and possibly shared through the web. As an example, in
2013 426 Million Photos were upload to Facebook everyday [2], that means 8.254 PB
(PetaBytes) every month. This enormous pervasiveness of images (in addition to the
web, images taken by cameras are getting more and more extensive in our cities, see
Fig. 1.1, especially for private or public security purposes) has a lot of consequence in
all the aspects in our everyday life. Today, like never before, people has the possibility
to choose between a lot of methods and software, free of charge, built for image editing.
This method of recording and representing the reality can be defined as “liquid knowl-
edge” [3], and collaborates to form our beliefs about the best product to buy, about the
best politician to vote and generally about every occurrence in the world around us,
being able to ascertain the originality of in image, or in general of a visual document
has become crucial in different fields.

If it’s true that “a picture is worth a thousand words” [61], is also true that in most of
the cases simply there is no time to investigate if a visual information is true or false, so
people simply trust what sometimes is fake (see Fig. 1.2), and once an opinion is rooted
is really difficult to remove it [4, 127, 147] (see Fig. 1.3). The lack of human ability
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Messagger O '\ :

SIPARLA DI INCIDENTI STRADALI MALTEMPO UDINESE SANITA REGIONEFVG GRANDE GUERRA FURTI

Scopri il territorio su pietra-lenta.dolomitifriulane.com

UDINE ~ CRONACA - CI SONO 340 TELECAMERE PER VIGILARE...

Ci sono 340 telecamere per vigilare
su Udine

Entrano in gioco anche gli occhi elettronici a circuito chiuso dei palazzi
comunali Polizia, Carabinieri, Guardia di Finanza e Vigili

condivideranno le registrazioni
di Renato D’Argenio

Figure 1.1: In this headline of a local newspaper [5] an example on the increasing diffusion of
cameras for security purposes is shown. As the number human eyes decrease, automatic systems
for monitoring the streets and the strategic locations in our cities are increasing, thanks also to
the performances of the image processing methods.

to distinguish between tampered and original images [149] helps to increase the risk
for mankind to be fooled by malicious agents. During the 2013 World Photo Awards,
World Press Photo said that Paul Hansens photo of mourners in Gaza (see Fig. 1.4) was
“retouched with respect to both global and local color and tone”, despite that there was
no evidence of manipulation. A long and interesting debate took place about whether
this is a good thing for photojournalism. Even our health, see Fig. 1.5, and the way we
communicate our information (as exposed in Fig. 1.7, an image can contain malicious
code hiding a malware exploit that can hack the machine) can be sometimes affected by
a wrong use of corrupted visual information. In a few years, also due to the opportu-
nities offered by modern miniaturization technologies, wearable cameras (Fig. 1.6) that
nowadays are part of the normal equipment of a law enforcement agent in U.S.A. [6]
will probably become a standard also for other police corps.

A natural consequence of the above considerations and examples is that more and more
likely images or video will become fundamental evidences to determine the result of a
large and heterogeneous set of legal trials. In these cases, the reconstruction of the his-
tory of a visual document is often the main effort that an Image Forensics expert must
face. In particular, before performing common tasks such as image enhancement or any
kind of information retrieval, it’s first of all important to ascertain if the document is
original and, if not, recovering useful information about its possible manipulations. In
this complex environment, sometimes also determined by the difficulty of combining
the results of several methods [68, 86], JPEG[164] has emerged as the world’s most
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source: Mehr news agency (Iran)

Figure 1.2: On the left a “new” sophisticated Iranian drone, according to the official Iranian
news agency (November 2012). On the right the same flying object (apart from some details
in the background), whose first flight was in 2008, developed by The Chiba University in Japan

[7].

Figure 1.3: The image on the left is the one that the Kenyan politician Mike Sonko posted on
Facebook just immediately after the death of Nelson Mandela (December 2013). Knowing that
it was a doctored version of the original, on the right, in which Mandela was actually embracing
bozer Muhammad Ali[8] really removes from our memory the impression created when it has
been seen for the first time?

popular compression standard for images. It is widely used (about 70% of the total
amount) to share images on the net [11, 12], on the biggest social networks [48], and
it is employed by the majority of cameras and devices at the entry and mid-high level
[52, 105] (professional cameras usually shoot in RAW format). Consequently, Discrete
Cosine Transform (DCT from here on), the mathematical tool used inside JPEG to shift
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Figure 1.4: With the above image, the Swedish photojournalist Paul Hansen won the World
Press Photo of the Year 2013 [9]. After a few days, Neal Krawetz, a forensic analyst, commented
on this by saying that “This year’s "World Press Photo Award’ wasn’t given for a photograph.
It was awarded to a digital composite that was significantly reworked...the modifications made
by Hansen fail to adhere to the acceptable journalism standards used by Reuters, Associated
Press, Getty Images, National Press Photographer’s Association, and other media outlets”.
The World Press Photo invited two independent experts (Eduard de Kam from the Nederlands
Instituut voor Digitale Fotografie, and Hany Farid and Kevin Connor of image forensics and
authentication startup Fourandsiz.) to forensically analyze the photograph. The outcome was
that no traces of composite has been found.

from the spatial to the frequency domain, has been then deeply investigated by Image
Forensics community. In DCT domain is somehow easier “to see”, as reported in [119],
if a JPEG image has been or not doubly compressed (double compression, as we will
discuss in the following, is one of the consequence of a forgery). In more detail it is pos-
sible to retrieve (some of) the traces leaved from a tampering operation, and also some
fingerprints about the camera that shoot the image. Beyond that, some of the methods
and results in this field are also applied to Anti-Forensic[66, 73, 74, 154, 156, 157, 163],
Watermarking[70, 104, 150], and also to Steganalysis [129, 133, 160], when the hidden
information is embedded inside of a JPEG image.

The overall feeling for the importance of the issues connected with the Integrity Ver-
ification in Multimedia is constantly increasing. The scientific european community
accepted the challenge and joined its forces around the following four major projects:

e Rewind [13]. Tt is finalized to develop approaches in three main directions of
research: the use of Watermarking as a tool for the validation of the autenticity
on an image, and revealing traces of resampling and copy-move operations as a
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«Truccate le foto delle cellule» Il prof
universitario sotto accusa

| pm: ricerche sul cancro aggiustate al computer per ottenere fondi

16/10/2013 A A
w Tweet & [ Condividi & Stampa & Invia ad un amico
CORRIERE DELLA SERA

MILANO — C'& un doping fotoinformatico che trucca persino gli studi sulle malattie? Una inchiesta
defie Procure di Milano & Napoll mostra come le immagini destinate a comprovare gli esiti di
ricerche sul cancro. pubblicati da primarie riviste scientifiche e utilizzati per rafforzare il curriculum
dei ricercatori in concorsi pubblici e per concorrere a finanziamenti erogatl dallAssociazione
italiana ricerca sul cancro (Airc), in alcuni casl sono stati manipolati al computer con uno
sconcertanie photoshop.

Il caso concreto alfesame defla magistratura, segnalato dalfesposto di un biologo molecolare
ricercatore del Cnr che ha trovato conferma nella consulenza informatica affidata dai pm milanesi
Maurizio Romanelii, Francesco Cajani e Antonio D'Alessio al professor Sebastiano Battiato
dell'Universita di Catania, riguarda ofto pubblicazioni prodotte fra il 2001 e il 2012 dal gruppo di
lavoro del professor Alfredo Fusco, ordinario di patologia generale, diretiore a Napoli dell'lstituto
di endocrinologia e oncologia sperimentale del Cnr, socio corrispondente delfAccademia dei
Lincei e membro defla commissione scientifica consultiva dellAirc, da tempo impegnato sui
meccanismi molecolari alla base di varie forme tumorali

Figure 1.5: A recent survey of the Public Prosecutors of Milan and Naples shows how images
designed to demonstrate the outcomes of cancer research, published by leading scientific jour-
nals and used to strengthen the curricula of researchers in competitions and compete for loans
made by the Associazione Italiana per la Ricerca sul Cancro (AIRC), in some cases have been
tampered through the use of software for photo editing [10].

means of image forgeries.

e S-FIVE [14]. Dedicated to face problems related to standardisation in Forensic Im-
age and Video Enhancement, it has its main focus on the developing of techniques
for improving the quality of surveillance video data and other types of images.

e Reveal [15]. The project has the aim in developing tools and services that aid in
Social Media verification from a journalistic and enterprise perspective.

e Maven [16]. The project addresses the issue of the efficient management of large
amounts of multimedia files and of the extreme volatility of every digital asset, by
using some of the latest technologies, powering integrity and authenticity verifi-
cation tools. Its goals ranges from face detection and recognition to image source
verification.

1.1 Outline of the work

This thesis is composed by six parts. After the present introductory section, in which
the importance of image and video memories in various fields of our everyday life is
highlighted, Chapter 2 consists on a brief exposition of the main legal aspects and defi-
nitions which compose the forensics science known as Image/Video Forensics. Chapter
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Figure 1.6: When police forces will be equipped with wearable cameras, that will possibly record
every actions the single police officers is involved with, a huge amount of images and footage will
be available for help law enforcement in their investigations. At the same time, the originality
of all these visual documentation need to be certified for legal usage.

How to Hack a Computer Using Just An Image

B Monday, June 01, 2015 & Swati Khandelwal

g s e CEY 12¢ wiweet 78 st 52 [OERILCE 53¢

YOUR COMPUTER

Figure 1.7: As reported in [17], always more frequently the malicious code can be embedded

in an image, rather than hiding it in email attachments, pdfs or other types of files that are
typically used for this purposes.
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3 explores the technical details underneath the JPEG compression algorithm, with a
focus upon the importance of the Discrete Cosine Transform and the various kind of
errors that arises during a typical compression-decompression-compression procedure,
that usually characterizes a forgery pipeline in case of JPEG images. Chapter 4 con-
tains a list of the most important methods that, in the last fifteen years, tried to model
the behavior of DCT coefficients during a (single or multiple) JPEG compression. The
common goal of these approaches, and the problem that we faced in our research path,
is the recovery of the majority of the compression coefficients, which compose the quan-
tization matrix in a JPEG compression, when for some reason they have been lost.

In the Chapter 5, the main part of this work, throught the content of three papers we
mean to give our contribute to this research field. The works expose the application of
a brand new error function that includes the DCT coeflicients of a doubly compressed
JPEG image before and after a third and fourth quantization. The steps of the method
presented in Sect.5.3 are the results of a continued improvement and refinement, de-
veloped from the use of the stand-alone error function, to the addition of a prefiltering
stage. Chapter 6 is devoted to list some open problems before the conclusive remarks.






From Digital Evidence to Digital
Forensics

Physical evidence cannot be wrong, it cannot perjure itself, it cannot be wholly absent.
Only human failure to find it, study and understand it can diminish its value.

Paul L. Kirk

In the last twenty years the increasing development of information technologies brought
a lot of positive contributions to our society, allowing the creation of new “virtual lands”
on the web where is possible to move or create our interests and activities. Consequently,
also the way used by the criminals to implement their actions, and even the actions them-
selves, are very different compared to those existing before this revolution. Lawmakers
by various countries had to conform to this evolution, often defining new types of crimes
and trying to upgrade their legislation consequentely. In this Chapter some definitions
are given with the goal to fix the new concepts in their right environment, starting from
the definition of digital evidence.

2.1 The notion of digital evidence

After the premise that data stored inside a computer are grouped together with all the
documentary evidence, since they represents “things” [18], it’s necessary to point out
that, in the Italian trial system, the term “evidence” generally indicates everything that
can (in some way) contribute to form the convincement of the judge upon some given
event, and collaborate to its final decision. It can be a single material object, i.e. a
weapon or a footprint found on crime scene, but it can also be a person, i.e. a witness.
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Image/Video
Disk Forensics
Forensics
Social Networks Digital Forensics

Forensics mmmmmmmp  \jsiistioo! AN i

\ Portable Devices

Forensics

Computer
Forensics

Big Data
Forensics

Figure 2.1: An example of possible division of Digital Forensics in sub areas [19]. It’s very
difficult to separate these components, since often they are closely connected. As an example,
if we have to extract a chat session made using WhatsApp stored inside a smartphone (a
Portable Devices Forensics’s issue), we surely must use Computer Forensics’s rules, adding
some attentions related to the fact that information in that kind of device may changes during
the analysis (if the cell phone is connected to the net). The extracted information is then
ezamined according to DataBase Forensics

The digital evidence belongs to the group of the scientific evidences, it is defined as:
evidences that are provided by some scientific-technical tool with the addition of specific
technical skills, possibly with the intervention of an expert in the specific field [44], and
corrensponds to the scientific area indicated as Digital Forensics.
This science includes many subareas, as exposed in Fig. 2.1, and can in turn be described
in two different ways, with respect to different important aspects:

e The purposes: the use of scientifically derived and proven methods toward the
preservation, collection, validation, identification, analysis, interpretation, docu-
mentation and presentation of digital evidence derived from digital sources for the
purpose of facilitation or furthering the reconstruction of events found to be crimi-
nal, or helping to anticipate unauthorized actions shown to be disruptive to planned
operations [55].

e The intervention of an expert: the science of locating; extracting and analyzing
types of data from different devices, which are interpreted by specialists in order
to be used as legal evidence [84].

The following formal definition of digital evidence is widely accepted: [62, 63]: digital
data that establish that a crime has been committed can provide a link between a crime
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and its victim, or between a crime and the perpetrator. From a practical point of view,
a digital evidence is composed by a digital content, often stored in a file of whatever
format or kind, and it’s characterized by the following attributes:

e Volatility, such as residues of gunpowder. Think about a chat with an internet
browser setted in private browsing;

e Latency, such as fingerprints or a DNA evidence. This is the case of data that
have been erased or hidden (like steganography);

e Easy to modify or to spoil since reliability of digital data are intrinsically
fragile. Indeed, with a simple copy-paste operation could affect the strength of a
digital evidence;

For the Italian law [20], any kind of digital data involved in a trial is regarded as “atypical
evidence” (evidences that are not explicitly prescribed by law) and so considered by
art.189 c.p.p. To be admitted in the court, as prescribed by art.190 c.p.p. this kind of
evidence has to be accepted by the judge.

e Admittable, which means that it has to comply the precepts of the Italian Code
of Criminal Procedure (Codice di Procedura Penale), namely that can be evaluated
during the trial. Case law by the Italian Supreme Court (Corte di Cassazione)
recognizes to image and video the value of figurative document [21].

e Authentic, namely data must be the same as the one that was on the physical
devices from where is has been taken. If for a bit stream copy of an hard disk
this definition is clear, in case of an image this may give rise to very interesting
and nontrivial questions, about the philosophical and conceptual meaning of the
term “Authenticity”: which one of the images in Fig. 2.2 is authentic? Which
is the difference between Authenticity and Originality? Switching from abstract
forensics theory to practical Digital Forensics rules, we often encounter some prob-
lems. Borrowing the definition of authenticity for an audio file by AES (Audio
Engineering Society) [22], we can state: we are allowed to state that an image is
authentic when it can be ascertained that was made simultaneously with the vi-
sual event that aims to get registered, and in a manner fully consistent with the
acquisition method reported by the party collecting the tmage; an tmage without
artifacts, additions, deletions or every kind of changes.

Recently some experts tried to face these questions defining the “best practices”
that must be followed to certify the authenticity of an image in a forensics scenario
[53].

e Complete, namely all the information about the acquisition mode, availability
and location of the data must be given, without simply describing data and certi-
fying that it was in that given device.

e Reliable, which means give enough elements to ensure the chain of custody for
the data, to save its authenticity from the time of acquisition to its submission as
an evidence.
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(b)

Figure 2.2: On the left a joke acted on the set of the movie Jaws [23], on the right a famous
doctored image created by pasting a photo of a shark from South Africa (by Charles Mazwell)
into a U.S. Air Force photo taken near San Francisco’s Golden gate Bridge (by Lance Cheung).
Even if the left image has not been modified after the shoot, in which sense we can state that it
is original?

e Understandable, namely give the right motivations for the relevance of the evi-
dence acquired with the present investigation, understandable also to people who
are not highly skilled in computer science, as very likely is the judge. The ability,
often missing, of the magistrate to understand any technical explanations involving
informatics is another key issue in Digital Forensics, but it is out of the purposes
of this thesis.

2.2 The visual evidences and their usability in a court:
Image and Video Forensics

Like all the finds used as evidence in a trial, images and footage to be declared valid, and
therefore admissible, must have to be acquired, processed and stored according with the
required procedures[69, 84, 121, 153]. Even when facing with analog technologies, pre-
dominant until just over 10 years ago, this problem was known, but at that time editing
a photo or video required the intervention of experts and traces left by modifications
were easily identifiable. In the digital age instead, an user with almost rudimentary
knowledge of Photoshop [24] or other photo editing software can make changes on an
image without any perceptible trace.

Forensic analysis of images is a forensic science carried out since the very first photos
were made. In 1851 Marcus A. Root conducted the first documented example of forensic
authentication of images: by microscopic examination, Root revealed that the applied
procedure for coloring images, developed by the Reverend Levi Hill, was actually a re-
sult of hand coloring, and not the result of an improvement in the picture [25]. The first
"photo tampering” are dated 1860 as reported in [26]. The Scientific Working Group
on Imaging Technology’s web site [27] reports the following definition of Image/Video
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Figure 2.3: The Image/Video Forensics can be divided in two main areas, depending upon the
question to answer: Image Source Identification has the goal to associate an image to the devices
that created it, whereas Image Forgery Identification searches for evidences of tampering.

Image Forgery
Identification

Forensics: The application of image science and domain expertise to discern if a ques-
tioned tmage or video is an accurate representation of the original data by some defined
criteria. These criteria usually involve the interpretability of the data, and not simple
format changes that do not alter the meaning or content of the data. From FBI web
site [28], we can read that Forensic Image Analysis is the application of image science
and domain expertise to interpret the content of an image or the image itself in legal
matters. From both these definitions, we can identify the main points that should char-
acterize every forensics approach to the analysis of an image. It must be provided by
someone with adequate technical skills in Image Processing, but also is able to interpret
the extracted information inside a legal and judicial framework.

