
Towards a Complete Pipeline for 3DS
Conversion of Monocular Uncalibrated Images

Ph.D. Thesis

Candidate:
Francesco Malapelle

Advisors:
Prof. Andrea Fusiello

Dr. Pasqualina Fragneto
Dr. Beatrice Rossi

March 8, 2016



ii



Contents

1 Introduction 1
1.1 Stereoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 3D films: some history . . . . . . . . . . . . . . . . . . . . . . 2
1.3 3DS conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Geometric background 9
2.1 Model of the camera . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Computing the fundamental matrix . . . . . . . . . . . 14
2.3 Planar induced homography . . . . . . . . . . . . . . . . . . . 15

2.3.1 Computing the homography . . . . . . . . . . . . . . . 17
2.3.2 Epipole mapping through homographies . . . . . . . . 19

2.4 Stereo rectification . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Calibrated rectification . . . . . . . . . . . . . . . . . . 19
2.4.2 Uncalibrated rectification . . . . . . . . . . . . . . . . 21

2.5 Observations and properties . . . . . . . . . . . . . . . . . . . 23
2.6 Projective reconstruction . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 The iterative factorization algorithm . . . . . . . . . . 24
2.6.2 Alignment of projective frames . . . . . . . . . . . . . 25

2.7 Depth Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.1 Planar Parallax . . . . . . . . . . . . . . . . . . . . . . 29
2.7.2 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.3 Disparity . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Uncalibrated motion description . . . . . . . . . . . . . . . . . 33

3 Motion-stereo 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



iv CONTENTS

3.3 Our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Confidence Measures . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Temporal integration . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Spatial support . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.1 Superpixel extraction . . . . . . . . . . . . . . . . . . . 47
3.7.2 Extension to the spatial domain . . . . . . . . . . . . . 48

4 View-synthesis 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Motivation and contributions . . . . . . . . . . . . . . . . . . 52
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Stereo processing . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Virtual camera orientation . . . . . . . . . . . . . . . . 55
4.3.3 Forward mapping of parallax maps . . . . . . . . . . . 56
4.3.4 Using multiple sources . . . . . . . . . . . . . . . . . . 57
4.3.5 Merging of parallax maps . . . . . . . . . . . . . . . . 58
4.3.6 Backward mapping of color . . . . . . . . . . . . . . . 59

4.4 View-synthesis with motion-stereo . . . . . . . . . . . . . . . . 59

5 Experiments 61
5.1 Motion-stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Middlebury datasets . . . . . . . . . . . . . . . . . . . 62
5.1.2 Casual video sequences . . . . . . . . . . . . . . . . . . 69

5.2 View-synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 View-synthesis with motion-stereo . . . . . . . . . . . . 71

5.3 Case study: historical aerial photography . . . . . . . . . . . . 74
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusions 83

A Equality of two vectors up to a scale 85

B Quasi-euclidean upgrade 87

C Useful notions 89
C.1 Vectorization operator . . . . . . . . . . . . . . . . . . . . . . 89
C.2 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . 89
C.3 Sampson error . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
C.4 Cross-product matrix . . . . . . . . . . . . . . . . . . . . . . . 90



Chapter 1

Introduction

The first chapter of the thesis is devoted to the definition of where our work
lies. We will begin by providing a brief description of the creation and devel-
opment of 3D content through the past years, starting from the first examples
of stereoscopic images, in Section 1.1, up to recent popularity of 3D video
within the movie industry in Section 1.2. We then introduce, in Section 1.3,
the topic of 3D stereo (3DS) conversion, i.e. the process of converting 2D
images to 3D stereoscopic images, and motivate the need for more studies
on this topic. Then in Section 1.4 we describe different family of approaches
from a high-level point of view and narrow it down to our field of interest.
At last in Section 1.5 we explain the structure of the thesis and highlight its
contributions in Section 1.6.

1.1 Stereoscopy

Stereoscopy is a technique for creating or enhancing the illusion of depth in
an image by means of stereopsis for binocular vision. The word stereoscopy
derives from Greek stereos, meaning “firm, solid”, and skopeo, meaning “to
look, to see”. Any stereoscopic image is called a stereogram. Originally,
stereogram referred to a pair of stereo images which could be viewed using a
stereoscope.

Most stereoscopic methods present two offset images separately to the left
and right eye of the viewer. These two-dimensional images are then combined
in the brain to give the perception of 3D depth.

Human vision, including the perception of depth, is a complex process
which only begins with the acquisition of visual information taken in through
the eyes. Much processing ensues within the brain, as it processes the raw
information provided.
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2 CHAPTER 1. INTRODUCTION

One of the very important visual functions that occurs within the brain
as it interprets what the eyes see is that of assessing the relative distances
of various objects from the viewer, and the depth dimension of those same
perceived objects. More specifically the brain makes use of a number of cues
to determine relative distances and depth in a perceived scene, including:
stereopsis, accommodation of the eye (focus), overlapping of one object by
another, subtended visual angle of an object of known size, linear perspec-
tive (convergence of parallel edges), vertical position (objects higher in the
scene generally tend to be perceived as further away), haze, desaturation
and change in size of textured pattern detail. Most of this cues are already
present in 2D images except for the first two.

Traditional stereoscopic photography consists of creating a 3D illusion
starting from a pair of 2D images, a stereogram. The easiest way to enhance
depth perception in the brain is to provide the eyes of the viewer with two
different images, representing two perspectives of the same object, with a
minor deviation equal or nearly equal to the perspectives that both eyes
naturally receive in binocular vision.

1.2 3D films: some history

In the context of movie production industry, a 3D stereoscopic film is a mo-
tion picture that enhances the illusion of depth perception, hence adding
a third dimension. The most common approach to the production of 3D
films is derived from stereoscopic photography. In it, a regular motion pic-
ture camera system is used to record the images as seen from two perspec-
tives or computer-generated imagery generates the two perspectives in post-
production. Special projection or display hardware and/or special eyewear
are used to provide the illusion of depth when viewing the film. Nowadays 3D
films are not limited to feature film theatrical releases; television broadcasts
and direct-to-video films have also incorporated similar methods, especially
since the advent of 3D televisions. 3D films have existed in some form since
1915, but had been largely relegated to a niche in the motion picture in-
dustry because of the costly hardware and processes required to production
and display, and the lack of a standardized format for all segments of the
entertainment business. Nonetheless, 3D films were prominently featured in
the 1950s in American cinema, and later experienced a worldwide resurgence
in the 1980s and 1990s driven by animated movie themed-venues and IMAX
high-end theaters. In particular, in the mid-1980s, IMAX began produc-
ing non-fiction films for its nascent 3D business and a key point was that
its productions emphasized mathematical correctness of the 3D rendition
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Figure 1.1: audience wearing special glasses watch a 3D stereoscopic film at
the Telekinema on the South Bank in London during the Festival of Britain
1951 – OGL (http://goo.gl/WQOkoF).

and thus largely eliminated the eye fatigue and pain that resulted from the
approximate geometries of previous 3D incarnations. 3D films went on to
become more and more successful throughout the 2000s, culminating in the
unprecedented success of 3D presentations of movies like “Avatar” in 2009.

1.3 3DS conversion

3DS conversion is the process of transforming 2D images to a 3D Stereo form,
i.e. creating imagery for each eye from one 2D image. With the expansion
of 3D market, 3DS conversion has become more common, also thanks to the
fact that even in the case of native 3D movies there is the need to convert a
large quantity of video material. A big portion of 3D blockbusters still are
converted fully or at least partially from 2D footage. The reasons for shooting
in 2D and convert afterwards are financial, technical and sometimes artis-
tic: stereoscopic rigs are much more expensive and bulky than customary
monocular cameras, thus some shots, can be only shot with relatively small
2D cameras. Moreover stereo cameras can introduce various mismatches
in stereo images (such as vertical parallax, tilt, color shift, reflections and
glares in different positions) that should be fixed in post-production any-
way because they ruin the 3D effect, this correction sometimes may have

http://goo.gl/WQOkoF


4 CHAPTER 1. INTRODUCTION

complexity comparable to stereo conversion. Also, stereo cameras can be-
tray practical effects used during filming, such as using forced perspective
to allow two actors to appear to be different physical sizes or shooting from
a distance using zoom lenses. These are all factors that make stereo native
capture extremely difficult, according to many filmmakers. Thus, even in the
case of stereo shooting there may well be a need to convert some footage and
that high quality conversion is an important tool in the box of any effects
house.

Moreover, with the lack of stereo content, 3DS conversion is the only
way to meet demands of the market, since it is needed for converting older
popular films.

1.4 Approaches

3DS conversion approaches go from simple tricks like the exploitation of
the Pulfrich effect (when lateral motion of an object is perceived as having
a depth component, due to a relative difference in signal timings between
the two eyes), to homemade 3DS conversion methods that can be found
on Youtube tutorials and up to high quality semiautomatic conversion for
cinema. The price of high quality stereo conversion is estimated at tens of
thousands of dollars per minute, mainly because a lot of the work has to be
done manually and frame-by-frame and a lot of the actual conversion relies
on image processing and editing more than geometry.

From the computer vision community’s point of view, the problem of 3DS
conversion falls within the View-Synthesis (VS) or Image Based Rendering
(IBR) family, i.e. the generation of novel images as if they were captured
from virtual viewpoints, starting from a set of actual images or frames.

The rendering of virtual images is based on geometric relationships that
are found between the positions of pixels representing the same point in
the scene observed from different viewpoints. The procedure requires some
geometry information, either explicit (depth) or implicit (depth-proxies), and
suitable warping functions. In Figure 1.2, we report a basic representation
of this family of techniques.

Both the computation of the depth-proxy and the warping function, are
key ingredients for the quality of the rendered view. Moreover the goal-
application, i.e. 3DS conversion of generic footage, implies the the necessity
to work in a uncalibrated environment, i.e. without the knowledge of nei-
ther the camera’s internal parameters and the camera position. The key
advantage of uncalibrated view-synthesis (UVS), is the possibility to per-
form view-synthesis without any knowledge on the imaging device nor the
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INPUT SEQUENCE

DEPTH PROXY COMPUTATION

WARPING FUNCTION

3DS OUTPUT

Figure 1.2: a pictorial representation of a 3DS conversion pipeline.

need of any kind of user interaction including manual camera calibration,
but, as argued in the next sections, is challenging for several reasons.

1.5 Thesis structure

The rest of this thesis is structured as follows. Chapter 2 presents an overview
of the background knowledge that is needed to understand the following parts
but also reports the first theoretical contributions that we propose.

We first focused on the computation of the depth-proxy, this part of
our work is presented in Chapter 3. We developed a data-fusion framework
that locates itself among Motion-stereo or Dynamic-stereo techniques. The
reason for this choice is that this kind of framework allowed us to exploit
the information coming from the abundance of images depicting the same
portion of the scene from different perspectives. More precisely the two main
advantages of integrating information coming from several point of views are,
first that the number of pixels that result occluded decreases with respect to
simpler image-pair processing methods, and second that many estimations
of the same measures are available and allow us to merge them into a more
robust estimation.

The following phase of our work is presented in Chapter 4 and it is fo-
cused on the study of uncalibrated view-synthesis. We developed a fully
automatic image rendering method that exploits the presence of several in-
put images and addresses several subproblems of its class of methods, both
from a geometric and a more practical point of view.

Chapter 5 presents the results that we obtained: it begins with presenting
specific experiments designed to evaluate the two methods separately and
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in the last section exhibits the benefits of concatenating motion-stereo and
view-synthesis.

In Chapter 6 we recap the main contributions of our work, presenting the
final considerations on the obtained results and discussing possible future
works. This last chapter concludes the main part of the thesis. The Appendix
and the References follow, ending the thesis.

1.6 Contributions

First, we dealt with the computation of a depth-proxy, developing a data-
fusion framework that can take disparity maps as input and process them
integrating the information coming from many images. We present a frame-
work that takes into account both inter-frame (temporal) information and
intra-frame (spatial) information. Moreover, it is very versatile as it can deal
with both calibrated and uncalibrated quantities. During the description of
the method we also present a useful analysis of suitable depth-proxies, as well
as an extensive comparison of several confidence measures in the context of
data-fusion. A preliminary temporal only integration version of this work has
been presented in [1] and the complete method has presented in [2].

Regarding the view-synthesis part, we presented a fully automatic method
that addresses most of the critical problems arising in uncalibrated scenarios.
The method has a solid geometrical foundation and is able to take into ac-
count several images for a higher quality rendering of the virtual view. The
method has been presented in [3], along with its experimental evaluation.

We also test the method in a case study that has been conducted during
a collaboration with professor Anders Hast of the University of Uppsala,
Sweden. In this work we apply our view-synthesis method to historical aerial
photographs taken during World War II. The section does not only presents
the results but also gives some insights on the specific application. This work
has been presented in [4].

We then concatenate the two main parts of this thesis, i.e. the motion-
stereo framework and the view-synthesis, and corroborate the idea that using
a depth–proxy map refined with the motion-stereo pipeline for view-synthesis
purposes produces sensible benefits to the final result.

Overall, the work described in this thesis constitutes a step towards build-
ing a complete pipeline for automatic 3DS conversion of uncalibrated images.
All the building blocks are designed to be able to exploit the abundance of
images and use them to achieve better quality. With respect to Figure 1.2
the proposed methods represent improvements both on the depth-proxy com-
putation and on the warping function.
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Other works

During the past three years we had the opportunity to work on different
topics other than the ones that are reported in this thesis. Since there was
no prominent connection it seemed inappropriate to try to fit such topics
into the chapters of this document, hence, we refer the reader, if interested,
to the two papers that have been published as a result of these works.

The first paper is titled Robust Global Motion Estimation with Matrix
Completion [5]. This work has been carried on during the Master thesis of
Federica Arrigoni at the University of Milan. Federica is currently a Ph.D.
Student at the University of Udine.

The second article is titled Procrustean point-line registration and the
NPnP problem [6] and it is the result of a collaboration between our group
and Professor Fabio Crosilla of the University of Udine.
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the proposed methods. During the description of these topics, the main
idea is to maintain a duality between the calibrated framework, where we
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10 CHAPTER 2. GEOMETRIC BACKGROUND

can count on euclidean geometry and the uncalibrated framework, where
everything is known up to a projective transformation.

The first part of the chapter includes classical topics such as the pin-
hole camera model (Section 2.1), followed by epipolar and planar induced
geometries (Sections 2.2 and 2.3) and image rectification Section 2.4). We
then proceed, in Section 2.6, to describe the procedure for projective re-
construction and how to realign other projective frames to a reference one.
In Section 2.7 we will describe the geometric quantities that are denoted
as depth–proxies and that are computed in our algorithm. Maintaining the
same line of thought we will analyze the relationship between depth and
its uncalibrated version: planar-parallax, which is also known as projective
depth. At last, Section 2.8, shows how to specify a motion trajectory in an
uncalibrated framework, pointing out the correspondences to the equivalent
calibrated operation.

For more details on the topics introduced in this chapter, we refer the
interest reader to [31] wichh contains more detailed and in–depth explana-
tions. Some of the figures and of the content are derived from the ones in
[22]. More punctual references can be found as each notion is introduced.

Notation

From now on, we will refer to a pair of images using subscript r for quantities
that are related to the reference image Ir, and the subscript i for the auxiliary
image Ii, i.e. the second element of the pair. This will be useful when we
will start considering image sequences instead of pairs: we will work on a
reference image, which will be kept the same while the auxiliary one will be
one of the other elements of the sequence.

2.1 Model of the camera

We start defining some basilar elements that will be useful in the following
sections. The camera model that we adopt is a 3–by–4 matrix P , called
perspective projection matrix (PPM for simplicity). The intrinsic parameters,
which map the 3D space into the image plane of the camera are modeled
into matrix K. The extrinsic parameters, which define the position of the
camera in world reference system, are defined by two matrices: R and t,
which are respectively a rotation and a translation, that together form a
rigid transformation that maps the camera reference system in the world
reference system. Matrix P is defined as follows

P = K[R|t] (2.1)
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The camera is centered in the optical center C. A generic 3D point M is
projected on an image point m in the image plane. This is expressed by the
equation

m ' PM (2.2)

and represented in Figure 2.1. In the following it will be useful to write the

f

x

y

z

u
v

M

m

R

F

C

Figure 2.1: geometric model of our camera.

camera matrix as
P = [Q|q]. (2.3)

Starting from Equation (2.2) we can derive that the coordinates of the
projected point m are: {

u = p1M
p3M

v = p2M
p3M

(2.4)

Where p1, p2 and p3 are the rows of the matrix P . From Figure 2.1 we can
see that the optical center C is the intersection of three planes: p1M = 0
p2M = 0 and p3M = 0. Thus C is the solution of the system

p1C = 0
p2C = 0
p3C = 0

(2.5)

which is the same of saying PC = 0. Remembering Equation (2.3), and that

C =

[
C̃
1

]
(2.6)
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we can write
QC̃ + q = 0 (2.7)

and so
C̃ = −Q−1q (2.8)

Now if we want to define the optical axis of m we have to specify two points
lying on it. The first one is C and the other one is an ideal point:[

−Q−1m
0

]
(2.9)

It is correct to assume that the optical axis contains the point defined in
Equation (2.9) and that by substituting it to M in Equation (2.2) we can
express the parametric equation for the optical axis

M = C + λ

[
Q−1m

0

]
, λ ∈ R. (2.10)

2.2 Epipolar geometry

Epipolar geometry describes the relation between two images of the same
scene taken from two different cameras or from the same camera at different
times. In a stereo acquisition system, a 3D point M is projected on an image
point mr in the first image Pr, centered in Cr, and on an image point mi

in the second image through a camera Pi centered in Ci, as represented in
Figure 2.2.

