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SUMMARY 

SUMMARY 
Energy recovery from the waste heat released by industrial processes represents one of 

the greatest opportunity to reduce the consumption of primary energy and the related 

emission of greenhouse gases. Nevertheless, the fluctuating and/or intermittent nature of 

many energy-intensive processes (e.g. electric arc furnace in steel industry) hinders the 

deployment of current energy recovery systems. Thus, the development of technologies 

able to minimize the thermal power fluctuations released by such processes is required to 

enable the deployment of affordable energy recovery systems. 

With the aim of developing such type of technology, this thesis explores the potential of 

latent heat storage systems based on phase change materials (PCMs) to minimize the 

thermal power fluctuations of high-temperature waste heat sources. In particular, three 

significant areas of investigation characterised by different types of thermal power 

fluctuations are investigated: electric arc furnace, billet reheating furnace and waste-to-

energy plant. An interdisciplinary approach is adopted to face the crucial issues of 

developing a PCM-based technology (e.g. thermo-mechanical stresses, transient heat 

transfer). 

Chapter 1 includes the background, the motivation, the aim, the methodology and the 

structure of thesis. In chapter 2, a general overview on the thermal energy storage systems 

with a particular focus on latent heat storage systems based on PCMs is provided. Chapter 

3 addresses the issues related to the energy recovery from the electric arc furnace and 

proposes three different configurations of a PCM-based device to increase the efficiency 

and the capacity factor of the downstream energy recovery system.  In Chapter 4 an 

existing waste heat recovery system of a steel billet preheating furnace is retrofitted by 

adding a PCM-based device. In Chapter 5 a refractory brick technology based on PCMs 

is proposed for the protection of the radiant superheaters against high temperature 

corrosion and temperature fluctuations. 

At the end of each chapter a series of conclusions are reported, concerning the performed 

investigations and the obtained results. 
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1 INTRODUCTION 

1.1 Background and motivation 

According to the International Energy Agency (IEA) [1], energy efficiency should be at 

the centre of the energy policy of any country since it is far from fulfilling its potential. 

In addition to this, IEA states that any credible and realistic energy development strategy 

must be led by energy efficiency; for this reason, IEA calls energy efficiency the “first 

fuel” in the context of decarbonization. 

In the Paris Agreement achieved at the 21st Conference Of the Parties (known as COP21) 

in December 2015, 189 countries submitted 162 Nationally Determined Contributions, 

which set out high-level intentions, goals, targets and prescriptive actions to reduce 

Greenhouse Gas (GHG) emissions. The output of several climate mitigation scenarios 

showed that energy efficiency is one of the most economical options to reduce GHG 

emissions. 

An analysis on the costs of climate mitigation by 2030 carried out by the Fraunhofer 

Institute for Systems and Innovation Research [2], demonstrated that a scenario in which 

the deployment of significant measures on energy efficiency is considered, would be at 

least 2.5 trillion US dollars less costly than those considering more energy-intensive 
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mitigation scenarios; this paves the way in the political agenda of governments as they 

work towards achieving the target set in the Paris Agreement. 

The implementation of measures in favour of energy efficiency can help to reduce energy 

consumption whilst still maintaining a constant level of energy-use services. Moreover, 

improving energy efficiency enables a higher level of services from the same energy 

input; this is a very important aspect to consider since in the coming decades the industrial 

activity is expected to increase in both developing countries and emerging economies.  

Nevertheless, energy efficiency measures are more complex to implement than other 

measures (e.g. renewable energy production, nuclear power or carbon capture and storage 

systems) because of the involvement of several players and relatively small impact of 

each individual measure. Furthermore, the complexity of the energy efficiency measures 

and their dependence on additional factors, such as energy prices and energy demand, 

make difficult to estimate their cost; the difference in payback times and lifetime of 

technologies also play an important role. Moreover, the contribution of energy efficiency 

measures has been questioned because of rebound effects that may reduce their 

effectiveness in lowering energy demand.  

Among the energy efficiency measures, energy recovery from the waste heat released by 

industrial processes represents one of the greatest opportunity to reduce the consumption 

of primary energy and the related emission of greenhouse gases. Energy recovery 

positively impacts the efficiency of production processes by reducing operating costs, 

increasing the plant productivity and reducing the emission of pollutant. The benefits (i.e. 

operational, energy, economic, environmental and social) related with energy recovery 

are fundamental nowadays, indeed energy recovery has now become a common practice 

when easy to implement.  

Sources of waste heat include hot combustion gases discharged to the atmosphere, heated 

products from industrial processes and heat transfer from hot equipment surfaces. The 

exact quantity of industrial waste heat is poorly quantified, but various studies have 

estimated that as much as 20 to 50% of industrial energy consumption is ultimately 

discharged as waste heat [3]. While some heat losses from industrial processes are 

inevitable, facilities can reduce these losses by installing waste heat recovery 
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technologies. These technologies include heat exchangers (e.g. waste heat boilers, deep 

economizers, water preheating, etc.), thermal energy storage systems (e.g. hot water 

tanks, steam accumulators) and energy conversion technologies.  

The recovered waste heat can be reused directly for heating purposes or for power 

production. Even though the most efficient usage of the recovered heat is to directly 

employ it for heating purposes, its direct utilization is constrained by several factors such 

as temperature matching, distance between the waste heat source and the thermal user as 

well as lack of a thermal user. When these constraints hinder the direct use of the 

recovered heat, power production should be considered since its outcome is a high exergy 

product that can be easily transported and used for other processes [4]. 

Several energy recovery technologies for power production (e.g. steam and organic 

Rankine cycles) are already well developed and technically proven; however, there are 

several applications where such technologies are not applied due to a combination of 

market and technical barriers. The most important technical and economical barrier that 

limits the implementation of energy recovery systems for power production is the 

fluctuating and/or intermittent nature of the waste heat source. Typically, in an industrial 

process the main parameters that fluctuate - thus causing the variability in the thermal 

power of the waste heat source - are temperature and mass flow rate.   

Current energy recovery systems are designed for a nominal operating point (i.e. design 

point) which can either be the upper boundary [5–7] or the average value of the fluctuation 

range [8,9]. Such a design approach leads the energy recovery system to operate for most 

of the time at part load (i.e. off-design conditions), thus severely reducing its efficiency 

and capacity factor; this means that the power production capacity of the energy recovery 

system is not fully exploited and, from the economical point of view, an inefficient and 

sub-optimal energy recovery system leads to high payback periods, thus reducing its 

actual implementation. 

Therefore, by keeping in mind the limitations of the current energy recovery systems for 

power production mentioned earlier, the development of technologies able to minimize 

the exergy losses and the thermal power fluctuations is required to enhance the 

deployment of affordable energy recovery systems. In fact, it is worth remarking that the 
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minimization of the exergy losses corresponds with the maximization of the efficiency of 

the energy conversion technology, while the reduction of the thermal power fluctuations 

corresponds to an increased capacity factor. The combined effect of these factors allows 

increasing the power production (i.e. revenues), while reducing the size of the energy 

recovery system (i.e. capital expenditure), thus leading to shorter payback periods.    

1.2 Aims of the research 

Energy efficiency is one of the most cost-effective options to reduce GHG emissions. 

Among energy efficiency measures, energy recovery from waste heat released by 

industrial processes represents one of the greatest opportunity to reduce the consumption 

of primary energy and the related GHG emissions. Nevertheless, its implementation is 

often hindered by the fluctuating and/or intermittent nature of the waste heat source. Thus, 

to enhance the deployment of affordable energy recovery systems, the development of 

technologies able to minimize the exergy losses and the thermal power fluctuations is 

required.  

With the aim of developing such type of technology, this thesis explores the potential of 

latent heat storage systems based on phase change materials (PCMs) to minimize the 

thermal power fluctuations of high-temperature (i.e. temperature higher than 300°C) 

waste heat sources. More in particular, the use of metallic PCMs (e.g. aluminium and its 

alloys) is investigated because of their high thermal conductivity and latent heat of fusion. 

Latent heat storage systems based on PCMs exploit the large value of the latent heat of 

phase change of specific materials (i.e. phase change materials) to store and release 

thermal energy at a constant temperature [10]. As underlined in [11–14], latent heat 

storage is one of the most efficient ways of storing thermal energy: unlike sensible heat 

storage, latent heat storage provides much higher storage density, with a smaller 

temperature difference between storing and releasing heat. 

Nevertheless, a paper on the recent research trend on latent heat storage systems [15] 

highlighted that the use of PCMs for recovering high-temperature waste heat has not been 

given great attention despite its large potential. Thus, this thesis also aims to enhance the 

knowledge on the use of phase change materials for recovering high temperature waste 

heat. 
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1.3 Methodology 

Given the many technical challenges involved (e.g. thermo-mechanical stresses in the 

PCM container, heat transfer under transient conditions, part-load behavior of the energy 

recovery system), this thesis adopts an interdisciplinary approach to face the crucial issues 

of developing a PCM-based technology: 

  Structural analysis, which is used to develop the PCM encapsulation technology and 

to select the encapsulation material; 

 Thermo-fluid dynamic analysis, which is used to study and optimise the thermal 

performances of the PCM-based technology and to select the most proper heat transfer 

fluid to be employed for the system integration with an energy conversion technology 

(e.g. steam turbine); 

 System design and integration, which is used to analyse the impact of the introduction 

of the PCM-based technology on the performance of energy recovery system; it is 

also used for studying the potential configurations that integrate the PCM-based 

technology with the existing energy recovery technology.  

1.4 Areas of investigation 

The development of the PCM-based technology is then based on three significant areas 

of investigation characterised by different types of thermal power fluctuations:  

1. Electric arc furnace: characterised by temperature fluctuations with an average 

temperature close to the melting point of the PCM and a near-constant mass flow rate;  

2. Billet reheating furnace: characterised by mass flow rate fluctuations and a near-

constant temperature above the PCM melting point; 

3. Waste-to-energy plant: characterised by temperature fluctuations with an average 

temperature above the PCM melting point and a near-constant mass flow rate. 

The electric arc furnace and the billet reheating furnace are two important energy-

intensive processes used in the steel industry, which is one of the major consumer of 

primary energy. In fact, in 2012, the steel industry consumed about 5 % of the overall 

primary energy produced worldwide contributing to 7 % of all global CO2 emissions 

[16]. Moreover, it has to be considered that the world steel production increased from 28 
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million tons in 1950 to nearly 1.6 billion tons in 2015 [17]. Although recently significant 

improvements in the energy efficiency have been achieved, this sector still has the 

potential to further reduce by 20% energy consumption and GHG emission.   

In particular, waste heat recovery in steel industry represents one of the greatest 

opportunity to reduce the consumption of primary energy (i.e. reduction of CO2 

emissions) while increasing the sustainability of the steelmaking process [18–21].  

The electric arc furnace, which is one of the two modern ways of making steel and 

accounts for the 28% of the worldwide steel production [22], releases as waste heat from 

15% to 35% of the total energy provided to the process [23]. While the billet reheating 

furnace, which is used to heat steel slabs above the recrystallization temperature of the 

steel for the subsequent hot rolling process (i.e. metal forming process), consumes  

15÷20% of the total energy consumption of a steel plant [24] and releases as waste heat 

16% of the total energy provided to the process[25].  

The third area of investigation considers the energy recovery from waste incineration, 

which efficiency is limited by high temperature corrosion occurring on the surface of 

steam superheater and temperature fluctuations, because they represent an important 

opportunity to reduce the greenhouse gases emitted by the landfills. In fact, it has been 

estimated that the fugitive emissions of methane in landfill gas contributes for the 4% of 

the anthropogenic GHG emissions [26].  

1.5 Main contents of the thesis  

Below, an overview of the main contents of the thesis is detailed according to the thesis 

structure. 

Overview on phase change material (Chapter 2). The second chapter provides a 

general overview on the thermal energy storage systems with a particular focus on latent 

heat storage systems based on PCMs. After introducing the role of thermal energy storage 

systems in improving the efficiency of energy recovery systems in Section 2.1, the 

thermal energy storage technologies are discussed in Section 2.2. A detailed discussion 

on PCMs is carried out in Section 2.3; the required properties and the selection criteria of 

the PCMs as well as their classification is first discussed. Then, potential PCM candidates 
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for high temperature applications are analysed and compared; pure aluminium and its 

eutectic alloys was found to have superior properties among the high temperature PCMs. 

The technologies (e.g. macro-, micro- and nano-encapsulation), the materials for the 

containment of high temperature PCMs (e.g. metals, ceramics) as well as the technology 

limitation (e.g. corrosion) are discussed in the final part of Section 2.3. Concluding 

remarks are reported in Section 2.4. 

Energy recovery from electric arc furnace (Chapter 3). In the third chapter, the 

problem of temperature fluctuations of the waste gas released by the electric arc furnace 

is addressed. In particular, a PCM-based device is developed to reduce the temperature 

fluctuation in order to increase the efficiency and the capacity factor of the downstream 

energy recovery system. The proposed device is composed by a set of cylindrical PCM 

containers, which are in direct contact with the surrounding waste gas in such a way that 

the PCM absorbs heat from the waste gas, when the waste gas temperature is greater than 

the phase change temperature, and releases heat to the waste gas, when the waste gas 

temperature is lower than the phase change temperature. The combination of these two 

effects leads to a reduction of the temperature fluctuation of the waste gas, which tends 

to stabilise at the phase change temperature. The chapter starts by introducing the issues 

that affect the energy recovery from the electric arc furnace and the content of the chapter 

in Section 3.1. Then, the energy balance and the energy recovery potential from the 

steelmaking process based on electric arc furnace are evaluated in Section 3.2. Then, the 

state of the art of the waste heat recovery system from electric arc furnace is reviewed in 

Section 3.3; advantages and disadvantages of each energy recovery technology are 

highlighted.  

Passive configuration of the PCM-based device. The development of the PCM-based 

device starts in Section 3.4, where the simplest configuration is developed and analysed 

for a EAF process operating with discontinuous scrap charging. In this configuration, the 

heat exchange between the waste gas and the PCM occurs without any direct control, thus 

the device operates in a passive way; for this reason, this configuration is named “Passive 

PCM-based device for temperature smoothing”. Since the temperature-smoothing effect 

becomes as more effective as the average temperature of the waste gas (about 600°C) is 

closer to the phase change temperature, pure aluminium (melting point 660°C) is 
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employed as PCM. The performances of the device are analysed and optimized by means 

of computational thermo-fluid dynamic simulations. In addition to the development of 

the PCM-based device, a new waste heat boiler configuration equipped with cyclones is 

proposed to overcome also the problem of high dust content of the waste gas. The high 

recovery efficiencies, the low investment and operation costs and non-invasive plant 

modifications induced by the introduction of the PCM-based device, make the proposed 

configuration a feasible solution to reduce energy supply costs and emissions in the steel 

industry. Referring to the Italian context, it is estimated that adoption of the proposed 

system could lead to a potential energy saving of more than 1,065 GWhe/year for a 

percentage equal to 12.9%. This, in turn, is equal to 0.34% of the whole Italian electricity 

consumption, with related benefits on national GHG emissions targets. Section 3.4 is part 

of the research paper “PCM-based energy recovery from electric arc furnaces. G. Nardin, 

A. Meneghetti, F. Dal Magro, N. Benedetti. Applied Energy (2014), Vol.136, pag. 947–

955”.   

Thermo-mechanical analysis of PCM container. Section 3.5 develops an analytical and 

numerical approach to evaluate thermal stress in the cylindrical PCM container used in 

the PCM-based device of Section 3.4. The thermal analysis shows that temperature 

distribution in the PCM system can be considered uniform in the whole domain (i.e. PCM 

and container) at any time instant according to the lumped capacitance method; the 

thermal behaviour of the PCM system is thus simulated as a sequence of steady state 

analyses. The mechanical analysis adopts an axialsymmetric plane analytical model to 

compare elastic thermal stress distribution for different stainless steels; AISI 316 is 

identified as the most suitable material for the PCM container. A simple two-bars model 

and a stress index are also used to allow a physical understanding and a satisfactory 

interpretation of the PCM system response. The mechanical analysis shows that thermal 

stresses exceed the yield point of both stainless steels used in the container. A finite 

element elastic-plastic model is then developed to estimate the extension of the plastic 

zone.  Finally, an alternative geometry based on concentric pipes is designed to keep the 

maximum stresses in the PCM container below the yielding point. A sensitivity analysis 

shows that the most relevant design parameters of the alternative geometry are the 

diameter of inner pipe and thickness of the external pipe. Section 3.5 is based on the 

publication “Thermal stress analysis of PCM containers for temperature smoothing of 
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waste gas. F. Dal Magro, D. Benasciutti, G. Nardin. Applied Thermal Engineering (2016), 

Vol.106, pag. 1010–1022”. 

Active configuration of the PCM-based device. In Section 3.6, the PCM-based device 

developed in Section 3.4 is extended to a EAF process with continuous charge and scrap 

preheating. In addition to this, a heat transfer fluid flowing through PCM containers is 

introduced and selected by means of an ad-hoc code based on an analytical thermal 

model. The developed code identifies carbon dioxide as the best heat transfer fluid among 

the considered gases. The introduction of the heat transfer fluid allows the active control 

of the PCM temperature to overcome overheating issues; because of this feature, the 

improved configuration is named “Active PCM-based device for temperature 

smoothing”. Besides the temperature control, the introduction of the heat transfer fluid 

enables the adoption of smaller pipe diameters, which in turn allows the active PCM-

based device to be more compact and efficient than the passive PCM-based device. 

Likewise Section 3.4, the performance of the improved device is analysed and optimized 

by means of computational thermo-fluid dynamic simulations; a comparison with the 

passive device is also carried out. The simulations show that maximum off-gas 

temperature is lowered and the resulting maximum thermal power is reduced by 25.4% 

with respect to a traditional plant with no smoothing device. Furthermore, the minimum 

load factor of the steam turbine can be enhanced from 23% of the traditional plant to 65% 

for the proposed system during the whole Tap-to-Tap cycle; the resulting turbine capacity 

factor, which affects electrical energy revenues, is increased from 60% to 82%. The 

content of Section 3.6 is based on the research paper “Enhancing energy recovery in the 

steel industry: Matching continuous charge with off-gas variability smoothing. F. Dal 

Magro, A. Meneghetti, G. Nardin, S. Savino. Energy Conversion and Management 

(2015), Vol. 104, pag.78–89”. 

Integrated configuration of the PCM-based device. In Section 3.7 the PCM-based device 

is fully integrated with the steam-based waste heat recovery boiler; the resulting 

configuration is named “PCM-coupled steam generator”. The aim of this technology is 

to further increase the efficiency of the energy recovery systems developed in Sections 

3.4 and 3.6 by providing superheated steam with low thermal variability, but also with 

higher temperature to a steam turbine for power production. Such a waste heat recovery 
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boiler is obtained by introducing an auxiliary section between the PCM Section and the 

steam generation one, which provides the auxiliary heat needed to level the thermal 

content of off gas. The auxiliary heat is extracted from the PCM by a heat transfer fluid 

flowing across the inner tube of each PCM container. Different models to properly size 

and simulate the operations of the proposed energy recovery system have been developed 

and integrated. Results show how the size of the steam generator and the turbine can be 

reduced of about 41% with respect to traditional solutions, while increasing electric power 

production by 22% thanks to the reduced fluctuation in steam parameters at the turbine 

inlet, which leads to a greater overall efficiency. The content of Section 3.7 is part of the 

conference paper “Coupling waste heat extraction based on phase change material with 

steam generation: evidence from steel industry.  F. Dal Magro, S. Savino, A. Meneghetti, 

G. Nardin. Proceedings of the 11th Conference on Sustainable Development of Energy, 

Water and Environmental Systems, Lisbon, September 2016”. 

Finally, Section 3.8 summarises the results obtained in the previous sections highlighting 

the most important findings and the topics that need further investigations. 

Energy recovery from billet reheating furnace (Chapter 4). In the fourth chapter an 

existing waste heat recovery system of a steel billet preheating furnace is retrofitted by 

adding a PCM-based device using the eutectic alloys Al-12%Si (in mass %) as high 

temperature PCM. The analysis of the performance of the plant with the proposed 

modifications is done by means of a plant-level dynamic model developed in the 

Modelica language and simulated in the simulation environment Dymola.  The chapter 

starts by describing the existing waste heat recovery system as well as the issues related 

to the variability of the thermal energy load. Afterwards, the components of PCM-based 

device, their layout and the integration with the existing system are described in Section 

4.3. Then the methodology used to model the existing and proposed new layout of the 

waste heat recovery system is reported in Section 4.4 0, while the results of the 

simulations and the advantage of the proposed modifications together with the economic 

assessment are presented in Section 4.5. The final remarks are discussed in Section 4.6. 

Energy recovery from waste incineration (Chapter 5). The fifth chapter proposes the 

application of high temperature PCMs for increasing the energy efficiency of Waste-to-

Energy plants. In particular, an innovative refractory brick technology based on PCMs 
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(named “PCM-based refractory brick”) is proposed for the protection of the radiant 

superheaters against high temperature corrosion and temperature fluctuations. The 

proposed technology enables the installation of radiant superheater in the hottest zone of 

the WtE plants, meaning that higher steam temperature and efficiency can be achieved. 

The proposed technology considers aluminium and its eutectic alloys as PCMs since they 

offer good thermal properties (i.e. high thermal conductivity, high latent heat of fusion 

and high melting temperature) amongst high temperature PCMs. Several commercial 

ceramics are instead considered as containment material since they offer high resistance 

to high temperature corrosion. The design challenge is given by the remarkable difference 

in the coefficient of thermal expansion between the selected PCMs and ceramics. In 

Section 5.1, the current state of the art of Waste-to-Energy plants is briefly explained and 

the main issues that limit their efficiency, which are the corrosion at high temperature and 

the fluctuation of temperature, are analysed.   Then, the working principle of the PCM-

based refractory brick and its installation within Waste-to-Energy plants is reported in 

Section 5.2. The thermomechanical model, which has been used to demonstrate the 

technological feasibility of the proposed technology, and the thermo-fluid dynamic 

model, which has been used to compare the performance of the traditional refractory brick 

technology with that of the proposed technology, are shown in Section 5.3. The results of 

the simulations are discussed in Section 5.4, while final remarks are given in Section 5.5. 

The content of Chapter 5 is part of the conference paper “Application of high temperature 

Phase Change Materials for improved efficiency in waste-to-energy plants. F. Dal Magro, 

A. Romagnoli, H. Xu, G. Nardin. Proceedings of the 6th International Symposium on 

Energy from Biomass and Waste, Venice, November 2016”. 
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2 OVERVIEW ON HIGH TEMPERATURE PHASE CHANGE MATERIALS 

2.1 Introduction 

Thermal energy storage (TES) systems have the potential of increasing the effective use 

of thermal energy equipment and of facilitating large-scale switching, thus they are of 

great importance to many fields of energy engineering. Thermal energy storage systems 

are normally useful for correcting the mismatch between the supply and demand of 

energy. For instance, in industrial processes where great amount of waste heat could be 

reused by means of a waste heat recovery system, but the heat availability period differs 

from its usage period, not having a storage system means that the waste heat is 

unrecoverable. Thermal energy storage systems can help to reduce backup equipment 

required to secure power supply in hospitals, data centres, and all those places where a 

reliable supply is vital [27]; furthermore, thermal energy storage can be used to provide 

thermal comfort in many types of buildings with heavy heating and air conditioning needs 

and thereby achieve a reduction in electric rates [28]. 

The development of energy saving technologies is very actual issue of present day. Heat 

storage technologies, which can effectively store intermittent heat from sources such as 

solar heat and exhaust heat, are very important in the field of thermal energy conversion. 

Chapter 2 
OVERVIEW ON HIGH TEMPERATURE 

PHASE CHANGE MATERIALS 
 



OVERVIEW ON HIGH TEMPERATURE PHASE CHANGE MATERIALS 

14 

 

Recently, accelerated development has been taking place of advanced heat storage 

systems with high-heat storage capacity and high-thermal responsivity to overcome the 

poor performance of conventional sensible heat storage (SHS) systems using ceramics, 

bricks, and liquid molten salts. Under these circumstances, latent heat storage (LHS) 

technology has attracted considerable attention. Latent heat storage is based on the storage 

or release of latent heat when a phase change material (PCM) undergoes phase transition 

from solid to liquid or vice versa. According to [29], latent heat storage has three 

advantages: 

1. High-heat storage capacity when compared to sensible heat storage; 

2. Constant heat source at the phase change temperature during the phase transition; 

3. Reversible phase-changing process allows for repeated use [30].  

These advantages allow latent heat storage to be used as an advanced thermal energy 

storage system. There are many studies related to latent heat storage covering the 

fundamentals and application research of materials, heat transfer and system analysis. As 

underlined in [11], latent heat storage is one of the most efficient ways of storing thermal 

energy: unlike sensible heat storage, latent heat storage provides much higher storage 

density, with a smaller temperature difference between storing and releasing heat.  Latent 

heat storage has been widely investigated for a variety of applications, such as space 

conditioning and domestic hot water to meet the need for a sustainable energy use in 

urban context (see [31] for a recent review).  PCM-based peak load control in commercial 

buildings, in particular, can lead to peak load reduction ranging from 10% to 57%, 

significant overall cost savings and improved thermal comfort [32]. PCMs have been 

incorporated in heat spreaders for electronics cooling, in order to maintain the temperature 

of microprocessors within acceptable limits [33]. In solar water heating application, 

which strongly relies on efficient thermal storage, PCMs show great potential due to their 

high energy density [34]. PCM is a desirable component in solar thermal power plants 

based on steam cycles to provide heat for evaporation at nearly constant temperature [35]; 

the overall exergy efficiency can be increased up to 30% [36]. Industrial waste heat 

recovery at low temperature can also be enabled by adopting PCM-based technologies 

[37]. In the steel industry, in particular, the PCM engine system uses volume expansion 
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of a paraffin mixture during phase change to produce electricity from available heat below 

230 °C [38]. 

Latent heat storage technologies for recovery of high-temperature waste heat have not 

been given great attention despite their large potential [12]. A main issue to be faced is 

the development of a proper encapsulation system for PCM [15].  

2.2 Thermal energy storage technologies 

The thermal energy storage (TES) technologies can be classified into six types [39]: 

1. Utilization of sensible heat; 

2. Utilization of latent heat; 

3. Utilization of chemical reaction heat; 

4. Thermoelectric conversion; 

5. Utilization of different concentration; 

6. Utilization of photochemistry reaction. 

The first thermal energy storage technologies are the most widely used in thermal energy 

storage systems. In particular, the sensible heat storage is the most conventional 

technology and latent heat storage is the second most used. In Table 2.1 an overview on 

the six thermal energy storage technologies is reported; Table 2.1 reports the difficulty of 

use when the technology is commercially available or the technology readiness level 

when it is not commercially available. 

 Gil et al. [40] reported that several facts should be considered when deciding on the type 

and the design of any thermal storage system. In particular, the authors reported that a 

key issue in the design of a thermal energy storage system is its thermal capacity as well 

as the selection of the appropriate type, which depends on many cost-benefit 

considerations, technical criteria and environmental criteria. The cost of a thermal energy 

storage system mainly depends on the following items: the storage material itself, the heat 

exchanger for charging and discharging the system and the cost of the space and/or 

enclosure for the thermal energy storage system. According to [40], the most important 

technical requirements are:  

 high energy density in the storage material (storage capacity);  
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 good heat transfer between heat transfer fluid (HTF) and storage medium (efficiency); 

 mechanical and chemical stability of storage material (must support several 

charging/discharging cycles);  

 compatibility between HTF, heat exchanger and/or storage medium (safety);  

 complete reversibility of several charging/discharging cycles (lifetime);  

 low thermal losses;  

 ease of control. 

while the most important design criteria from the technological point of view are:  

 operation strategy; 

 maximum load; 

 nominal temperature and specific enthalpy drop in load; 

 integration into the energy conversion plant (e.g. waste heat recovery plant). 

Table 2.1 Overview on thermal energy storage technologies. Source: [16] 

Heat storage technology  Note 

Utilization of sensible heat 

(easiest to use) 

Utilization of temperature difference of solid or liquid. As an 

example, heating a brick by blast furnace gas is well known. 

Utilization of latent heat - 

PCM (quite easy to use) 

The production of ice as cold storage at night-time for a 

reasonable cost of electric power is practical.  The energy can 

be successfully stored during the melting of the solid. 

Paraffin, organic material and molten salts can be phase 

change materials (PCMs)  

 Utilization of chemical 

reaction heat (under 

development)  

A) Utilization of reversible reaction: 

Ca(OH)2  ↔ CaO+H2O 

Hydrogen storage alloys, composition and decomposition 

of methanol, etc. have carried out  

B) Irreversible reaction: direct heat storage by endothermic 

reactions such as: 

C+H2O → CO + H2 

CaCO3 → CaO +CO2 

are under development from co-production 

Thermoelectric conversion 

(Under development) 
Thermoelectric couple, BiTe, SiGe, Mg2Si can be used 

Utilization of different 

concentrations (difficult) 

The concentration-dilution of sulfuric acid solution is one 

example 

Utilization of photochemistry 

(most difficult) 
The photochemistry of anthracene is promising 
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The following overview is mainly focused on latent heat storage with a transition from 

solid to liquid phase for reasons explained further on.  

2.2.1 Sensible heat storage 

Sensible heat storage involves heating a material, without causing a phase change in it. 

Thermal energy is accumulated because of increasing the temperature of the storage 

medium. The amount of energy stored depends on the specific heat capacity, the 

temperature change and the amount of material [27] and may be represented by the 

following expression: 

𝑄 = ∫ 𝑚𝑐𝑝𝑑𝑇
𝑇𝑓

𝑇𝑖

= 𝑚 ∙ 𝑐𝑝 ∙ (𝑇𝑓 − 𝑇𝑖) (2.1) 

where 𝑄 is the amount of stored heat, 𝑚 is the mass of the storage medium, 𝑐𝑝 is the 

specific heat capacity of the storage medium, assumed constant in this case, 𝑇𝑓 and 𝑇𝑖 are 

the final and initial temperature of the storage medium, respectively. 

Sensible heat storage systems can be classified on the used storage material, which can 

be a liquid material (such as water, oil, molten salt, etc.) or a solid material (such as rocks 

and metals). 

2.2.2 Latent heat storage 

Latent heat storage involves heating a material until it experiences a phase change, which 

can be from solid to liquid or from liquid to gas. When the material reaches its phase 

change temperature it absorbs a large amount of heat to carry out the transformation, 

known as the latent heat of fusion or vaporization depending on the case. 

The graph in Figure 2.1 further explains the storage mechanism. When a solid material is 

heated, its temperature begins to increase in direct proportion to the received energy until 

it reaches its melting temperature. Beyond this point, the energy delivered to the material 

ceases to raise the temperature and is used instead to perform the transition from solid to 

liquid (latent heat), meaning that the material stores isothermally the thermal energy 

received. Once the melting process is complete and the material is wholly in the liquid 

state, the temperature begins to increase again as it receives a heat input until it reaches 

the vaporization point where what occurred in the first phase change is repeated. The 
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heating process works the same way for cooling, which means that it is possible to extract 

the stored energy as latent heat at a constant temperature (see Figure 2.1).  

As can be seen, it is impossible to exclusively store latent heat, as to reach the phase 

change point the material had to undergo a temperature increase which represents storage 

of sensible heat. The storage capacity of a latent heat storage system can be represented 

by the following expression [27]: 

𝑄 = ∫ 𝑚𝑐𝑝,𝑠𝑑𝑇
𝑇𝑚

𝑇𝑖

+𝑚𝑎𝑚Δℎ𝑚 +∫ 𝑚𝑐𝑝,𝑙𝑑𝑇
𝑇𝑓

𝑇𝑚

 (2.2) 

𝑄 = 𝑚[𝑐𝑝,𝑠(𝑇𝑚 − 𝑇𝑖) + 𝑎𝑚Δℎ𝑚 + 𝑐𝑝,𝑙(𝑇𝑓 − 𝑇𝑚)] (2.3) 

where 𝑚 is the mass of the storage medium, 𝑐𝑝,𝑠 and 𝑐𝑝,𝑙 are the specific heat capacity of 

the solid and liquid phase, respectively, which are assumed to be constant; 𝑇𝑚 is the 

melting point, 𝑎𝑚 is the fraction of the material that has experienced a phase 

transformation and Δℎ𝑚 is the latent heat. 

 

 

Figure 2.1 Temperature increase profile in respect of 

supplied heat Source: [41] 

Figure 2.2 shows the difference of cumulative heat storage capacity of latent heat storage 

using solid–liquid phase transition and sensible heat storage. It can be observed that the 

heat storage capacity given by the latent heat of fusion is much greater than the heat 
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storage capacity given by the sensible heat, which is related to the specific heat capacity 

of the storage medium. 

 

Figure 2.2 Difference of cumulative heat storage capacity of latent heat storage using 

solid–liquid phase transition and sensible heat storage. Source: [42] 

Materials used for latent heat thermal energy storage are known as phase change materials 

(PCMs). The PCM may undergo solid–solid, solid–liquid and liquid–gas phase 

transformations. 

2.2.2.1 Solid-solid latent heat storage 

Generally, LHS systems use the latent heat between solid and liquid phases of the storage 

medium, whereby the PCM is required to be contained or encapsulated within a container 

to prevent the liquid from leaking. However, the capsules decrease the energy density of 

the system and increase the cost of production. To overcome these problems the use of 

the solid–solid phase change of certain materials has been proposed as an alternative. 

Relatively few solid–solid phase change materials (SSPCM) with suitable transition 

temperatures and latent heats for thermal storage applications have been identified. 

Solid–solid phase change is quite simple and provides advantages such as easy handling 

and cost effectiveness because the lack of liquid material eliminates the risk of leakage 

and hence there is no need for encapsulation. There has been work focused on developing 

steel alloy based SSPCM for high temperature waste heat recovery [15].  
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Despite the advantages that SSPCM offer, their latent heat of transition is about one order 

of magnitude smaller than that of the solid–liquid PCM, which is a major drawback that 

should be addressed to achieve a greater introduction of this technology. SSPCM based 

on metal alloys are expected to be used in the future in stationary systems, as structural 

materials with a heat storage function, because they have a small latent heat per mass unit, 

but a rather large per volume unit. This means that they are suitable for energy storage on 

site but unsuitable for energy transport. 

2.2.2.2 Liquid–gas latent heat storage  

Transformations from liquid to gas have the highest latent heat of phase change. 

Nevertheless, the enormous changes in the volume of the storage material associated with 

the evaporation make the storage complex and highly impractical. Thus, the possible use 

for thermal energy storage systems is discarded, the reason why the gaseous state 

information of many materials is quite limited. 

2.2.2.3 Solid-liquid latent heat storage 

The change from solid to liquid phase is the transformation that has been most widely 

studied and used in latent heat storage applications. despite having a smaller latent heat 

compared with the liquid- gas phase change it does not present such a serious problem 

regarding volumetric expansion, which is generally in the order of an increase of 10% or 

less relative to the original volume [43]. 

During fusion, the heat is transferred to the PCM in the first instance by conduction and 

by natural convection afterwards; this is because the solid region moves away from the 

heat transfer surface and the liquid region thickness increases near the heat transfer 

surface. Since the liquid PCM thermal conductivity is often much lower than that of the 

solid PCM, the conductive heat transfer becomes almost negligible as the melting process 

continues due to the density gradient that exists in the liquid PCM. Contrary to the melt, 

solidification is dominated by conduction. During solidification natural convection exists 

only in the beginning of the process and as time passes the effect is negligible compared 

to the conduction effect [44]. 

Using solid–liquid transition PCMs has several technical complications; one of the 

biggest problems that hindered the widespread use of LHS is the unacceptably low 
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thermal conductivity of most PCMs. Besides that, there are other problems such as the 

complexity of the container, phase segregation and subcooling, which can be very severe 

and completely impede the extraction of the stored energy[11]. To avoid these problems, 

various techniques for improving the heat transfer in fusion LHS systems have been 

proposed, such as fins and extended surfaces, PCM embedded porous matrices, dispersion 

of highly conductive particles within the PCM [41].  

The distinctive feature and main advantage of LHS systems is the isothermal operation at 

the phase change temperature of the material (i.e. it can deliver the stored energy at a 

nearly constant temperature). Another advantage offered by this type of storage is its 

compactness; due to that in most materials the latent heat of fusion is much greater than 

the specific heat. Given its characteristics, the phase change materials are chosen over 

sensible heat materials primarily for applications where volume and weight are 

restrictions and therefore a high-energy density is required or when there is a load whose 

power input must be at constant temperature. 

Typically, PCMs are placed in long slender tubes tightly packed within a container. 

During a storage cycle in a solar application, for example, the heat collected by the unit 

is transported by a heat transfer fluid (HTF) through the narrow spaces between the tubes, 

melting the PCM. During the extraction cycle or heat recovery, the circulation of low 

temperature HTF collects the energy stored in the PCM and transports it to the thermal 

load.  

Any LHS system must possess at least the three following basic components: 

1. a substance or energy storage medium, which undergoes a solid to liquid phase change 

at the required temperature range where most of the added heat is stored as latent heat; 

2. a container for containing the storage medium; 

3. a heat exchange surface to transfer the energy from the heat source to the PCM and 

from the PCM to the load [28]. 

Nomura and Akiyama [45] classified the heat exchangers that can be used in the latent 

heat storage systems using  PCM based on solid–liquid  transformation as follows: 1) 

packed-bed, 2) shell and tube, 3)fluidized-bed and 4) direct-contact types; Figure 2.3 

reports the classification of heat exchangers for latent heat storage reported in [45].  
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The packed-bed and shell and tube types are classified as indirect-passive heat 

exchangers, where heat exchange proceeds through a heat transfer wall between the PCM 

and the heat transfer fluid (HTF). A packed-bed heat exchanger using PCM capsules has 

advantages such as quick thermal response and high-heat storage density [46].  

 

Figure 2.3 Classification of heat exchangers for latent heat storage. Source: [45] 

The advantages of the shell and tube type are that high-pressure steam can be used as the 

HTF, by only considering the high pressure design of the heat transfer tubes [46]. 

Fluidized bed designs are classified as indirect-active heat exchangers where heat is 

exchanged through a heat transfer wall between the PCM and the HTF. Here, not only 

the HTF but also the PCM is circulated in the heat storage system. The fluidized-bed type 

can transport dense thermal energy from one process to another. Both liquid [47] and 

gases [48,49] have been proposed as HTF.  

The other type is a direct-contact heat exchanger [30,50–53] where the heat exchange 

proceeds between the PCM and the HTF without any heat transfer wall. Here, the PCM 

is required to be insoluble in the heat transfer medium, and the density of the PCM is 

required to be high enough to ensure that a phase separation is possible. The direct-contact 

heat exchanger has a very simple light structure and a high-thermal storage density. This 

is because only inlet and outlet nozzles are required for the HTF, and a heat transfer pipe 

and capsule are not required. Therefore, this process can be employed not only to provide 

a stationary system, but also a heat transport system [52,54]. 
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2.2.3 Thermochemical heat storage 

There is a third method of thermal energy storage which consists in the use of reversible 

endothermic chemical reactions. The chemical heat is the heat necessary to dissociate or 

break joints in a chemical compound; almost all of this energy will be retrieved later when 

a synthesis reaction takes place. This type of storage offers very attractive advantages.  

Nevertheless, the development of reversible thermochemical reactions is at a very early 

stage [55]. 

2.3 Phase change materials (PCMs)  

Phase change materials (PCM) are substances with a high latent heat of fusion that absorb 

and release thermal energy at a constant temperature during the process of melting and 

solidification, respectively. When a PCM solidifies, it releases a large amount of energy 

in the form of latent heat at a relatively constant temperature. Conversely, when such 

material melts, it absorbs a large amount of heat from the surrounding environment.  

2.3.1 Required material properties and material selection 

The basic requirements of a phase change material have been formulated in [11,27]  and 

in [56–61]; the properties of the phase change material can be classified in four categories: 

thermal properties, physical properties, chemical properties and economic factors. The 

desirable properties that a PCM should possess are listed and classified in Table 2.2. 

The selection of the PCM to be used in a LHS as the storage media is directed by the 

desirable properties listed above. When selecting a PCM for a particular application, the 

phase change temperature of the material must be equal or very similar to the operating 

temperature. The latent heat should be as high as possible, especially on a volumetric 

basis to minimize the size of the storage unit.  In addition to that, a high specific heat is 

desired for providing additional sensible storage capacity.  

A high thermal conductivity, in both states, solid and liquid, is desirable to improve the 

energy storage and extraction processes, and to obtain a more uniform temperature 

distribution within the heat storage unit. A high density, small volume changes between 

solid and liquid phases and low vapor pressure at the operating temperature are sought to 

maintain a small size storage unit and a simple design of container. The PCM must exhibit 
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congruent melting, otherwise there will be irreversible component segregation and the 

storage capacity will be gradually lost with work cycles.  

An important aspect of the material is to have null or insignificant subcooling and a 

sufficient crystallization rate; this has been one of the most problematic aspects of PCM 

development. A subcooling of more than a few degrees will interfere with heat extraction 

and may completely impede it. It is important that the selected PCM is chemically stable 

to provide a reasonable lifetime of the storage unit, given that during operation it may 

undergo oxidative degradation, chemical decom position or incompatibility with the 

container materials. Also, for safety reasons, the PCM should not be toxic, flammable and 

explosive. Finally, it is important to consider the economic aspect; the PCM must be 

abundant and commercially available, and have a reasonable cost for the application that 

allows development to be feasible. 

Table 2.2 Desirable properties of phase change materials 

Category Property 

Thermal properties 

 Suitable phase change temperature 

 Large latent heat 

 Large thermal conductivity in both solid and liquid phases 

 Rapid heat transfer 

Physical properties 

 Large density 

 Small volume change during phase change 

 Low vapor pressure 

 No subcooling 

 Sufficient crystallization rate 

 Favourable phase equilibrium 

Chemical properties 

 Long term chemical stability 

 Compatibility with construction and container material 

 Completely reversible freeze/melt cycle 

 No chemical decomposition 

 Non-toxic 

 Non-flammable 

 Non-explosive 

Economic factors 

 Abundant 

 Available 

 Cost effective 

The phases of development and production of a new commercial latent heat storage 

technology (i.e. PCM and its container) are rather time-consuming and long-term 



OVERVIEW ON HIGH TEMPERATURE PHASE CHANGE MATERIALS 

25 

 

processes, which require the contribution of experts of different disciplines. Figure 2.4 

presents the basic stages of works, which should be solved to bring to the market a new 

heat storage unit based on phase change materials.  

 

Figure 2.4 Flowchart for the development of a latent heat storage system. Source: [58] 

2.3.2 Classification of the phase change materials 

Many phase change materials are available for a wide range of operating temperatures. 

In 1983, Abhat presented a classification of the potential materials that can be used in 

latent heat thermal energy storage technologies [58], which is still used today by various 

researchers. Figure 2.5 reports the classification diagram of the PCMs, providing some 

example of the PCM candidates and their melting points. As it can be seen in the 

classification diagram of Figure 2.5, there are organic and inorganic materials which can 

be used as latent heat storage media. Organic materials include paraffins and non-

paraffins such as fatty acids, while inorganic materials comprise salt hydrates, saline 

composites and metallic alloys. In general, inorganic compounds have near twice the 

energy storage capacity per volume unit than organic compounds and they possess much 

higher operating temperatures. 