Tmage/Video forensics methods are grouped in six main categories, related with the
goal that they aim to achieve [135]. The first two of the list are the one more closely
connected to forensics issues (see Fig. 2.3), whereas the others are general-purposes
approaches:

e Image forgery identification: identification of manipulations in an image, given
by inclusion or removal of part of the informative content of an image. These meth-
ods are divided itselfes in Pixel Based (to detect cloning, resampling and splic-
ing operations), Statistical Based, Format Based (to detect, for example, single
or multiple JPEG quantizations), Camera Based (that specifically model artifacts
introduced by various stages of the imaging process), Physics Based (that leverage
the inconsistencies introduced in the tampered image when its parts are coming
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Figure 2.4: The retrieved quantization table used for the first JPEG compression in doubly
compressed JPEG images can be compared with the ones of a given set of cameras, for Source
Camera Identificaton pourposes. Alternatively, for Image Forgery Identification, different val-
ues highlighted in some parts of an image can be a signal that it has been tampered.

by different environments), and finally Geometric Based (aimed to find inconsis-
tencies connected to the formation of the image inside the camera) [80].

Source camera identification: identification of the device (hopefully the exact
one, more often the brand of device) that generated the image. Sometimes the
first step is devoted to discriminate between natural or artificial (also known as
Computer Generated) images. In general, the methodology switches to the iden-
tification of the source that generated the image, ascertaining the type of device
(scanner, camera, copier, and printer) and then trying to determine the particular
device.

Image reconstruction/restoration/enhancement: restoration and improve-
ment of quality of deteriorated images in order to identify, even partially, the
original content and/or retrieve useful information [95].

Image/video analysis: dynamic or behavioral analysis, for example with the
aim to identify the consecutio temporum of an event of interest.

3D reconstruction and comparison: bi/three-dimensional information extrac-
tion to derive measures or reference values (for example the height of an individual)
and for the comparison between images (for example to compare the identity of
a subject with the known offender from a footage taken by a video surveillance
system).

Steganalysis: detection of hidden information within an image with stegano-
graphic techniques, for example by changing the least significant bit in the number
that defines the color of a pixel (LSB approach).
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The focus of this thesis is upon methods to retrieve information about the first JPEG
compression in doubly compressed JPEG images. According to the diagram showed in
Fig. 2.4, this kind of informations can be used as a signature to be matched with the
compression table of a specified camera, for Source Camera Identification pourposes, or
in order to determine if the image of interest could have been downloaded from a Social
Network [124]. Alternatively, if these coefficients are calculated in different parts of an
image under analysis, can form a part of a Image Forgery Identification pipeline. Before
exposing the core of this work, some theoretical concepts are provided.
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2. From Digital Evidence to Digital Forensics




JPEG compression algorithm and
DCT Transform

Numbers are like people; torture them enough and they will tell you anything.

Gregg Edmund Easterbrook

3.1 The JPEG standard

In 1986, the Joint! Photographic Experts Group (JPEG), officially known as ISO/IEC
JTC 1/SC 29/WG 10, was formed with the purpose to establish a standard for the
sequential progressive encoding of continuous tone grayscale and colour images.

As a result of this mission, starting from 1987 JPEG conducted a selection process,
whose main requirements was the followings [164]:

e be at or near the state of the art with regard to compression rate and accompanying
image fidelity, over a wide range of image quality ratings;

e the encoder should be parameterizable, so that the application (or user) can set
the desired compresslon/qualiy tradeoff;

e be applicable to practically any kind of continuous-tone digital source image (i.e,
not be restricted to images of certain dimensions, color spaces, pixel aspect ra-

IThe word “joint” refers to the collaboration between ISO (International Standard Organization) and
CCITT (Commi-tee Consultatif Internationale des Telephones et Telegraphs) which, in turn, operates
in close collaboration with the group CCITT/SGVIII.
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tios,etc.), and not be limited to classes of imagery with restrictions on scene con-
tent, such as complexity, range of colors, or statistical properties;

e have tractable computational complexity, to make feasible software implementa-
tions with viable performance on a range of CPUs, as well as hardware implemen-
tations with viable cost for appliations requiring high performance;

e have the following mode of operation:

— Sequential DCT-based encoding (the most used): each image component is
encoded in a single left-to-right, top-to-bottom scan;

— Progressive DCT-based encoding: the image is encoded in multlple scans
for appliations in which transmission time is long, and the viewer prefers to
watch the image buil up in multlple coarse-to-clear passes;

— Lossless encoding: the image is encoded to guarantee exact recovery of ev-
ery source image sample value (even though the result is low compression
compared to the lossy modes);

— Hierarchical encoding: the image is encoded at multlple resolutions, so that
lower-resolution versions may be accessed without first having to decompress
the image at its full resolution.

In 1988, at the end of a challenging iter, the Group stated that the proposal given in
[111], based on the 8 x 8 DCTransform, had produced the best picture quality.

From 1988 to 1990, JPEG undertook a huge set of tests and validating procedures to
ensure the interoperability and universality of the method.

The JPEG standard (ISO/IEC 10918 - Recommendation T.81) [164, 142] was created
in 19922 (latest version, 1994) as the result of that collaboration.

Its large and fast diffusion is mainly due to the fact that this standard allows higt
compression ratios on natural images compared to a loss of quality within acceptable
limits. Besides, the standard is “open, and everyone can implement its own JPEG
ceder /decoder for free. The responsible for the reference implementation of the original
JPEG standard is the Independent JPEG Group (IJG) [29].

3.2 Overview of the JPEG compression engine

As pointed out in Chapterl, the reason for the persisting interest upon JPEG demon-
strated by the Image Forensics community, is the widespread diffusion of this format
both on the web, and on the majority of the image acquisition devices circulating at the
present time. Though JPEG compression algorithm is not the main topic of this work,
and even if there is a huge amount of pubblications about it (starting from the above
cited [164]), we decided to give a brief introduction to its basic fundation steps since
some of them leave useful footprints for Image Forensics applications. Its main stages
are showed in Fig. 3.1.

Since human visual system is more sensitive to luminance than to chrominance [60],

2approved on 18th September 1992
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Figure 3.1: Synthetic scheme of the basilar steps in the JPEG compression pipeline. The steps
corresponding to the DCT transform, quantization and entropy encoder, here shown only for
the Y (Luminance) component, are replicated also for Cy, and C, (Chrominance) components.
The results of the three channels are then joined to form the data stream.

instead of working on (native) RGB color space, where the two components, or “chan-
nels”, are mixed together, the first step is devoted to convert the image to the Y C,C,.
space. This is done with the following transformation [164, 142]:

Y 0.299 0.587 0.114 R 0
Cy | = —0.1687 —0.3313 0.5 G |+ 128 (3.1)
C, 0.5 —0.4187 —0.0813 B 128

At this point it is possible to separate the Y (luminance channel) from C,C, (chromi-
nance), in order to further process them separately and obtain higher compression main-
taining the visual information unaltered. To this aim, the chroma channels are usually
subsampled and compressed more strongly compared to the luminance one.

Besides being more sensitive to luminance compared to chrominance, the human visual
system, looking at a scene, perceives more accurately the variations in low-frequency
areas, respect to changes in high-frequencies areas. Again, being able to process in a
different way the parts of an image with different frequency values, is possible to fur-
ther reduce the size of the compressed image. It is therefore necessary moving from the
spatial domain to the frequency domain. Accordingly, for every channel of the resulting
image a DCT transform is applied to each one of its (8 x8 non-overlapping) blocks, after
having converted their values from unsigned integer in the range [0,255] to signed values
belonging to the range [-127,128].

The next step is a deadzone quantization, whose effect is illustrated in Fig. 3.2. It is
obtained dividing each DCT coefficient in the same position of the 8x8 block for the
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Figure 3.2: The effect of the deadzone quantization for ¢ = 11: all the DCT coefficients lying
in a certain range around a multiple of the quantization step whose extension depends on q,
namely the dead zone, are forced by the joint effect of the quantization (i.e., diwision by a
quantization coefficient), of the round function, and of the dequantization step, to be all equal
to that multiple of q.
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same integer value® belonging to a 8x8 quantization matrix [54]. The results of the ratio
between the original DCT coefficients and the corresponding quantization steps are then
rounded. This last part of the algorithm is responsible, at the same time, for the power-
ful compression obtained by JPEG (because the joint effect of the quantization-rounding
step, causes the reset of many DCT coefficients) and for the loss of information that it
causes (because the rounding function it isn’t perfectly reversible). For this reason the
entire procedure is said to be lossy.

The quantized and rounded coefficients are then transformed into a data stream, follow-
ing a zig-zag order as illustrated in Fig. 3.3, by mean of a classic entropy coding (i.e.,
run length/variable length). As can be noted, DCT transform plays a central role in
JPEG compression pipeline.

Coding parameters and other metadata [97, 138] are embedded into the header of the
JPEG file to allow a proper decoding. These informations, that in JPEG images are
stored in Exif format [72], include details upon the compression parameters, about the
kind of camera that took the image (with a lot of its setting parameters), the time of

3from here on indicated generically as g, or gi; to indicate the specific quantization step in position

(4,5)
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the shoot, and so on. In some cases, if the GPS module is embedded in the acquisition
device, the Exif metadata contain the exact position where the picture has been shoot.
These data, although very useful for general purposes, are not so robust to tampering
[31, 32], so are very weak if presented in a court as evidences. For this reason they are
not widely used for forensics analysis.

In case of a forgery operation the entire compression process needs to be inverted, since
to visualize the image it has to be decompressed. The decompression path starts with
dequantization (see Sect. 3.4.1), and it’s followed by the Inverse DCT (IDCT) that
brings the coefficients from the frequency domain back into the spatial domain. Finally,
to get the visible image ready to be modified, the information in the Y C,C). space is
converted back to its RGB version with the following transformation, that is the reverse
version of (3.1), :

R 1 0 1.402 Y
G |=|1 -031414 —0.71414 C, — 128 (3.2)
B 1 1.772 0 C, — 128

Once manipulated the image is compressed again, most probably with a different com-
pression coefficient (it’s very unlikely that the editing software is set with the same
parameters as the camera’s inner software). The entire pipeline of a forgery operations
on a JPEG image is exposed in Fig. 3.4.

3.3 Terminology.

Although the number of papers which over the past years covered these topics is quite
remarkable, none of them tried to uniform the great variety of terms used to define the
various components of the theory. The need to standardize our exposure between all the
papers to which we will refer later, led us to overcome this problem with the following
definitions of the various features that will be take under consideration. We first discuss
the different choices found in literature, and then will give our view to be used in the
rest of the work:

e the terms “quantization” and “compression” lead to some confusion in their inter-
pretation. The core of JPEG algorithm is the reduction of size of the considered
image file. This reduction, often called compression with a clear figurative mean-
ing, is obtained with a mathematical operation called quantization, which consists
in dividing (and rounding) DCT coefficients for specific integer values, namely the
coefficients of a 8 x 8 matrix called quantization matriz. Every one of them is sin-
gularly referred as quantization step, but sometimes also as compression step. For
these reasons the two terms are used indifferently. We suggest to use “compres-
sion” to denote the abstract concepts, like the kind of algorithm or its propriety,
and “quantization” when we refer to concrete numbers, so we will use “quantiza-
tion step”, “quantization matrix”, and so forth.

e In many papers in this specific field the terms “image noise” and “image error”
are often used with the same meaning. The reason is the following: in the world of
photography, the noise is something that affects the image quality. As an example,
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Figure 8.4: The complete pipeline for a forgery operation in case of a JPEG image: the first
JPEG compressz'onl, the decompression of the image, the forgery, and finally the second JPEG
compression. di, di and d2 are the distributions of the terms in that point of the pipeline.

the one known as Picture Response Non Uniformity (PRNU) noise [67, 71] is
inducted at the time of shooting by imperfections on the silicon components of the
camera sensor, some others are introduced during the quantization/dequantization
phases of the JPEG algorithm. These latter are frequently also named as errors,
and are of great importance for Image Forensics, as we will see in Sect. 3.5.

e The way to indicate the quantization step is generally not yet uniformed. The

authors often refer to it as ¢ when it doesn’t matter neither how many times the
JPEG algorithm is applied, nor which is its position in the quantization matrix.
If the number of JPEG compression matters, the quantization step of the n-th
compression is denoted as ¢,, or ¢". Instead, if the exact position (7,j) in the
quantization matrix of a generic quantization step is important, the term mostly
used is g; ;, or ¢, with or without parenthesis. Finally, if the level of detail
is so high that both the number of JPEG compression and the position of the
quantization step inside the quantization matrix must be defined, in literature
can be found indifferently ¢}*;, or ¢j;7, again with or without parenthesis. We will
denote the three conditions, respectively ¢, g,,¢"’ and ¢%7.

e The whole quantization table referred to the i-th compression is universally indi-
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cated as Q;.

As illustrated in the previous section, the JPEG algorithm maps the values of the
image from the spatial to the frequency domain. Since every step of the algorithm
(both during the coding and the decoding phase) has got his own characteristics
that can be leveraged for Image Forensic purposes, every feature of the image
data stream (i.e., the distribution of the DCT terms) in a particular phase of the
image forgery pipeline needs to be examined separately. For this reason, the way
the terms are named varies with the step in which they are discussed, and every
author made his own choices in this regard, so the same term and its features are
indicated in many different ways over different papers. In consideration of the part
of the JPEG algorithm that we will leverage, and with the goal to maintain a clear
and unambiguous terminology, our choice is to use the following (see Fig. 3.5):
— :cg? indicates a single element in the spatial domain in position (i,j) of a
certain 8 x 8 image block of an uncompressed image, yet subjected to n JPEG
compressions (n = 0 means that the image has never been compressed);

;EET;) indicates a term (in the spatial domain of an image that has been com-

pressed n times) during the decompression phase, just after dequantization
and IDCT steps;

- yfz) indicates a single element in the frequency domain in position (i, j) of a

certain 8 x 8 image block of an uncompressed image yet subjected to n JPEG
compressions, just after the DCT transform (n = 0 means that the image has
never been compressed);

- ygg))i_j indicates a single element in the frequency domain in position (i, j) of

a certain 8 x 8 image block of an uncompressed image yet subjected to n
JPEG compressions, just after the quantization (n = 0 means that the image
has never been compressed);

- ji(z-) indicates a single element in the frequency domain in position (7, j) of

the n-times compressed JPEG image.

with regard to the statistical distribution of the terms in the various steps of the
JPEG algorithm (both in the coding and in the decoding pipeline), we will use
(see Fig. 3.4):

— d,, is the distribution of the terms just after the DCT transform during the
n-th encoding phase, and p,, () its Probability Density Function (PDF);

— d;L is the distribution of the dequantized DCT terms just before the IDCT
transform during the n-th decoding phase, and p,, (x) its PDF;

the rounding function is indicated either with the word round or with the square
brakets [...];

€4 is the quantization error;

€, is the rounding error;
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Figure 8.5: The transformations of a single value of a 8 X 8 block in a uncompressed grayscale
image subjected to a double JPEG compression. Operations that are source of error are depicted
in red, while the completely reversible ones are green. The blue boxes contain terms in the spatial
domain, whereas the orange boxes are for the terms in the frequency domain. The operations
with “no errors introduction” are referred to the Entropic coding and decoding phases. The
terms g1 and g2 refer to the (very high) possibility to have two different quantization steps.

e ¢, is the truncation error;

Our hope is that the above choices, to which we will refer in the rest of the thesis, can
be used in the future as a guideline for the specific literature.

3.3.1 Strengths and utility of the Discrete Cosine Transform

Starting from the paper by Ahmed, Natarajan and Rao that firstly developed the DCT
in 1974 [46] (in this regard, an interesting historical note on this milestone article is
reported in [45]), the increasingly rapid growth of image processing algorithms, and in
particular of compression methods like JPEG for images or MPEG [141] for videos,
has led to the success of this transform. A lot of books [47], tutorials [106], papers
[146, 158, 169] and webpages [33] defined the mathematical details concerned the DCT,
and also its applications to solve real problems [82]. This literature have been chosen
as a main guideline for our following considerations to briefly summarize its intrinsic
details.
From a mathematical point of view, the DCT block transform is a linear and invertible
function belonging to the family of the Discrete Trigonometric Transforms (DTTS). It
can be defined as a finite length mapping from a L?(R) space to another L?(R) space,
generally defined as:

F:R" — R" neR. (3.3)
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Figure 8.6: The set of 64 basis functions corresponding to the 2-D discrete cosine transform,
taken from [146]. As can be seen they exhibit a progressive increase of the frequency component.
The DC term has no frequency component.
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In the JPEG algorithm the entire image matrix is divide into smaller matrix with a
dimension of 8 x 8 before the DCT, which maps the values from the spatial to the
frequency domain; this effect is obtained using two 8 x 8 kernels, or basis functions M,
and M,. Indeed, if y is the image matrix in the spatial domain, the DCT is obtained
with the following linear transformation:

Y =M,y -MF (3.4)

Where T indicates the matrix transposition, and - the matrix product.
Some of the most important motivation for the use of DCT in image compression are
the following:

e It decorrelates the image data: normally an image contains areas with uniform
brightness, or slowing varying. These areas are bounded from the so called edges
which instead cover a limited area. Therefore, neighboring pixels are strongly cor-
related. The idea is expressing the image values through a linear combination of
coefficients that are (ideally) not correlated. This particular Fourier Transform
[134] is able to remove redundancy between neighboring pixels, so that the ob-
tained uncorrelated coefficients can be independently encoded, thus reducing the
total entropy of the image data, then allowing a higher compression efficiency. As
an example, in Fig. 3.7 is clearly visible that the amplitude of the autocorrelation
after the DCT is highly reduced. Regarding the entropy, in particular its use as
an indicator of the average number of bits required for representing a signal [96],
it is heavily reduced by the ability of DCT transform in discarding some high
frequency parts, as showed with some practical examples in [106]. The advantages
in a compression procedure are straightforward.
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Figure 3.7: The effect of DCT transform on normalized autocorrelation of correlated image:
before (sx) and after (dz). Image from [106].