The equations that represent this situation are{
mr ' PrM
mi ' PiM

(2.11)

Points mr and mi are called corresponding points and mi is constrained
to lie on a line, called the epipolar line of mr. This can be easily seen in
Figure 2.2, mi lies on the interception of two planes: the image plane and
the epipolar plane, which is the plane determined by M, Cr and Ci (gray
colored in Figure 2.2). The explanation of this constraint is that mi could
be the projection of any point lying on the optical axis of mr. We can also
observe that all the epipolar lines intersect at a point which is called the
epipole. The epipole is defined as the projection of Cr, the center of the first
camera, through the second camera Pi

ei = PiCr (2.12)
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M

Ci

Cr

mr
mi

er
ei

Figure 2.2: projection of a point M by two cameras centered in Cr and Ci

and main elements of epipolar geometry.

All the epipolar planes contain the line defined by Cr and Ci, i.e. the baseline.

Like we said, the epipolar line corresponding to mr is the projection of
Equation (2.10) through Pi and thus has the equation

mi ' λQiQ
−1
r mr + ei (2.13)

We can elaborate (2.13) to show that a bilinear relation exists between mr

and mi. If we multiply both sides of equation (2.13) by [ei]×, where [ei]× is
the skew-symmetric matrix associated with the cross-product and defined in
Appendix C.4, we can write

[ei]×mi ' λ[ei]×QiQ
−1
r m (2.14)

The left element is a vector orthogonal to mi, so if we multiply both sides
by m>i we obtain

0 = m>i [ei]×QiQ
−1
r mr (2.15)

Let us rewrite it this way

m>i [ei]×QiQ
−1
r mr = 0 (2.16)

This equation is also called Longuet–Higgins equation. We observe that ma-
trix F = [ei]×QiQ

−1
r , which is called the fundamental matrix, contains all the

information about the epipolar geometry and allows us to trace the epipolar
line of any point m as Fm. Now, we can rewrite Equation (2.16) as:

m>i Fmr = 0 (2.17)
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Another important property is given by the observation that the epipole is
the kernel of F , i.e.

Fer = 0 and e>i F = 0 (2.18)

so it can be easily extracted from it via singular values decomposition (the
solution is the eigenvector associated with the minimum eigenvalue of matrix
F>F ).

2.2.1 Computing the fundamental matrix

In this section we will describe how to compute the fundamental matrix F
from a set of correspondences (mj

r,m
j
i ) with j = 1 . . . n. When the context

is clear we will omit the pixel’s index j for a cleaner notation.
Using Equation (C.2) (In Appendix C.2) of the Kronecker product, we

can elaborate Equation 2.17

m>i Fmr = 0⇐⇒ vec(m>i Fmr) = 0⇐⇒ (m>i ⊗mr
>)vec(F ) = 0 (2.19)

This means that every pair of corresponding points generates a homoge-
neous equation linear in the nine elements of F (vectorized). From n points
we obtain a linear system with n equations:

m1>
r ⊗m1>

i

m2>
r ⊗m2>

i
...

mn>
r ⊗mn>

i


︸ ︷︷ ︸

Un

vec(F ) = 0. (2.20)

The solution we are looking for is the nucleus of Un. With n = 8 the nucleus
of the matrix has dimension one, thus the solution is determined up to a
scale. Therefore this method is called the 8-point algorithm (note that the
eight points must be in general position, see [18] for degenerate configura-
tions) but it is indeed a variant of the DLT method that will be described in
Section 2.3.1.

In practice there usually are more than eight point correspondences and
we can obtain the elements of F by solving a linear least squares problem.
The solution is the eigenvector associated with the minimum eigenvalue of
U>n Un that can be computed with the singular value decomposition of Un.

Please note that the matrix F that is found solving this system of equa-
tions will, in general, not be compliant to the requisite of being singular.
This can be forced at posterior by substituting F con F̂ , the closest matrix
in Frobenius norm that is singular.



2.3. PLANAR INDUCED HOMOGRAPHY 15

Let F be a matrix 3×3 and F = UDV > be its SVD with D = diag(r, s, t)
and r ≥ s ≥ t. It can be demonstrated that Ê = UD̂V > where D̂ =
diag(r, s, 0).

Although the linear algorithm that we just described needs at least eight
points to compute F , since the matrix only depends on seven parameters,
it is possible to compute it from seven correspondences with a non-linear
procedure ([31]).

At last, observe that the least squares minimization solution is obtained
by a minimization of an algebraic error. To refine results we can minimize,
e.g. using the Levenberg-Marquardt method, a geometric error

min
F

∑
j

d(Fmj
r,m

j
i )

2 + d(F>mj
i ,m

j
r)

2 (2.21)

Where d(·) is the point–line distance in the Cartesian plane. Note that
equation (2.21) is non–linear and that this minimization is slow and does
not assure convergence to the absolute minimum so it is convenient to use
it as a refinement of the least square solution allowing us to trust to start
the minimization near the minimum error. Moreover, F must be properly
parametrized to reflect its 7 degrees of freedom.

2.3 Planar induced homography

In a less general situation, corresponding points are linked not only by the
fundamental matrix, but also by a projectivity or homography. This happens
when observed points are lying on the same plane in the 3D space. Pri-
marily we can observe that the transformation between the plane Π and its
projection on the image plan is an homography. In a situation like the one
represented in Figure 2.3, where we have two different images, composing
the two transformations, we obtain an homography from the left image to
the right image. We can say that the plane Π induces an homography HΠ

between the two images that gives us the relation

mi ' HΠmr if M ∈ Π (2.22)

To see in which cases images of the same scene are linked by an homography
we have to restart from the epipolar geometry. The two cameras can be
expressed as

Pr = Kr[I|0] = [Kr|0] and Pi = Ki[R|t] (2.23)
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Π

Hl Hr

HΠ = HrHl
-1

IrIl

Figure 2.3: plane Π induces an homography between the two image planes.

Where K contains the intrinsic parameters of the camera and R and t repre-
sent the extrinsic parameters. Substituting the two cameras into the Equa-
tion (2.13) we obtain

mi ' λKiRK
−1
r mr +Kit. (2.24)

Adding explicit depth values, Equation (2.24) becomes

ζimi = ζKiRK
−1
r mr +Kit (2.25)

We can observe two situations where the two images are connected by an
homography.

Rotational motion of the camera: if the movement of the camera is purely
rotational, then t = 0 and

ζi
ζr

mi = KiRK
−1
r mr (2.26)

Where KiRK
−1
r = H∞ is an homography that does not depend on the

3D structure.

Planar scene: For points M lying on a plane Π with equation n>M̃ = d,
where n is the normal vector to the plane and d is the distance of Π
from the origin, then we can derive

ζi
ζr

mi = Ki

(
R +

tn>

d

)
K−1
r mr (2.27)
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This means that the two images are linked by an homography HΠ =

K ′
(
R + tn>

d

)
K−1.

It is also worth observing that if d → ∞ we have that H∞ = HΠ.
This means that H∞ links all the points lying on the infinity plane (for
example vanishing points) or every point in the image if the camera
moves without translating.

2.3.1 Computing the homography

The classical way to compute a certain homography is by knowing at least
n points (by the end of this subsection we will determine how much is n)
lying on the same plane Π (which can also be the infinity plane), with the
Direct Linear Transform method, which can be found in [31]. Given n cor-
respondences (mr,mi), where mr and mi are projections of the 3D a point
M lying on a certain plane Π, we want to determine HΠ such that

mi ' HΠmr (2.28)

Which is equivalent to
mi ×HΠmr = 0 (2.29)

As we know from Appendix C.4, we can substitute the cross-product with
its associated matrix [mi]× and write

[mi]×H
Πmr = 0 (2.30)

And at last using the vectorization and exploiting the Kronecker product and
its property described in Equation (C.2) (in Appendix C.2), we come to

vec([mi]×H
Πmr) = 0⇐⇒ (m>r ⊗ [mi]×) vec(HΠ) = 0 (2.31)

Where vec(HΠ) contains 9 unknown values and (m>r ⊗ [mi]×) is a 3× 9 and
rank deficient (rank 2) matrix. We have two equations for every correspon-
dence (mr,mi) of points that are projections of 3D points that lie on Π.
Thus for n points we have 2n equations. By stacking them we obtain a 2× 9
matrix, let’s call it A, for which

A vec(HΠ) = 0 (2.32)

Using n = 4, A is a 8–by–9, with rank 8 and its unidimensional kernel (as we
know from the rank–nullity theorem) is the solutions vector, containing the
nine elements of HΠ. Note that the n points must be coplanar on the plane
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Π but they must be in general position, i.e. there cannot be three collinear
points. For n > 4, the least square minimization solution can be found via
the singular values decomposition (the solution is the eigenvector associated
with the minimum eigenvalue of matrix A>A).

The least square minimization solution described above, is obtained by
minimizing an algebraic error and to refine results we can minimize a geo-
metric error, e.g. using the distance between points in the Cartesian plane
d(·)

min
H

∑
i

d(Hmr,mi)
2 + d(H−1mi,mr)

2 (2.33)

Note that equation (2.33) is non-linear and that this minimization is slow
and does not assure convergence to the absolute minimum. It can be carried
out with a Levenberg-Marquardt procedure, but it is convenient to use it as a
refinement of the least square solution allowing to start the minimization near
actual minimum error. Also, unlike F , H does not need any parametrization,
having 8 degrees of freedom.

Homography from the PPMs

There is another way to compute the infinity plane homographyH∞ when the
PPMs are known. Consider two PPMs and their factorization Pr = [Qr|qr]
and Pi = [Qi|qi] (as in Equation (2.3)) and consider a generic 3D point
lying on the infinity plane, thus with the last element of its homogeneous
coordinates equal to zero M = (X, Y, Z, 0)>. We can rewrite Equation (2.11)
as {

mr ' [Qr|qr](X, Y, Z, 0)>

mi ' [Qi|qi](X, Y, Z, 0)>
(2.34)

And, from Equation (2.22), since M lies in the infinity plane, we know that

mi ' H∞mr (2.35)

It is easy to obtain the following equation

H∞ ' QiQr
−1 (2.36)

which relies on the computation of the PPMs instead of a set of corresponding
image points. This alternative method can be useful if the correspondences
are not trustworthy.
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2.3.2 Epipole mapping through homographies

A very interesting property, is that for every Π it is true that

ei ' HΠer (2.37)

We now will give an intuitive demonstration of this property.
Given the two PPMs in Equation (2.23) and the definition of the epipole

in Equation (2.12), we observe that

er = KrR
>t and ei = Kit (2.38)

Using the most general definition of the plane induced homography from
Equation (2.27) we can write:

HΠer = Ki

(
R +

tn>

d

)
K−1
r KrR

>t = Kit(1 +
n>

d
R>t) (2.39)

Where the last term is a scalar value, thus for any Π we can write:

HΠer ' ei (2.40)

Observe that if we choose three random 3D points they are coplanar by
definition and thus their projections on a pair of images always satisfy Equa-
tion (2.22). This tells us that three random points and the epipole as fourth
form a suitable input point for the DLT algorithm. The output would be the
homography induced by the plane containing the three points.

2.4 Stereo rectification

Given a pair of stereo images (Ir, Ii), a rectification procedure determines
two transformations (homographies, actually) Tr and Ti, one for each image
plane. When Tr and Ti are applied, pairs of conjugate epipolar lines become
collinear and parallel to one of the image axes and the epipoles become points
at the infinity. The rectified images can be thought of as acquired by a new
pair of cameras, obtained by rotating the original ones about their optical
centers until their focal planes become coplanar and contain the baseline. The
result sought by the rectification is depicted in Figure 2.4. This configuration
is also called normal case (for stereo).

2.4.1 Calibrated rectification

The method that is here described is based on [25], please refer to the paper
for a full description.
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Ci
Cr

mr mi
m'r m'i

M

Figure 2.4: pictorial representation of the rectification. The two original
image planes (red, in this example) are warped to become coplanar. The
epipolar lines become collinear and the epipoles are located at infinity.

Rectifying thee PPMs

Let Po,r and Po,i be the two PPMs for the image pair (Ir, Ii), and let Pn,r and
Pn,i b e the two matrices obtained after the rectification procedure. Their
factorization is

Pn,r = K[R | −R C̃r], Pn,i = K[R | −R C̃i]. (2.41)

Indeed, the intrinsic parameters matrix K is the same for both PPMs (and
can be set arbitrarily). The optical centers C̃r and C̃i are the same one of
the original cameras and matrix R, that determines the camera orientation
is the same for both PPMs. If we write the rotation as follows:

R =

r>1
r>2
r>3

 (2.42)

we obtain that r>1 , r
>
2 , r

>
3 are, respectively, the axis X, Y and Z of the cameras

reference frame, expressed in world coordinates. We are able to determine R
by setting:

1. the new X axis parallel to the baseline: r1 = (C̃i − C̃r)/‖C̃i − C̃r‖;



2.4. STEREO RECTIFICATION 21

2. the new Y axis orthogonal to the X and to an arbitrary versor k:
r2 = k× r1. The unit vector k fixes the position of the new Y axis in
the plane orthogonal to X (vertical direction). We choose it equal to
the old camera’s Z versor, forcing the new Y axis to be orthogonal to
both the new X and the old Z axis.

3. the new Z axis orthogonal to X and Y : r3 = r1 × r2.

Rectifying the image planes

To rectify the plane of a camera, e.g. Po,r, one needs to compute the trans-
formation that brings the image plane of Po,r = [Qo,r|qo,r] to the one of
Pn,r = [Qn,r|qn,r]. The desired transformation is the homography (non sin-
gular linear transformation) defined by the 3× 3 matrix H = Qn,rQ

−1
o,r . For

each 3D point M, we can write

mo,r ' Po,rM
mn,r ' Pn,rM.

(2.43)

According to Equation (2.10), the optical rays equations are the following
(since the rectification does not move the camera centers):

M̃ = C̃ + λo,rQ
−1
o,rmo,r λo,r ∈ R

M̃ = C̃ + λnQ
−1
n,rmn,r λn,r ∈ R (2.44)

Thus:
mn,r ' Qn,rQ

−1
o,rmo,r. (2.45)

The transformation H is then applied to the original image to produce the
rectified image, as shown in Figure 2.4.

2.4.2 Uncalibrated rectification

If calibration data is not available and our only knowledge are point corre-
spondences, a suitable the method is the one proposed in [24] and that we will
herein summarize. Whereas in the case of calibrated cameras the epipolar
rectification is unique up to trivial transformations, in the case of uncali-
brated cameras there are more degrees of freedom in choosing the rectifying
transformation. Calibrated rectification is done with respect to the plane at
infinity, while uncalibrated rectification can be seen as referred to a plane
that approximates the plane at infinity. The method seeks the collineations
that make the correspondent points satisfy the epipolar geometry of a rec-
tified image pair, refer to the original work [24] for all the details of the
method.
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First, let us observe that the fundamental matrix of a rectified pair has a
very specific form, namely it is the skew-symmetric matrix [u1]× associated
with the cross-product by the vector u1 = (1, 0, 0).