Despite the large amount  of materials identified as suitable PCMs from a melting point 

and latent heat standpoint, it is impossible to find a PCM that satisfies all required criteria 
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for being a suitable storage medium; therefore engineers and developers must compensate 

poor physical properties with an appropriate system design; for  example, metallic fins 

can be employed to increase the thermal conductivity of the PCM and subcooling can be 

suppressed by adding nucleating agents into the storage media. 

 

Figure 2.5 Classification of PCM. Source: [15] 

2.3.3 High temperature phase change materials 

In this section, the high temperature PCMs with melting temperatures above 300 °C, 

which for their melting point and storage capabilities have the potential for being used as 

storage media in industrial waste heat recovery systems, are reviewed. This high 

temperature group includes: 

 Inorganic salts and salt eutectic compounds; 

 Metals and metal alloys; 

Materials in the range of 300÷550 °C  are compatible with the currently available heat 

transfer technology in solar plants; however alternative heat transfer fluids such as 

supercritical CO2 and other molten salts are under investigation by research teams 

worldwide; therefore, higher operation temperatures are going to be achievable and 

higher storage temperatures (above 550 °C) will be required [62]. From the literature it 
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appears that molten salts have been more widely researched for heat storage applications 

than molten metals and alloys [63]. Molten metals and eutectic alloys currently find 

applications as heat transfer fluids in nuclear power plants [64], and the performance of 

these materials as PCMs has also been evaluated for high temperature energy storage  

[32,65–69]. Molten metals show better heat transfer performance over molten salts due 

to their high thermal conductivity. In [66], zinc and tin have been evaluated as PCMs for 

high temperature applications (>450 °C) and it has been found that they have superior 

thermal performance compared to molten salts. In experimental study reported in [65], a 

zinc–tin alloy (70% Zn – 30% Sn, % in weight) has been investigated as PCM in a reflux 

heat transfer storage concept for steam generation at about 400°C. This alloy showed 

better thermal storage performance than molten salts, having superior thermal 

conductivity (50 W/mK) in liquid state, and the capability to deliver stable steam 

temperature. The thermo physical properties of a near eutectic aluminium-silicon alloy 

(88% Al – 12% Si, % in weight)  has been studied in [69] for use as thermal energy 

storage. The compatibility of a ternary eutectic alloy of aluminium, magnesium and zinc 

(60%%Mg–%6Zn, % in weight) with encapsulating materials made from stainless steel 

AISI 304L and carbon steel C20 grades has been investigated [70]; the stainless steel 

AISI 304L was found to be suitable for handling the metallic alloy. 

2.3.3.1 Inorganic salts and saline compounds 

In the considered temperature range, above 300 °C, inorganic salts are of great interest. 

Table 2.3 reports the thermophysical properties of some inorganic salts that have been 

investigated by several researchers for their potential for being used as PCM in high 

temperature applications; thermophysical properties such as melting temperature, latent 

heat of fusion and density in solid state and in some cases in both, solid and liquid states 

are included. High heat of fusion of chlorides and fluorides, and the low cost of the former 

have encouraged further studies of salt compositions on their basis. Besides fluorides and 

chlorides, inorganic salt based on hydroxides, nitrates, carbonates are of considerable 

interest.  

The use of inorganic salts as PCMs presents three main drawbacks: 

 low-thermal conductivity: for a typical molten salt PCMs is under 1W/mK; 
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 high-volume expansion ratio during phase transition: it makes difficult to design the 

PCM container because of the thermal stress generated by the volume expansion; 

 high level of chemical corrosion of metallic shell materials. 

Current research efforts are focusing on molten salt with melting temperature above 500 

°C such as chloride, sulphate and carbonate. 

Table 2.3 Thermophysical properties of some inorganic salts with PCM potential. Source: [41] 

Material 

Melting 

temperature 

(°C) 

Heat of 

fusion 

(kJ/kg) 

Density (g/cm3) 

Solid Liquid 

NaNO3 306 182 2.26 1.908 

KOH 380 149.7 2.044 1.47 

SrI2 527 57 4.55 4.085 

LiBr 550 203 3.46 2.528 

LiCl 610 441 2.07 1.502 

CsBr 638 105 4.44 3.133 

CsCl 645 121 3.7808 2.79 

RbI 646 104 3.55 2.904 

SrBr2 650 41 4.175 3.7 

LiH 688 2678 0.82 0.58 

2.3.3.2 Metals and metal alloys 

According to [15], the use of metals and metals alloys as high temperature PCMs has 

been underestimated by the researcher, probably because their elevated weight [41]. 

Zalba et al. [27] noted that  the thermophysical properties of metallic PCMs have not been 

studied enough yet to have clear recommendations for the design of a commercial LHS 

unit and, so far, there is no comprehensive database of thermophysical properties which 

facilitates the selection of materials. In fact, practically all experiments for properties 

determination of possible PCMs have been limited only to temperature and latent heat of 

fusion measurements and except very few cases there are no measurements done to 

establish the temperature dependence of certain parameters such as thermal conductivity, 

heat capacity and density [71]. 

The use of metals and metal alloys as high-temperature PCMs presents many pros; in 

particular, when they are compared to inorganic salts, the main advantages of metals and 

metal alloys are: 
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 comparable heat storage capacity; 

 larger latent heat per volume (i.e. more compact LHS systems); 

 much higher thermal conductivity (e.g.  thermal conductivity of Al is 400 times 

greater than that of NaNO3); 

 lower expansion ratio during phase transition (i.e. design of the LHS easier): for 

example, the volume expansion of Al is equal to 0.07 and it is much lower than that 

of inorganic salts. 

Table 2.4 lists some of metal alloys with melting temperatures above 300°C proposed and 

studied by various researchers as possible high temperature PCMs. 

Table 2.4 Thermophysical properties of some metal alloys with PCM potential. Source: [41] 

Alloy Composition 
(wt %) 

Melting 
temperature (°C) 

Heat of 
fusion (kJ/kg) 

Density 
(kg/m3) 

Zn/Mg 53.7/46.3 340 185 4600 

Zn/Al 96/4 381 138 6630 

Al/Mg/Zn 59/33/6 443 310 2380 

Mg/Cu/Zn 60/25/15 452 254 2800 

Mg/Cu/Ca 52/25/23 453 184 2000 

Al/Mg 65.35/34.65 497 285 2155 

Al/Cu/Mg 60.8/33.2/6 506 365 3050 

Al/Cu/Si/Mg 64.6/28/5.2/2.2 507 374 4400 

Al/Cu/Mg/Zn 54/22/18/6 520 305 3140 

Al/Cu/Si 68.5/26.5/5 525 364 2938 

Al/Cu/Sb 64.3/34/1.7 545 331 4000 

Al/Cu 66.92/33.08 548 372 3600 

Al/Si/Mg 83.14/11.7/5.16 555 485 2500 

Al/Si 87.76/12.24 557 498 2540 

Al/Si/Sb 86.4/9.6/4.2 575 471 2700 

Si/Al 86/12 576 560 2700 

Cu/Zn/P 69/17/14 720 368 7000 

Cu/Zn/Si 74/19/7 765 125 7170 

Cu/Si/Mg 56/27/17 770 420 4150 

Cu/Si 80/20 803 197 6600 

Si/Mg/Ca 49/30/21 865 305 2250 

Si/Mg 56/44 946 757 1900 

In addition to the above mentioned advantages, metallic PCMs offer also high charging 

and discharging rates with minimal material modification [72]. The main drawback is that 

liquid metal alloys generally exhibit high-chemical corrosion of metallic shell materials. 

This is the most serious problem regarding the use of metallic PCMs. To facilitate their 
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use, ceramics must be applied over the structural materials used to build the heat storage 

units and shells of capsules. 

2.3.3.3 Material comparison and selection 

Khare et al. [73] demonstrated the use of a software for materials selection based on a 

multi- objective optimisation methodology to identify potential PCM media for high 

temperature thermal energy storage. In addition to this, an environmental audit function 

of the software has been used to evaluate the environmental credentials of PCMs. The 

methodology for selection of PCMs for high temperature energy storage used in [73] is 

based on the desirable properties of PCM reported in Table 2.2; from an initial screening, 

metals/alloys and composites were identified as promising family classes for a detailed 

study. Figure 2.6 has been produced in [73] by using a materials selection software 

package based on CES package; it shows a materials properties chart with energy density 

against melting point of numerous materials from the metals/alloys and composites 

families.  Different metals and alloys show high energy density within the melting range. 

Metal alloys such as 88Al–12Si (melting point 576 °C) and 60Al–34Mg–6Zn (melting 

point 454°C) are for example at the top right of the graph, whereas tin and lead alloys 

towards the bottom left are less suitable. Pure metals such as Al and Zn have high melting 

points with high energy density as well as high volumetric heat of fusion. 

 

Figure 2.6 Energy density Vs melting point. Source: [73] 
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Figure 2.7 shows a comparison of the material property for volumetric heat of fusion 

against melting point. The basic four metals Al, Zn, Mg and Sn are shown in rectangles 

in relation to the position of their alloys and associated properties. The envelopes in these 

figures represent ranges of material properties recorded with various measurement 

precisions and variability in material properties, and rom different composition and test 

conditions. Elongation in the vertical direction reflects a range of values for specific heat 

capacity. The common heat storage materials such as paraffin and heat transfer salt (HTS-

HiTech) are also included for comparison with the metals and alloys. Metals show high 

thermal conductivities (100 W/mK) over salts (<1 W/mK) as shown in Figure 2.8. 

 

Figure 2.7 Volumetric heat of fusion Vs melting point. Source: [73] 

The X-axis in  Figure 2.9 shows a ranking of materials in terms of mass required to store 

a unit amount of energy. For a given temperature interval, the mass per unit of energy 

stored is the inverse of heat capacity with no other independent variables. On Y-axis, the 

cost is optimised by minimising the cost of material per unit energy stored. For a fixed 

temperature rise, the cost per unit of thermal energy stored is dependent on cost per unit 

of material and heat capacity of material with no other independent variables. The dotted 

line represents a trade-off curve. Materials which are closer to the curve, such as 

magnesium and aluminium metals and their alloys have the lowest cost per unit of thermal 

energy stored.  
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Figure 2.8 Energy density (J/m3 °C) vs. thermal conductivity (W/m °C). Source: [73] 

It should also be noted, however, that other considerations for the choice of a material as 

a PCM include engineering issues such as corrosion or reactivity of materials used, linear 

and volumetric expansion, balancing charging and discharging of heat to the working 

fluid such as steam or CO2. 

 

Figure 2.9 Cost per unit of energy stored Vs mass per unit of energy stored. Source: [73] 
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2.3.4 Encapsulation of phase change materials  

Encapsulation is the process of covering a PCM with a suitable coating or shell material; 

the primary purpose of encapsulation is holding both the liquid and solid phase of the 

PCM and keeping it isolated from the surrounding. This ensures correct composition of 

the PCM that would have otherwise changed due to mixing of the PCM with the 

surrounding fluid. Other advantages of encapsulation involve reduction in reaction of 

PCM with the surrounding, flexibility in frequent phase change processes, an increase in 

heat transfer rate and enhancement in thermal and mechanical stability of the PCM. It can 

also improve the compatibility of hazardous PCMs that cannot be directly used or 

immersed in certain applications such as blood transport, food storage, building cooling/ 

heating, etc. 

2.3.4.1 Container geometry 

Based on the size, PCM encapsulation can be classified as follows: 

 macro-encapsulation: size above 1 mm; 

 micro-encapsulation: size 1÷1000 μm; 

 nano-encapsulation: size 1÷1000 nm. 

Macro-encapsulation is a common way of encapsulating the PCM for thermal energy 

storage applications. The container shape may be spherical, tubular, cylindrical or 

rectangular. Metallic encapsulant is preferred if high heat transfer is the criteria, 

otherwise, plastic containers are most widely used for low temperature applications. 

However, compatibility of both metallic and plastic encapsulants with the PCM needs to 

be checked.  

PCMs are typically encapsulated in long thin heat pipes [74], cylindrical containers 

[75,76] or rectangular containers [77,78]. A survey of previously published papers 

dealing with LHS systems reveals that two geometries commonly employed as PCM 

containers are the rectangular and cylindrical containers. The most intensely analysed 

LHS system is the shell and tube system, accounting for more than 70%. This is probably 

due to the fact that most engineering systems employ cylindrical pipes and also heat loss 

from the shell and tube system is minimal. Figure 2.10 gives the schematics of the 

cylindrical and rectangular containers.  



OVERVIEW ON HIGH TEMPERATURE PHASE CHANGE MATERIALS 

34 

 

 

Figure 2.10 Classification of commonly used PCM containers in terms of the geometry and 

configuration. Source: [10] 

Three modes of cylindrical PCM container configurations are distinguished. The first is 

where the PCM fills the shell and the heat transfer fluid flows through a single tube 

(Figure 2.10a) [10,75,79] designated the pipe model. In the second model the PCM fills 

the tube and the HTF flows parallel to the tube (Figure 2.10b) [80–82]. The third cylinder 

model is the shell and tube system [79,83] commonly used to improve heat transfer in 

PCMs. 

Figure 2.11a shows the macro-encapsulation of metallic PCM (Al-Si12) in stainless steel 

cylinders used in a high-temperature thermocline-type thermal energy storage designed 

by Zanganeh et al. [84] for the application in concentrated solar power plants. 

The manufacturing of microencapsulated PCM is more complex than macro-encapsulated 

PCM as its size falls below 1 mm (see Figure 2.11b). However, microencapsulation result 

in a higher heat transfer rates as compared to that of macro-encapsulation [85,86]. This is 

attributed to a substantially higher surface area to volume ratio, ability to withstand the 

change in volume during phase change process and less chemical reactivity of PCM with 

the shell material. 
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(a) (b) 

Figure 2.11 Encapsulation of Al-Si alloys as PCM: a) Macro-

encapsulation in steel cylinders [84]; b) micro-encapsulation in 

alumina shell [87]. 

Higher heat transfer rate results in rapid melting and solidification of the micro-

encapsulated PCM. For macro-capsules, the large capsule size results in temperature 

differential at the PCM core and boundary. The edge remains solid, whereas, core part 

may still remain in the liquid form, thus preventing the effective heat transfer [88]. Sari 

et al. [89] demonstrated that micro-encapsulated PCMs are thermally more reliable and 

chemically more stable than that of macro-encapsulated PCMs. The only problem with 

microencapsulated PCM is the possibility of increase in subcooling [90]. Due to 

subcooling, PCM retains its liquid phase even below its freezing point; the subcooling 

can be prevented by incorporating nucleating agents [91].  

There are also studies on the nano-encapsulated PCM for thermal energy storage [92–94]. 

The advanced technological developments have made it possible to encapsulate the PCM 

at the nano-scale. Nano-capsules are structurally more stable as compared to macro and 

micro-capsules and there is a great potential in the use of nano-capsules for thermal 

energy storage applications. However, the research on nano-capsule is still at the 

laboratory level. More investigations are required to bring nano-capsules into the 

commercial applications. The macro and micro-capsules have been successfully 

commercialized in the market for the applications in LHS systems. 
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2.3.4.2 Encapsulation material 

The encapsulation material is an important factor to consider when designing a latent heat 

storage system as the encapsulation material plays a key part in the efficient heat transfer 

from the heat transfer fluid (HTF) to the PCM. The encapsulation material must also be 

compatible with the PCM and the storage materials and be durable as it must provide a 

barrier to the outside environment as well as it must prevent liquid PCM leakage. Thus, 

it is important to ensure that the encapsulation (or containment) material: 

 meet the requirements of strength, flexibility, corrosion resistance and thermal 

stability; 

 act as a barrier to protect the PCM from harmful interaction with the environment; 

 provide sufficient surface for heat transfer, when the PCM has a low thermal 

conductivity; 

 provide structural stability and easy handling [60]. 

Concerning high temperature applications, Jacob and Bruno [95] reported that the 

majority of high-temperature macro-encapsulated PCMs are fabricated using a steel-

based metallic shell.  

Nevertheless, serious corrosion problem arises when metal alloys are used as high 

temperature PCMs. According to Sun et al. [70], stainless steels containing alloying 

elements of Cr, Ni and Ti (e.g. AISI 304L), may be considered suitable as a container 

material for Al–34%Mg–6%Zn when used as PCM. However, other authors [96,97] 

claimed that stainless steel is not suitable for the encapsulation of molten aluminium and 

its alloy since they easily react with the iron and nickel contained in the steel. In addition, 

the same authors reported that, among metals, only miscibility gap alloys [98,99] present 

a good resistance to molten aluminium corrosion. 

To overcome the corrosion issue, the use of ceramics as a shell material for a LHS system 

using metallic PCMs has been proposed in [96,97]. In  [96], the corrosion characteristics 

of four Al–Si alloys with Si contents between 0 and 25 wt% with engineering ceramics 

(namely Al2O3, AlN, Si3N4, SiC, and SiO2)  have been studied. The corrosion tests 

revealed that Al2O3, AlN and Si3N4 have high corrosion resistance to molten Al-Si alloys 
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and, thus, they are suitable materials for encapsulation of high temperature PCM based 

on Al-Si alloys.  

Based on the results of [96], Fukahori et al. [97] proposed the use of alumina ceramic 

containers for macro-encapsulation of metallic PCMs (see Figure 2.12); the authors 

employed a cylindrical container composed by a cap and a cup and, in addition, they 

developed a sealing method to endure the thermal stress from volume expansion during 

the phase change. The resulting PCM capsule have shown excellent corrosive resistance 

and cycling performance. 

It is worth remarking that the use of ceramics in industrial application may be limited by 

their brittleness and high cost, and alternative solution needs to be investigated. A suitable 

alternative could be using steel as container material and coating its surfaces in contact 

with the metallic PCM with a thin film of Al2O3, which can be obtained by means of an 

aluminizing and oxidation treatment [100]; however, such a solution has not been studied 

yet for the application of PCM encapsulation and needs to be studied experimentally.  

 

Figure 2.12 Macro-encapsulation of metallic PCM (Al–25 wt%Si) based on alumina ceramic; a) 

overall view, b) vertical cross section, c) horizontal cross section, and d) micro-scale images. 

Source: [75] 
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2.4 Conclusions 

In this chapter, information available in the literature about thermal energy storage 

systems have been reviewed with a special focus on high temperature latent heat storage 

systems based on solid-liquid phase change materials. A general overview on the required 

properties of the phase change material as well as the classification of the phase change 

materials have been reported. Materials with potential to be high temperature PCMs have 

been considered and compared. The use of metals and metal alloys has been found of 

particular interest for waste heat recovery application. In particular, pure aluminium and 

its eutectic alloys, such as Al–12%Si and Al–34%Mg–6%Zn have been identified to have 

superior properties among high temperature PCMs. Finally, considerations on the 

geometry and the materials to be employed for the encapsulation of high temperature 

PCMs have been reported. 
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3 ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

3.1 Introduction 

In 2012, the steel industry consumed about 5 % of all primary energy produced worldwide 

contributing to 7 % of all global CO2 emissions due to a high share of coal in the industry 

fuel mix [16]. World steel production increased from 28 million tons in 1950 to nearly 

1.6 billion tons in 2015 [17]. Although recently significant improvements have been 

achieved, this sector has the potential to further reduce of 20% both energy consumption 

and greenhouse gas emission.  

Since both current and future energy-related scenarios (growth of energy demand, 

production costs and pollution) claim for more rational use of energy in order to foster 

sustainable development, waste heat recovery in steel industry represents one of the 

greatest opportunity to reduce the consumption of primary energy (i.e. reduction of CO2 

emissions) while increasing the sustainability of the steelmaking process [18–21].  

One of the most important and challenging source of waste heat in the steel industry is 

the waste gas (usually called off gas) emitted by the Electric Arc Furnace (EAF) 

Chapter 3 
ENERGY RECOVERY FROM 

ELECTRIC ARC FURNACE 
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steelmaking process, which accounts for the 28% of the worldwide steel production [22]. 

The thermal energy wasted through these off gases varies from 15% to 35% of the total 

energy provided to the EAF steelmaking process [23]. 

The most common heat recovery system from EAF waste gas involves pre-heating of 

metal scrap; however, its diffusion is mainly limited by problems related to dioxins 

formation [101]. In the last years, new approaches of heat recovery based on steam 

production (e.g. in [102,103]) have been developed to overcome the environmental issues 

caused by scrap pre-heating. The efficiency of heat recovery by steam production is 

limited, however, by the high variability of temperature and flow rate of the waste gas 

[15,104]. During the steelmaking process, the waste gas temperature at settling chamber 

inlet generally shows a fluctuation within a wide range (e.g. from 100°C to 1000°C in 

tens of minutes).  

These operative conditions make difficult to size a direct contact heat exchanger, even by 

taking into account oversizing and appropriate control systems. In addition to the high 

variability of temperatures, the high concentration of dust makes the adoption of current 

energy recovery solutions quite difficult, both from the technological and the economical 

perspective. 

In this chapter, the problem of temperature fluctuations in energy recovery from the 

electric arc furnace is addressed. In particular, a series of systems exploiting aluminium 

and its alloys as high temperature phase change materials (PCMs) are developed in order 

to reduce the temperature fluctuation of the off-gas and increase the overall efficiency of 

the energy recovery system.   

The chapter starts by evaluating the energy balance and the energy recovery potential 

from the EAF steelmaking process in Section 3.2. Then, the state of the art of the waste 

heat recovery system from electric arc furnace is reviewed in Section 3.3; advantages and 

disadvantages of each energy recovery technology are highlighted.  

The development of the PCM-based device starts in Section 3.4, where the simplest 

configuration of the proposed technology is developed and analysed for a EAF process 

operating with discontinuous scrap charging. Since this first configuration of the PCM-



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

41 

 

based device operates in a passive way (i.e. no control systems are employed) and its 

main feature is to smooth the temperature fluctuation of the off gas, it is named “Passive 

PCM-based device for temperature smoothing”. In this configuration, pure aluminium is 

employed as high temperature PCM; its performances are analysed and optimized by 

means of computational thermo-fluid dynamic simulations. In addition to the 

development of the PCM-based device, a new configuration of the steam-based waste 

heat boiler equipped with cyclones is proposed to overcome also the problem of high 

concentration of dust in the off-gas. The high recovery efficiencies, the low investment 

and operation costs and non-invasive plant modifications induced by the smoothing 

system, make the proposed PCM-based recovery system a feasible solution to reduce 

energy supply costs and emissions in the steel industry. In particular, it is estimated that 

the adoption of the proposed system has a potential energy saving of more than 1,065 

GWhe/year for a percentage equal to 12.9%. This in turn is equal to 0.34% of the whole 

Italian electricity consumption, with related benefits on national GHG emissions targets. 

Section 3.5 develops an analytical and numerical approach to evaluate thermal stress in 

the cylindrical PCM container used in the PCM-based device of Section 3.4. Thermal 

analysis shows that temperature distribution in the PCM system can be considered as 

uniform at any time instant according to the lumped capacitance method; the thermal 

behaviour of PCM system is thus simulated as a sequence of steady state analyses. 

Mechanical analysis adopts an axialsymmetric plane analytical model to compare elastic 

thermal stress distribution for different stainless steels and to identify AISI 316 as the 

most suitable material for the PCM container. A simple two-bars model and a stress index 

are also used to allow a physical understanding and a satisfactory interpretation of the 

PCM system response. Mechanical analysis shows that thermal stresses exceed the yield 

point of both stainless steels used in the container. A finite element elastic-plastic model 

is then developed to estimate the extension of the plastic zone.  Finally, an alternative 

geometry based on concentric pipes is designed to keep the maximum stresses in the PCM 

container below the yielding point. A sensitivity analysis shows that the most relevant 

design parameters of the alternative geometry are the diameter of inner pipe and thickness 

of the external pipe. 
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In Section 3.6, the PCM-based device developed in Section 3.4 is extended to a EAF 

process with continuous charge and scrap preheating. In addition to this, a heat transfer 

fluid flowing through PCM containers is introduced and selected by means of an ad hoc 

code based on an analytical thermal model. The developed code identifies carbon dioxide 

as the best heat transfer fluid among the considered gases. The introduction of the heat 

transfer fluid allows the active control of the PCM temperature; because of this feature, 

the improved configuration is named “Active PCM-based device for temperature 

smoothing”. Besides the temperature control, the introduction of the heat transfer fluid 

enables the adoption of smaller pipe diameters, which in turn allows the active PCM-

based device to be more compact and efficient than the passive PCM-based device. As in 

Section 3.4, the performances of the improved device are analysed and optimized by 

means of computational thermo-fluid dynamic simulations; a comparison with the passive 

device is also carried out. The simulations show that maximum off-gas temperature is 

lowered and the resulting maximum thermal power is reduced by 25.4% with respect to 

a traditional plant with no smoothing device. Furthermore, the minimum load factor of 

the steam turbine can be enhanced from 23% in the traditional plant to 65% for the 

proposed system during the whole Tap-to-Tap cycle. The resulting turbine utilization 

factor, which affects electrical energy revenues, is increased from 60% to 82%. 

In Section 3.7 the PCM-based device is fully integrated with the steam-based waste heat 

recovery boiler; the resulting technology is named “PCM-coupled steam generator”. The 

aim of this technology is to further increase the efficiency of the energy recovery systems 

developed in Sections 3.4 and 3.6 by providing superheated steam with low thermal 

variability, but also with higher temperature to a steam turbine for power production. 

Such a waste heat recovery boiler is obtained by introducing an auxiliary section between 

the PCM Section and the steam generation one, which provides the auxiliary heat needed 

to level the thermal content of off gas. The auxiliary heat is extracted from the PCM by a 

heat transfer fluid flowing across the inner tube of each PCM container. Different models 

to properly size and simulate the operations of the proposed energy recovery system have 

been developed and integrated. Results show how the size of the steam generator and the 

turbine can be reduced of about 41% with respect to traditional solutions, while increasing 

electric power production by 22% thanks to the reduced fluctuation in steam parameters 

at the turbine inlet, which leads to a greater overall efficiency. 
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Finally, Section 3.8 summarises the results obtained in the previous sections highlighting 

the most important findings and the topics that need further investigations. 

3.2 Energy balance and energy recovery potential from the 

electric arc furnace 

A first evaluation of the flue gas enthalpy content can be made by analysing the energy 

balance that characterizes the smelting process of the steel occurring in an electric arc 

furnace. In [23] the energy balance of 70 electric arc furnaces has been carried out; in 

Table 3.1 some of this energy balances are reported. 

Table 3.1 Energy balance of several electric arc furnaces. Adapted from [23] 

Furnace Energy Input [kWh/t] Energy Output [kWh/t] 
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1 100 541 234 23  798 423 80 168 127 798 

2 55 571 155   726 415 59 100 152 726 

3 60 408 204 20 51 683 367 68 109 139 683 

4 80 560 118   678 382 50 81 165 678 

5 100 577 155   732 415 59 33 225 732 

6 150 450 199   649 385 35 102 127 649 

7  390 170 60 12 632 345 50 170 67 632 

8 100 557 233 21  810 427 83 158 142 810 

9 115 487 217   704 397 46 127 134 704 

10 125 462 94 34 70 660 401 70 48 140 660 

11 100 459 295   754 354 62 138 199 754 

12 100 413 378   791 354 62 140 235 791 

13 100 401 397   798 354 62 141 241 798 

14 100 445 341   786 355 47 141 243 786 

15 100 423 325 61  809 355 47 141 266 809 

16 100 91 249 182 106 628 385 50 68 125 628 

17 80 380 195 15  590 388 52 85 65 590 

18 100 365 222 33  625 5 431 110 84 625 

19 100 287 223 33  606 63 431 97 78 606 

20 75 459 230 7  696 362 49 90 195 696 

21 75 422 237   659 362 40 105 152 659 

22 70 477 187   664 392 62 96 114 664 

23 150 312 278 88  678 320 47 229 83 678 

24 150 300 377 97  775 355 53 232 135 775 

25 55 347 399 86  832 407 26 317 82 832 

26  368 348 38  754 380 32 155 187 754 

27  482 170 25  677 360 31 160 126 677 

28 60 465 215 36  715 408 72 150 86 715 

29 60 429 215 21 50 715 408 72 150 86 715 

30  450 130 90  670 395 35 122 118 670 
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The total energy required by an electric arc furnace process typically ranges from 510 

kWh/t to 880 kWh/t [23]; the minimum energy required to melt the scrap and to superheat 

the melt and basic slag to 1600°C is approximately 444 kWh/t  [105]. Energy consists for 

40%-65% of electrical energy, and for 22%-60% of thermal and chemical energy 

generated from oxidation reactions during refining. Only the 50%-70% of the output 

energy is represented by steel and slag enthalpies, while the remaining part is dissipated 

by the water cooling systems of the furnace (10%-20%) and by the off-gas (15-35%) [23]. 

This means that potentially a portion of about 25%-55% of the input energy could be 

exploited by energy recovery. Figure 3.1 reports a typical energy balance of an electric 

arc furnace producing special steels. 

  

Figure 3.1 Energy balance of an electric arc furnace. Source: [106] 

From Figure 3.1, it can be observed that the most of the energy input entering the electric 

arc furnace is high quality energy (i.e. chemical and electric energy), while the output 

energy exiting the furnace is low quality energy (i.e. thermal energy). Thus, the problem 

must be addressed through an analysis of the second law (i.e. exergy analysis) that allows 

evaluating the energy balance from a qualitative point of view and not just from a 

quantitative point of view.  
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Table 3.2 shows the comparison between the energy and exergy balance in EAF process 

with scrap preheating; it can be noted that the energy of the off-gas represents the 21% of 

the total energy output, while the exergy content of the off-gas represents the 15% of 

exergy output (due to the high off-gas temperature), which demonstrate the high potential 

of the energy recovery. 

Table 3.2 Energy and exergy balances comparison in a EAF process. Adapted from: [107] 

Input  Output 

Source 
Energy 

(%) 

Exergy 

(%) 

 Product Energy 

(%) 

Exergy 

(%) 

Electrical energy 60 60  Liquid steel 57 41.9 

Scrap 7 2.16  Off-gas 21 15.3 

Oxy-fuel burner 3 3  Slag 10 7.6 

Chemical 

reaction 

30 30  Cooling 12 0.3 

 
   Exergy 

destruction 

 30.06 

For what concerns the efficiency of the EAF process, it can be defined as: 

𝜂𝐸𝐴𝐹 =
Δℎ𝑠𝑡𝑒𝑒𝑙
𝐸𝑖𝑛𝑝𝑢𝑡

 (3.1) 

where Δℎ𝑠𝑡𝑒𝑒𝑙 is the increase of enthalpy in the steel during the process and 𝐸𝑖𝑛𝑝𝑢𝑡 is the 

energy absorbed by the process. The energy loss 𝐸𝑙𝑜𝑠𝑠 is instead expressed as: 

𝐸𝑙𝑜𝑠𝑠 = 𝐸𝑖𝑛𝑝𝑢𝑡 − Δℎ𝑠𝑡𝑒𝑒𝑙  (3.2) 

The efficiency 𝜂𝐸𝐴𝐹  provides an estimation of the melting process quality; the maximum 

efficiency is achieved when all the absorbed energy 𝐸𝑖𝑛𝑝𝑢𝑡 contributes to increase the 

steel enthalpy Δℎ𝑠𝑡𝑒𝑒𝑙 (i.e. the energy loss 𝐸𝑙𝑜𝑠𝑠  is zero and the efficiency 𝜂𝐸𝐴𝐹  is equal 

to 1). According to [23], the current efficiency 𝜂𝐸𝐴𝐹  ranges from 40 to 75%.   

One way to increase the efficiency of an EAF is to decrease the absorbed energy 𝐸𝑖𝑛𝑝𝑢𝑡 

by reintroducing into the process the energy recovered by means of a bespoke energy 

recovery system. To quantify the amount of useful recoverable energy from the off-gas 

of an EAF, the technological and energy limits should be considered. In the following 

paragraphs, an estimation of the recoverable energy from the EAF off-gas is carried out.  
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A total input energy entering the EAF process per tonne of produced steel of 750 kWh/t 

is considered. As described in the previous paragraphs, only 45÷60% of the total energy 

supplied is absorbed by the fusion of the steel. Fruehan et al. [105] reported that the 

minimum theoretical enthalpy of a tonne of steel at the tapping temperature of 1600°C is 

equal to 361 kWh/t. The rest of the energy is dissipated through the slag, the cooling water 

and the off-gas.  

For what concerns the slag, it is not considered in the following thermodynamic 

considerations since its contribution is minimal. It should also be noted that a part of the 

energy of the flow is inevitably lost. In fact, it is assumed that the off-gas temperature at 

the outlet of the energy recovery system cannot be lower than 200°C in order to avoid 

acid condensation at the chimney and to ensure the integrity of the filters; the enthalpy of 

the flue gas referred to 200°C is of about 110 kWh/t.  

Table 3.3 Assumptions for the estimation of the recoverable energy from the EAF off-gas 

 
Energy 

(kWh/t) 

Share 

(%) 

Total energy to the EAF process 750 100 

Minimum steel enthalpy (at 1600 °C) 361 48 

Off-gas enthalpy exiting the energy recovery (at 200 °C) 110 15 

Off-gas enthalpy + Cooling water 279 37 

Table 3.3 summarises the assumptions made for the estimation of the recoverable energy 

from the EAF off-gas; it can be noted that the maximum recoverable energy (i.e. off-gas 

enthalpy and cooling water) account for the 37% of the total energy. Figure 3.2 reports 

the distribution of the energy exiting the EAF; it can be observed that the theoretical limit 

is given by the minimum steel enthalpy, while the technical limit is due to the limit on the 

off-gas temperature exiting the energy recovery system (i.e. 200°C). The field of 

intervention is then identified by the remaining energy, which is represented by the off-

gas enthalpy (at temperatures higher than 200°C) and the cooling water.  
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Figure 3.2 Distribution of the energy exiting the EAF: field of intervention, theoretical and 

technical limits of waste heat recovery  

A real energy recovery system can recover only a portion of the maximum recoverable 

energy (i.e. field of intervention). The analyses carried out in the sections 3.4 and 3.6, 

which are based on real data plant, show that energy recovery systems based on phase 

change materials can achieve a power production higher than 50 kWh/t. Nevertheless, 

current energy recovery systems achieve lower performance (i.e. power production lower 

than 45 kWh/t). 

Figure 3.3 represents the recoverable electric energy with current energy recovery 

technologies; it can be observed that the recoverable electric energy represents the 6% of 

the total energy used in the EAF process. 

 

Figure 3.3 Recoverable electric energy with current energy recovery technologies  
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3.3 State of the art of waste heat recovery from EAF 

Current available technologies for energy recovery from off gas of the EAF steelmaking 

process can be classified depending on the final use of recovered heat (see Table 3.4). In 

direct recovery, off-gas thermal energy is recuperated without the introduction of a heat 

transfer fluid (HTF) and directly used to preheat the scrap before its charging into the 

furnace. As shown in Table 3.4, related technologies can be further classified into two 

groups based on the type of scrap charging, which can be continuous or discontinuous. 

Direct recovery in discontinuous charging is mainly carried out by means of two 

technologies: shaft furnace and twin-shell. In spite of significant advantages [108], such 

as the reduction of the tap-to-tap (TTT) cycle time, the decrease of power requirements, 

and the reduction of CO2 emissions [109], these techniques present problems that have 

hindered their effective development and use. Most difficulties concern plant complexity, 

as well as surface oxidation of the charge, its partial melting, and high emission factors 

for dioxins [101]. 

Table 3.4 Current technologies for energy recovery from EAF off-gas. 

Energy Recovery Charge Technology Reference 

Direct 

(scrap preheating) 

Discontinuous 
Shaft furnaces [110] 

Twin-Shell [111] 

Continuous 

Consteel [112,113] 

Ecoarc [114] 

EPC System [115] 

Indirect 

(using steam, molten salt  

or superheated water) 

N/A 

 

SMS Siemag AG [116] 

iRecovery (Lv. 1) [102] 

iRecovery (Lv.2) [117,118] 

Simetal EAF Quantum [119] 

Danieli CHR [120] 

In indirect recovery, off-gas thermal energy is carried out by a HTF, such as steam, molten 

salt or superheated water. Systems based on steam flowing through the cooling pipes of 

the off-gas ducts are SMS Siemag AG [116] and iRecovery Level 1 [102]; iRecovery 

Level 2 technology [118] adds a waste heat boiler located downstream the off-gas ducts. 

To the author knowledge, the only system using superheated water to feed an ORC turbine 

has been implemented by Danieli Spa in an Italian steel industry [120]. For what concerns 

the use of molten salt, a pilot project installed in a Simetal EAF Quantum employs molten 
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salts as heat transfer and storage media [119].  There are several applications where the 

recovered heat by the HTF can be used downstream, such as district heating, vacuum 

degasser, and power production [118]. However, as underlined in [104], due to off-gas 

variability, thermal energy storage (TES) is necessary to provide the downstream systems 

with a constant supply of thermal energy. 

As highlighted in [121], the most modern installations in the EU steel industry are close 

to the limits of what current technologies can do, and the steel industry will struggle to 

achieve further energy efficiency improvement without the introduction of breakthrough 

technologies. 

3.3.1 Direct recovery: scrap preheating 

The preheating of scrap has become a technique commonly used in the last 30 years. 

Conventional scrap preheating involves the use of hot gases to heat scrap in the bucket 

prior to charging the scrap into the EAF. The source of the hot gases can be either off-

gases from the off-gases from the EAF or gases produced by burning natural gas which 

will be discussed later. 

The scrap can be preheated at both low temperature (around 300÷400°C using continuous 

charging systems) and high temperature (around 800÷1000 ° C using discontinuous 

charging systems). The main objective is the reduction of energy required for the steel 

melting. Thus, this technique contributes to the optimization of the EAF process by 

increasing its efficiency and productivity. The advantages associated with this technique 

are listed below: 

 Reduced energy consumption during a Tap-to-Tap (TTT) cycle; 

 Increased furnace productivity; 

 Reduced electrodes consumption and breakage; 

 Reduced consumption of the furnace refractories; 

 Reduced moisture in the scrap (i.e. prevention of possible explosions in the furnace); 

 Reduced oxygen consumption; 

 Reduced greenhouse gases emission and dust concentration; 

 Reduced furnace maintenance; 

 Reduced process costs. 
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The main problem of the scrap preheating is related to scrap composition. In fact, the 

scrap may contain organic substances, such as oils and plastics, whose incomplete 

combustion leads to the formation of toxic substances, such as dioxins. Referring to 

dioxin concentration, continuous charging systems coupled with rapid off-gas cooling 

systems, such as quenching tower, seem to ensure compliance with the regulatory limits 

(usually 0.1 ng I-TEQ / Nm3). However, in at least two plants using this technology higher 

values of dioxin concentration have been recorded. Furthermore, in a conventional 

preheating system (shaft furnace) a value of 9.2 ng I-TEQ / Nm3 has been measured [101].  

The use of fuel burners in addition to quenching towers can prevent the process of De 

Novo Synthesis (i.e. mechanism of dioxin formation in the temperature range of 

250÷450°C), but it reduces the efficiency of the process because of the energy employed 

by the fuel burners.   

3.3.1.1 Conventional technology: scrap preheating in the charging bucket 

Conventional scrap preheating can be accomplished by delivering the hot furnace gases 

to the scrap charging bucket by piping the off-gases from the fourth hole in the EAF to a 

special hood over the charging bucket. A schematic of a typical conventional scrap 

preheating system is shown in Figure 3.4. Typically, the gases leave the EAF at about 

1200°C, enter the bucket at 815°C, and leave at around 200°C. The amount of preheating 

depends on the heat transfer to the scrap which is a function of scrap size and time at 

temperature.  

 

Figure 3.4 Schematic Diagram of Scrap Preheating in a Charging Bucket. Source: [110] 
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Usually, the scrap is preheated to a range of 315÷ 450°C. In some cases, higher 

temperatures have been reported. This amount of preheating usually reduces energy 

consumption by 40 to 60 kWh/t, electrode consumption by 0.3 to 0.36 kg/m, refractory 

consumption 0.9 to 1.4 kg/m, and tap-to-tap time by 5 to 8 minutes. 

Some of the disadvantages to conventional scrap preheating include: 

 Inconvenient to operate such as scrap sticking to bucket and short bucket life; 

 Poor controllability of preheating due to cycling of the off-gas temperature and 

flowrate through various EAF operating phases; 

 For tap-to-tap times less than 70 minutes, the logistics of conventional scrap 

preheating lead to minimal energy savings that cannot justify the capital expense of a 

preheating system. 

3.3.1.2 Shaft technology 

For what concerns shaft furnace technologies, two main arrangements can be considered: 

single shaft and double shaft. The single shaft furnace is a batch-type preheater. The 

system can be used with either DC or AC furnaces. The shaft furnace is situated on top 

of the EAF as shown in Figure 3.5a. The shaft is water cooled, charging about 1/3 of the 

scrap to the EAF. The balance of the furnace charge is added by scrap bucket through the 

furnace shaft, normally one or two additional bucket charges. In the shaft, scrap is 

preheated by low-velocity off-gases and then dropped into the EAF. It has been reported 

that the system can reduce electric consumption up to 18%, and increase production by 

17 to 20%. With the system providing a more stable operation, flicker and harmonics are 

reduced. In addition, some of the furnace dust is trapped by the scrap and returned to the 

furnace thus reducing EAF dust generation and disposal.  

The same advantages reported for the single shaft furnace are obtained with the double 

shaft, which consists of two EAF furnaces, each with a shaft and one common electrode 

mast and set of electrodes to serve both furnaces (see Figure 3.5b).  

The dual furnace operation begins with charging scrap to furnace A and its shaft. During 

initial meltdown in furnace A, furnace B and its shaft are charged with scrap. When 

furnace A is in the refining mode, the hot off-gases from this furnace are directed to pass 
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through ductwork to heat the scrap in furnace B and in its shaft. When vessel A is ready 

to tap, the electrodes are moved to furnace B and the meltdown procedure begins in this 

furnace and the process is reversed. 

  
(a) (b) 

Figure 3.5 (a) Single and (b) double shaft furnace system. Source: [110] 

Tap-to-tap cycles have been reported to be as low as 40 minutes. In order to achieve the 

full benefits of the double shaft system, it is important to manage the material flow on 

time. Scrap management should be carefully planned since power-on times for the furnace 

are generally around 32 to 34 minutes. The idle furnace should be charged not later than 

15 minutes after tapping to achieve the full benefits of scrap preheating. Compared to 

single shaft furnace, the productivity is further increased and the electric usage is lower. 

Similar to the double shaft technology, twin-shell technology includes two EAF vessels 

with a common arc and power supply system [111]. 

3.3.1.3 Consteel technology 

Consteel is a patented continuous feeding, preheating, and melting steelmaking process 

developed by lntersteel Technology Inc. A schematic of the process is shown in  Figure 

3.6. In the process scrap is placed on a conveyor and passes through a seal into the 

preheating section.  

Off-gases coming from the EAF flow through the preheater (countercurrent to the scrap 

charge direction) and into the ductwork leading to the bag house. After moving through 

the preheating section, the scrap is discharged onto a connecting conveyor car which 

enters the side of the furnace and drops the scrap into the molten steel bath, see cross 

section of furnace in Figure 3.6. Reportedly, scrap has been heated to 316°C by the off-

gases. A continuous hot metal heal is always kept in the furnace to melt the incomings 
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crap. The arc primarily is used only to keep the bath molten. In this way, the furnace 

maintains a constant flat bath condition, which makes possible to continuously refine the 

bath while scrap is being melted. 