Figure 3.8: The effects of DCT applied to an uncorrelated image (left) and to a correlated
image (right). In both cases is clearly visible the effect of energy compaction: the most quantity
of data (whose presence is indicated by white/gray colored pizels) are grouped in a small part
of the image (almost exclusively in the upper left corner) that is referred to low frequencies.
Images from [106].

e It packs data (thus energy) into as few coefficients as possible: as clearly
visible in Fig. 3.8, both in uncorrelated and correlated images, DCT groups infor-
mation on the upper left part of the resulting image (the lower order coefficients).
In the frequency domain, this area corresponds to the low-frequency content of
the image. This situation allows discarding (through a strong quantization) the
part of the image corresponding to high-frequency content without losing relevant
information. The more quantity of data that can be discarded, the higher the com-
pression that can be achieved. Obviously, this is strictly related to the frequency
content of the image itself.

e It is computationally efficient: it can be computed symmetrically and sepa-
rately, distinguishing successive operations on rows and columns. Recall from 3.2
that DCT, in JPEG pipeline, is applied to every single 8 x 8 image block. If f(x,y)
is the coefficient of the image in the spatial domain at position (z,y), the formula
to calculate the generic coefficient in the frequency domain in position (4, j) is:

7

(n) _ (2z + 1)im 2y + 1)jm
Yij = ;)yzof x,y)cos 16 cos 6 (3.5)
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This allows yl(rjl) to be computed in two steps, precisely first on the row and then on

the column, since the operations on the rows and on the columns are functionally
identical as can be seen in (3.7).

e It is an orthogonal transformation: this property, that can be proved in differ-
ent ways[47, 158] arises from the fact that the transformation matrix is composed
by orthogonal columns and so it is orthogonal itself. This is one of the reasons for
its computational efficiency.

e Normalization: for each column vector v; of any discrete cosine transform kernel
matrix holds the following:

il =1,i€1,...,8] (3.8)

e Orthonormalization: Since both the columns and the rows of the transformation
kernel are orthogonal and normalized, this matrix is said to be orthonormal. This
results in a significant decrease of the computational complexity, being the matrix
inversion reduced to a matrix transpose.

e Efficient algorithms for its computation are available: the separability
together with the symmetry and the orthogonality allows building a fixed trans-
formation matrix that can be computed separately. Moreover it is not a complex
transform, (compared, i.e., with DFT) so there is no need to encode information
about its phase.

3.3.2 JPEG quantization matrices: from a standard to an adap-
tive approach

The “quality” of a compressed image is intended as its capability to show as much
information as possible with respect to the original one. Historically, starting from the
first implementation of the JPEG encoder by the IJG group [29] in October 1991 (the
last version, 9b, is currently in development and is planned for release in January 2016),
the index of this feature is denoted as Quality Factor (QF from here on). Ranging
from 1 to 100, it indicates how much a compressed image is similar to its uncompressed
version. JPEG algorithm, by definition devoted to reduce the bit size of an image as
already exposed in the previous subsection, achieves its purpose during the quantization
step, so the correct choice of these values becomes crucial. The quantization tables
showed in Fig. 3.9 are the most commonly used for the two channels of Luminance and
Chrominance. They have been developed by the Independent JPEG Group (IJG) in
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16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 099
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 099
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
72 92 95 S8 112 100 103 99 99 99 99 99 99 99 99 99

Figure 8.9: The two standard JPEG tables, for the Luminance (left) and Chrominance (right)
channels. Properly scaled, every one of them can cover 100 different Quality Factors.

1998 [34] following the contents of [164] and [89]. These tables correspond to a QF of 50
and are used as basis for the derivation of every other possible QF. Indeed, starting from
them is possible to derive the matrices required to obtain the desired QF in a JPEG
image following a two steps algorithm [107, 118]:

1. computation of the scaling factor Z from every QF:

7= { 5000/QF if QF <50 (3.9)

200 — 2QF otherwise

2. the (i,y) — th element of the desired matrix Q* for every channel is obtained from
the corresponding position in the basis matrix @ with the following map:

. Qi,7) * Z 4+ 50
Q" (i,J) = 100 (3.10)
In addition to the standard set, all the programs devoted to digital image editing pos-
sess their own non-1JG quantization tables[77]. For example, when Adobe Photoshop[35]
saves an image in JPEG format, in addition with other different settings it allows the
user to select one among 12 quality level. Even the most popular Social Network plat-
form, aside from deleting the majority of Exif metadata from every uploaded image,
compress it with its own tables [124]. Concerning the acquisition devices, both digital
cameras and smartphones use their own custom base quantization table, again different
from the IJG matrices and scaling methods [78]. In general, from their definition until
the present days, the challenge is to develop quantization tables that are self-produced
by the devices after a process of advanced scene-context classification, possibly taking
into account also the needs of the visual human system [54].

Regarding the magnitude of the quantization steps, with the increasing availability of
low-price storage space inside the acquisition devices, the trend leads to ever smaller
values, as can be seen in Fig. 3.10. Indeed, thanks to the collaboration with AMPED srl
[1] we had the possibility to study and classify the quantization tables of more than 7000
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Figure 3.10: Histogram a) shows the distribution of the values assumed in the quantization
matrices by the terms in position 1, considering the usual zig-zag order. Histogram b) is referred
to the position 64. Note that the two images have different scales.

kind of cameras, smartphone and tablet of about 70 different brands. Considering only
the Luminance channel, we isolated about 1500 different matrices. The most widely
used (222 occurrences coming from devices of 14 different brands) is the one showed in
Fig. 3.11 a).

Fig. 3.11 b) shows another interesting result of this survey, namely in the firts 15 po-
sitions of the compression matrices of the examined database (considering the zig-zag
order of the JPEG algorithm, exposed in Sect 3.2), the percentage of values of the
quantization steps in the range [1:30] is never under 99%. This result, as pointed out in
Sect. 5.3.4, will be used in [90, 91, 140] to justify the choice of the range of variability
in the values of a third quantization step applied to the image.

3.3.3 Statistical distribution of the DCT coefficients

In the present section we will expose the works that, over the years, allowed to have a
clear cognition of the statistical distribution fo the DCT coefficients for all the 64 posi-
tions of the 8 x 8 image block. These preliminary studies are the necessary prelude to the
methods illustrated in the following of this thesis. The first insight on the distribution
of DCT coefficients were given in [137] and [126], even if until [144] substantially there
were only a lot of proposals and hypothesis not supported by real scientific reasons. In
their paper instead, Reininger and Gibson performed a set of Kolmogorov-Smirnov [151]
goodness-of-fit tests to compare the various options: Gaussian, Laplacian, Gamma and
Rayleigh distributions. Their results allowed concluding that:

e the distribution of the DC coefficients (the one in position (0,0) in every (8 x 8)
block, see the upper left sub-image in Fig. 3.12), which represents the average
value of the input sequence in the corresponding block, follows a Gaussian law;

e the distribution of the AC coefficients (see Fig. 3.12, apart from the image in the
upper left) follows a Laplacian law.
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Figure 3.11: On the left the most widely used compression matriz considering a database of
about 7000 image acquisition devices kindly provided by Amped srl [1]. The map on the right
represents the percentage of quantization coefficients below 30, considering the first 15 positions,
according to the zig-zag order exposed in Fig. 3.3. In abscissa is the position of the coefficients
in the matriz, in ordinate the value in percentage.
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Figure 8.12: Histograms of the values of the DCT coefficients in all the positions of the 8 x 8
block for an image taken from the Kodak Dataset[43] after a shift from the spatial to the DCT
domain using the Matlab[36] function dct2. The difference in the slope of the histograms for
the AC terms, as the frequency changes, as well as the particular behavior of the DC term are
clearly noticeable.

For a complete and exhaustive analytical discussion about the topic, we instead refer
to [110]. In the paper, Lam and Goodman firstly pointed out that in every 8 x 8
image block pixel values can reasonably be thought as identically distributed random
variables, generally with no (or with a weak) spatial correlation. Since the central
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limit theorem[85] states that the weighted summation of identically distributed random
variables can be well approximated as having a Gaussian distribution? with zero mean
and variance proportional to the variance of pixels in the block (note that the above
characterization perfectly match with DCT terms as defined in (3.5) and (3.7)), and
using conditional probability, they define:

d = p(u?) = / b0 0?)p(0?)d(0?) (3.11)

They also hypothesized that, considering typical images, the variance of the Gaussian
distribution of the terms through the 8 x 8 image blocks also varies as a random variable.
This last distinction turns out to be the determining factor for the shape of the coeffi-
cients distributions, as we will see. They finally concluded that, for these two reasons,
the image can be represented with a doubly stochastic model and, since the PDF of
o? in case of natural images has been proved to be exponential with parameter A, is

possible to write the distribution of the coefficient as:

V2X
P(y,(?j)) = Tel’p{* % 2>\‘y»§)0j) |} (3.12)
Recalling that the PDF of a Laplacian distribution is defined as:

p(y) = gexp{—ulyl} (3.13)

it is straightforward to conclude that the PDF in (3.12) is Laplacian with parameter
1= v/2X. As a corollary it is possible to state that, since the constant of proportionality
that link the variance of the Gaussian distribution with the variance of the block becomes
smaller as we move to higher frequency, the amount of DCT coefficients equal (or very
near) to 0 increase as the positional index approaches to the high frequencies, i.e. the
lower right part of the 8 x 8 block. Incidentally, as discussed further in Sect. 4.1 and
clearly visualized in Fig. 4.4, this is the reason why in a context of First Quantization
Step Estimation it will be almost impossible to discover all the terms of the quantization
matrix.

As an application of these results, a recent work by Farinella et al.[81] analyzes DCT
coefficients distribution to discover semantic patterns useful for scene classification. In
these particular cases, it is observed that different scene contexts present differences in
the Laplacian scales, and therefore the shape of the various Laplacian distributions can
be used as an effective scene context descriptor.

Even if, historically, about the PDF of the DC term there is a general accordance,
alternative proposals for better representing the statistical behavior of AC coefficients
by Muller[125] and Chang et al.[64], which proposed (respectively) the Generalized
Gaussian Model and the Generalized Gamma Model. Although the exposed results
are to some extent remarkable, scientific community defining PDF of DCT terms is
yet used to refer to Laplacian distribution, that in any case is a special case of the
Generalized Gaussian distribution. In our opinion this is justified from several reasons:

4note that the central limit theorem holds even when the image pixels are spatially correlated, as
long as the magnitude of correlation is less than one.



34 3. JPEG compression algorithm and DCT Transform

160 110 100 106 240 140 151 161 14087 176 736 S05 653 273 189 823
121 120 140 108 246 158 160 155 $1 802311 02 204 214 519 745
149 139 216 240 240 157 169 156 DCT 888 315124 623 411 643 275 206
194 179 220 219 251 187 180 162 47 1861031 599 86 241 -123 45
188 220 237 156 168 109 203 177 — 133 162 223 533 58 403 N4 72
240 135 155 164 181 204 213 192 %65 376 446 61 207 297 202 A7
249 164 178 187 203 221 120 101 5 5*5 241 398 85 24 293 264 04 57
172 192 195 198 212 199 103 199 & 1‘ lg‘ Eﬂ:"e 4153 525 51 -461-163 102 -149 57
Py @ g
Y % x:"’ 0% ®y det (Y)

233401
ﬁ 2, 201 ; 5§ 164.2768 122.6570 83.1012 1084497 237.3522 1428296 1558530 154.6878
&3 4344 00 1247853 119.3168 128.0319 149.1055 231.0397 137.7716 164.8018 169.2122
oial B7E & Rl b 141,9426 150.7921 197.4244 218.9483 257.8114 167.0452 166.5179 1338574
L3 L4 b 868 169.2593 175.9409 228.7599 228.6556 229.5902 1756794 193.0623 172.8483
5.5 10 68 — 2356827 217.6335 229.7033 180.9658 146.4342 127.1371 168.0973 152.0527
04 0G0 00 0 194.7994 1484403 143.2467 143.2129 187.1779 2114487 200.1931 2080626
- . 2534182 2005272 1774711 182.9560 231.5505 213.4683 109.1030 96.1201
100000 0

¢ . dequantlzatlon W|thQ +1DCT 176.7354 1825888 197.5449 195.8775 213.7914 187.1039 1203077 189.3406

round (dﬁm) 3 det(Y)

Q Y*=IDCT| round | —— | X Q

Q

Figure 3.13: In the above toy example is possible to follow step by step what actually happens
during a quantization/dequantization process, to a term in a generic position (i,7) in the 8 X 8
base block, starting immediately after the conversion from RGB to Y C,C, color space. After
the DCT transform (note the value assumed from the DC term) it is quantized with a com-
pression matriz ) corresponding, following the standard introduced by JPEG Group exposed in
Sect. 2.2, to QF=50. Subsequently the rounding function is applied. This is the end of the first
compression stage, since the other operations have only the task to encapsulate the values in a
data stream to form the JPEG file. Here it is possible to appreciate what happens to the file
when it is “opened”: the obtained matriz Y™ after dequantization and IDCT is yet considerably
different from Y.

the Generalized Gaussian Model, as exposed in [110], is a better model only when the
kurtosis has a high value (that is not true for all kind of images), these models require
in general more complex expressions and extra computational cost compared with the
Laplacian one. Besides, these latter approaches are not based on mathematical analysis
and empirical tests, thus having the drawback of a lack of robustness.

Finally, always about different ways to model the distribution of DCT terms, in 2004
Lam[109] pointed out that, in case of text documents, a Gaussian distribution is a more
realistic model.
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Figure 8.14: Loss of information caused by quantization error in case of an uncompressed image
subjected to a (almost exactly reproduced) JPEG compression. The histogram of a generic AC
term after the DCT transform (to the left in the upper row) reveals a high variability (highlighted
in the same row in the histogram on the right). After a quantization with quantization step
q = 16 all the bins in the range [ng — 4,nq + 4 — 1] are mapped to n, for some appropriate
n € Z. In the example, for n = 4, all the bins in [56,71] are mapped to the bin located in
4 (histogram on the right in the center row). When the image will be decompressed, the bin
in 4 will be transferred in 64. The lower row shows what happens to the information after the
dequantization. Since the rounding step is not yet executed, in some bins we can note the effects
of the rounding error
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3.4 The sources of error in the JPEG algorithm: for-
mal definitions

As previously mentioned, the JPEG algorithm is classified as lossy because the com-
pression process applied to the image is not fully reversible. Although this loss of
information can be unpleasant, with Image Forensics domain this shortcoming becomes
useful for investigative purposes. Indeed, in analogy to the cues left by the criminal on
the crime scene, some traces left in an image from JPEG compression algorithm can
be used to get useful information to reconstructing the history of the document. Cues
or “evidences” are usually related on the “difference between the image quality before
and after the JPEG compression”. For this reason they are known as “errors”, and
will be the topic of the following pages. In Fig. 3.5 can be appreciated in detail what
happens to a single value of an originally decompressed image, while in Figs.3.13 and
3.16 a numerical example allows to see the errors resulting when an image undergoes to
a compression/decompression procedure.

3.4.1 Quantization Error

This is the main source of error, and arises when a DCT coefficient is divided by the
corresponding term of the quantization matrix, and the result is then rounded to the
nearest integer. Indeed, it is formally defined as:

€q = |Y(q)i,; X 4 — Yi,j| = |round (:;) X q—Yi; (3.14)
where i,j = (0...7), |...| is the abs function, ¢ is the quantization step (i.e., the (i, ;)"

term of the 8 x 8 quantization matrix), and y; ; is the (i,5)"" DCT term of a generic
8 x 8 image block.

Unlike the others two kind of errors illustrated in the following, whose definitions in the
various papers are always the same, so obtaining a sort of “global acceptance” inside
the scientific community, in case of the quantization error the bibliography has showed
different points of view, that we will expose in the next section for every single paper.
The only aspect with a general agreement is that (3.14) it’s a non-linear operation and
that we can model its output as a random variable. Our choice about the way to express
this error is motivated to the fact that it better allows to highlight the joint effect of the
quantization and the rounding steps in terms of information loss. In addition, and as
further proof that this point of view is the most agreed, we can see that recent papers
facing this kind of error [112, 166] made our same choice.

There are two different ways to consider (and therefore define) this error:

e difference between the values exactly before and exactly after the mathematical
function that generated it (i.e., the quantization step and the rounding operation).

e difference between the DCT terms in the same condition (i.e., dequantized) before
and after the quantization step. This one represent our point of view.

To support and clearly motivate our choice in more detail, we expose an example.
Starting from any position in the 8 x 8 block of DCT values of a given image, showing
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Figure 3.15: The effect of quantization and dequantization for a generic term ¢ € [ng— > nq—+

% — 1] in case of q even. All the terms in that range will be cast in nq.

on the horizontal axis all the numerical values assumed by all the DCT terms in that
position through all the image blocks, and in the vertical axis their occurrences, we can
derive the histogram illustrated in the upper subfigure of Fig. 3.14. At this point we
quantize all the terms with a quantization step ¢ = 16. Due to the round function,
during this step the values in the range [56,71] are all mapped in the bin located in 4,
as showed in the center histogram of the same figure. When the image is decompressed
(i.e., all the coefficients will be multiplied for 16), all the terms will assume the value
of 64 (= 16 x 4) and the situation is the one showed in the lower subfigure of Fig. 3.14.
As clearly illustrated in Fig. 3.15, the joint action of quantization and dequantization
steps takes a generic DCT term in the range [ng — 4,nq + 2 — 1] if ¢ is even, or in
[ng — [4],ng+ [2]] if ¢ is odd, and casts it in ng (n € Z for a proper range around 0,
in the numerical case just exposed, n = 4).

According with this point of view, the loss of information is the difference between the
“old” values of the DCT terms (between 56 and 71) and the only “new” value after the
dequantization, i.e. 64, for all of them.

3.4.2 Rounding and Truncation Errors

These two other sources of error, which are accomplished inside the box indicated as
“DCT-Based Decoder” in the tampering pipeline exposed in Fig. 3.4, both arises after
the IDCT, the inverse DCT transform that drives back the values from the frequency
to the spatial domain once the image must be visualized. The reason is that the output
values of this operation must be transformed in format (from double to 8-bit unsigned in-
teger) and range (from a larger range to [0,255]) to be correctly visualized. Despite they
are generally discarded during every mathematical modeling of the JPEG algorithm,
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nevertheless their effects are not totally negligible, as can be appreciated in Fig. 3.16.
The formal definitions are as follows:

e Rounding Error: The float numbers after the IDCT must be rounded to the near-
est integer value to reconstruct the image in the spatial domain. The difference
between the values before and after this process is called rounding error. Always
referring to Fig. 3.5, and after the above considerations about the truncation error,
it is defined as:

€pr = |ji,j — ivi,jl (315)

As exposed in [171], it can be considered as a special kind of quantization were
q=1.