[u]× =

 0 0 0
0 0 −1
0 1 0

 (2.46)

Let Tr and Ti be the unknown rectifying homographies. The transformed
corresponding points must satisfy the epipolar geometry of a rectified pair,
hence

(Tim
j
i )
>[u1]×(Trm

j
r) = 0. (2.47)

As this equation must hold for any correspondence, we obtain a system of
non–linear equations in the unknown Tr and Ti. The left-hand side of Equa-
tion 2.47 is an algebraic error, i.e. it has no geometrical meaning, so as in [24],
we use instead the Sampson distance (see Appendix C.3) which is a first order
approximation of the geometric reprojection error. The matrix T>i [u1]×Tr
can be considered as the fundamental matrix F between the original im-
ages, therefore, in our case, the Sampson error for the j-th correspondence is
defined as

Si =
(mj

i

>
Fmj

r)
2∥∥[u]×Fm

j
r

∥∥2
+
∥∥∥mj

i

>
F [u]×

∥∥∥2 . (2.48)

A least-squares solution to the system of equations is sought. The way in
which Tr and Ti are parameterized is crucial: the rectifying homographies
are forced to have the same structure as in the calibrated case, i.e. to be
homographies induced by the plane at infinity, namely

Tr = Kn,rRrK
−1
o,r and Ti = Kn,iRiK

−1
o,i (2.49)

The old intrinsic parameters (Ko,r, Ko,i) and the rotation matrices (Rr, Ri)
are unknown, whereas the new intrinsic parameters (Kn,r, Kn,i) can be set
arbitrarily, provided that vertical focal length and vertical coordinate of the
principal point are the same. Each homography depends in principle on five
(intrinsic parameters) plus three (rotation angles) unknown parameters. The
rotation of one camera along its X-axis, however, can be eliminated, as this
is tantamount to rotating a rectified pair around the baseline. The number
of parameters is further reduced by making an approximation on the old
intrinsic parameters, no skew, principal point in the center of the image,
aspect ratio equal to one. The only remaining unknowns in (Ko,r, Ko,i) are
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the focal lengths. Assuming that they are identical and equal to f , we get

Ko,r = Ko,i =

 f 0 w/2
0 f h/2
0 0 1

 (2.50)

where w and h are width and height (measured in pixels) of the image. The
minimization can be carried out using Levenberg-Marquardt, starting with
all the unknown variables set to zero. At last, the rectifying homographies
are computed with Equation 2.49.

2.5 Observations and properties

As a by-product of the rectification procedure, it can be shown that we obtain
the homography induced by the plane at infinity (or its approximation in the
uncalibrated case) between the two original cameras, which is given by

H∞ri = T−1
i Tr (2.51)

This also tells us that the infinity plane homography of a rectified pair is
the identity matrix

H∞ri =

 1 0 0
0 1 0
0 0 1

 . (2.52)

Moreover, we can observe that since the fundamental matrix of a rectified
pair is the skew-symmetric matrix in Equation (2.46), the epipole is u1 =
(1, 0, 0) vector itself (Equation (2.18)).

2.6 Projective reconstruction

When camera parameters are unavailable we are still able to estimate infor-
mation about the scene, but up to an unknown projectivity. This procedure
is known as projective reconstruction.

Consider a set of 3D points seen by m cameras {Pi}i=1...m. Let mj
i be the

(homogeneous) coordinates of the projection of the j-th point onto the i-th
camera.

The projective reconstruction problem can be seen as the one of finding
the set of cameras’ PPMs {Pi} and the scene structure {Mj}, given the set
of pixel coordinates {mj

i}, such that

mj
i ' PiM

j. (2.53)
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Without further constraints this reconstruction is defined up to an arbitrary
projectivity. As a matter of fact if {Pi} e {Mj} satisfy Equation (2.53),
then {PiT} and {T−1Mj} satisfy (2.53) for any non-singular 4× 4 matrix T .
Matrix T specifies a linear transformation in the 3D projective framework,
i.e. a projectivity.

Several methods for projective reconstruction exist in the literature. We
use the classical method proposed in [68] which is briefly presented in Sec-
tion 2.6.1. This method is based on the factorization procedure presented in
[69]. It is an iterative method but one can easily find out empirically that it
is fast and it does not require an informed initialization, even if convergence
is not guaranteed as in other methods (e.g. [50]). Moreover the method is
not minimal since it solves an overdetermined problem providing a solution
in a least square sense. A minimal method is e.g. the one described in [31]
which provides the projective reconstruction from three views using six input
points.

2.6.1 The iterative factorization algorithm

Consider m cameras looking at n points in 3D space, M1 . . .Mn. Let us
rewrite Equation (2.2) with an explicit scale factor

ζji m
j
i = PiM

j i = 1 . . .m, j = 1 . . . n (2.54)

which in matrix form becomes
ζ1

1m1
1 ζ1

2m1
2 . . . ζ1

mm1
m

ζ2
1m2

1 ζ2
2m2

2 . . . ζ2
mm2

m
...

...
. . .

...
ζn1 mn

1 ζn2 mn
2 . . . ζnmmn

m


︸ ︷︷ ︸

misure W

=


P1

P2
...
Pm


︸ ︷︷ ︸

P

[
M1, M2, . . . Mn

]︸ ︷︷ ︸
struttura M

. (2.55)

In this equation, everything but the mj
i is unknown, even the values of ζji .

What we learn from it is that W can be factorized in the product of a 3m×4
matrix P and a 4× n matrix M . Thus W has rank four.

If, for a moment, we assume ζji as known, matrix W becomes known and
we can compute the singular values decomposition

W = UDV >. (2.56)

Theoretically, if point correspondences are not affected by noise, rank of
W is four, thus D = diag(σ1, σ2, σ3, σ4, 0, . . . 0). This means that only the
first four columns of U (V ) contribute to the matrix product. Let U3m×4
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(Vn×4) be the matrix formed by the first 4 columns of U (V ). We can rewrite
compact SVD of W :

W = U3m×4 diag(σ1, σ2, σ3, σ4)V >n×4. (2.57)

If we compare this with Equation (2.55) we are able to identify:

P = U3m×4 diag(σ1, σ2, σ3, σ4) e M = V >n×4 (2.58)

obtaining the desired reconstruction. Please note that the choice of in-
cluding diag(σ1, σ2, σ3, σ4) in P is arbitrary. It could have been included
in M or be split across. This is coherent with the fact that the obtained
reconstruction is up to a projectivity that assimilates diag(σ1, σ2, σ3, σ4) as
well.

In real cases, data (point correspondences) is noise affected thus the rank
of W is not four. If we force D = diag(σ1, σ2, σ3, σ4, 0, . . . 0) we obtain the
approximate solution that minimizes the error in Frobenius norm:

‖W − PM‖2
F =

∑
i,j

‖ζji m
j
i − PiMj‖2. (2.59)

This leaves us with the problem of estimating the unknown ζji values. As
we have seen above if they were known we would be able to calculate P and
M . On the other hand i would be able to calculate ζji values by knowing P
and M , indeed, given a point j, the projection equation can be rewritten as:

ζj1mj
1

ζj2mj
2

...
ζjmmj

m

 =


mj

1 0 . . . 0

0 mj
2 . . . 0

...
...

. . .
...

0 0 . . . mj
m


︸ ︷︷ ︸

Qj


ζj1
ζj2
...
ζjm


︸ ︷︷ ︸

ζj

= PM j. (2.60)

An iterative solution known as block relaxation is suitable in these kind
of problems and consists in solving alternatively the two problems: estimate
ζji given P and M , and in the subsequent step estimate P and M given ζji ,
and iterate until convergence. The procedure is summarized in Algorithm 1.
Step 1 is necessary to avoid convergence to the trivial solution ζji = 0.

2.6.2 Alignment of projective frames

If we want to perform projective reconstruction on an image sequence, it is
necessary to consider an input set of corresponding points across the entire



26 CHAPTER 2. GEOMETRIC BACKGROUND

Algorithm 1 Projective Reconstruction

Input: Image point correspondences W , con ζji = 1
Output: Reconstructed 3D points and cameras’ PPMs M , P

1. Normalize W as ‖W‖F = 1;

2. Obtain P and M from the SVD of W ;

3. If ‖W − PM‖2
F is small enough, stop;

4. extract ζj from Qjζj = PM j, ∀ j = 1 . . . n;

5. Update W ;

6. Repeat from (i).

sequence, otherwise each projective reconstruction performed on a portion of
the original image sequence will lie in its own projective reference frame.

When correspondences are not available across the entire image sequence,
a solution is to split it into subsequences and realign, afterwards, each pro-
jective frame to a certain reference frame. Each one of these reconstructed
subsequences is connected to each other through an unknown projectivity.
The realignment consists in computing and applying such projectivities in
order to obtain a coherent projective reconstruction (i.e. within the same
projective reference frame) across the entire image sequence.

In this section we present a procedure to realign projective reconstructions
that lay in different projective reference frames.

Keeping Equation (2.36) in mind, let Pi := [Qi|qi] be the PPMs, associ-
ated with the i-th image and let:

HΠ
ri := QiQ

−1
r i = 2, · · · , N (2.61)

be the infinity plane homography between views Ir and Ii. Observe that in
a Euclidean frame HΠ

ri is the homography induced by the true infinity plane,
whereas in a projective frame, the infinity plane corresponds to a generic
plane Π in the Euclidean frame.

We run the projective reconstruction procedure that, given a set of sparse
matches, yields an estimation of PPMs and 3D points.

The sparse visual features across the video sequence can be carried out
using standard procedures. We follow the approach of [17]. The output
of this stage is a set of tracks, i.e. keypoints matching in more than three
images, and a set of fundamental matrices and homographies linking pairs
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of views, each endowed with GRIC scores ([70]), which reveals which of the
two models is more likely.

The projective reconstruction is obtained using the procedure described
above and using the longest possible portions of the sequence. The length of
the image subsequence is determined by the presence of a minimal number of
complete keypoint tracks across it (we use at least 50 points). An alternative
procedure is to use a minimal approach e.g. the projective reconstruction
from three views using a 6–points procedure – described in [31] – inside a
RANSAC/MSAC iteration. We prefer to use longer subsequences in order
to minimize the number of alignments that can cause misalignment drifts.

Lying in a projective stratum, each subsequence of reconstructed PPMs is
related to the correct (Euclidean) one by a collineation of the 3D space. Once
a reference projective frame is fixed, e.g. the one associated with the first
subsequence, following subsequences of PPMs with an overlap of (at least)
two can be brought to the same frame by computing the proper collineation
T as explained in the following.

The first subsequence is brought to a quasi–euclidean stratus using the
procedure described in Appendix B. The remaining subsequences of PPMs
can then be brought, by computing the proper collineation following the
scheme described in Figure 2.5 and explained in the following.

T

T-1

Figure 2.5: threading of projective cameras. Red/green represent different
projective frames. Each subsequence (length 3 in this example) has an over-
lap of two. T is computed from the overlapping elements and then T−1 is
used to bring the last camera to the reference projective stratum (green in
this example).

Let Pi and P ′i be the same camera in two different projective frames, i.e.,
Pi and P ′i represents the same camera in two different subsequences. They
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are related by an unknown collineation T :

PiT ' P ′i . (2.62)

Using the vec operator, defined in Appendix C.1, we obtain:

vec(PiT ) ' vec(P ′i ). (2.63)

In Appendix A, we show that the equality of two vectors a and b of Rn

up to a scale can be written as [a]×b = 0 where [a]× is a suitable n(n −
1)/2 × n matrix that generalizes the external product matrix of R3. Hence
Equation (2.63) can be rewritten as:

[vec(P ′i )]× vec(PiT ) = 0. (2.64)

Using the properties of the Kronecker product, Equation (2.64) is equiv-
alent to the following linear system of equations in the unknown vec(T ):

[vec(P ′i )]×(I4×4 ⊗ Pi) vec(T ) = 0. (2.65)

Since the coefficient matrix has rank at most 11, at least two camera
matrices are needed to stack-up the 15 equations required to compute the 4×4
matrix T up to scale. This is the reason why our projective reconstruction
processes sequences of cameras with an overlap of two.

Bringing all the PPMs into a common projective frame ensures that, when
computing homographies using Equation 2.36, the space plane associated
with homographies HΠ

ri is the same. In this way we obtain an estimate for
a fixed reference plane that does not depend on a particular choice of the
corresponding points which generate the projective reconstruction. This has
clear advantages over other strategies such as tracking 3D points belonging to
a plane along the video sequence, or by considering the dominant collineation.
A projective bundle adjustment is run eventually over cameras and sparse
triangulated 3D points in order to improve the reconstruction precision.

2.7 Depth Proxies

If we do not make any hypothesis on whether the camera is calibrated or not,
or if motion is constrained/known or not, the scenario we put ourselves in
changes and influences which kind of information we are able to extract and
process from the images. In particular we are interested in finding a suitable
depth–proxy.

A depth-proxy is a quantity that is connected to the depth values of
each pixel and is computable from knowing correspondences of a stereo-pair
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of images. Moreover, since we are working with image sequences, we are
interested in a depth–proxy that depends only on a certain reference image
and not on the other element of the stereo pair being considered. In this
way, if we process the elements of a sequence in a pairwise fashion, but
keeping the first element of the pair fixed, then each iteration provides a
new estimate commensurate with the others. Several depth–proxies can be
computed depending on factors such as the constraints on the motion of the
camera and/or the availability of the camera parameters. In this section we
present three suitable candidates.

2.7.1 Planar Parallax

Planar parallax, also known as projective depth, represents the displacement
in the apparent position of objects imaged from different points of view with
respect to a reference plane [63]. In the case where camera calibration is
unavailable and the camera undergoes a general motion, planar parallax can
be profitably employed instead of depth and it can be computed from stereo
correspondences.

Equation (2.25) relates two corresponding points using the homography
of a generic plane Π and can be rewritten as:

ζimi = ζrH
Πmr + ei. (2.66)

If we look at it as a formulation of the two-views geometry, Equation (2.66)
leads to plane+parallax [38] formulation also known as relative affine struc-
ture [66] (please refer to the original works for a complete discussion and
formulation of the planar parallax theory).

Given a plane Π, with equation n>M = d, two corresponding points m
and m′ are related by

ζi
ζr

mi = HΠmr + ei

(
a

d ζ

)
(2.67)

where a := d − n>ζK−1m is the orthogonal distance of the 3D point M
(of which mr and mi are projections) to the plane Π, and ζr and ζi are the
distance of M from the focal plane of the first and second camera respectively.

If M ∈ Π, then Equation (2.67) reduces to Equation (2.22). Otherwise,
there is a residual displacement, called parallax, proportional to the relative

affine structure γ :=
a

d ζ
of M, with respect to the plane Π.

Which can be rewritten as

mi ' HΠmr + eiγ (2.68)
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where HΠ is the homography induced by plane Π , ei is the epipole in Ii and
γ is the planar parallax (or, simply, parallax if the context is clear), which
can be interpreted as the displacement between the point HΠmr, (i.e. mr

mapped via the homography HΠ), and its actual corresponding point mi.
Figure 2.6 depicts a geometric representation of the above quantities.

mr

mi

HΠmr γ

M

ei er

Π

Figure 2.6: parallax γ associated with the image point mr is the length of
the segment joining mi and HΠmr.

Given a certain number of corresponding pairs (mk
1 ; mk

2) ∀k = 1, . . . ,m
their parallax is obtained by solving for γkr in Equation (2.68):

γkr =
(mk

i × ei)
>(HΠmk

r ×mk
i )

||mk
i × ei||2

. (2.69)

Furthermore in the stereo normal case then H∞ is the identity and the

epipole is ei '
[
1 0 0

]>
, thus parallax in Equation 2.68 results to be

proportional to binocular disparity.
To summarize: when HΠ = H∞ the parallax γ reduces to the reciprocal

of the depth (while in general it is proportional to it), and in the normal
case it is proportional to disparity. Moreover, it can be demonstrated that
γ depends only on the reference image and the plane Π, and not on the
parameters of the second image. This is why the parallax can be seen as a
useful generalization of depth and disparity.
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By setting the reference image, together with a fixed reference plane Π,
one can thus obtain a projective proxy for the depth of a point that is con-
sistent across several images of a same scene, modulo a global scale factor.
In fact, independent estimates of parallax derived from different image pairs
(Ir, Ii), differ from each other by an unknown scale factor, which must be
estimated independently.

In practice, parallax values are computed using Equation (2.69) for each
pixel: the dense set of correspondences (mk

r ; m
k
i ) on the pair of images (Ir, Ii)

is known from a regular stereo matching step; the homography HΠ
ri can be

obtained as described in Section 2.3.1 and epipole ei can be estimated from
epipolar geometry.

At last, we saw that Equation (2.68) describes the relationship between
two views through a reference plane. Since γ does not depend on the position
of the second camera, we can replace the second image with a new one, thus
we can transfer or warp, pixel mr onto mv with:

mv ' HΠmr + evγ (2.70)

where HΠ and ev define the position of the new camera. This can be used
to transfer a parallax map from one reference frame to another, although
this operation brings in several issues related to non-injectivity and non-
surjectivity of the transfer map, that are well known in the context of view-
synthesis [53]. These last issues will be better explored in Section 4.

2.7.2 Depth

The depth of a point is its distance from the focal plane of the camera, as
represented in Figure 2.7. If the interior camera parameters are available,
stereo correspondences can be converted directly into depth values. The
depth values for a given pixel obtained from subsequent frames are directly
comparable.

