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Characterized subgroups of the circle group ∗

Raffaele Di Santo Dikran Dikranjan Anna Giordano Bruno

Dedicated to the 70-eth birthday of Hans Weber

Abstract

A subgroup H of the circle group T is said to be characterized by a sequence u = (un)n∈N of
integers, if H = {x ∈ T : unx → 0}. The characterized subgroups of T are known also under the
name topologically u-torsion subgroups.

This survey paper is dedicated to characterized subgroups of T: we recall their main properties
and collect most of the basic results from the wide bibliography, following, when possible, the
historical line, and trying to show the deep roots of this topic in several areas of Mathematics. Due
to this universality of the topic, many notions and results were found independently by various
authors working unaware of each other, so our effort is also directed towards giving credit to all of
them to the best of our knowledge.

We provide also some background on the notions of characterized subgroup and topologically
u-torsion subgroup in the general case of topological abelian groups, where they differ very sub-
stantially.

1 Introduction

This survey provides a comprehensive outline of the area of the so called characterized subgroups of
the circle group, giving also a picture of the general case of characterized subgroups of topological
abelian groups (see §7). Our aim is to show the various faces of this topic, inspired by Topological
Algebra (topologically torsion elements, the open mapping theorem, etc. – see §2), Number Theory
(diophantine approximation and continued fractions – see §4), Analysis (trigonometric series – §6),
Descriptive Set Theory (the study of various kinds of thin Borel sets and their hierarchy – see §3),
Topology (convergent sequences in precompact group topologies, sequential limit laws, etc. – see
§§5,8), etc. Our choice to start with Topological Algebra (i.e., topologically torsion elements) is only
explained by the desire to keep the line of the first authors survey [28], although the knowledge
accumulated during the years shows that a completely different approach is as natural and possible.

A few words about the term characterized subgroup are in order. As far as subgroups of the circle T
are concerned, characterized subgroups have long been studied under the name topologically u-torsion
subgroups (of T, see §2). Since these subgroups are determined (defined, characterized) by a sequence,
gradually the term “characterized by a sequence” started to be used since [14] for some time, then
gradually it was abbreviated to “characterized” (or, the better version, “characterizable” – see [54]).
Both “characterized subgroups” and “topologically u-torsion subgroups” can be successfully defined
and used for arbitrary topological abelian groups; we dedicate some attention to these more general
versions in §§7,8, trying to show in §8 how big is the divergence between these two approaches; §8
contains also a non-abelian version of “topologically u-torsion element”. The non-abelian counterpart

∗The third named author is supported by Programma SIR 2014 by MIUR (Project GADYGR, Number RBSI14V2LI,
cup G22I15000160008) and for this work was partially supported by the “National Group for Algebraic and Geometric
Structures, and Their Applications” (GNSAGA - INdAM).
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of “characterized subgroup” of a compact group is largely discussed in the nice survey paper [54], while
characterized subgroups of arbitrary topological abelian groups are discussed in the survey paper [33].

This survey is based on (but not limited to) a talk given by the third named author at the 31st
Summer Conference on Topology and its Applications in Leicester - August 2nd, 2016.

It is a pleasure to dedicate this survey to Hans Weber, on the occasion of his retirement. Up to
some point this determined also our choice of the precise limits of the topic, since our joint papers on
characterized subgroups of the circle group with him are the backbone of this survey.

Notation and terminology

We denote by Z the set of integers, by N the set of non-negative integers, by N+ the set of positive
naturals, and by P the set of prime numbers. For n ∈ N+ and p ∈ P, Z(n) denotes the cyclic group
of order n and Zp the group of p-adic integers. We say that a subset L of N is large if there exists a
finite F ⊆ Z such that N ⊆ F + L.

We denote by R the reals, and for x ∈ R let {x} be its fractional part. The Lebesgue measure on
R is denoted by λ. The cardinality of the continuum is c.

The circle group is T = R/Z written additively (T,+). We denote by $ : R → R/Z = T
the canonical projection and for r ∈ R we often write r̄ in place of $(r) = r + Z ∈ T; let also
ϕ = $ �[0,1): [0, 1)→ T, which is a bijection. We consider on T the quotient topology of the topology
of R and we denote by µ the (unique) Haar measure on T.

For a topological space (X, τ), we denote by w(X, τ) its weight.

Let G be a group. The fact that H is a subgroup of G is abbreviated to H ≤ G and we denote by
〈A〉 the subgroup of G generated by a subset A of G. The group G is divisible if for every g ∈ G and
n ∈ N the equation xn = g has a solution in G.

Abelian groups will always be written additively. For an abelian group G and n ∈ N+, the sets
G[n] = {x ∈ G : nx = 0} and nG = {nx : x ∈ G} are subgroups of G.

Let G be an abelian group and p a prime. The p-torsion subgroup of G is

tp(G) = {x ∈ G : pnx = 0 for some n ∈ N},

while the torsion subgroup of G is

t(G) = {x ∈ G : nx = 0 for some n ∈ N+}.

For an abelian group G, denote by Ĝ its Pontryagin dual.