Fan and de Queiroz in Ref. [76] modelled rounding errors as Gaussian distribu-
tion with zero-mean around each expected quantized histogram bin, as can been
graphically appreciated in the zoom and detail of the right subfigure of Fig. 3.17,
and in the lower subfigure of Fig. 3.14.

e Truncation Error: After the rounding step, again with the goal to reconstruct the
image data, the values that are less than 0 needs to be truncated to 0, whereas
the ones larger than 255 are truncated to 255. The difference between the values
before and after this cutoff is the truncation error. It’s highly dependent on the
quality factors used in JPEG compression, and on the tested image dataset[103,
118]. More precisely, the smaller the quality factor (that means high quantization
values), the higher the probability that it arises. Since nowadays the quality
factors are, by default, considerably high (see what exposed in Sect. 3.3.2), this
kind of error generally occurs with very low probability (less than 1%, as reported
in [118]), and can be reasonably discarded during a mathematical modeling.

3.5 The sources of error in the JPEG algorithm: a
timeline of the main approaches

Among the papers which in the latest decade tried to set up methods to reconstruct the
history of a JPEG image, some of them moved from the study of the errors mentioned
in the previous section. In particular, observing and discussing their effects on the dis-
tribution of the DCT coefficients in various points of the JPEG (single or multiple)
compression pipeline, the authors tried to understand their influence on the perfor-
mances of the proposed Image Forensics approach.

In the present section, we critically illustrate the most significant works in this topic,
trying to follow their evolution among the years and using the uniformed terminology

exposed in Sect. 3.3.
(1)

In [145] the authors, assuming to start from an observed quantized DCT value Yigyio

studied the quantization error focusing on three different hypothesis:

e To enable the determination of expectations for the quantization error, pixel values
in images are viewed as random rather than as deterministic;
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Figure 3.16: Starting from Y™, obtained after the pipeline depicted in Fig. 3.13, it is possible to
appreciate the effects of the rounding and truncation steps. The corrections made, respectively
to the floating point values and to the values out of the range [0,255], create the matriz Y*
i YCpCr space, now ready to be shifted in RGB space just before ils visualization. Note that
while the rounding function influence all the terms, the truncation one changes only one value
(the one circled in red).

150 1800 1800 . S i S
1600
1400 -
100 1200 1000 E
1000 E
800/ i
- 00 500 0 v Ei
- | %
o} |
g~y i 30 300 Tﬁf“‘l&?ll :lhi;“"ﬂn 300 400 0 a0 am :ulén”'['bllhsl:ﬁ 200 300 400

Figure 3.17: The distributions of a same coefficient in three different moments of a double
compression algorithm: (left) histogram of the original uncompressed image just after the DCT,
(center) histogram after the first compression, (right) histogram just before the second JPEG
compression (color conversions, rounding and truncation of the values to eight bit integers
have been already performed). A detail was also over imposed for a better visualization of the
rounding error.
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e If no prior knowledge about the value of the original frequency DCT coefficient yg)j),

they model the quantization error defined in (3.14) as a uniformly distributed ran-
dom variable, allowing an easy derivation of the variance of the DCT-quantization
error. Although mathematically easy to handle, this approach is not always ap-
propriate, as simulations have shown in case of images with most of their energy
concentrated at low frequencies with little energy at high frequencies, like the ones
consisting primarily in large areas of uniform color.

e Starting from some prior knowledge about the distribution of the DCT coefficients,
in particular supposing that they follow a Laplacian distribution, a different ex-
pression for the variance is obtained.

They concluded observing that simulations proved that neither of the two models are
the right choice to accurately predict the spatial-domain quantization noise. Indeed, the
Laplacian model works well for quantized DCT coefficients that are observed to be zero
whereas when non-zero quantized DCT coefficients are observed, the uniform model is a
better choice. In this paper the quantization error is defined as “the difference between
the quantized and non-quantized DCT terms.”

In [103], one of the few works that studies the behavior of the terms of an image after
two JPEG quantization with the same quantization matrix, there is another different
definition of quantization error. It is defined as “the difference between the actual float
value of the divided DCT coefficients and the rounded integer value.” In this case this
definition is very similar to the one we gave in Sect. 3.4.2 for the rounding error.

The paper in [118] starts its part devoted to distinguish between JPEG image and
uncompressed ones, with a mathematical derivation of the distribution ds of the DCT
terms of an image that have been already JPEG compressed and decompressed (i.e.,
before the second quantization), starting from the distribution of d; of the DCT terms
just before the first quantization. The authors stated that:

dy = DCT(IDCT(dy)) + DCT(e,) = dl_ X gij + DCT(e,) (3.16)

di,j

restricting their discussion to the AC terms and to a quantization step > 2, and assuming
that €, is an independent and identically distributed random variable with uniform
distribution in the range of [—0.5,0.5], use the Central Limit Theorem to state that
DCT(e,) has a 0-mean Gaussian distribution with variance amounting to 1—12

Then, looking at (3.16) and recalling that d; is approximately Laplacian, they observed
that:

° p;(x) is a multiple of the quantization step g;

e o is obtained from p/1 (z) adding some (rounding) noise around the multiples of ¢.
This is in accordance with our[90] filtering approach, further exposed in Sect. 5.2;

e the 99,95% of the the above mentioned rounding noise is spread in the range
[kq — 1 : kg + 1] of every value kq, (k € Z), thus allowing to conclude that py(z) =~

pi(z).

In this paper, the quantization error is not exactly defined, but only cited as the error
introduced when the DCT coefficients are quantized.
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In [112] Li and al., moving from the results of [145] and [118], faced the study of the
rounding and quantization errors (here called noises) for a double JPEG compression
pipeline in a very complete and exhaustive way. In particular, their mathematical
definition of the latter is consistent with our point of view, as exposed in Sect. 3.1.
The key points of this work, relatively to the topic exposed in the present section are:

e The distribution of the quantization error defined in (3.14) depends upon the
distribution of the DCT terms, which in turn depends upon their position inside
the single 8 x 8 block. Precisely, for the (4,7)-th term of the first JPEG cycle,

and supposing that yz(lj) has a Laplacian distribution with 0 mean and A as a

parameter, it has the following distributions:

o U(=%,4) for (i,5) =(0,0)

WD~ QF (Awa) for (i.5)#(0,0) (3.17)
1,7

where ¢; is the quantization step, U indicates a uniform distribution and Q%
is a so-called Quantized-Laplacian distribution. As a personal contribution to
these conclusions, in Fig. 3.18 we show graphically (in the paper these figures are
missing) the application of the error function defined in (3.14) for an image taken
from the Kodak Dataset [43], for a given quantization step and in four different
position of the 8 x 8 image block. We observe that, whereas the histogram of the
DC is very similar to an uniform distribution pattern in the expected range (i.e.,
[—2 :2) ), the change towards a Laplacian behavior in case of an AC term is not
as straightforward as in (3.17) would seem. This aspect, i.e. the relation between
the variance of a random variable, the magnitude of the quantization step and
the behavior of the distribution, is highlighted by the the authors when they state
that “the quantization noise distribution will approach uniform distribution as the
quantization step is small when compared to the variance of the random variable”.

Figure 3.18: Distribution of the quantization error as defined in (8.14) for ¢ = 19 in four
different positions of the 8 x 8 block with respect to the zig-zag order showed in Fig. 3.3: a)
position 1 (the DC term), b) position 20, ¢) position 40, and d) position 6.
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e The rounding error defined in (3.15) for the (7, j)-th term of the first JPEG cycle
has the following distributions:

er(i,5) ~ QY (Ujg};, 1) (3.18)

where Z_CElJ) is defined as the difference between the original luminance value x

(2%
and :El(v?), that is the value of the same term after DCT, compression, decompression
and IDCT. Both terms are in the spatial domain.

()

In addition and beyond these important results, the authors also expose considerations
about the distributions of the quantization and rounding errors in case of multiple quan-
tizations, using their observations to develop methods for quantization step estimation
and identical recompression detection in these scenarios. As an application of the above
theory, in [59] Li et al. proposed an approach useful to extract traces left by JPEG
compression in uncompressed images, and use this information as a proof to classify
the originality of a visual document. This paper is important mainly because it faces
the problem in case of high-quality JPEG compressions, very common in the standard
settings of a lot of cameras at the present time, as highlighted in our survey exposed in
Sect. 3.3.2 .



Quantization Step Estimation
Approaches for JPEG Images in
DCT Domain

The voyage of discovery is not in seeking new landscapes but in having new eyes.

Marcel Proust

This Chapter is devoted to list, and in some cases briefly expose, the major results ob-
tained in the last fifteen years by the international research community in the estimation
of the Quantization Table used in a first JPEG compression, when the image to examine
has been decompressed, and then saved in some kind of uncompressed format or again
in JPEG. Since some of the the Image Forensics methods exposed in the following move
by the assumptions that the non-originality of the image has already been established,
before the following list we will briefly illustrate how this starting point can be achieved,
in case of double compressed JPEG images.

This ability can be very useful, especially in a forensics scenario. Indeed, if we are able
to demonstrate that a JPEG image used as an evidence in a court has been doubly
compressed, we have the clear proof that the image under analysis is not the one stored
by the acquisition device just after the shoot. This because the presence of the second
compression, proofs beyond every doubt that the image has been decompressed and
(possibly after some kind of operation) compressed again. In some case this could be
enough to invalidate the entire outcome of a trial.

The most robust detector of this chain of quantizations is based upon the analysis of the
DCT coefficients, since their histogram in case of doubly compressed images assumes a
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Figure 4.1: The pipeline to distinguish between single vs double compressed JPEG images.
The different shapes of the periodical patterns that characterize the two histograms on the left
(obtained from a double compression with g1 = 10 and g2 = 6), and on the right (obtained with
g1 = 4 and g2 = 6) not only highlight a double compression, but also if the first compression
is stronger than the second one. The central histogram is the outcome obtained plotting the
values of an AC coefficient after a single quantization (in this example with g = 6). The lack of
“strange” features can be indeed used as a proof of singly compressed image, even if the same
result could be obtained also after two compressions with identical quantization steps.

characteristic shape, that it is called “Double Quantization Effect”.

4.1 Verify the originality of a JPEG image by means
of the Double Quantization Effect

Even if a detailed study of the response of DCT coefficient histograms in the frequency
domain can be also in [92], the Double Quantization Effect was firstly cited in 2003 by
Lukas and Fridrich [117], and a more complete description has been done by Popescu
and Farid[136] in 2005. In this paper, the authors illustrated a set of possibilities that
arise from the observation of the statistical properties of a digital image for a forensics
analysis. This analysis was followed by others, providing with more mathematical de-
tails, namely He et al. [99] and some years later Lin et al. [115]. In the latter exposition,
where is proposed a method to build a probability map for the automatic localization
of tampered regions in JPEG images, the authors begin from the extraction of the his-
togram of the DCT coefficients before the first quantization (named hq), and proceded
investigating how the two quantizations with steps ¢; and ¢» change the shape of the
histogram obtained after the second quantization (named hs).

The first two important results, summarized in Fig. 4.1, are the following:

e the shape of the histogram of a single AC term allows to understand if the image
under analysis has been singly or doubly compressed;
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e in case of doubly compressed image, the relationship between the two successive
quantization steps changes the pattern of the histogram for a certain range around
0. In particular, if the bins are located in multiples of ¢o with some empty positions,
and if the height of the bins follows a decreasing monotonous trend moving away
from 0, is possible to assert that the first quantization step was bigger than the
second one, whereas if the heights of the bins doesn’t decrease monotonically, and
there are no holes between bins, the first quantization step was smaller than the
second one.

Another considerable result reported in [115] is that, if we suppose to know ¢y, and after
retrieving ¢s from the JPEG header, starting from a bin of the histogram hs in position
p2, is possible to derive the number N (p2) of bins in the original histogram contributing
to the bin in py. It depends on the triple (q1, g2, p2) and it’s equal to':

N(p2) = a1 QZ? (p2 + ;)J — BT <p2 — ;ﬂ + 1) (4.1)

Tt is then pointed out that N(p2) is a periodic function, with a period:

q1

B ged(qr, q2) (4.2)

£

Some of the above results have been also extended in case of video formats by Wang
and Farid in 2006 [167] and 2009 [168].

In 2012 an improved Double Quantization detection method has been proposed by Thing
et al. in [161], exploited in turn more recentely by NG et al. within a method to detect
double compressed Facebook JPEG images [48].

As already mentioned we will report only papers that we consider mostly important for
the topic of this thesis. We wish to point out that, although all the following works have
the goal to reconstruct some (as much as possible) elements of the quantization matrix
referred to previous JPEG quantization(s) to which the image has been subjected, not
all of them start from the same scenario. Indeed, some papers move from the analysis
of a JPEG image without the inner metadata (as happens, for example, if a JPEG
images has been imported into Microsoft Powerpoint or Word documents by graphics
programs, or if they have been manually erased from the forger), others from an image
given in a uncompressed format (such as Bitmap[159] or Tagged Image File Format[49])
that has been previously JPEG compressed, others from a doubly compressed JPEG
image (see Fig. 4.2). Besides, some works have the goal to determine the tampered
parts in an image, and the retrieving of the coefficients of the first quantization matrix
is only a step in the pipeline of the proposed approach. Since the common goal of
all the approaches is to extract the quantization step of the JPEG image before its
decompression, we identify this problem with the acronym QSE (Quantization Step
Estimation). In almost all cases we tried to capture the main idea referred to our topic,
sometimes giving its mathematical formulation and often ignoring other parts that we
found not directly connected to our purpose. Despite other possible criteria, we decided
to expose the works in a chronological order, since the problems addressed in every paper
below are very closely connected and consequently all these approaches have, in some

1|.] and [.] are, respectevely, the floor and ceil functions.
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Figure 4.2: After being JPEG compressed, decompressed and subjected to some kind of forgery,
an image could be JPEG-recompressed or saved in some other kind of uncompressed format.
In both cases, the ability to retrieve (as much as possible of ) the coefficients of the first JPEG
compression is an important skill for forensics purposes.

way and with respect to their chorological order, inspired each other. A summarized list
of the papers is given in Tab.4.1, in which the works are grouped together depending
on their specific purpose.

4.2 History of a bitmap image with no prior infor-
mation (2000 - 2003)

In [75] and [76], Fan and de Queiroz presented a method that, given an image in bitmap
format is able to determine whether it has been previously JPEG-compressed, and
further estimate which quantization matrix has been used. The method assumes that
if there is no compression, the pixel differences across 8 x 8 block boundaries should be
similar to those within blocks, while they should be different if the image has been JPEG-
compressed. In particular, taking into account inter and intrablock pixel differences, it
is possible to build two functions that, with reference to Fig. 4.3, are defined in the
following way:

Z(i,j)=|A-B—-C+D| and Z (i,j)=|E—F—G+ H| (4.3)

The energy of the difference between the histograms of these functions is then compared
to a proper threshold, to deduce the presence of a prior compression. The method is ca-
pable of revealing artifacts also when very light JPEG compression is applied (i.e., with
quality factor as high as 95). After detecting the compression signature, the authors
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Figure 4.83: In [76] (from where this image has been taken), the authors propose to ascertain
if the pixel differences across the boundaries of every 8 x 8 image block is similar to the one
within the block.

presented a method for maximum likelihood estimation (MLE) of JPEG quantization
steps and showed its reliability via experimental results. For their purpose they face
the rounding and truncation errors, starting by the same observations exposed in Sec-
tions 3.4.2 and 3.5: the distribution of the former is Gaussian in the range [—0,5: 0,5)
and the percentage of the latter inside every block is very low. Some of the results ob-
tained in these papers formed the basis for the approach exploited in [128]. This work
deserves to be quoted mainly for two reasons: it deals with color images, and it proposes
(for the first time in multimedia forensics) an estimation of the lattice structure in the
Discrete Cosine Transform domain for determining the color space, even if limited on
the case when the quantization of DCT-coefficients is performed for a JPEG compressed
image without downsampling of color components.

4.3 First approach to doubly compressed JPEG im-
ages (2003)

Expanding their previous works devoted to define steganalytics methods, Lukas and
Fridrich in [117] started to face the problem of the retrieval of the coefficients of the
first quantization in a double compressed JPEG images. They proposed an alternative
method based on the evaluation of the behavior of normalized histograms. Since this
approach provides unsatisfactory results, they finally focused on a strategy that uses in
sequence a set of Neural Network (NN) as a classifier. Their exposition of the method
began observing that the question needs to be addressed separately, depending upon
the different possibilities of relations between the two quantization steps:

e 1 =q@U[(<g@)ANEGneN:inxq =q);
® g1 > (2;

e 1 <@ AN(AnEN:n*q =q).
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Figure 4.4: Histograms of a doubly compressed image after decompression. From an AC term
of a low frequency (left histogram) a lot of information can be extracted, whereas in case of an
AC term referred to high frequency coefficients (right histogram) the most part of dequantized
coefficients are equal to 0.

This paper, which also has the goal to detect if a given JPEG image has been previously
doubly compressed (Double Compression Detection problem), was the first to point out
two aspects which have become milestones in this research field:

e since DCT is an orthogonal transform, changes in one coefficient should not affect
the other ones. So it is possible to study separately every position in the 8 x 8
image block;

e in every block, approaching to the 64" coefficient following the same zig-zag order
showed in Fig. 3.3 for the JPEG entropy coding step, the amount of information
that is possible to extract becomes progressively smaller. Indeed, as can be noted
in Fig. 4.4, the left histogram referred to an AC term in position 2 (very low
frequency) contains a big amount of information, whereas the right histogram,
coming from the AC term in position 35, does not contain many useful information,
since almost all the coefficients are equal to 0.

The main limitation of this paper lies in the fact that it only takes under consideration
DCT coefficients in the first three positions of the block, that is not enough helpful to
uniquely identify a quantization matrix. An important (often used in the following)
property stated in the paper is that “the pattern of bins in the histogram of a doubly
compressed JPEG image for a given (possibly referred to a low frequency) AC term can
offer important hints for the identification of the primary quantization factor.”