 

Figure 3.6 Consteel preheating system. Source: [110] 

Advantages of the Consteel process are: 

 Low electricity usage, about 360 kWh/t; 

 Tap-to-tap times under 50 minutes; 

 Low electrode consumption (about 1.5 kg/m); 

 Reduced harmonic and flicker problems; 

 A reduction in dust generation of about 30%; 

 Reduced shop noise.  

The evolution of the Consteel process (see Figure 3.18) consists of wider conveyors to 

increase the exchange surface, a different tunnel profile to improve the convective heat 

exchange, and a new tunnel section equipped with burners, to boost chemical energy input 

[113]. 
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Figure 3.7 Consteel evolution preheating system. Source: [113] 

3.3.1.4 BBC-Brusa technology 

This Italian process consists of a rotary kiln inclined 12° to the horizontal and positioned 

such that the scrap exiting the kiln drops into the furnace through the roof of the EAF. 

The off-gases flow counter current to the scrap and reportedly can heat the scrap to 450°C. 

Benefits for the process include decreased energy, electrode, and refractory consumption. 

Also natural gas burners can be used to supplement the off-gases to heat the scrap to as 

high as 982°C. A scheme of the BBC-Brusa technology is shown in Figure 3.8.  

 

Figure 3.8 BBC Brusa technology. Source: [122] 

Gas burners (5) are located at the lower end of the rotary furnace. According to [122], the 

scrap passes through the furnace for 6–10 min. During this time the scrap is heated up to 

medium mass temperature of about 1000 °C. This temperature was reached not quite due 
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to off-gas heat but mostly due to the burners which account approximately 73 % of all 

heat coming into the rotary furnace. Rotation of the furnace prevents welding of the scrap 

lumps despite their high temperature and assures that heat from the refractory lining is 

being used for scrap heating. This enhances the advantages of countercurrent system of 

gas and scrap motion which makes gases exit the furnace at low temperature. The thermal 

efficiency of the rotary furnace calculated for the total heat input reached approximately 

45%. Performance of the BBC-Brusa unit equipped with transformer power of 7.2 MW 

for 3 years of service shows great potentialities and principle energy advantages of high-

temperature scrap heating. With natural gas consumption of 30 m3/t, electric energy 

consumption was cut by 220 kWh/t. Furnace productivity increased up to 100,000 ton per 

year which at that time was equal to the productivity of a furnace with the same capacity, 

but equipped with high-power transformer. Continuous charge of scrap assured very quiet 

arcing and low noise level (less than 80 Db). Durability of the refractory lining of the 

rotary furnace was 1500 heats. Despite the advantages attributed to the high-temperature 

scrap heating, such units had quite limited use and only for a short period of time. 

This can be explained by the fact that for the modern high-productivity EAF the 

dimensions of a rotary furnace required call for really too big size and height of the 

buildings for EAF’s shops. Besides, rotary furnaces can operate only using properly 

prepared fragmentized scrap. This narrows raw material supply base and increases cost. 

The units with rotary furnaces also have other significant drawbacks which prevent them 

from being used. Nevertheless, the impressive results obtained on BBC-Brusa units 

promoted a search for new options of high-temperature heating a scrap in combination 

with continuous charging it into the bath. This has resulted in development of modern 

shaft and conveyor EAFs. 

3.3.1.5 COSS technology 

The Continuous Optimized Shaft System, COSS, is a next-generation technology, 

developed by Fuchs Technology AG which combines the benefits of the Shaft systems 

(pre-heating at high temperatures) with those of Consteel process (continuous scrap 

charging). Scrap can be charged into the shaft without interrupting the power input. The 

furnace can operate with or without the shaft which is connected by means of a removable 

car. The scrap is loaded into the vat without interrupting the administration of energy. 
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The lower maintenance costs, less  power-off time, the high energy content of the flat 

bath operations and higher preheat temperatures than the other two technologies (i.e. 

Shaft and Consteel technologies) ensure low conversion costs and high productivity 

[123]. 

3.3.1.6 EPC technology 

EPC technology, which has been developed by the Company KR Tec GmbH (Germany),  

aims to avoid the of gas-dust emissions when charging scrap into the shaft [124]. The 

EPC technology consists of two main components, the preheating chamber with its 

telescopic feeder, and the charging deck where a hopper operates; the preheating chamber 

is installed beside the EAF upper shell and the preheated scrap is charged continuously 

by the telescopic feeder system into EAF for melting [115]. The operating principle of 

the EPC technology is following explained with the support of Figure 3.9.  

 

Figure 3.9 EPC Technology. Source: [122] 

The main component of the EPC system is a movable hopper (1) with an opening bottom 

placed in a bunker (2) adjacent to the shaft (3). By means of hydraulic cylinders of the 

bunker the hopper can be moved into the shaft through an aperture in its sidewall. When 
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the hopper is placed in the bunker its front wall is closing the aperture. When the hopper 

is positioned in the shaft the aperture is closed with the hopper back wall. At this position 

the bottom of the hoper is opened and the scrap falls smoothly into the shaft. In the course 

of feeding of the scrap into the bath by means of a pusher (4) the scrap caves in inside the 

shaft and the hopper can be moved backward to the bunker. The hopper is charged there 

again with the help of a scrap basket (5). A slide gate (6) is opened for a while to charge 

the hopper only. Thus, during the heat the scrap can be charged into the shaft by separate 

batches without loss of airtight of the system. Therefore, gas-dust emissions from the 

shaft into the shop atmosphere are almost completely eliminated. Melting of the scrap 

starts when the scrap batch preheated in the shaft during the prior heat is feeding into the 

hot heel. 

The system allows realizing different variations of furnaces operation. During the heat 

one or several of scrap batches can be charged into the shaft depend on a furnace capacity, 

shaft and hopper dimensions. This requires the certain number of hopper movements and 

charging of the hopper with baskets. Figure 3.9 shows a stage of the heat preceding the 

next charging of the scrap from the hopper into the shaft. Off-gases passing through the 

scrap layer heat it and are evacuated via a gas duct (7). 

3.3.1.7 Ecoarc technology 

In the Ecoarc technology, scrap is continuously fed into the preheating shaft and is in 

constant contact with the molten steel in the melting chamber; during the melting phase 

the furnace including the shaft is tilted backwards [114]. The off gas from Ecoarc includes 

a large volume of combustible ingredients, which minimizes the necessary amount of fuel 

for post combustion. The off gas volume itself is also minimized by the use of a semi-

airtight furnace and off gas ducts. The following advantages are reported: 

 Lower power consumption: 200 kWh/t at 40Nm3/t oxygen  

 Lower electrode consumption: 0.8-1.0 kg/t  

 Lower cost for flexibility of scrap mixing  

 Lower dioxin emission level 

  Lower dust emission level  

 Low flicker and harmonics   
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Figure 3.10 Ecorarc Technology. Source: [114] 

3.3.2 Indirect recovery: waste heat utilization 

In contrast to integrated iron and steel plants, electric steel plants have only a limited 

demand for steam (e.g. steam ejectors for VOD). Due to the low steam demand, electric 

steel plants often ask for a waste heat recovery system with power production. However, 

the installation of a power block (ORC or steam turbine) requires an additional 

investment, which has a significant influence on the return on invest of the system. In the 

following, the most important applications for waste heat utilization are discussed. 

3.3.2.1 Hot water production for heating purpose 

The most efficient way to use the recovered energy is to use the heat directly for heating 

purposes. Hot water for heating can be either supplied to external consumers, such as 

district heating networks, or can be used internally for heating purposes. The system 

should operate in a separate cycle, where the heat is provided via a plate heat exchanger. 

Since downstream consumers require constant heat supply, a storage tank should be used 

to equalize furnace fluctuations. The hot water coming from the plate heat exchanger is 

fed in the upper part of the tank, while the cold return water, coming from the district heat 

exchanger is fed in the bottom of the tank. 
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From the tank, hot water is fed continuously to another plate heat exchanger, where heat 

is provided to the district heating network. The system should be operated at a certain 

temperature, depending on the required water parameter of the downstream consumer. 

For normal district heating networks (e.g. 90°C) the existing water cooled duct can be 

used for hot water production. 

3.3.2.2 Steam production 

The recovered heat can also be used for generation of steam. Due to the cyclic fluctuating 

off-gas emissions from the steelmaking process, a storage system should be foreseen. 

Storage system can be from type of Ruth’s steam accumulator or hot water storage tank. 

Two approaches for steam generation can be used: 

a. Steam generation with flash evaporation: the water-cooled parts of the off gas system 

are cooled with hot water. The hot water can be stored in a tank in order to 

continuously feed a flash evaporator for the production of saturated steam. During 

high off gas duties, the tank is charged with hot water coming from the hot gas duct, 

while during idle times the hot water is discharged by the continuous flow to the flash 

evaporator. 

b. Heat recovery steam generator: in this case, the off gas duct of the furnace is 

evaporative cooled. Water coming from the steam drum is fed to the off gas duct at 

saturated temperature. The water is partly evaporated in the tubes of the off gas duct. 

Water-steam mixture is fed back to the steam drum, where water and steam is 

separated. The saturated steam is fed to the consumer, whereas a Ruth’s steam 

accumulator can be used to buffer the steam and to compensate fluctuating off gas 

emissions from the steelmaking process. 

Even though this concept allows economic recovery of waste heat, it is only applicable if 

the produced steam can be used directly for certain consumers, such as: 

 Steam ejectors for creating vacuum in VD/VOD plants 

 Steam for process heating (e.g. steel pickling bath, sea water desalination, paper 

industry, etc.) 

 Air separation 

 Pickling lines 
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One of the existing system of heat recovery by steam production is the iRecovery® system 

(see Figure 3.11), which is available for two levels: the level 1 [102] is based on steam 

flowing through the cooling pipes of the off-gas ducts, while the level 2 [118] adds a 

waste heat boiler located downstream the off-gas ducts. In the level 1, the off-gas is cooled 

down to 600°C, while in the level 2 the off-gas is cooled down to 200°C. The iRecovery® 

duct is made up of tubes of the same look and the same working principle as a 

conventional off-gas duct with cold-water cooling circuit. The main difference is the 

pressure and temperature level inside; while cold water cooling circuits typically operate 

within a temperature range from 20 to 50°C, an iRecovery® system operates with water 

of approximately 180 to 250°C towards the ducting and decouples the off-gas energy by 

means of evaporation. This mixture of steam and water is guided into a steam drum where 

the steam and water are separated. While the steam is taken out (and replaced by 

condensate/fresh water), the water returns to the circuit.  

It is worth mentioning that the key advantage of heat recovery is not obtained at the cost 

of operational disadvantages. In fact, iRecovery® brings additional advantages: 

 no dew point problems (inner surface of the pipes is always above dew point of 

sulphuric acid); 

 no inner corrosion (self-passivation of tubes by the Schikorr reaction); 

 less thermal stress (constant temperature of the evaporation process allow all elements 

to maintain a constant temperature during all operation phases); 

 lower water consumption (it is a closed-loop system, cooling towers consume 3 – 8% 

of water during every loop); 

 lower water volume flow due to higher heat transfer resulting in smaller pumps, 

smaller piping and lower maintenance cost; 

 higher safety in different emergency situations by different redundant backup levels. 

A heat recovery system like the iRecovery® has been proposed by SMS SIEMAG AG in 

2009 (i.e. cooling the ducts of primary off-gases with steam instead of water). In this 

solution, the use of a steam accumulator has been considered [116].  
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Figure 3.11 Simplified scheme of an iRecovery® Level 2 system. Source: [118] 

Another similar study has been proposed by JP Steel Plantech (see Figure 3.12); in this 

case the considered EAF uses Direct Reduced Iron (DRI) and the steam generation is 

assumed to be used for the supply internal steelworks processes or for the production of 

energy. The cooling duct of the EAF off-gas is directly used as a steam generation boiler, 

and the sensible heat from the exhaust gas of approximately 1100°C is recovered.  The 

steam intermittently generated by the batch operation of the electric arc furnace is 

smoothed by the steam accumulator and then supplied to the internal user. For the power 

generation, a steam superheater or a boiler with auxiliary burner can be additionally 

installed downstream to manage combined operational control. 

 

Figure 3.12 Scheme of the heat recovery system proposed by JP Steel Plantech.  Source: [103] 
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3.3.2.3 Chilled water production 

Usually, chilled water production for comfort and process cooling applications is done by 

compression type chillers, driven by electrical motors. An alternative technology for 

producing chilled water is thermal driven chillers. A widely spread and proven 

technology for such thermal chillers are absorption type heat pumps. The main difference 

between this technology and the compressor-type technology is the main operating 

energy source – in this case thermal power in form of hot water or steam from a waste 

heat source. So this creates the opportunity for utilization of a low temperature waste heat 

recovery source for producing chilled water.  

3.3.2.4 Power generation  

In addition to the applications described in the previous paragraphs (i.e. heating, steam 

generation, chilled water production), the recovered energy can be used to generate 

electric energy. There are two technologies for power production: 

1. Steam turbines;  

2. Organic Rankine cycle turbines. 

Many existing Waste Heat to Power (WHTP) systems used in energy intensive industries 

with continuous high temperature processes use steam turbines to convert heat to power. 

Waste heat recovery boilers capture the valuable energy of the hot exhaust gases 

generated by the primary process to evaporate water and produce saturated or superheated 

steam. Steam is then expanded in a steam turbine and eventually condensed back to water. 

This is the classical Rankine cycle, employed, for instance, in the chemical industry, 

nonferrous metal making and for the production of ferroalloys. These traditional water-

steam systems are typically employed in industry for plants over 10 MW and extending 

up to 50 MW and above. In these cases, and where the primary calcining or metallurgical 

process generates a steady flow of high temperature exhaust gas, superheated steam 

cycles are employed to maximize efficiency in converting heat to power. 

Superheated steam systems require costly equipment (high temperature and pressure 

demand more sophisticated equipment and materials) and high O&M costs (i.e. operators 

must be certified steam engineers, water quality requires special care etc.). Due to the 

capital and running costs, superheated steam cycles are seldom convenient for WHTP 
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plants below 15-20 MW. At smaller capacities, less costly non-superheated (saturated) 

steam Rankine cycle systems have been employed; also in these cases, local regulations 

typically require the continuous presence of certified steam engineers, increasing 

operating personnel costs to unacceptable levels. In addition, when the process heat 

source is discontinuous or highly variable, steam turbines running on saturated steam 

cannot be easily employed.  

Due to all these factors, all the existing energy recovery systems from EAF off-gas for 

power generation adopt ORC turbines. In fact, the ORC technology, widely employed in 

hundreds of renewable energy plants in Europe and North America (mostly in biomass 

based generation and in geothermal applications) was successfully proven also in various 

WHTP installations in the industrial environment [117,125]. The only concern about the 

ORC technology regards the use of thermal oil as heat carrier between the primary heat 

source (EAF off-gas ducting) and the ORC. Even though thermal oil is widely employed 

in the Oil & Gas or Marine Industry, EAF plant operators prefer to avoid the presence of 

thermal oil near the EAF because of the fire risk. Thus, other heat carriers, such as 

saturated steam and superheated water, have been used in the existing WHTP plants. For 

what concerns the use of saturated steam as heat carrier, the study reported in [126]  

showed that saturated steam at about 20 bar is a good heat carrier for an ORC system.  

The first waste heat to power system based on ORC has been started up on December 

2013, in the plant of Feralpi Group (Riesa – Germany) [127]. The waste heat recovery 

system and the ORC were specifically developed for this application in the framework of 

the EU funded HREII demo (Heat Recovery in Energy Intensive Industry) project [128]. 

A simplified scheme of the solution adopted is shown in Figure 3.13. The use of steam, 

instead of the more usual thermal oil as heat carrier, required several changes to the “hot” 

heat exchangers (i.e. preheater and evaporator) of the ORC. The system uses saturated 

steam at a pressure of 26 bar, which gives a saturation temperature of 226 °C. Considering 

that a traditional ORC system fed with thermal oil operates in the range 280÷310°C, the 

reduction in ORC efficiency is quite small.  

It is worth noting that the saturated steam conveying heat to the ORC does not expand 

like in a traditional steam turbine. In this case, the saturated steam just transfers heat to 

the ORC working fluid through surface heat exchangers, then it cools down and 
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condenses with a small pressure drop, returning as condensate to the off-gas ducts, where 

it is heated up to vaporise.   

 

Figure 3.13 Scheme of the solution adopted in the Feralpi Group plant.  Source: [129] 

An alternative solution to the use of saturated steam as heat carrier is the superheated 

water. A waste heat to power system employing superheated water has been implemented 

by Danieli Spa (known as Clean Heat Recovery® system) in the ABS steel plant, Italy 

[106,120]. Figure 3.14 reports the scheme and energy balance of the Clean Heat 

Recovery® system. When compared to a traditional off-gas line, the cooling components 

(i.e. water cooled panels and the air cooler) have been substituted by the following heat 

recovery components:  

 Hot Water Cooled Panels (HWCPs): usually, cooling water enters the water-cooled 

panels (WCPs) at a temperature of 30°C and it exits at about 50°C; such temperatures 

are not suitable for power production. The traditional pipe-to-pipe design of WCP is 

adapted to resist to the higher pressure needed to obtain superheated water. In addition 

to the heat recovery function, the use of hot water increase the lifetime of the ducts 

by reducing corrosion issues and thermal stresses, such as in the evaporative cooling 

ducts (e.g. iRecovery® system).  

 Heat exchanger: it has been designed for the heavy-duty conditions due to the high 

concentration of dust in the off-gas; it allows recovering the remaining heat that 

cannot be not directly recovered by the HWCP.  
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Figure 3.14 Scheme and energy balance of the Clean Heat Recovery® system.  Source: [120] 

The recovered heat is then converted into power by using an ORC turbine. However, the 

introduction of heat recovery components is not enough to feed the energy conversion 

system (i.e. ORC System) in an efficient way. In fact, the heat recovered by the HWCP 

and the heat exchanger is characterized by a fluctuating thermal power, which affects the 

efficiency of the downstream ORC System. Thus, an innovative equipment able to 

smooth the thermal power variability has been developed. To this end, Danieli Spa in 

collaboration with the University of Udine [130], has developed the Thermal Stabilizer 

Unit (TSU); currently, this technology is under patenting process.  

The Thermal Stabilizer Unit is an innovative tank of superheated water that acts as both 

heat storage system and system for smoothing thermal power fluctuations.  The design of 

the thermal stabilizer unit is based on multiple water inlets and outlets, which are 

specifically positioned to maximize the smoothing effect. Figure 3.15 shows an example 

of the Thermal Stabilizer Unit performance; red line represents the water temperature 

entering the Thermal Stabilizer Unit, while gold line represents the water temperature 

exiting the Thermal Stabilizer Unit. From Figure 3.15, it is possible to observe that the 

maximum temperature difference of 50°C at the inlet is reduced to 10°C at outlet of the 

TSU. 

The Thermal Stabilizer Unit works in synergy with the ORC system by means of a control 

system that evaluates the energy required by the ORC and the energy entering the TSU. 
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The introduction of a heat recovery system affects also the water requirement of the 

evaporative tower. In fact, the sizing of the evaporative tower and its components is no 

longer based on the peak thermal power, but it is based on the average thermal power. 

This change in the design principle leads to a reduction of about 40% of the water 

consumption of the evaporative tower. Thus, a further reduction of the operative costs is 

added.  

 

Figure 3.15 Performance of the Thermal Stabilizer Unit. Source: [120] 

It is worth mentioning that in Europe the theoretical potential power production by means 

of ORC has been estimated to be over 400 MWel; the estimation was made according the 

methodology presented in [131] which is based on the results of 3 energy audits on EAF 

and considering that there are almost 200 EAF [132] in Europe. Nevertheless, the use of 

steam turbine for power production is still considered.  

In particular, the use of molten salt as heat transfer fluid and storage media for constant 

production of superheated steam generation has been proposed and studied in [119]; a 

testing plant has been installed inside the existing off‐gas system of a German mini mill 

in order to evaluate tube materials and to measure the influence of hot corrosion and dust 

settlement. When molten salts are used as heat transfer fluid, the heat recovery system 

needs to be designed for fast draining of the liquid and for freezing prevention. In [119] 

the heat exchanger was designed as self-draining if the pumps stop and an up-down 

constructions for the tubing were chosen.  
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Figure 3.16 Process flow diagram of the molten salt off-gas energy recovery system. Source: [104] 

One of the major goals of the testing plant was to investigate material properties of several 

heat exchanger grades in respect to high temperature chlorine corrosion as well as the 

impact of EAF dust and off-gas composition on wear and heat transfer. The test rig 

consisted basically of a molten salt storage tank, a molten salt off-gas heat exchanger, a 

molten salt air cooler and various control and measurement instruments; the tests have 

been performed during one year. 

The experiment showed that the dust load and the dynamic oscillation of off-gas side 

temperatures leads to high material stress both in terms of corrosion and erosion. Further 

investigation needs to be carried out to better assess the economic feasibility of the 

proposed technology. 
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3.4 Passive PCM-based device for temperature smoothing  

The problem of energy recovery from the electric arc furnace process of steel industry is 

addressed. During a tap to tap cycle, a significant part of the energy required for steel 

production is dissipated by the off-gas. The high variability of temperatures and flows, 

and the high concentration of dust, which characterize the production process, make the 

adoption of current energy recovery solutions quite difficult, both from the technological 

and the economical perspective.  

A new system is proposed exploiting aluminium as phase change material (PCM) to 

reduce the variability of off-gas temperatures and thermal powers, in order to allow an 

efficient energy recovery. The smoothing device is analysed by thermo-fluid dynamic 

simulations to optimize its performance. A new boiler configuration equipped with 

cyclones is proposed to overcome also the problem of high dust content of the off-gas. 

The high recovery efficiencies, the low investment and operation costs and non-invasive 

plant modifications induced by the smoothing system, make the proposed PCM-based 

recovery system a feasible solution to reduce energy supply costs and emissions in the 

steel industry. 

3.4.1 The PCM-based smoothing system concept 

In this section, a system based on phase change materials (PCM) is proposed, which, by 

accumulating and releasing large amounts of energy, acts as a “thermal flywheel”, thus 

allowing to smooth off-gas temperatures. Temperature smoothing is achieved by directly 

operating on off-gas unlike the other current technologies and it is separated from the 

downstream energy conversion system, based on a traditional Rankine cycle but with an 

innovative boiler structure. This allows a non-invasive intervention on the system with 

minimum plant modifications. The simple structure, the low cost of operation, and the 

high recovery efficiency can make this just patented [133] recovery system a feasible 

solution to increase energy efficiency in steel industry.  

The design of the energy recovery system refers to a typical EAF steel plant with 120 

tons per TTT cycle capacity and 68 min TTT cycle time, whose off-gas cleaning section 

is shown in Figure 3.17. After passing the settling chamber and the cooler, off-gas of the 

primary line joins the secondary line one, which was captured during the furnace roof 
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opening phase, and proceeds to the cyclonic separator and the filter. The analysis of the 

new recovery system is based on the experimental data provided by an Italian firm and 

measured at the inlet section of the settling chamber during several castings (see Table 

3.5 for average values of off-gas properties and Figure 3.18 for temperature pattern). 

Similar variability in off-gas flow and temperature was obtained in [134]. 

 

Figure 3.17 Off-gas cleaning section of the reference EAF steel plant 

The characteristics phases of a melting cycle can be clearly recognized in the temperature 

profile in Figure 3.18. The two temperature increases (from 220 °C to 950 °C and from 

485 °C to 885 °C) correspond to the melting of the first and second bucket, respectively. 

The two decreases (from 950 °C to 485 °C and from 885 °C to 230 °C) correspond to the 

charging and to the tapping phase, respectively. The small drops around 570 °C and 655 

°C are related to burners opening. 

To achieve an efficient energy recovery from EAF off-gas, its temperature variability 

range should be properly reduced. This thesis proposes the adoption of a PCM-based 

device located in the settling chamber, which captures thermal energy from off-gas and 

return it to off-gas later, acting as a heat accumulator. During the phases at high 

temperature, off-gas raises the temperature of the PCM above its melting temperature, 

causing the transition from the solid state to the liquid one with accumulation of the latent 

heat of fusion. During the phases at low temperature, off-gas causes the PCM transition 
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from liquid to solid state with release of the latent heat of solidification (see [10] for a 

review on PCM properties and issues for latent heat storage). 

 

Figure 3.18 Off-gas temperature profile at the chamber inlet in the reference TTT cycle; in 

green energy potentially accumulated by the PCM, in red energy released by the PCM. 

Off-gas energy is approximately proportional to the area under the temperature curve. In 

particular, the portion above the average off-gas temperature, supposed to be near the 

PCM melting value (green area in Figure 3.18), can be considered as representative of the 

energy that can be subtracted from off-gas and accumulated by the PCM. The portion 

below the average temperature (red area in Figure 3.18), instead, describes the latent heat 

of solidification that can be released to off-gas by the PCM, whenever its temperature 

profile decreases below its melting point. 

To obtain a good reduction of the variability of the off-gas temperature, the PCM should 

have a melting temperature close to the average temperature of the off-gas (dotted line in 

Figure 3.18), while the boiling temperature should be greater than the maximum value 

reached by the off-gas to preserve the system integrity and safety. 

Table 3.5 Off-gas properties. 

Average temperature [°C] 600 

Rate flow [Nm3/h] 166700 

Normalized density [kg/Nm³] 1.3 

Specific heat capacity [J/(Nm³K)] 1330 

Thermal conductivity [W/(mK)] 0.051 
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In [38] the PCM engine system for the exploitation of low temperature excess heat 

generated in the iron and steel industry (e.g. heat from hot material, cooling water of low 

temperatures) is analysed and compared with the ORC and the thermoelectric generator 

(TEG) technologies. Several studies have also been conducted on the use of PCMs in 

thermal energy storage systems for domestic water and space heating, and for the 

exploitation of solar energy [31]. Both the PCM engine and the latent heat storage systems 

employ PCMs that are appropriate for low temperatures application, as for example the 

paraffin. A lower number of studies were instead carried out on PCMs for high 

temperature applications such as the energy recovery from the EAF off-gas. 

This thesis considers different PCMs suitable for the reported range of off-gas 

temperatures. As underlined in [12], the use of phase change metals for heat storage at 

high temperatures has been underestimated by researchers, though they are deprived of 

many lacks which are characteristic for salts, such as low heat conductivity, corrosion 

activity, the big change in volume at melting, considerable subcooling and high cost of 

some salts.  Some metals have been analysed for the smoothing module such as 

aluminium, lead and tin. Their physical characteristics such as density, thermal 

conductivity, thermal capacity, thermal diffusivity, specific heat, and latent heat, as well 

as the current cost per unit of weight, of volume, and of latent heat are well known, as 

reported in Figure 3.18. As concerns metal alloys, there is a lack of reliable data on their 

properties and their degradation over operation time in literature [70], so it has been 

preferred to base the analysis on pure metals. 

The aluminium was recognized as the preferable choice due to its favourable melting 

temperature, which is very close to the average off-gas one, and its high values of thermal 

conductivity, thermal diffusivity, thermal capacity, and latent heat of fusion. It also 

presents low values of density and costs. Moreover, no particular system safety problems 

arise when managing solid/liquid aluminium. The main disadvantage in the adoption of 

this material is represented by the relatively high value of the coefficient of linear 

expansion that should be managed by a proper storage equipment. 

The location of the PCM smoothing module has been evaluated according to several 

factors, such as the temperature reached in the different sections of the off-gas cleaning 

line and the installation complexity. 
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Table 3.6 Properties of the considered metals to be used as PCM 

 Aluminium Lead Tin 

Melting temp. [°C] 660 327.4 231.9 

Boiling/critical* temp. [°C] 2057 1620 2602 

Density [kg/m3] 

-  Solid phase 2550 11340 7280 

-  Liquid phase  2380 10660 6980 

Fusion latent heat [kJ/kg] 396 23.8 59.9 

Thermal conductivity [W/(mK)]  

-  Solid phase 215 33 67 

-  Liquid phase  90 16 35 

Thermal capacity [J/(dm3K)] 

-  Solid phase 2530 1474 1733 

-  Liquid phase  2806 1567 1773 

Thermal diffusivity [10-5 m2/s]   

-  Solid phase 8.49 2.23 3.86 

-  Liquid phase 3.20 1.02 1.97 

Linear expansion coefficient [10-6K-1] 24 28 23.4 

Vol. expansion coefficient [%] 6.9 3.8 2.4 

Cost per weight [€/kg] 1.86 1.62 20.01 

Cost per volume [€/m3] 4751 18388 145673 

Cost per latent heat [c€/kJ] 0.47 6.81 33.41 

The final choice was to insert the device into the settling chamber, as shown in Figure 

3.19a, since here the off-gas is still very hot and therefore a great amount of energy can 

be recovered. 

The settling chamber also allows an easy insertion of the recovery device without any 

special modifications to the existing structure of the plant. Moreover, the increased flow 

resistance in the settling chamber provided by the PCM module can enforce the dust 

removal effect, similarly to an impact separator. 

 

 

 
(a) (b) 

Figure 3.19 The PCM smoothing module: a) position, b) PCM containment system. 

Additional dust removal equipment is not needed, since dust intercepted by the module 

simply joins what normally collected in the settling chamber. 
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3.4.2 Preliminary analysis 

The high temperatures could alter the properties of PCM containers causing the leakage 

of molten material, and fouling might clog the device reducing its dampening effect. 

Thus, the material used to contain the PCM should be characterized by high thermal 

resistance, high thermal conductivity, low chemical reactivity with the PCM, and should 

present the most stable chemical-physical characteristics during the process. Moreover, 

the enveloping material should have a melting temperature greater than the maximum 

temperature reached by the off-gas and enable transitions to solid and liquid PCM states 

without interfering with them. The final choice lied on the stainless steel, which has 

proven to have good resistance to corrosion and good mechanical characteristics at high 

temperatures over long operation periods [70]. 

The PCM should be contained in hollow cylinders properly spaced to ensure the integrity 

of the thermal system and to properly dampen the temperatures (see Figure 3.19b). As 

reported in [10], several systems employ cylindrical pipes; it should be underlined, 

however, that such applications consider a heat transfer fluid, which is introduced into 

the tube. In our system, instead, PCM containers are externally crossed by the off-gas 

flow and directly exchange heat with it to increase or decrease its temperature.  

The cylindrical geometry allows to increase heat exchange surfaces thereby optimizing 

the process both from the point of view of recovery efficiency and of cost. The cylindrical 

geometry also doesn’t present neither sharp edges, common causes of breakage and crack 

formation, nor creeks and concavities where materials can accumulate. Cylinders are 

hung so that they can oscillate when off-gas passes through, in order to assure structural 

flexibility and prevent cracks and strains. Furthermore, dust is easily removed and 

dropped down. 

Considering a typical settling chamber (10 m length, 4 m width, and 5.5 m height) the 

space available for installation of the PCM-based device is about 16 m2. The height of 

cylinders cannot exceed 3.5 m in order to allow dust extraction. Cylinders should also be 

sized in order to allow volume expansion of aluminium inside. 



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

74 

 

3.4.3 Sizing criteria of the PCM smoothing device  

Based on the concept of the PCM smoothing device, the sizing criteria are determined by 

the latent heat of fusion HPCM of the chosen PCM and the off-gas thermal energy EOG at 

temperatures higher than PCM melting point Tmelt. The thermal energy that the off-gas 

can potentially release to the PCM is estimated as in equation (3.3): 

𝐸𝑂𝐺 = ∆𝜏 ∑ 𝑚̇𝑖[𝑐𝑖𝑇𝑖 − 𝑐𝑚𝑒𝑙𝑡𝑇𝑚𝑒𝑙𝑡]

𝑖:𝑇𝑖>𝑇𝑚𝑒𝑙𝑡

 (3.3) 

where Δτ is the length of time spans in which the TTT cycle time is discretized, equal to 

the temperature data sampling interval at settling chamber inlet. For each time interval i, 

the off-gas temperature Ti and the mass flow 𝑚𝑖̇    are derived from measured data, while 

the off-gas specific heat ci is calculated as function of Ti, as well cmelt is the off-gas specific 

heat at Tmelt.  

The total PCM mass 𝑚𝑃𝐶𝑀 can be calculated as: 

𝑚𝑃𝐶𝑀 =
𝐸𝑂𝐺
𝐻𝑃𝐶𝑀

 (3.4) 

The net volume of PCM container together with PCM density will determine the PCM 

mass per cylinder; from equation (3.4) the number of cylinders needed to assure the 

desired smoothing effect can be eventually derived. 

3.4.4 Computational fluid dynamics simulations 

Computational fluid dynamics simulations were performed by ANSYS FLUENT 

associated with the pre-processor GAMBIT to investigate the performance of the PCM-

based smoothing system. The speed of off-gas was considered constant over time. 

Moreover, only average values of material properties near the melting temperature were 

considered; the k-epsilon model was adopted to simulate the turbulent flow. The 

simulations are related to two different layouts of cylinders: in the first layout (see Figure 

3.20a) cylinders are perfectly aligned, while in the second one (Figure 3.20b) they are 

staggered.  
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(a) (b) 

Figure 3.20 PCM containers layout: a) aligned cylinders; b) staggered cylinders. 

Stainless steel tubes with commercial diameters of 2", 1" and 3/4" were initially 

considered as PCM containers. This allowed to study the effect of the ratio of the 

container surface and the aluminium mass on temperature smoothing. Specifications for 

the aligned layout of PCM cylinders are reported in Table 3.7, while off-gas temperature 

profiles for the analysed diameters are shown in Figure 3.21.  

Table 3.7 Smoothing system specifications for different cylinder commercial diameters and layout 

Layout Aligned Staggered 

Commercial diameter [inch] 2" 1" ¾" 1" 

External diameter, De [mm] 60.3 33.4 26.7 33.4 

Thickness [mm] 4.0 2.5 2.0 2.5 

Longitudinal pitch, Sl [mm] 121.2 66.7 53.3 66.7 

Transversal pitch, St [mm] 121.2 66.7 53.3 66.7 

Al mass per cylinder meter [kg/m] 5.5 1.6 1 1.6 

Steel mass per cylinder meter [kg/m] 5.6 1.9 1.2 1.9 

Number of cylinders 1089 3600 5625 3540 

Total Al mass [t/m] 5.96 5.81 5.8 5.72 

Total steel mass [t/m] 6.15 6.97 6.96 6.86 

Total system mass [t/m] 12.11 12.78 12.76 12.57 

Heat exchange surface/Al mass [mm2/kg] 34.6 65.0 81.3 65.0 

The temperature profiles highlight a reduction of over 230 °C of the off-gas maximum 

temperature and an increase of the minimum temperature of about 218 °C for all the 

analysed configurations. The smoothing effect is significant, as measured by both 

standard deviation of temperatures and by the difference between the maximum and 

minimum temperature of off-gas, as shown in Table 3.8. 

Analysing off-gas temperature profiles in Figure 3.21, the high temperature phases can 

be hardly distinguished in the smoothed profile of the ¾" cylinders in comparison to the 

2" one. The peak of temperature during the first TTT phase is, in fact, totally dampened.  
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Table 3.8 Simulation results for both layouts. 

 INPUT OUTPUT 

Layout  Aligned Staggered 

Commercial diameter [inch]  2" 1" ¾" 1" 

Max off-gas temperature [°C] 950.8 719.8 681.0 679.2 674.2 

Min off-gas temperature [°C] 223.0 447.2 455.9 441.3 439.2 

ΔT max [°C] 727.9 272.7 225.1 237.9 235.0 

Standard deviation [°C] 203.7 80.3 71.5 77.5 77.6 

Pressure drop [Pa] - 257 459 592 973 

This means that an increase of the ratio between the surface of cylinders and the PCM 

mass leads to an increase of the device reactivity. However, in the ¾" configuration the 

aluminium overheats above the fusion point in most tubes (see Figure 3.22a), thus 

affecting the structural resistance of cylinders. Moreover, pressure drop (see Table 3.8) 

are more significant than those for greater diameters.  

 

Figure 3.21 Off-gas temperature profiles for the aligned layout: 

the dotted lines refer to temperatures at the chamber inlet. 

Analysing Figure 3.22b, it can be seen how a good heat exchange is provided also in the 

last row of cylinders, where temperature variability of off-gas is lower due to the 

smoothing effect of the previous rows. Considering the second layout (staggered 

cylinders, see Figure 3.20b), a temperature profile similar to the aligned layout was 

obtained, even if slightly more uniform (see Figure 3.23a for 1" cylinders and the last 

column in Table 3.7 for related specifications). However, it presents increased pressure 

drop, as can be seen by comparing results in Table 3.8, which discourage its adoption. 
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(a) (b) 

Figure 3.22 PCM temperature profiles: a) first row of cylinders and b) last row of cylinders; the 

dotted lines refer to temperatures at the chamber inlet. 

Given the high dust content of off-gas, the influence of fouling was also analysed by 

simulation, considering a 10 mm layer of fouling on the surfaces of all cylinders and only 

of the first 10 rows. 

  
(a) (b) 

Figure 3.23  a) Comparison of off-gas temperature profiles for 1" cylinders with aligned and 

staggered layout; b) Temperature field in the bottom part of a 2" cylinder 

In both the simulations a minor impact on performance of the smoothing system was 

obtained. The containers should be provided with an insulation layer on the bottom to 

prevent overheating, as resulting from simulations (see Figure 3.23b for the temperature 

field of an insulated cylinder). 

3.4.4.1 Final configuration of the PCM-based smoothing system 

From the application point of view, the best configuration should be characterized by the 

lowest number of cylinders with the simplest arrangement.  
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This leads to select the aligned layout with the 2" cylinders, which prevents overheating 

of the aluminium, while still providing an efficient heat exchange between off-gas and 

the PCM, as suggested by simulations. Furthermore, if on one hand the larger pitch 

between cylinders (see Table 3.7) quite penalizes the dampening effect, on the other hand 

it reduces dust accumulation on cylinders surfaces and obstruction of off-gas passage, 

with related pressure drop. From the economic point of view, the cost of the device can 

be reduced due to the lower overall steel requirement and the lower number of heat 

exchange elements. 

However, the strong difference between the linear thermal expansion of aluminium and 

of stainless steel can lead to structural stress with potential break of the container. In order 

to address this problem, a container configuration different from the preliminary analysis 

one has been analysed. The detailed thermo-mechanical analysis is reported in Section 

3.5. The concentric pipe configuration (see Figure 3.24a) replaces the hollow cylinder 

one.  

  
(a) (b) 

Figure 3.24 Concentric pipe configuration of the PCM containers a) and final layout b). 

By reducing the radial development of the PCM in the cross section, in facts, the stresses 

on the external pipe due to thermal expansion of the aluminium are expected to be lower 

than in the hollow cylinder, thus complying with the linear elastic range of the selected 

AISI 316 stainless steel. 

Each container is designed in such a way that its external diameter is as similar as possible 

to the 2" configuration of the preliminary analysis, while maintaining the total mass of 

PCM inside the whole smoothing device to gain the same dampening effect. The final 

dimensions of containers are reported in Table 3.9, while the final layout is shown in 
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Figure 3.24b. The smoothing effect of the new configuration in comparison to the 2" 

aligned layout of the preliminary analysis is reported in Figure 3.25. 

 
Figure 3.25 Comparison of the off-gas temperature profiles of 2" 

hollow cylinders and concentric pipe containers. 

The temperature profiles of the off-gas are very similar, so we can conclude that the final 

configuration of concentric containers preserves the smoothing performance, while 

providing the proper resistance to structural stress.  

Table 3.9 Final smoothing system specifications with concentric pipes in comparison with the 2" 

cylinders 

 Concentric pipes Cylinders 2" 

External diameter, De [mm] 76.1 60.3 

External thickness, te [mm] 4.0 4.0 

Internal diameter, Di[mm] 42.4 - 

Internal thickness, ti [mm] 2.0 - 

Longitudinal pitch, Sl [mm] 137 121.2 

Transversal pitch, St [mm] 137 121.2 

Specific steel mass per cylinder [kg/m] 9.3 5.6 

Number of cylinders 841 1089 

Total steel mass [t/m] 7.78 6.15 

Al mass per cylinder [kg/m] 5.7 5.5 

Total Al mass [t/m] 4.78 5.96 

Total system mass [t/m] 12.56 12.11 

Heat exchange surface/Al mass [mm2/kg] 42.1 34.6 

Moreover, the smoothing device can affect the dioxins generation process. According to 

[135] three main mechanisms of dioxins formation should be considered: 1) high 

temperature pyrosynthesis, 2) low temperature de novo synthesis from macromolecular 

carbon and organic or inorganic chlorine present in the fly ash matrix, and 3) formation 

from organic precursors. 
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The high temperature pyrosynthesis occurs during combustion and post-combustion 

reactions, when the range of temperature is 500°C÷800°C. For temperature higher than 

800°C and a proper residence time (1-2 s), the dioxins are thermo-destroyed. Since the 

smoothing device is placed in the final part of the settling chamber, it is possible to 

consider that the post-combustion reactions are fully developed when the off-gas reaches 

the device inlet; therefore, this particular mechanism of dioxins formation cannot be 

affected by the smoothing process. 

Mechanisms 2) and 3) are considered to cause about the 70% of the total dioxins 

generated [136]. The range of temperature in which mechanisms 2) and 3) take place is 

200-400°C. The maximum dioxins formation occurs around 300-325°C; generally small 

amounts can be detected for temperature under 250°C and over 450°C [137]. Referring 

to Figure 3.25, it is possible to note how the PCM smoothing device increases the outlet 

off-gas temperature to values greater than 450°C, therefore out of the typical temperature 

range for dioxins formation. In the absence of the smoothing device, instead, the off-gas 

remains under 450 ° C for about 15% of the TTT time, and therefore they are subjected 

to low temperature mechanisms of dioxins formation. Thus, it is reasonable to conclude 

that the inclusion of the PCM smoothing device leads to a reduction in the formation of 

PCDD/PCDF with related benefits on environmental performance. 

3.4.5 The energy recovery system 

According to actual measures and specifications of the reference plant, the insertion of 

the recovery system into the off-gas cleaning section can be analysed. We suppose to 

provide the settling chamber with water jackets; then a boiler and a steam turbine are 

taken into account for energy recovery and properly sized. 

The boiler has a maximum steam flow rate of 49 t/h, an average steam temperature of 400 

°C, and a pressure of 40 bar at turbine inlet; a 0.08 bar pressure is recorded at the 

condenser. The boiler represents the second step to affect off-gas properties; after 

smoothing the temperature profile, in fact, it is possible to affect also off-gas speed and 

fouling factor. The first boiler section (see Figure 3.26), characterized by a low off-gas 

speed (8-10 m/s) and a high fouling factor, includes the screen superheater (very rarefied 

tubes), two superheaters, and the evaporator at high temperature. Downstream, two 
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parallel cyclones drastically reduce the dust content of the off-gas with an overall 

efficiency of 75% and allow a speed increase around 12-14 m/s. Therefore, the second 

section of the boiler can involve a low temperature evaporator and an economizer with 

very densely distributed tubes and consequently high thermal performance with reduced 

space requirements. 