For a sequence u in N+ with u0 = 1, denote by bu = (bun)n∈N+ the sequence defined by

bun =
un
un−1

for every n ∈ N+. When there is no possibility of confusion we write simply b = (bn)n∈N+ .

2 Topologically u-torsion subgroups of T

2.1 Topologically p-torsion and topologically torsion subgroup

The following notions appear in Bracconier [17], Vilenkin [81], Robertson [75], Armacost [3]:

Definition 2.1. [[17, 81]] An element x of an abelian topological group G is:

(a) topologically p-torsion, for a prime p, if pnx→ 0;
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(b) topologically torsion if n!x→ 0.

Clearly, a torsion element of a Hausdorff topological abelian group is topologically p-torsion pre-
cisely when it is p-torsion.

For a prime p, the topologically p-torsion elements of G form the topologically p-torsion subgroup
of G, namely

tp(G) = {x ∈ G : pnx→ 0}.

Similarly, the topologically torsion elements of G form the topologically torsion subgroup of G

G! = {x ∈ G : n!x→ 0}.

Clearly, tp(G) ⊆ tp(G) for every p ∈ P, and t(G) ⊆ G!.

Example 2.2. Armacost [3] observed the following non-trivial facts:

(a) tp(T) = tp(T) = Z(p∞) for every p ∈ P;

(b) ē ∈ T!, but ē 6∈ t(T) = Q/Z, where e = limn→+∞
(
1 + 1

n

)n ∈ R is the Euler number (sometimes
called also Napier’s constant).

Item (b) above shows that the topologically torsion subgroup T! may be much more complicated
compared to the torsion subgroup Q/Z of T. This is why Armacost [3] posed the following:

Problem 2.3 ([3]). Describe the subgroup T! of T.

A solution of this problem was obtained independently by Borel [16], and somewhat earlier by
Dikranjan-Prodanov-Stoyanov [43] (although the latter solution was not complete and was completed
subsequently in [25] in the sense explained in Remark 2.13). To this end all these authors used the
fact that for every x ∈ [0, 1) there exists a unique sequence (cn)n∈N+ in N such that

x =
∞∑
n=1

cn
(n+ 1)!

, (2.1)

with cn < n+ 1 for every n ∈ N+ and cn < n for infinitely many n ∈ N+. A more general property is
described in Theorem 2.11.

Theorem 2.4 ([43, 16, 25]). Let x ∈ [0, 1) as in (2.1). Then x̄ ∈ T! if and only if cn
n+1 → 0 in T.

2.2 Topologically p-torsion subgroups of a compact group

This subsection is dedicated to the bold question: how big can be the topologically p-torsion subgroup
tp(G) of a topological abelian group G? If G is a discrete torsion-free abelian group, then tp(G) = G! =
0. This example suggests to impose some (compactness-like) condition on G ensuring non-triviality of
the subgroups tp(G).

A topological abelian group (G, τ) is:

(a) totally bounded if for every non-empty U ∈ τ , there exists a finite subset F of G such that
G = U + F ;

(b) precompact if τ is Hausdorff and totally bounded.
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It is well-known that the precompact abelian groups are precisely the topological subgroups of the
compact abelian groups. The topological subgroups (up to topological isomorphism) of the locally
compact abelian groups are named locally precompact.

Using Example 2.2, one can see (see [43, Lemma 4.1.1]) that, for a prime p, a non-torsion element
x of a locally precompact abelian group G is topologically p-torsion if and only if pnvnx→ 0 for every
sequence v = (vn)n∈N in Z, and this occurs precisely when the cyclic subgroup 〈x〉 ∼= Z carries the
p-adic topology as a topological subgroup of G.

Elements with this (obviously, stronger) property were introduced by Stoyanov [79, 80, 42] (see
also [28, 43]) under the name quasi p-torsion; they were largely studied in the second half of the
seventies and in the eighties of the last century, in connection to the study of groups satisfying the
open mapping theorem (the so called minimal groups, see [27, 39]). The subgroup of all quasi p-torsion
elements of a topological abelian group G is denoted by tdp(G) in [79, 80, 27, 43, 28]. So what was
stated above is simply the equality tdp(G) = tp(G) for a locally precompact abelian group G.

Moreover, Stoyanov noticed that the sum wtd(G) :=
∑

p∈P tdp(G) is always direct and called
the elements of the subgroup wtd(G) of G weakly periodic. Clearly, every torsion element is weakly
periodic, so every torsion (in particular, every finite) abelian group consists entirely of weakly periodic
elements. Yet, even precompact abelian groups G may have wtd(G) = 0 (e.g., every infinite cyclic
subgroup of T). However, things change completely for compact groups:

Theorem 2.5 ([80]). For every compact abelian group G the subgroup wtd(G) is dense.

Actually, one can say more, as wtd(N) = N ∩wtd(G) for every closed subgroup N of a topological
abelian group G. Hence, the above theorem implies that the subgroup wtd(G) is actually totally dense,
i.e., it densely intersects all closed subgroups of a compact group G. As a first consequence of this
theorem, one can see that |wtd(G)| is “quite close to” |G| when G is compact [80].