4.4 The approaches exploiting the Benford’s law (2007)

In [88], the first digit law (Benford’s law[101]) is applied by Fu et al. to estimate the
JPEG-compression history for images in bitmap format, by means of a support vector
machine (SVM) based classifier. In particular, the provided results include the detection
of JPEG (either single or double) compression and the estimation of JPEG compression
factor. The authors demonstrated that the probability distribution of the first digit of
the DCT coefficients in original JPEG images (single-compressed) follows this Benford-
like logarithmic law:

p(z) = Nlogio (1 + - jxq) (4.4)
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with x =1,2,...,9, N is a normalization factor, s and ¢ are the model parameters.
Consequently, they proposed a generalized form of the Benfords law to precisely describe
the distributions of the original JPEG images with different Q-factors. Since the first
digit of the DCT coefficients in double JPEG-compressed images doesn’t follow the above
mentioned law (in the paper is observed that the fitting provided by the generalized
Benfords law is decreasingly accurate with the number of compression steps), its presence
(or absence) can be used as a signature in a double JPEG processing detection algorithm.
Like all the milestone papers, also this work has been deeply explored over the years.
As an example, in [113] is discussed how the performances of this approach can be
improved by examining the first digit distribution of each sub band of DCT coefficients
independently, rather than analyzing the entire set at once. Again, Feng et al. in
[83] outperformed the results given in the above paper with a multi-features detection
method using both linear and non-linear classifiers. More recently, Hou et al. extended
the above results by including also zero in the set of possible digits for the statistics
of the first digit distribution[102]. In the same year the authors of [122] exposed an
Antiforensic method to fool the statistics connected to the Benford’s law in case of
the detection of double compressed images. Another interesting question, detecting
how many JPEG compressions have been applied to one image, is answered by the
application of this statistical rule by Milani et at. in [123] in 2014. At the same time,
in a work by Pasquini et al. [131] is proposed a binary decision test, based upon the
Benford-Fourier theory, to distinguish the images that was previously JPEG compressed
starting from images stored in an uncompressed format. Always leveraging the same
theory, Pasquini et al. in [130] faced also multi (up to three) JPEG compressions ,
exposing a method for its identification starting from JPEG images. Their approach is
also extended to the estimation of the quantization steps, passing through a training
phase followed by a testing one, obtaining good results compared with [58], also for the
challenging case of ¢1 < ¢o, even if limited to an aligned image grid. The difference
between this scenario and a non-aligned one, more similar to what a forensics expert
really have to face, is hightlighted in Sect. 4.10.

4.5 Attack to the doubly compressed JPEG images
issue using a SVM (2008)

The work exposed in [133], by Pevny and Fridrich, it’s an improved version of the NN
developed in [117], where the histogram is also used to train an SVM and to make
the same detection. More precisely, in this approach the double compression detector
is based on a Support Vector machine (SVM) with Gaussian kernel, and the train is
obtained with a collection of 9 DCT coefficients derived from the first order statistics
of individual DCT modes of low frequency DCT coefficients. The algorithm not only
detects doubly compressed images, but also can be used as a detector of the Primary
Quantization Step, and for this purpose, a set of SVM-based multiclassifiers (a collection
of binary classifiers) is used. This approach, however, similarly to the work of [83] has
been tested only for secondary quality factors equal to 75 or 80, since these are the
default quality factors of two famous steganalisys algorithms: F5[170] and OutGuess
[139]. A third outcome exposed in the paper is the comparison between the retrieved
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DCT coefficients and a set of whole quantization matrix, with the purpose of trying to
find the “closest” (depending upon a proper metric) quantization table. In the paper
the authors solve the query of the Double Compression Detection comparing the feature
set proposed in [88] with their own, and training the classifiers on exactly the same
images dataset.

4.6 Hunting for the JPEG ghosts (2009)

Although the paper by Farid [79] was not strictly dedicated to recover the quantization
steps of the first quantization matrix, but primarily to the identification of the tampered
regions (the so called “ghosts”) in a double compressed JPEG image, we mention this
paper since the core of its approach is somehow similar with the error function developed
in our papers and exposed in Chapter 5. Indeed, the author proposes to estimate ¢
through a third quantization, by varying its correspondent step in a proper range and
then computing the error between the DCT coefficients, before and after this operation,
with the following map:

0 y(O') Q1 q2 y(O‘) Q1
fe(yi(,j),Q17Q2,Q3)= Ll x = x El xgg— | |7 x = | xqo
q1 qz qs q1 q2

Extracting the local mimima of this error function, Farid stated that is possible to
highlight the exact values ¢; and gs.

Unfurtunately, as highlighted in [91] and exposed in Sect. 5.1, for the majority of the
real cases the original quantization coefficient cannot be easily inferred.

In 2012, Zach et al. present a method that fully automates the detection of JPEG ghosts
[175].

(4.5)

4.7 Extraction of information from a bitmap image
that was previously JPEG compressed (2010)

In [118], a paper which we yet partially explored in Sect. 3.4, Luo et al. expose a method
to identify quantization steps and quantization tables from Bitmap images that have
been previously JPEG compressed. An interesting result presented here is that the
de-quantized coefficients of a JPEG compression will be well preserved with the highest
probability after JPEG recompression, also when compared with any others including
the quantization table of ones (QF2 = 100), when the second compression has been
exploited using the same quantization table of the first one (Q2 = Q1).

The strength of their approach lies in the fact that it works also when the test images
don’t have enough statistics (i.e., the tampered region within an image is just a small
patch such as a face, some numbers on a plate, and so on), indeed the reported outcomes
continue to be significant also when the size of the images is reduced to a block of
64 x 64 pixels, in case of the detection of the quantization table. For this purpose, first
the proposed algorithm JPEG recompresses the image X (1) (a singly-compressed JPEG
image) with all the possible quantization tables belonging to a known set with quality
factors ranging from 1 to 100, obtaining 100 different decompressed version of X ). At
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this point the quality factor (QF) of X() is:
arg mag; (R (X(l),X(Q) (i)) i=1,2,... 100) (4.6)

where R is defines as a similarity measure between two images X (V) and X ) with size
of M x N.

Once obtained the QF, the compression matrix is uniquely identified.

As can be noted, one big limitation of this paper is that it assumes that the primary
quantization matrix belongs to a set of known matrices, whereas in a real scenario this
is not generally true especially today, when, as clarified in Sect. 2.2, image acquisition
devices often create on site their own best quantization tables.

4.8 JPEG images doubly compressed with the same
quantization matrix (2010)

In [103], F. Huang et al. cope with the detection of double JPEG compression when the
primary and secondary quantization matrix are the same. It’s a challenging problem,
since in this conditions the “characteristic framework” introduced by different quan-
tization matrices (i.e., the behaviors shown in Fig. 4.1) is missing, causing the usual
detection methods don’t work in the proper way.

They start observing that, caused by the three kind of errors that arise in the JPEG
compression/decompression pipeline, the number of different DCT coefficients in case
of multiple compressions (recompressing a JPEG image over and over again) with the
same quantization matrix, decreases as the number of compressions rises. To this aim,
they define as C), the rate of coefficient change between two subsequent JPEG quanti-
zation, which is dependent on the number of nonzero DCT coefficients and the different
DCT coeflicients between the quantization. Subsequently, they took about 4000 images
of roughly equal size from three different dataset and doubly compressed them with
the same quantization table. In this manner they can observe that, in case of single
and double compression, the average value of C; is heavily depending on the chosen
database.

Further considerations regarding the statistical propriety of the DCT terms, compared
between subsequent compressions, allowed the authors to state that not only as the
number of compressions increases the amount of different DCT coefficients decrease,
but the same happens for the difference between two subsequent D; (i.e., D,, — Dy 41 >
D, 41 — Dy y2). Exploiting the above considerations, the proposed algorithm first gets
an estimate D of the different JPEG coefficients between the examined JPEG image J
and its recompressed version J " obtained with the same quantization table. The next
step expects to entropy decode J . randomly selects and modifies a “proper” amount of
its DCT coefficients, modifies them randomly decreasing or increasing by 1 arbitrarily,
and decodes the whole image again obtaining J;n. Subsequently the image is then de-
compressed and recompressed with the same quantization table to get J,/,/L, and D} is
setted as the number of different DCT coefficients between these two images. The next
two steps are repeated a certain number of times and an average value D,, is calculated.
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Then the rule for discriminating between singly and doubly compressed image is:

{ D, > D =] is doubly compressed (A7)

D,, <D =] is singly compressed

Since the correct choice of the amount of DCT coefficients to modify is the key for the
success of the method, a big part of the paper is devoted to the selection of this term.
The results are quite significant: if the QF is no less than 90, the final detection accuracy
rates are constantly higher than 90 percent for all the image dataset used. The authors
also extended their approach to discriminate between single-triple or double-triple com-
pressions, and declare that, assuming to find a suitable “proper” ratio their method can
detect four times and further JPEG compressions.

In the following years, the same problem has been addressed in [120] and [152], whereas
more recently Lui et al. in [116] proposed a method to detect the presence of forgery
in images where the modified parts have been generated with the same quantization
matrix of the background. In particular, [120] exposes a modified version of the Ran-
dom Perturbation Strategy adopted in [103], obtaining good results especially for the
detection of triply compressed JPEG images.

4.9 Analysis of JPEG images using the factor his-
togram (2011)

In [174], Yang et al. extract a statistic feature called “factor histogram” from the analysis
of the procedure of double quantization. This characteristic describes the distribution
of the factors being related to quantized DCT coefficients, and is used to detect double
quantization and to estimate the primary quantization matrix in double compressed
JPEG images. According with the authors, to derive the notion of factor histogram is
necessary to start with a formula that represents the generic DCT term after the second
quantization, taking into account all the kind of errors:

1,7 (2) (4.8)

) [yl(}j)qf}j) Teéte
4; ;

Following considerations about the rounding function similar to the one that brought
to Fig. 3.15, and neglecting the rounding/truncation errors, the authors come to state
that the product yl(lj) . q;lj) securely belong to the set of q@») consecutive integers defined

1,7
as:
D) = { [ (7 - 05) |+ alo =011} wo)

At this point they factorize each integer in D(yfj), qu)), and collect all of the positive
integer factors to form the factor set that is a constraint for the value range of the step

size qg?j), being defined as:

F(y,a) = {zimod(z,y) = 0,y € D a),o > 0} (4.10)
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where mod(-, -) indicates the modulo function. The next step lies in defining the factor
histogram h; as the histogram of the factor sequence given by a set of %k different

.
F (yz(i) 7qg?j)), every one given by (4.10) varying yz(? in a a nonzero coefficient sequence

of length k, in which each component has been doubly quantized with step size ¢; and
g2 Finally, the authors set up a kind of score assessment strategy associated with this
factor sequence. Inside of this rank, for a doubly quantized sequence with ¢; > ¢
the factor histogram will achieve its maximum at ¢, thus allowing to detect the first
compression step.

It is important to point out that this approach starts from two hypothesis: the first

one, that allows to assert that q;zj) eF (yg?j),qg?j)), is that ql(ylj) > ql(?j). This means that
the quality factor of the first quantization is assumed lower than the second one. This
assumption also characterizes other approaches, as we will see, indeed the study of the
case when qg}j) < qf?j) is an open challenge for the scientific community also at the present
time. The second (very restrictive in our opinion) conjecture, assumes the knowledge
of the set of quantization matrix used for the first compression, that the authors called
QMS (Quantization Matrix System) and represents the JPEG quantization matrices
provided by a company (producing either cameras or photo editing software) inside its
software. Even if the latter assumption can in some cases correspond to a real scenario,
since every investigation is composed by scientific methods together with classical ones
and so this information can be known by other ways, nevertheless for a fair comparison
to the state of the art we think that it would be better to avoid any kind of hypothesis
about such information.

Recently, in [173], almost the same group of the authors exposed another method based
on the statistics of the factor histogram for estimating the JPEG compression history of
bitmap images. In particular, the authors move from the observation that this feature
decreases with the increase of its bin index for uncompressed bitmaps, whereas exhibits
a local maximum at the bin index corresponding to the quantization step for JPEG
decompressed bitmaps.

4.10 Aligned and non-aligned scenarios (2011 - 2012)

The papers [56] by Bianchi et al., and [58] by Bianchi and Piva, are closely related
as stated by the the authors themselves. In [56], which in turn took the cue from
[115], Bianchi et al. face with a particular scenario that they called Single Compression
Forgery for JPEG images. This is the situation in which a part of a JPEG image is
patched over an uncompressed one (copy-paste or cut/past operation) and the result is
JPEG compressed. The core of the method is the use of Bayesian inference to assign to
each DCT coefficient a probability of being doubly quantized, giving the possibility to
build a probability map that for every part of the image tells if it is original or tampered.
One of the parameters needed to calculate the probability is the quantization step of
the first compression that in this case is iteratively estimated.

In [58], which is itself a refinement of [57] by the same authors, Bianchi et al. build a
likelihood map to find the regions that have undergone to a double JPEG compression,
starting from a scenario that is the same as described above. In particular, the authors
observe that the distribution of the DCT coefficients of a tampered image, considering
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the above scenario, can be modeled as a weighted summation of two hypotheses:
p(x;sq,a) = a-p(z[Ho) + (1 —a) - p(z|Hi;q1) (4.11)

where « indicates how strong is the probability that the DCT coefficient has been single
quantized (hypothesis Hy, = it belong to a non tampered part), or doubly quantized
(hypothesis Hy, = it belong to a tampered part). As can be seen, among the parameters
required to correctly identify this likelihood map and modeling the doubly compressed
regions, ¢1 (the quantization step of the primary compression) is crucial. The authors
estimate ¢; using the EM (Expectation Maximization) algorithm over a set of candi-
dates. This procedure is replicated for each of the 64 DCT coefficients that compose the
first-compression matrix. Besides its results, the method is important because it takes
into account two type of traces left by tampering in doubly-compressed JPEG images:
aligned and non-aligned, something that was considered, to the best of our knowledge,
only few times before[50, 65] and never after. These two scenarios, respectively referred
as A-DJPG and NA-JPG, arise depending if the DCT grid of the portion of image
pasted in a splicing or cloning operation is (or not) aligned with the one of the original
image. Also in these papers is underlined the tested difficult to correctly estimate ¢,
when it is < ¢o. Indeed, their results are heavily affected from this problem, as they
pointed out in their conclusions.

4.11 Tampering detection based upon the distribu-
tion of DCT coefficients (2014)

The work [166], by Wang et al., exposes a method for tampering detection based on the
different distributions of DCT coefficients between tampered and non tampered regions.
In their approach, the authors built up a statistical model (EM algorithm) in which the
knowledge of ¢ is one of the four parameters required. Since they explore the scenario
where a JPEG image [ is decompressed and then JPEG compressed again, they provide
a way to determinate the first quantization step in doubly compressed JPEG images.
Their considerations start from the expression of a generic double compressed DCT term
without taking into consideration truncation and rounding errors:

(2) y(o_) Q1
S Y (AN S 4.12

The above term can be manipulated considering the propriety of the rounding function,
coming to the following expression:
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After this, the authors model the probability distribution of the absolute values of the
DCT coefficients in a tampered image in the following way:

P(X =z)=a1P(Xs =2) + aaP(X4 = 1) (4.14)
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where:

92(7+z) I
P(Xs;=1)= / — exp(—px) dx (4.15)
q
and

w (e, L)L
P(Xy;=z)= /‘h(ﬁn <y£1;+2)-‘ 2> e exp(—pzx) dz (4.16)
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where a1 and as indicate respectively the portion of tampered and untampered image
(a1 + @y = 1), p; is the term that characterizes the Laplacian distribution of the AC
terms (see (3.13)). From this statistical model the authors define a likelihood function
and use the EM algorithm for the estimation of the unknown parameters. In doing so,
they have also taken into account the truncation and rounding errors, referring to the
work of Bianchi et al.[56]. Finally, we want to point out that also in this work the case
q1 < @2 gives unsatisfactory results.

At the end of this section we expose the overview schema in Tab.4.1. It points out that
JPEG is the most investigated image format, that statistical-probabilistic features are
the most investigated compared to Machine Learning approaches, and finally that only
a few number of papers are devoted to highlight tampered regions in images, whereas
the majority of the works have the goal to clarify the existence of traces coming from
past compressions.

Table 4.1: Overview of the methods exposed in Sect. 4.
Goal ‘

’ Image Format ‘ Mathematical Tool ‘

Probabilistic laws
(88, 56, 58, 166]
Statistical features
[75, 76, 118, 133, 79]
[174, 103]

Bitmap MLE Image compression history
[75, 76, 88, 118] [75, 76] [75, 76, 88, 118, 117]
JPEG Neural Networks [103, 174, 133, 58, 57]
[117, 133, 79, 103] [117] JPEG quantiz. matrix estimation
[174, 56, 58, 166] SVM [75, 76, 118, 133, 174]
[88, 133] [58, 57, 166]

Identification of tampered regions
[79, 58, 57, 166]







A new approach for QSE in
doubly compressed JPEG images

The problem is not the problem,
the problem is your attitude towards the problem.

Captain Jack Sparrow

This Chapter contains the work developed during my Phd studies, rearranged and
adapted to the present exposition. Its three subsections are composed (in the same
order) by the content of the following papers:

e Fausto Galvan, Giovanni Puglisi, Arcangelo R. Bruna and Sebastiano Battiato:
First quantization coefficient extraction from double compressed JPEG images.
Presented to International Conference on Image Analysis and Processing - ICIAP
Naples (Italy), vol. 8156, pp 783 - 792, (2013).

e Giovanni Puglisi, Arcangelo R. Bruna, Fausto Galvan and Sebastiano Battiato:
First JPEG quantization matriz estimation based on histogram analysis. Pre-
sented to the 20th International Conference on Image Processing - ICIP Melbourne
(Australia), pp. 4502 - 4506, (2013).

e Fausto Galvan, G. Puglisi, A.R. Bruna, and Sebastiano Battiato. First quantiza-
tion matrix estimation from double compressed JPEG images. In IEEE Transac-
tions on Information Forensics and Security, 9(8):1299-1310, (2014).

The first paper contains the mathematical details related to the approach, and highlights
how a fourth quantization allows in theory (which means in absence of the rounding
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and truncation errors that arises in the “real” quantization/dequantization/quantization
pipeline of a forgery in case of JPEG images) the extraction of the first quantization step.
The need to correct the nasty influence of the noise on the results of the first paper in real
cases, mainly due to the rounding step during the dequantization algorithm, encouraged
us to search for new approaches of filtering on histograms. A first result in this direction
is reported in the second work, that indeed has been devoted to develop a new filtering
strategy with the aim to remove the noise introduced from the real pipeline. Further
studies led us to define two different types of noise, that we called “split noise” and
“residual noise”. The third work is dedicated to the definition of these features and to
their removal, together with the joint action of the error function yet introducted and
developed in the first paper.