Let M be a 3D point and let (mr,mi) be its projections onto the image
planes Ir and Ii respectively. Let Pr = Kr[Rr|tr] and Pi = Ki[Ri|ti] be the
perspective projection matrices of the two cameras (that must be known).
The equation of the epipolar line of mr in Ii is

ζimi = ei + ζrKiRiR
>
r K

−1
r mr (2.71)

where ei := Ki(ti − RiR
>
r tr) is the epipole and ζr and ζi are the unknown

depths of M (with reference to Pr and Pi, respectively). Thus we can write

ei = ζimi − ζrm′r (2.72)
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ζ i

M

f

mi

Figure 2.7: the depth ζi is the distance of the 3D point from the focal plane
of the camera.

where m′r := KiRiR
>
r K

−1
r mr. Since the three points ei, m′r and mi are

collinear, one can solve for ζr using the following closed form expression [42]

ζr =
(ei ×mi)(mi ×m′r)

‖mi ×m′r‖2 . (2.73)

Since in real situations camera parameters and image locations are known
only approximately, the back–projected rays do not actually intersect in
space. It can be shown, however, that Formula (2.73) solves Equation (2.72)
in a least squares sense, see [42] for more details.

The actual computation of depth values is performed by applying Equa-
tion (2.73): ei is obtained as the projection of the optical center of the
reference camera Cr, through the second camera Pi; the set of dense corre-
spondences (mk

r ; m
k
i ) with k = 1, . . . , K, where K is the number of corre-

spondences for the current image pair, is known from the stereo matching
step; image points m

′
i are computed according to Equation (2.72).

Please observe how this formulation elegantly avoids the explicit triangu-
lation of M, which would be required in a naive approach.

Comparison with planar parallax

One can compare Equation (2.73) with Equation (2.69) and observe the
similarity of the two formulations. In particular if we solve Equation (2.68)
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for 1/γ instead of γ we obtain

1

γ
=

(ei ×mi)
>(mi ×HΠmr)

‖mi ×HΠmr‖2 . (2.74)

which coincides with Equation (2.73) if m′r = HΠmr, in which case 1
γ

= ζr. In
particular, it can be seen that this condition is equivalent to the special choice
HΠ = H∞, where H∞ is the infinite plane homography, i.e. the homography
induced by the infinite plane between the pair of images (Ir,Ii).

2.7.3 Disparity

If interior camera parameters are unavailable, but camera motion is con-
strained, binocular disparity is the first depth–proxy that is readily available
from stereo correspondences. The disparity values of a pixel computed from
subsequent frames are commensurate only if motion is constrained such that
all cameras share a common focal plane (the focal plane is parallel to the
image plane and contains the camera center).

When two focal planes are coplanar (i.e. up to a coordinate change,

motion is along X axis) then ζi = ζr := ζ and the epipole is ei =
[
bf 0 0

]>
,

where f is the focal length b is the magnitude of the translation. Moreover,
if Ki = Kr then m′r = mr, hence Equation (2.72) simplifies to:

mi −mr =
[
bf/ζ 0 0

]
(2.75)

The disparity, defined only in the normal case, is the non-zero (horizontal)
component of the pixel coordinates differences. Two cameras can be always
brought to the normal case by rectification [25, 24].

In the case of multiple cameras, since disparity is proportional to the
reciprocal of the depth and the depth is defined with respect to the focal
plane, there must be a common focal plane in order for disparities to be
commensurate. This can always be achieved for N ≤ 3 cameras by rectifica-
tion (rotating the focal planes around the optical centers until they coincide
with the plane defined by the three centers), but cannot be guaranteed for
more cameras, unless camera centers are coplanar.

2.8 Uncalibrated motion description

In this section we will first derive a description of a rigid motion that can
be achieved when cameras are not calibrated (uncalibrated motion), resting
on the knowledge of the epipole and the homography of the plane at infinity.
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Then we will draw its relationship with the Euclidean description of rigid
motions, represented by the special Euclidean group SE(3,R).

We aim to obtain an equation relating views 1-3 in terms of 1-2 and 2-3.
To this end, let us consider Equation (2.67), which expresses the epipolar
geometry with reference to a plane, in the case of view pair 1-2:

ζ2

ζ1

m2 = H12m1 + e21γ1 (2.76)

and view pair 2-3:
ζ3

ζ2

m3 = H23m2 + e32γ2. (2.77)

By substituting the first into the second, we obtain:

ζ3

ζ1

m3 = H23H12m1 + (H23e21 + e32
d1

d2

)γ1 (2.78)

where d1 and d2 are the distances of the plane Π from the first and the second
camera respectively.

Comparison with Equation (2.67) yields:

H13 = H23HΠ12 and e31 = H23e21 + e32
d1

d2

(2.79)

The ratio
d1

d2

in general is unknown, but if Π is the plane at infinity then

d1

d2

= 1 (please note that this is approximately true for planes distant from

the camera). Therefore, taking the plane at infinity as Π, Equation (2.78)
writes:

H∞13 = H∞23H∞12 and e31 = H∞23e21 + e32 (2.80)

Albeit, in general, homographies can be computed only up to a scale
factor, in the case of the infinity plane homography, if internal parameters are
assumed constant (as we do henceforth), the scale is fixed by the requirement
that det(H∞) = 1.

Let eji and H∞ij be the epipole and the plane at infinity, respectively,
linking two cameras i and j. The matrix

Dij :=

[
H∞ij eji

0 1

]
(2.81)

is called the uncalibrated rigid motion matrix.
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As opposed to a Euclidean rigid motion matrix, Dij contains the homog-
raphy of the plane at infinity in place of the rotation, and the epipole in lieu
of the translation.

In matrix form Equation (2.80) writes:

D13 = D23D12 (2.82)

Interestingly enough, uncalibrated rigid motion matrices Dij follow the
same multiplicative composition rule as the homogeneous rigid motion ma-
trices Gij of SE(3,R). In a sense, Dij is a homogeneous representation of the
rigid motion at the uncalibrated stratum. This observation leads to the real-
ization that the uncalibrated rigid motions form a group that is isomorphic
to SE(3,R), under the assumption of constant internal parameters K. Let

Gij :=

[
Rij tij
0 1

]
∈ SE(3,R) (2.83)

be a matrix that represent a rigid motion, where R is a rotation matrix and
t is a vector representing a translation.

First, let us observe that the operator ϕK : ϕK(Gij) = Dij that maps
calibrated operations into the uncalibrated stratum, where the infinity plane
homography substitutes the rotation and the epipole substitutes the trans-
lation, is a conjugacy map:

ϕK(Gij) = Dij =

[
KRijK

−1 Ktij
0 1

]
= K̃GijK̃

−1 (2.84)

with

K̃ =

[
K 0
0 1

]
. (2.85)

Then, it is easy to shown that ϕK is an homomorphism:

ϕK(G23)ϕK(G12) = K̃G23K̃
−1K̃G12K̃

−1 = K̃G23G12K̃
−1 = ϕK(G23G12)

(2.86)
and, being ϕK invertible, it is an isomorphism.

Thanks to the fact that uncalibrated motions are isomorphic to SE(3,R),
every operation carried out in the uncalibrated stratum reflects itself consis-
tently in the Euclidean stratum, even if the map ϕK is unknown. Thanks
to this isomorphism, and since SE(3,R) is a Lie group, it is possible to
continuously parametrize the uncalibrated motion of the virtual camera as:

Drv := Dt
ri := exp (t log(Dri)) t ∈ R. (2.87)
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Varying the value of t, we obtain a 1-parameter family orientations which
naturally interpolates/extrapolates the orientations of the of reference and
the auxiliary cameras along a geodesic path. The infinite plane homography
Hrv

Π , along with the epipole ev can be extracted from Drv according to

Drv =

[
Hrv

Π ev
0 1

]
(2.88)

when the reference plane Π is the plane at infinity (i.e. HΠ = H∞) and Drv

is the orientation of the virtual camera.
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Motion-stereo
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3.1 Introduction

This part of the thesis deals with the problem of motion-stereo, i.e. the
estimation of depth (or a depth-proxy) in a monocular sequence of images
taken by a moving camera [75]. Whereas in binocular stereo two cameras
separated by a fixed baseline are employed, in motion-stereo a single camera
moves through a static scene. As a result, over a period of time, the camera
traverses a “baseline” of undetermined length. The grounds for addressing
such problem lie in the attempt to solve the accuracy-precision trade-off in
stereo matching, which can be summarized as follows: due to quantization
errors, the estimated disparity is more precise with a larger baseline, but
the matching is less accurate, because of the exacerbation of perspective
and radiometric nuisances that cause false and missing matches. There is

37
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manifestly a conflict between accuracy and precision, which motion-stereo
approaches attempt to resolve. Early works in motion-stereo [71, 52, 62],
integrate depth maps from different frames into a single map. They require
motion and camera parameters to be known, and most of them restricts
to lateral motion. A common drawback is that they warp the disparity
map from frame to frame, thereby introducing errors and approximations
that disrupt the prediction, and make the integration pointless. More recent
motion-stereo approaches aggregate measures in a discretized 3D volume
[73, 55, 80], but they need calibrated cameras as well.

The multiple-baseline approaches [48, 56, 43] generalize the binocular one
by computing an aggregated matching cost which considers all the images
simultaneously, and then proceed as in the binocular case. These methods
require camera centers to be collinear (equivalent to lateral motion). General-
izations of these approaches can be found in the multi-view stereo literature,
where the aggregated cost is computed along the optical ray in a discretized
volume [34, 28].

From the geometrical point of view, the problem raised by motion-stereo
is how to set a common reference frame where measures from different images
can be integrated. The discretized volume seems the natural choice, how-
ever computation in 3D space can be avoided by considering image-based
quantities such as depth, binocular disparity or planar parallax. As shown in
Section 2.7 when camera parameters and its motion are unknown, planar par-
allax is a suitable depth–proxy that generalizes disparity and depth. This ap-
proach based on pixel-based measures – also called “iconic” – is motivated by
applications like view-synthesis, video interpolation and enhancement (frame
rate up-conversion) and free viewpoint 3D TV.

Apart from the accuracy-precision trade off, it is important to notice that
motion-stereo approaches, have another intrinsic advantage: the fact that
information coming from multiple images is integrated into one reference
frame allows to unveil many areas that would be otherwise occluded when
processing images in pairs. Each new point of view brings new information
to the depth–proxy estimation. This is very important for any application
that relies on the depth map as input data.

3.2 Motivation

Once a common reference is set, the problem posed by motion-stereo can
be seen as the one of integrating measures from different images, hence the
focus of this chapter will be on this data-fusion problem. Our solution aims
at being agnostic with respect to: i) the depth–proxy that is being used
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ii) the binocular stereo matching algorithm which is considered as part of
the input of our method. Indeed both the depth–proxy measures and the
disparity maps produced by the binocular stereo matching can be considered
as inputs of the data-fusion algorithm. In Section 3.3 we set parallax as our
depth-proxy for coherence with the method proposed in Chapter4 although
other depth-proxies could be adopted without impacts on the method.

As in [52, 71], we use a dynamic approach, as we apply Kalman filtering
for recursive estimation of depth maps by combining measurements along
the time line and within a spatial neighborhood. Pixel–wise depth measures
are relaxed by considering the information coming from the neighbors within
the same superpixels, using a spatial Kalman filter. An analogous result has
been obtained in [52] by smoothing disparity maps with piecewise continuous
splines, where a regularization-based smoothing is used to reduce measure-
ment noise and to fill in areas of unknown disparity. Other methods perform
adaptive smoothing in a edge–aware fashion, e.g. [45] where temporal consis-
tency is enforced among different depth maps using an edge-aware Gaussian
filtering extended to the temporal dimension in video volumes, or [65] where
the depth map is filled by solving a least square error problem using edge
and temporal information as weights. With respect to our approach, the key
difference is that these works are post–processing approaches that aim at im-
proving the quality of depth maps whereas our method uses edge information
(in the form of superpixels) to be aware of which neighbors are relevant while
updating depth values on the current reference map.

In both temporal and spatial dimensions, the depth measures are trusted
using confidence metrics attached to the measures.

As for experimental analysis, it is left to Chapter 5), further in the thesis.

3.3 Our method

The input of the method is a monocular video sequence of N frames, of which
one is set as the reference, denoted by Ir. For every pair of images (Ir, Ii)
(where, for example, if Ir = I1 and i = 2, . . . , N), estimates of the depth–
proxy map relative to the reference frame are computed independently by
binocular stereo matching. The iterative pairwise processing mechanism is
shown in Figure 3.1. We designate parallax as the depth–proxy, because the
application we intend to focus on in the next Chapters deals with uncali-
brated data. Moreover, in general, parallax is the more general depth–proxy
and subsumes all the others. However disparity or depth can be used instead
when certain conditions are fulfilled. Regarding camera motion, the only as-
sumption made herein is that a relevant portion of the reference frame is kept
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Figure 3.1: pairwise processing. The reference camera (green in this example)
is kept fixed whereas the second element (red) of the pair changes at each
iteration.

visible at all the subsequent frames of the video segment. When this assump-
tion fails, a new reference frame is set and the filter is restarted. Note that
information about the temporal trajectory is not used, i.e. the pairs could
occur in any order. This property has two main advantages: i) pairwise
processing can be performed independently, making the algorithm highly
parallelizable ii) sets of still images as input, instead of video sequences, can
be processed.

Each of the N − 1 independent estimates of the parallax map contains
errors and valuable information, the goal of data fusion is two-sided: on
one hand it is to enhance the valuable information while smoothing out
the errors, indeed the classic rationale behind motion-stereo is to break the
accuracy vs precision trade-off by using multiple baseline lengths (a small
baseline implies few occlusions, easier stereo matching but raw quantization
of the parallax, whereas a large baseline implies better quantization of the
parallax but more occlusions and harder matching). On the other hand, the
aspect that we believe to be of more useful is that the information coming
from different images, through the integration framework, is gathered on
a reference frame. Such information contains the contribution of several
different point of views. This drastically decreases the number of occluded
pixels. In our framework all these parallax maps are combined together
using spatial and temporal coupled Kalman filters, achieving more stable and
accurate values. Superpixels provide the spatial support for the relaxation
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of parallax values among the image neighbors.

Figure 3.2 shows a schematic overview of our method. Each step will be
described in the following sections.

INPUT SEQUENCE

PAIRWISE PROCESSING

SUPERPIXEL INFORMATION

REFINED PARALLAX MAP

Figure 3.2: overview of the motion-stereo method. The reference image Ir
(the image with the green camera in this example) is selected from the input
sequence of N elements (N = 4 in this example) and it is oversegmented into
superpixels (bottom image of the second column). The pairwise processing
computes N−1 maps, one for each pair (Ir, Ii). The Kalman filter merges the
pairwise maps using superpixel information and confidence measures, and it
yields a refined parallax map.

3.4 Stereo Matching

The image pairs (Ir, Ii) need to be rectified for the subsequent stereo match-
ing step to work. In particular, each pair must be rectified independently,
unless the camera centers are coplanar. In the calibrated scenario, one can
use [25], where the algorithm takes the perspective projection matrices of
the original cameras and computes a pair of rectifying projection matrices.
When internal parameters are unknown, a suitable approach is [24], which
assumes that a number of corresponding points are available and we seeks
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the rectifying homographies that make the original points satisfy the epipo-
lar geometry of a rectified image pair. Both approaches were summarized in
Section 2.4.

Dense correspondences between Ir and Ii can be obtained using any stereo
matching algorithm. In our experiments, since we focus on the integration
framework and not on the performance of the stereo itself, we used a simple
block–matching with Normalized Cross Correlation (NCC) as a matching
score ∑

n∈W (Ir(xn, yn)− µr)(Ii(xn, yn)− µi)√∑
n∈W (Ir(xn, yn))2

√∑
n∈W (Ii(xn, yn))2

(3.1)

where µr and µi are the means of window W respectively in images Ir and
Ii.

After the block–matching step, we perform a left–right consistency (LRC)
check, which is a standard procedure based on the uniqueness principle [51].
The consistency is verified if p is matched with p′ when searching on the pair
(Ir, Ii) and p′ is matched with p when searching on the pair (Ii, Ir), where
p is a point in Ir and p′ is a point in Ii. All non–consistent matches are
discarded. This procedure skims the results from occluded pixels and bad
matches. Dense correspondences are then transferred back to the original
reference images by applying the inverse of the rectifying homographies (de–
rectification).

3.5 Confidence Measures

During the stereo matching step, a confidence map, associated with the par-
allax map, is also computed. For each pixel we integrate the LRC check with
a confidence indicator based on the matching score profile.

Thus, the confidence associated with the parallax computed at pixel i is,

ϕ(i) :=

{
0 if pixel i fails the LRC check

φ∗(i) otherwise
(3.2)

where φ∗(i) is one of the metrics discussed below. The confidence ϕ(i) varies
in [0, 1], where 0 means that pixel i is totally unreliable and 1 means maxi-
mally confident.

We tested and compared different confidence measures, briefly reported
here. The reader is referred to [37] for a more detailed description.