 

Figure 3.26 The boiler structure. SH (superheater); HT (high temperature); LT (low 

temperature); EVAP (evaporator) 

When the off-gas enters the boiler with the maximum temperature allowed by the 

smoothing system (~720 °C, as shown in Figure 3.25), its outlet temperature is reduced 

to 199 °C, while water/steam temperature is increased from 105 °C at the economizer 

inlet to 420 °C at the superheater outlet (see Figure 3.27a). When off-gas, instead, enters 

the recovery system at its lowest smoothed temperature (~447 °C, see Figure 3.25), its 

outlet temperature is reduced to 216 °C; steam exits at 385 °C from the superheater (see 

Figure 3.27b). In both situations, the steam produced allows the turbine to work near 

nominal conditions. 

To ensure a proper heat exchange, the off-gas temperature should be higher than the 

temperature of the superheated steam along the whole TTT cycle. While this is assured 

when the smoothing system is installed, in a traditional system a heat backflow from the 

working fluid to the off-gas occurs during charging and stand-by phases, when off-gas 

temperature decreases below the working fluid one. This leads to a decrease of 

thermodynamics properties of the produced steam, with a negative impact on turbine 

electrical efficiency. 

The total energy released during a TTT cycle (68 min in our case) by the off-gas exiting 

the boiler at near 200 °C is approximately 33 MWht, for an average thermal power of 



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

82 

 

about 29 MWt (see power duration curves in Figure 3.28). This value can be considered 

reasonably equal in both conditions, i.e. when the plant is provided with the smoothing 

module and when it is not, since the PCM-based module affects thermal power profile, 

not the energy content of off-gas significantly. However, the off-gas thermal power 

profile plays a major role when the steam turbine is sized, since the latter should be able 

to convert the maximum thermal power. 

  
(a) (b) 

Figure 3.27 Off-gas and water/steam temperatures when smoothed off-gas is at its a) maximum 

and b) minimum input temperature. 

In our case, the thermal power released by the off-gas at the boiler when exiting the 

smoothing module at the maximum temperature of 720 °C is 35.5MWt, while it grows to 

52.8MWt for off-gas at 950 °C when the smoothing system is not installed. By 

considering a full-load turbine efficiency of 0.3, these values lead to select a turbine of 

10.65MWe for the plant with the smoothing system and of 15.85 MWe for the traditional 

plant, to convert quite the same amount of thermal energy. 

If the actual thermal power released by off-gas for a given thermal power profile is 

divided by the maximum potential power that off-gas would release if it could persist at 

its highest temperature for the whole TTT cycle (e.g. 35.5 MWt for 720 °C), we can obtain 



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

83 

 

a measure of the energy loss due to off-gas temperature variability, in comparison to the 

nominal power of the turbine. In our case, this measure is equal to 0.55 for the traditional 

system and to 0.81 for a plant with the PCM-based smoothing system. 

 

Figure 3.28 Off-gas thermal power duration curves. 

Therefore, an actual power of 8.6MWecan be supposed to be generated by the turbine in 

both systems, but with very different turbine sizes and investment costs. It should be 

noticed, however, that in a traditional plant several technological issues related to the 

strong temperature variability of the off-gas should be addressed to effectively recover its 

energy. Furthermore, given the reduced variability of steam properties at the turbine inlet 

in the case of the smoothing system plus the proposed boiler installation, a greater 

electrical efficiency of the turbine can also be expected, thus increasing the benefits on 

final energy recovery. Taking into account efficiency loss due to turbine partial load 

operations, fouling of exchange surfaces, and auxiliary equipment requirements, we can 

estimate to generate a net electrical power of about 6MWe, if the smoothing module plus 

the described recovery system are installed. 

Referring to steel production, a final amount of 57 kWhe/ton can therefore be recovered. 

Given an electrical energy consumption of 396 kWhe/ton for the EAF of our reference 

case, 14.4% saving on electrical energy supply can be gained. 
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3.4.6 Economic analysis 

By inserting the proposed PCM-based smoothing system and energy recovery equipment, 

the investment and operation costs reported in Table 3.10 should be faced. The estimated 

total cost of the smoothing system, including installation, is about € 430,000, as provided 

by a local manufacturer. For an energy recovery of 48,000 MWhe/year and a power 

supply cost equal to 80 €/MWhe, as reported by local steel plants, the cost savings are 

about 3,840,000 €/year. To this amount, possible incentives for energy efficiency (white 

certificates or EEC) should be added whenever available. Current Italian value of white 

certificates is about 103 €/TOE [138], equivalent to 19.26 €/MWhe on the basis of the 

Italian conversion factor for EEC calculation. This leads to about 924,500 €/year revenue 

for the first 5 years. The simple pay-back period is therefore 3.97years. 

If the smoothing system is not installed, the investment cost for the increasing boiler and 

turbine size required to exploit maximum temperatures has been estimated by local 

suppliers to be € 16,500,000. Thus, an increase of about € 2,700,000 should be faced in 

comparison to the same plant equipped with the PCM-based system, whose cost is only 

€ 430,000. 

Table 3.10 Cash flows of the smoothing module plus energy recovery system. 

INVESTMENT COSTS  

PCM-based smoothing system [€] 430,000 

Boiler and steam turbine group [€] 13,800,000 

Other costs (design, safety, etc.) [€] 1,070,000 

OPERATIONAL COSTS  

Maintenance cost [€/yr] 758,500 

Personnel cost [€/yr] 150,000 

INCOMES  

Electrical energy savings [€/yr] 3,840,000 

Energy efficiency certificates [€/yr] 924,528 

Other investment costs should also be added for heat storage and/or other equipment 

required to manage temperature variability in the absence of the proposed smoothing 

module. Furthermore, due to lower turbine efficiency, energy savings should be reduced 

accordingly. 
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3.4.7 Conclusions 

The off-gas temperature variability typical of EAFs in the steel industry can be drastically 

reduced by exploiting the characteristics of PCMs for high temperatures such as metals. 

The proposed smoothing system is made by concentric pipes containers filled with 

aluminium and positioned in the settling chamber; the location of the device and its simple 

structure allow a non-invasive intervention on the off-gas cleaning section with minimum 

plant modification and costs. The performed simulations show that, by a proper 

configuration of the PCM containers, structural stress as well as aluminium overheating 

can be controlled.  

The profile of off-gas is significantly smoothed, allowing the adoption of a downstream 

recovery system based on a traditional Rankine cycle. The particular boiler structure with 

insertion of cyclones for dust abatement allows high thermal exchange efficiency with 

reduced space requirements. More favourable conditions of steam at turbine inlet are also 

granted, thus increasing the turbine efficiency due to reduced partial load operations. 

Furthermore, excessive oversizing of the turbine to face high steam temperatures can be 

avoided, with benefits on investment costs. With reference to 2011, Italian steel 

production by EAFs was 18.8 Mt/year [139], for an estimated energy consumption of 

quite 8270 GWhe/year. The adoption of the proposed system has a potential energy 

saving of more than 1065 GWhe/year for a percentage equal to 12.9%. This in turn is 

equal to 0.34% of the whole Italian electricity consumption, with related benefits on 

national GHG emissions targets. 
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3.5 Thermo-mechanical analysis of PCM container  

In this section, an analytical and numerical approach to evaluate thermal stress in the 

cylindrical PCM container used for temperature smoothing of waste gas of Electric Arc 

Furnace (see Section 3.4) is developed. Thermal analysis shows that temperature 

distribution in the PCM system can be considered as uniform at any time instant according 

to the lumped capacitance method; the thermal behaviour of PCM system is thus 

simulated as a sequence of steady state analyses. Mechanical analysis adopts an 

axialsymmetric plane analytical model to compare elastic thermal stress distribution for 

different stainless steels and to identify AISI 316 as the most suitable material for the 

PCM container. A simple two-bars model and a stress index are also used to allow a 

physical understanding and a satisfactory interpretation of the PCM system response. 

Mechanical analysis shows that thermal stresses exceed the yield point of both stainless 

steels used in the container. A finite element elastic-plastic model is then developed to 

estimate the extension of the plastic zone.  Finally, an alternative geometry based on 

concentric pipes is designed to keep the maximum stresses in the PCM container below 

the yielding point. A sensitivity analysis shows that the most relevant design parameters 

of the alternative geometry are the diameter of inner pipe and thickness of the external 

pipe. 

3.5.1 Introduction 

The PCM device designed in section 3.4 is formed by a set of PCM systems, in which 

aluminium is encapsulated in a steel cylinder in direct contact with the surrounding waste 

gas. The PCM systems are vertically aligned and hung to the rooftop of the settling 

chamber by an appropriate hooking system (see Figure 3.29a). The outer surface of each 

PCM system is then subjected to a corrosive environment and to a thermal load, which is 

mainly due to convection from waste gas. The PCM system is then exposed to thermal 

loads that vary during the steelmaking process. The thermal expansion coefficient of the 

contained aluminium is higher than that of the containment material; this mismatch then 

gives rise to thermal stresses in the PCM container, which can affect its structural 

integrity. 

To the author’s knowledge, design procedures and regulations specifically dedicated to 

high-temperature applications of this kind of components (cylindrical geometry and PCM 
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expansion in solid phase) are not available in the literature. Some examples available in 

literature analyse expansion of PCM in liquid phase usually in spherical containers 

[140,141] and rarely in cylindrical container [142]. This section then aims to propose a 

simplified methodology for the thermo-mechanical analysis of a PCM system when in 

solid state, which would also allow identifying the most relevant design parameters for 

subsequent experimental validation. 

  
(a) (b) 

Figure 3.29 a) PCM-smoothing device and b) geometry of the PCM system. 

The thermo-structural behaviour of the PCM container is then investigated by a simple 

analytical thermo-elastic model, followed by an elasto-plastic finite element approach. A 

simple two-bars model and a stress index are also derived, to allow a physical 

understanding and a satisfactory interpretation of the PCM system response. This 

simplified methodology has been privileged over a more complex modelling approach, 

as it allows the obtained results to be directly used in the design. 

After a short description of the PCM system, the section describes the analytical and 

numerical model used to study its thermo-mechanical behaviour. Finally, an alternative 

design that improves the structural thermo-mechanical behaviour is proposed. 

3.5.2 The PCM system 

The PCM smoothing device is based on the phase change phenomenon, which for pure 

materials and eutectic alloys occurs with a heat exchange at constant temperature (i.e. the 
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phase change temperature). When the waste gas temperature is greater than the phase 

change temperature, the PCM absorbs heat from waste gas, whose temperature then 

decreases. At the opposite, waste gas temperature increases when it is lower than phase 

change temperature (the PCM then releases heat). The combination of these two effects 

leads to a smoothing of waste gas temperature, which tends to stabilise at the phase 

change temperature. The temperature-smoothing effect becomes as more effective as the 

average temperature of the waste gas (about 600°C) is closer to the phase change 

temperature, which then becomes one criterion to choose the PCM. 

Other thermo-physical properties of PCM (e.g. latent heat of fusion and thermal 

conductivity) have also to be considered as choice criteria. A high latent heat of fusion is 

desirable to increase the energy storage capacity of the PCM system, while a high thermal 

conductivity assures a fast response to waste gas temperature variation. 

To summarise, the best PCM should have a high latent heat, high thermal conductivity 

and a melting point close to waste gas temperature. These criteria identify the aluminium 

as the best candidate for PCM, as it has the melting point (Tm,a = 660 °C) close to the 

average waste gas temperature (Tav,g = 600°C), a high latent heat of fusion (Ha = 396 

kJ/kg) and a high thermal conductivity (λa = 211 W/m K). 

In the PCM system, the PCM material is encapsulated by a steel container (see Figure 

3.29b). A PCM device is composed by a set of PCM systems vertically aligned and hung 

to the rooftop of the settling chamber by an appropriate hooking system, as shown in 

Figure 3.29a. The hooking system allows the containers to oscillate in order to prevent 

accumulation of dust, which could hamper the waste gas flow. Table 3.11 reports the 

main characteristics of the component shown in Figure 3.29b. 

Table 3.11 Geometric parameters of the PCM system 

Outer diameter, De (mm) 60.3 

Inner diameter, de (mm) 52.3 

Thickness, te (mm)  4.0 

Container length, ls (m)   3.2 

PCM length, la (m)   3.0 

In the PCM device, all PCM systems are in direct contact with the surrounding waste gas; 

thus, they are subjected to thermal loads, corrosion (due to combination of high 
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temperature and high concentration of chlorine compounds) and erosion (due to the high 

concentration of dust). In order to prevent overheating, the top and the bottom of the PCM 

container are protected by a coverage of insulating material, as sketched in Figure 3.29b. 

As reported in section 3.4, the bottom coverage hampers the generation of a thermal 

bridge between the external wall and the bottom of the container. The presence of 

corrosive compounds in the settling chamber and the high temperature of the waste gas 

suggest the use of stainless steel as the most suitable material for the PCM container.  

Among available steel grades, two candidates have been identified: austenitic (AISI 316) 

and ferritic (AISI410S) stainless steel. Their temperature-dependent mechanical 

properties can be found in Eurocode 3 [143] and are listed in Table 3.13. Such stainless 

steels have differences in elastic modulus E and coefficient of thermal expansion α, which 

affect in a different way the thermal stresses generated in the PCM system. The stainless 

steel that is most suitable as PCM container will be identified by the analytical model 

developed in section 3.5.4. The typical duty cycle of the PCM system is characterised by 

a start-up phase where the PCM temperature increases, a running phase where phase 

change occurs, followed by a switch-off phase where the PCM system is brought back to 

room temperature. 

During the start-up phase, the PCM system is heated from room temperature up to the 

melting point of the contained aluminium. During this phase, the aluminium always 

remains at solid state. Since the coefficient of thermal expansion of the steel container is 

lower than that of the PCM (Table 3.13), it is expected that the maximum stresses in the 

PCM container will be generated during the start-up phase, which will be then 

investigated in the next Sections. 

During the running phase, instead, the PCM is subjected to phase change (melting or 

solidification); the coexistence of both liquid and solid states leads to a drastic reduction 

of PCM mechanical properties (in fact, the PCM in liquid state has almost null mechanical 

properties). Therefore, the mechanical stresses in the steel container are very small, as 

they are only due to gravity effects (i.e. the weight of PCM and steel container) and 

metallostatic pressure. Finally, the mechanical response of the PCM system during the 

switch-off phase, when the PCM system comes back to solid state, is almost similar to 

the start-up phase. 
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Table 3.12 Thermo-physical properties of PCM system and waste gas 

PCM – Aluminium 

Thermal conductivity (Solid State), λa (W/mK) 211 

Melting temperature, Tm,a (°C) 660 

Latent heat of fusion, Ha (kJ/kg) 396 

Density, ρa (kg/m3) 2750 

Container – Stainless Steel 

Thermal conductivity, λs (W/mK) 17 

Density, ρs (kg/m3) 7810 

Waste gas 

Reference temperature, Tref (°C) 20 

Average temperature, Tav,g (°C) 600 

Convective heat transfer coefficient, hconv (W/m2K) 50÷100 

The real temperature trends in Figure 3.29a, which lead to melting of PCM, suggest that 

the thermo-mechanical response of the PCM system should be studied by a transient 

analysis with phase change. From one hand, this modelling would greatly increase the 

complexity of the analysis, at the expense of high computational cost, which both are not 

very suitable to industrial needs. Furthermore, a complex modelling approach might also 

hinder the understanding of the basic mechanisms that govern the system thermo-

mechanical response, as well as the identification of the relevant design parameters. It is 

then desirable to find out a simplified modelling approach, which matches high accuracy 

and low computational cost. 

On the other hand, the results of Appendix A, which will be discussed later in the section, 

will clearly show how a transient analysis with phase change is actually not necessary in 

the computation of thermal stresses, as the highest stresses occur only at the start-up 

phase, when the PCM is solid, whereas much lower stresses occur when the PCM is 

liquid. In addition, the thermal analysis presented in the next Section will further confirm 

how a sequence of steady-state analyses with uniform temperature in the PCM system is 

a quite good approximation of a transient thermal analysis. This conclusion thus fully 

justifies the thermo-mechanical analysis developed in the next Sections, which considers 

the PCM container at different temperatures limited to the range of the start-up phase, 

where the PCM is solid. 

3.5.3 Thermal analysis 

In the start-up and switch-off phases, the thermal response of the system can be modelled 

as a problem of transient conduction. According to [144], the simplest and most 
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convenient method that can be used to solve transient heating and cooling problems is the 

lumped capacitance method, which assumes that the temperature of a solid body is 

spatially uniform at any instant during a transient process.  

In order to check the conditions that guarantee a reasonable accuracy of this method, it is 

necessary to estimate the Biot number Bi of the PCM system, defined as the ratio of 

internal thermal resistance Rint and external thermal resistance Rext (see Figure 3.30a): 

Bi =
𝑅int
𝑅ext

 (3.5) 

If Bi<0.1, the error associated by using the lumped capacitance method is small and the 

assumption of uniform temperature within the PCM system can be made with a negligible 

error. It has to be considered that the PCM system at the back receives less heat as 

compared to that at the front area of the arrangement of Figure 3.29a. Therefore, each 

PCM system is characterized by a different Biot number. According to the lumped 

capacitance method, the smaller the Biot number, the more accurate is the assumption of 

uniform temperature in the body at any time instant. Therefore, only the PCM system 

with the highest Biot number has to be checked.  

The highest Biot number occurs when the internal thermal resistance is maximum 𝑅int 

(i.e. thermal conductivity of the materials is minimum) and the external thermal resistance 

𝑅ext is minimum (i.e. heat transfer coefficients of the waste gas are maximum).  

  
(a) (b) 

Figure 3.30 a) Thermal model and b) structural model of the PCM system 
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The internal thermal resistance Rint depends on the resistance to conduction within the 

materials and the contact resistance at their interface, as expressed in equation (3.6).   

𝑅int =
𝐿a
𝜆a
+
𝐿s
𝜆s
+
1

ℎ𝑖𝑓
 (3.6) 

where L is a characteristic length associated with the length scale corresponding to the 

maximum spatial temperature difference, which for the aluminium part is La = de/2 and 

for the steel part is Ls = (De-de)/2. Symbols λa and λs represent the thermal conductivity 

of aluminium and steel, respectively, while hif represents the interfacial heat transfer 

coefficient at aluminium/steel interface. In [145], interfacial heat transfer coefficients 

have been measured for several metal castings in cylindrical steel moulds. In [145], the 

interfacial heat transfer coefficients have been measured in several metal castings, where 

melting and solidification occurred in a cylindrical steel mould, exactly as the melting 

and solidification in the PCM system. Thus, a good estimation of the maximum contact 

resistance at the aluminium/steel interface in the PCM system can be obtained considering 

the minimum hif measured in [145], which reports a minimum value of hif =5000 W/m2K 

for an almost pure aluminium casting in a vertical cylindrical steel mould. The maximum 

value of Rint=5.59E-04 m2K/W results by using the data in Table 3.12, in which the 

thermal conductivity of the austenitic stainless steel AISI 316 is used because it is the 

lowest one among selected steels. According to equation (3.7), the external thermal 

resistance Rext depends on heat transfer coefficients of convection hconv and radiation hrad, 

which are related to the PCM system arrangement. 

 𝑅ext = ( ℎconv +  ℎrad)
−1 (3.7) 

The thermal analysis considers the PCM system where the heat transfer coefficients are 

maximum. Estimations carried out in section 3.4 showed that the maximum convection 

heat transfer coefficient hconv of about 100 W/m2K is achieved in the first row of the PCM 

system arrangement. As reported in [146], radiation heat transfer coefficient hrad of EAF 

off-gas can be estimated as: 

 ℎrad = 𝑘𝑒g𝑒e𝜒
𝑇g
4 − 𝑇e

4

𝑇g − 𝑇e
 (3.8) 
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where k is the Stefan-Boltzmann constant, eg is the emissivity of the waste gas, ee is the 

emissivity of the external surface of the PCM system, Tg is the waste gas temperature and 

Te is the temperature of the external surface of the PCM system. The dampening factor χ 

takes into account the influence of dust load; in order to guarantee a conservative 

calculation, it can be set to 1. Radiation heat transfer is strongly tied to the emission 

coefficient of the waste gas eg, which depends on several factors (temperature, chemical 

composition, total pressure, partial pressure of gas species and domain geometry). In 

particular, chemical composition is the most important factor that affects eg. In fact, only 

absorbing/emitting gases (e.g. water vapour and carbon dioxide) contribute significantly 

to the radiation heat transfer, while the contribution of nonabsorbing/emitting gases (e.g. 

nitrogen) is negligible. Waste gas at settling chamber inlet is usually composed by three 

components: CO2 (30%), H2O (20%) and N2 (50%) [146]. Thus, according to [147], the 

emission factor of waste gas can be calculated as: 

 𝑒g =  𝑒𝐶𝑂2+ 𝑒𝐻2𝑂 − ∆𝑒 (3.9) 

where Δe is a correction factor, which takes into account the overlap of the individual 

emission bands of the gases involved. For what concerns the emission factor ee of the 

external surface of the PCM system, it can be considered very close to 1. Based on the 

data provided in section 3.4,  the maximum heat transfer coefficient of waste gas radiation 

hrad results equal to 26 W/m2K and, according to equation  (3.7), the minimum external 

resistance results Rext = 7.94E-03 m2K/W. 

The estimated maximum Rint and minimum Rext give a maximum Biot number of the PCM 

system equal to 0.07, which is lower than 0.1. Thus, the internal thermal resistance Rint 

can be neglected and each PCM system can be assumed, with a negligible error, to be at 

uniform temperature. Since the PCM system has a very small Biot number, the system 

temperature can be considered almost uniform at any time instant of start-up and switch-

off phases. In such phases, the thermal behaviour of PCM system can thus be simulated 

as a sequence of steady state analyses. The hypothesis of steady-state thermal analysis 

and uniform temperature distribution in the PCM system, which is used in the thermo-

mechanical analysis of the following Sections, has been further justified by the transient 

numerical simulation presented in Appendix A. 
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3.5.4 Analytical model 

Before facing an elastic-plastic analysis, which will be described in section 0, it is useful 

to preliminary evaluate the thermo-mechanical response of the PCM system by a simple 

linear elastic analysis. An analytical model is then employed to estimate the thermal stress 

distribution in the PCM system and to identify the most suitable stainless steel for the 

PCM container. 

According to the conclusions of the thermal analysis in section 3.5.3, the PCM system is 

at almost uniform temperature at any time instant. No thermal gradient then occurs along 

the axial direction. This allows the thermo-mechanical behaviour of the system to be 

studied by a plane model, as shown in Figure 3.30b. In addition, the axial symmetry of 

both geometry and thermal loads (i.e. temperature is symmetrical about the centre) allows 

using the “axialsymmetric plane model” of Timoshenko [148]. This plane model derives 

the analytical expressions for the radial σr and tangential (or hoop) σθ stresses. The axial 

stress σz, instead, can range from plane stress σz=0 (free axial thermal expansion) to plain 

strain condition σz≠0 (totally constrained axial thermal expansion), depending on the axial 

boundary condition applied to the PCM system. The plane stress and plain strain 

conditions are called the “plane circular disk” and “long circular cylinder” in [148]. 

In the PCM system, however, the axial stress σz is also influenced by the mismatch in the 

axial thermal expansion of aluminium and steel parts, which also gives rise to a shear 

stress τrz at the aluminium/steel interface (note, instead, that τθz= τθr=0 for symmetry). This 

shear stress τrz tends to prevent the free sliding, and thus the free axial thermal expansion, 

of the aluminium part over the steel container (in fact, the aluminium expands more than 

steel under the same temperature change). The shear stress is, then, also directly 

influenced by the value of friction coefficient at the aluminium/steel interface. 

Table 3.13 Structural properties of the materials [143,149] 

 Elastic Modulus, E [GPa] 

Thermal 

expansion,  

α [10-5/K] 

Poisson 

ratio, ν 

Temperature [°C] 20 100 200 300 400 500 550 - - 

Aluminium 70 68 60 48 28 14 0 2.3 0.34 

AISI 316 - Austenitic 200 192 184 176 168 160 154 1.7 0.3 

AISI 410S - Ferritic 220 211 202 194 185 176 172 1.0 0.3 
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This complex situation makes difficult to identify which axial boundary condition (plane 

stress or plane strain), and thus which axial stress σz, can reasonably be assumed in the 

analytical model of the PCM system. An answer is then given by a preliminary numerical 

study that has been performed by the plane axisymmetric finite element model described 

in Appendix B. The obtained results, shown in Figure B.1 (Appendix B), confirmed that 

the plane stress hypothesis, where the axial stress σz=0, is a reasonable assumption for the 

analytical model of the PCM system. 

In the “axialsymmetric plane model”, the general expressions of radial σr and tangential 

σθ stresses, as well as radial displacement u, are: 

𝜎𝑟(𝑟) = −𝛼𝐸
1

𝑟2
∫ ∆𝑇𝑟𝑑𝑟 +

𝐸

1 −ν2

𝑟

𝑎

[𝐶1(1 +ν) − 𝐶2(1 −ν)
1

𝑟2
] (3.10) 

𝜎𝜃(𝑟) = 𝛼𝐸
1

𝑟2
∫ ∆𝑇𝑟𝑑𝑟 − 𝛼𝐸∆𝑇 +

𝐸

1 −ν2

𝑟

𝑎

[𝐶1(1 +ν) + 𝐶2(1 −ν)
1

𝑟2
] (3.11) 

𝑢(𝑟) = (1 +ν)𝛼
1

𝑟
∫ ∆𝑇𝑟𝑑𝑟
𝑟

𝑎

+ 𝐶1𝑟 +
𝐶2
𝑟

 (3.12) 

where r is the radial coordinate, a is the inner radius, E is the elastic modulus, ν the 

Poisson coefficient and α the coefficient of thermal expansion. The temperature 

increment is ΔT = T(r) - Tref, where T(r) is the temperature distribution in the body and 

Tref a reference temperature. In the above equations, symbols C1, C2 are unknown 

parameters that depend on the applied boundary conditions. 

Section 3.5.3 emphasised that, at each time instant in start-up and switch-off phases, the 

PCM system can be considered at a uniform temperature, which means that T(r) = TΓ = 

const. is the system temperature at time instant Γ. The temperature increment is also 

constant, ΔT = TΓ -Tref. 

For the system in Figure 3.30b, which is formed by two different materials, two sets of 

three equations must be defined: one set for aluminium, one set for steel. For the part of 

domain filled with aluminium, it is a = 0 (solid disk); the surrounding domain related to 

the container (steel), it is a = ri. According to [148], for a solid disk C2 = 0, in order that 

the displacement ua(r) is zero at the centre r = 0. Thus, this gives the following 

expressions: 
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{
  
 

  
 𝜎ra(𝑟) = −𝛼a𝐸a

∆𝑇

2
+

𝐸𝑎
1 −νa

2 [𝐶1,a(1 +νa)]

𝜎𝜃a(𝑟) = −𝛼a𝐸a
∆𝑇

2
+

𝐸a
1 −νa

2 [𝐶1,a(1 +νa)]

𝑢a(𝑟) = (1 +νa)𝛼a
∆𝑇

2
𝑟 + 𝐶1,a𝑟

 (3.13) 

{
  
 

  
 𝜎𝑟s(𝑟) = −𝛼s𝐸s

∆𝑇

2
(1 −

𝑟i
2

𝑟2
) +

𝐸s
1 −νs

2 [𝐶1,s(1 +νs) − 𝐶2,s(1 −νs)
1

𝑟2
]

𝜎𝜃𝑠(𝑟) = −𝛼s𝐸s
∆𝑇

2
(1 +

𝑟i
2

𝑟2
) +

𝐸s
1 −νs

2
[𝐶1,s(1 +νs) − 𝐶2,s(1 −νs)

1

𝑟2
]

𝑢s(𝑟) = (1 +νs)𝛼s
∆𝑇

2

𝑟2 − 𝑟𝑖
2

𝑟
+ 𝐶1,s𝑟 +

𝐶2,s
𝑟

 (3.14) 

Equation (3.11) shows that, in the aluminium domain, the state of stress is plane 

hydrostatic, as the radial and hoop stresses are equal and also constant in the whole 

domain. The remaining three unknown parameters C1,a, C1,s, C2,s can be determined by 

imposing the appropriate boundary conditions:  

σr,s(ro) = 0 (3.15) 

σr,a(ri) = σr,s(ri) (3.16) 

ua(ri) = us(ri) (3.17) 

The above expressions represent zero radial stress (3.15) at outer stress-free surface of 

the domain, the continuity of radial stresses (3.16) and the continuity of radial 

displacement (3.17)  at the interface r = ri. 

The conditions in equations (3.15)-(3.17), combined with the expressions in equations 

(3.13)-(3.14), allow one to calculate closed-form analytical equations for the parameters 

C1,a, C1,s, C2,s : 

𝐶1,a =
∆𝑇(1 − 𝜈a)𝛼a{𝑟i

2(1 − 𝜈s) + 𝑟o
2(1 + 𝜈s) + [2𝜓𝜉 − 𝜉(1 + 𝜈𝑎)](𝑟o

2 − 𝑟i
2)}

2[𝑟i
2(1 − 𝜈s) + 𝑟o

2(1 + 𝜈s)] + 𝜉(1 − 𝜈𝑎)(𝑟o
2 − 𝑟i

2)
 (3.18) 

𝐶1,s =
∆𝑇(1 − 𝜈s)𝛼a[𝜓𝜉(1 − 𝜈𝑎)(𝑟o

2 − 𝑟i
2) + 𝜓(1 + 𝜈s)(𝑟o

2 − 𝑟i
2) + 2𝑟i

2]

2[𝑟i
2(1 − 𝜈s) + 𝑟o

2(1 + 𝜈s)] + 𝜉(1 − 𝜈𝑎)(𝑟o
2 − 𝑟i

2)
 (3.19) 

𝐶2,s =
∆𝑇𝑟i

2(1 + 𝜈s)𝛼a{[𝜓𝜉(1 − 𝜈𝑎) − 𝜓(1 − 𝜈s)](𝑟o
2 − 𝑟i

2) + 2𝑟o
2}

2[𝑟i
2(1 − 𝜈s) + 𝑟o

2(1 + 𝜈s)] + 𝜉(1 − 𝜈𝑎)(𝑟o
2 − 𝑟i

2)
 (3.20) 

where ψ = s/a and ξ = Es/Ea are dimensionless coefficients, which account for the 

difference in material properties between aluminium and steel. Note that in the hypothesis 

of same material in the whole PCM system, it is ψ = s/a and ξ = Es/Ea. Accordingly, 

the expressions (3.13)-(3.14) give a stress σr,a = σθ,a = 0 and σr,s = σθ,s =0 in the whole 
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domain, which coincides with the results given in [148] for the case of solid cylinder and 

then confirms the correctness of the previous equations. 

The distribution of tangential σθ and radial σr stress in aluminium and steel container can 

be computed by expressions (3.13)-(3.14) with the coefficients in (3.18)-(3.20). The 

temperature increment ΔT = TΓ - Tref is calculated by considering the temperature TΓ at 

time instant Γ in the start-up or switch-off phase; in this study, the reference temperature 

is Tref = 20 °C. The axial stress is found, instead, by a simple equilibrium condition along 

the axial direction. In fact, as previously said, the PCM system is free to expand along its 

axis, thus the axial stress σz in the container is only generated by the total weight of the 

system. Considering the parameters in Table 3.11, the axial stress is σz = 0.5 MPa and it 

can be neglected for practical purposes.  

Figure 3.31a reports an example of stress distribution in the PCM system at temperature 

TΓ = 200 °C. The stress distribution in the steel container is similar to that in a cylindrical 

vessel under internal pressure. The radial stress σr is compressive within the whole PCM 

system; it is constant in the aluminium, continuous at the aluminium/steel interface, while 

it decreases to zero at the outer radius of the container. The tangential stress σθ is also 

compressive in the aluminium (where it overlaps to radial stress), while it becomes tensile 

in the steel container (i.e. a discontinuity occurs at aluminium/steel interface). The 

compressive stresses inside the aluminium are then balanced by the tensile tangential 

stresses in the steel container. The axial stress σz is almost zero in the whole domain. 

  
(a) (b) 

Figure 3.31 a) Example of stress distribution in PCM system at temperature TΓ =200 °C, steel is 

AISI 316; b) yield strength and maximum Von Mises stress at inner radius, as a function of 

temperature TΓ, for the two considered stainless steels 
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The stress distribution in Figure 3.31a, which occurs in start-up and switch-off phases, 

can be explained by the mismatch in mechanical properties of aluminium and steel (e.g. 

coefficient of thermal expansion and elastic modulus). The aluminium has a coefficient 

of thermal expansion greater than that of steel, which leads aluminium to expand more 

than the container. This thermal expansion, however, is hindered by the steel container, 

because of its much higher elastic modulus at any temperature (see Table 3.12). The stress 

distribution then depends on the mechanical properties of the steel grade used for the 

container. Figure 3.31a also plots the distribution of the equivalent Von Mises stress: 

𝜎vm = √𝜎r
2 + 𝜎θ

2 − 𝜎r𝜎θ (3.21) 

in which the axial stress σz has been neglected. The maximum Von Mises stress is located 

at the inner radius of the steel container, where plastic strain is then expected to occur. 

This is the most critical point in the PCM system, which has to be monitored in the design. 

Similarly to the overall stress distribution, also the maximum Von Mises stress depends 

on the steel type, as shown in Figure 3.31b. 

To understand the mechanical behaviour of PCM system during the start-up and switch-

off phases, it is of interest to plot the maximum Von Mises stress σvm,max at each 

temperature TΓ reached in such phases (TΓ = 100÷660 °C). 

Figure 3.31b shows that Von Mises stress has a nearly parabolic profile, with a peak 

around 450°C, where the combination of thermal expansion and mechanical constraint 

reaches its maximum effect. 

The analysis also highlights how the Von Mises stress in AISI410S steel is more than 

double to that generated into AISI316 steel. This stress difference can be explained by 

considering that AISI410 steel has a lower coefficient of thermal expansion and a higher 

elastic modulus than those of AISI 316 steel (see Table 3.12). Figure 3.31b also compares 

the maximum Von Mises stress to the yield stress σy of each steel type considered as 

container material; it can be observed that, at any temperature, the AISI 316 steel has a 

yield stress lower than that of AISI410S steel. Yielding occurs at the temperature Ty where 

the maximum Von Mises stress σvm,max reaches the yield stress σy(T). Figure 3.31b shows 

that yielding occurs at Ty = 150°C for the AISI410S (point B) and at Ty = 225°C for the 
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AISI316 (point A). For temperatures T > Ty plastic strain begins and, of course, the Von 

Mises stress calculated by the elastic model is no longer representative of the state of 

stress in the container. Therefore, the most suitable stainless steel for the container is AISI 

316, because its lower stress levels allow the container to behave elastically over a 

temperature range wider than that of AISI410S. 

The mechanism that generates thermal stresses in PCM system can be interpreted and 

further explained by using the simple two-bars model in Figure 3.30b, which has been 

suggested by Manson [150]. This mechanical model exemplifies the tangential (hoop) 

displacements of two small elementary elements of aluminium and steel, located at the 

interface between aluminium and steel in the PCM system. The two bars, connected at 

both ends, expand under a temperature increase ΔT.  

In the model, the total strain is εtot = εth + εmec, where εth = α ΔT is the thermal strain for a 

temperature variation ΔT =TΓ - Tref and εmec is the mechanical strain, which is responsible 

for the stress σ = E εmec.  

In the simplified two-bars model, the amount of thermal strain εth = α ΔT is proportional 

to the temperature change ΔT and to the coefficient of thermal expansion of the material 

α. The thermal strain induces a thermal expansion of the system, which, however, can be 

limited partially, depending on the imposed amount of mechanical constraint.  

A free thermal expansion occurs when no mechanical constraint is imposed, which in turn 

gives no mechanical strain and stress in the system. The amount of mechanical constraint 

imposed on thermal strain depends, of course, on the mechanical stiffness of the system 

(e.g. elastic modulus and geometry).  

It is then clear that the mechanical strain εmec (which generates the stress) depends on the 

relative contribution of thermal expansion and imposed mechanical constraint. Two 

limiting cases exist: i) free thermal expansion with no mechanical constraint (which gives 

a stress-free situation) and ii) totally constrained thermal expansion (which gives rise to 

the maximum stress). In the case of no mechanical constraint on thermal expansion, the 

total strain equals the thermal strain εtot = εth and the mechanical strain is zero εmec = 0, 

with no stress on the system; this situation describes the free thermal expansion without 



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

100 

 

any mechanical stress. Conversely, in the case of totally constrained thermal expansion, 

the total strain is zero εtot  = 0 and all the thermal strain is converted into mechanical strain 

εmec = -εth = -αΔT, which then becomes directly proportional to the temperature variation 

(the higher the temperature, the higher the stress).  

In the PCM system, both aluminium and steel container tend to expand for an imposed 

temperature variation. The constraint on the free thermal expansion of the aluminium is 

imposed by the surrounding steel container; this constraint, however, is partially relaxed 

by the thermal expansion of the steel container itself. On the other hand, the imposed 

constraint also depends on the stiffness (i.e. elastic modulus) of both materials, which in 

turn decreases with temperature. A result, the PCM system is in a halfway condition 

between the two limit cases explained above and the amount of thermal stress depends 

on several parameters of the PCM system, as well as on temperature. 

The governing equations of the two-bars model and the resulting thermal stresses are 

derived in Appendix C. Based on the stress equations (C.4) and (C.5), all the relevant 

parameters that control the amount of thermal stress in the steel container can be 

conveniently summarised in the following stress index: 

𝑖 =
(𝛼𝑎 − 𝛼𝑠)∆𝑇

1 + 𝜉
 (3.22) 

which is obtained from the expression (C.5) by assuming an equal area (Aa = As) for the 

two bars. In expression (3.22), ΔT = TΓ-Tref is the imposed temperature variation, αa, Ea 

and αs, Es are, respectively, the coefficient of thermal expansion and elastic modulus for 

aluminium and steel, evaluated at temperature TΓ. The assumption of equal area is 

justified by considering that the two-bars model represents two small elementary 

elements (see Figure 3.30b) of same geometry: this allows the index i to evaluate the 

effect of material properties on the coupling at the interface, regardless of the particular 

geometry of the PCM system. 

The stress index i can provide a simple, although approximate, estimate of the severity of 

thermal stresses that could develop in the PCM steel container, depending on the materials 

used. The higher the index i, the higher the thermal stresses expected in the system. An 

index i = 0 means that no thermal stress would develop in the steel container.  
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Quite intuitively, the stress index i is proportional to the difference (αa - αs) in thermal 

expansion coefficients, to quantify that thermal stress is proportional to the mismatch in 

thermal strain that occurs in different materials subjected to the same temperature change 

ΔT. The higher the difference (αa - αs) is, the higher the thermal strain mismatch and thus 

the resulting thermal stresses. If both materials had identical thermal strains (which occurs 

when αa = αs), the stress index would be i = 0 and no stress would virtually develop in the 

system, irrespective of the values of the elastic moduli Ea, Es of both materials. The stress 

index i also depends on the ratio ξ = Es/Ea, to quantify that thermal stress depends on the 

mechanical constraint imposed on thermal strain.  

The ratio ξ is also a function of temperature. For example, when aluminium approaches 

its melting temperature Tm,a, its elastic modulus Ea becomes so small compared to Es, that 

the ratio ξ diverges to infinity and the stress index i→0, with no stress in the steel 

container (see Figure 3.32). Conversely, at lower temperature the ratio ξ is higher, which 

means that steel container is so stiff to prevent the thermal expansion of the contained 

aluminium, and a higher thermal stress develop, see Figure 3.32. Owing to its simple 

expression, the stress index i can be very useful for a sensitivity analysis on materials 

properties, which allows a preliminary comparison among different materials in the 

choice of the best material for the PCM container. 

 

Figure 3.32 Comparison of the stress index i for the steels AISI 316 and AISI 410S. 

As an example, Figure 3.32 shows the comparison of the stress index i calculated for the 

AISI316 and AISI 410S steels, with the materials properties in Table 3.13. The similarly 

of the trends in Figure 3.32 with the results in Figure 3.31b is evident, which confirms 

the validity of the two-bars model. 
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3.5.5 Elastic-plastic model 

The results in the previous section have shown that the stresses in the container exceed 

the yield point of the considered steels for temperature higher than 120°C for the 

AISI410S and higher than 200°C for AISI316, respectively. An elastic-plastic model of 

the container is then required to study the behaviour of the component during the whole 

start-up phase and to estimate the extension of the plastic zone.  

The finite element method is used to analyse the thermo-mechanical elastic-plastic 

behaviour of the thin circular disk model. The results of the elastic model identified the 

AISI 316 steel as the most suitable containment material among the considered steels and 

justified the hypothesis of plane stress, which can thus be employed also in the elastic-

plastic model. 

The one quarter finite element model, shown in Figure 3.33a, adopts 4-nodes 

isoparametric linear elements to discretise both aluminium and steel parts. A mapped 

mesh is used for the container domain and the aluminium close to the interface, a free 

mesh is used elsewhere. The thermal analysis is first carried out to compute the 

temperature in each node; the calculated nodal temperatures are then input as thermal 

loads in the next mechanical analysis. 

A numerical uncertainty analysis has initially been performed to assess the approximation 

errors of the finite element solution. In particular, a convergence analysis on the element 

size has been carried out to identify at which element size the solution of the finite model 

in Figure 3.33a becomes grid independent. On the other hand, it has to be noted that the 

model has a very simple geometry (without notches or geometrical discontinuities), that 

a refined mesh is not necessary. Subsequently, the correctness of the finite element 

solution has also been verified by comparison with the results of the theoretical model of 

section 3.5.4 (an error of less than 1% was observed, which is fully acceptable). 

Unfortunately, a comparison with experimental data is not possible, as to our knowledge 

experimental data for this type of PCM configuration are not available. 

As evidenced in section 3.5.3, it is possible to consider the system at uniform (steady 

state) temperature at any given time instant. This consideration allows simulating the 

thermo-mechanic behaviour of the component by a sequence of steady state analyses. In 
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the thermal analysis, the applied thermal load is simply a uniform temperature on the 

whole finite element model. In the mechanical analysis, symmetry boundary conditions 

are applied as shown in Figure 3.33a; the hypothesis of plane stress is considered. An 

elastic-perfectly plastic material model has been used for aluminium and steel. A small 

positive value of the hardening modulus has been set to obtain convergence of the 

numerical solution. All thermal and mechanical properties are considered to be 

temperature dependent, as in Table 3.13. 

Figure 3.34a reports the profile of the Von Mises stress distribution of Figure 3.33b along 

a radial direction; the distribution of radial, tangential and axial stresses are also shown. 

The trends in Figure 3.34a are actually similar to those in Figure 3.31a. In the elastic-

plastic results, however, a lower tangential stress σθ is observed at the inner radius, where 

the maximum Von Mises stress is equal to the yield stress.  

 
 

(a) (b) 

Figure 3.33 a) Finite element model and b) plastic strain (grey colour) of the container at 250 °C 

The comparison between the Von stress calculated by the FEM model and the elastic 

analytical model is reported in Figure 3.34b. In particular, the maximum Von Mises stress 

at the inner radius ri and the Von Mises stress at the outer radius ro of the container are 

reported in Figure 3.34b; the yield stress of the stainless steel AISI 316 is also shown.  