As another corollary of the above theorem and of a well-known criterion for minimality of the
dense subgroups of a compact group, due to Prodanov and Stephenson (see [43, Corollary 2.5.2]), one
obtains a nice connection of topologically p-torsion elements and the open mapping theorem:

Theorem 2.6 ([43, Theorem 4.3.7]). A dense subgroup of a compact abelian group G is minimal if
and only if for every prime p every non-trivial closed subgroup of G contains a non-trivial topologically
p-torsion element.

An equivalent “internal” formulation of this theorem is: a precompact abelian group G is minimal
if and only if tp(N) 6= 0 for every prime p and for every non-trivial closed subgroup N of G. (Note
that tp(N) = N ∩ tp(G) for every subgroup N of G.)

In conclusion, let us recall that the equality tp(G) = tdp(G) remains true for all minimal abelian
groups, as these groups are precompact, according to the celebrated Prodanov-Stoyanov theorem [43,
Theorem 2.2.7].

Theorem 2.5 should be compared with its counterpart concerning (total) density of the torsion
part t(G) of a compact abelian group. The compact abelian groups G such that t(G) is totally dense
were studied in [41] under the name exotic tori. It was shown that exotic tori are finite dimensional
and allow for a nice approximation by Lie groups (tori).

2.3 Topologically u-torsion subgroup

The following definition generalizes the ones seen above of topologically p-torsion subgroup and topo-
logically torsion subgroup.

Definition 2.7. [[43, 28]] For a sequence u = (un)n∈N in Z and a topological abelian group G, call
an element x ∈ G topologically u-torsion if unx→ 0. The topologically u-torsion subgroup of G is

tu(G) = {x ∈ G : unx→ 0}.
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We recover the topologically p-torsion subgroup and topologically torsion subgroup as follows:

(a) for p ∈ P, tp(G) = tp(G), where p = (pn)n∈N;

(b) G! = tu(G), where u = ((n+ 1)!)n∈N.

As a matter of fact, the definition of topological u-torsion was given in [43, §4.4.2] only for sequences
u with un|un+1 for every n ∈ N (see §2.4 and Definition 2.10).

Example 2.8. [[38]] For the torsion subgroup of T, we have that t(T) = Q/Z = tu(T), where u is
the sequence (1!, 2!, 2 · 2!, 3!, 2 · 3!, 3 · 3!, 4!, . . . , n!, 2 ·n!, 3 ·n!, . . . , n ·n!, (n+ 1)!, . . .). Similarly, one can
characterize arbitrary subgroups of Q/Z (see [38]).

This survey is dedicated to the following general problem:

Problem 2.9. Given a sequence u in Z, describe the subgroup tu(T).

2.4 Arithmetic sequences

Here we see that Problem 2.9 has a complete solution for sequences u sharing the common property
un|un+1 for every n ∈ N, with both sequences (pn)n∈N and ((n+ 1)!)n∈N considered in §2.1.

Definition 2.10. [[43, Chapter 4]] An arithmetic sequence is an increasing sequence u = (un)n∈N in
N+, such that u0 = 1 and un|un+1 for every n ∈ N.

The name arithmetic sequence was coined later on in [34]. Clearly, an increasing sequence u in N+

with u0 = 1 is arithmetic if and only if the sequence of ratios bu is in N+.

Every arithmetic sequence gives rise to a nice representation generalizing (2.1):

Theorem 2.11 ([71]). Let u be an arithmetic sequence. For every x ∈ [0, 1), there exists a unique
sequence (cun(x))n∈N+ in N such that

x =

∞∑
n=1

cun(x)

un
, (2.2)

with cun(x) < bun for every n ∈ N+, and cun(x) < bun − 1 for infinitely many n ∈ N+.

When no confusion is possible, we shall simply write cun or cn in place of cun(x). For x ∈ [0, 1), with
canonical representation (2.2), let

supp(x) = {n ∈ N+ : cun 6= 0} and suppb(x) = {n ∈ N+ : cun = bun − 1}.

Clearly, suppb(x) ⊆ supp(x) and suppb(x) cannot be cofinite by definition.

Theorem 2.12 ([43, 25]). Let u be an arithmetic sequence and x ∈ [0, 1).

(a) If bu is bounded, then x̄ ∈ tu(T) if and only if (cun(x))n∈N+ is eventually 0.

(b) If bun → +∞, then x̄ ∈ tu(T) if and only if $( c
u
n(x)
bun

)→ 0 in T.

Remark 2.13. Item (b) was not complete in [43, §4.4.2, Theorem], as only the stronger condition

“ c
u
n(x)
bun
→ 0 in R” was considered there, missing in this way the elements x̄ ∈ tu(T) with $( c

u
n(x)
bun

) →
0 in T, but cun(x)

bun
6→ 0 in R. This gap was filled in [25].

Theorem 2.12 is only a corollary of the main result of [25] providing a description of tu(T) for an
arithmetic sequence u. Here we give a consequence.
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Corollary 2.14 ([25]). Let u be an arithmetic sequence. The following conditions are equivalent:

(a) bu is bounded;

(b) tu(T) is countable;

(c) |tu(T)| < c;

(d) tu(T) is torsion.