In the following c(d) denotes the matching cost – normalized in [0, 1] –
associated with disparity hypothesis d. Since NCC is a similarity measure
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Figure 3.3: example of a cost function with a 10 pixel disparity range. The
minimum cost is denoted by c1, the second smallest cost value is denoted by
c2 and the second smallest value that is also a local minimum is represented
by c2m.

and all the confidence measures are defined using a cost function, 1 − NCC
will be used instead.

The minimum cost for a pixel and its correspondent disparity value are
respectively denoted by c1 and d1 (i.e. c(d1) = c1 = min(c(d))). The second
smallest cost value is denoted by c2, while the second smallest value that is
also a local minimum is represented by c2m (see Figure 3.3 for an example).

A very simple confidence metric is the matching score:

Matching Score (MSM):

φMSM = 1− c1. (3.3)

The first group of measures assess the cost function around its minimum
by comparing it to the following smaller cost values (c2 or c2m) or to the
disparity neighbors.

Curvature of the cost function (CUR):

φCUR =
2 + (−2c1 + c(d1 − 1) + c(d1 + 1))

4
(3.4)
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Peak Ratio (PKR):

φPKR = 1− c1

c2m

(3.5)

Maximum Margin (MMN):

φMMN =
c2 − c1

c2

(3.6)

Winner Margin (WMN):

φWMN =
c2m − c1

c2m

(3.7)

The following metrics take into account the entire cost curve by assuming
that it follows a normal distribution.

Maximum Likelihood Measure (MLM):

φMLM =
e
− c1

2σ2
MLM∑

d e
− c(d)

2σ2
MLM

(3.8)

Attainable Maximum Likelihood (AML):

φAML =
1∑

d e
− (c(d)−c1)2

2σ2
AMLM

(3.9)

We also considered two special measures to use as a touchstone. GT as-
signs confidence 1 if the corresponding pixel’s disparity is correctly computed
and 0 otherwise, according to the ground truth. UNI is an uninformed metric
that assigns the same confidence to all the pixels.

Ground truth (GT):

φGT =

{
1 if disparity is correct

0 otherwise
(3.10)

Uniform (UNI):

φUNI = cost (3.11)
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3.6 Temporal integration

Temporal integration of parallax data is performed through a simple 1-d
Kalman filter with constant (up to a scale) state and direct measurement
model. Let xt(m)+ be the best parallax estimate (the state) available at
time t for pixel m, let pt(m)+ be its variance; let zt(m) be the parallax
measured at pixel m of frame t (via stereo matching), and let rt(m) be its
variance. The Kalman filter equations write:

Process: xt = s · xt−1 + wt, Var(wt) = qt (3.12)

Measure: zt = xt + vt, Var(vt) = rt (3.13)

Prediction: x−t = s · x+
t−1, p−t = s2 · p+

t−1 + qt (3.14)

Update: x+
t =

x−t rt + zt p
−
t

p−t + rt
, p+

t =
p−t rt
p−t + rt

(3.15)

Where x−t and p−t represent the a priori estimations of the state and its vari-
ance respectively, whereas x+

t and p+
t are their updates using measurement

zt and its variance rt. The variable m has been omitted as the treatment is
uniform over the pixels.

It turns out to be more convenient to formulate the update equations in
terms of the inverse variance, which will be henceforth called information
(the Fisher information of a random multivariate distribution is the inverse
covariance [9]). Let ip = 1/p and ir = 1/r, then Equation (3.15) becomes:

x+
t =

zt
irt + x−t

ip−t
irt + ip−t

, ip+
t = irt + ip−t . (3.16)

The process model contains a multiplicative factor s which takes into
account the fact that independent measures of the parallax are scaled by
an unknown factor: in fact, the current state is always scaled to match the
measure. The scale s is estimated by comparing x+

t−1 with zt in a robust
(outliers resilient) way. First the ratio between the two maps is computed
pixelwise, considering only the pixels that, given their information value, are
the most reliable (i.e. upper quartile of the irt map); then the ratios which are
greater than 5.2 median absolute deviations from the median are discarded
as outliers (a.k.a. x84 rejection rule [61]); finally the scale is computed as the
mean of the inlier ratios.

The process noise wt accounts for the errors introduced in predicting the
state. Since the state we are estimating is constant (up to a scale), and no
approximation are made in the prediction, our temporal model has qt = 0.

The measurements noise vt models errors that affect the parallax estima-
tion, hence its information irt is directly related to the confidence ϕ defined in
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Equation (3.2). We use irt = 12ϕ, which sets the maximum information for
a correct parallax value to the reciprocal of the variance of the quantization
noise (which is 1/12).

The update of the filter state takes place through a validation gate to
ensure that outliers do not skew the estimate. In particular, we consider the
Mahalanobis distance as a gating criterion [67]. The update is accepted only
if:

(x−t − zt)2

p−t + rt
≤ χ2

1(α) (3.17)

where χ2
1(α) is the upper 100αth percentile of a chi-square distribution with

1 d.o.f. (we used α = 0.98).
The update equation fails when ip−t = irt = 0, because a 0/0 form is

obtained. This happens at t = 1 if a reliable measure (ir1 6= 0) is not
available, and at any subsequent t until a reliable measure is found. This
special case is handled within the validation gate by simply skipping the
update whenever irt = 0. Please note that irt = 0 means that the pixel is
unmatched (not visible in the conjugated image).

In the most general case, the filter starts with ip−0 = 0 and x−0 undefined,
however, if a parallax map is available for the reference frame of the previous
video segment, it can be warped to the current reference frame with Equation
(2.70) and provides a partial initialization for the state. The information of
the warped parallax is downweighted by a factor 10 to account for errors
introduced by the warping.

Finally, it is worth noting here that this simple Kalman filter – ignoring
the scale s – reduces to a weighted average of the measures zt with the
information values irt as weights, as can be observed by solving the recursive
update equations, thus obtaining:

ip+
t =

t∑
k=0

irk (3.18)

x+
t =

zt
irt + x+

t−1

∑t−1
k=0

irk∑t
k=0

irk
=

∑t
k=0 zk

irk∑t
k=0

irk
. (3.19)

Indeed, the middle term of Equation (3.19) is the well known formula for
the recursive computation of the average. A matrix equivalent to Equations
(3.18) and (3.19) can be also derived as the least squares solution to the
problem of optimally (in terms of Mahalanobis distance) combining an en-
semble of independent (multivariate) random variables which estimate the
same true parameter [59]. The advantage of the Kalman filter is in its re-
cursive formulation, which leads to a causal filter that produces at each time
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instant (dynamically) the best estimate based on the past measures, whereas
the weighted average considers all the measures in a batch.

3.7 Spatial support

3.7.1 Superpixel extraction

The spatial relaxation requires to identify a neighborhood of each pixel in
the reference image where the depth is ideally constant. This is achieved
by computing superpixels, i.e., compact and almost uniform regions of the
image, using the Simple Linear Iterative Clustering algorithm (SLIC) [8],
which starts with a regular grid of centers and then locally clusters pixels in
the combined five–dimensional color (CIELab) and image coordinates space.
The density of the initial grid plus a regularization coefficient are the only
two parameters that need to be set. The (approximated) desired size of the
superpixels is specified so that

number of initial cells =
reference frame resolution

desired size of the superpixel
.

Some segmentation examples are shown in Figure 3.4.

Figure 3.4: examples of superpixel extraction using different values for the
grid density, which controls the size of the superpixel.
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3.7.2 Extension to the spatial domain

Once the superpixels are extracted, in principle, the integration with the
spatial neighborhood should take place by introducing spatial correlations
between neighboring pixels, which entails a state vector of the size of the
image (M) and a non-diagonal (M ×M) covariance matrix. However, this
would become too computationally demanding, so we approximate its effect
by modifying the prediction step of the temporal 1-d Kalman filter, with-
out changing its structure. In particular, in the prediction formula (3.14),
we substitute the state x+

t−1 with a smoothed state x̂+
t−1 that depends on

the neighboring pixels within the same superpixel (and the information ip+
t−1

accordingly).
To be consistent with the temporal dimension, we derive x̂+

t within the
Kalman filter framework. As mentioned in [52], an alternative approach to
the prediction of state variance is the so-called “exponential age-weighting” of
measurements, where the current variance is inflated by a small multiplicative
factor [9]:

p−t = (1 + ε)p+
t−1. (3.20)

Equations (3.18) and (3.19) can be generalized to:

ip+
t =

t∑
k=0

irkδ
t−k (3.21)

x+
t =

∑t
k=0 zk

irkδ
t−k

ip+
t

(3.22)

where we introduced δ = 1/(1 + ε) which is the inverse of the exponential
age-weighting, since we are dealing with information instead of variance.

These formulae can be translated into the spatial domain by substituting
the exponential age-weighting term, which gives smaller weights to older mea-
sures, with an exponential distance-weighing term (with a parameter ρ < 1)
which serves the purpose of weighting the measure according to the distance
to the current pixel. Let x(m)+ be the parallax (state) at pixel m and let
ip(m)+ be its information value:

ip̂+(m) =
∑

q∈Ω(m)

ip+(q)ρ‖m−q‖ (3.23)

x̂+(m) =

∑
q∈Ω(m) x

+(q) ip+(q)ρ‖m−q‖

ip̂+(m)
(3.24)

where Ω(m) is the superpixel to which pixel m belongs. In this paragraph
we will omit the constant temporal index, as we are dealing with the spatial
dimension only.
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The information of the combined measure is the sum of the information
values of the original measures (with exponential distance-weighing), so it is
much greater than the original point-wise information. This would be correct
only if the combined measures are not correlated, but this is not the case here,
for neighboring parallax measures are indeed correlated.

The problem of combining correlated measures of the same variable has
been addressed in the data fusion literature, and one solution that provides
consistent estimates is the Covariance Intersection approach [72], where “con-
sistent” means that the estimated covariance is an upper bound of the true
covariance. When considering scalar variables, Covariance Intersection boils
down to selecting the measure with the highest information value:

ip̂+(m) = max
q∈Ω(m)

{ip+(q)ρ‖m−q‖} (3.25)

q̄ = arg max
q∈Ω(m)

{ip+(q)ρ‖m−q‖}

x̂+(m) = x+(q̄) (3.26)

Please note that Equation (3.26) would yield the same value of x̂+(m) for
each pixel m ∈ Ω(m) if ρ = 1, whereas with ρ < 1 it produces different values
within the same superpixel. The value of ρ can be computed as a function of
the cut-off radius θ (in pixels) at which the function ρ‖m−q‖ falls below a given
threshold, 10−2 in our implementation. The value of θ should be of the order
of the stereo matching window size. Please note that, as the smoothing is
limited within the superpixel, there is no point in choosing θ larger than the
superpixel radius. The Matlab pseudo-code reported in Algorithm 2 illus-
trates one iteration of the filter: the function takes in input the current state
estimate (x,ip) and the measure (z,ir) and updates the state estimate
accordingly. It also shows how temporal and spatial integration are iterated.
The compute_scale function implements the robust method described in
the text (after Equation (3.16)). In the for cycle we have been sloppy about
the difference between linear indexing and subscripts (row, column), for the
sake of readability. Also the subtraction in pix-pix(j) is not syntactically
correct, as pix(j) should have been replicated. The actual working code is
available on-line [77].
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Algorithm 2 Kalman filter with Spatial Support

function [x,ip] = STKalmanStep(x,ip,z,ir)

% update state (x,ip)

% in the face of measure (z,ir)

% prediction

s=compute_scale(x,z);

x=s*x;

ip=1/s^2 * ip;

% validation gate

res=((x-z).^2)./(1./ip + 1./ir);

v=(res <= Chi) & ir>0;

% temporal update

x(v)=(z(v).*ir(v)+x(v).*ip(v))./(ir(v)+ip(v));

ip(v)=ip(v) + ir(v);

% spatial relaxation

for k=1:numel(superpixels)

pix=superpixels(k).PixelList;

for j=1:length(pix)

w=rho.^sum(sqrt((pix-pix(j)).^2),2);

[val,pos]=max(ip(pix).*w);

ip(pix(j))=val;

x(pix(j))=x(pix(pos));

end

end



Chapter 4

View-synthesis

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 51

4.2 Motivation and contributions . . . . . . . . . . . 52

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Stereo processing . . . . . . . . . . . . . . . . . . . 53

4.3.2 Virtual camera orientation . . . . . . . . . . . . . 55

4.3.3 Forward mapping of parallax maps . . . . . . . . . 56

4.3.4 Using multiple sources . . . . . . . . . . . . . . . . 57

4.3.5 Merging of parallax maps . . . . . . . . . . . . . . 58

4.3.6 Backward mapping of color . . . . . . . . . . . . . 59

4.4 View-synthesis with motion-stereo . . . . . . . . 59

4.1 Introduction

As we already stated view-synthesis is the problem of rendering virtual im-
ages starting from actual images. Applications include the generation of
a 3DS video from a monocular one [78, 41, 14, 81], upsampling of video
sequences in order to achieve slow-motion effects (e.g., [15, 47, 29]), video-
conferencing ([40, 44, 54]).

When cameras are calibrated, i.e. when both internal and external param-
eters are available, given the depth of an image point, it is straightforward
to compute the position of the point in virtual image from any viewpoint.
Techniques based on this paradigm, known as Depth Image Based Rendering

51
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(DIBR), have been extensively studied and several solutions are available in
the literature ([82] and references therein).

But when dealing with the 3DS conversion problem, calibration data
is hardly available. Despite this, many works addressing this application
([78, 41, 14, 81]) assume some knowledge on the camera parameters, and fall
within the DIBR family described above. The uncalibrated view-synthesis
(UVS) is less explored and more challenging for several reasons.

First of all, depth cannot be used in uncalibrated situations, and suit-
able depth-proxies must be defined, together with proper warping functions
based on fundamental matrices [46], trilinear tensors [10], or plane-parallax
representation [39, 66].

Second, specifying the external orientation (position and attitude) of vir-
tual views is unnatural, since they are embedded in a projective frame, linked
to the Euclidean one by an unknown projective transformation. Only few
works address this problem. In [21] an automatic method based on the pla-
nar parallax as a geometry proxy is presented: given two or more reference
images, the possible uncalibrated orientations describe a 1-parametric trajec-
tory obtained interpolating or extrapolating the relative motion among refer-
ence images. This approach is expanded in [27] by extending to 3-parametric
trajectories, thus allowing additional positions along and orthogonally the
line of sight, and in [19] by defining a 1-parametric rectified trajectory that,
when derectified, is compatible with the one in [21], and is more resilient to
errors induced by poor epipolar geometry estimation. In the upsampling of
video sequences the virtual views are always very close to the reference view,
hence simple interpolation along motion vectors is widely used.

Finally – but this issue is shared with DIBR techniques – several sub-
problems have to be addressed when applying warping functions: folding,
which occurs when two or more pixels in the reference image are warped to
the same pixel in the virtual image, holes, which may be caused either by
occlusions or by missing geometric information and result in points that are
supposed to be visible in the virtual image but do not have a correspondent
point in the source image, magnification, when a projected area of a surface
is much bigger in the virtual view than the source, and at last resampling,
due to the discrete nature of digital images, because mapping to the virtual
view will in general yield non-integer coordinates.

4.2 Motivation and contributions

In this chapter we present our method for uncalibrated view-synthesis (UVS)
in the context of 3DS conversion from a set of monocular and uncalibrated
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images. We developed a fully automatic UVS pipeline that addresses most
of the critical problems arising in uncalibrated scenarios. The method takes
inspiration from the pipeline presented in [23], but instead of transferring
points directly from the reference image to the novel one (forward), we use a
backward mapping strategy which yields finer results and allows to combine
information coming from multiple reference images, blending several parallax
maps into one. At last, we propose a simple and suitable method to fill holes
in the final virtual image and cope with resampling artifacts.

As for the motion-stereo method the experimental evaluation is reported
in the next Chapter 5.

4.3 Method

In this section we describe the steps of our method. The input is a set of
reference images Ir and a set (not necessarily disjoint) of auxiliary images
Ii. One or more parallax maps are computed for the reference image Ir,
with the support of auxiliary images Ii (the ones with the highest overlap
with Ir). These parallax maps are transferred (forward) to the virtual image
Iv and merged together. The resulting map is then used to synthesize Iv by
(backward) mapping to the right pixel in the right source image. Please note
that the use of parallax instead of disparity is crucial to allow the fusion of
multiple parallax maps, as discussed in Section 2.7.

4.3.1 Stereo processing

The purpose of this part of the algorithm is to compute the parallax value
γ for each pixel of the reference image Ir, with the support of an auxiliary
image to constitute a stereo pair.

First the image pair is rectified. Since the internal parameters are un-
known, we use the uncalibrated procedure described in [24] and summarized
in Section 2.4, which relies on sparse correspondences. To this end, first SIFT
features are extracted in both images and descriptors are matched, and then
a RANSAC estimation of the fundamental matrix is performed in order to
discard outlier matches.