5.1 Implementation of a fourth quantization
Considering a single DCT coefficient xl(»?j), the quantization steps ¢ (for the first quan-
tization) and ¢o (second quantization), the value of the coefficient after a double quan-

tization is given by ' 2 :
(0)
@ _||%4 28
Yiarig = H “ ] x QQ] (5.1)

As exposed in Sect. 4.6, to infer the value of ¢; Farid in [79] suggests to quantize again
such value with a novel quantization coefficient (g3), by varying its value in a proper
range and searching the values in the (local) minima of an error function defined as
follows? :

0 y(o_) a1 q2 y(O') qn
fe(yi(,j),Qh(Jz,%) = ‘ [H”} X 1 X 1 X g3 — H”} X 1 X o
q1 q2 q3 q1 q2

As an example, the typical outcome of (5.2) considering the DC term ¢; = 23 and
g2 = 17 is reported in Fig. 5.1(a). In this specific case (both coefficients are prime
numbers) we obtain interesting results: both ¢; and ¢o can be easily found, since they
correspond to the two evident local minima. Hence in this case the first quantization
coefficient ¢; can be retrieved (go2, as mentioned before, is often already available in the
Exif metadata). Unfortunately, in a real scenario the original quantization coefficient
cannot be easily inferred as proved by considering the following cases:

(5.2)

e Taking into account the quantization values used before (q; = 23, ¢go = 17) and
the same input image, but varying ¢s in the range [1,70], the outcome is more
complex to analyze than before. Several local minima arise and a strong one can
be found in 65 (see Fig. 5.1(b)).

e By employing the same input image and ¢3 in the range [1,30], but with different
quantization steps ¢; = 21 and ¢ = 12 (they are both not prime numbers), the

IFor sake of simplicity, in (5.1) truncation and rounding errors have not been considered. However,
they have been taken into account in the design of the proposed approach.

2[] indicates the rounding function

3].|indicates the abs function
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Figure 5.1: Examples of the error function values (2) with respect to q3: (a) ¢ = 23, g2 = 17
and gz 1is in the range [1,30]; (b) ¢ = 23, q2 = 17 and g3 is in the range [1,70]; (¢) 1 = 21,
g2 = 12 and g3 is in the range [1,30].

(n-1)q, nq (n+1)a,

Figure 5.2: The effect of quantization and dequantization for coefficient q .

outcome reported in Fig. 5.1(c) is obtained. Without additional information about
the input image, a wrong estimation could be performed (g; = 28 in this case).

When g3 = ¢, the error function (5.2) is equal to 0. This motivates the absolute minima
found in the previous examples.

Since we saw that obtaining a reliable ¢; estimation from (5.2) is a difficult task (too
many cases have to be considered), we developed an alternative strategy which comprises
a new error function:

" (0 Z/-(O-) q1 g2 q3 y(O-) q1
fe(y§7j)7q1,q27q3)_’[ll[w‘| ><‘| X] X] X qo — l[w] X‘| X q2
q1 q2 qs q2 q1 q2

To properly understand the rationale of (5.3), especially when g3 = ¢1, we have to better
analyze the effect of a single quantization and dequantization step. If we examine the
behavior of the following function:

(5.3)

X q (5.4)

where ¢ is an integer, we can note that if ¢ is odd all integer numbers in [ng — L%

ng]4 % will be mapped in ng (with n a generic integer number). If ¢ is even it maps in

J,ng+

4|.] indicates the floor function
5in this and other cases, since [.] isn’t within an expression, it indicates an interval



60 5. A new approach for QSE in doubly compressed JPEG images

round Hi%l
9

round gil ;g]
9,
round jc»‘ %2
9>

Figure 5.3: Scheme describing the effect of three quantization and dequantization with quanti-
zation steps qi, q2 and g3 = q1.

ng all the integer numbers in [ng — g, nqg + 4 1]. From now on, in both cases, we call

2 2
this range range related to ngq.

The behaviour just described has been already pointed out in Sect. 3.4.1 and sketched in
Fig. 3.15, in case of g even. As a consequence, we can say that (5.4) “groups” all integer
numbers of its domain in multiples of g. We also observe that the maximum distance
between a generic coefficient ¢ and the corresponding ¢, obtained by the quantization

and dequantization process, is 4 if ¢ is even, ng if ¢ is odd.

Based on the above observation, analyzing three quantizations applied in sequence, with
g2 < q1 and g3 = g1, like in the following:

|:|:|:201:| . 22:| 8 11:| . ( . )
we can Obser ve lhlS e\/olution:

&
° ¢ = [] x q1 for the above observations leads to the situation shown in Fig. 5.2;
0

c
o ¢y = [1} X g2 maps multiples of ¢; in multiples of g2. It is worth noting that,
q2

being g2 < ¢1, a generic ng; will be mapped in a multiple of ¢y (for example mgs)

whose distance from ng; will be less than or equal to %2 (or L%Qj) if g2 is odd),

then in the range related to ngq;

c
e at this point, [2] X @1 maps ¢y in nq; again, since as already pointed out, co is
q1

in the range related to nq;.
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With the three steps above, we demonstrated that (see Fig. 5.3):

|| R R o

Therefore the error function in (5.3) is 0 when g3 = ¢ regardless the ¢ value. It is worth
noting that in real conditions, due to rounding and truncation to eight bit integers,
(5.3) is close to zero but not zero in g3 = ¢;. This can lead to the presence of multiple
minima (a situation similar to the one exposed in Fig. 5.1(c)) and such behavior can
be source of confusion and misunderstandments. This issue bring us to develop the
following algorithm, detailed below for a generic frequency position f; € [1,2, ..., 64]:

e from a double quantized image Ipg, the DCT coefficients cpg are extracted.

e aset of candidate to be the right value of ¢, (C,) is collected by simply considering
(5.3) and selecting the strongest minima with the lowest values.

e by performing a proper cropping of the double compressed image, as proposed in
[117], an estimation of the original DCT coefficients (¢y,) is obtained.

e the above coefficients are used as input of a double compression procedure where
the first quantization is performed by using a constant matrix with values from
Cfy,, and the second one by simply using the already known values of the second
quantization coefficients (go 5 values are present in the header data). At the end
of this step a set of double quantized images are obtained (Ipg,, i € [1, ..., IC,11)
related to the different first quantization candidates.

e equation (5.3) is computed for each candidate image Ipg, and the output is com-
pared to the one obtained from Ipg by simply using the mean absolute distance.

e the (ﬂf\] related to the closest image (with regard to the above defined distance)
is selected as the correct one.

In order to prove the effectiveness of the proposed approach, several tests and com-
parisons have been performed. A first test has been conducted considering artificial
data. Specifically, a random vector of 5000 elements has been built by using a uniform
distribution in the range [-1023,1023]. The range corresponds to an input image within
the range [0,255] in the spatial domain. Indeed, the output of the DCT transform, as
it is defined, is three bits wider of the input bit depth and it is centered in zero. These
simulated DCT coefficients are then used as input of the error function we proposed
(5.3) by considering several pairs of quantization coefficients with ¢; < g2. As can be
easily seen from Figs. 5.4(a), 5.4(b) and 5.4(c), (5.3) has a global minimum (equal to
zero) when g3 = ¢;. Moreover, ¢; value can be found in the range g5 €]qa, +oo[. It is
worth noting that, sometimes, more than one local minimum can be found in the range
g3 €l]ga, +oo[. For example, this behavior can arise when ¢; is a multiple of g2 (see
Fig. 5.4(d)). However, even in this case, the correct ¢; value can be easily recovered.
In fact, the additional minima are always between ¢; and ¢» and their positions depend
on the common divisors between ¢o and ¢3. Hence, in this case, ¢; is a multiple of ¢,
the correct value is the maximum one.
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(c) (d)

Figure 5.4: Examples of the error function values vs q3, computed by using the proposed solution
(5.3): (a) g1 =23, g2 = 17 and g3 is in the range [1,30]; (b) 1 = 23, q2 = 17 and g3 is in the
range [1,70]; (c¢) g1 = 20, g2 = 12 and g3 is in the range [1,70]; g1 = 24, q2 = 20 and g3 is in
the range [1,70].

To further assess the performance of our approach, several tests have been conducted
considering real doubly compressed images. We built up our dataset starting from a
set of 24 uncompressed images from [43], that we double-compress using JPEG en-
coding functions provided by Matlab[36] considering quality factors (QF;, QF,) in the
range from 50 to 100 at step of 10. Taking into account the condition ¢; > ¢o (i.e.,
QF, < QF,), the final dataset contains 360 images. Tables in Fig. 5.5 report the aver-
age percentage of erroneously estimated ¢; values at varying of quality factor relative
to the first 3, 6, 10 and 15 DCT coefficients. These values have been averaged over all
images of our dataset, and the coefficients were considered in the usual zig-zag order
exposed in Fig. 3.3. As expected, better results are usually obtained for higher QF; and
QF5 values corresponding to lower quantization, since the amount of data different from
0 is higher. Further analyses have been conducted in order to study the performance
of the proposed approach with respect to the specific DCT coefficient. In Fig. 5.6 is
reported the average percentage of erroneously estimated ¢ values at varying of the
DCT coefficient (from low to high frequencies). These values are obtained averaging
over all (QF;,QF,). As expected, the performance of the proposed solution degrades
with DCT coefficients corresponding to high frequencies. To properly test the goodness
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QF, QF,
60 70 80 90 100 60 70 80 90 100
50 1,39% | 0,00% | 0,00% | 0,00% | 0,00% 50 2,08% | 0,00% | 0,00% | 0,00% | 0,00%
60 1,39% | 1,39% | 0,00% | 0,00% 60 4,17% | 1,39% | 0,00% | 0,00%
QF1 70 0,00% | 0,00% | 0,00% QF1 70 0,00% | 0,00% | 0,00%
80 1,39% | 0,00% 80 0,69% | 0,00%
90 0,00% 90 0,00%
(a) (b)
QF, QF,
60 70 80 90 100 60 70 80 90 100
50 7,92% | 0,00% | 0,00% | 0,00% | 0,00% 50 19,44% | 12,78% | 0,56% | 2.22% | 5,83%
60 10,42%| 10,42% | 0,00% | 0,00% 60 24,17%| 14,44%| 0,00% | 0,00%
QF1 70 0,00% | 0,00% | 0,00% QF1 70 1,67% | 0,00% | 0,00%
80 0,42% | 0,00% 80 0,28% | 0,00%
90 0,00% 90 0,00%
(c) (d)

Figure 5.5: Percentage of erroneously estimated g1 values at varying of quality factor (QF1,
QF») relative to the: (a) first 3 DCT coefficients, (b) first 6 DCT coefficients, (c) first 10
DCT coefficients, and (d) first 15 DCT coefficients, all related to the zig-zag order indicated in
Fig. 3.8

of the proposed approach, we compared it with the method proposed in [79], where (5.2)
is proposed instead of (5.3). As can be easily seen from Fig. 5.6, the proposed approach
provides satisfactory results outperforming the older one.

5.2 First QSE extraction by histograms analysis

As already described in the introductory part of Sect. 4, and showed afterwards in
Fig 4.1, double quantization introduces artefacts in the DCT coefficient histograms,
that can be exploited to recover the FQS ¢; (g2 is already present in the header). In
more detail, considering as an example the image I (from [43]) and the corresponding
histogram of a generic AC coeflicient x,gf)j), the histograms hpg; obtained applying a
double compression with several ¢i; and a given ¢, are different and present predictable
sequences (pattern) of zero (not zero) values as depicted in Fig. 5.7.

In consideration of what above exposed, since double JPEG compression modifies the
histograms of the DCT coefficients depending on both first and second quantization
factor (¢1 and ¢2), the sequence of zero (and not zero) values of the histogram related
to a double compressed image Ipg provides useful information for the estimation of the
first quantization factor ¢;. Starting from the same initial distribution of DCT coeffi-
cients ¢;, different histograms have been generated just considering several values of ¢y,
followed by a further quantization with gs.

In this section we expose a method whose goal is the determination of first JPEG
quantization coefficients (also in this approach, the initial hypothesis is that the second
quantization factor is lower than the first one). The proposed solution analyses his-
tograms of quantized DCT coefficients of double compressed JPEG images, exploiting
their peculiarities. In particular, when the second compression is lighter than the first
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Figure 5.6: Percentage of erroneously estimated q1 values at varying of DCT coefficient position
(zig-zag scanning) considering the proposed error function (5.8) and the one presented in [79].
These values are obtained averaging over all (QF1,QFz) and images [43].

one we will see that it is possible to retrieve a pool of possible candidates for the first
quantization factor making use of a proper simulation of the double compressed coeffi-
cient distribution with different first quantization values. This method can be used as
stand-alone module (just to detect forgeries) or combined with other ones.

The overall schema of the algorithm is reported in Fig. 5.8, and it’s composed by two
main steps, executed for a generic frequency position j € [1,2, ..., 64].

The first of them exploits a binary representation based on the pattern of zero (and not
zero) values of the histograms to perform a first selection of a pool of ¢; candidates.
Specifically, considered a wide range of initial possible values (¢1 € [g241, ---) @maz]), Such
selection method provides just a few candidates in the following way:

e from a double quantized image Ipq, the DCT coefficients cpg are extracted;

e the histogram of the absolute value of DCT coefficient ¢, is computed and refined,
filtering out some unreliable values by simple trying to preserve the monotonicity
of the distribution (this is applied only to AC coefficient usually characterized by
Laplace distribution, as already exposed in Sect. 3.3.3);

e the histogram of the DC coefficient is filtered according to a threshold depending
on the mean value of all not null bins;

e a binary vector is computed just considering the sequence of zero and not zero
values of the filtered histogram;
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Figure 5.7: Examples of DCT coefficient histograms relative to double quantized images. Specif-
ically, an image I taken from [43] has been double compressed with several qi; and a fized gs.
The final histograms show several differences and their analysis can be useful to recover com-
pression history.

a set of binary representation are then built for each ¢; 3 value exploiting infor-
mation coming from the input (double compressed) image Ipg. Specifically, as
already proposed in [117], by performing a proper cropping of the double com-
pressed image, an estimation of the original DCT coefficients can be obtained

(c1,);

the coefficients are then used as input of a double compression procedure where
the first quantization is performed by using ¢; 4 and the second one by simply
using the already known values of the second quantization steps. To better mimic
double JPEG compression, some additional Gaussian noise [58] is added before
the second quantization step;

double quantized histograms are then refined to remove unreliable bins (trying
to preserve the monotonicity of the distribution) and the binary representation is
generated;

based on the similarity between the generated representations and the one of the
Ipg, a set of qq; i candidates are then selected (ij). In particular for each q1; 3



66 5. A new approach for QSE in doubly compressed JPEG images

bcT

E histogram absolute .
. generation value =
‘JU i

—- Mﬂ‘ d——>}

histogram ... representation
filtering =

:
—_— —_—> |}
: g

‘J‘ T ;

q, candidates

& -
cropping

noise perturbation,
absolute q, quantizations d, quantizations,, representation
value q; € [a,+1, q,+2, .. aX] hitogram filtering

DCT coefficient
histogram
generation

EFUSWS NN e

1
o
o
1
o
o
1
o

Figure 5.8: Candidate selection strategy. Starting form a wide set of ¢1 candidates the proposed
algorithm, by proper analyzing histogram properties, selects a short list of elements.

the sequence of zero (not zero) values represented as a binary sequence is compared
by using the following similarity function:

Mz

F Z Teal * Bszm real @ Bszm( )) (57)

z:l

where B,..q and By, are the N-bin binary representations related to the original
input image Ipg and the one corresponding to the simulated double compression
respectively. Moreover * and @ represent logical AND and XOR operators.

In the latter and last step, devoted to estimate the correct ¢; from the candidate set,
the whole histogram information is used instead of considering only the binary rep-
resentation. Specifically, the refined histograms Hy,  related to the simulated double
quantization with ¢, € C 1, are compared with H,..q; obtained from Ipq and the closest
one is selected as follows:

N

qif, = min min(mazdif s, | Hreai (1) — Hgy, (1)]) (5.8)
ChsGCf] —

where IV is the number of bins of the histograms and maxg;rys is a threshold used to
limit the contribution of a single difference in the overall distance computation. In
order to prove the effectiveness of the proposed approach, several tests and comparisons
have been performed considering real double compressed images[43], by using JPEG
encoding functions provided by Matlab[36], a dataset of double compressed images has
been built just considering quality factors (QFy, QF3) in the range 50 to 100 at step of
10. Taking into account the condition g; > ¢, the final dataset contains 360 images. All
the tests have been performed with the same parameter setting (experimentally found).
Specifically, the selection procedure (see Fig. 5.8) considers the best 8 candidates with
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QF, QF,
60 70 80 90 100 60 70 80 90 100
50 0,00% | 0,00% | 0,00% | 0,00% | 0,00% 50 1,39% | 0.69% | 0,00% | 0,00% | 0,00%
60 0,00% | 0,00% | 0,00% | 0,00% 60 0,00% | 0.69% | 0,00% | 0,00%
QF1 70 0,00% | 0,00% | 0,00% QF1 70 0,00% | 0,00% | 0,00%
80 0,00% | 0,00% 80 0,00% | 0,00%
90 0,00% 90 0,00%
(a) (b)
QF, QF,
60 70 80 90 100 60 70 80 90 100
50 2,08% | 4,58% | 0,00% | 0,00% | 0,00% 50 4,44% | 7,78% | 1,94% | 1,11% | 0,00%
60 1,25% | 2,92% | 0,00% | 0,00% 60 5,56% | 8,06% | 0,28% | 0,00%
QF1 70 0,00% | 0,00% | 0,00% QF1 70 0,00% | 0,28% | 0,00%
80 0,69% | 0,00% 80 0,00% | 0,00%
90 0,00% 90 0,00%

(©) (d)

Figure 5.9: Percentage of erroneously estimated qi1 values at varying of quality factor (QF,
QF>) relative to the: (a) first 3 DCT coefficients, (b) first 6 DCT coefficients, (c) first 10
DCT coefficients, and (d) first 15 DCT coefficients, all related to the zig-zag order indicated in
Fig. 3.3

respect to the similarity function (5.7). Moreover, ¢mq, and maxzg;rs have been set to
30 and 50 respectively. Tables in Fig. 5.9 report the average percentage of erroneously
estimated ¢ values at varying of quality factor relative to the first 3, 6, 10 and 15 DCT
coefficients. These values have been averaged over all images [43]. The coefficients were
considered in zig-zag order that, as explained in Sect. 3.2 is used in JPEG standard
to sort the coefficients from the lowest frequency (DC) to the highest frequencies in
a 1D vector. As expected, better results are usually obtained for higher QF; and
QF, quality factor corresponding to lower quantization. Further analyses have been
conducted in order to study the performance of the proposed approach with respect
to each specific DCT coefficient. In Fig. 5.11 is reported the average percentage of
erroneously estimated ¢; values at varying of the DCT coefficient (from low to high
frequencies). These values are obtained averaging over all (QF;,QF5). As expected
the performance of the proposed solution degrades with DCT coefficients corresponding
to highest frequencies. In Fig. 5.10 is highlighted the improvement obtained with the
present approach compared to the one exposed in Sect. 5.1. To further assess the
effectiveness of the proposed approach, a comparison with two state of the art techniques
has been performed, by selecting a methods based upon histogram comparisons [117]
and one exploiting multiple DCT coefficient compression properties [79].