It was proved much later in [35] that one can add to these four equivalent conditions also “tu(T)
is an Fσ-subgroup”. This was inspired by the fact, established earlier by Gabriyelyan [54], that tu(T)
is not an Fσ-subgroup for the sequence u = (n+ 1!)n∈N.

Following [34], given an arithmetic sequence u, call an infinite subset A of N:

(a) b-bounded if the sequence {bun : n ∈ A} is bounded;

(b) b-divergent if the sequence {bun : n ∈ A} diverges to infinity.

Theorem 2.12(a) can be reinforced in the following sharper form:

Corollary 2.15 ([25, Corollary 2.4]). Let u be an arithmetic sequence and x ∈ [0, 1). If supp(x) is
b-bounded, then the following conditions are equivalent:

(a) x̄ ∈ tu(T);

(b) cun(x) = 0 for almost all n ∈ N+;

(c) x̄ is torsion.

In 2011 Impieri found a gap in the description given in [25] of tu(T) for an arbitrary arithmetic
sequence u. The following complete description was obtained in [34].

Theorem 2.16 ([34]). Let u be an arithmetic sequence and let x ∈ [0, 1). Then x̄ ∈ tu(T) if and only
if supp(x) is finite or if supp(x) is infinite and for all A ⊆ N the following conditions hold:

(a) if A is b-bounded, then:

(1) if A ⊂∗ supp(x), 1 then A + 1 ⊂∗ supp(x), A ⊂∗ suppb(x) and limn∈A
cun+1+1

bun+1
= 1 in R;

moreover, if A+ 1 is b-bounded, then A+ 1 ⊂∗ suppb(x) as well;

(2) if A ∩ supp(x) is finite, then limn∈A
cun+1

bun+1
= 0 in R; moreover, if A + 1 is b-bounded, then

(A+ 1) ∩ supp(x) is finite as well;

(b) if A is b-divergent, then limn∈A$( c
u
n
bun

) = limn∈A$( c
u
n+1
bun

) = 0 in T.

Now we give the counterpart of Corollary 2.15 with “b-bounded” replaced by “b-divergent”.

Corollary 2.17 ([34]). Let u be an arithmetic sequence and suppose that x ∈ [0, 1) has b-divergent
support. Then x̄ ∈ tu(T) if and only if the following two conditions are satisfied:

(a) limn∈supp(x)$
(
cun
bun

)
= 0 in T; and

(b) limn∈I′
cun
bun

= 0 in R for every infinite I ′ ⊆ I such that I ′ − 1 is b-bounded.

1Here X ⊂∗ Y for subsets of N means, as usual, that X \ Y is finite.
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3 Characterized subgroups of T

Let us warn the reader that this section can be consistently considered as a continuation of the previous
one, since the new notion of characterized subgroup tu(T) (given in Definition 3.1), as far as the circle
group T is concerned, is nothing else but the topologically u-torsion subgroup already introduced in the
previous section. Nevertheless, both notions can be considered in arbitrary topological abelian groups
(as already done in Definition 2.7 for topologically u-torsion subgroups; see §7 for a counterpart
of characterized subgroups in the general case). In §8 we offer a comparison showing the striking
difference between both notions. Indeed, it turns out that the circle group is, in appropriate sense,
the only group where they coincide and produce the same effect (see Theorem 8.7).

3.1 Definition and generalization

The terminology “characterized subgroup” was coined in [14]:

Definition 3.1. [[14]] A subgroup H of T is characterized if H = tu(T) for some sequence u in Z. We
say also that H is characterized by u, that u characterizes H, and that u is a characterizing sequence
for H.

As we mentioned above, for a sequence u in Z the subgroup of T characterized by u is precisely
the topologically u-torsion one. So we offer below also a reformulation of Problem 2.9, using the new
term:

Problem 3.2. Describe the characterized subgroups of T. In other words, given a sequence u in Z,
describe tu(T).

One can consider also the “inverse problem”: given H ≤ T, when is H characterized? In order
to attack this problem, one needs to obtain some feedback in the direction of the first one, namely
accumulate a reasonable knowledge on the basic properties of the characterized subgroups of T.

3.2 First properties and results

We start giving some basic properties of the characterized subgroups of T.

(a) If H is a finite subgroup of T, then H is characterized. Indeed, the finite subgroups of T are cyclic,
so one can use for example the argument from the initial part of §4.

(b) A sequence u in Z characterizes T if and only if u is eventually zero.

(c) If a proper subgroup H of T is characterized, then:

(1) H = tu(T) for some strictly increasing sequence u in N+;

(2) µ(H) = 0.

(d) Since tu(T) =
⋂
N≥2

⋃
m∈N

⋂
n≥m

{
x ∈ T : ‖unx‖ ≤ 1

N

}
is a Borel set (more precisely, an Fσδ-set),

so
either tu(T) is countable or |tu(T)| = c.