Figure 3.34b shows that the plastic deformation of the container starts at 225 °C (point 

A) from the inner radius and it expands along radial direction as the temperature 

increases; the complete plastic deformation of the whole thickness is reached at 275°C 

(point A’). 
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(a) (b) 

Figure 3.34 a) Stress distribution as radius function and b) comparison between Von Mises stress 

distribution of the elastic analytical model and the elastic-plastic FEM model 

In the elastic-plastic model, a preliminary evaluation of component structural integrity 

can be performed by comparing the maximum elastic-plastic strain to the material fracture 

strain. The graph in Figure 3.34b allows considering that at a temperature of about 500 

°C the maximum elasto-plastic strain is 1.79e-3, which is far below the fracture strain εf 

= 0.4 of AISI316 at 500 °C [143]. It can be concluded that the component can resist to a 

single phase of start-up. 

3.5.6 Alternative design of PCM container 

The previous analysis highlighted that the proposed PCM container geometry, sketched 

in Figure 3.29b, leads to plastic deformation of the considered steel. However, it is 

desirable to individuate a PCM container geometry that allows the steel to work within 

the elastic field. The design of the alternative configuration has also to be as simple as 

possible to guarantee a low manufacturing cost. 

The proposed alternative configuration (Figure 3.35a) consists of two concentric 

cylindrical containers (pipes) in stainless steel AISI316, where the hollow cavity is filled 

by PCM.  

For a sake of comparison, the diameter of the external pipe is maintained equal to the 

diameter De= 60.3 mm of the initial configuration. The internal pipe is named as reduction 

pipe, as its purpose is to reduce the volume available to PCM, and it can be used to hang 

the container to the settling chamber roof. The dimensions of the reduction pipe (outer 

diameter and thickness) are design parameters that are investigated by a sensitivity 

analysis. The new geometrical configuration is studied by exploiting the elastic-plastic 
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finite element model developed in section 3.5.5. A mapped mesh is now used in the whole 

domain (see Figure 3.35b). 

  
(a) (b) 

Figure 3.35 a) Alternative configuration with concentric pipes and b) its 

finite element model 

First, a sensitivity analysis by varying the diameter of the reduction pipe, in the range Drp 

= 20÷40 mm, has been carried out, to find that diameter that allows the steel of the 

external pipe to work within the elastic field. In the sensitivity analysis, the reduction pipe 

has a thickness trp = 2 mm, while the external pipe maintains the same thickness te = 4 

mm of the initial configuration of Figure 3.29b. 

Figure 3.36a shows the maximum Von Mises stress as a function of temperature, for 

different values of diameter Drp of the reduction pipe; the yield stress of AISI 316 is also 

reported. For diameters Drp < 30 mm, plastic deformation still occurs in steel of the 

external pipe; for diameters Drp > 30 mm, instead, yielding does not occur at any 

temperature and the steel of the external pipe works in the elastic field. For each diameter 

Drp > 30 mm,  Figure 3.36a allows individuating the temperature at which the maximum 

Von Mises stress is reached in the elastic domain; this temperature is defined as “critical 

temperature” Tcrit and, for all diameters, it is equal to 400 °C.  

Figure 3.36a shows an example of sensitivity analysis for the configuration with diameter 

Drp = 35 mm of the reduction pipe. The plot shows that the thermal stress is mainly 
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influenced by the thickness te of the external pipe, while the effect of the thickness trp of 

reduction pipe is actually negligible. 

  
(a) (b) 

Figure 3.36 a) Maximum Von Mises stress at different temperature and reduction diameter Drp; 

b) stress distribution as a function of radius, for Drp =35 mm and Tcrit = 400 °C 

The smallest thickness trp = 1 mm of the reduction pipe is chosen as it gives the lighter 

weight of the structure while assuring low stresses (axial stress due to the component 

weight σz< 0.5 MPa and stress generated by the aluminium expansion σvm,max < 10 MPa). 

The thickness of 1 mm has then been used as a reference value to define the “allowable 

configurations”, which are all the geometrical configurations where the container works 

in the elastic field. The design of the whole PCM system is first based on thermo-physical 

parameters, mainly represented by the ratio of external surface of heat exchange Aest to 

the aluminium mass mAl. Figure 3.36b shows an example of allowable configurations for 

the external thickness te = 4 mm in terms of diameter ratio Drp /De and as a function of the 

ratio Aest/mAl. Figure 3.36b shows a typical design chart to identify the allowable 

configurations; in particular, the figure reports the diameter ratio Drp /De as a function of 

Aest/mAl for a given external thickness te=4 mm and for different external diameters De. 

3.5.7 Conclusions 

This section presented an analytical and numerical approach to evaluate   thermal stress 

in a phase change material (PCM) system, used for temperature smoothing of waste gas 

of Electric Arc Furnace. Thermal analysis showed that the Biot number of the PCM 

system is less than 0.1 and therefore the PCM system can be assumed, with a negligible 

error, to be at uniform temperature at any time instant. This isothermal condition allowed 
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the thermo-mechanical behaviour of the system to be simulated by a sequence of steady-

state analyses. 

The mechanical analysis based on axialsymmetric plane analytical model allowed to 

compare elastic thermal stress distribution for AISI410S and AISI316 stainless steels and 

to identify the latter as the most suitable material for the PCM container. The simple two-

bars model and a stress index are used to explain the thermal stress distribution in the 

PCM system and the nearly-parabolic profile of Von Mises stress over temperature. 

Mechanical analysis showed that thermal stresses exceed the yield point of both stainless 

steels used in the container. Therefore, a FEM analysis has been carried out to evaluate 

the elastic-plastic behaviour of the component. The results showed that a total plastic 

deformation of the container can occur even during a single start-up phase, where the 

PCM system is heated from room temperature up to the melting point of PCM. An 

alternative geometrical configuration with concentric cylindrical containers (pipes) has 

finally been designed to avoid plastic deformation in the steel container. A sensitivity 

analysis on some design parameters allowed identifying diameter of the reduction pipe 

Drp and thickness of the external pipe as the main design parameters that control the 

amount of thermal stress in the PCM system.  
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3.6 Active PCM-based device for temperature smoothing 

In this section, the concept developed in section 3.4 is extended to a continuous charge 

EAF process with scrap preheating. In addition to this, a heat transfer fluid flowing 

through containers is introduced and selected by developing an analytical model. The 

introduction of the heat transfer fluid enables the adoption of smaller pipe diameters while 

overcoming overheating issues. 

The performance of the improved smoothing system is analysed by thermo-fluid dynamic 

simulations. The reduced maximum temperature of off-gas allows the reduction of the 

size and investment cost of the downstream energy recovery system, while the increased 

minimum temperature enhances the steam turbine load factor, thus increasing its 

utilization. Benefits on environmental issues due to dioxins generation are also gained. 

3.6.1 Process description and methodology  

After preheating the scrap charge as in direct recovery, off-gas enters the PCM smoothing 

device which reduces its temperature variability, so that downstream indirect recovery by 

steam generation and power production is enabled.  

 

Figure 3.37 Continuous charge EAF with scrap preheating and the PCM-based smoothing 

system  
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A continuous charge EAF process is considered: before reaching the furnace, the scrap 

metal enters a preheating section moving counter to off-gas exiting the EAF (see Figure 

3.37) as in Consteel system. According to [151], controlling the carbon content in the 

bath by feeding hot metal continuously and with an automated pouring/tilting device 

seems to be the most efficient way to achieve the maximum benefits in terms of 

operational safety, chemical control, and foamy slag practice, with effects on energy and 

refractory consumption. 

Comparing to the discontinuous charge system analysed in section 3.4, the TTT cycle 

time is reduced from about 60 min to 40 min. The continuous charge with scrap 

preheating, in fact, keeps the steel bath in the EAF constantly liquid and the scrap entering 

the furnace is melted by immersion; since it is not working on solid scrap such as in batch 

charges, the arc is stable and a faster process can be achieved [151].  

Furthermore, the off-gas temperature profile is modified, with a higher average 

temperature, a lower maximum ΔT, and a slightly reduced variance with respect to section 

3.4. This can be ascribed to both the different EAF process induced by continuous 

charging as described above, and to scrap preheating. The off-gas, in fact, enters the PCM 

smoothing device not immediately downstream the furnace, but after crossing the scrap 

preheating section (see Figure 3.37), where it releases a portion of its thermal energy.  

Another difference to be accounted for lies on the significant reduced dust content of off-

gas: a 30-40% decrease compared to batch charged furnaces can be recognized 

accordingly to [151]. Heavy particle matter is, in fact, intercepted by the scrap bed in the 

preheating section, thus reducing downstream slagging and fouling issues. The proposed 

PCM-based smoothing system is located at the end of the preheating line within a 

dedicated chamber with insulated walls, as represented in Figure 3.37. 

The deployment of the methodology adopted to develop the PCM-based energy recovery 

system is shown in Figure 3.38, involving a preliminary analysis followed by system 

improvement. In the first stage, the process characterisation in terms of temperatures and 

flow rate of the off-gas exiting the preheating line is carried out and the reference TTT 

cycle is identified. Based on this profile, the preliminary system sizing and layout can be 
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performed, introducing typical space and technology constraints of steel plants. System 

performances are then analysed by creating suitable models for CFD simulations.  

 

Figure 3.38 Deployment of the PCM-based energy recovery system 

development 

Based on current results, system improvements are identified and introduced by 

developing new analytical and CFD models, in order to evaluate the revised system 

configuration. The iterative procedure is repeated until a satisfactory final configuration 

of the system is achieved; energy recovery results can be derived and the feasibility of 

the proposed system can be assessed. 

3.6.2 Preliminary analysis 

3.6.2.1 Process characterization 

The characterization of the process should be based on off-gas temperature and flow rate 

profiles, which can be derived from literature or actual data on the field. In the case of a 

measurement campaign in real steel plants, the measurement point should be located after 

the preheating line as represented in Figure 3.37. Data collection should be addressed in 

order to identify the most representative working day of the month, in terms of specific 

recoverable energy per tons of “good billet” (steel that satisfies a minimum level of 

quality).  



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

111 

 

Figure 3.39 shows the typical temperature and flow rate profiles measured after the 

preheating line of a continuous charge EAF with a production capacity of 80-90 tons per 

TTT cycle.  

 

Figure 3.39 Typical off-gas temperature and flow rate profile in a continuous charge EAF 

process with scrap preheating during a representative working day 

Departing from process profiles, the most energy intensive cycle (see Figure 3.40) should 

be identified as the reference cycle for the preliminary configuration of the PCM system. 

 

Figure 3.40 The reference cycle 
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3.6.2.2 Preliminary system sizing and layout 

Based on the identified reference cycle (Figure 3.40), the preliminary sizing is carried out 

considering the average values of off-gas flow rate and temperature. With the purpose of 

limiting the erosion effect due to the even high dust content in the off-gas, the average 

inlet speed of 8 m/s has been set as design specification to calculate the flow section of 

the smoothing device. Finally, a maximum height of the system due to common 

installation space issues in steel plants has been identified. The final specifications 

adopted in this study are reported in Table 3.14. 

Table 3.14 Design specifications and flow section size 

Design  

specifications 

Average flow rate [Nm3/h] 134,639 

Average temperature [°C] 690 

Average inlet speed [m/s] 8.0 

Maximum height [m] 3.5 

Flow section 

size 

Width [m] 4.7 

Area [m2] 16.5 

The longitudinal size of the PCM based device depends on the PCM mass, the geometrical 

configuration of a PCM container, and the layout of PCM containers. Based on the 

reference cycle, the maximum required mass of PCM can be calculated by dividing the 

off-gas thermal energy potentially released to PCM (i.e. thermal energy at temperatures 

higher than PCM melting point) by the PCM latent heat of fusion (refer to section 3.4 for 

in-depth description). Aluminium has been selected as PCM since it is characterized by a 

favourable melting temperature, which is very close to the average off-gas one, and by 

high values of thermal conductivity, thermal diffusivity, thermal capacity, and latent heat 

of fusion. It also presents low values of density and costs, while no particular system 

safety problems arise when managing solid/liquid aluminium. 

As concerns the geometrical configuration, the PCM container is composed by two 

coaxial pipes of stainless steel. Accordingly to [70], stainless steel has been selected as 

container material due to its high resistance to both off-gas and PCM corrosion. The 

cylindrical geometry has been chosen because it allows to increase heat exchange 

surfaces, thereby optimizing the process from the point of view of both recovery 

efficiency and cost (see section 3.4). Moreover, the geometrical configuration of the 
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container takes into account the thermo-structural stresses generated by the difference 

between the thermal linear expansion coefficient of steel and of aluminium. This leads to 

the choice of stainless steel AISI 316 as container material for the external pipe, since it 

has the highest coefficient of thermal linear expansion, while for the internal pipe a 

cheaper stainless steel, such as AISI 304, can be employed. Based on previous results 

reported in section 3.4, the aligned layout is chosen in order to minimize load losses. The 

geometry of the PCM containers and their layout are shown in Figure 3.41. 

  
(a) (b) 

Figure 3.41 Geometry of the PCM containers: a) lateral view and b) bottom view  

3.6.2.3 System modelling 

In order to identify the parameters which more deeply affect system performance, three 

different configurations of the system (see Table 3.15) have been evaluated by thermo-

fluid dynamic simulations. 

A reference configuration has been defined (configuration R40) basing on the results 

obtained in section 3.4, from which the other two configurations are derived. In particular, 

given the total PCM mass, configuration R23 keeps the layout parameters (ST/De, SL/De 

in Table 3.15) unchanged while increasing the size of PCM containers. Configuration 

R53, instead, maintains the geometrical sizes of containers, while modifying their 

location, i.e. layout parameters.  

A generalized cycle has been developed basing on the features of the reference cycle in 

Figure 3.40. The generalization aims at simplifying the temperature profile, while 
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maintaining the same highest temperature, total energy, and the critical temperature 

gradient of the reference cycle (see Figure 3.42). 

Table 3.15 Alternative system configurations 

 R23 R40 R53 

De  external diameter  [mm]  141.3 88.9 88.9 

te      external thickness [mm] 6.55 5.5 5.5 

Di  internal diameter   [mm] 85 52 52 

ti      internal thickness [mm] 2 2 2 

Number of containers 529 1400 1378 

PCM mass per container [kg] 64.6 23.6 23.6 

Total heat exchange surface [m2] 822 1369 1347 

ST  Transverse pitch    [mm] 212 133 177.8 

SL  Longitudinal pitch [mm] 212 133 177.8 

SF  Flow pitch             [mm] 71 44 89 

ST/De 1.5 1.5 2 

SL/De 1.5 1.5 2 

Transversal Containers  23 35 26 

Longitudinal Containers 23 40 53 

h chamber height [m] 3.5 3.5 3.5 

Minimum chamber length [m]  4.9 5.3 9.4 

Transient numerical analyses of the three system alternatives reported in Table 3.15 have 

been carried out using the commercial finite-volume-based code ANSYS Fluent 15.0. 

The ANSYS Fluent enthalpy-porosity formulation, which is one of the most applied 

methods due to the advantage of the implicit treatment of the conditions on the phase 

change boundary [152], was adopted to model PCM solidification and melting. Since the 

solidification/melting model can be used only with the pressure-based solver, the Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) has been employed. To 

simulate turbulent conditions, the widely used k-epsilon model, in conjunction with the 

enhanced wall treatment approach for the near-wall regions, has been employed.  

For what concerns the spatial discretization, the following upwind schemes has been 

chosen in order to overcome the trade-off between accuracy and computational efforts:  

 second order upwind scheme for the discretization of turbulent kinetic energy and 

dissipation rate equations; 

 third order Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) 

to discretize energy equations; 
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 QUICK-type scheme, which is based on a weighted average of second-order-upwind 

and central interpolations of the variable, has been employed for the discretization of 

momentum equations. 

 

Figure 3.42 Generalized profile of off-gas temperatures in a TTT cycle 

Due to the low ratio diameter/height of the PCM containers, 2D simulations were 

performed. Furthermore, computational domains have been reduced taking into account 

existing symmetries, in order to reduce computational effort as much as possible. Grid 

sizes and time steps adopted in the final simulations ensure that numerical results are 

almost independent of these parameters. Hybrid mesh, consisting of both triangular and 

quadrilateral elements, was adopted to discretize the boundary layer regions, while 

triangular elements were adopted for the rest of the fluid domain (off-gas); the hybrid 

mesh was refined towards the tube walls to comply the values of the dimensionless wall 

distances y+ required for the wall enhancement treatment.  Mapped mesh was employed 

for the solid domains (PCM and containers). Before the final runs, the independence of 

the results from grid and time-step was established on the basis of calculations in which 

the distance between grid points and the time step were progressively reduced from one 

simulation to another. When further reductions in grid size, or in time steps, led to changes 

in the outlet temperature values smaller than 1 percent, the results were considered to be 

independent of the grid or of the time step, respectively.  
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The final computational grids consisted of 327,879 cells and the final time step was equal 

to 0.01 s. All solutions were obtained with normalized residuals less than 10-6. Average 

values of material properties near the melting temperature were considered.  

The PCM melting point temperature was assumed equal to 660 °C, while on the entire 

domain a temperature of 300°C was set as the initial condition, in order to reproduce the 

operative state after an ordinary stop (e.g. electrode change) of the steelmaking process. 

Moreover, the simplified inlet profile of Figure 3.42 has been used to simulate a series of 

three TTT cycles, in order to evaluate the time required by the system to reach the steady 

operative conditions (i.e. all the PCM is in phase change).  

Performance analysis  

Off-gas outlet temperature profiles for the three configurations (and the temperature inlet 

profile) have been obtained by CFD simulations (see Figure 3.43), as described in the 

previous subsection. 

 

Figure 3.43 Off-gas temperature profile for different system configurations 

The off-gas temperature profiles show an important reduction of the smoothing 

performance of the configuration R23 and R53 in comparison with the reference 

configuration R40. The performance reduction of the configuration R23, corresponding 

to an increased size of PCM containers, is due to the reduced available heat exchange 

surface in comparison to the reference configuration. For the configuration R53, related 
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to a greater flow pitch among containers, the reduction can be mainly ascribed, instead, 

to the resulting convection coefficient, which is lower than the R40 one. 

In Figure 3.44 the PCM temperature profiles for the first row of containers in the three 

configurations are also represented. The configurations with lower diameters of PCM 

containers (R40, R53) show a better response time. On the other hand, the configuration 

R23, which is characterized by greater diameters, presents a higher resistance to 

overheating than the other configurations.  

Therefore, the reference configuration R40 should be preferred in terms of smoothing 

potential and response time, but it leads to serious overheating issues which cannot be 

ignored. For this reason, with reference to the best performing configuration R40, in the 

next section the introduction of a heat transfer fluid to control PCM overheating is 

analysed. 

 

Figure 3.44 PCM temperature profiles for the first row of containers 

3.6.3 System revision: introducing a heat transfer fluid through PCM containers 

To overcome overheating issues, a proper heat transfer fluid (HTF) can be introduced in 

the revised system to actively control the PCM temperature. As shown in Figure 3.45, 

each PCM container is composed by two coaxial pipes: the gap between the internal pipe 

and the external one is filled with the phase change material, while the HTF flows through 

the internal tube, i.e. through a duct of circular cross-section. As can be seen in Figure 

3.45a, 𝐷𝑖 and 𝑑𝑖 are the inner and the outer diameters of the internal pipe, respectively, 

while 𝑡𝑖 is the internal pipe thickness.  



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

118 

 

  
(a) (b) 

Figure 3.45 a) Lateral view of the HTF inside a PCM container and b) top view of the container 

layout and the relative HTF 

System modelling and simulation  

In the revised system, both the off-gas and the heat transfer fluid thermal performance 

have to be evaluated. Since during normal operating conditions the PCM is kept in phase 

change at its melting temperature, off-gas and HTF thermal analyses can be conveniently 

decoupled, being the heat transfer rate 𝑞 exchanged between off-gases and HTF through 

the PCM the only connection parameter. For this reason, the heat transfer rate 𝑞 is first 

calculated from CFD simulations of the off-gas/PCM system, then its value is exploited 

by an analytical model for the selection of the HTF. 

From the off-gas point of view, the introduction of the heat transfer fluid can be taken 

into account in the CFD models described in subsection 0 by applying a proper Neumann 

boundary condition, i.e. a negative heat flux 𝑞′′ on the inner surface of the internal pipe. 

A PCM temperature control strategy, aimed to avoid overheating, has been implemented 

in the numerical model by a user-defined function (UDF) coded in C, which can be 

dynamically loaded within the ANSYS Fluent solver to enhance its standard features. 

When the PCM temperature overcomes the melting point and reaches a temperature of 

661 °C, the function applies a negative thermal flux on the internal containers wall until 

the PCM temperature returns to the melting point. Known parameters are the HTF inlet 

temperature 𝑇in,H, the PCM melting temperature 𝑇P,the operating HTF pressure 𝑝H, the 
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internal tube geometry, i.e. the geometry of the channel through which the HTF flows, 

and the heat flux 𝑞′′ that should be extracted from the PCM. The unknowns are the HTF 

outlet temperature 𝑇out,H and the HTF average velocity 𝑣H.  

From the HTF point of view, the desired temperature control, obtained by imposing in 

the CFD simulations the negative heat flux 𝑞′′, can be conveniently exploited to select a 

proper heat transfer fluid. To this purpose, an analytical model has been developed and 

implemented in Fortran 90, as reported in Figure 3.46. 

 

Figure 3.46 Deployment of the analytical model employed for HTF selection 

The basic idea of the proposed procedure is that the overheating control system operates 

such as either the PCM is kept in phase change, thus behaving as a body of infinite specific 

heat capacity, or its temperature is kept as close as possible to its phase change 

temperature. Therefore, both the PCM and the cylindrical outer surface of the internal 

tube of diameter 𝐷i can be assumed as isothermal at the PCM melting temperature 𝑇P. 

Accordingly, the problem can be dealt with as a forced convection analysis in a tube with 

constant temperature on the tube outer surface and the heat transfer rate 𝑞 between PCM 

and HTF can be calculated as [144]: 

𝑞 = 𝑞′′(π𝑑i𝐿) = 𝑈i(𝜋𝑑i𝐿)𝛥𝑇ml (3.23) 

where 𝑈i is the overall heat transfer coefficient between the phase change material and 

the heat transfer fluid, defined in terms of the inner surface area of the tube (𝜋𝑑i𝐿), 𝐿 is 

the length of heat exchange between PCM and HTF in each tube (see Figure 3.45) and 

𝛥𝑇ml is the log mean temperature difference.  
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All the thermo-physical properties of the HTF in the following equations have been 

evaluated at the mean heat transfer fluid temperature 𝑇m,H and at the operating heat 

transfer fluid pressure 𝑝H using the software REFPROP (version 8.0), that has been 

conveniently interfaced with the Fortran code. 

The following iterative procedure, schematized in Figure 3.46 for the sake of clarity, has 

been adopted to solve the problem. 

1. First, a tentative HTF outlet temperature 𝑇out,H is estimated in order to calculate the 

log mean temperature difference 𝛥𝑇ml 

∆𝑇ml =
(𝑇P − 𝑇in,H) − (𝑇P − 𝑇out,H)

𝑙𝑛 
𝑇P − 𝑇in,H
𝑇P − 𝑇out,H

 (3.24) 

  

2. Then, the value of the overall heat transfer coefficient 𝑈i is inferred from equation 

(3.25). Assuming the value  𝜆w = 23 W m K⁄  for the thermal conductivity of the tube 

wall material, corresponding to the AISI 316 stainless steel at 𝑇P [143], the HTF 

convection heat transfer coefficient 𝛼H can be obtained from the definition of 𝑈i: 

𝑈i =
1

𝛼H
+
𝑑i 2⁄

𝜆w
 ln
𝐷i
𝑑i

 (3.25) 

  

In equation (3.25) the overall heat transfer coefficient 𝑈i includes both the 

contribution due to convection at the tube inner surface and the contribution due to 

conduction across the cylindrical tube wall. In the present case, the thin-walled tube 

has a large thermal conductivity and, therefore, the contribution due to conduction in 

expression (3.25) is very small. 

3. Once the value of 𝛼H has been obtained, the Nusselt number is calculated from its 

definition Nu = 𝛼H 𝑑i 𝜆H⁄ , where 𝜆H is the HTF thermal conductivity. At this point, 

the value of the Reynolds Number Re is calculated by means the widely known 

Gnielinski formula [153]: 

Nu =
(
𝑓
8)
(Re − 1000)Pr

1 + 12.7 (
𝑓
8)

1/2

(Pr2/3 − 1)

 (3.26) 
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where Pr = 𝜇H 𝑐H 𝜆H⁄  is the Prandtl number and 𝑐H is the HTF specific heat at 

constant pressure. The Gnielinski correlation is valid over large Reynolds and Prandtl 

number ranges (3000 ≤ Re ≤ 5 × 106 and 0.5 ≤ Pr ≤ 2000). In equation (3.27) 

the friction factor f is calculated under the hypothesis of smooth tubes via the 

Petukhov correlation [154], valid over the same Reynolds number range of equation 

(3.26): 

𝑓 = (0,790 lnRe− 1,64)−2 (3.27) 

  

It should be noted that, since in equation (3.27) the value of the Reynolds number is 

not known a priori, a further iterative calculation is needed in this step of the 

procedure. The correlations adopted here are considered to be very accurate for 

turbulent convection heat transfer in circular tubes and, in the ranges of Reynolds 

and Prandtl numbers of interest for this work, their accuracy is within 10%. 

4. Finally, the average HTF velocity 𝑣H is inferred from the Reynolds number definition 

and the HTF mass flow rate 𝑚̇H = 𝜌H𝑣H(𝜋𝑑i
2 4⁄ ) is exploited in the heat balance for 

the duct: 

𝑞 = 𝑚̇H𝑐H(𝑇out,H − 𝑇in,H) (3.28) 
  

in order to provide an updated value of the outlet temperature 𝑇out,H.  

In all the analyses carried out in this section, convergence has been reached in less than 

20 iterations.  

3.6.3.1 Performance analysis for heat transfer fluid selection  

The desired control performance to overcome PCM overheating issues was achieved, 

after several trials, by applying in the CFD simulations a negative thermal flux 𝑞′′ on the 

inner surface of the internal pipe equal to 15 kW/m2. The resulting PCM temperature 

profiles are reported in Figure 3.47 together with those without HTF.  

It can be clearly seen how for the first row of PCM containers, which faces the most 

critical off-gas condition, the introduction of the HTF leads to completely smooth the 

temperature profile of the PCM, while avoiding the overheating periods. 
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Figure 3.47 Comparison of first row PCM temperature for configuration 

R40 with and without HTF 

The effect of the introduction of HTF on off-gas smoothing performance of the reference 

configuration is highlighted in Table 3.16 and also in Figure 3.48.  

Table 3.16 Performance of the configuration R40 with HTF 

 Inlet Outlet 

Max temperature [°C] 958 744 

Min temperature [°C] 300 542 

ΔT max [°C] 658 203 

Standard deviation [°C] 196 61 

Maximum thermal power [MW] 55.4 41.3 

Maximum thermal power reduction [%] - 25.4 

The value of the heat flux 𝑞′′ that should be extracted from the PCM, calculated by CFD 

simulations, together with the analytical model described in the previous subsection, have 

been used to calculate the operative conditions of possible HTFs. Three different fluids, 

namely air for the low cost and its availability, and the inert gases carbon dioxide, which 

provides a high specific thermal capacity, and argon, commonly used in steel industry, 

have been investigated for different values of the operating pressure 𝑝H in the range 

between 0.1 and 1 MPa. 

The hypothesis is that the HTF circulates in a close-loop circuit and enters the tubes at a 

temperature 𝑇in,H = 260°𝐶. The inlet temperature has been chosen in order to extract heat 

from the PCM at a medium-high temperature level, with the aim, for example, to reinforce 
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steam production. For all the fluids investigated and almost independently of the 

operating pressure, the outlet temperature 𝑇out,H was very close to 500°𝐶. 

 

Figure 3.48 Off-gas temperature profiles for configuration R40 with 

HTF (black line) and without HTF (dotted green line) 

In Figure 3.49 (a) and (b), respectively, the HTF average velocity 𝑣H and its rate versus 

pressure 𝑑𝑣H 𝑑𝑝H⁄  for the analysed HTFs are represented as a function of the fluid 

pressure 𝑝H. It can be clearly seen how small variations of HTF velocity, and of pressure 

drops consequently, are gained by increasing operative pressure over 0.3 MPa. Therefore, 

the latter pressure value can be set as the reasonable operative condition, in order to lower 

the cost of the related fans. As the final choice of HTF, carbon dioxide achieves the best 

performance, while improving system safety in comparison to air, which may lead to 

safety issues due to its oxygen content. 

  
    (a)  (b) 

Figure 3.49  a) Average velocity and b) rate by pressure of the analysed heat transfer fluids 
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3.6.4 Final system configuration and energy recovery results 

The final configuration of the PCM smoothing device is based on the R40 configuration, 

with aluminium as phase change material and carbon dioxide as heat transfer fluid to 

control overheating. 

The device consists of a sequence of modules, in which the PCM containers are installed 

(see Figure 3.50). Each module can be interchanged and independently extracted to 

improve system maintainability.  

 

Figure 3.50 Final configuration of the PCM smoothing system 

In order to avoid PCM overheating, in each module a control system makes use of a 

suitable thermocouple installed within a PCM container to manage the HTF rate flow by 

a dedicated fan. The HTF can then be used to reinforce steam production of the 

downstream energy recovery system based on a traditional Rankine cycle. 

The installation of the proposed PCM device into the off-gas line allows to smooth off-

gas temperature variability as shown by the profiles in Figure 3.51, calculated by means 

of the developed CFD model and imposing the actual values of the off-gas inlet 

temperatures of the reference cycle. Duration curves, showing the time-spans within a 

TTT cycle during which the off-gas presents different values of thermal power, are 

provided in Figure 3.52. 
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Figure 3.51 Off-gas temperature profiles of the reference cycle 

with the final PCM system configuration 

While the traditional system with no PCM device (see the red lines in Figure 3.51 and 

Figure 3.52) has a maximum thermal power of 55.4 MWt corresponding to a TTT 

temperature peak of 956°C, the new system is characterised by a maximum thermal power 

of 41.3 MWt corresponding to a TTT temperature peak of 737 °C. This has a direct effect 

on the downstream steam-based recovery system size, which should be dimensioned on 

the maximum thermal power; in this case the reduction factor between the traditional and 

the PCM enhanced system is 25.4%.  

 

Figure 3.52 Off-gas thermal power duration curves for the final configuration 
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Therefore, in order to recovery the same amount of off-gas energy, smaller sizes of both 

the boiler and the steam turbine can be adopted; considering a 0.27 electrical efficiency 

of the turbine at nominal power conditions, a 8.45 MWe can be installed instead of 12.25 

MWe for a traditional system, with significant investment cost saving. 

The minimum off-gas temperature is increased from 252 °C of the traditional system to 

501 °C of the PCM empowered system (see Figure 3.51), with related minimum thermal 

power moving from 12.8 MWt (see red lines in Figure 3.52) to 26.7 MWt (see green lines 

in Figure 3.52). This shifted and smoothed profile of the final duration curve leads to an 

expected load factor profile of the steam turbine as reported in Figure 3.53 (compare green 

lines to the red ones). The proposed system leads to a minimum load factor of 65% during 

the whole TTT cycle; on the contrary, the profile of the traditional system decreases down 

to 23%. Thus, with the insertion of the PCM device, boiler and turbine are allowed to 

work in non-critical ranges with benefits on the overall recovery performance. 

Considering the values reported in Figure 3.52, the turbine utilization factor, which 

affects electrical energy revenues, can be increased from 60% to 82% for the new system. 

Therefore, a final energy recovery of 51.3 kWhe per steel tons can be estimated, which is 

significantly greater than the value of 27.8 kWe/tons reported by [117] for energy 

recovery from EAF off-gas by ORC technologies in current EU plants.  

Furthermore, the temperature profile of the off-gas exiting the PCM smoothing system is 

always above the range for dioxins generation by de novo synthesis from macromolecular 

carbon and organic or inorganic chlorine present in the fly ash matrix and for formation 

from organic precursors. These two processes are considered to cause about the 70% of 

the total dioxins generation [136]. According to [137] the maximum formation occurs at 

a temperature of about 300-325 °C, while small amounts are detected for temperature 

below 250 °C and over 450 °C. As reported in Figure 3.51, in a traditional system off-gas 

remains in the dioxins generation range for a 16.7% time of the TTT cycle, leading to 

those environmental issues that represent a main drawback of direct recovery systems, as 

underlined in section 0. The insertion of the PCM smoothing system downstream the 

scrap preheating section contributes to overcome such environmental issues, thus 

increasing the sustainability of the whole direct-indirect energy recovery. 
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Figure 3.53 Duration curve of the Load Factor of the turbine 

As concerns energy recovery economics, values reported in Table 3.17 have been 

estimated by interaction with local component suppliers. The smoothing device 

investment cost, comprising PCM modules, HTF piping and control system, can be set to 

750,000 €. Taking into account system utilization, a yearly electrical energy generation 

of 48,500 MWh/year can be estimated, which leads to 2,425,000 €/year cost saving when 

an energy supply cost of 50 €/MWhe, currently granted to the steel industry by the Italian 

energy system, is considered. Furthermore, energy efficiency certificates (EEC) can be 

ascribed to the proposed system; for an up-to-date Italian value of 115 €/TOE [138], 

increased by the durability factor of 3.36 introduced by the Italian white certificates 

scheme in order to account energy recovery from industrial processes over a 5-years 

period only [155], a positive cash flow of 3,000,000 € can be estimated for the first 5 

years. 

Table 3.17 Economics of the recovery system 

  Costs   Incomes 

 Investment [€] O&M[€/year]   [€/year]  

Smoothing device  800,000 90,000  - 

Steam generator  8,800,000 450,000  - 

Steam turbine  3,000,000 121,000  - 

Other (design, safety, etc.)  975,000 135,000  - 

Electric energy saving - -  2,425,000 

Energy efficiency certificates -  -   3,000,000 

Therefore, a simple pay-back period of about 3 years can be derived, which underlines 

the profitability of the recovery system enabled by the adoption of the PCM smoothing 

device. 
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3.6.5 Conclusions 

A conjoint direct-indirect recovery of off-gas thermal energy is proposed in order to 

maximize energy efficiency in EAFs with continuous charge. After preheating the scrap 

charge as in direct recovery, off-gas enters a PCM (aluminium) smoothing device which 

reduces its temperature variability, providing a more regular feeding of the downstream 

indirect recovery system by steam generation and power production. Thermo-fluid 

dynamic simulations allow identifying the best configuration in terms of PCM container 

size and layout, as well as the benefits of introducing a proper heat transfer fluid flowing 

through PCM containers in order to avoid overheating issues. An analytical model has 

been developed to guide the selection of the proper heat transfer fluid, leading to adopt 

carbon dioxide in a closed-loop circuit feeding PCM containers. 

The resulting low cost device allows to increase energy efficiency of the whole recovery 

system. Maximum off-gas temperature is lowered and the resulting maximum thermal 

power is reduced by 25.4% with respect to a traditional plant with no smoothing device. 

This has a direct impact on the downstream energy recovery system based on consolidated 

Rankine cycle technologies: smaller sizes of both the boiler and the steam turbine can, in 

fact, be adopted to recover the same amount of waste heat, thus reducing investment cost 

significantly. Furthermore, the minimum off-gas temperature is increased due to the latent 

heat released to off-gas by the PCM smoothing device; the minimum load factor of the 

steam turbine can be enhanced from 23% in the traditional plant to 65% for the proposed 

system during the whole TTT cycle. The resulting turbine utilization factor, which affects 

electrical energy revenues, is increased from 60% to 82%.  

The installation of the proposed PCM smoothing device allows also to overcome some of 

the environmental issues that have hindered energy recovery in the steel industry. The 

profile of off-gas temperature, in fact, is shifted above the range for dioxins generation 

by de novo synthesis and for formation from organic precursors. Since recovery of energy 

from EAF steelmaking processes has been identified as the greatest single opportunity 

for reducing energy use, the proposed system can be a feasible way of addressing the 

challenge.  
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3.7 Coupling PCM-based waste heat extraction with steam 

generation  

To allow a better exergy exploitation than the current state-of-the-art waste heat to power 

solutions in the steel industry, a new type of energy recovery system based on Phase 

Change Materials is proposed. In particular, the use of high temperature PCMs evolves 

from simply smoothing off gas temperature (see Sections 3.4 and 3.6) to generating 

constant superheated steam able to feed the downstream turbine nearly at nominal load. 

This result is achieved by introducing an auxiliary section between the PCM Section and 

the steam generation one, which provides the auxiliary heat needed to level the thermal 

content of off gas. The auxiliary heat is extracted from the PCM units by a heat transfer 

fluid flowing across the inner tube of each PCM container. 

Different models to properly size and simulate the operations of the proposed energy 

recovery system have been developed and integrated. Results show how the size of the 

steam generator and the turbine can be reduced of about 41% with respect to traditional 

solutions, while increasing electric power production by 22% thanks to the reduced 

fluctuation in steam parameters at the turbine inlet, which leads to a greater overall 

efficiency. 

3.7.1 Introduction 

Waste heat recovery in steel industry represents one of the greatest opportunity to reduce 

the consumption of primary energy while increasing the sustainability of the steelmaking 

process [18–21]. One of the most important and challenging source of waste heat is 

represented by the off gas emitted by the Electric Arc Furnace (EAF), which accounts for 

about 30% of the total energy provided to the process [23]. However, due to the dynamic 

of the EAF process, off gas temperature fluctuates intensively causing large variations in 

thermal power and an inefficient energy recovery, consequently [15,104]. Current 

available technologies can be classified depending on the final use of the recovered heat 

as performing a direct or an indirect recovery (refer to section 3.3 for a detailed review). 

In direct recovery, off gas thermal energy is recuperated and directly used to preheat the 

scrap before its charging into the furnace. In indirect recovery, instead, off gas thermal 

energy is carried out by a heat transfer fluid (HTF), mainly steam, and used for several 

applications such as district heating, vacuum degasser, and power production [156]. 
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However, a thermal energy storage system (TESS) is generally required in the attempt of 

providing a constant supply of heat downstream [104].   

Recently, innovative TESS based on the capacity of phase change materials (PCMs) to 

store and release latent heat have been proposed also for high temperature conditions such 

those encountered in the steel industry [15,140,157–159]. In particular, an innovative 

solution for indirect energy recovery in a discontinuous charge EAF process (section 3.4) 

and a conjoint direct–indirect recovery in a continuous charge one (section 3.6) have been 

developed in this thesis. The features of metal PCMs have been exploited not only for 

latent heat storage, but mainly to smooth the variability of off gas temperature and feed 

the downstream energy conversion technology more constantly at around 400 °C. 

The aim of this technology is to further increase the efficiency of indirect energy recovery 

from EAF off gas by providing superheated steam with low thermal variability, but also 

with higher temperature to a steam turbine for power production. Therefore, in the 

following sub-section 3.7.2 the potential evolution of steam-based energy recovery in 

steel industry is depicted, departing from current technologies and moving to the novel 

energy recovery approach proposed in this study. In sub-section 3.7.3, the new PCM-

coupled energy recovery system is described, while in sub-section 3.7.4 the models 

created for its development and performance analysis are reported. In sub-section 3.7.5 

results are discussed, while in sub-section 3.7.6 conclusions are derived.  

3.7.2 Managing the evolution of steam-based energy recovery from EAF 

State-of-the-art solutions for EAF waste heat to power (WHTP) systems can be 

considered as composed by three main components:  

1. a waste heat recovery boiler (WHRB);  

2. a thermal energy storage system (TESS); 

3. an energy conversion technology (ECT).  

Concerning the waste heat recovery boiler, two technologies are commonly used: the 

saturated steam generator (Sat-SG) and the hot water boiler (HWB). The choice between 

saturated steam and hot water usually depends on their adoption also as a cooling medium 
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in off gas ducts. The use of thermal oil boilers is generally excluded by steel plant 

operators due to safety issues related to fire risk. 

When a saturated steam generator is used, Ruth’s steam accumulators (RSA) are 

employed as TESS, while two type of energy conversion technologies can be used: the 

saturated steam turbine (Sat-ST) [104] and the Organic Rankine Cycle (ORC) turbine 

[127]. When a hot water boiler is used as WHRB, instead, only a hot water tank (HWT) 

and an ORC turbine can be used as TESS and ECT, respectively [120].  

The design of the whole waste heat to power system normally starts from the WHRB, 

followed by the TESS, and finally by the ECT (see the grey coloured portion in Figure 

3.54a) in a sequential approach. Each system is sized individually and the output 

parameters are used as input parameters of the following component (i.e. maximum steam 

flow rate and temperature exiting TESS become the design parameters of the downstream 

ECT). As shown in Figure 3.54b, such state-of-the-art solutions are able to manage 

thermal power fluctuations, but the ECT feeding temperature is rather low. 

  
    (a)  (b) 

Figure 3.54 a) Comparison between the design approach of the state-of-the-art and the PCM-

based WHR systems from EAF; b) performance evolution of the WHTP systems 

Since the average temperatures of the off gas are usually around 600 °C, in order to reduce 

exergy losses a better solution could be the generation of superheated steam at higher 

temperature to directly feed a superheated steam turbine (Sh-ST). In [160], two solutions 

have been proposed: 1) applying a duct burner before the super heater and 2) providing a 

common WHRB by combining the off gas ducts of two EAFs. The former solution 

implies the use of additional fossil fuel, while the latter leads to manage a double 

production process. An innovative solution has been proposed in [119], where a heat 
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recovery boiler based on molten salt is coupled with superheated steam generation. In this 

case, molten salt acts both as a heat transfer fluid and as a thermal storage system, thus 

facing the same issues of solar plants, such as fast draining of the liquid and freezing 

prevention during EAF shutdown. 

High temperature phase change materials (PCMs) can be employed to reduce the 

fluctuating thermal power entering the steam generator. Previous findings have shown 

that the introduction of a PCM-based smoothing (PCMS) device is capable to smooth off 

gas temperature profiles, significantly affecting the design of the whole waste heat to 

power system [161]. The PCMS has been further developed in [162], with the 

introduction of a heat transfer fluid (HTF) to overcome overheating issues in PCM 

containers. The change in the design approach is reported in Figure 3.54a (green coloured 

portion). TESS features are integrated into the PCMS, which becomes the first component 

of the waste heat to power system to be sized, followed by the WHRB. In this case, the 

WHRB is a superheated steam generator (Sh-SG) and its size depends on the performance 

of the upstream PCMS. Referring to Figure 3.54b, the PCMS allows to enhance the steam 

temperature, but the control of thermal fluctuations is less effective than current state-of-

the art solutions.  

In this section, the chance of actively managing the heat transfer fluid flowing through 

the PCM-based device to improve steam parameters (i.e. temperature and mass flow rate) 

is investigated. The basic idea is to make the whole waste heat to power system evolving 

towards the left upper side of Figure 3.54b, thus providing both higher steam temperature  

and near-zero thermal power fluctuations  to the downstream energy recovery section.  

To this end, a new type of heat recovery system called PCM-Coupled Steam Generator 

(PCMCSG) is developed by integrating the PCMS features (TESS and temperature 

smoothing) with the superheated steam generator (Sh-SG) ones, as described in the 

following sub-section 3.7.3. The effects of combining the off gas temperature smoothing 

and the latent heat extraction from PCM by a HTF are analysed with regards to steam 

parameters and the related performance of the downstream energy conversion system. 