The subsequent step is the stereo matching. We use the Matlab/OpenCV
implementation of the Semi-Global Matching (SGM) algorithm [35]. In SGM,
matching cost is based on mutual information. Mutual information (MI), is
a measure, for model alignment based on the entropy H, i.e. the amount of
uncertainty in a probability density function. MI has three terms: entropy
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of the first image, entropy of the second image and joint entropy

MIIr,Ii = HIr +HIi −HIr,Ii (4.1)

When two images are well aligned using a disparity map, then MI is maxi-
mized. The first two terms of mutual information measure the entropies in
the un-occluded pixels of each individual image. The histograms can be used
as an estimate of the probability density function of the image. If all bars
in the histogram have the same length, then there is maximal uncertainty in
the picture and we have a high entropy (this would be the case in a picture
of white noise where we can hardly predict the intensity of the next pixel). If
the bars are unevenly distributed then there is less uncertainty and we have
a lower entropy. The third term is about the joint entropy of the two images.
It is obtained overlaying the images based on the disparity map, and then for
each intensity in the first image, creating a histogram of the matching pixels
in the second image. This yields a two-dimensional histogram.

The matching cost for a given pixel p and its disparity Dp, is the negative
of the mutual information

− C(p,Dp) = hIr(p) + hIi(Dp)− hIr,Ii(p,Dp). (4.2)

The first term hIr is the entropy of the un-occluded pixel in the first image,
the second term is the entropy of the corresponding un-occluded pixels in the
second image. We want those terms to go up, because we want to identify
as many un-occluded pixels as possible. The third term is the joint entropy.
We want the joint entropy to go down, because we want a good alignment
between the un-occluded pixels.

The next step is an aggregation of the cost. Pixel-wise cost calculation
is inherently ambiguous. This is usually done using an energy function. The
energy function is evaluated globally or over some kind of window. This
method uses a global energy function, but only performs semi-global match-
ing.

The energy function adds smoothness terms to the cost function, trying
to resolve ambiguities by requiring smoothness in the disparity map

E(D) =
∑
p

C(p,Dp) +
∑
q∈Np

P1T (|Dp −Dq| = 1) +
∑
q∈Np

P2T (|Dp −Dq| > 1)


(4.3)

The first term of the energy function is the pixel’s cost function (4.2). The
second term adds a penalty P1 for all pixels q in the neighborhood Np, for
which the disparity changes a little bit (that is, for one pixel). The third term
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adds a larger adaptive penalty P2, for all bigger disparity changes. Using a
low penalty P1 for small changes permits an adaptation to slanted or curved
surfaces. The penalty P2 for larger changes preserves discontinuities. The
T stands for an indicator function, which is one when the condition is true,
and zero if the condition is wrong.

The energy function is global and has to be evaluated for all possible
disparities of each pixel. The asymptotic time for evaluating the global energy
function is the square of the width times the square of the height times the
possible disparities. This is an NP-complete problem and thus takes a very
long time to compute, this is why semi-global matching is used. The method
uses multiple dynamic programming passes, which are 1-dimensional paths
and then combines the results of the passes. A common approach is to
combine the results of a horizontal path with a vertical path. But this leads
to streaking effects. In SGM the results of sixteen directions are combined.
This gives a good coverage of the area around the pixel. The results are
almost as good as with global matching, but much faster.

The stereo matching algorithm is applied to both images in order to
obtain two disparity maps, one referred to Ir and the other to Ii.

At this point we perform some post-processing on the disparity maps.
First we use a simple hole-filling technique as the one suggested in [58].
Afterwards, we use anisotropic diffusion [57] to smooth out the maps without
compromising the edges. At last we run a left-right consistency check to
gather precious occlusion (i.e., visibility) information. The disparity maps
are used to obtain a set of dense correspondences that are then derectified
using the inverse rectifying homographies.

Ultimately, parallax values are computed using Eq. (2.69) for each pixel:
the dense set of correspondences mk

r ↔ mk
i on the pair of images (Ir, Ii)

is known from the stereo matching step; the collineation is Hri
Π = T−1

2 T1

and epipole ei is estimated from epipolar geometry. As a by-product of the
rectification method [24], HΠ approximates the homography of the plane at
infinity.

4.3.2 Virtual camera orientation

In the upsampling application the orientation of the virtual camera inter-
polates between two actual ones, hence it can be specified by computing
Drv using Equation (2.87) and selecting t ∈ [0, 1]. In the 3DS conversion
application, on the contrary, the virtual camera position is alongside the ac-
tual one, thus, in general, outside its actual trajectory. A sketch of the two
configurations is represented in Figure 4.1.

Assuming that the video has been shot with zero roll angle, i.e. the
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Figure 4.1: virtual camera (represented in green) positioning when interpolat-
ing between two views (on the left) and in the context of the 3DS conversion
application (on the right).

image rows are parallel to the horizon, Hrv
Π and ev (that specify the position

of the second camera) can be specified as follows. Since there is no rotation
between the reference image and the virtual one (images are coplanar), from
Section 2.4 we know that the infinite plane homography Hrv

Π is the identity

matrix and ev =
[
t 0 0

]T
with t ∈ R+, since the virtual viewpoint is

displaced horizontally. Thus the orientation of the virtual camera can be
computed as

Drv =


1 0 0 t
0 1 0 0
0 0 1 0
0 0 0 1

 t ∈ R+. (4.4)

4.3.3 Forward mapping of parallax maps

Starting from a parallax map for the reference image Ir, we want to obtain
a map referred to the virtual Iv instead.

We begin with using the reference image Ir as source image. The first step
is to generate a set of corresponding points between Ir and Iv by instantiating
Equation (2.68) as

mv ' Hrv
Π mr + evγ (4.5)

where Hrv
Π is the infinite plane homography between the reference image Ir

and the virtual one Iv and ev is the epipole of Iv. Quantities Hrv
Π and ev

are specified through the parameter t or in Equation (4.4), or its original
formulation Equation (2.87), depending on the application, which encode
the inter-ocular separation.

This process is a forward mapping : points in the original image are
mapped forward, to the virtual image. Once we obtain the set of correspond-
ing points among the reference image and the novel image we can compute
parallax values with respect to our novel image using Equation (2.69).
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As it is well known, forward mapping raises some intrinsic problems: i)
small holes in the destination image due to the non-surjectivity of the map
ii) the folding effect caused by the non-injectivity of the map. In the next
two subsections we describe how we dealt with these problems.

Probabilistic splatting

In order to deal with the non-surjectivity issue, we developed a randomized
technique that accounts for the quantization inherent to the forward map-
ping.

First, we generate noise in the form of random values drawn from the
standard uniform distribution on the open interval (−0.5, 0.5) (the amplitude
of the interval is chosen to be equal to the maximum error introduced by the
coordinates rounding). The noise is added to the non-integer coordinates
mv in Equation (4.5) which are then rounded to their closest integer value.
The procedure is repeated for n times (we choose n = 100) and all the
perturbed parallax maps are merged into the final one by averaging them.
This approach has two main advantages: i) as n increases, the process will
tend to approximate a proper linear interpolation between the neighbouring
pixels, based on the distance from the integer values (i.e. the decimal parts
of the coordinates) ii) this procedure fills holes in the map, since pixels with
undefined value are likely to be filled with the value of the neighbouring valid
ones.

Folding

Folding occurs when different source pixels are mapped to the same desti-
nation pixel. This phenomenon is due to the modification of the viewpoint,
when two points that were visible in the original image fall along the same
line of sight in the new image. As most approaches in literature, we deal
with this problem by selecting the pixel with the greater disparity which, by
definition will be occluding the one with a smaller disparity value.

4.3.4 Using multiple sources

If more source images are available the forward mapping procedure requires
an additional step. For the forward mapping to produce a set of aligned par-
allax maps we must combine two uncalibrated motion matrices as described
in the following. Let Ir be the reference image and let Ii be the current
auxiliary image that we want to employ as additional source, first we must
map the auxiliary view onto the reference view. This is done by computing
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Dir from Equation (2.87) using Ii as reference and using t = 1. The uncal-
ibrated motion matrix that maps the auxiliary view to the virtual view is
then obtained as

Div = DrvDir (4.6)

where Drv is the one originally computed for the reference image Ir. The
uncalibrated motion composition scheme is shown in Figure 4.2

Drv

Dir

Ii

Ir Iv

Figure 4.2: uncalibrated motion composition. The uncalibrated motion
matrix from an auxiliary view to the virtual view can be obtained as
Div = DrvDir .

4.3.5 Merging of parallax maps

At this point we have a collection of independent parallax maps for Iv and
the purpose of this step is to merge these maps into one, in order to reduce
noise and fill holes.

Observe that even though these maps are commensurable, they differ by
a global scale factor s. However, due to noise and outliers, the factor will not
be unique for the entire image, thus we estimate it from the distribution of
the pixel-wise ratios in a robust way using the Median Absolute Deviation
and the x84 rejection rule [30].

Once the maps are brought to the same scale we merge them into a final
one by keeping the highest parallax value in each pixel, where holes have
conventionally assigned −∞.
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This fused parallax map is accompanied by a source map that records
for each element of the final parallax map, which of the reference images it
originates from. Together they define a mapping from Iv to the reference
images that will be exploited in the actual rendering of Iv, described in the
next section.

4.3.6 Backward mapping of color

In the final stage of the method, the pixel grid of the virtual image is used
as a reference to determine corresponding points in the reference images.

This process is a backward mapping, since points in the virtual image are
mapped (backward), to points in the reference images to get a color assigned.
Again, we rely on Eq. (2.68) and we rewrite it as

mr ' Hvr
Π mv + erγ (4.7)

Where Hvr
Π and er are obtained according to Equation (2.87), but this time

from matrix D−1
rv .

The formula is applied pixels-wise using as the reference image the one
specified in the source map. Bilinear interpolation is used to assign values to
non-integer coordinates.

Occlusion filling

There can be points that are visible in the novel image, but for which a
parallax value could not be computed, because they are not visible in the
reference images or because of failure of the stereo matching. Such holes
can only be filled heuristically. In our method, we build a binary map that
estimates local foreground/background segmentation: on the disparity map,
for each unassigned pixel we compute the variance of its neighborhood. A
high variance indicates the presence of multiple depth layers, thus it is likely
that an object in the foreground is occluding the background and the pixel is
marked as background. Otherwise it is marked as foreground. This procedure
is based on the idea presented in greater details in [58]. Once the binary map
is built, we use it to fill holes on the virtual view, using the average colour
of the neighbours that fall within the same class.

4.4 View-synthesis with motion-stereo

In this last section of the chapter we propose to combine the usage of our
motion-stereo method, presented in Chapter 3, with our view-synthesis method
described in the current chapter.
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Parallax is a key ingredient for the quality of the rendered view, in fact if
we look at the view-synthesis algorithm as a black-box, we can consider the
input to be an image enclosed with its parallax map and the output to be an
image depicted from a novel (virtual) view point. Unlinking the computation
of the parallax map from the view-synthesis procedure allows us to choose
the best way to derive it. Hence the idea of employing our motion-stereo
algorithm for this task.

As we already pointed out, the benefits of adopting the data-fusion scheme
fall within two main criteria: i) more pixels are visible when the information
is coming from several stereo-pairs instead of a single one ii) the computation
of parallax values is more accurate when temporal and spatial information
are taken into account.

In the next chapter (Chapter 5), we will demonstrate how using the
motion-stereo method for the computation of a parallax map in the con-
text of the view-synthesis application actually improves the resulting virtual
image.
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In this section we present the main results of our work. The chapter is
organized as follows.

Section 5.1 presents the evaluation of our motion-stereo method alone,
providing both quantitative and qualitative evaluation of the method.

In Section 5.2 we present the results for our view-synthesis method, evalu-
ating the method as a stand-alone, and compare quantitatively the backward
and the forward mapping and then provide some qualitative examples of 3DS
conversion.

We then concatenate the two main parts of this thesis, i.e. the motion-
stereo framework and the view-synthesis, and corroborate the idea that using
a depth–proxy map refined with the motion-stereo pipeline for view-synthesis
purposes produces sensible benefits to the final result.

At last, in Section 5.3, we present a case study that has been conducted
during a collaboration with professor Anders Hast of the University of Upp-
sala, Sweden. In this work we apply our view-synthesis method to historical
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aerial photographs taken during World War II. The section does not only
present the results but also gives some insights on the specific application.

5.1 Motion-stereo

We run two set of experiments. In the first one we consider images from the
Middlebury 2005 (6 sequences) and 2006 (21 sequences) datasets [64] with a
ground truth in order to validate our method and quantify the benefit of the
integration. In the second set we use more general sequences without ground
truth.

It is important to stress that the method presented here focuses on the
fusion of depth measurements, so the results reported should not be evaluated
in absolute terms, but relatively to the input data, in this case disparity maps
produced by NCC block–matching. More sophisticated stereo algorithms
coupled with a global optimization would yield better depth maps, as those
reported, e.g., in [80]. For these reasons a comparison with other stereo
methods is pointless, since any of them could be plugged in our framework.

5.1.1 Middlebury datasets

In the Middlebury datasets the camera motion is constrained along the X
axis, so the integration takes place at the disparity level. The error rate
is defined as the percentage of computed disparities values whose difference
with the ground truth is > 1, as in [64]. Pixels marked as occluded in the
ground truth have not been counted.

In all the experiments in this section, we used a square 3× 3 window for
the NCC stereo matching, and the size of the superpixels is set at 800 pixels.

First we performed a systematic evaluation of the confidence measures
described in Section 3.5 with the Middlebury datasets. Results are reported
in Table 5.1, where each entry contains the error rate of the disparity map
produced by our method with a given confidence measure. Table 5.2 re-
ports the results of a similar experiment in which the confidence measures
do not include the LRC, i.e., ϕ = φ∗. These figures compel us to make some
observations:

• all confidence measures are equally suited to represent pixel’s reliability,
for in Table 5.1 all the entries are very close; however WNM obtains
the lowest error rate, probably thanks to the fact that it considers
distinctiveness of the match by looking at the second best match, the
same recipe that proved so effective in SIFT matching (in fact, PKR,
that uses a similar strategy, performs closely to WNM).
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Table 5.1: error rates [%] of disparity maps obtained with different confi-
dence measures (see Section 3.5 for explanation). Best and worst results are
highlighted in boldface/green and lightface/red respectively. In the last two
rows we report the mean and the trimmed mean (the best and the worst
scores are not considered for the computation of the trimmed mean).

Data GT MSM CUR PKR MMN MLM AML WMN UNI

Art 9.58 19.68 20.91 19.60 20.11 19.70 19.73 19.67 19.64

Books 8.78 23.14 24.17 22.90 23.51 22.97 23.01 22.83 23.03

Dolls 7.95 16.05 16.93 16.12 16.69 16.09 16.16 16.16 16.14

Laundry 13.37 28.71 31.73 28.84 30.23 28.96 29.08 28.37 29.02

Moebius 8.60 20.34 21.43 20.35 20.64 20.54 20.49 20.20 20.36

Reindeer 7.33 14.24 15.60 14.28 15.01 14.23 14.15 14.30 14.27

Aloe 5.86 8.51 9.32 8.57 8.41 8.56 8.56 8.56 8.51

Baby1 3.83 12.01 13.38 11.34 11.92 11.82 11.80 11.31 11.57

Baby2 3.83 17.13 19.13 16.82 17.41 16.89 16.91 16.65 16.90

Baby3 6.88 13.30 14.78 13.24 13.75 13.33 13.35 13.21 13.31

Bowling1 31.97 73.29 32.73 30.49 34.21 61.15 50.49 30.40 30.44

Bowling2 6.75 16.91 18.18 16.84 19.41 17.15 16.91 16.91 16.80

Cloth1 2.14 2.67 2.72 2.68 2.51 2.69 2.69 2.68 2.68

Cloth2 5.04 8.06 8.58 8.06 8.22 8.10 8.11 8.04 8.10

Cloth3 2.75 4.85 5.06 4.85 4.54 4.90 4.89 4.85 4.94

Cloth4 5.20 8.19 8.77 8.11 7.83 8.12 8.16 8.10 8.12

Flowerpots 6.84 24.74 24.53 23.02 25.69 23.54 23.38 23.07 23.09

Lampshade1 48.87 63.67 35.38 32.72 34.88 71.65 54.97 33.32 33.02

Lampshade2 74.10 55.84 34.69 34.03 35.02 70.98 80.52 32.51 34.87

Midd1 24.25 96.34 50.65 50.20 51.07 97.19 96.13 50.52 50.22

Midd2 20.27 88.27 49.60 48.80 49.46 84.41 87.62 48.98 48.48

Monopoly 20.27 47.97 42.01 39.89 42.12 42.57 40.77 39.99 39.78

Plastic 91.03 78.18 67.13 86.55 73.56 79.49 84.42 80.93 90.23

Rocks1 3.35 5.92 6.18 5.90 5.50 5.95 5.96 5.90 5.95

Rocks2 3.48 5.19 5.41 5.27 5.13 5.23 5.25 5.27 5.28

Woods1 6.44 10.47 11.11 10.39 11.24 10.40 10.40 10.38 10.43

Woods2 4.33 17.20 19.64 17.11 19.35 17.40 17.30 17.10 17.28

Mean 16.04 28.92 22.58 22.11 22.50 29.04 28.56 21.86 22.31

T-Mean 13.60 27.27 21.60 20.31 21.25 27.37 26.90 20.26 20.38
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Table 5.2: error rates [%] of disparity maps obtained with different confidence
measures (see Section 3.5 for explanation), without the LRC check. Best
and worst results are highlighted in boldface/green and lightface/red respec-
tively. In the last two rows we report the mean and the trimmed mean
(the best and the worst scores are not considered for the computation of the
trimmed mean).