According to (d), every characterized subgroup of K is an Fσδ-set. Inspired by a construction of
Aaronson-Nadkarni [1], Biró [12] showed that the Fσ-subgroups of T need not be characterized. His
proof is based on the crucial point that he discovered, namely, the characterized subgroups of T are
Polishable (let us recall that a group is called Polishable if it admits a finer Polish group topology; this
topology is unique by a result of Solecki [76]). We state now Biró’s result; first recall that a nonempty
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subset K of T is a Kronecker set if K is compact and, for every continuous function f : K → T
and every δ > 0, there exists n ∈ Z such that maxk∈K ‖f(k) − nk‖ < δ (i.e., f can be uniformly
approximated by characters of T).

Theorem 3.3. Let K be an uncountable Kronecker set in T. Then the subgroup 〈K〉 is not Polishable.
In particular, 〈K〉 cannot be characterized.

Since 〈K〉 is obviously Fσ, this provides an example of a non-characterized Fσ-subgroup of T,
thereby answering a question of the second named author (see also [38], where some special classes of
Fσ-subgroups were shown to be characterized).

We recall now a result by Eggleston on the cardinality of the characterized subgroups of T.

Theorem 3.4 ([49]). Let u be a sequence in N+.

(a) If bun → +∞, then |tu(T)| = c.

(b) If bu is bounded, then tu(T) is countable.

This result was proved also in [6], as the authors were unaware of Eggleston’s paper.

A simple, yet quite non-trivial, strong sufficient condition for a subgroup to be characterized was
found by Borel:

Theorem 3.5 ([15]). All countable subgroups of T are characterized.

It was shown by Beiglböck-Steineder-Winkler [11] that u can be chosen with bu bounded, but also
arbitrarily fast increasing in the following sense.

Theorem 3.6 ([11, Theorem 4.2]). Let H be a countable subgroup of T and let m1 < m2 < . . . be an
(arbitrarily fast) increasing sequence of positive integers. Then there is an increasing characterizing
sequence u with mn < un for all n ∈ N, such that H = tu(T).

Unaware of Borel’s theorem, B́ıró-Deshouillers-Sós [14] proved that every countable subgroup of
T containing a non-torsion element is characterized (for the missing case of subgroups of Q/Z see
Example 2.8).

Borel’s motivation to study characterized subgroups of T was the connection to uniform distribution
mod 1 of sequences (xn)n∈N in R. A sequence (xn)n∈N in R is called uniformly distributed mod 1 if for
all [a, b] ⊆ [0, 1),

|{j ∈ {0, . . . , n} : {xj} ∈ [a, b]}|
n

−→ a− b.

For a sequence u in Z, let

Wu = {β ∈ [0, 1] : (unβ)n∈N is uniformly distributed mod 1}.

Obviously, Wu ⊆ [0, 1] \Q.

Theorem 3.7 ([83, 64]). Let u be a strictly increasing sequence in N+. Then λ(Wu) = 1. Moreover,
if un = P (n) for every n ∈ N for some fixed integer valued polynomial P (x), then Wu = [0, 1] \Q.

As Wu is properly contained in [0, 1] \ Q in general, it makes sense to pay attention also to the
“opposite behavior”; in other words, to study the set of those β ∈ [0, 1] such that the sequence
(unβ)n∈N is quite far even from being dense mod 1, namely tu(T) = {β̄ ∈ T : unβ̄ → 0}.
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4 Characterization of the cyclic subgroups of T

In this section we consider the cyclic subgroups of T. We see that they are all characterized by
finding appropriate sequences that witness this property. By Theorem 3.5 all countable subgroups of
T are characterized, but in the specific case of cyclic subgroups it is possible to explicitly construct
characterizing sequences as shown in [14].

For α ∈ R the cyclic subgroup 〈ᾱ〉 of T is finite if and only if α is a rational number, that is, α = p
q

for some p ∈ Z and q ∈ N+. It is not hard to verify that 〈ᾱ〉 = tu(T) for the sequence u = (un)n∈N
defined by u0 = 1 and un = qn for every n ∈ N.

4.1 Continued fractions and characterizing sequences

Let now α be an irrational number. Then α has a unique continued fraction expansion

α = a0 +
1

a1 +
1

a2 + . . .

denoted by α = [a0; a1, a2, . . .]; let a = (an)n∈N.
For every n ∈ N, let q = (qn)n∈N be the increasing sequence in N+ of the best approximation

denominators of α, with q−1 = 0 and q0 = 1. This is the sequence defined by

[a0; a1, . . . , an] =
pn
qn

and
qn+1 = an+1qn + qn−1. (4.1)

for every n ∈ N.
It is well-known that |qnα− pn| < 1/qn+1, so qnᾱ→ 0 in T. In our terms this means that

〈ᾱ〉 ⊆ tq(T). (4.2)

In 1988 Larcher proved that equality holds in Equation (4.2) under the assumption that the
sequence a is bounded. For a relevant example that is covered by Larcher’s theorem see Example 4.13
below.

Theorem 4.1 ([65, Theorem 1]). In the above notations, if a is bounded, then 〈ᾱ〉 = tq(T).