5.3 A new QSE approach together with an improved
histogram filtering strategy
Although the proof of concept of the proposed approach has been partially presented

in Sect. 5.1, in the present work we have improved that algorithm, including a modified
version of the histogram filtering strategy proposed in Sect. 5.2.
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Figure 5.10: Comparison between the results of the method exposed in Sect. 5.1 and the ones
of the approach given in Sect.5.2
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Figure 5.11: Percentage of erroneously estimated q1 values at varying of DCT coefficient posi-
tion considering the proposed approach and state of the art methods ([117], [79]). These values
are obtained averaging over all (QF1,QF>) and images [43].

In the following analysis, only 8-bit grayscale images are considered. For sake of sim-

plicity, considering a single DCT coefficient yi(f]j) and the related quantization steps ¢;
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Figure 5.12: In the upper row three examples of the error function values (4.5) for an image
of the same dataset used in [43], with respect to g3 for the DC term: (a) ¢ = 11, g2 = 7
and g3 € {1,2,...,14}; (b) ¢ = 11, g2 = 7 and g3 € {1,2,...,30}; (¢) ¢ = 10, g2 = 6
and g3 € {1,2,...,16}. In the lower row three examples of values obtained by (4.5) for the
same image, with respect to qs for some AC term: (d) (1,0) term, ¢ = 11, g2 = 7 and
gs € {1,2,...,20}; (e) (2,0) term, ¢1 = 8, q2 = 5 and q3 € {1,2,...,14}; (f) (3,0) term,
¢1=9,g2=>5and g3 € {1,2,...,14}.

(first quantization) and g2 (second quantization), the value of each coefficient after a
double compression can be modeled as:
1
qt+e| — (5.9)
q2

(0)
y(2) = Li’j
d q1

where, unlike from the notation used in (5.1), we added the term e to represent the error
introduced by several operations, such as color conversions (YCbCr to RGB and vice
versa), rounding and truncation of the values to eight bit integers, etc. It is important
to note that the errors above can be due to some processing in different domains (e.g.,
spatial domain). As described in the above sections, the function proposed in [79] is not
able to work in real conditions. The main reason is that it doesn’t take into account
the noise error e of Eq. (5.9). Considering then a real scenario, a method able to cope
with the aforementioned problems has been built. Specifically, as shown in Fig. 5.13 the
proposed approach consists of the following main steps:

e DCT Histogram Filtering: A deep analysis on the consequences of both quanti-
zation and rounding error has been performed. While indeed the former is well
known, the rounding error e in Eq. (5.9) manifests itself as peaks spread around
the multiples of the quantization step ¢, as exposed in [118], and has been mod-
eled as an approximate Gaussian noise (see Sect. 3.4.2). As we will explain in
more detail later, these joint phenomenons will affect the behavior of the second
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Figure 5.13: Proposed approach scheme. Starting from an image I, exploiting the effects of suc-
cessive quantizations, it estimates the quantization steps of the first quantization qi. First, the
histogram of the absolute value of DCT coefficients is filtered, then a proper function able to de-
tect the first quantization step is evaluated and a set of candidates is selected. Later, considering
the DCT coefficients related to a cropped version of the original image, the double quantization
is simulated with the candidates previously computed. Finally, comparing the histogram of the
original image with the simulated ones the first quantization step qi is estimated.
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quantization step, thus the magnitude of the DCT coefficients, and consequently
its statistics. The filtering must then face two kind of noise: the “split noise” and
the “residual noise”, with the aim to bring the histogram as if the rounding error
did not have impact. This module actually provides a set of filtered histograms
Hpag,, (one for each quantization step q1; € {q1mins Qimin + 1, -+« @imaz})-

e Proposed Function for Quantization Step Estimation: once the histogram has
been filtered, removing (or reducing) the error e, the error function exploited in
Sect. 5.1 is actually evaluated over all the histograms Hy;;, generating a set
of output foutq,,-

a1’

e Selection of the Quantization Step Candidates: starting from the set of output
foutq”, a limited number of first quantization candidates (g5 € Cs) is selected
exploiting the ¢; localization property of the proposed error function.

e DCT Histogram Based Selection: the previous modules actually provide a series
of ¢; candidates to be considered for further evaluations. The double quantization
process is then simulated to consider the candidates provided by the other blocks
and the best one exploiting directly histogram values is finally selected.

The above mentioned steps are detailed in the following subsections.
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Figure 5.14: Real DCT coefficient histograms: (a) histogram related to the original image, (b)
histogram related to the single compressed image, (c) histogram related to the DCT coefficients
Just before the second quantization (color conversions, rounding and truncation of the values
to eight bit integers have been already performed). A detail was also overimposed for better
visualization of the error e of Eq. (5.9).

5.3.1 DCT Histogram Filtering

Exploiting the effects of successive quantizations followed by dequantizations without
considering the error factor e in Eq. (5.9), allows to easily manipulate the involved
equations, but the performances of these approaches considerably degrades when real
cases are considered. To cope with this problem, a deep analysis of the properties of
this source of error has been performed. As explained before, it is introduced by several
operations, such as color conversions (YCbCr to RGB and vice versa), rounding and
truncation of the values to eight bit integers, etc. An example of real DCT coeflicient
histograms is reported in Fig. 5.14. The histogram depicted in Fig. 5.14(c) actually
shows the DCT coefficient distribution just before the application of the second quan-
tization. Once the image is compressed again, several scenarios can arise depending
on the values of the first and second quantization steps. A typical scenario is the one
reported in Fig. 5.15(a) and Fig. 5.15(c) where only a small perturbation (i.e., elements
in a wrong bin) is propagated in the final histogram. On the contrary, in some spe-
cific conditions related to the ¢; and ¢o values a worst scenario can arise. As shown in
Fig. 5.15(b) and Fig. 5.15(d) the original information can be quite equally split into two
neighboring bins where one of them is a wrong one. This undesirable situation appears
when a bin of the first quantization (i.e., in position mgq;) is situated exactly halfway
between two consecutive bins coming from the second quantization (i.e., in position ngs
and (n + 1)gz). Specifically, this effect arises when two consecutive multiples of ¢ are
related to a generic multiple of ¢; as follows:

_ng+ (n+1)g

mqi 2 )

n,m € N* (5.10)
This behavior should be then taken into account in the design of algorithms aiming
to exploit the effects of double quantizations. To properly cope with the noise e in
Eq. (5.9) a filtering strategy has been developed. We have designed an approach based
on two steps (see Fig. 5.16): the first one is devoted to filter the “split noise” (i.e.,
the one shown in Fig. 5.15(d)), whereas the second one deals with the residual noise



72 5. A new approach for QSE in doubly compressed JPEG images

L JL ] L JL ]

nq, ma, (n+1)q, . ng, ma, (n+1)q,
T @)} HON ’
| | ‘ ‘
ng, (n+1)q, nq, (n+1)q,
(c) (d)

Figure 5.15: Depending on the values of the first and the second quantization values different
situations can arise. Specifically, the effect of the error e in the final histogram can be limited
(c) or difficult to deal with (d).
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Figure 5.16: Ezample of histogram filtering. First wrong bins on the second quantization his-
togram are detected by using the Eq. (5.10) and then they are moved to the correct locations.
Later, the residual error is removed exploiting the monotonicity of the DCT coefficient distri-
bution (see Algorithm 1).

(Fig. 5.15(c)). Considering a specific pair of quantization steps ¢; and g2 we design a
filtering strategy that first detects the wrong bins on the second quantization histogram
by using the Eq. (5.10) and then moves bin elements from the wrong to the correct
ones. It is worth noting that the correct ¢; value is actually unknown and its estimation
is the aim of the proposed approach. Several filtering are then performed considering
a set of first quantization steps in the range q1; € {@min, Qimin + 1s-- s @maz - The
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Algorithm 1: AC coefficients histogram filtering

Input:
H;,,: input histogram of absolute values of DCT coefficients
Npins: number of bins of Hj;,
Thyiy: threshold used to measure the similarity between bins
Output:
Hyyyy: filtered histogram
begin
Htmp = H;p,
ima%zd =1
while imaz,,,! = Nbins do
[’Umaw7 imaw] = mam(Htmp)
for ¢ = imaz,,, + 1 t0 ipmey — 1 do

Veurr = 11in Z]

if Veyrr > Vmaa - Thfilt then

‘ Hfilt[i] = Vcurr

else
| Hypuli] =0
Hipmpli] = —1
Himplimaz) = —1

Hfilt[imaz] - Hzn [imax]

L Ymazoig — Ymax

actual selection of the correct value will be performed later (see section 5.3.3) employing
further analyses and tests. Once the “split filter” has been performed, the residual noise
is taken into account to remove further impurities (Fig. 5.14). Specifically, a filtering
strategy based on the preservation of the monotonicity of the DCT coefficient distribu-
tion is employed (see Algorithm 1). As already exposed in Sect. 3.3.3, AC coefficients
are usually characterized by Laplace distribution. Initially, the histogram of absolute
value of DCT coefficients is considered. Both bin index (imqz) and value (V4. ) related
to the maximum element of the histogram are then considered. All the values of the
bins with index lower than i,,,, are compared with v,,,, and the ones below a certain
relative threshold (T'hy;;) are discarded. Once this filtering is performed, a novel inter-
val of the histogram is considered again and the same algorithm is applied (search of
the maximum, filtering, etc.).

This filtering works properly only for AC coefficients due to the monotonicity of their
distribution. A different kind of filtering is then applied to DC coefficients. Specifically,
all the values below an adaptive threshold (e.g., the mean value) are simply discarded.
Due to the “split filter”, this filtering process provides to the following modules a se-
ries of filtered histograms H filty,,» one for each involved first quantization step qi; €
{@mins Qimin + 1, ..., @imaz . Further details about the setting of the range of variation
of q1; will be provided in section 5.3.4.
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Figure 5.17: Percentage of first quantization steps correctly included into the candidate set with
respect to the number of elements considered in the candidate set. These results have been
computed considering the three considered strategies at varying of their parameters (Tfiq; n;
Ttiz, ) and have been obtained as average over all frequencies (the first 15 DCT coefficients in
zig-zag order) and considered images.

5.3.2 Selection of the Quantization Step Candidates

As described in a previous subsection, due to the split filtering, the information related
to the original histogram of a specific DCT frequency is tested considering different
hypotheses related to the first quantization steps q1; € {qrmin, @imin + 1, -+, Qimaz }-
Each function fout,  is then related to a specific ¢1; value. The main idea, allowing us
selecting a limited set of first quantization candidates, is related to the properties of the
proposed error function (5.3).

Whenever the filtering is performed with the correct first quantization step, fout, 18
close to zero when g3 = ¢q1;. On the contrary, when the first quantization is not the
correct one, this property usually is not verified. This behavior allows to design a
simple strategy of candidate selection. Specifically, considering a single DCT frequency,
each foutm is evaluated in g3 = ¢q1; (where ¢q; is the first quantization step related to
the foutq“). If this value is close to zero (i.e., less than a threshold T'), it is added
to the set of candidates Cy otherwise it is discarded. The final estimation is then
performed among the limited set exploiting directly the histogram values as detailed in
the following section. A crucial parameter that could impact the effectiveness of the
proposed candidate selection strategy is the threshold T" that determines the acceptance
of the ¢1; value. Choosing a low value, several correct elements could be lost (especially
for higher DCT coefficients). On the other hand, higher values could include many
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false candidates that degrade the effectiveness of the overall strategy. Moreover, the
value of foutm when g3 = ¢1; depends on many factors such as the DCT frequency
under examination and the actual content of the input image. To properly tune this
parameter a series of tests has been then performed, using images taken from [43].
Double compression has been then performed by using standard JPEG encoding, and
a dataset of double compressed images have been built just considering quality factors
(QFy1, QF5) in the range 50 to 100 at steps of 10. Taking into account the condition
q1 > g2, the final dataset contains 360 images. Three different strategies have been
compared:

e fixed threshold: a fixed threshold 7', is selected without considering the depen-
dency with respect to the frequency f; and the content of the input histogram.

e first n: the values of foutqu are sorted in increasing order. The nt" value is then
retained as threshold.

e hybrid: the threshold is computed as the sum of the minimum value of fou,  and
a fixed threshold (T'fiz, )-

Each strategy has been tested at varying of their involved parameters: T, € [100, 50000]
n € [1,8], Tfig, € [100,50000] The percentage of first quantization steps correctly in-
cluded into the candidate set has been plot with respect to the number of elements
considered in the candidate set (see Fig. 5.8). These results have been obtained con-
sidering the average with respect to the image number and the considered frequencies
(the first 15 DCT coefficients in zig-zag order in our test). As can be easily seen from
Fig. 5.17 the hybrid approach provides the best performances. It is able to cope better
than the other strategies with the content of the specific histogram.

5.3.3 DCT Histogram Selection

The modules presented above actually provide a series of first quantization candidates
that have to be considered for further evaluations. The DCT Histogram Selection step,
exploiting directly the information related to the histogram values estimates the ¢;
value. In order to select the correct first quantization step, we exploit information
coming from the original double compressed image Ipg. We start with the extraction
of DCT coefficients cpg, followed by a rough estimation of the original DCT coefficients
obtained through a proper cropping of the double compressed image, as already proposed
in [117]. These coefficients are then used as input of a double compression procedure,
where the first quantization is performed by using ¢ € Cs whereas the second one using
the already known values of the second quantization step (g2 values are present in the
header data). To estimate the correct ¢; from the candidate set, the whole histogram
information is exploited. Specifically, the histograms H,,, related to the simulated
double quantization with ¢1, € Cs are compared with H,., obtained from Ipg. The
closest one is selected according to the following criterion:

N

Gi = min > min(marags, | Hyea(?) = Hy,. (1)) (5.11)
1s s i—1
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Figure 5.18: Criteria for the selection of the range {qimin,@imin + 1,...,qimax}: (a) error
function (5.3) for an AC term in case of 1 = 16, g2 =9 and g3 € {1,2,...,25}. We can note
that, for every qs < q2, the result is 0. (b) The compression matriz for QF = 50, according
with the original JPEG standard. The first 15 terms considering the order used in the entropy
coding of the JPEG algorithm are underlined. The mazimum expected compression step is 24.

where IV is the number of bins of the histograms and maxg;ss is a threshold used to
limit the contribution of a single difference in the overall distance computation.

5.3.4 Definition of the Range of Variability of g3

To properly set the range of variability of the third quantization step the outcome of
Eq. (5.3) should be better analyzed.
Specifically, in case of g3 < ¢o, the proposed function is always equal to 0. Indeed in

c
this situation, starting from bins located in multiples of g2, {2} q3 will drive the bins
a3

in multiples of g3 that belong to the range related to ngs. For this reason, the fourth
quantization step with ¢ = ¢ will drive again the bins in multiples of ¢5. In Fig. 5.18
a) we can see an example of the behavior of Eq. (5.3) in case of ¢ = 16 and ¢2 = 9.
For this reason, we always consider g + 1 as the term ¢y, The compression matrix
defined by the IJG [164] for the quality factor 50 (the lower one considered in this work,
i.e. the matrix with the higher quantization steps for every position) is the one showed
in Fig. 5.18 b). Since we extended our study to its first 15 positions following the zig-zag
order used in the JPEG algorithm during the entropy coding, the higher quantization
step (in position (0,4)) is 24. For this reason, considering the need to visualize also the
trend after this value, and what exposed in Sect. 3.3.2, we set gimaz to 30.

5.3.5 Experimental Results

To assess the performances of the proposed approach, several tests have been conducted
considering real double compressed images taken from two different sources. A dataset
of 110 uncompressed images has been collected considering different cameras (Canon
D40, Canon D50 e Canon Mark3) with different resolutions. Moreover, a certain vari-
ability in terms of image content has been taken into account in the image acquisition.
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The considered dataset (Canon D40D50MK3 Dataset from here on) contains: people,
landscapes, coasts, mountains, animals, flowers, buildings, foods, bridges, trees, etc. A
cropping of size 1024 x 1024 of the central part of each image has been then selected in
order to speed up the tests.

Starting from the cropped images, applying JPEG encoding functions provided by
Matlab[36] with standard JPEG quantization tables proposed by I1JG (Independent
JPEG Group) [34], a dataset of double compressed images ha been built just consider-
ing quality factors (QF}, QF5) in the range 50 to 100 at steps of 10. Taking into account
the condition g1 > g2 (i.e., QFy > QF) in our tests), the final dataset contains 1650
images. Results are then reported with respect to quality factors instead of the specific
quantization steps. This methodology simplifies the analysis of the results, since a single
parameter (quality factor) describes a quantization matrix with 64 quantization steps
usually having different values and related to different frequencies. As an example, the
quantization matrix for QF = 50 is reported in Fig. 5.18(b).

Table 5.1 reports the average percentage of erroneously estimated ¢; values at varying
of quality factor, relative to the first 15 DCT coefficients considered in zig-zag order.
This order, used in the standard JPEG, allows sorting the coefficients from the lowest
frequency (DC) to the highest frequencies in a 1D vector. The estimation error of the
proposed approach is close to zero for the DCT coefficients related to low frequency in
the DCT domain and does not significantly depend on the specific quality factor em-
ployed for the first and second quantization. On the contrary, for higher frequencies, the
estimation error is strictly correlated with the quality factors. Specifically, better results
are usually obtained for higher QF; and QF; values corresponding to lower quantiza-
tion. Further analyses have been conducted in order to study the performance of the
proposed approach with respect to the specific DCT coefficient. In Fig. 5.19 the percent-
age error in the estimation of g1, at varying of the DCT coefficients from low to high
frequencies, is reported. These errors are average values obtained considering all the
combinations of (QF;, QFy) indicated in Table 5.1. As expected the performance of the
proposed solution degrades with DCT coefficients corresponding to the highest frequen-
cies. The proposed approach estimates with high accuracy the first 10 coefficients with
an error usually lower than 2%. The estimation of the other DCT coefficients (higher
than 10*") is actually reliable only considering high QF} values. It is worth noting that
the results related to some frequencies (41", 7", 11" seem to differ with respect to the
trend of the curve error. This behavior depends on the cropping procedure employed in
the DCT Histogram Selection step (see section 5.3.3). First quantization actually intro-
duces blocking artifacts, especially if lower quality factor are employed, between blocks
that cannot be removed by simple cropping and influences the frequency content of the
image. Specifically, the frequencies of positions 4", 71" 11*" are related to horizontal
and vertical edges and are pretty sensitive to the aforementioned kind of artifacts. The
method has been compared with the algorithms proposed in [58, 91, 117]. Specifically,
the original code (available online) related to Bianchi et al. [58], has been considered
whereas the method based on the direct comparison of histograms described in [117]
has been reimplemented. Finally, to further validate the effectiveness of the proposed
function (5.3), the approach proposed in [91] has been considered by using Eq. (4.5)
proposed in [80] instead of Eq. (5.3). All techniques have been tested considering the
first quantization step in the range [1,30]. Moreover, the following parameter setting
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Table 5.1: Percentage of errously estimated g1 values at varying of quality factor (QF1, QF»)
relative to the first 15 DCT coefficients in zig-zag order. FEvery coefficient is indicated with
respect to its position in the 8 X 8 image block.(0,0) is the DC' term.