Since the PCMCSG is the single component of the waste heat recovery section integrating 

different features (see the purple coloured part of Figure 3.54a), its sizing should rely on 

both PCMS and Sh-SG performances, thus further changing the design approach of waste 
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heat to power energy systems. Integrated models are needed to develop and analyse the 

performance of the novel PCMCSG, as described in sub-section 3.7.4. 

3.7.3 The PCM-coupled steam generator 

The proposed new PCM-coupled steam generator is composed by three sections: the PCM 

Section, the Steam Generation Section, and the Auxiliary Section (see Figure 3.55).  

The PCM Section (red coloured in Figure 3.55) is composed by a set of Heat Exchange 

and Storage Units (HESUs), which exchange thermal energy with the off gas and the 

auxiliary heat transfer fluid (HTF) during charging or discharging phases of the PCM. 

When the off gas enters the PCM Section, in facts, its temperature can be increased or 

decreased by the action of the HESUs. When off gas temperature is lower than the PCM 

melting point, in particular, each HESU releases latent heat from the PCM to the off gas 

increasing its temperature. On the contrary, when the off gas temperature is higher than 

the PCM melting point, the HESU absorbs heat from the off gas decreasing its 

temperature, by storing latent heat in the PCM. The combination of these two effects leads 

to smooth the off gas temperature, which tends to stabilise at the PCM phase transition 

temperature.  

After the PCM Section, the off gas enters the Steam Generation Section (blue coloured 

in Figure 3.55), where it exchanges heat with the superheater, the evaporator, and the 

economizer, thus generating superheated steam. The Steam Generation Section is sized 

taking into account the maximum thermal power of the off gas exiting the PCM Section. 

The Auxiliary Section (purple coloured in Figure 3.55) connects the PCM Section and 

the Steam Generation Section by providing the additional heat supply required to achieve 

constant steam parameters at the turbine inlet. In order to obtain a constant mass flow rate 

of steam, an auxiliary evaporator located downstream the evaporator of the Steam 

Generation Section is employed. To achieve a constant temperature of the superheated 

steam, instead, an auxiliary superheater is installed downstream the superheater of the 

Steam Generation Section. Both the auxiliary evaporator and the auxiliary superheater 

are connected to the PCM Section by a closed loop circuit with the gaseous heat transfer 

fluid flowing through the HESUs. 
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Figure 3.55 PCM-coupled steam generator for waste heat recovery 

As reported in [10], several systems for containing PCM employ cylindrical pipes 

[75,76]. The use of cylindrical pipes allows increasing heat exchange surfaces thereby 

optimizing the process both from the point of view of recovery efficiency and of cost, as 

well as preventing breakage and crack formation [161]. Based on the previous 

considerations, the Heat Exchange and Storage Unit (HESU) is composed by two coaxial 

pipes; the gap between the inner pipe and the external one is filled with the PCM (Figure 

3.56). The external pipe is in direct contact with the off gas, whereas the inner pipe 

contains the heat transfer fluid feeding the heat exchangers of the Auxiliary Section. At 

the bottom of each HESU insulation is provided in order to dampen the generation of a 

thermal bridge between the external wall and the bottom.  

Since all the HESUs within a given row (see Figure 3.56b) undergo the same off gas 

thermal load, the same thermal power can be extracted from each of them by the HTF. 

Thus, HESUs within the same row are connected in parallel by using a single inlet and 

outlet manifold (see Figure 3.56a), so that the same HTF control parameters can be 

applied to all of them.  

The design of the PCM Section has to take into account the very high concentration of 

dust in off gas (typically 20 g/Nm3 [127]), therefore a vertical arrangement of the HESU 

should be chosen in order to reduce dust accumulation on external pipe surface. Since 

dust accumulation among HESUs can create a barrier to off gas flow, an aligned layout 

of the HESUs (Figure 3.56b) should be preferred to a staggered one, as analysed in [161]. 
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Furthermore, an easy dust removal can be enabled by hanging the HESUs to the upper 

wall of the waste heat boiler, as can be seen in Figure 3.56a.  

As underlined in [12] and [15], metals have greater potential as high temperature PCMs 

than molten salts, since they are generally characterised by higher thermal conductivity 

and smaller volume expansion. In particular, Al–Si alloys [13,87,96] represent the most 

promising high temperature PCMs for waste heat recovery from EAF, due to their suitable 

melting temperature, high latent heat of fusion and high thermal conductivity [73]. 

However, as pointed out by Fukahori et al. in [96,97], Al–Si alloys have highly corrosive 

nature to metals such as steel based-materials. They investigated the use of ceramics as 

shell materials for high-temperature metallic PCMs and they found out that Al2O3 is the 

most suitable ceramic to employ, even though ceramics are quite fragile and expensive 

for industrial application. 

A suitable alternative could be coating the steel walls in contact with the PCM with a thin 

film of Al2O3, which can be obtained by means of an aluminizing and oxidation treatment 

[100]. 

  
    (a)  (b) 

Figure 3.56 Geometrical configuration of the HESU: a) lateral and b) A-A section view 

In this section, alloy Al-12%Si (in mass %) has been chosen, because it presents one of 

the highest heat of fusion (560 kJ/kg) and thermal conductivity (160 W/m K) among Al-

Si alloys; its temperature of fusion is about 576 °C, which is very close to the average 

temperature of the off gas emitted by an Electric Arc Furnace.  



ENERGY RECOVERY FROM ELECTRIC ARC FURNACE 

136 

 

3.7.4 Integrated models for system analysis and optimisation 

The optimisation of system configuration and management assuring the best performance 

of the novel PCM-coupled steam generation has required the development and integration 

of different models, which in turn rely on different software, as shown in Figure 3.57.  

 

Figure 3.57 Flow diagram for the optimisation of system configuration and management 

The first step to be faced is the process characterisation, which should generate a reference 

profile of the off gas temperature resembling the real behaviour in an electric arc furnace 

plant. In the second step, which leads to system sizing, the main components of the PCM-

device are designed, the size of the steam boiler and the turbine are identified, and a 

proper HTF is selected. Once this stage is completed, system operations should be 

modelled and simulated in order to improve its performance. In the following, each 

modelling phase is analysed in more details. 

3.7.4.1 Process characterisation  

In order to fully exploit waste heat, the most energy intensive cycle occurring during an 

EAF process should be identified as the reference cycle for the design of the related 

energy recovery system. Then, a generalisation of the reference cycle should be 

performed to create an off gas temperature profile characterised by the same highest 

temperature, total energy, and critical temperature gradient of the original reference cycle, 

which can be easily processed by models. In this study, a generalized off gas temperature 

profile has been generated from analyses carried out on several EAF processes; the mass 

flow rate of the off gas is assumed to be constant. Figure 3.58 compares the reference 

cycle (solid black line) to the generalised cycle (red dotted line). 
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Figure 3.58 Generalization of the reference cycle 

3.7.4.2 System modelling 

The design of the whole PCMCSG involves a series of energy balances between the PCM 

Section and the Steam Generation Section, based on the temperature profile of the 

generalised cycle at the inlet of the PCM Section.  

The PCM Section should be sized in order to guarantee that the thermal energy stored in 

the PCM is able to completely smooth thermal power fluctuations when feeding the steam 

turbine. The reduction of the maximum off gas temperature exiting the PCM Section (see 

the smoothed profile of the green solid line in Figure 3.59a) is linked to the decrease of 

the maximum off gas thermal power entering the downstream Steam Generation Section. 

Thus, as reported in Figure 3.59b, the design point thermal power 𝑞𝑑𝑒𝑠 of the Steam 

Generation Section is calculated as the difference between the maximum off gas thermal 

power exiting the PCM Section and the thermal power at the Steam Generation Section 

outlet.  The latter is usually assigned by considering the minimum off gas temperature 

admissible at the stack. The purple area in Figure 3.59b, represents the required auxiliary 

energy 𝐸𝑎𝑢𝑥𝑟𝑒𝑞  to be provided by the Auxiliary Section to guarantee constant steam 

parameters at the turbine inlet.  It can be calculated as shown in the following equation 

(3.29): 

𝐸𝑎𝑢𝑥𝑟𝑒𝑞 = ∫ 𝑞𝑎𝑢𝑥𝑡𝑜𝑡(𝑡) 𝑑𝑡

𝑇𝑇𝑇

0

 (3.29) 

where the auxiliary thermal power 𝑞𝑎𝑢𝑥𝑡𝑜𝑡(𝑡) is the difference between the design point 

𝑞𝑑𝑒𝑠 and the off gas thermal power exiting the PCM Section at time t, to be accounted for 
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a whole tap-to-tap cycle (TTT). The auxiliary thermal power 𝑞𝑎𝑢𝑥𝑡𝑜𝑡(𝑡) provided to steam 

by the Auxiliary Section should be distributed among the auxiliary evaporator and the 

auxiliary superheater. 

In first instance, heat exchange within the PCM Section can be characterized by 

considering the off gas temperature with respect to the PCM melting point. In particular, 

two important heat exchange phases can be identified: the hot phase, occurring when the 

off gas temperature is greater than the phase change temperature, and the cold phase, 

occurring when the off gas temperature is lower than the phase change one. 

During the hot phase, a HESU absorbs and stores the thermal energy 𝐸ℎ𝑜𝑡(𝑅) from the 

off gas, while during the cold phase it releases the thermal energy 𝐸𝑐𝑜𝑙𝑑(𝑅) to the off gas. 

Both energies depend on the row R where each HESU is located, since the thermal load 

of the off gas decreases while moving from the first to the last rows of HESUs in the PCM 

Section.  

  
    (a)  (b) 

Figure 3.59 a) Temperature profile at inlet and outlet of the PCM Section and b) thermal power 

profile in the Steam Generation Section 

Figure 3.60a reports the profile of the heat transfer rate between the off gas and a HESU; 

the red area represents the hot phase energy, while the light blue area represents the cold 

phase energy. The PCMSG design model involves the identification of the external 

diameter D for a HESU so that each HESU is able to store, in the form of the latent heat 

𝐸𝑠𝑡𝑜, the hot phase energy it can absorb during the generalised cycle. Moreover, the 
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number of HESU rows 𝑛𝑅  should be chosen in order to enable the whole PCM Section 

to store all the required auxiliary energy 𝐸𝑎𝑢𝑥𝑟𝑒𝑞 .  

  
    (a)  (b) 

Figure 3.60 a) Hot and cold phases and b) charging and discharging phases in the HESU 

For a given diameter, by increasing 𝑛𝑅, the available auxiliary energy 𝐸𝑎𝑢𝑥𝑎𝑣 in the PCM 

Section increases, while the required auxiliary energy 𝐸𝑎𝑢𝑥𝑟𝑒𝑞  decreases. When the 

external diameter and the total number of rows balancing required and available energies 

have been selected, the thermal power to be provided to the auxiliary evaporator 𝑞𝑎𝑢𝑥𝐸𝑉𝐴  

and to the auxiliary superheater  𝑞𝑎𝑢𝑥𝑆𝐻  can be identified.  The total number of rows of 

the PCM Section can be further split into the auxiliary evaporator rows  𝑛𝑅𝐸𝑉𝐴   and  the 

auxiliary superheater rows  𝑛𝑅𝑆𝐻 .  

Figure 3.60b shows the total thermal power exchanged by the HESU (black dash-dot 

line), which is the sum of the thermal power exchanged with the off gas (black solid line) 

and the heat transfer fluid (purple solid line). The total thermal power identifies the 

charging (orange area) and discharging (green area) phases occurring within each HESU. 

During the charging phase, the stored thermal energy within the HESU increases, while 

during the discharging phase it is released. While the thermal power exchanged with the 

off gas depends on the geometrical configuration of the HESU and the off gas 

thermodynamic properties, the thermal power exchanged with the heat transfer fluid can 

be controlled by varying HTF thermodynamic parameters (inlet temperature, velocity and 

pressure). Thus, the profile of the thermal power exchanged with the auxiliary HTF 

should guarantee that the energy stored by the HESUs during the charging phase is equal 
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to the thermal energy to be released during the discharging one.  The selection of the 

proper HTF involves managing the trade-off between minimising pressure drop and 

lowering circuit pressure.   

Based on the above considerations, the overall PCM coupled steam generator design 

model has been developed. The flow chart in Figure 3.61 summarizes the related 

algorithm, which has been implemented in Fortran 90, using the open-source integrated 

development environment Force [163]. The workflow encompasses three main iterative 

loops representing the three main steps of the design process, which are: 1) the 

identification of the external pipe diameter D of the HESUs (green coloured portion in 

Figure 3.61), 2) the determination of the number of HESUs’ rows 𝑛𝑅   (orange coloured 

portion in Figure 3.61), and 3) the selection of the heat transfer fluid (grey coloured 

portion in Figure 3.61). 

In the first step, starting from the input design parameters (off gas temperatures and flow 

rates), by means of a first guess of the diameter D of a HESU, the cross-flow area of the 

whole system is calculated by taking into account the maximum inlet velocity of the off 

gas. [164]. 

 

Figure 3.61 Flowchart of the PCM-coupled steam generator design model 

A maximum inlet velocity of 12 m/s has been chosen in order to limit the erosion effect 

due to the high dust content in the off gas. The choice of the inner pipe diameter d, instead, 

relies on acceptable thermo-structural stresses generated by the difference between the 
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thermal linear expansion coefficients of PCM and tube material [165]. Given the 

geometric configuration and the PCM characteristics, the amount of energy storable 𝐸𝑠𝑡𝑜 

as latent heat in each HESU can be easily calculated. 

At the same time, the HESUs geometry deeply affects the heat transfer between off gas 

and PCM. Since during normal operating conditions the PCM is kept in phase change at 

its melting temperature, thus behaving as a body of infinite heat capacity, both the PCM 

and the cylindrical outer surface of the external tubes can be assumed as isothermal at the 

PCM melting temperature. Accordingly, the problem can be dealt with as an external 

forced convection analysis in a tube bundle with constant temperature on the outer surface 

of the tubes. The heat transfer rate 𝑞𝑃𝑡𝑂(𝑡, 𝑅) from PCM to off gas (positive or negative) 

at time t and for row R (with R ranging from 1 to a first guess value of 𝑛𝑅) can be evaluated 

as: 

q𝑃𝑡𝑂(𝑡, 𝑅) = 𝑈𝑃𝑡𝑂 𝐴𝑃𝑡𝑂(∆𝑇𝑚𝑙)𝑃𝑡𝑂 (3.30) 

where 𝑈𝑃𝑡𝑂 is the overall heat transfer coefficient (which basically corresponds to the 

convective heat transfer coefficient 𝛼𝑃𝑡𝑂), 𝐴𝑃𝑡𝑂 is the heat exchange area, and (∆𝑇𝑚𝑙)𝑃𝑡𝑂 

is the log mean temperature difference between PCM and off gas. The value of 𝛼𝑃𝑡𝑂 is 

calculated using the Grimson correlation for aligned tube bundles [166].  

Off gas properties are estimated using an iterative procedure, where the outlet off gas 

temperature for each row is first guessed and then corrected using the heat balance for the 

off gas. The inlet temperature for a given row corresponds to the outlet temperature of the 

previous one. All the thermo-physical properties have been evaluated at the mean off gas 

temperature and operating pressure using the REFPROP 8.0 routines [167], conveniently 

interfaced with the Fortran code.  

From 𝑞𝑃𝑡𝑂(𝑡, 𝑅) it is possible to calculate the hot phase thermal energy of the row which 

undergoes the maximum thermal load (𝑚𝑎𝑥[𝐸ℎ𝑜𝑡(𝑅)]𝑅);  this energy, in turn, should be 

equal to the storable energy 𝐸𝑠𝑡𝑜. When this condition is fulfilled, it is possible to move 

to the following second step of the design procedure.  

At the beginning, the available auxiliary energy 𝐸𝑎𝑢𝑥𝑎𝑣  is calculated as the integral over 

time of the heat transfer rates 𝑞𝑃𝑡𝑂(𝑡, 𝑅) for a first guess of the number of rows 𝑛𝑅. 
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𝐸𝑎𝑢𝑥𝑎𝑣represents the maximum amount of energy the off gas is able to exchange with the 

PCM and should be equal to the energy  𝐸𝑎𝑢𝑥𝑟𝑒𝑞  (see equation (3.29)) required by the 

Auxiliary Section in order to ensure the desired constant steam parameters. If the 

available auxiliary energy is less than the required one, the number of rows should be 

increased and vice-versa. Once the number of rows which balances the required and 

available energies is identified, the thermal powers to be provided to the auxiliary 

evaporator 𝑞𝑎𝑢𝑥𝐸𝑉𝐴  and the auxiliary superheater  𝑞𝑎𝑢𝑥𝑆𝐻  can be estimated.  The thermal 

power distribution between the auxiliary evaporator and the auxiliary superheater is based 

on the enthalpy differences required by each heating phase of the steam cycle (i.e. 

feedwater heating, evaporation and superheating).  Such enthalpies can be derived from 

feedwater temperature, circuit pressure and turbine inlet temperature. The total number 

of rows of the PCM Section can be split into the number of rows 𝑛𝑅𝐸𝑉𝐴and 𝑛𝑅𝑆𝐻   devoted 

to the auxiliary evaporator and the superheater, respectively.  

The third and final step of the overall model involves the selection of a proper gaseous 

HTF able to extract the desired amount of heat from the PCM at the right time with low 

pressure drops. For any suitable fluid, the velocities 𝑣 at time t and for any row R can be 

inferred from the auxiliary thermal power 𝑞𝑎𝑢𝑥(𝑡, 𝑅) . The problem can be modelled as 

internal forced convection in a tube of inner diameter d with constant temperature equal 

to the PCM phase change temperature. Similarly, the heat transfer rate 𝑞𝑎𝑢𝑥(𝑡, 𝑅) at the 

time t and for the row R can be expressed as: 

𝑞𝑎𝑢𝑥(𝑡, 𝑅) = 𝑈𝑃𝑡𝐻 𝐴𝑃𝑡𝐻(∆𝑇𝑚𝑙)𝑃𝑡𝐻 (3.31) 

where symbols have the same meaning as those in equation (3.30), but here they refer to 

the heat exchange between the PCM and the HTF.  

Based on the value of 𝑞𝑎𝑢𝑥 and guessing the outlet temperature from the inner tube, the 

value of 𝑈𝑃𝑡𝐻 , which essentially corresponds to the convective heat transfer coefficient 

𝛼𝑃𝑡𝐻, can be easily calculated. From the value of 𝛼𝑃𝑡𝐻, using the Gnielinski formula 

[153], the HTF velocity 𝑣 can be inferred through the Reynolds number. Iteratively, the 

heat balance for the duct is used to provide updated values of the tube outlet temperature. 

Pressure losses are finally calculated via the Petukhov correlation [154].  
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The thermo-physical properties of the HTF are evaluated at its mean temperature and 

operative pressure using the REFPROP software interfaced with the Fortran code. HTF 

velocities and their rates versus operative pressure 𝑑𝑣 𝑑𝑝⁄  are analyzed together with 

pressure drops Δ𝑝 in the row undergoing the maximum thermal load, in order to manage 

the trade-off between minimising pressure drop and lowering circuit pressure. 

3.7.4.3 System Operations modelling 

Two models for operations of  waste heat to power systems based on steam generation 

have been developed in TRNSYS 17.0 [168]: the former refers to a traditional Sh-SG (see 

Figure 3.62), while the latter to the proposed PCMCSG (see Figure 3.63). The 

implemented models aim to evaluate and compare the electric power production of the 

two systems. The first model simulates a traditional Sh-SG with and without a PCM-

based smoothing-only device (PCMS) installed upstream. Such condition is simulated 

applying two different off gas thermal power profiles to the Sh-SG: the reference profile 

and the smoothed profile due to PCMS insertion. 

 

Figure 3.62 TRNSYS model of a traditional superheated steam generator for waste heat recovery 

and downstream energy conversion technology 

The design of the PCMS refers to the technical solutions described in section 3.6, where 

a heat transfer fluid is used to control the PCM temperature in order to overcome 

overheating issues in PCM containers. The PCMS has been sized so that the same 

smoothing effect (i.e. same thermal power fluctuation) of the PCM Section of the novel 
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system is achieved. Therefore, the geometry and the layout of the PCMS are the same of 

the PCM Section of the PCM-coupled steam generator.  

The output files generated by the Fortran code are used as input in the TRNSYS 

simulation. In the traditional Sh-SG model, a control loop is implemented in order to 

provide a constant steam temperature at the turbine inlet by varying the flow rate of the 

feed pump. 

The flow rate of the feed pump in the PCMCSG is, instead, fixed at the design value; the 

control on the steam parameters is obtained by providing the auxiliary evaporator and the 

auxiliary superheater with the auxiliary thermal powers from the PCM Section. In both 

models, the performances of the turbine have been modelled by using an efficiency curve 

for partial loads, which has been created thanks to interactions with a local supplier (see 

Figure 3.64).  

 

Figure 3.63 TRNSYS model of a traditional superheated steam generator for waste heat recovery 

and downstream energy conversion technology 

The part-load efficiency curve represents the isentropic efficiency ratio =
𝜂𝑖𝑠,𝑎

𝜂𝑖𝑠,𝑑
  (where 

𝜂𝑖𝑠,𝑑 and 𝜂𝑖𝑠,𝑎 are the design and actual isentropic efficiency, respectively) as a function 
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of the mass flow ratio 𝜒 =
𝑚̇𝑎

𝑚̇𝑑
 , where 𝑚̇𝑎 and 𝑚̇𝑑 are the actual  and design mass flow 

rate of the steam, respectively. 

 

Figure 3.64 Part-load efficiency curve of the steam turbine 

Typically, steam turbines are designed to work at mass flow ratios higher than 0.4, since 

lower values lead to a drastic reduction of the turbine performance and a significant 

increase of the maintenance costs. In this study, it has been assumed that the steam turbine 

can work also in the low efficiency zone in order to highlight the effects of thermal power 

fluctuations. 

3.7.5 Results and discussion 

The off gas temperature profile at the PCM inlet section adopted to optimise the proposed 

novel system is represented by the red dotted line in Figure 3.59a and has been derived 

by analysing several EAF plants. The flow rate is equal to 130,000 Nm3/h.  Al-12%Si has 

been used as PCM material, with a phase change temperature of about 576 °C.  

Table 3.18 reports the optimal geometric configuration of the PCM Section, provided by 

the Fortran code; it consists of 41 rows of HESUs, with external D and inner d pipe 

diameters equal to 128 mm and 88 mm, respectively. In Figure 3.65a, the PCM state 

evolution over time is shown for three specific HESU rows: the first one, the reference 

one, namely the row undergoing the maximum thermal load, and the last one facing the 

minimum thermal load. It is worth noting how the reference row is not the first one, 

because in the first rows of a bank of tubes the turbulent flow is not completely developed. 
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In this section, the correlation for aligned tube bundles proposed by Grimson [166] has 

been used. As expected, the PCM state goes from completely liquid to completely solid 

only in the reference row, proving the effectiveness of the sizing procedure.  

Table 3.18 Optimal geometric configuration of the PCM Section 

HESU External Diameter, D (mm) 128 

HESU Internal Diameter, d (mm) 88 

PCM Section Height, H (m) 3 

PCM Section Width, W (m) 4.6 

PCM Section Length, L (m) 7.9 

Transverse pitch, ST (mm) 192 

Longitudinal pitch, SL (mm) 192 

Number of rows 41 

Number of columns 24 

Number of rows Aux Eva 30 

Number of rows Aux SH  11 

Maximum speed (m/s) 12.1 

Minimum speed (m/s) 6.3 

Concerning HTF selection, three different fluids have been investigated: air, for its low 

cost and large availability, carbon dioxide, which is an inert gas with high specific thermal 

capacity, and argon, since it is commonly used in steel industry.   

  
    (a)  (b) 

Figure 3.65 a) PCM state profile in the first, last and design reference row and b) velocity profile 

in the reference and last row for several HTFs 

Different values of the operating pressure p in the range between 0.1 and 1 MPa have 

been analysed. Small variations of the HTF velocity, and of pressure drops consequently, 

are gained by increasing operative pressure over 0.4 MPa. Therefore, the latter has been 

set as the reasonable operating condition, in order to lower the cost of fans and their 
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energy consumption. As shown in Figure 3.65b, carbon dioxide achieves the best 

performance, while improving system safety in comparison to air, which may lead to 

safety issues due to its oxygen content. 

In Table 3.19 the main performances of the PCM-Section are summarised. Thermal 

fluctuation decreases from 32.4 % to 12.7 %; the maximum thermal power of the off gas 

exiting the PCM Section is reduced by 34.4 %.  

Table 3.19 Performance of the PCM-Section 

  Inlet  Outlet 

Max Temperature (°C) 990 681 

Min Temperature (°C) 390 524 

Max ΔT (K) 600 157 

Standard deviation 212 55 

Max Thermal Power (kW) 55,630 36,496 

Min Thermal Power (kW) 19,624 27,201 

Thermal Power Fluctuation (%) 32.4 12.7 

Max Thermal Power Reduction (%) - 34.4 

Figure 3.66a reports the steam temperature profile at the outlet of the PCMSG 

components; a constant temperature of about 400°C is achieved at the outlet of the 

auxiliary superheater, while at the economizer and at the superheater outlet a temperature 

fluctuation still exists.  

Figure 3.66b shows the profile of the electric power production for the three waste heat 

to power systems simulated in TRNSYS: the traditional steam generator with and without 

the PCMS, and the PCMCSG. It can be noted that the WHTP system employing a 

traditional Sh-SG without a PCMS has a huge fluctuation in electric power production 

(near-zero electric power production is reached), much larger than the fluctuation in the 

off gas thermal profile. This behaviour is due to the intrinsic limits of the turbine, whose 

performance drastically falls down when a too low steam flow rate is provided (see Figure 

3.64).  

Table 3.20 compares the performance of the three possible configurations of the WHTP 

system. The introduction of a PCM-based device reduces the size of the waste heat 

recovery components (steam generation boiler and turbine) of about 41%. However, 

when a PCM-based device is used for smoothing only, the production of electric energy 
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undergoes a slight reduction of about 2% with respect to the traditional configuration. 

This reduction can be ascribed to the working principle of the PCMS, which dissipates 

part of the recovered energy to control the temperature of the PCM and avoid overheating. 

  
    (a) (b) 

Figure 3.66 TRNSYS results: a) Temperature profile at heat exchangers outlet and b) Electric 

power generated by the traditional system with and without PCM-based smoothing and by the 

novel PCM-coupled steam generation 

When the PCM-coupled steam generator is adopted, the electric production increases of 

22% with respect to the traditional configuration. These results are achieved thanks to the 

reduced fluctuation in the steam parameters at the turbine inlet, which leads to a greater 

overall efficiency of the turbine. 

Table 3.20  Comparison between traditional and innovative WHTP systems based on superheated 

steam generation 

 Traditional  

  

Innovative 

 PCMS PCMCSG 

Steam Generator size (kWth) 47,934  28,800 28,800 

Max Mass Flow (kg/s) 18  11 11 

Turbine size (kWe) 14,380  8,640 8,640 

Produced electricity (kWh) 7,036  6,897 8,563 

Increased electric production (%) n.a.  - 2 22 

Table 3.21 reports the cost-benefit analysis of the PCM-coupled steam generator; capital 

expenditure (CAPEX) and operational expenditure (OPEX) have been estimated together 

with local suppliers. An electrical energy generation of 48,166 MWh/year can be 

estimated by assuming that the EAF operates 7500 h/year and the WHTP system 

availability is 75%. Considering an energy supply cost of 50 €/MWhe, currently granted 

to the steel industry by the Italian energy market, a cost saving of about 2,408,290 €/year 
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can be achieved. Furthermore, a positive cash flow of 3,631,349 € can be estimated for 

the first 5 years taking into account an up-to-date value of 120 €/TOE [138] of the Italian 

energy efficiency certificates. Thus, a pay-back period of about 3 years can be expected, 

which underlines the profitability of the proposed novel WHTP system. 

Table 3.21   Economics of the PCM-coupled steam generator: investment, operations and 

maintenance (O&M) costs, revenues 

  Costs Incomes 

 CAPEX [€] OPEX [€/year] [€/year] 

PCM Section 1,000,000 100,000  
Steam Generation Section 8,112,847 400,000  
Auxiliary Section 500,000 30,000  
Steam turbine  3,023,965 50,000  
Other (design, safety, etc.)  1,200,000 135,000  
Total 13,836,812 715,000  
Electric energy saving   2,408,290 

Energy efficiency certificate   3,631,349 

3.7.6 Conclusions 

In this section, the evolution of current waste heat to power systems for the steel industry 

towards the production of high temperature superheated steam with limited variability is 

enabled by coupling PCM-based heat extraction with steam generation. In particular, the 

use of high temperature PCMs evolves from smoothing off gas temperature only, as 

studied in previous sections (3.4 and 3.6), to generating constant superheated steam able 

to feed the downstream turbine nearly at nominal load. This result is achieved by 

introducing an auxiliary section between the PCM Section and the Steam Generation one, 

which provides the auxiliary heat needed to further level the thermal content of the off 

gas. The auxiliary heat is extracted from the PCM units by a gaseous heat transfer fluid 

flowing across the inner tube of each PCM container. Different models to properly size 

the proposed energy recovery system and simulate its operations have been developed 

and integrated, adopting both commercial tools and ad hoc elaborated codes.  

Results show how the new system is able to prevent the steam turbine from working at 

partial loads, thus drastically increasing its efficiency. Furthermore, the size of the steam 

generator and of the turbine, required to exploit the same amount of waste heat, can be 

significantly reduced in comparison to current solutions with benefits on related 

investments.  
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3.8 Conclusions 

In this chapter, the energy recovery from electric arc furnace has been addressed. In 

particular, the limitations related to the large fluctuation of temperature have been faced. 

After evaluating the potential of energy recovery in Section 3.2, an overview on the 

current state-of-the-art of energy recovery from electric arc furnace has been given in 

Section 3.3. Pros and cons of the analysed energy recovery technologies have also been 

reported.  

A series of systems exploiting aluminium and its alloys as high temperature phase change 

materials (PCMs) have been developed in Sections 3.4 (i.e. Passive PCM-based device 

for temperature smoothing), 3.6 (i.e. Active PCM-based device for temperature 

smoothing) and 3.7 (PCM-coupled steam generator) with the aim of reducing the 

temperature fluctuation of the off-gas and increasing the overall efficiency of the 

downstream energy conversion technology.  Moreover, an analytical and numerical 

approach to evaluate thermal stress in the cylindrical PCM container has been developed 

in Section 3.5. 

The PCM-based device developed in Section 3.4 has shown the capability to reduce the 

maximum temperature difference of the off-gas from about 723°C to 273°C, thus 

increasing the capacity factor of the steam-based energy recovery system from 0.55 to 

0.81. A simple payback period slightly lower than 4 year has been estimated for the 

passive PCM-based device for temperature smoothing, thus demonstrating its economic 

viability. It has also been estimated that the adoption of the proposed system has a 

potential energy saving equal to 0.34% of the whole Italian electricity consumption. 

Nevertheless, the system proposed in Section 3.4 is limited by the uncontrolled PCM 

temperature that can lead to the overheating of the PCM container, thus affecting their 

structural resistance. 

The thermal stress analyses of the PCM container carried out in Section 3.5 have shown 

that using a geometry based on concentric pipes allows the maximum stresses in the PCM 

container to be kept below the yielding point. The analyses identified diameter of inner 

pipe and thickness of the external pipe as the most relevant design parameters. 
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Furthermore, AISI 316 has been identified as the most suitable material for the PCM 

container among stainless steels. 

In order to overcome the limitation due to PCM overheating, in Section 3.6 an improved 

configuration of the PCM-based device has been proposed (i.e. active PCM-based 

device); a heat transfer fluid flowing through PCM containers has been introduced in 

order to control the PCM temperature. The analyses carried out in Section 3.6 have shown 

that the improved configuration of the PCM-based device guarantees the same 

performance of the previous configuration (i.e.  PCM-based device) while overcoming 

the overheating issue. In addition to this, the analyses revealed that the heat transfer fluid 

can also be used to reinforce steam production, thus enabling a further level of integration 

with the downstream energy recovery system. 

The chance of actively managing the heat transfer fluid flowing through the PCM-based 

device to improve steam parameters has been investigated in Section 3.7. A new type of 

heat recovery system has been developed by integrating the features of the PCM-based 

device described in Section 3.6 with a superheated steam generator. Results have shown 

that the electric power production can be increased up to 22% with respect to traditional 

solutions, allowing a payback period lower than 3 years. 

Concluding, in this chapter it has been demonstrated that the proposed PCM-based 

technologies can actually trigger effective waste heat recovery in such an energy intensive 

sector as the steel industry, thus fostering the evolution towards more sustainable 

industrial processes. 
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4 ENERGY RECOVERY FROM BILLET REHEATING FURNACE 

4.1 Introduction  

There is a huge potential to exploit excess/low grade heat from industrial processes for 

power generation, a sizeable cause of energy inefficiencies is due to low grade heat 

generated particularly in large scale thermal energy systems that is not subsequently 

recovered. Estimations about the percentage of industrial primary energy consumption 

that is released as waste heat, provide figures of 20 to 50%. Sources of waste heat include 

primarily the release of hot flue gases into the atmosphere and heat losses due to hot 

equipment surfaces  [169]. Table 4.1 summarizes some of the possible sources from waste 

heat and its potential uses.  

The harnessing and reuse of waste heat is a potential alternative to high-priced imported 

fossil fuels or electricity [3]. There are several technologies currently being used in 

several industrial facilities and the main barrier for wider adoption is due to economic 

and technical barriers. These technologies include heat exchangers for high temperature 

(e.g. recuperators, regenerators, economizers, waste heat boilers) and for low temperature 

(e.g. deep economizers, indirect/direct contact condensation recovery, heat pump, etc.) 

Chapter 4 
ENERGY RECOVERY FROM 

BILLET REHEATING FURNACE 
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and load preheating (e.g. boiler feed water preheating).  Typically, in waste heat recovery 

power applications, the heat is recuperated by means of a waste heat boiler that is then 

transferred to a working fluid generating mechanical energy in some kind of expander 

coupled to an electric generator. Apart from the common and well developed such power 

cycles that include the steam Rankine cycle, organic Rankine cycle and Kalina cycle; 

there are also innovative technologies directly generating electricity from heat (e.g. 

piezoelectric and thermo-electric generators) [3].  

 Table 4.1 Waste heat sources and uses [3]  

WASTE HEAT SOURCES USES FOR WASTE HEAT 
Combustion Exhausts: 

  Glass melting furnace 

  Cement kiln 

  Fume incinerator 

  Aluminium reverberatory furnace boiler 

Process flue gases: 

  Aluminium reverberatory furnace 

  Steel electric arc furnace 

Cooling water from: 

 Furnaces 

 Air compressors 

 Internal combustion engines 

Conductive, convective and radiative 

losses from heated products 

Combustion air reheating 

Boiler feedwater reheating 

Load reheating 

Power generation 

Steam production for power generation 

Space heating and cooling 

Waster reheating  

Transfer to liquid or gaseous streams 

 

However, there is a fundamental issue that needs further investigation: the mismatch 

between the fluctuating nature of the waste heat available and the recovery system. 

Typically, there is a fluctuation in terms of flow rate and/or temperature of the waste heat 

profile according to the variability of the upstream process. This poses a challenge on the 

downstream recovery systems since they do not account for this fluctuating nature and 

this leads to sub-optimal component selection and poor cycle performance at off-design 

conditions. Indeed, waste heat recovery systems are commonly designed for a single 

operating point (i.e. design point); due to time constraint, resource availability and lack 

of know-how, current design practice does not take into account the fluctuation of the 

waste heat source and some waste heat recovery systems adopt as design point either the 

upper boundary [5–7] or average values of the fluctuation range [8,9]. This means that 

the systems will operate for most of the time under part load (off-design) thus severely 

reducing the efficiency of energy recovery.   
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One of the most established technologies for waste heat recovery is Organic Rankine 

Cycle (ORCs) which is extensively being investigated over the years. However, many of 

the current studies [170–174] on ORC-based waste heat recovery systems focus on 

optimization or parametric investigation of the working fluids and system components 

mainly considering the design point [175]. Meanwhile, on the other hand, there is limited 

activity in trying to understand the dynamic behaviour of the ORC systems and/or 

mitigate the effects of the waste heat fluctuation. One possible solution to this is that of 

using an upstream thermal energy storage system to smooth the thermal power fluctuation 

of the flue gases entering the ORC system, thus allowing operating near the design-point. 

Different thermal energy storage (TES) systems have been studied in the past [176]. Apart 

from traditional sensible heat storage systems [177], novel storage systems based on the 

latent heat of Phase Change Materials (PCMs) have gained attention in recent years [10]. 

The advantage of using PCMs over sensible heat storage is that they hold higher capacity 

of storage per unit volume, provide most of the heat energy at constant temperature and 

hold small temperature difference between charging and discharging [162]. 

In the case of PCM for high temperature applications, limited research has been done so 

far. A chemical recuperator based on PCMs has been proposed in [157]; the proposed 

system stores in a PCM the waste heat released by an electric arc furnace, and then 

supplies constant heat to an endothermic reaction (i.e. methane-steam reforming MSR). . 

A novel technology using aluminium encapsulated in cylindrical containers as phase 

change material (PCM-based technology) has been proposed in [161]to smooth the 

fluctuations of the waste heat from an electric arc furnace. . The proposed PCM-based 

technology has been further developed in [162], with the introduction of a heat transfer 

fluid (HTF) to overcome overheating issues in PCM containers. 

In this chapter, it is investigated the performance impact of retrofitting the PCM-based 

technology to a steel billet reheating furnace already installing an ORC system as main 

waste heat recovery system; the performance analysis of the ORC system with and 

without the PCM-based technology will be assessed in detail. The analysis of the 

performance of the ORC system with the proposed modifications is done by means of a 

plant-level dynamic model developed in the Modelica language and simulated in the 

simulation environment Dymola [178].  
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The chapter is structured as follows: in Section 4.2 a general overview on the issues 

related with the thermal power fluctuations as well as the description of the existing waste 

heat recovery system layout and operations is provided; in Section 4.3 a modification of 

the plant is proposed by using the PCM-based technology to reduce the thermal power 

variability of the flue gas and recirculate some of its non-exploited thermal energy; 

Section 4.4 details the modelling methodology used while Section 4.5 presents the results 

of the simulations; finally the conclusion are given in Section 4.6.  

4.2 Thermal power fluctuations in waste heat to power plants  

4.2.1 General overview 

The benefit of waste heat to power generation is that the outcome is a high exergy product 

that can be easily transported and used in other processes [179]. From the various possible 

technologies for waste heat to power (e.g. Stirling Engine, Thermo-electric, Inverted 

Brayton Cycle) the ORCs stand out as the technology with the best performance in the 

temperature range of 200°C ÷ 400°C [180].  

Even though there is huge potential for waste heat to power applications, waste heat is 

often not fully exploited due to techno-economic challenges - such as low performance, 

long payback period, large investments costs, etc.  One of the technical challenges directly 

affecting the low performance of ORC systems comes from the fluctuating, irregular or 

intermittent nature of waste heat sources; this variability is due to the fluctuation of the 

thermal power proper conveyed by the off-gases mass flow, and/or due to temperature 

fluctuation of the heat. Furthermore, in addition to the poor performance at off-design 

conditions, in case of ORC systems, the operating range is constrained by the risk of 

chemical decomposition of the organic fluid at high temperatures as well as restrictions 

for the operation of the expander with wet vapour.  

4.2.2 Case study: billet preheating furnace 

The steel industry is one of the most energy intensive industries and one of the major 

responsible of CO2 emissions (in 2012 it consumed about 5 % of all primary energy 

produced worldwide contributing to 7 % of all global CO2 emissions [16]). However, this 

sector has the potential to further reduce of 20% both energy consumption and greenhouse 

gas emission. In this context, waste heat recovery in steel industry represents one of the 
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greatest opportunity to reduce the consumption of primary energy [18–21]. Moreover, of 

all the processes that produce waste heat in the steel production, billet reheating furnaces 

consumes  15÷20% of the total energy consumption and 70% the energy consumption of 

the rolling process [24], releasing as waste heat about 16% of the total energy input [25]. 

Billet reheating furnaces are needed to heat steel slabs to a pre-defined temperature 

needed for the subsequent hot rolling process. They can be of the pusher type or walking 

beam or hearth type [181]. In all these furnaces the steel billets are heated in four different 

zones (pre-heating, 1st and 2nd heating zones, and soaking zones), according to a specific 

temperature curve [182]. The heating is made by top and/or bottom fired burners. Because 

of the strict temperature control required to meet the quality of the billets properties, the 

temperature variability within the reheating furnace is minimal; this is not the case for the 

flow rate of the flue gas which is affected by the different batches and production rates.  

In order to show the benefits of the PCM-based technology as a smoothing and 

recuperating device, a case study of an existing steel plant is presented; an ORC system 

with nominal power output of 555 kW is installed downstream of the reheating furnace.  

In Figure 4.1 it is shown the layout of the existing waste heat recovery system, which is 

composed by an air pre heater and an ORC system, from billet reheating furnace; the flue 

gases exit the furnace at temperatures of around 850 °C (T1); after this, a vent-valve 

injects some fresh air in the flue gas stream in order to avoid thermal damage for the 

downstream heat exchangers. The flue gases then enter the first heat exchanger (Air 

preheater) where some thermal energy is transferred in order to preheat the air that is 

being used in the furnace combustion. After the air pre-heater, the flue gas at temperatures 

of around 400 °C (T3) enters the waste heat recovery boiler of the ORC system where the 

flue gas transfers some of its thermal energy to the working fluid flowing within the ORC 

system. 

The flue gases leaving the ORC waste heat recovery boiler (4) - usually at temperature 

no lower than 150 °C - are rejected to the atmosphere through a chimney; a by-pass valve 

is installed upstream of the waste heat boiler for the cases in which the ORC system is off 

due to either a too low thermal power available in the flue gas or scheduled maintenance, 

service and so on.  
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Figure 4.1  Layout of the current waste heat 

recovery system from billet reheating furnace 

4.3 Integrating a PCM-based device with current energy 

recovery system 

This chapter proposes the introduction of a latent heat storage system based on high 

temperature phase change materials (i.e. PCM-based technology) in an existing waste 

heat recovery system, composed by an air preheater and an ORC system, in order to 

increase the energy efficiency and capacity factor of the ORC system. The existing system 

recovers the waste heat of a billet reheating furnace through a waste heat boiler and 

converts the thermal energy into electric power by means of an ORC turbine.  

The PCM-based technology employs the eutectic alloy Al-12%Si (in mass %) as high 

temperature PCM. The proposed technology stores and releases thermal energy on 

demand acting as a sort of “thermal flywheel” allowing the ORC system to operate closer 

to the design-point.  

The idea of using a PCM-based technology for smoothing the thermal power fluctuations 

in waste heat recovery systems has already been proposed in Chapter 3. Nevertheless, 

these solutions only aimed at smoothing the temperature fluctuation of the flue gas, since 

the considered waste heat source (i.e. flue gas from electric arc furnace) was characterised 
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by a near-constant mass flow rate and large temperature fluctuations. In this chapter, the 

considered waste heat source is a billet reheating furnace, which is characterised by a 

near-constant temperature and a large fluctuation in the mass flow rate. In addition to this, 

it should be considered that the PCM-based technology proposed in Chapter 3 was 

developed considering an ex novo waste heat to power system, while in this chapter the 

proposed device is integrated in an existing waste heat recovery system; hence the design 

of the PCM-based technology should be rearranged according to the new requirements.  