Larcher showed that in general the inclusion in Equation (4.2) can be strict. This follows also from
Theorem 3.4:

Remark 4.2. In the above notations, assume that an → +∞, and consider the sequence bq. By
Equation (4.1), bqn+1 ≥ an+1, so bqn → +∞. By Theorem 3.4, |tq(T)| = c, so clearly the inclusion in
Equation (4.2) is strict.

In case the sequence a is unbounded, Kraaikamp and Liardet in 1991 proved the following result.

Theorem 4.3 ([63, Theorem 3]). In the above notations, if a is unbounded, then |tq(T)| = c.

Therefore, they proved that the condition in Larcher’s theorem is actually equivalent to the equality
in Equation (4.1):

Theorem 4.4 ([63, Proposition]). In the above notations, 〈ᾱ〉 = tq(T) if and only if a is bounded.
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Let us resume the above results as follows:

Corollary 4.5. In the above notations, the following conditions are equivalent:

(a) a is bounded;

(b) 〈ᾱ〉 = tq(T);

(c) tq(T) is countable;

(d) |tq(T)| < c.

In [63] there is also a technical criterion (see [63, Theorem 1]) that was applied in 2001 by B́ıró-
Deshouillers-Sós [14] to set the case when a is unbounded. This was done by adding elements to the
sequence q to find the sequence vα defined by

q0 ≤ q1 < 2q1 < . . . < a2q1 < q2 < 2q2 < . . . < a3q2 < q3 < 2q3 < . . . .

Clearly, q ⊆ vα and so tvα(T) ⊆ tq(T).

Theorem 4.6 ([14, Theorem 1*]). In the above notations, 〈ᾱ〉 = tvα(T).

In [14] one can find three different proofs of the fact that every cyclic subgroup of T is characterized,
but only the one that we mentioned above is constructive.

Among other open problems left in [14], we mention the following problem due to Maharam and
Stone:

Problem 4.7 ([14, Problem 3]). Given α ∈ R, find all sequences u in N+ such that 〈ᾱ〉 = tu(T).

In his thesis [68], Marconato considered this problem for sequences u in N+ such that q ⊆ u ⊆ vα.
This clearly implies that

〈ᾱ〉 = tvα(T) ⊆ tu(T) ⊆ tq(T).

The aim was to find a condition equivalent to 〈ᾱ〉 = tvα(T) = tu(T).

Theorem 4.8 ([68]). In the above notations, let u be a sequence in N+ such that q ⊆ u ⊆ vα. If bu

is bounded, then 〈ᾱ〉 = tvα(T) = tu(T).

We believe that also the converse implication holds true.

Conjecture 4.9 ([68]). In the above notations, if u is a sequence in N+ such that q ⊆ u ⊆ vα, then
〈ᾱ〉 = tvα(T) = tu(T) if and only if bu is bounded.

We recall now two results from [14] that give necessary conditions for a sequence u in N+ to satisfy
〈ᾱ〉 ⊆ tu(T) for a given irrational α. In the above notations, by a classical result of Ostrowski, every
m ∈ N+ has a unique expansion

m =
K∑
k=0

dkqk,

for some K ∈ N and with 0 ≤ d0 < a1, 0 ≤ dk ≤ ak+1, and dk = ak+1 implies dk−1 = 0 for k ∈ N+.

For the sequence u in N+, for every n ∈ N consider the expansion un =
∑K(n)

k=k(n) dk(n)qk, where

dk(n) is the first non-zero coefficient of the expansion (i.e., dk(n) > 0).

Proposition 4.10 ([14, Proposition 1]). In the above notations, if ᾱ ∈ tu(T), then k(n)→ +∞.
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Let u be a sequence in N+ with un → +∞, and let

L = {k ∈ N : bk(n) 6= 0 for some n ∈ N}

(i.e., k ∈ L precisely when qk occurs in the expansion of at least one un).

Proposition 4.11 ([14, Proposition 2]). In the above notations, if L is not large, then tu(T) is
uncountable.

Corollary 4.12. In the above notations, if 〈ᾱ〉 = tu(T), then L is large.

4.2 Recurrent sequences

The following example answers [28, Question 3.11] asking to describe the subgroup tf (T), where
f = (fn)n∈N is the Fibonacci sequence f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, . . .. This was a
particular case of the more general form of sequences u considered in [28], namely those which satisfy

un|un+1 − un−1 for all n ∈ N+ (4.3)

(as f does). A direct alternative proof of the equality (4.4) was provided in [6]. All these authors were
unaware of Theorem 4.1 giving an answer to this quest in the case of f as the next example shows.

Example 4.13. Let φ be the Golden ratio, that is, φ = 1+
√
5

2 . Then

〈φ̄〉 = tf (T), (4.4)

where f = (fn)n∈N is the Fibonacci sequence f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, . . . ., by Theorem
4.1. Indeed, φ = [1; 1, 1, . . .] and qn = fn for every n ∈ N+.