(0,0) QF, (1,0) QF, 2,0) QF,

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

50| 0,00% | 0,00% | 0,00% | 0,00% |0,00% 50| 0,00% | 0,00% | 0,00% | 0,00% |0,00% 50| 0,00% | 0,00% | 0,00% | 0,00% | 0,00%

60 0,91% | 0,00% | 0,00% | 0.00% 60 0,00% | 0,00% | 0,00% | 0.00% 60 1,82% [ 0,00% | 0,00% | 0,00%

QF; | 70 0,91% | 0,00% |091%| |QF1|70 0,00% | 0.00% | 0.00% QF; | 70 0,00% | 0,00% |0.00%

80 0,00% | 0,00% 80 0,00% | 0,00% 80 0,00% | 0,00%

90 0,00% 20 0,00% 90 0,00%
(3.0) -~ “0) - ©.1) &

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

50| 1.82% | 1.82% | 0,00% | 0,00% [ 0.00% 50| 0,00% | 0.00% | 0,91% | 0,00% [0,00% 50| 0,00% | 0.00% | 0,00% | 0,00% [091%

60 1,82% | 1.82% | 0,00% | 0.00% 60 0,00% | 0,00% | 0,00% |0.00% 60 0,91% | 0,00% | 0,00% | 0.00%

QF, |70 0,00% | 0,00% | 0.00% QF, |70 0,00% | 0,00% | 0.00% QF, |70 0,91% | 0,00% | 0,00%

80 0,00% | 0,00% 80 0,00% | 0,00% 80 0,00% | 0,00%

90 0,00% 90 0,00% 90 0,00%
(1) QF, 1) QF, (3.1 QF,

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

50| 12,73% | 16,36% | 0,91% | 0,00% | 0,00% 50| 2,73% | 4.55% | 0,00% | 0,00% |o0,00% 50] 091% | 0.91% | 0,00% | 0,91% [o0,00%

60 1,82% | 1.82% | 0,00% |0.00% 60 0,91% | 0,91% | 0,00% | 0,00% 60 0,91% | 0,00% | 0,00% | 0,00%

QF, |70 0,00% | 0.00% | 0.00%] | QF; (70 0,00% | 0,00% | 0.00%] | QF: |70 0,00% | 0,00% |0.00%

80 0,00% | 0,00% 80 0,00% | 0,00% 80 0,00% | 0,00%

20 0,00% 90 0,00% 20 0,00%
02) QF, (12) QF, 22) QF,

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

50| 3,64% | 545% | 0,00% | 091% | 0,00% 50| 10,91% | 58,18% | 15,45% | 3,64% | 0,00% 50| 14,55% | 2,73% | 54,55% | 0,00% | 0,00%

60 3,64% | 2.73% [ 0,00% ] 0.00% 60 8,36% | 2545% | 0,91% | 0,00% 60 16,36% | 10,91% | 0,91% [ 0,00%

QF, (70 0,00% | 0.00% | 0.00%] | QF; |70 10,00% | 0.91% | 0.00% QF; | 70 18,18% | 0.00% | 0.00%

80 0,00% ] 0,00% 80 0,00% | 0,00% 80 0,00% | 0,00%

90 0,00% 20 0,00% 20 0,00%
03) aF “1.3) i (04) -

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

50| 20,00% | 22,73% | 0,00% | 3,64% [091% 50| 12,73% | 9.00% | 19,00% | 4,55% [ 0,00% 50| 20,91% | 16,36% | 20,00% | 13.64% [ 0,91%

60 1,82% | 8,18% | 1.82% | 0.00% 60 47.27% | 7.27% | 1.82% | 0,00% 60 50,00% | 47,27% | 10,00% | 0.00%

QF, |70 0,00% | 0,00% | 0.00% QF, |70 1,82% | 1.82% | 0,00% QF, | 70 4,55% | 6,36% | 0,00%

80 0,00% | 0,00% 80 0,00% | 0,00% 80 0,91% | 0,00%

90 0,00% 90 0,00% 90 0,00%

has been used: histogram filtering Thy;; = 0.35 (see Sect. 5.3.1), hybrid strategy with
T'tiz, = 5000 for AC coefficients and T't;,, = 100000 for DC coefficient (see Sect. 5.3.2),
maxqirs = 100 (see section 5.3.3). The cropping has been performed by removing both
the first and the last 4 rows and columns. It is worth noting that all the parameter
settings related to the proposed approach have been performed on the dataset [43]. As
already underlined in Sect. 5.1, the function proposed in [80] has a poor ¢; localization
property that degrades its performances. Moreover, the filtering step (see section 5.3.1)
allows to considerably improve the performances of the proposed approach with respect
to the method in [91] that does not cope with error e in Eq. (5.9).The direct histogram
comparison proposed in [117], without any filtering and candidate selection, is not able
to deal with the low quality data related to higher frequencies. Although Bianchi et al.
[58] consider in their model the noise e of Eq. (5.9) they actually do not perform any
kind of filtering. The combination of a filtering strategy with a function having a good
q1-localization property, allows us outperforming the other state-of-the-art approaches
(see Fig. 5.19) both for low and high frequencies.

To further confirm the effectiveness of the proposed approach, additional tests have



5.3. A new QSE approach together with an improved histogram filtering strategy 79

Percentage Error

—o—Lukas et al. [117]

—3=Galvan et al.[91]

R

1=}
s}
R

I=)
o
R

ONANOONS

0000000
905
RRKR

1=}
Isls!
X

—@—Bianchietal.[58] —a—Farid[79]

—&—Proposed Approach

— .

X /7

WS /7 S W

2 3 4 5 e 7 8 9
DCT Coefficient

10 11 12 13 14 15

Figure 5.19: Percentage of erroneously estimated qi1 values at varying of DCT coefficient po-
sition (zig-zag scanning) considering several state-of-the-art approaches. These values are ob-
tained averaging over all (QF1,QF>) and images from the Canon D40D50MKS Dataset.
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Figure 5.20: Percentage of erroneously estimated qi1 values at varying of DCT coefficient po-
sition (zig-zag scanning) considering several state-of-the-art approaches. These values are ob-
tained averaging over all (QF1,QF>) and images from the UCID (v2) dataset.
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been performed on the Uncompressed Colour Image Database (UCID) standard dataset
[148]. Specifically, the UCID (v2) contains 1338 uncompressed TIFF images with a cer-
tain variability in terms of scene content (natural, man-made objects, indoor, outdoor,
etc.). Moreover, image sizes are 512 x 384 or 384 x 512. A novel compressed dataset
has then been built, with the same methodology explained before: quality factors (QF,
QF%,) in the range 50 to 100 at steps of 10 and ¢; > ¢g2. The final dataset contains 20070
double compressed images. As can be easily seen from Fig. 5.20, the proposed solution
outperforms, almost everywhere, the state-of-the-art approaches. It is worth noting that
the performances of the considered methods in this test are lower than the ones shown in
Fig. 5.19. Indeed, the outcomes of the considered approaches depend on the resolution
of the image under analysis. If the image size is low, few JPEG blocks can be collected
and the reliability of the analysis could be low. In the first test, performed on the Canon
D40D50MK3 Dataset, 16384 JPEG blocks are collected per image, whereas in the UCID
(v2) Dataset the number of blocks was only 3072. However, working with small images
is not the common scenario, and also nowadays images have bigger resolution compared
to the ones used in our tests. Moreover, in a tampering scenario in which a patch is
pasted over a portion of the original image, the above considerations are still valid. The
unmodified regions will undergo to a double compression and, even if the pasted part is
significantly smaller compared to the image, the number of available blocks to perform
a correct estimation can be enough.



Open problems and conclusions

It is important that legislation keeps pace with scientific progress.

Robert Winston

So far, after some theoretical background we reported a list of the main papers that
gave the stronger feedback for the area of Image Forensics that is the subject of this
thesis, followed by our own contribute to the topic. Nevertheless, this work wouldn’t be
complete without having touched some aspects that, although somewhat minor, could
have a strong impact on the robustness of a method and on the credibility of the proposed
outputs.

Indeed, the ideal “to do list” for testing every presented Image Forensics approach for
a real scenario is composed by checking out all the following points:

e which is the sensibility of the results on the variation of different quantization
tables (that means Quality Factor) used to JPEG compress the image?

e how robust are results on the variation of the DataSet of images used for the tests?

e which is the sensibility of the results on the variation of the resolution of the
images?

e how the computational time of every method impacts on its usability?
e how differs the outcomes considering both aligned and not-aligned scenarios?

e how robust are the results to the state-of-the-art Antiforensics methods?

In the following we briefly point out some of the above aspects. We are conscious that
everyone of them would deserve to be explored in more detail, but this is out of the
purposes of this work.



82 6. Open problems and conclusions

6.1 The choice of the right Dataset

The need of standardization yet exposed in Sect. 3.3 returns when we take under con-
sideration the databases used in the tests exposed in the papers listed in the previous
sections. In these works, the authors referred about the dataset(s) used to check the ro-
bustness of their methods. The most frequently cited is the UCID (Uncompressed Color
Tmage Dataset)[148], but also SUN Database[172], Dresden Image Dataset[93], BOSS
Tmage Database[51], NRCS Photo Gallery[37], Kodak Dataset[38], CASIA Tampered
Image Detection Evaluation Database[39] and BOWS-2[40] are considered.
This plethora of source is a big obstacle to a correct and fair comparison between the
different approaches. Besides, whereas in some works the authors use two or more dif-
ferent sets of images to control the robustness of the proposed approach (i.e., two in
[90] and [100], even five in [118]) in some other we noted that the authors tested their
method with only one image (i.e., [48, 120]), or created themselves their own dataset
(see [56, 65, 86]), or also in some cases (i.e., see [58]) the authors didn’t indicate from
where the images were taken. To this purpose, in Tab. 6.1 are listed all the choices
made by the authors of the papers exposed in Sect. 4 reguarding the datasets used for
testing their approaches.
For what exposed discussed above, it is clear that there is not only the need of a shared
dataset, but is also necessary to answer to other questions, i.e. which is the minimum
amount of images required to give an adequate level of robustness to a proposed method?
But more than this, in case of an approach devoted to detect image forgeries, we may
ask for a dataset of forged images yet including a set of different resolutions and a set
of different kind of patches pasted over the original image, and so on. Moreover, in
the case of QSE a proper combination of subsequent quantization parameters (g1, g,
..) should be properly assessed, also considering the real scenario where the involved
parameters are not well known [124].
In the paper by Torralba ed al.[162] we found good suggestions about how to create a
fair dataset and in general about the fairly use of some existing sets of images. About
the first point as an example is suggested to collect the images automatically, instead of
in a manual and supervised way. For the latter point is argued that to detect potential
sources of bias (or at least to find out the main problematic issues quickly and early,
not years after the dataset has been released) it would be better to run any brand-new
dataset on a given battery of tests.
Recently, the problem of a common dataset where to fairly compare the verious ap-
proaches is exploited by the RAISE dataset [41]. It is composed by a collection of 8156
high-resolution RAW downloadable unprocessed images, taken from seven different sce-
narios. Time will tell if this purpose will become a landmark.

6.2 Computational time

As a rule, every new algorithm proposed to the scientific community is evaluated also
considering its computational time. In case of Image Forensics instead, this is not a
point taken under consideration. The reason of this lies in the use that a forensic expert
will do of the method, in particular the fact that he acts not on the crime scene but
after the event. In general any investigation is divided in two stages. The first (where
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Table 6.1: Database used for every method exposed in Sect. 4.

’ Paper ‘ Composition of the Database

[75, 76] | 7 images from an unspecified source
[117] Training set: 100 JPEG images from various datasets
5 different cameras
[88] 1338 uncompressed images from UCID
198 RAW images from a private dataset
1 camera
[133] Unspecified
[79] 1000 uncompressed (TIFF) images from UCID
From indoor and outdoor
Dimension of 512 x 384
[118] 1000 images from COREL, NJIT, NRCS, SYSU and UCID
Dimensions from 256 x 256 to 8 x 8
[103] Images from UCID, NRCS and a private dataset
[174] 2000 color images from COREL and NRCS
[56] 100 uncompressed (TIFF) images from a private dataset
Heterogeneous scene content
3 different cameras
Dimensions of 1024 x 1024
[58] Uncompressed (TIFF) images from UCID
Dimensions of 384 x 512
[166] 1338 uncompressed (TIFF) images from a private dataset
110 RAW images from a private dataset
From indoor and outdoor
3 different cameras
Dimensions of 512 x 384
Different resolutions
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the image forensics expert rarely is one of the crew) includes the moments in which the
crime is accomplished and the police, if present, must take action to prevent it from
being led to more serious consequences, or to collect evidences. The second is the phase
that begins when the crime is discovered and denounced, after which the law begins to
take its course. In this moment the scientific approach for the correct readability of the
investigative cues, give to the expert the possibility to answer to the various questions
that arise upon a visual document. For example: is this image original? Has it been
tampered? In case of positive answer, where and how? Has this image been taken
from that device? and so on. These questions, that generally regard few images, are
transmitted to the expert and generally the time allowed to him by the public executor
amounts to 2/3 weeks.

In this scenario, there is a difference between the time taken to test the methods over
an entire dataset (possibly some days), that is what the researcher must do before the
validation of his method, and the computational time reported by some papers[166]
(~ 0,5 seconds for every image) that took for the application of this method to every
image, that is what we must take care about. These considerations let understand that,
from the investigative point of view, this topic could be of no interest.

An exception to what stated above can be done when investigators have the need to
examine an huge amount of images as quickly as possible. As an example, in the
investigations that followed the Boston bombing in 2013 the FBI’s call for help caused
law enforcement agencies had the disponibility of thousands of footages uploaded by
citizens, which sent in what amounted to 29 terabytes of data[42]. In those fundamental
moments, a fast algorithm to check the originality of the uploaded images before using
them for investigative purposes is undoubtedly desirable.

6.3 Antiforensics

Trying to hide the traces of a malicious action, deleting them or preventing their discov-
ery, is a behavior that has always characterized attackers. Also in Computer Forensics,
as its methods come out from the scientific community, we witness to the contemporary
flowering of approaches intended to make the first ineffective[98, 132]. Even if this nat-
ural phenomenon is somewhat desirable, given that in general it allows the development
and growth of any science, it would be preferable if, in cases of forensics approaches,
anti-forensics methods wouldn’t develop to the same speed as their opponent, but the
enormous ease to find the details of any scientific discovery makes this hope very diffi-
cult to be satisfied. Also for Image/Video Forensics area, several authors exposed ways
to fool the forensics analysis of a visual document, both hiding the traces of a forgery
and possibly trying to delete them. In [143] Redi et al. exposed a complete list of
possible anti-forensics approaches, followed and supplemented two years later by the
work of Piva [135]. From this survey on, restricting our discussion to the DCT domain
since there are other areas of Image Forensics which developed their own Antiforensics
methods[94, 155, 165], we can cite the work of Fan et al.[73], where after having pointed
out the potential vulnerability of the quantization table estimation based detector, the
authors proposed a method to fool JPEG forensic detectors based upon optimizing an
objective function considering both the anti-forensic terms and a natural image statisti-
cal model. In the same year Sreelakshmi et al.[154] proposed an anti-forensic technique
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based on the removal of the compression fingerprints of JPEG compression (the blocking
artifacts and the characteristic behavior of the histograms of the DCT terms), Comesana
et al.[66] exposed an approach to fool the histogram-based Image Forensics methods,
and also recently Fan et al. in [74] exposed a method with the purpose to hide the
information detectable by histograms-based Image Forensics algorithms.

As the Forensics methods generates the Antiforensics ones, these latter have stimulated
the creation and development of a set of approaches, which are known as Counter-
Antiforensics. This sub-area of Image Forensics has the aim to discover the information
about JPEG compression history after the action of an anti-forensics pipeline, consid-
ering both the fingerprints that were not deleted and the ones left by the previous
anti forensics attack itself. About the bibliography in this challenging field we want
to remember the ones exposed by Lai et al[108], Li et al.[114], Valenzise et al.[163]
and the interesting approach devoted to merge together Image Forensics and Counter-
Antiforensics methods given by Fontani et al. in [87].

6.4 Final considerations

This thesis, and in particular Chapter 5 that forms its core part, exposes an Image
Forensic approach in the DCT domain devoted to retrieve the coefficients of the first
quantization in a doubly compressed JPEG image, since the second round of the JPEG
algorithm delete all the metadata referred to the first quantization. We saw that the
proposed method obtains good performances, also compared with other state of the art
methods, even if limited to the case of ¢; > ¢o.

The introductory part, that highlight some of the reasons why the images are becoming
more and more central in our everyday life, is followed by an important section which
has the purpose to define the Image/Video Forensics science in the Italian legal context.
The following technical part starts with some close details on the JPEG compression
algorithm and the Discrete Cosine Transform, continuing with the list, the definitions
and the critical discussions of the various kind of errors that characterize a forgery
pipeline in case of JPEG images. Before the main part, the thesis contains a detailed
list of the state of the art approaches in the field covered by the work. The end takes
into consideration some aspects which, even somehow boundary, can have a big influence
upon the robustness and the practical applications of every Image Forensics method.
Both in the case in which the results of this work will serve as a stand-alone tool, or
as a part of a forensics analysis pipeline, or even if it will be of inspiration for future
approaches, our desire to have made a contribution to the scientific growth will be
fulfilled.
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