Data GT MSM CUR PKR MMN MLM AML WMN UNI

Art 10.61 23.00 25.69 23.19 22.74 23.08 23.10 23.27 23.14

Books 11.58 42.90 28.25 25.29 24.89 27.42 26.34 25.28 25.53

Dolls 6.29 18.48 20.17 18.62 18.19 18.51 18.59 18.61 18.61

Laundry 57.15 44.91 46.94 40.46 32.39 44.28 41.33 39.04 41.35

Moebius 6.06 28.42 24.32 22.26 21.90 22.70 22.28 22.11 22.20

Reindeer 6.70 18.58 18.95 16.86 17.24 22.00 17.91 16.87 16.85

Aloe 5.36 10.69 12.21 10.75 10.28 10.81 10.82 10.74 10.70

Baby1 3.17 35.59 17.27 14.73 13.74 21.58 17.66 14.59 14.82

Baby2 3.21 38.04 23.59 21.36 19.60 29.16 27.75 21.09 21.92

Baby3 3.56 18.91 18.63 15.78 15.20 16.43 16.08 15.74 15.86

Bowling1 75.81 64.51 34.50 73.31 35.22 68.45 68.84 74.08 73.70

Bowling2 7.97 25.04 23.17 20.20 21.58 76.65 50.94 20.33 20.27

Cloth1 1.23 5.45 6.29 5.45 5.04 5.53 5.56 5.45 5.45

Cloth2 3.41 10.81 12.49 10.84 10.22 10.86 10.89 10.84 10.88

Cloth3 2.05 7.43 8.12 7.55 6.79 7.52 7.52 7.55 7.55

Cloth4 3.14 9.78 11.24 10.00 9.26 9.88 9.82 9.99 9.93

Flowerpots 8.84 78.11 27.45 27.30 26.88 65.64 57.40 27.18 28.38

Lampshade1 55.69 88.83 38.70 90.15 37.25 92.40 91.48 88.54 90.35

Lampshade2 48.85 86.98 37.34 88.87 41.91 90.11 91.14 85.79 89.77

Midd1 73.70 97.99 52.50 98.61 52.01 97.90 97.94 77.20 98.74

Midd2 40.83 97.84 51.84 98.66 52.62 97.97 98.05 98.86 98.76

Monopoly 88.44 79.88 44.61 59.33 42.78 70.68 74.37 50.87 88.57

Plastic 65.28 96.20 92.10 93.47 87.72 94.31 93.76 92.89 94.46

Rocks1 2.43 7.96 9.26 8.07 7.28 8.00 8.04 8.07 8.08

Rocks2 2.07 7.38 8.61 7.60 6.94 7.55 7.58 7.60 7.60

Woods1 4.29 12.52 14.15 12.67 12.69 17.81 14.23 12.64 12.71

Woods2 2.79 62.23 22.74 19.48 21.43 77.68 71.80 19.45 19.71

Mean 22.24 41.42 27.08 34.85 24.96 42.03 40.05 33.51 36.14

T-Mean 20.43 40.60 25.31 33.47 23.24 41.26 39.10 32.01 34.87
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• the UNI metric has surprisingly good performances, confirming the
robustness of the integration framework; in other words, the data fusion
works so well that the confidence becomes nearly irrelevant;

• if LRC is switched off, MMN is the best performer, although by a
narrow margin; this suggests that MMN could be a proxy for occlusions
detection if LRC cannot be performed;

• the comparison of the two tables indicates that the most important
contribution to confidence is the the binary response of the LRC check.

Since WMN obtains the lowest error rate, we chose it as the default confidence
measure for the rest of our experiments, although other choices would likely
produce similar results.

Then, we assess the benefits of the spatio–temporal integration. Follow-
ing [37], we consider two touchstones against which to compare the error
rate obtained with our method (Kalman ST): the error rate of the “opti-
mal selection” map (Optimal) obtained as if an oracle could somehow select
the disparity value closest to the ground-truth among all the input estimates
for each pixel, and the minimum error rate (Best Map) obtained selecting
the best map among all the input disparity maps. Observe that the for-
mer represents the theoretical optimum that one can achieve with the given
input disparity maps using the temporal dimension, while the latter is an
indicator of whether the data-fusion is beneficial with respect to a simple
two-views stereo. We also considered other integration strategies: the maxi-
mum confidence selection (Max conf), which consists in selecting, for each
pixel, the disparity that achieves the maximum confidence ϕ, the temporal
fusion (Kalman T), that consists in applying only the temporal Kalman
filter, without spatial relaxation, as in [1].

Results with the Middlebury datasets are reported in Table 5.3, where it
can be appreciated that Kalman ST (in boldface) achieves the lower scores,
when compared to the other two strategies; in particular spatio–temporal
integration always improves the pure temporal Kalman filter. Moreover our
method always exceeds the best map and, in some cases, it also exceeds the
optimal one, due to the spatial relaxation.

Figure 5.3 reports, for the same experiments, how the error rate decreases
as more measures are integrated. We also included our implementation of [52]
(henceforth MKS), for comparison with another method from the literature.
Observe that MKS, despite the integration and spatial relaxation steps,
only slightly improves the results obtained by the regular stereo matching
algorithm. This confirms the idea that the warping of the disparity map



66 CHAPTER 5. EXPERIMENTS

Figure 5.1: From top to bottom: the reference frame, the Best Map, the
result of MKS, the result of Kalman T (temporal–only) and the result of
Kalman ST. Images are automatically scaled in the range [0,255], hence the
gray levels change from row to row. Full resolution images can be seen on
line [77].
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Figure 5.2: From top to bottom: the reference frame, the Best Map, the
result of MKS, the result of Kalman T (temporal–only) and the result of
Kalman ST. Images are automatically scaled in the range [0,255], hence the
gray levels change from row to row. Full resolution images can be seen on
line [77].
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Table 5.3: error rates [%] of disparity maps obtained with different fusion
strategies (see text for explanation) and WMN as the confidence measure.

Data Best map Max conf Average Kalman T Kalman ST Optimal

Art 49.76 53.12 48.15 35.13 19.67 21.54

Books 55.89 68.37 59.04 48.57 22.83 29.32

Dolls 42.01 54.71 38.52 29.01 16.16 15.95

Laundry 75.67 69.22 69.27 58.16 28.37 44.23

Moebius 45.73 63.53 45.98 35.70 20.20 22.21

Reindeer 45.11 57.24 49.95 32.49 14.30 17.13

Aloe 24.55 46.12 20.00 13.95 8.56 7.17

Baby1 49.07 55.80 48.89 41.59 11.31 20.62

Baby2 53.17 61.64 53.63 46.16 16.65 25.62

Baby3 51.65 68.29 53.83 44.64 13.21 23.56

Bowling1 91.97 84.63 83.59 86.52 30.40 82.53

Bowling2 54.64 63.81 51.03 42.29 16.91 27.18

Cloth1 14.61 44.27 10.24 5.41 2.68 2.46

Cloth2 31.35 52.14 26.82 18.53 8.04 10.04

Cloth3 20.27 48.22 16.27 9.11 4.85 4.83

Cloth4 26.03 45.68 21.57 13.54 8.10 7.46

Flowerpots 65.25 71.41 63.69 55.56 23.07 34.20

Lampshade1 98.18 96.58 90.19 98.63 33.32 91.83

Lampshade2 98.13 98.36 96.05 98.01 32.51 91.72

Midd1 98.33 98.49 76.29 99.04 50.52 93.18

Midd2 98.24 99.09 98.08 98.72 48.98 93.03

Monopoly 98.11 97.30 92.42 98.15 39.99 90.96

Plastic 96.48 94.30 90.30 98.21 80.93 83.81

Rocks1 22.36 48.31 19.33 10.83 5.90 5.72

Rocks2 19.71 47.52 15.43 8.87 5.27 5.27

Woods1 43.97 53.48 44.05 29.62 10.38 13.27

Woods2 52.99 66.27 54.22 47.02 17.10 27.69

Mean 56.42 66.96 53.22 48.28 21.86 36.76

T-Mean 56.41 66.58 53.14 47.96 20.26 35.88
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from frame to frame severely limits the benefits of the integration mechanism.
Figures 5.1 and 5.2 show qualitative results for the above sequences.
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Figure 5.3: Each graph shows the error rate decreasing as more measures
are integrated in the estimation for the three approaches, the Kalman T
(temporal–only), the Kalman ST (spatial support) and the MKS (our
implementation of [52]).

Finally, please note that what we refer to as Kalman T is the same im-
plementation of the Kalman ST with the spatial step switched-off, which
is slightly different from the original one described in [1] because of the vali-
dation gate and other tweakings and also because we are using a NCC based
stereo algorithm instead of the Census transform. Consequently, figures re-
ported in Table 5.3 are different (and better) from those reported in [1].

5.1.2 Casual video sequences

In the second set of experiments we test the method on the “Flower”, “Road”,
“Lawn”, from [80]. These are casual, uncalibrated sequences, hence we used
parallax as a depth-proxy and went trough all the stages required to compute
it. Since ground truth is not available, the evaluation will be only qualita-
tive. Results, in Figure 5.4, show a significant improvement on the strategy
without spatial support, and are more consistent with the scene content, es-
pecially on occluded or badly measured pixels. MKS could not be evaluated
on these images, as it is restricted to pure lateral motion.
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Figure 5.4: from top to bottom: the reference frame, the qualitative Best
Map (manually selected), the result of Kalman-T (temporal–only) and the
result of Kalman-ST. Images are automatically scaled in the range [0,255],
hence the gray levels change from row to row. Full resolution images can be
seen at [77].
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5.2 View-synthesis

We report two sets of experiments that validate our approach. The first set
focuses on the forward vs backward mapping issue, and shows quantitative
results by comparing our rendered images against ground truth images. The
second set of experiments shows the visual results of the rendering of a virtual
frames in a 3DS conversion scenario, where the position of the virtual camera
is set alongside the actual one.

First we validate the choice of the backward mapping (BWM) approach
– described in Section 4.3.3 and previous ones – against the forward mapping
(FWM). FWM, used e.g. in [23], is the fusion of two virtual images obtained
from the reference images. Both approaches are evaluated before the hole
filling post-processing step. In order to factor out the inaccuracies of the
stereo matching we used the Middlebury 2006 dataset ([36]) which provides
ground truth disparity maps. Each sequence of the dataset includes seven
frames, we used the second and the sixth frame as the reference pair to
synthesize the middle frame, which corresponds to the fourth frame. We
then compared the ground truth image with the virtual one and obtained
the results reported in Table 5.4. As figures of merit we considered the
structure similarity index (SSIM) [74], the signal-to-noise ration (SNR) and
the absolute error rate (ABS) where pixels that differ from the true value
for more than 1 pixel and unassigned ones are counted as errors. The result
is that BWM consistently outperforms FWM showing its better ability to
recreate the virtual image.

At last, we report some qualitative results of the 3DS conversion in Fig-
ure 5.5. The images are taken from [79] and from [36]. Despite a few artifacts
– mainly due to failures of the stereo matching – the results are convincing
and visually plausible.

5.2.1 View-synthesis with motion-stereo

In this section, as mentioned in Section 4.4, we want to investigate the ben-
efits of using a parallax map that is refined with the motion-stereo pipeline
previously presented within the view-synthesis application.

The following experiments are aimed to evaluate this idea. We substitute
the parallax map computed from a simple pair of images with a refined map
computed with our motion-stereo method, varying the number of frames that
are used to refine the map. Such maps are then provided to the view-synthesis
method.

The experiment is structured as follows. We used the second frame as
the reference view to next frame, which corresponds to the third frame. We
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Table 5.4: comparison of performances of our BWM approach against the
FWM employed in [23]. SSIM: and SNR the higher the better. ABS: the
lower the better. See text for further explanations.

BWM FWM

Sequence SSIM SNR ABS SSIM SNR ABS

Aloe 0.77 -33.59 33.74 0.72 -34.15 37.25

Baby1 0.89 -30.48 33.83 0.87 -30.80 34.79

Baby2 0.90 -26.91 31.67 0.88 -27.04 33.75

Baby3 0.88 -25.80 21.73 0.86 -26.45 23.35

Bowling1 0.88 -31.80 46.56 0.87 -31.90 46.99

Bowling2 0.87 -30.81 37.62 0.85 -31.23 39.04

Cloth1 0.96 -20.94 39.59 0.93 -19.77 40.74

Cloth2 0.91 -27.83 42.95 0.86 -28.75 44.66

Cloth3 0.91 -26.37 37.21 0.87 -27.20 39.08

Cloth4 0.88 -31.44 35.91 0.82 -32.17 39.33

Flowerpots 0.89 -28.56 28.45 0.87 -28.73 30.23

Lampshade1 0.83 -33.99 24.36 0.82 -34.41 25.04

Lampshade2 0.84 -33.92 22.90 0.83 -34.36 23.33

Midd1 0.91 -29.85 26.57 0.89 -30.10 28.56

Midd2 0.90 -30.01 44.92 0.89 -30.24 46.03

Monopoly 0.86 -34.04 90.35 0.83 -34.33 89.11

Plastic 0.94 -25.85 29.51 0.92 -26.54 29.49

Rocks1 0.92 -21.67 27.82 0.88 -22.76 31.11

Rocks2 0.93 -21.22 33.51 0.89 -22.32 35.77

Woods1 0.92 -27.89 40.22 0.90 -27.76 42.10

Woods2 0.94 -25.05 28.45 0.92 -25.05 29.70
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Figure 5.5: examples of the 3DS output. From left to right: reference image
(left eye), virtual image (right eye), red-cyan anaglyph.
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then compared the ground truth image with the virtual one and obtained
the results reported in Figure 5.6. As a figure of merit we considered the
absolute error rate (ABS) where pixels that differ from the true value for
more than 1 pixel and unassigned ones are counted as errors.

As we can see from the graphs, the number of wrong pixels decreases as
more images are integrated into the motion-stereo step. One frame corre-
sponds to the case where we are using map computed from a single pair of
images. We have the largest improvement when the first new frame after the
simple stereo pair is integrated and the error rate keeps decreasing as more
frames are added to the parallax map estimation, although in some cases the
error stabilizes to a constant values, so it seems like there is a saturation of
the quality of the synthetic view, with respect to the parallax map. Please
note that we had a similar behavior during the evaluation of the parallax
map itself in Figure 5.3.

5.3 Case study: historical aerial photography

This last Section reports on a very interesting study that we had the oppor-
tunity to do in collaboration with Professor Anders Hast of the University
of Uppsala, Sweden. Starting from a set of 2D aerial photographs the task
is the 3DS visualization. Apart from being a really fascinating project, it
served as a valuable bench test for our view-synthesis method.

5.3.1 Motivation

Since the birth of modern aviation, aerial photos have been a rich source for
understanding the historical development and geospatial changes. They offer
a unique way to go back in time, exploring things as they were and therefore
they have been used for aerial archaeology [11, 12, 60, 76]. An archive with
several millions of such historical aerial photos is maintained by the Aero-
fototeca Nazionale (AFN) of the Italian Ministry of Cultural Heritage, in
Rome. This archive portrays the Italian territory since the end of the nine-
teenth century, before its transformation due to the post-war reconstruction,
the economic boom and changes by natural disasters such as earthquakes
and floods. During World War II stereoscopic images played an important
role in the success of missions. Pilots from the photographic reconnaissance
units took several consecutive photos over Europe that covered a long line of
each flight route. A sample sequence of exposures is shown in Figure 5.7. By
meticulously photographing the ground it was possible for the photographic
interpreters to visualize the area covered in 3D stereo (3DS), which can only
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Figure 5.6: error rate of the view-synthesis with respect to the number of
frames integrated into motion-stereo step.
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Figure 5.7: an example of a sequence of exposures taken by the Royal Air
Force (RAF) during WWII (from the AFN archive). The photos are placed
in their relative positions by panoramic stitching, using [13]. MiBAC-ICCD,
Aerofototeca Nazionale, fondo RAF c©.

be obtained if there is a substantial overlap between pairs of images.