Inspired by (4.4) and, more generally, by the class of sequences satisfying (4.3), Barbieri-Dikranjan-
Milan-Weber [9] considered sequences u in Z verifying an even more general linear recurrence. Here
we report only a result in the case of second-order linear recurrence, namely: for every n ≥ 2,
un = anun−1 + bnun−2, an, bn ∈ N+. (Notice that the coefficients an, bn, unlike in Example 4.13, may
vary with n.)

Theorem 4.14 ([9]). Let u be a sequence of second-order linear recurrence in N+. Then |tu(T))| = c
if and only if bu is not bounded.

This theorem generalizes Theorem 4.3. Indeed, if α = [a0; a1, a2, . . .] is an irrational and q is the
sequence of the best approximation denominators of α, then for every n ≥ 2, qn = anqn−1 + qn−2, q0 =
1, q1 = a1. For further results in the case of higher order linear recurrence see [9].

5 Characterized subgroups of T and precompact group topologies
of Z

The following problem was considered by Raczkowski [73, 74] and Barbieri-Dikranjan-Milan-Tonolo-
Weber [6, 40]:

For a given sequence u in Z, does there exist a precompact group topology τ on Z such that un
τ−→ 0?

If the answer is affirmative, u is called a TB-sequence (see [40]).

For an abelian group G and a subgroup H of Ĝ, let TH be the weakest group topology on G such
that all χ ∈ H are continuous. We recall the following fundamental theorem by Comfort and Ross on
totally bounded and precompact groups topologies on abelian groups.
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Theorem 5.1 ([23]). Let G be an abelian group and H a subgroup of Ĝ. Then:

(a) TH is totally bounded and w(G,TH) = |H|;

(b) TH is Hausdorff if and only if H is dense in Ĝ;

(c) if τ is a totally bounded group topology on G, then τ = TH for some H ≤ Ĝ.

For G = Z, we have Ĝ = T. In particular:

Corollary 5.2. The assignment H 7→ TH defines a monotone bijective correspondence between infinite
subgroups H of T and precompact group topologies on Z.

Clearly, a sequence u in Z converges to 0 in a totally bounded group topology τ = TH on Z
precisely when H ≤ tu(T). Therefore, Ttu(T) is the finest totally bounded group topology τ on Z with

un
τ−→ 0. Here we list some properties of this topology (see also [32] for further properties):

(a) w(Z, Ttu(T)) = |tu(T)|;

(b) Ttu(T) is precompact if and only if tu(T) is infinite;

(c) Ttu(T) is metrizable if and only if |tu(T)| = ω;

(d) σu is linear if and only if tu(T) is torsion.

One can find in [21] many examples of totally bounded group topologies τ = TH on Z without
any non-trivial convergent sequence. To this end one has to choose the subgroup H of T such that

un
TH−−→ 0 (i.e., H ≤ tu(T)) never occurs for a non-trivial sequence u in Z. Non-measurable subgroups

H of T satisfy this condition (for more details see [21] and [73]).
The subgroups H of T such that H ≤ tu(T) for some non-trivial sequence u satisfy µ(H) = 0, as

µ(tu(T)) = 0. This explains why non-measurable subgroups H of T do not satisfy H ≤ tu(T) for any
non-trivial sequence u in Z.

It was an open question of Raczkowski [74] whether a subgroup H of T with µ(H) = 0 that is
contained in no proper characterized subgroup of T exists. Such an example was built, under the
assumption of Martin Axiom, in [6]. Subsequently, Kunen-Hart [56] gave a proof in ZCF of this fact
(see also [57], extending this result on other compact groups beyond the circle T).

As a consequence of Theorem 3.4 one obtains:

Theorem 5.3 ([7]). Let u be a sequence in N+.

(a) If bun → +∞, then there exists a precompact group topology τ on Z such that w(Z, τ) = c and
un

τ−→ 0.

(b) If bu is bounded, then every precompact group topology τ on Z such that un
τ−→ 0 is metrizable.

6 Thin sets and characterized subgroups

In this section we recall several results that connect the characterized subgroups of T with some kind
of thin sets in Harmonic Analysis. For a comprehensive survey on thin sets see [19], here we recall
only some notions of thin sets related to absolute convergence of trigonometric series, i.e., series

a0
2

+

∞∑
n=1

(an cos 2πnx+ bn sin 2πnx) (6.1)

where an, bn ∈ R, n = 0, 1, . . . (b0 = 0 for simplicity).
We start by recalling the following result proved independently by Denjoy and Luzin.

12



Theorem 6.1 (Denjoy - Luzin). If the trigonometric series (6.1) converges absolutely on a set A ⊆
[0, 1] that is either non-meager or has positive Lebesgue measure, then

∞∑
n=1

(|an|+ |bn|) <∞; (6.2)

consequently, (6.1) absolutely converges everywhere.

Marcinkiewicz in [67] in honor of Niemytzki defined a subset A of [0, 1] to be an N -set if there
is a trigonometric series (6.1) absolutely converging on A failing (6.2) (i.e., not converging absolutely
everywhere) (see also [51]). Let N be the family of all N -sets of [0, 1].