The expected impact of the PCM-based technology on the performance of the waste heat 

recovery system is that of:  

 reducing the thermal load fluctuation entering the ORC system and therefore 

reducing the lower efficiency operating points by effectively levelling-up the 

thermal load closer to the design-point; 

 increasing the power output from the waste heat by means of the recirculation of 

a fraction the thermal energy present in the flue gas that exits the waste heat 

recovery boiler. 

The next sub-sections describe in detail the PCM-based technology and how it is 

integrated in the existing waste heat recovery system.  

4.3.1 The PCM-based technology 

The PCM-based technology (see Figure 4.2) consists of a set of Heat Exchange and 

Storage Units (HESUs), in which the heat is absorbed from the flue gases and released to 

a heat transfer fluid; the thermal energy is stored and released at constant temperature 

thanks to the contained high temperature PCM.   

As reported in [10], several systems for containing PCM employ cylindrical pipes 

[75,76]. In particular, the use of cylindrical pipes allows the area of heat exchange to be 

increased thus optimizing the heat recovery efficiency, cost reduction as well as 

preventing crack formation and breakage [161]. The proposed HESU is composed by two 

coaxial pipes filled by the PCM (see Figure 4.2a); a heat transfer fluid flows through the 

inner pipe in order to transfer the heat from the PCM to the thermal user (e.g. ORC boiler), 

while the flue gases release heat to the PCM through the external pipe.  
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In Section 3.4, an assessment of the pipes layout was carried out; the aligned layout was 

preferred over the staggered one because of the reduced pressure drop through the device. 

In addition to this, the aligned layout allows reducing dust accumulation on the external 

pipe surface, which can have an adverse effect on both the heat transfer rate and flow of 

the flue gases across the device; the vertical arrangement allows an easy dust removal, 

while facilitating maintenance. Based on these considerations and the dusty nature of the 

flue gases from the billet reheating furnace, the aligned and vertical layout for the HESUs 

was chosen (see Figure 4.2a).    

An insulation is installed at the bottom of each HESU in order to dampen the generation 

of a thermal bridge between the external wall and the bottom, which may generate a non-

symmetric melting and thus a point of thermal stress concentration.  

Since metals and metal alloys have higher thermal conductivity, larger latent heat per 

volume and smaller volume expansion than molten salts, they have greater potential as 

high temperature PCMs than molten salts [12]. In particular, Al-Si alloys have been 

considered as one of the most promising choices for PCM in the high temperature range 

[87,13] due to their suitable melting temperature, high latent heat of fusion and high 

thermal conductivity [73]. In this work, the material selected as high temperature PCM is 

the eutectic alloy Al-12%Si (in mass %), which has one of the highest thermal 

conductivity (160 W/m K) and latent heat of fusion (560 kJ/kg); its melting temperature 

is about 576 °C. 

However, such an alloy can exhibit a very corrosive behaviour while in contact with steel 

[96], which is the most practical material for the pipe enclosure of the PCM. Thus, the 

use of ceramics as shell materials for high-temperature metallic PCMs have been recently 

investigated in [96], in which the corrosion resistance of several commercial ceramics 

was tested. The corrosion tests revealed that Al2O3, AlN and Si3N4 have high corrosion 

resistance to the molten Al-Si alloys. In a further work [97],  a cylindrical-type ceramic 

container for the macro-encapsulation of Al-Si alloys as phase change materials was 

tested and it was found that it has excellent cyclic durability. Nevertheless, the proposed 

PCM container was meant for latent heat storage systems based on packed bed heat 

exchanger type, which is not suitable for the device developed in this work. An alternative 

solution could be to protect the HESU surfaces in contact with the PCM by means of a 
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thin film of Al2O3, which can be obtained by means of an aluminizing and oxidation 

treatment [100]. 

Since all the HESUs within a given row (see Figure 4.2b) undergo the same off gas 

thermal load, the same thermal power can be extracted from each of them by the heat 

transfer fluid. Thus, the HESUs within the same row are connected in parallel (see Figure 

4.2b) by using a single inlet and outlet manifold (see Figure 4.2a), so that the same control 

parameters of the heat transfer fluid (i.e. mass flow rate) can be applied to all of them. In 

particular, a throttling valve can be used to control the HTF mass flow rate entering each 

row.  

A fan is used to deliver the required mass flow rate of the heat transfer fluid (i.e. cold flue 

gas) 𝑚̇𝐻𝑇𝐹 to the whole device. The amount of mass flow rate to be provided is managed 

by a dedicated control system, whose set point parameters are the maximum PCM 

temperature 𝑇𝑃𝐶𝑀𝑚𝑎𝑥 and the minimum thermal power  𝑄̇𝑚𝑖𝑛 entering the ORC. Referring 

to Figure 4.2b, the control system employs the PCM temperature 𝑇𝑃𝐶𝑀 of a HESU in the 

first row, the mass flow rate at point (1), the temperatures at point (4”) and (3’) as 

controlled variables. In the following section, more details will be given on the logics of 

the control system.  

  
(a) (b) 

Figure 4.2   a) Geometrical configuration and layout of the HESU and b) Layout of the PCM-

based technology  
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4.3.2 Integration of the PCM-based device into the waste heat recovery system 

Figure 4.3 shows the integration of the novel PCM-based technology in the existing waste 

heat recovery system, in which the PCM-based technology replaces the previous cooling 

system (see Figure 4.1), which was using fresh air to cool down the flue gas. In the 

proposed layout, the PCM-based technology recirculates these cooled flue gases leaving 

the waste heat recovery boiler to extract the stored thermal energy from the PCM and to 

supply the mass flow rate required by the ORC system to operate in the high efficiency 

zone.  

 

Figure 4.3 Integration of the PCM-based technology 

in the current waste heat recovery system 

The hot flue gases from the furnace enter the PCM-based technology (1) releasing their 

thermal energy to the PCM. Then, the flue gases leave the PCM-based technology (2) and 

enter the downstream air preheater, where their temperature is further decreased down to 

about 400°C (3’); the temperature of the flue gases leaving the PCM-based technology is 

comparable to that entering the air preheater in the initial configuration of the waste heat 

recovery system (i.e. no PCM-based technology). In this new layout, a mixing duct is 

installed between the air preheater and the waste heat recovery boiler in order to combine 

the flue gases from the air preheater and the PCM-based technology.  
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After the mixing duct (3), the flue gas enters the waste heat recovery boiler of the ORC 

system releasing part of its thermal energy to the working fluid of the ORC system. 

Downstream the waste heat recovery boiler (4’), a tapping duct (i.e. plenum) is installed 

to allow the cooled flue gas to be recirculated within the PCM-based technology. Finally, 

the flue gases enter a cleaning system (4) before being discharged to the atmosphere 

through a chimney. Likewise the initial configuration, a by-pass valve is installed 

upstream the ORC waste heat boiler to decouple the entire ORC system in case of low 

thermal power of the flue gases, scheduled maintenance, etc.  

The introduction of the PCM-based technology allows then the heat loss due to air 

dilution (i.e. the heat absorbed by the dilution air and not recovered by the waste heat 

recovery system) to be completely avoided and the heat loss at the stack to be reduced.  

4.4 Methodology and System modelling 

In order to analyse the performances of the proposed enhancements of the energy 

recovery system and to compare them to those of the current waste heat recovery system, 

the methodology shown in Figure 4.4 has been adopted. The methodology consists of 

four main stages: 1) Data analysis, 2) Design and Modelling, 3) Simulation and 4) Results 

analysis and comparison.  

 

Figure 4.4 Flow diagram of the adopted methodology 
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In the first step, real data output from the existing waste heat recovery system is analysed 

to identify the thermal inefficiencies; specific focus is in the performance of the ORC 

system, which is analysed in detail in order to extrapolate the part-load curve. 

Furthermore, the process is characterised in terms of temperature and mass flow rate of 

the flue gas with the aim of identifying a representative series of duty cycles. 

In the second step the design of the PCM-based technology is carried out; the design 

criteria are based on the analysis made in the previous step. The design of the PCM-based 

technology consists in the selection of the geometry and layout of the HESUs, which in 

turn define the thermal energy that can be stored in form of latent heat (i.e. amount of 

PCM). Furthermore, the main control parameters (e.g. minimum thermal power entering 

the ORC system, maximum PCM temperature) are identified at this stage.  Once this stage 

is completed, the components of the current waste heat recovery system and the PCM-

based technology are modelled in the Modelica coding language. Two models of the 

waste heat recovery system are then developed and used to evaluate the current system 

and that integrated with the PCM-based technology. In the last step, the performances of 

the two systems are analysed and compared. Finally, an economic assessment of the 

introduction of the PCM-based technology is carried out. 

4.4.1 Analysis of the waste heat recovery system and process characterization 

Measurements carried out in the existing energy recovery plant have been used for the 

analysis of the performance of the ORC system and for the process characterisation1. The 

main parameters of the ORC system system are listed in Table 4.2. 

Table 4.2 ORC system main operating parameters 

Nominal Thermal Power (kW) 3,000 

Nominal Electric Power (kW) 555  

Nominal efficiency (%) 18.5 

Evaporator Pressure (bar) 4 – 7  

Condenser Pressure (bar) 0.15 – 0.25  

Fluid Mass Flow (kg/s) 3.5 – 6.5  

Working Fluid Hexamethyl-disiloxane 

                                                 

1 The sampling rate of the measurements is one minute 
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Figure 4.5a shows the mass flow rate of the flue gas at point (1) and (2) - before and after 

the vented duct - as well as the mass flow rate of the dilution air entering the vented duct 

(i.e. point (5)); the flue gas temperature at inlet (1) and outlet (2) of the vented duct are 

reported in Figure 4.5b.  

  
(a) (b) 

Figure 4.5  a) Mass flow rates at the vented duct and b) flue gas temperature at the vented duct 

inlet and outlet 

In the current waste heat recovery system, it is possible to identify the main heat losses: 

the heat loss due to air dilution, 𝑄̇𝑑𝑖𝑙 and the stack loss, 𝑄̇𝑠𝑡. The heat loss due to air 

dilution can be calculated as: 

𝑄̇𝑑𝑖𝑙 = 𝑚̇𝑑𝑖𝑙(ℎ4 − ℎ𝑎𝑚𝑏) (4.1) 

where 𝑚̇𝑑𝑖𝑙 is the mass flow rate of the dilution air at point (5), ℎ4 and ℎ𝑎𝑚𝑏 are the 

enthalpies at point (4) and at ambient temperature respectively. The measured data reveals 

that the heat losses due to air dilution vary from 38 to 237 kW, with an average value of 

114 kW; this heat loss is completely avoided by the introduction of the PCM-based 

technology because it replaces the vented duct thus avoiding the dilution of fresh air. 

The stack loss 𝑄̇𝑠𝑡 , which is expressed in Equation (4.2), cannot be avoided  but can be 

reduced by recirculating part of the mass flow rate 𝑚̇𝑔,4 - at point (4) - into the waste heat 

recovery, thus reducing the total mass flow leaving the stack.  

𝑄̇𝑠𝑡 = 𝑚̇𝑔,4 ∙ (ℎ4 − ℎ𝑎𝑚𝑏)  (4.2) 
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In the current system, the stack loss varies from a minimum value of 249 kW to a 

maximum value of 1464 kW, with an average value of 702 kW. 

Among the measured quantities, the most useful for the performance analysis of the ORC 

system are the gross electric power 𝑊̇𝑒, the temperatures of the flue gas at the inlet (3) 

and outlet (4) of the waste heat recovery boiler (refer to Figure 4.1) and the mass flow 

rate of the flue gases. Based on the available measurements, the thermal power entering 

the ORC system, 𝑄̇𝑂𝑅𝐶 can be calculated as: 

𝑄̇𝑂𝑅𝐶 = 𝑚̇𝑔,2(ℎ3 − ℎ4) (4.3) 

where 𝑚̇𝑔,2 is the mass flow rate of the flue gas at point (2), ℎ3 and ℎ4 are the enthalpies 

of the flue gas points (3) and (4) respectively. The thermal efficiency is then derived 

accordingly to Equation (4.4). 

𝜂𝑡ℎ =
𝑊̇𝑒

𝑄̇𝑂𝑅𝐶
 (4.4) 

In this chapter, the part-load efficiency curve of the ORC system represents the thermal 

efficiency 𝜂𝑡ℎ as a function of the load factor of the ORC boiler, which is defined as: 

𝜒 =
𝑄̇𝑂𝑅𝐶

𝑄̇𝑂𝑅𝐶,𝑑
 (4.5) 

where 𝑄̇𝑂𝑅𝐶,𝑑  is the design thermal power and 𝑄̇𝑂𝑅𝐶 is the actual thermal power recovered 

by the boiler. The trend line shown in Figure 4.6a represents the part-load efficiency curve 

extrapolated from the actual thermal efficiencies (grey dots in Figure 4.6a) calculated 

based on the real data measured in the ORC system. It is worth remarking that the large 

distribution in the actual thermal efficiencies is due to measurement noise and high 

transients; based on the trend line reported in Figure 4.6a, the part-load efficiency curve 

can be expressed a logarithmic function. From Figure 4.6a it is possible to observe that 

no data are recorded for load factor lower than 0.2, meaning that the below such a value 

the ORC system is bypassed. 
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In this chapter, two working zones of the ORC system have been identified based on the 

efficiency ratio ε, which is defined as follows: 

𝜖 =
𝜂𝑡ℎ
𝜂𝑡ℎ,𝑑

 (4.6) 

where ηth is the actual thermal efficiency and ηth,d is the design thermal efficiency. When 

ε > 0.85, the ORC system is considered to be operating in the high efficiency zone (𝜒 >

0.5 - green area in Figure 4.6b), whereas ε ≤ 0.85 the ORC system operates in the low 

efficiency zone (𝜒 < 0.5 - orange area in Figure 4.6b).  

  
(a) (b) 

Figure 4.6  a) Part load curve derived from real data and b) identification efficiency zone of the 

turbine  

Hence, there is a need to reduce the times in which the ORC system operates in the low-

efficiency zone; this can be achieved by means the PCM-based technology. A typical 

profile of the mass flow and temperature variation of the flue gases at the inlet and outlet 

of the ORC waste heat recovery boiler during a day of operation of the billet reheating 

furnace is shown in Figure 4.7a; the data is for approximately 15 hours of continuous 

operation of the ORC system. It is worth noting that, unlike Electric Arc Furnace which 

is characterized by a large fluctuation in temperature and minimum variation in flow rate 

of the flue gas, in the billet reheating furnace the flue gas is characterized by minimum 

variation in temperature and large fluctuation in the flow rate. It can also be observed that 

the ORC system is optimized to recover most of the thermal energy available on the flue 

gases above 150 °C, whereas all the thermal energy below this temperature is discarded. 
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Figure 4.7b reports the duration curve of the load factor calculated from the measured 

data of the ORC system; from the figure it is apparent that the ORC system never reaches 

its design point , but it works always under off-design conditions. The load factor varies 

from a minimum value of 0.19 up to a maximum value of 0.84; the ORC system then 

operates with an average load factor of 0.46, which leads to an average thermal efficiency 

of 15.5%.  

  
(a) (b) 

Figure 4.7  a) Profile of the flue gas mass flow rate and temperature measured at the inlet and 

outlet of the waste heat recovery boiler; b) duration curve of the recorded load factor 

The capacity factor of the analysed ORC system, which is defined as the ratio of the actual 

electric energy produced over the energy produced from continuous operation at nominal 

power, has been estimated to be about 38%. 

4.4.2 Current WHR system modelling  

In this sub-section the model of the current plant developed in the Modelica language is 

described. In order to avoid excessive computational burden and because this study is 

intended as a system-level performance estimation, and focused on the PCM-based 

technology performance, the model avoids dynamic treatment of the components. 

The input to the model is the experimental data of the mass flow and temperature of the 

flue gas leaving the furnace at point (1) and the mass flow rate of the fresh air entering 

the vented duct at point (5); since the exact composition of the flue gas is unknown, 

properties of standard air are taken as reference.  

The air pre-heater component is modelled as a simple counter-current heat exchanger, in 

which the heat transfer coefficient 𝑈 expressed as: 
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𝑈 = 𝑈𝑟𝑒𝑓 ∙ (
𝑚̇𝑔,2

𝑚̇𝑟𝑒𝑓
)

0.4

∙ (
𝑚̇𝑎

𝑚̇𝑟𝑒𝑓
)

0.4

 (4.7) 

where 𝑈𝑟𝑒𝑓 is the reference heat transfer coefficient, 𝑚̇𝑟𝑒𝑓 is the reference mass flow rate, 

𝑚̇𝑔,2 and 𝑚̇𝑎 are the mass flow rates of flue gas and of the ambient air entering the air 

preheater respectively; the reference coefficients 𝑈𝑟𝑒𝑓 and 𝑚̇𝑟𝑒𝑓 have been tuned to fit 

the experimental data.  

According to the NTU-effectiveness method, the heat flow exchanged in the pre-heater 

𝑄̇𝐴𝑃𝐻 between the air and the flue gas can be estimated as: 

𝑄̇𝐴𝑃𝐻 = 𝜀 ∙ 𝐶𝑚𝑖𝑛(𝑇𝑔,2 − 𝑇𝑎,6) (4.8) 

where 𝐶𝑚𝑖𝑛 is the minimum heat capacity, 𝑇𝑔,2 is the flue gas temperature at point (2) and 

𝑇𝑎,6 is the air temperature at point (6);  𝜀 is the effectiveness of a simple counter-current 

heat exchanger and it is calculated as:  

𝜀 =
1 − 𝑒𝑥𝑝[−𝑁𝑇𝑈(1 − 𝐶𝑚𝑖𝑛/𝐶𝑚𝑎𝑥)]

1 − (𝐶𝑚𝑖𝑛/𝐶𝑚𝑎𝑥)𝑒𝑥𝑝[−𝑁𝑇𝑈(1 − 𝐶𝑚𝑖𝑛/𝐶𝑚𝑎𝑥)]
 (4.9) 

where 𝐶𝑚𝑎𝑥 is the maximum heat capacity and NTU is the number of transfer units for a 

given heat transfer area 𝐴ℎ𝑡, which can be expressed as: 

𝑁𝑇𝑈 =
𝐴ℎ𝑡 ∙ 𝑈

𝐶𝑚𝑖𝑛
 (4.10) 

the ORC system is modelled as a “black-box” in which the flue gas temperature 𝑇4 at the 

outlet of the ORC system is expressed as a function of the mass flow rate, 𝑚̇𝑔,3 and the 

temperature at the inlet of the ORC system, 𝑇3; the temperature function 𝑇4(𝑚̇𝑔,3, 𝑇3) has 

been extrapolated by means of a regression analysis of the experimental data. The thermal 

power entering ORC system 𝑄̇𝑂𝑅𝐶 is calculated as: 

𝑄̇𝑂𝑅𝐶 = 𝑚̇𝑔,3 ∙ (ℎ3 − ℎ4) (4.11) 
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where ℎ3 and ℎ4 are the enthalpies of the flue gas at point (3) and (4) assuming the 

properties of standard atmospheric air. 

The gross electric power generated by the ORC system, 𝑊̇𝑒𝑙 is then estimated by means 

of the part load curve of the thermal efficiency, 𝜂𝑡ℎ which has been extrapolated from 

experimental data and expressed as a function of  the load factor 𝜒 (see Figure 4.6a).  

𝑊̇𝑒𝑙 = 𝑄̇𝑂𝑅𝐶 ∙ 𝜂𝑡ℎ(𝜒) (4.12) 

4.4.3 PCM-based device design and modelling 

Since the introduction of the PCM-based technology is a retrofitting intervention, its 

design is aimed to minimize plant modification of the waste heat recovery system while 

maximizing its performance. In addition to this, the furnace operation should be as less 

as possible affected by the installation of the proposed technology. In order to guarantee 

such a requirement, the average temperature at the inlet of the air preheater (i.e. outlet 

temperature of the PCM-based technology) should be kept as close as possible to that in 

the existing plant (i.e. 725°C). Thus, the flue gas temperature at the outlet of the PCM-

based technology becomes one of the design criteria of the proposed technology. In 

addition to this, the temperature of the heat transfer fluid leaving the PCM-based 

technology should be as close as possible to the average temperature entering the ORC 

system (i.e. 397°C).  

Since this chapter aims to evaluate the impact of the introduction of a PCM-based 

technology on the performance of an existing waste heat recovery system, the HESUs 

have been modelled as lump elements.      

As shown in Figure 4.8, the model of the HESU consists of three main blocks: the flue 

gas heat transfer, the HTF heat transfer and the PCM blocks. The flue gas and the HTF 

heat transfer blocks calculate the heat flow exchanged with the PCM by means of the heat 

flows of the flue gas, 𝑄̇𝑔 and of the HTF, 𝑄̇ℎ respectively. Both the heat transfer blocks 

are interfaced with the external environment by means of an inlet and an outlet, which 

inform the HESU about the temperature, mass flow and pressure. The heat flows - 𝑄̇𝑔 and 

𝑄̇ℎ - are used by the PCM block to calculate the PCM temperature, 𝑇𝑃𝐶𝑀 and the  thermal 

energy stored, 𝐸𝑃𝐶𝑀  (i.e. the internal energy of the PCM); an iterative procedure is used 
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to calculate the heat flows exchanged within the PCM (explained in more details later in 

this section).  

 

Figure 4.8  Scheme of the HESU model 

In [183], three methods have been proposed to calculate the enthalpy of a PCM in the 

Modelica language: the linear interpolation method, the arc tangent function method and 

the error function method; in this chapter, the linear interpolation method is used. 

The linear interpolation method uses conditional statements to define the enthalpy of the 

PCM, ℎ𝑃𝐶𝑀    as a function of the PCM temperature, 𝑇𝑃𝐶𝑀. According to this method, the 

enthalpy of the PCM can be expressed as in Equation (4.13), where 𝑐𝑝,𝑠 and 𝑐𝑝,𝑙 are the 

specific heat capacity of the PCM in the solid and liquid phase respectively.  

The terms 𝑇𝑠 and 𝑇𝑙 represent the solidus and liquidus temperature of the PCM, while 𝐻 

is the latent heat of fusion of the PCM. This formulation is valid when a temperature 

difference exists between the melting temperature and the solidus-liquidus temperatures. 

In this chapter, since the selected PCM is a eutectic alloy (i.e. theoretically constant 

melting temperature), solidus and liquidus temperatures are assumed to be very close to 

ℎ𝑃𝐶𝑀(𝑇𝑃𝐶𝑀) =

{
 

 
𝑐𝑝,𝑠 ∙ 𝑇𝑃𝐶𝑀, 𝑇𝑃𝐶𝑀 ≤ 𝑇𝑠

𝑐𝑝,𝑠 ∙ 𝑇𝑠 +
𝐻

𝑇𝑙 − 𝑇𝑠
(𝑇𝑙 − 𝑇𝑃𝐶𝑀), 𝑇𝑠 < 𝑇𝑃𝐶𝑀 < 𝑇𝑙

𝑐𝑝,𝑠 ∙ 𝑇𝑠 + 𝐻 + 𝑐𝑝,𝑙 ∙ 𝑇𝑙 , 𝑇𝑃𝐶𝑀 ≥ 𝑇𝑙

 (4.13) 
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the melting point of the PCM; in such a way, a phase transition at near-constant 

temperature can be reproduced.   

The internal energy of the PCM,  𝐸𝑃𝐶𝑀 is calculated as: 

where 𝑚𝑃𝐶𝑀 is the mass of PCM contained in the HESU, which depends on the 

geometrical parameters of the HESU. The thermo-physical properties employed in the 

modelling and simulation of the selected PCM are reported in Table 4.3.  

Table 4.3  Thermo-physical properties of the selected PCM 

Melting temperature, Tmelt (°C) 576 

Difference Solidus-Liquidus (K) 1 

Latent heat of fusion, H (kJ/kg) 560 

Density, 𝜌 (kg/m3) 2,700 

Specific heat capacity at solid state, 𝑐𝑝,𝑠  (J/kgK) 1,038 

Specific heat capacity at liquid state, 𝑐𝑝,𝑙  (J/kgK) 1,741 

The inputs of the flue gas heat transfer block are the inlet temperature 𝑇𝑔,𝑖𝑛, the static 

pressure 𝑝𝑔, the mass flow rate 𝑚̇𝑔, geometry (i.e. external diameter 𝐷  and length 𝐿) and 

layout (i.e. transversal pitch ratio 𝐴 and longitudinal pitch ratio 𝐵) parameters of the 

HESU. The pressure drop across the pipe is assumed to be negligible. The iterative 

procedure implemented in the flue gas heat transfer block consists of the following steps2: 

1. A first guess value of the outlet temperature, 𝑇𝑔,𝑜𝑢𝑡 is assumed to calculate the average 

thermo-physical properties of the flue gas (i.e. density 𝜌𝑔,𝑎, thermal conductivity 𝜆𝑔,𝑎, 

viscosity 𝜇𝑔,𝑎 and specific heat capacity 𝑐𝑔,𝑎) and the average speed 𝑣𝑔,𝑎; 

2. Two correction factors are then calculated to take into account the effects of the layout 

of the HESUs (i.e. the void fraction 𝜓 and the arrangement factor 𝑓𝑎 )  : 

                                                 

2   In steps 2÷4, the correlations for aligned tube bundles proposed in [147] have been used. 

𝐸𝑃𝐶𝑀(𝑇𝑃𝐶𝑀) = ℎ𝑃𝐶𝑀(𝑇𝑃𝐶𝑀) ∙ 𝑚𝑃𝐶𝑀 (4.14) 

𝜓 = {
1 −

𝜋

4 ∙ 𝐴
 𝐵 ≥ 1

1 −
𝜋

4 ∙ 𝐴 ∙ 𝐵
𝐵 < 1

 (4.15) 
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𝑓𝑎 = 1 +
0.7

 𝜓1.5 
∙ −

𝐵

𝐴
−0.3

(
𝐵

𝐴
+0.7)

2   (4.16) 

3. The Reynolds and Prandtl numbers are calculated using the thermo-physical 

properties calculated in step (1) and the correction factors calculated in step (2): 

4. Once the Reynolds and Prandtl numbers are calculated, the Nusselt number is 

estimated according the following correlations: 

Then, the convection heat transfer coefficient 𝛼 can be derived by the following 

expression:    

5. The log-mean temperature Δ𝑇𝑙𝑚 and the heat flow 𝑄̇𝑔 are calculated as: 

𝑅𝑒𝑔 =
𝜌𝑔,𝑎 ∙ 𝑣𝑔,𝑎 ∙ 𝐷

𝜓 ∙ 𝜇𝑔,𝑎
 (4.17) 

𝑃𝑟g = 
𝜇𝑔,𝑎∙𝑐𝑔,𝑎

𝜆𝑔,𝑎
  (4.18) 

𝑁𝑢𝑔 = 𝑓𝐴 ∙  𝑁𝑢𝑙,0 (4.19) 

𝑁𝑢𝑙,0 = 0.3 + √𝑁𝑢𝑙,𝑙𝑎𝑚
2 + 𝑁𝑢𝑙,𝑡𝑢𝑟𝑏

2  (4.20) 

𝑁𝑢𝑙,𝑙𝑎𝑚 = 0.664√𝑅𝑒𝑔√𝑃𝑟𝑔  
3

 (4.21) 

𝑁𝑢𝑙,𝑡𝑢𝑟𝑏 =
0.037 ∙  𝑅𝑒𝑔

0.8 ∙  𝑃𝑟𝑔

1 + 2.443 ∙  𝑅𝑒𝑔
−0.1 ∙ (𝑃𝑟𝑔

2/3
− 1)

 (4.22) 

𝛼𝑔 =
𝑁𝑢 ∙ 𝜆𝑔,𝑎

𝐷
 (4.23) 

Δ𝑇𝑙𝑚 =
(𝑇𝑔,𝑖𝑛 − 𝑇𝑃𝐶𝑀) − (𝑇𝑔,𝑜𝑢𝑡 − 𝑇𝑃𝐶𝑀)

ln 
𝑇𝑔,𝑖𝑛 − 𝑇𝑃𝐶𝑀
𝑇𝑔,𝑜𝑢𝑡 − 𝑇𝑃𝐶𝑀

 
(4.24) 

𝑄̇𝑔 = 𝛼𝑔 ∙ (𝜋 ∙ 𝐷 ∙ 𝐿) ∙ Δ𝑇𝑙𝑚 (4.25) 
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6. Finally, the  heat balance reported in Equation (4.26) is used to provide an updated 

value of the outlet temperature 𝑇𝑔,𝑜𝑢𝑡.  

The iterative procedure implemented in the heat transfer block of the HTF is similar to 

that adopted in the flue gas heat transfer block; the main difference is that in the former, 

the input parameters are the inlet temperature 𝑇ℎ,𝑖𝑛, the static pressure 𝑝ℎ,  the mass flow 

rate 𝑚̇ℎ, the inner diameter 𝑑  and length 𝐿 of the HESU. One difference between the 

iterative procedure used in the two heat transfer blocks regards the correction factors (i.e. 

the void fraction 𝜓 and the arrangement factor 𝑓𝑎 ) , which in the case of the HTF heat 

transfer block are not calculated. The other difference regards the correlation used for 

calculating the Nusselt number; in the HTF case the well-known Dittus–Boelter equation 

for turbulent flow in smooth circular tube for heating condition has been used [144]: 

The control system of the PCM-based technology aims to supply a minimum thermal 

power 𝑄̇𝑚𝑖𝑛 to the ORC system while maintaining the maximum temperature of the PCM 

below a given value (i.e. limit on maximum PCM temperature) by managing the mass 

flow rate 𝑚̇ℎ of the HTF. The first action of the control system, whose flow diagram is 

reported in Figure 4.9, is to acquire the mass flow rate of the flue gas 𝑚̇𝑔, the PCM 

temperature 𝑇𝑃𝐶𝑀 in the first row of HESUs and the flue gas temperature at the point (1), 

(2), (3’), (3”) and (4). Then, the control system calculates the thermal power leaving the 

preheater 𝑄̇3′ and the thermal power entering the PCM-based technology 𝑄̇1−2  according 

to Equations (4.28) and (4.29).  

where ℎ1, ℎ2, ℎ3′ and ℎ4,  are the enthalpies at point (1), (2), (3’), and (4), respectively.  

𝛼𝑔 =
𝑁𝑢 ∙ 𝜆𝑔,𝑎

𝐷
 (4.26) 

𝑁𝑢ℎ = 0.023 ∙ 𝑅𝑒ℎ

4
5 ∙ 𝑃𝑟ℎ

0.4 (4.27) 

𝑄̇3′ = 𝑚̇𝑔 ∙ (ℎ3′ − ℎ4) (4.28) 

𝑄̇1−2 = 𝑚̇𝑔 ∙ (ℎ1 − ℎ2) (4.29) 
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From Figure 4.9, it is possible to observe that the control logic has been divided in three 

main operative modes: discharging mode, charging mode and balance mode. For each 

operative mode, a specific mass flow rate is calculated: discharging mass flow rate 𝑚̇𝑑𝑖𝑠, 

charging mass flow rate 𝑚̇𝑐ℎ𝑎 and balance mass flow rate 𝑚̇𝑏𝑎𝑙; the definition of these 

mass flow rates is reported in Table 4.4. 

 

Figure 4.9 Flow diagram of the control system of the PCM-based technology 

When the thermal power 𝑄̇3′ is lower than the minimum thermal power 𝑄̇𝑚𝑖𝑛 and the 

PCM temperature 𝑇𝑃𝐶𝑀 is lower than its upper limit (i.e. 𝑇𝑃𝐶𝑀,𝑚𝑎𝑥), the discharging mode 

is activated and the HTF mass flow rate 𝑚̇ℎ is set equal to the discharging mass flow rate 

𝑚̇𝑑𝑖𝑠. When the thermal power 𝑄̇3′ is higher than the minimum thermal power 𝑄̇𝑚𝑖𝑛 and 

the PCM temperature 𝑇𝑃𝐶𝑀 is lower than its upper limit, the charging mode is activated 

and the HTF mass flow rate 𝑚̇ℎ is set equal to the charging mass flow rate 𝑚̇𝑐ℎ𝑎. The 

balance mode is instead activated when the PCM temperature 𝑇𝑃𝐶𝑀 overcomes its upper 

limit; in that case, the HTF mass flow rate 𝑚̇ℎ is set equal to the balance mass flow rate 

𝑚̇𝑏𝑎𝑙. 
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Table 4.4   Mass flow rates characterising the three operative modes 

Operative mode Calculated mass flow rate 

Discharging mode 𝑚̇𝑑𝑖𝑠 =
𝑄̇𝑚𝑖𝑛 − 𝑄̇3′

ℎ3′′ − ℎ4′′
 

Charging mode 𝑚̇𝑐ℎ𝑎 = 𝑚̇ℎ,𝑚𝑖𝑛 

Balance mode 𝑚̇𝑏𝑎𝑙 =
𝑄̇1−2

ℎ3′′ − ℎ4′′
 

The minimum and maximum values of the HTF mass flow rate 𝑚̇ℎ can be limited by 

means of the control parameters 𝑚̇ℎ,𝑚𝑖𝑛 and 𝑚̇ℎ,𝑚𝑎𝑥. In this paper, the minimum and 

maximum mass flow rates - 𝑚̇ℎ,𝑚𝑖𝑛 and 𝑚̇ℎ,𝑚𝑎𝑥- of the HTF have been set to 1.5 and 5 

kg/s, respectively. 

4.5 Results and discussion 

4.5.1 Validation of the existing waste heat recovery system 

The model of the current waste heat recovery system was validated against the available 

measured plant data. The comparison of the thermal power entering ORC system between 

the measured data and those calculated by the model is shown in Figure 4.10a, while the 

comparison of the gross electric power between measured data and the model is reported 

in  Figure 4.10b. 

  

(a) (b) 

 

Figure 4.10 Comparison of experimental and model data: a) Thermal power entering ORC 

system and b) gross electric power generated 

Figure 4.11a reports the comparison of the flue gas temperature after the preheater 

between the experimental data and those calculated by the model, while the flue gas 
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temperature after the ORC system obtained from the measurements and the model 

calculation are compared in Figure 4.11b. 

  

(c) (d) 

Figure 4.11 Comparison of flue gas temperature between experimental and model data: a) after 

pre-heater and b) after ORC system 

From Figure 4.10 and Figure 4.11 it is apparent that model replicates the measured plant 

data with good accuracy: there is an almost perfect match with the thermal power input 

in the ORC system as well as with the temperature of the flue gases after the air-preheater; 

there is also a good agreement of temperature of the flue gas after the ORC system and 

with a maximum absolute error of around 5% and an average absolute error of 1%; for 

the gross electric power generated there is an average absolute deviation from the 

experimental data of about 5%. These minor discrepancies can be attributed to differences 

on the properties due to air being taken as that of the real flue gas as well as of the non-

perfect fitting of the regressions based on the data and measurement inaccuracies of the 

instrumentation in the plant.  

4.5.2 Performance of the PCM-based WHR system 

The geometric and layout parameters as well as the control parameters of the PCM-based 

technology are reported in Table 4.5. The temperature profile of the flue gas and the heat 

transfer fluid entering and leaving the PCM-based technology are shown in Figure 4.12a; 

in addition to this, the temperature profile of the PCM in the first and last row of HESU 

are reported.  The PCM temperatures (green solid and dotted lines) are nearly constant 

around the melting temperature (576°C), meaning that the PCM-based technology is for 

the most of the time using the latent heat of the PCM. From Figure 4.12a it is possible to 

observe some small temperature peak occurring in the temperature of the first row of 

HESU (green solid line), which occurs when the HESU is fully charged and the control 
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system activate the balance mode (i.e. maintaining the maximum allowable PCM 

temperature).   

Table 4.5  Geometric, layout and control parameters of the PCM-based technology 

Geometry parameters  

 HESU External diameter, D (mm) 98 

 HESU Internal diameter, d (mm) 50 

 HESU Length, L (mm) 2,400 

 PCM mass per HESU, mPCM (kg) 36.5 

Layout parameters  

 Longitudinal pitch, PL 1.82 

 Transverse pitch, PT 1.82 

 Number of rows, nR 10 

 Number of column, nC  8 

 System Longitudinal size, SL (m) 1.78 

 System Transverse size, ST (m) 1.43 

 System Vertical size, SV (m) 2.4 

 Total PCM mass, mPCM,tot (kg) 2,916 

Control parameters  

 Minimum thermal power, 𝑄̇𝑚𝑖𝑛 (kW) 1,500 

 Minimum HTF flow rate, 𝑚̇𝑚𝑖𝑛 (kg/s) 1.5 

 Maximum HTF flow rate, 𝑚̇𝑚𝑎𝑥 (kg/s) 5.0 

 Maximum PCM temperature, TPCM,max (°C) 580 

In Figure 4.12b it is reported the mass flow rates of the flue gas (red dashed line) and of 

the HTF (green solid line) entering the mixing duct; the total mass flow exiting the mixing 

duct is also reported (black solid line). In addition to these mass flow rates, the minimum 

(dash-dot black line) and maximum (dashed black line) value of the HTF mass flow rate 

are shown.  

  
(a) (b) 

Figure 4.12  a) Temperature profiles within the PCM-based technology; b) mass flow rates at the 

mixing duct  
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The performance parameters of the PCM-based technology are summarised in Table 4.6. 

It can be observed that the average temperature of the flue gas temperature at point (2) 

and that of the heat transfer fluid at point (3’’) fulfil the design requirements detailed in 

sub-section 4.4.3, which are 725°C and 397°C respectively.  

Table 4.6  Performance parameters of the PCM-based technology 

Parameter Item Location Min Max Average 

Temperature (°C) 

Flue gas 
Point (1)  809 907 850 

Point (2) 725 748 696 

HTF 
Point (3’’) 155 188 163 

Point (4’’) 376 414 397 

HESU 
First row 575 581 578 

Last row 573 579 576 

Mass flow rate (kg/s) 

Flue gas Point (3’)  1.8 8.2 4.4 

HTF Point (3’’) 1.5 4.9 2.7 

Total Point (3) 5.2 12.5 7.1 

Observing Figure 4.12b and Table 4.6,  it can be seen that the HTF mass flow rate ranges 

between the minimum and maximum values set in the control system, meaning that the 

control system operates adequately. The effect of the introduction of the PCM-based 

technology can be seen in Figure 4.13a, where the profile of the thermal power entering 

the ORC system is reported together with the minimum allowable thermal power 𝑄̇𝑚𝑖𝑛. 

The resulting duration curve of the load factor is reported in Figure 4.13b. 

  
(a) (b) 

Figure 4.13 a) Thermal power profile entering the ORC system; b) load factor duration curve  

Figure 4.14a shows the profile of the heat flows 𝑄̇𝑔 and 𝑄̇ℎ for a generic HESU; the heat 

flow is assumed to be positive when entering the HESU (i.e. the HESU absorbs heat) and 

negative when leaving the HESU (i.e. the HESU releases heat). The heat profile shown 

in Figure 4.14b represents the sum of  𝑄̇𝑔 and 𝑄̇ℎ, which identifies the charging (red area), 
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discharging (green area) and balance (i.e. sum equal to zero) phases occurring within each 

HESU. 

  
(a) (b) 

Figure 4.14 a) Heat flows exchanged by the HESU; b) charging-discharging of the HESU 

4.5.3 Comparison of the performance and economics 

Figure 4.15a compares the thermal power entering the ORC system in the current waste 

heat recovery system (black solid line) with that of the waste heat recovery system 

integrated with the PCM-based technology (green solid line). It can be observed that the 

PCM-based technology allows the ORC system to operate above the minimum thermal 

power (red dotted line) for all the time, while in the current waste heat recovery system 

the ORC system operates for the most of the time below the minimum thermal power.  

This difference in performance can be better observed in Figure 4.15b, where the duration 

curves of the load factor of the ORC system in the current waste heat recovery system 

(black solid line) and in the waste heat recovery system integrated with the PCM-based 

technology (green solid line) are reported. When the PCM-based technology is 

introduced, the ORC system operates always in its high efficiency zone (i.e. load factor 

𝜒 ≥ 0.5), while in the current waste heat recovery system the ORC system operates for 

more than 67% of the total working time in the low efficiency zone. 

The introduction of the PCM-based technology allows the capacity factor of the ORC 

system to be increased from 38% to 52%; the average thermal efficiency is increased 

from 15.5% to 16.4%.   
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(a) (b) 

Figure 4.15 Comparison between current waste heat recovery system and with the PCM-

based technology:  a) Thermal power profiles entering the ORC system and b) duration 

curves of the load factor 

Table 4.7 provides a comparison of the main performance parameters of the ORC system 

between the current waste heat recovery system and that integrated with the PCM-based 

technology. Considering the increased capacity factor of 52% and assuming that the ORC 

system operates 7,500 hours per year, an additional electric energy   production of 583 

MWh per year can be estimated.  

Table 4.7   Comparison of the main performance parameters of the ORC system between current 

and proposed waste heat recovery system  

   Current With PCM 

Thermal Power (kW) 

Max 2,483 3,000 

Min 614 1,500 

Average 1,331 1,756 

Electric Power (kW) 

Max 402 555 

Min 76 238 

Average 210 290 

Thermal efficiency 

Max 0.169 0.185 

Min 0.123 0.158 

Average 0.155 0.164 

Load Factor 

Max 0.83 1.00 

Min 0.20 0.50 

Average 0.44 0.59 

Capacity factor - 38% 52% 

The capital expenditure (CAPEX) and operational expenditure (OPEX) of the PCM-

based technology reported in Table 4.8 have been calculated based on estimations carried 

out in Chapter 3. The revenues generated by the PCM-based technology depend on the 

selling price of the electric energy and the additional electric energy production. While 
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the additional electric energy production depends only on the performance of the ORC 

system, the selling price of the electric energy depends on many external factors which 

cannot be controlled. Thus, a sensitivity analysis on the selling price of the electric energy 

has been carried out to identify which selling price allows to obtain a payback period 

between 3 and 5 years. 

Table 4.8  Capital and operative expenditure of the PCM-based technology 

CAPEX [€] 

 PCM-based technology 85,000 

 Auxiliary facilities (Fan, piping, etc.) 25,000 

 Other costs (design, safety, etc.) 50,000 

OPEX [€/year]  

 Maintenance cost 9,500 

 Personnel cost  5,000 

The results of the analysis showed that a selling price of 120 €/MWh and 83 €/MWh 

should be guaranteed to obtain a payback of 3 and 5 years, respectively. Considering that 

the average electricity prices for industrial consumers in Europe is about 119 €/MWh 

[184], the proposed PCM-based technology can be considered an affordable solution for 

improving the efficiency of existing waste heat recovery systems.  