Viewing aerial photos in 3DS is important, for the depth cue gives a much
better understanding of the scene since the perceived depth information adds
clues that are not available in a single exposure. This was important for the
photographic interpreters, as it made possible to distinguish among objects
such as houses, trees and the ground and especially estimating their height.
Today, such stereo images can be a valuable tool for digital heritage research
(e.g. extensions to projects such as [7] to also include stereo images).

In [32, 33] 3DS visualization is applied to historical aerial photographs
with compelling results. These works concentrated on aspects such as pairs
selection, geometric and illumination corrections in order to produce a 3DS
display with the available exposures. This implies that the images must be
viewed in such a way that one eye sees one exposure and the other eye sees
the next one in line. In other words, the stereoscopic baseline (i.e., the line
joining the two eyes) is parallel to the line of flight. This solution provides
valid results for a static view, but falls short when trying to visualize the
whole flight as a 3DS video. As a matter of fact, when moving along the line
of flight it will be necessary, at a certain point, to switch from one stereo
pair to the next in the sequence. However, there exists no such natural
continuation between the stereo pairs, leading to a sudden switch between
pairs that is perceptually disrupting.

The solution that we propose is to generate a 3DS video from the monoc-
ular sequence using our view-synthesis technique. This entails that the base-
line is orthogonal to the line of flight: one eye sees the existing stream of
exposures, and the other one sees a synthetic stream of images, correspond-
ing to a virtual eye displaced from the other one orthogonally with respect
to the flight trajectory.
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The view-synthesis approach, as opposed to using actual images for stereo-
scopic display as in [32], is more flexible, for the virtual viewpoint can be
placed anywhere and illumination (or color) is consistent by construction.
The obvious drawback of this method is that the visual quality of the actual
exposure is unmatched by any synthetic image, so, disregarding the temporal
jittering, the stereoscopic display of [32] is more compelling. However our
method provides a viable solution when the desired output is a 3DS video.

5.3.2 Method

The aim of this procedure is the 3DS conversion of monocular aerial images,
i.e. the generation of corresponding stereo images for a set of input exposures.
Figure 5.8 shows a schematic representation of the algorithm: a triple of
images is used to compute a disparity map referred to the central image
which in turn allows to synthesize a stereoscopic pair. The procedure is
repeated for every overlapping triplet of images to create a 3DS pair from
every frame.

OUTPUT
STEREO PAIR

INPUT
SEQUENCE

Figure 5.8: on the left, a pictorial representation of the 3DS conversion for
one image of the input sequence (green). The two neighbouring images are
used to compute a disparity map referred to the central image which in
turn allows to synthesize a stereoscopic ”right” image (red). On the right,
a representation of the parallax integration. Ir is the image in the middle.
The blue portion of the corresponding parallax map is computed when Ii is
the image at the top, the red portion is computed when Ii is the image at
the bottom, the green portion is computed with the hole-filling heuristic.

For each input image two main steps are performed:
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- computation of a parallax map using stereo matching

- rendering the novel stereo image through uncalibrated view-synthesis

It goes without saying that parallax can be computed only where cor-
respondences can be established, hence in the area where the two images
overlaps. Let Ir be the reference image, i.e., the one for which we want to
compute the parallax map. Let us consider a set of n auxiliary images Ii,
where i = 1 . . . n, that depict a relevant portion of the same scene as Ir. Then
we compute a parallax map for Ir by executing the steps described above for
each pair (Ir, Ii). Each Ii will yield parallax values for a different portion of
Ir.

In the sequences considered in this paper one image typically overlaps
only with other two images, and these two does not overlap with each other,
as represented in Figure 5.8. Therefore, there is usually a central stripe in Ir
where parallax cannot be computed. This is why we introduced a hole-filling
heuristic similar to the one presented in [58]. First we perform a local fore-
ground/background segmentation: in the parallax map, for each unassigned
pixel we compute the variance of its neighborhood. A high variance indicates
the presence of multiple depth layers, thus it is likely that the unassigned
pixel is occluded by a foreground one in the conjugate image. Therefore, it
is filled using the average of other background pixels in its neighborhood.
Otherwise, a low variance indicate a single depth layer and the pixel is filled
accordingly using the average value of its neighborhood. In principle and
as we already argued in Section 4.4, when sequences present a higher de-
gree of overlap than those considered in this paper, it could be necessary to
employ an integration procedure that allows to merge parallax values com-
ing from different pair of images, as in our motion-stereo pipeline described
in Chapter 3. This possibility is explored using more suitable datasets in
Section 5.2.1.

At last, once a parallax map is computed, we generate the second ele-
ment of the 3D stereo pair using the uncalibrated view-synthesis approach
described in Chapter 4.

5.3.3 Results

We report some experimental results obtained with our method applied to
images taken from the AFN dataset that depict an aerial view of Pisa, Italy,
during World War II (February 1944).

In Figure 5.9 we show the output obtained with the scheme described
above and applied to an image triplet. We can observe that the rendered
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image is geometrically correct, the illumination is the same as the reference
one and it is visually plausible thanks to a very limited presence of arti-
facts. In Figure 5.10 we report some details of the same output, in order to
better appreciate the good quality of the synthetic image. Concluding, in
this section we evaluated our view-synthesis method in the context of 3DS
conversion of historical aerial photographs. By rendering virtual images in
an unconstrained fashion with respect to the flight trajectory, the proposed
solution overcomes some potential limitations of previous works on the same
dataset that used actual exposures for 3DS. The results are promising, how-
ever some issues are still to be addressed, such as stabilizing in time the
virtual camera position, and upsampling the sequence in order to be able to
play the 3DS video at a reasonable speed.
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Figure 5.9: on the left the three input images (4200×4900) , reference image
is the one in the middle; on the right the rendered (synthetic) stereo image.
MiBAC-ICCD, Aerofototeca Nazionale, fondo RAF c©
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Figure 5.10: a more detailed view of the results. From left to right: reference
image, synthetic image, red-cyan anaglyph (to be viewed in colour with suit-
able glasses). The second row depicts Piazza dei Miracoli with the famous
leaning tower. MiBAC-ICCD, Aerofototeca Nazionale, fondo RAF c©.
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Chapter 6

Conclusions

We began the work that lead to this thesis by looking at the big picture
of the 3DS conversion problem and decided, in order to be able to make a
significant contribution, to narrow our attention down to two key aspects
of the problem: i) the computation of a depth-proxy and ii) the rendering
of a synthetic image starting from a reference one. Given the nature of the
problem, i.e. receiving video sequences as input, both parts share the idea
that the proposed methods should be able to gather and exploit information
coming from several images.

Regarding the computation of the depth-proxy, we presented a framework
that allows to combine measurements obtained by processing the frames of
a monocular video sequence. The integration takes place at two levels: i)
temporal, where different estimates of depth-proxy values are merged along a
timeline, and ii) spatial, where estimates are relaxed over pixel neighborhood.
A segmentation into superpixels provides a spatial support that – in principle
– does not cross objects boundaries.

Both spatial and temporal integration are derived as simple Kalman filters
and are consistent with a data-fusion framework based on the Mahalanobis
distance [59]. They exploit confidence values provided by the stereo matching
step. In our experiments all the confidence measures provided comparable
results, so there is no clear indication that one measure is superior to the
others. Instead, it turns out that singling out occlusions (with LRC) makes
a real difference. The spatio-temporal integration has shown to be effective,
and the benefits of the spatial step have been demonstrated with respect to
the temporal-only version with consistently better results. Also, a compre-
hensive review of the available depth-proxies has been presented in a unified
framework and it has been shown how planar parallax can be applied with
general motion and unknown camera parameters.

The method can be seen as an unconstrained, uncalibrated extension of
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classical work [52], which constrained motion to be lateral and required cam-
era internal parameters. Moreover, [52] warped the disparity map from frame
to frame, thereby introducing errors and approximations that disrupted the
prediction, whereas we fix this by keeping the reference frame constant. We
demonstrate these facts with a comparison of our method against our imple-
mentation of [52].

We also report an extensive comparison of several confidence measures
in the context of our approach. A preliminary version of this work appeared
in [1] without the spatial relaxation and its current version, described in
Section 3, has been presented in [2].

As a second main contribution, we presented a pipeline for uncalibrated
view-synthesis of novel images that addresses most of the critical problems
arising in uncalibrated scenarios. The method takes inspiration from the
pipeline presented in [23], but instead of transferring points directly from
the reference image to the novel one (forward), we use a backward mapping
strategy which yields finer results and allows to combine information com-
ing from multiple reference images, blending several parallax maps into one.
We also propose a simple and suitable method to fill holes in the final vir-
tual image and cope with resampling artifacts. We evaluated the method
in the context of 3DS conversion of monocular images obtaining positive re-
sults that show a correct positioning of the virtual camera. We provided
anaglyph images as qualitative output, processing indoor, outdoor and also
aerial images. This work has been presented in [3] and in [4].

Future works

There are plenty interesting directions where our future works could go. First
of all, the view-synthesis method still has limitations. Hole filling in the vir-
tual image needs to be improved; where no information is available in the
source images inpainting techniques (e.g. [16]) should be adopted. The prob-
abilistic splatting step could also be improved by the working on superpixels
(e.g. [8]). Heuristics to mitigate the effects of matching failures should also
be investigated.

Regarding the motion-stereo part (and the computation of the depth-
proxy map in general), moving objects are not dealt with. More specifically,
the motion-stereo pipeline requires to work with a sequence of static images
in order to produce a reliable depth-proxy map for a certain frame.

At last, the concatenation of motion-stereo and view-synthesis could be
more than a simple concatenation. We feel that a better integration of the
two methods could lead to better results as well.



Appendix A

Equality of two vectors up to a
scale

Let a and b two vectors of Rn. Their equality up to a scale can be written as:
rank[a,b] = 1. This is tantamount to say that all minors of [a,b] are zero.
There are n(n − 1)/2 of such order-two minors, and they can be obtained
by multiplication of b by a suitable n(n − 1)/2 × n matrix that contains
the entries of a. Let us call this matrix [a]× in analogy to the R3 case (see
Appendix C.4), where equality up to a scale reduces to a× b = 0. Since, by
construction, a belongs to the null-space of [a]×, its rank is at most n − 1.
Hence a ' b gives rise to the linear system of n(n−1)/2 equations [a]×b = 0
where only n− 1 of them are independent. The matrix [a]× is composed by
n − 1 blocks arranged by rows. The the ith block has (n − i) rows and n
columns (i = 1 . . . n− 1):

Bi =


01×(i−1) −ai+1 ai 0 0 . . . 0
01×(i−1) −ai+2 0 ai 0 . . . 0
01×(i−1) −ai+3 0 0 ai . . . 0

...
...

...
...

...
. . .

...
01×(i−1) −an 0 0 0 . . . ai

 (A.1)

and

[a]× =

 B1
...

Bn−1

 . (A.2)
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Appendix B

Quasi-euclidean upgrade

When dealing with projective reconstructions a quasi–euclidean upgrade of
the PPMs is of primary importance for a correct placement of the infinite
plane at the actual infinity. This upgrade is based on [26].

Given a set of projective reconstructed PPMs {Pi} i = i . . . n, which differ
from the true ones by a collineation of space H, the set of camera matrices can
always be transformed to the following canonical form by post-multiplying
each Pi by the matrix [P1; 0 0 0 1]−1:

P1 = [I | 0] Pi = [Qi | qi] . (B.1)

In this situation, the collineation of space H performing the Euclidean up-
grade has the following structure:

H =

[
K1 0
v> λ

]
(B.2)

where K1 is the calibration matrix of the first camera, v a vector which
determines the location of the plane at infinity and λ a scalar fixating the
overall scale of the reconstruction. A guess on the internal parameters is
provided by the rectification step [24], as explained in Section 2.4. Given
two PPMs and the guess of their intrinsic parameters, we compute the plane
at infinity.

P1 = [I | 0] P2 = [Q2 | q2] (B.3)

and their intrinsic parameters matricesK1 andK2 respectively, the upgraded,
Euclidean versions of the perspective projection matrices are equal to:

P E

1 = [K1 | 0] ' P1H (B.4)

P E

2 = K2 [R2|t2] ' P2H =
[
Q2K1 + q2v

>|λq2

]
(B.5)
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The rotation R2 can therefore be equated to the following:

R2 ' K−1

2

(
Q2K1 + q2v

>) = K−1

2 Q2K1 + t2v
> (B.6)

in which it is expressed as the sum of a 3 by 3 matrix and a rank 1 term.
Using the constraints on orthogonality between rows or columns of a rotation
matrix, one can solve for v finding the value that makes the righthand side
of Equation (B.6) equal up to a scale to a rotation. The solution can be
obtained in closed form by noting that there always exists a rotation matrix
R∗ such as: R∗t2 = [‖t2‖ 0 0]> . Left multiplying it to Equation (B.6) yields:

R∗R2 '
W︷ ︸︸ ︷

R∗ K−1

2 Q2K1 + [‖t2‖ 0 0]> v> (B.7)

Calling the right hand side first term W and its rows w>i , we arrive at the
following:

R∗ R2 =

 w1
> + ‖t2‖v>

w2
>

w3
>

 /‖w3‖ (B.8)

in which the last two rows are independent from the value of v and the correct
scale has been recovered normalizing to norm each side of the equation. Since
the rows of the right hand side form a orthonormal basis, we can recover the
first one taking the cross product of the other two. Vector v is therefore
equal to:

v = (w2 ×w3/‖w3‖ −w1) /‖t2‖ (B.9)

The upgrading collineation H can be computed using Equation (B.2); the
term λ can be arbitrarily chosen, as it will just influence the overall scale of
the reconstruction. Its sign however will affect the cheirality of the recon-
struction, so it must be chosen positive if cheirality was previously adjusted.



Appendix C

Useful notions

In this appendix we recall some notions and definitions used in the thesis.

C.1 Vectorization operator

The vectorization of a matrix is a linear transformation that converts a matrix
in a (column) vector: vectorization of A m × n, denoted as vec(A), is the
vector mn× 1 obtained stacking all the columns of A.

C.2 Kronecker product

Let A be a matrix m× n and B be a matrix p× q. The Kronecker product
of A and B is the mp× nq matrix defined as

A⊗B =

a11B . . . a1nB
...

...
am1B . . . amnB

 . (C.1)

Note that the Kronecker product is defined for every pair of matrices.
The Kronecker product is connected to the vectorization operation de-

fined in Appendix C.1 as given by the following equation

vec(AXB) = (B> ⊗ A) vec(X) (C.2)

for matrices A,B,X having compatible dimensions. This equation is very
useful to extract the unknown X from a matrix equation.

For further reading on the Kronecker product and its uses in computer
vision refer to [20].
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C.3 Sampson error

Geometrical errors, such as point-point distances, can be very computational
demanding. A useful alternative is the Sampson approximation:

∑
i

(m′i
>Fmi)

2

[Fmi]21 + [Fmi]22 + [F>m′i]
2
1 + [F>m′i]

2
2

. (C.3)

As argued in [49], this residue yields similar results to the ones of (2.21).

C.4 Cross-product matrix

Given two vectors a,b ∈ R3, a × b is equivalent to [a]×b where [a]× is the
skew-symmetric matrix defined as

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (C.4)
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SLIC Superpixels Compared to State-of-the-art Superpixel Methods.
IEEE Trans. on Patt. Analysis and Machine Intell., 34(11):2274 – 2282,
2012.

[9] B. D. Anderson and J. B. Moore. Optimal filtering. Prentice-Hall infor-
mation and system sciences series. Englewood Cliffs, N.J. Prentice-Hall,
1979.

[10] S. Avidan and A. Shashua. Novel view synthesis by cascading trilinear
tensors. IEEE Trans Vis. and Comp. Graph., 4(4):293–306, 1998.

[11] J. Bourgeois and M. Meganck. Aerial Photography and Archaeology
2003: A Century of Information. Archaeological Reports. Academia
Press, 2005.

[12] K. Brophy and D. Cowley. From the air: Understanding aerial archae-
ology. Scottish Archaeological Journal, 28(2):159–160, 2006.

[13] M. Brown and D. G. Lowe. Automatic panoramic image stitching using
invariant features. International Journal of Computer Vision, 74(1):59–
73, 2007.

[14] C.-C. Cheng, C.-T. Li, P.-S. Huang, T.-K. Lin, Y.-M. Tsai, and L.-G.
Chen. A block-based 2D-to-3D conversion system with bilateral filter.
In Int. Conf. on Consumer Electronics, pages 1–2, 2009.

[15] B.-T. Choi, S.-H. Lee, and S.-J. Ko. New frame rate up-conversion using
bi-directional motion estimation. IEEE Trans. on Consumer Electron-
ics, 46(3):603–609, 2000.

93



94 BIBLIOGRAPHY
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