4.6 Conclusion 

The current chapter describes the outcomes of a numerical research on a novel PCM-

based technology to be retrofitted in an existing waste heat recovery system, composed 

by an air preheater and an ORC system, installed downstream of a steel billet reheating 

furnace. The proposed PCM-based technology consists of a set of Heat Exchange and 

Storage Units (HESUs), in which the heat is absorbed from the flue gases and released to 

a heat transfer fluid; the thermal energy is stored and released at constant temperature 

thanks to the contained high temperature PCM.   The aim of this work is that of assessing 

the impact of the PCM-based technology on the efficiency and capacitance factor of the 

ORC system subjected to variable input thermal power fluctuation of the waste heat 

source. Firstly, the measurements carried out in an existing energy recovery plant were 

used for the analysis of the performance of the ORC system and for the process 

characterisation. The former was assessed by means of the gross electric power output, 

thermal power input and efficiency, load factor and efficiency ratio whereas the latter by 
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calculating the heat losses associated with the stack and air dilution. Secondly the design 

of the PCM-based technology was carried out. The design of the PCM-based technology 

consists in the selection of the geometry and layout of the HESUs, which in turn define 

the thermal energy that can be stored in form of latent heat. The main control parameters 

for the PCM-based technology were then identified and implemented. The control 

strategy is twofold: serving as a thermal buffer to mitigate the thermal power fluctuations 

of the waste heat and conditioning the thermal power entering the ORC system identified 

(e.g. minimum thermal power entering the ORC system, maximum PCM temperature). 

The components of the current waste heat recovery system and the PCM-based 

technology were then modelled in the Modelica coding language. Finally, a comparison 

between the ORC system efficiency and capacity factor with and without the PCM-based 

technology was then performed together with an economic assessment of the introduction 

of the PCM-based technology is carried out. Results showed that the introduction of the 

PCM-based technology allows the capacity factor of the ORC system to be increased 

from 38% to 52% and the average thermal efficiency to be increased from 15.5% to 

16.4%. The cost-benefit analysis showed that a selling price of the electric energy 

between 120 and 83 €/MWh can guarantee a payback period between 3 and 5 years. 
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5 ENERGY RECOVERY FROM WASTE INCINERATION 

5.1 Introduction 

In the last decades, the design of Waste-to-Energy (WtE) plants was focused on lowering 

the discharge rate of pollutants, while maximizing the waste throughput and minimizing 

the maintenances costs. This goal has been achieved by using costly flue gas treatment 

units, which has led to the increase of the capital cost of whole WtE plant. Nowadays, to 

counterbalance this cost increase, the research is focused on improving the overall 

efficiency of the WtE plants. Steam boiler operating with higher steam parameters 

(temperature and pressure) is one of the main technical solutions that can be adopted to 

achieve this aim. Nevertheless, higher steam parameters increase the corrosion risk and 

the associated cost for plant downtime and repair. 

Some WtE plants (Stuttgart-Germany and Naples-Italy) have achieved higher steam 

temperature (up to 500 °C) by using monolithic SiC concrete to protect the superheaters 

operating at temperature higher than 400 °C. The disadvantage of this solution is the lower 

availability due to higher inspection and maintenance requirements. An alternative 

solution has been tested in the WtE plant in Rosenheim (Germany), where rear-ventilated 

Chapter 5 
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tiles has been used to protect radiant superheaters located in the upper furnace area. In 

this case, the limits regard the maximum steam temperature achieved (i.e. 480 °C) and 

the increased plant complexity, which requires additional skills and competence for plant 

design, process control and operation. In addition to this, it has to be considered that closer 

to the hottest zone of the plant the radiant superheater is, more difficult the control of the 

superheated steam temperature. In fact, the inhomogeneous nature of Municipal Solid 

Waste (and hence the variation in the calorific value associated with it) causes 

disturbances during the combustion process which lead to significant fluctuations in the 

thermal power of the flue gas. As a consequence of this variability, the risk of failure of 

the superheater tubes due to excessive overheating is increased.   

In this chapter, an innovative refractory brick technology based on phase change material 

(PCM) for corrosion protection of the radiant superheaters is proposed. PCM-based 

technologies exploit the phase change phenomenon of pure material or eutectic 

compounds, in which the latent heat of phase transition is absorbed or released at constant 

temperature. Exploiting this working principle, the PCM-based refractory brick is capable 

to store the fluctuating thermal power generated by the waste combustion and to release 

the stored thermal energy on demand as a steady heat flux. Thus, the proposed technology 

could enable the installation of radiant superheater in the hottest zone of the WtE plants, 

which then allows the steam to be heated up to 600°C. 

 The proposed technology considers aluminium and its eutectic alloys as PCMs since they 

offer good thermal properties (i.e. high thermal conductivity, high latent heat of fusion 

and high melting temperature) amongst high temperature PCMs. Several commercial 

ceramics are instead considered as containment material since they offer high resistance 

to high temperature corrosion.  

The design challenge is given by the remarkable difference in the coefficient of thermal 

expansion between the selected PCMs and ceramics. Thus, a detailed thermomechanical 

analysis is assessed in the chapter in order to demonstrate the technological feasibility of 

the proposed technology. Finally, a computational fluid dynamic (CFD) simulation is 

carried out in order to compare the performance of the traditional refractory brick 

technology with that proposed in this chapter. 
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5.1.1 Problem statement 

In current Waste-to-Energy plants, heat recovery of thermal power generated during 

combustion process is completely carried out by traditional steam generation boilers, 

which is usually composed by water-walls (i.e. radiant evaporators), evaporators, 

economizers and superheaters (see Figure 5.1).  

Although being well established, this configuration of WtE plants is subjected to some 

technical limitations such as: 

a. The limits on the maximum steam temperature, due to corrosion occurring at high 

metal surface temperature (i.e. superheater tube surface); 

b. The fluctuation in steam production, due to non-homogeneous composition of waste.    

These technical limitations affect the maximum electrical efficiency achievable and the 

proposed PCM-based technology intends to offer a novel solution to solve them.  

 

Figure 5.1 Typical configuration of heat recovery by steam generation in WtE plants 

5.1.1.1 Corrosion at high metal surface temperature 

High temperature of metal surface of the heat exchangers results in the melting of deposits 

and acceleration of the corrosion rate. Figure 5.2 shows typical charts of the corrosion 
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risk on boiler tubes as function of flue gas temperature [185] when using steel pipes 

(Figure 5.2a) and Inconel alloy pipes (Figure 5.2b). The green area represents the 

conditions in which the corrosion risk is very low and the WtE plant can operate without 

particular limitations. Most of the newer generation WtE plants (net electrical efficiencies 

around 23%) operate in the green area, with typical steam temperature values of 400°C 

at 40 bar [186].  

  
(a) (b) 

Figure 5.2 Corrosion diagram of a) steel and b) Inconel alloy [185] 

When the operating conditions of heat exchangers move in the yellow area (transition 

area), the corrosion risk is no longer negligible and the lifetime of heat exchangers begins 

to reduce thus increasing the cost for preventive maintenance; in this area anti-corrosion 

coating is recommended. The red area represents the conditions in which heat exchangers 

are subjected to high corrosion rate. Uncoated heat exchangers have a short lifetime 

(5,000÷8,000 working hours for steam temperature of 500°C). Long lifetime of 

superheaters can be achieved by using monolithic SiC concrete, but under the 

precondition of ensuring regular inspections and direct repair of cracks before the tube 

itself shows corrosion attacks [187]. The monolithic SiC concrete is currently employed 

in those WtE plants which adopt high steam parameters to increase gross electric 

efficiency up to 30%, such as the WtE plants in Stuttgart (Germany) and in Naples (Italy). 

An alternative solution has been tested in the WtE plant in Rosenheim (Germany), where 

rear-ventilated tiles have been used to protect radiant superheaters located in the upper 

furnace area [188]. In this case, the limitations are on the maximum steam temperature 
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achieved (i.e. 480 °C) and the increased plant complexity, which requires additional skills 

and competence for plant design, process control and operation. 

In addition to this, it has to be considered that the closer to the hottest zone of the plant 

the radiant superheater is, the more difficult the control of the superheated steam 

temperature will be. In fact, the inhomogeneous nature of Municipal Solid Waste (and 

hence the variation in the calorific value associated with it) causes disturbances during 

the combustion process which lead to significant fluctuations in the thermal power of the 

flue gas. As a consequence of this variability, the risk of failure of the superheater tubes 

due to excessive overheating is increased.   

5.1.1.2 Process stability: fluctuating temperature and steam production 

Good stability of the steam produced by the boiler (and hence of the combustion process) 

is required to maximise the annual waste throughput and the energy production. However, 

maintaining the process stability for combustion of household waste is a significant 

challenge. The inhomogeneous nature of Municipal Solid Waste (and hence the variation 

in the calorific value associated with it) causes disturbances during the combustion 

process which lead to significant fluctuations in the thermal power of the flue gas.  

Because of this variability, the steam production in WtE boilers exhibits a fluctuating 

pattern; in Figure 5.3a is reported the fluctuation of the steam production (blue line) in a 

real WtE plant. In addition to this, likewise in any other large industrial system or process, 

the thermal inertia of a boiler gives rise to intrinsic over/undershoots of the steam curve. 

This delaying behaviour of the boiler is commonly tackled by means of conventional PID 

controllers whereas the waste-induced effects are usually stabilised by controlling the 

combustion process. However, these two techniques (PID controllers & combustion 

process control) only succeed in a partial mitigation of the fluctuation in steam production 

thus forcing the WtE plants’ operators to limit the output from the steam turbine by 

reducing the waste throughput (hence reducing the energy output). On this issue, in WtE 

plants with no PID controllers, the fluctuation in steam production typically ranges 

between ±5% with respect to the baseline whereas, in plants using PID controllers, the 

fluctuation can be reduced to ±3%. Nevertheless, fluctuation in steam production cannot 

be completely avoided even if the best control systems are applied [189]. In addition to 
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this, it has to be pointed out that temperature fluctuations are always present in the 

combustion chamber (see Figure 5.3b) even when optimized control systems are used. In 

particular, from Figure 5.3b, it is possible to observe that two types of temperature 

fluctuations exist: the fast and slow fluctuations which occur within few minutes and few 

hours respectively. 

  

(a) (b) 

Figure 5.3 a) Fluctuation in steam production in a WtE plant with PID control [189];  b) 

Temperature fluctuation in the combustion chamber of a WtE plant [190] 

The slow temperature fluctuations can be controlled and mitigated by means of the 

combustion control system, whereas the fast temperature fluctuations cannot be avoided 

since the control system cannot react fast enough; in order to achieve a rapid response 

and an optimum control system for the combustion process, high costs are required for 

both the measurement instrumentation and the plant modifications needed for its 

installation [190].  

For these reasons, fast temperature fluctuations are the most dangerous type of 

temperature fluctuations in WtE plants and they represent the main risk of tube failure for 

superheaters installed in the combustion chamber. The PCM-based brick is then aimed to 

solve this issue by absorbing the fast temperature fluctuation in the form of latent heat at 

constant temperature, so that the superheater tubes will not be subjected to the risk of 

failure due to uncontrolled temperature increase. 
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5.2 Proposed solution: PCM-based refractory brick 

The proposed solution consists in replacing the typical refractory brick installed into the 

combustion chamber with a PCM-based refractory brick capable to store a variable heat 

flux coming from a high temperature heat source (i.e. incineration chamber) and to release 

it on demand as a steady heat flux. By introducing the PCM-based refractory brick, an 

extra degree of freedom in the heat recovery/management which did not exist before in 

combustion processes is introduced. In fact, the steady heat flux will be used to avoid 

steam production fluctuation and to increase temperature of superheated steam over 

current corrosion limits (450 °C) without using coated superheaters. 

5.2.1 Working principle and component description 

The proposed PCM-based refractory brick exploits the working principle of thermal 

energy storage based on latent heat. This type of heat storage system stores or releases 

latent heat when a phase change material, which can be a pure material (e.g. aluminium) 

or a eutectic compound (e.g. Al-12%Si), undergoes the phase transition from solid to 

liquid, or vice versa. The storage and release of heat occurs at the phase transition 

temperature of the PCM, which can be considered to be constant. This technique for heat 

storage allows designing thermal energy storage systems with a high energy density 

capable to store heat at high temperature (>300°C). The PCM-based technology presented 

in this section employs aluminium and its eutectic alloys because they offer the best 

thermal properties amongst high temperature PCMs [12]: 

 High thermal conductivity (solid state > 200 W/mK – liquid state > 90 W/mK); 

 High latent heat of fusion (280÷560 kJ/kg) 

 High melting temperature (470÷660 °C) 

Although aluminium and its alloys own the best thermal properties, their usage as PCM 

is limited by the high Coefficient of linear Thermal Expansion (CTE) and the high 

reactivity when in liquid phase. As reported in [96], the limit of the high reactivity (i.e. 

high corrosivity) of the molten aluminium (pure or alloyed) can be overcome by using  

high density ceramics (such as Al2O3, AlN and Si3N4) to contain the PCM. Furthermore, 

the use of ceramics to contain the PCM allows the PCM-based technology to operate at 
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very high temperature and in extremely corrosive environment, such as the combustion 

chamber of a WtE plant.  

Since aluminium and its alloys have one of the highest CTE (23 ∙ 10-6/K) amongst the 

various engineering materials, it is very likely that the material used for containment will 

have a lower CTE. The mismatch between the CTE of the PCM (i.e. aluminium or its 

alloys) and that of the container material leads to non-negligible thermal stresses, which 

can affect the structural integrity of the PCM container. Thus, the PCM should be 

encapsulated within the ceramic material by adopting cylindrical holes with round bottom 

edges, see Figure 5.4 (a) and (b). In addition to this, an empty space is left at the top of 

the brick in such a way that the PCM is free to expand along the vertical direction (both 

in solid and liquid state).  In this way, the thermal stresses within the ceramic container 

can be controlled by setting the diameter of the holes and the interaxis between them. 

In order to facilitate the installation of the PCM-based refractory brick, its shape and size 

should be similar to the ones of traditional bricks. Figure 5.4c shows an example of 

installation by using mortar of the PCM-based refractory brick. However, depending on 

the requirements of WtE plant operator, the PCM-based refractory brick can also be 

installed without mortar. 

   
(a) (b) (c) 

Figure 5.4 a) Top view and b) Section A-A of the PCM-based refractory brick; c) Water-wall or 

radiant superheater protected by PCM-based refractory brick 
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5.2.2 System layout 

Figure 5.5 shows an example of the layout of a WtE plant where the PCM-based 

refractory brick is employed to avoid the fluctuation in steam production and to increase 

the temperature of the superheated steam. Comparing Figure 5.1 to Figure 5.5, it can be 

observed that the PCM-based refractory bricks simply replace the traditional refractory 

bricks in the protection of the water-walls, while an additional radiant superheater is 

installed in the lower bottom part of the furnace.  

 

Figure 5.5 Integration between the PCM-based technology and heat recovery boiler based on 

steam generation in a WtE plant 

Depending on the employed PCM, two different components can be identified: the PCM-

based Evaporator and the PCM-based Superheater. The PCM-based refractory brick 

stores a part of the fluctuating thermal power generated by the waste combustion process. 

The stored thermal energy is then steadily transferred to the PCM-Superheater for steam 

temperature increase and to the PCM-evaporator for steam production control. Steam 

generation into the PCM-evaporator can easily be managed by varying the mass flow rate 

of the steam control pump which connects the steam drum to the PCM-evaporator; the 

generated steam is then used to completely avoid fluctuation in steam production. 
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For what concerns the PCM-based superheater, aluminium is the most suitable PCM to 

employ because of its high melting temperature (660°C). The use of aluminium as high 

temperature PCM allows heating the superheated steam up to 550-600°C, thus leading to 

a significant increase in efficiency of the WtE plant. In the PCM-based Evaporator 

instead, the eutectic alloy Al-12%Si (in mass %) is more suitable because of its higher 

latent heat of fusion (560 KJ/kg) and lower melting point (576 °C); it is worth noting that 

aluminium and Al-12%Si are both commercially available and do not require developing 

new/special alloy for this specific application. 

Table 5.1 reports the comparison of the efficiencies which can be achieved in a WtE plant 

adopting the proposed PCM-based superheater and some of the existing techniques 

available in the market.  

Table 5.1 Comparison between expected efficiency in a WtE plant using PCM-based superheater 

and some of the current techniques to improve WtE plant efficiency 

 

  
Baseline 

High steam 

parameters 

Steam 

reheating 

PCM 

superheater 

Max Steam Temperature  °C 400 500 420 600 

Steam pressure Bar 40 90 90 90 

Flue Gas Temp. at Boiler Outlet °C 190 190 190 190 

Excess Air % 60 60 60 60 

Gross electrical efficiency % 26.4 30.2 29.9 34.6 

The comparison is based on  the methodology described in [187] and it considers as 

baseline the typical WtE plant configuration (400 °C at 40 bar). From Table 5.1, it can be 

seen that WtE plants adopting the PCM-based superheater can potentially achieve a steam 

temperature up to 600 °C leading to a dramatic increase in gross electrical efficiency up 

to 34.6%.  

5.3 Methodology and tools 

In order to demonstrate the technological feasibility of the proposed technology, a 

detailed thermo-mechanical analysis has been carried out together with a CFD simulation 

aimed at comparing the performance of the traditional refractory brick technology with 

that proposed in this chapter. The thermo-mechanical analysis is carried out by means of 

a commercial software (ANSYS Mechanical APDL) employing the Finite Element 

Method (FEM), while for the CFD simulation ANSYS Fluent has been used.  
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5.3.1 Thermo-mechanical analysis 

The typical duty cycle of the PCM-based refractory brick follows the usual operative 

phases of WtE plants: start-up phase, running phase and shut-down phase. According to 

[191] the start-up phase follows the steps listed below: 

a. Temperature is raised using the auxiliary burner (gas temperature inside the 

combustion chamber: from ambient to 400 °C in 2 h). 

b. The gas temperature is kept at 400 °C (2 h). 

c. The gas temperature is further raised by the auxiliary burner from 400 to 600 °C in 2 

h, from 600 to 900 °C in 2 h. 

d. When the gas temperature at the baghouse inlet exceeds 160 °C, the gas flow begins. 

e. When the gas temperature at the de-NOx catalytic reactor inlet exceeds 180 °C, the 

gas begins to flow through the reactor. 

f. When the combustion gas exceeds 750 °C, the refuse feeding is started.  

g. When the steam generation rate reaches target, the start-up phase is completed. 

Operations (d) to (f) are carried out simultaneously with the raising of the temperature 

under step (c). The shutdown phase is simpler, since it follows the following steps: 

a. The refuse hopper is closed. The gas temperature falls from 850 to 400 °C in 2 h.  

b. When the gas temperature inside the combustion chamber falls below 450 °C, the 

forced draft fan is turned off. 

c. When the gas temperature at the baghouse inlet falls below 125 °C, the baghouse is 

by-passed, the induced draft fan is turned off and the shutdown phase is completed. 

During the start-up phase, the PCM-based refractory brick is heated from room 

temperature up to the melting point of the contained PCM. Once melting point is reached, 

the control system will maintain the PCM-refractory brick in that operating condition as 

long as the shutdown phase begins. 

When the PCM is subjected to phase change, the coexistence of both liquid and solid 

states leads to a drastic reduction of the mechanical properties of the PCM (see Table 

5.2). Therefore, the mechanical stresses in the PCM-based brick are very small, as they 

are only due to the metallostatic pressure. On the other hand, when the PCM is at solid 
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state and CTE of the containment material is lower than that of the PCM, the maximum 

stresses in the PCM-based refractory brick will be generated. Thus, the following thermo-

mechanical analysis considers only the thermal conditions during which the PCM is at 

solid state, which is the condition encountered during the start-up and shut-down phases 

of the WtE plant. 

Thermo-mechanical analyses available in literature usually study expansion of PCM in 

liquid phase [140–142]. To the author’s knowledge, only [165] have analysed thermo-

mechanical stresses generated by the expansion of PCM (aluminium) in solid phase. In 

particular, that study developed a simplified methodology to identify the most relevant 

design parameters for subsequent experimental validation. 

Table 5.2 Thermo-physical properties of the aluminium [149] 

Thermal conductivity (Solid State), λa (W/mK) 211  

 

Melting temperature, Tm (°C) 660 

Latent heat of fusion, Hmass (kJ/kg) 396 

Volumetric latent heat of fusion, Hvol (MJ/m3) 1089 

Density, ρa (kg/m3) 2750 

Coefficient of thermal expansion, CTE (10-6/K) 23 

Poisson modulus, ν 0.34 

In this chapter, the FEM is used to analyse the thermo-mechanical behaviour of the PCM-

based refractory brick. In particular, a simple bidimensional FEM model (see Figure 5.6a) 

has been preferred over a complex three dimensional FEM model because the use of 

complex model tends to hinder the understanding of the basic mechanisms that govern 

the thermo-mechanical response, as well as the identification of the relevant design 

parameters.  

According to Appendix B, the plane stress hypothesis (i.e. axial stress σz = 0) is a 

reasonable assumption also for the bidimensional FEM model of the PCM-based 

refractory brick. The symmetry of the component allows the computational domain to be 

reduced to a small part, as shown in Figure 5.6b. The FEM model shown in Figure 5.6b, 

adopts 8-nodes isoparametric linear elements to discretise both the PCM and the ceramic 

parts; a mapped mesh is used for the whole domain. The thermal analysis is firstly carried 
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out to compute the temperature in each node; then the calculated nodal temperatures are 

used as thermal loads input in the mechanical analysis.  

The start-up and shut-down phases previously described suggest that the thermal response 

of the PCM-based brick should be studied by a transient analysis with phase change. In 

addition to this, the flue gas side should be modelled with a radiation-convection model, 

while the steam side should be modelled with a convection model (see  Figure 5.6c); the 

bulk temperature on both sides (i.e. flue gas and steam sides) should represent the start-

up and shut-down phases.  

   
(a) (b) (c) 

Figure 5.6 a) Computational domain, b) FEM model and c) Complex thermal model 

The long duration of both start-up and shut-down phases and the high thermal 

conductivity of the PCMs suggest that it is reasonable to assume the whole system domain 

to have uniform temperature at any time instant (quasi-steady assumption). To justify this 

assumption, two different thermal models have been developed and compared:  

a. Complex model: it considers radiation and convection heat transfer models on the flue 

gas side and a temperature ramp (representing the start-up of the steam loop) on the 

steam side. Bulk temperatures on both flue gas and steam sides are time dependent 

and they are derived from the temperature profiles reported in [191]; both start-up and 

shut-down phases are modelled.   

b. Simplified model: it considers the whole domain to be at uniform temperature at any 

instant in time. 
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The ceramic with the lowest thermal conductivity (i.e. mullite) has been used as reference 

material for the model comparison, while the maximum principal stress has been used as 

comparison criteria.  

A numerical uncertainty analysis has initially been performed to assess the approximation 

errors of the finite element solution. In particular, a sensitivity analysis on the mesh size 

has been carried out to identify at which element size the solution of the finite model 

becomes grid independent.  

The results of the simulations have shown that the maximum difference in the maximum 

principal stress between the complex and the simplified models is less than 2%; this 

validates the assumption of uniform temperature; the analysis also showed that the 

complex model is roughly 6 times slower to converge than the simplified one. 

The assumption of uniform temperature allows simulating the thermo-mechanic 

behaviour of the component by a sequence of steady state analyses. Thus, the applied 

thermal load is simply uniform temperature on the whole finite element model.  

Six commercial high density ceramics (i.e. no porosity) have been considered as 

containment material for the PCM-based refractory brick: aluminium nitride (AlN), 

aluminium oxide at 96% purity level (Al2O3), mullite, sialon, silicon carbide (SiC) and 

silicon nitride (Si3N4). The thermo-mechanical properties reported in Table 5.3 have been 

obtained by comparing the data reported in the online database Matweb, which are 

provided by ceramic suppliers. Since the maximum considered temperature for the 

thermo-mechanical analysis is 660°C (i.e. PCM melting temperature), the ceramic 

properties can reasonably assumed to be constant. 

 Table 5.3  Thermo-mechanical properties of the considered ceramics 

Ceramic 

Young’s 

modulus 

Coeff. thermal 

expansion 

Thermal 

conductivity 

Flexural 

strength 

E (GPa) CTE (10–6/K) k (W/m∙K) MOR (MPa) 

AlN 330 4.5 160 320 

Al2O3 (96% purity) 300 8.2 25 345 

Mullite 151 5.4 6 180 

Sialon 288 3.0 17.5 760 

SiC  410 4.0 120 550 

Si3N4 (Sintered)  310 3.3 29 689 
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Since ceramics are brittle materials and their strength properties vary with the applied 

load (i.e. tensile strength is much lower than compressive strength), the equivalent stress 

along the first principal direction 𝜎𝑆1 has to be used to evaluate the material failure. More 

in particular, the maximum first principal stress 𝜎𝑆1,𝑚𝑎𝑥  must be lower than the modulus 

of rupture of the evaluated ceramic.   

The main performance parameter of the PCM-based refractory brick is the energy density 

Eρ, which represents the amount of energy that can be stored in the form of latent heat per 

unit of volume. Energy density is strictly related with the geometric parameters of the 

PCM-based refractory brick; in particular, referring to the bidimensional model, the ratio 

between the PCM area and the total area, which represents the PCM filling ratio, relates 

the energy density to the geometry of the PCM-based refractory brick.  

5.3.2 Thermo-fluid dynamic analysis  

A CFD analysis is carried out to compare the performance of a traditional refractory brick 

technology with that of the PCM-based refractory brick, when they are used to protect 

superheaters installed in the combustion chamber. In particular, the total heat flux 

entering the steam has been used as comparison criteria.  

Two different bidimensional CFD models have been developed: the baseline model (see 

Figure 5.7a) and the PCM-brick model (see Figure 5.7b). In the baseline model, thermal 

properties of traditional alumina refractory brick have been used; in particular, a value of 

3.5 W/mK has been used for the thermal conductivity. In the PCM-brick model, the 

considered PCM is the aluminium (see thermal properties in Table 5.2), while the adopted 

ceramic is the high density Al2O3 (96% purity), which properties are reported in Table 

5.3. Both models share same material for steam pipe (i.e. carbon steel) and the mortar, 

which is a SiC-based mortar. 

The same boundary conditions are applied in both models: radiation-convection heat 

transfer on the flue gas side (red line in Figure 5.7) and convection heat transfer on the 

steam side (green line in Figure 5.7). On the flue gas side, a sinusoidal temperature profile 

(average temperature 950 °C, amplitude 75 °C and period 600 s) is applied by means of 

a user-defined function (UDF); the emissivity of the flue gas and the refractory brick are 
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assumed to be 0.5 and 0.8, respectively. On the steam side, a constant temperature of 450 

°C and a convection heat transfer coefficient of 250 W/m2K have been applied. 

  

(a) (b) 

Figure 5.7 Geometry and materials of the CFD models of the a) 

baseline and b) PCM-based brick  

The geometric parameters of both models are reported in Figure 5.7; it has to be pointed 

out that width W  has been selected in such a way that the temperature fluctuation applied 

on the flue gas side is absorbed by the traditional refractory brick (i.e. negligible 

temperature fluctuations are present in the steel pipe).   

Table 5.4  Geometric parameters of the CFD models  

Width, W (mm) 72 

Length, L (mm) 36 

PCM hole diameter, D (mm) 4 

PCM hole x interaxis, Sx (mm) 9 

PCM hole y interaxis, Sy (mm) 9 

Steam pipe inner radius, Ri (mm) 20 

Steam pipe thickness, tp (mm) 4 

Mortar thickness, tm (mm) 5 

5.4 Results and discussion 

In order to demonstrate the technological feasibility and the performance of the PCM-

based technology, thermo-mechanical and thermo-fluid dynamic analyses have been 

carried out. 

Figure 5.8a shows an example of the distribution of the first principal stress around the 

PCM (grey area); it can be observed the maximum stresses are concentrated at the 
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interface between the PCM and the ceramic. Figure 5.8b reports the typical distribution 

of the maximum first principal stress as a function of temperature for the considered 

ceramics; the reported stress distributions refer to the same geometric parameters (i.e. 

same hole diameter and interaxis). It can be observed that ceramics with low CTE and 

high young’s modulus (i.e. AlN, SiC, Si3N4 and Sialon) generate the highest thermal 

stresses, while ceramics with low CTE and low Young’s modulus (i.e. mullite) or with 

high CTE and high Young’s modulus (i.e. Al2O3) generates the lowest thermal stresses.  

  
(a) (b) 

Figure 5.8 a) Distribution of 𝝈𝑺𝟏 around the PCM and b) comparison of 𝝈𝑺𝟏,𝒎𝒂𝒙 distribution as a 

function of temperature for the considered ceramics  

As explained in the section 5.3.1, the main performance parameter of the PCM-based 

refractory brick is represented by the energy density Eρ, calculated according to equation 

(5.1), is directly proportional to the PCM filling ratio χ and the latent heat of the PCM 𝐻. 

𝐸𝜌 = χ ∙ 𝐻 (5.1) 

The PCM filling ratio χ is defined as: 

χ =
APCM
𝐴𝑡𝑜𝑡

 (5.2) 

where APCM is the area occupied by the PCM and 𝐴𝑡𝑜𝑡 is the total area of the FEM domain. 

Table 5.5 reports the PCM filling ratio of the PCM-based refractory brick when the 

considered ceramics are used; the reported PCM filling ratios and energy densities have 
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been calculated when the maximum first principal stress 𝜎𝑆1,𝑚𝑎𝑥 is equal to the 90% of 

the modulus of rupture.  

Table 5.5  Performances of the PCM-based refractory brick for the considered ceramics 

 
PCM Filling 

Ratio, χ [-] 

Energy density, 

𝐸𝜌[MJ/m3] 

Mullite 1% 8.55 

AlN 6% 69.82 

Al2O3 (96% purity) 16% 168.95 

SiC 21% 224.93 

Si3N4 (Sintered) 33% 356.00 

Sialon 39% 421.20 

To control the maximum first principal stress, the diameter of the PCM holes has been 

maintained constant while the interaxis Sx and Sy, which are assumed to be equal, have 

been varied. It can be observed that mullite has the lowest performance; this is due to the 

combination of a low CTE and a low modulus of rupture. The best material results to be 

the sialon, followed by silicon nitride Si3N4 and silicon carbide SiC. Nevertheless, all 

these ceramics are usually quite expensive. Alumina-based ceramics are usually cheaper, 

so the alumina Al2O3 at 96% of purity probably represents the best trade-off between 

performance and cost. 

Figure 5.9a shows the temperature of the PCM in different rows along the y axis, from 

the steam side (y=0) to the flue gas side (y=72 mm); the melting point temperature of 

aluminium is also illustrated with the dashed line. As it can be seen, all the rows of PCM 

pipes successfully experience phase change during the temperature fluctuation. The 

closer the PCM row to the steam pipe is, the less fluctuation of temperature they 

experience. Figure 5.9b reports the temperature distributions across the refractory bricks 

along the y direction from the steam pipe to the radiation wall. Contrary to the baseline 

case, which experiences over 500 °C of high temperature difference across the refractory 

material, the PCM case reveals much less temperature difference of less than 200 °C. The 

result indicates that the proposed PCM-based technology helps to reduce more than half 

of the thermal gradient, thus mitigating the thermal stress exposed to the highly brittle 

refractory materials. 
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The time-averaged value of the total surface flux for PCM case is 22139 W/m2, which is 

almost twice the value of the baseline case. This significant increasing of surface total 

heat flux demonstrates better heat transfer performance by using the PCM-based 

refractory brick. 

(a) (b) 

Figure 5.9 a) Temperature of the PCM in different rows and b) comparison of the temperature 

gradient of the traditional technology and the PCM-based refractory brick 

The CFD and FEM simulation demonstrate high feasibility of this technology in terms of 

buffering heat flow, reducing thermal gradient within ceramics, and delivering much 

higher heat flux to the steam flow.  

5.5 Conclusions 

In this chapter, an innovative refractory brick technology based on phase change materials 

for corrosion protection of the radiant superheaters has been proposed. The proposed 

technology could enable the installation of radiant superheater in the hottest zone of the 

WtE plants, which then allows the steam to be heated up to 600°C and the efficiency to 

be increased up to 34%. Aluminium has been considered as high temperature PCM, while 

several commercial ceramics (e.g. Al2O3, AlN and Si3N4) have been evaluated as 

containment material due to their high resistance to corrosion. A detailed 

thermomechanical analysis has demonstrated the technological feasibility of the proposed 

technology and it has identified Al2O3 has the most suitable ceramic for containing 

aluminium. 
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A computational fluid dynamic (CFD) simulation have been carried out to compare the 

performance of the traditional refractory brick technology with that proposed in this 

chapter. The results showed that the PCM-based refractory brick can almost double the 

heat flux to the steam flow, while reducing thermal power fluctuations entering the steam.  

The results of the present chapter contribute to the establishment of high temperature 

phase change material thermal energy storage to improve energy efficiency of waste-to-

energy plants. 
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APPENDIX A 

APPENDIX A 
TRANSIENT THERMO-MECHANICAL  

SIMULATION OF PCM SYSTEM RESPONSE 

 

This Appendix presents the distribution of temperature and thermal stresses calculated by 

a transient thermo-mechanical simulation, which also includes the phase change (melting) 

of the PCM. The purpose of this simulation is to confirm how the hypothesis of steady 

state analysis and uniform temperature distribution in the PCM system is a very good 

approximation of transient analysis. Secondly, the simulation results will also show how 

the modelling of phase change of PCM is actually not necessary in the computation of 

thermal stresses, as the highest stress occurs only at the start-up phase when the PCM is 

solid, whereas much lower stresses occur when the PCM is liquid, or even when it is still 

solid at temperatures far below the melting point. 

The transient thermo-mechanical simulation adopts the same mesh distribution used in 

the one quarter finite element plane model of Figure 3.33a, although 8-nodes elements 

are preferred here to improve solution accuracy. The model is under ‘plane stress’ 

condition (i.e. zero axial stress), which is also justified in Appendix B. In transient 

simulations, thermal analysis is carried out first to compute the time-varying temperature 

in each node, which is next applied as a load thermal input in the mechanical analysis.  

In thermal analysis, to replicate as close as possible the operating condition in the settling 

chamber (see Figure 3.29a), the PCM system is subjected to a convection boundary 

condition, with a film coefficient hext = 126 W/m2K and a waste gas temperature (bulk 

temperature) that increases linearly from 200 °C to 950 °C over a time interval of 20 min, 

then back to 200 °C over the next 20 min, and then kept constant over the final 20 min.  

The phase change (melting) of the PCM (aluminium) is simulated by defining an enthalpy 

vs. temperature curve, which increases by the latent heat Ha=396 kJ/kg (see Table 3.12) 

at the melting temperature. 
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In mechanical simulation, an elastic material model is used, with temperature-dependent 

mechanical properties as per Table 3.13; note how the elastic modulus of the PCM 

(aluminium) rapidly goes to zero for temperatures approaching 660 °C (for example, from 

20 °C to 400 °C the elastic modulus is halved). In simulations, the AISI 316 steel is used 

for the container, but similar conclusions would be obtained by using AISI 410S as well. 

In transient simulation, a Newmark time integration scheme is adopted, with a very small 

integration time step to assure numerical convergence. 

Figure A.1 shows the temperature and stress over time, monitored at four different 

locations in the PCM system: i) outer surface of steel container (labelled ‘surface’), ii) 

inner surface of steel container, at the PCM/steel interface (labelled ‘interface’), iii) at a 

point in PCM part, 4 mm underneath the PCM/steel interface (labelled ‘sub-interface’), 

iv) at the centre of PCM. 

Figure A.1a shows that the temperature distribution within the PCM systems is almost 

uniform at any time instant (the four lines in the graph are overlapped). Melting of PCM 

starts after about 20 minutes and lasts for about 18 minutes; the temperature of PCM 

system then decreases as the bulk temperature goes down to 250 °C. It can be concluded 

that the hypothesis of uniform temperature distribution within the PCM system is fully 

justified by the results of transient thermal analysis shown in Figure A.1a. 

Figure A.1b shows the change over time of radial and tangential (hoop) thermal stresses 

at some locations in the PCM system. The radial stress at ‘surface’ is always zero, as 

expected. For more clarity, the graph does not show the lines of radial σr and hoop σθ 

stresses at ‘centre’ and ‘sub-interface’ locations, because they are practically overlapped 

to the radial stress σr at ‘interface’, which is compressive in the time intervals 0÷15 min 

and 38÷60 min (while it is almost zero elsewhere). In the same time intervals where σr is 

compressive, tensile hoop stresses are observed at ‘surface’ and ‘interface’ locations. 

Finally, the graphs in Figure A.1b also shows the change over time of Von Mises stress 

at ‘interface’ locations, as calculated by equation  (3.21). 

The results of Figure A.1b show the following important findings. The Von Mises stress 

has a maximum after about 11 min, when the PCM system is at 400 °C and the PCM is 
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still in solid phase, see Figure A.1a (melting only starts after 20 min). The maximum Von 

Mises stress is slightly higher than 250 MPa, which is a value in close agreement to the 

estimation in Figure 3.34b given by the analytical model of section 3.5.4.  

For time values larger than 11 min, the Von Mises stress (as all other stress components) 

rapidly decrease; they become almost zero at about 15 min (i.e. when the PCM is still in 

solid phase). This sharp decrease of stress is explained by the drop in elastic properties of 

PCM material, which at temperatures above 400 °C actually has a very low value of its 

elastic modulus (see Table 3.13). Negligible stresses are then maintained up to 18 min 

(when melting of PCM starts) and later on, up to 38 min (when the PCM comes back to 

solid state). The results in Figure A.1b then show that melting of PCM actually does not 

contribute in an increase in calculated stresses, as compared to the values estimated by 

the analytical model in section 3.5.4. 

  
(a) (b) 

Figure A.1 Results of transient numerical analysis with melting of PCM, monitored at four 

different locations in the PCM system: a) temperature evolution and b) stresses. 

 

  



APPENDIX A 

228 

 

 



229 

 

APPENDIX B 

APPENDIX B 
NUMERICAL STUDY WITH A  

PLANE AXISYMMETRIC MODEL 

 

A small longitudinal portion of the PCM system in Figure 3.29b is analysed by a plane 

axisymmetric finite element model. Both aluminium and steel regions are discretised by 

4-nodes elements with axisymmetric option, arranged in a mapped mesh over the whole 

domain. Contact elements are also placed at the interface between aluminium and steel 

container, to simulate the separation and then to allow a relative sliding between the two 

materials. Two values of the friction coefficient μ were used to simulate two limiting 

situations: μ=0 for perfect sliding (i.e. no constraint to aluminium thermal expansion), 

μ=0.65 (a typical value for aluminium/steel coupling) to simulate a constrain to thermal 

expansion of aluminium. Both aluminium and steel materials are assumed to be linear 

elastic, with mechanical properties listed in Table 3.13. 

The whole model is subjected to a uniform temperature increase (to simulate the start-up 

phase described in section 3.5.2), which induces a thermal expansion of the contained 

aluminium. Figure B.1 shows the distribution of stresses (radial σr , hoop σθ , axial σz and 

shear τrz) resulting from the analyses with the two values of friction coefficient. The 

figures also compare the equivalent Von Mises stress: 

𝜎vm = √𝜎r
2 + 𝜎θ

2 + 𝜎z
2 − 𝜎r𝜎θ − 𝜎r𝜎z −σθ𝜎z + 3𝜏rz

2  (B.1) 

to the von Mises stress calculated by equation (3.21) under the plane stress hypothesis 

(σz=τrz=0).  

With no friction at the interface (μ=0), there is no constraint to thermal expansion and 

only radial σr and hoop σθ stresses develop, while, as expected, the axial and shear stresses 

are zero (σz=τrz=0). Instead, with a high friction coefficient (μ=0.65) the free thermal 

expansion of aluminium is prevented and both axial σz and shear stress τrz appear, along 

with radial σr and hoop σθ stresses. 
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(a) (b) 

Figure B.1 Stress distribution as a function of radial coordinate for two values of friction 

coefficient at the aluminium/steel interface: a) zero friction (μ=0) and b) μ=0.65. 

In aluminium the axial stress is compressive, while it is discontinuous at the interface and 

then tensile in the steel. The figures show that the axial stress has a small influence on the 

von Mises stress in the steel container. At the inner radius, the equivalent von Mises stress 

under plane stress, see equation (3.21), is about 14% higher than the von Mises stress of 

equation (B.1), which considers instead all stress components. Remarkably, the plane 

stress model is then over-conservative. As known from the theory of strength of materials, 

there would actually be no difference in equivalent stresses, if they were calculated by 

using the Guest-Tresca criterion (i.e. maximum shear stress), which computes the 

equivalent stress σgtr=| σθ – σr | as the difference of maximum principal stresses. 

These results allow one to conclude that the plane stress hypothesis is a reasonable 

assumption for the analytical model of the PCM system. 

 



231 

 

APPENDIX C 

APPENDIX C 
SIMPLE TWO-BARS MECHANICAL MODEL 

 

The two-bars model in Figure 3.30b exemplifies two elementary elements at the 

aluminium/steel interface in the PCM system. The two elements are attached at two rigid 

plates at both ends. One end plate is fixed, while the plate at the opposite side can 

translate. No rotations are allowed and the bars can only deform along the longitudinal 

direction (i.e. this is a one-dimensional model).  

The two bars, which represent aluminium and steel, have, respectively, areas Aa and As, 

elastic modulus Ea and Es, and coefficient of thermal expansion αa, αs. Both bars are 

subjected to a temperature increment ΔT = T-Tref, with respect to a reference temperature 

Tref. 

The thermal expansion of the system is partially constrained by the different longitudinal 

elongation of the two bars, which are then subjected to thermal stresses. The value of 

thermal stresses can be computed analytically by the expressions. The total strain in each 

bar is the sum of thermal strain and mechanical strain: 

𝜀tot = 𝜀th + 𝜀mec (C.1) 

Thermal strain is caused by the temperature increase, εth=αΔT, while the mechanical 

strain εmec gives the thermal stress σ=Eεmec. The response of the two-bar model in Figure 

2b is governed by the following equations (equilibrium and compatibility): 

{
𝜀tot,a = 𝜀tot,s

𝜎a 𝐴a + 𝜎s 𝐴s = 0
 (C.2) 

The first equation states that the elongations of both bars must be equal, because the bars 

are attached to the same rigid end plate; the second equation specifies the equilibrium of 

forces transmitted by the two bars to the top rigid plate. By using equation (C.1), the first 

of previous equations can be rewritten as: 
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𝛼a∆𝑇 +
𝜎a
𝐸a
= 𝛼s∆𝑇 +

𝜎s
𝐸s

 
(C.3) 

After rearranging, and by using the second equation in (B.2), the stress in the steel bar is 

obtained as: 

𝜎s =
(𝛼a − 𝛼s)𝐸s∆𝑇

1 +
𝐸s𝐴s
𝐸a𝐴a

 
(C.4) 

while the stress in the aluminium bar is: 

𝜎a = −
(𝛼a − 𝛼s)𝐸a∆𝑇

1 +
𝐸a𝐴a
𝐸s𝐴s

 (C.5) 

Equations (C.4) and (C.5) show that thermal stresses are directly proportional to the 

temperature change and, of course, no stress would develop without a temperature 

variation (ΔT = 0). No stress is also generated (even with a temperature change ΔT ≠ 0) 

if both materials have identical thermal expansion coefficients (αa = αs), because the two 

bars elongate with identical thermal expansions. For the aluminium/steel system (where 

αa > αs), the equations (C.4)-(C.5) correctly predict a tensile stress in the steel bar and a 

compressive stress in the aluminium bar, as also shown by the results in Figure 3.31.  

Equations (C.4) and (C.5) also show that thermal stress is controlled by the stiffness 

values of aluminium and steel elements (summarised by the elastic moduli Ea, Es), other 

than by the relative ratio of stiffness (summarised by the ratios Ea/Es and Es/Ea). 
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