In the next result, the first equivalent condition to be an N -set was proved by Salem, then Arbault
improved Salem’s criterion by replacing the arbitrary reals rn by the integers n.

Theorem 6.2 (Salem - Arbault). Let A be a subset of [0, 1]. The following conditions are equivalent:

(a) A is an N -set;

(b) there exist sequences of reals (%n)n∈N+, with %n ≥ 0 for every n ∈ N+, and (rn)n∈N+ such that∑∞
n=1 %n =∞ and

∑∞
n=1 %n sinπrnx absolutely converges for x ∈ A;

(c) there exists a sequence of reals (%n)n∈N+, with %n ≥ 0 for every n ∈ N+, such that
∑∞

n=1 %n =∞
and

∑∞
n=1 %n sinπnx absolutely converges for x ∈ A.

Replacing the coefficients %n by coefficients taken from the doubleton {0, 1}, Arbault introduced
the following notion, stronger than to be an N -set: a subset A of [0, 1] is an N0-set if there is an
increasing sequence (un)n∈N in N+ such that u0 = 1 and

∑∞
n=1 sinπunx absolutely converges for

x ∈ A. Let N0 be the family of all N0-sets of [0, 1].

Finally, we arrive at the definition that directly connects to characterized subgroups of T, a notion
that was considered by Arbault and named in his honour. A subset A of [0, 1] is an Arbault set (shortly,
A-set) if there is an increasing sequence u = (un)n∈N in N+ such that sinπunx→ 0 for all x ∈ A. Let
A be the family of all A-sets of [0, 1]. Clearly,

a subset A of [0, 1] is an A-set if and only if $(A) ⊆ tu(T) for some increasing sequence u in N+.

In analogy to A-sets, Kahane in [59] defined a subset A of [0, 1] to be a Dirichlet set (briefly, D-set)
if there is an increasing sequence u = (un)n∈N in N+ such that sinπunx → 0 uniformly on A. Let D
be the family of all D-sets of [0, 1].

Clearly, a D-set is necessarily an A-set. More precisely we have the following implications:

D-set ⇒ N0-set ⇒ A-set.

Subsets of A-sets are clearly A-sets and subsets of D-sets are clearly D-sets; moreover, A-sets and
D-sets have Lebesgue measure zero. The classical Dirichlet Theorem on Diophantine approximation
implies that each finite set is a D-set (see [59], for a proof see [18, 8.133]). Moreover, every D-set is
contained in a closed perfect D-set (see [48]) .

Following [19], a family F of subsets of [0, 1] is called a family of thin sets if ∅ ∈ F , [0, 1] 6∈ F and
F is stable under taking subsets (i.e., if A ∈ F and B ⊆ A, then B ∈ F). Moreover, a subset X of
[0, 1] is F-permitted if A ∪X ∈ F for every A ∈ F . Then the family P (F) of all F-permitted subsets
of [0, 1] is an ideal, and F is an ideal if and only if F = P (F).

Clearly, N , N0, A and D are families of thin sets. On the other hand, the families F of thin sets
related to trigonometric serie are often not ideals. For example, by Marcinkiewicz’s Theorem there
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are two perfect D-sets A and B such that $(A + B) = T and hence A ∪ B 6∈ A and A ∪ B 6∈ N .
Therefore, the families N and A of thin sets are not ideals.

This is a reason to look for conditions under which the union of two sets in F is still in F , and
furthermore a reason to look for F-permitted sets. The study of permitted sets was started by Arbault
in [2] and independently by Erdös, who proved that every countable subset of [0, 1] is N -permitted.
Kholshchevnikova proved that every countable subset of [0, 1] is also A-permitted (see [61]).

We are mainly interested in A-sets and D-sets in relation to characterized subgroups of T, so we
identify [0, 1) with T and we consider A-sets and D-sets of T. More precisely, we identify [0, 1) and T
by means of the bijection ϕ := $ �[0,1): [0, 1)→ T.

Definition 6.3. A subset A of T is an A-set (respectively, D-set) if ϕ−1(A) ⊆ [0, 1] is an A-set
(respectively, D-set); that is, there exists an increasing sequence u ∈ NN

+ such that unx→ 0 for every
x ∈ A (respectively, unx→ 0 uniformly on A).

We still denote by A and D respectively the families of all A-sets and all D-sets of T, and we use
the terminology A-permitted as above.

6.1 Inclusions of characterized subgroups of T and R

It is consistent with ZFC that there exists an A-permitted set with cardinality c (see [47]). Moreover,
Eliaš proved in [47] that the existence of A-permitted sets of size c is not provable in ZFC. To do
this, he shows that every A-permitted set is perfectly meager, since it is known that the existence of
a perfectly meager set of size c is not decidable in ZFC.

Motivated by this study on A-permitted sets, Eliaš in [46] studied the problem of when tu(T) ⊆
tv(T) for increasing sequences u,v in N+ (we always assume that u0 = v0 = 1). Let

S =
{

u ∈ NN
+ : u increasing, bun → +∞

}
.

Clearly, if A ⊆ T is an A-set, then A ⊆ tu(T) for some u ∈ S. This immediately implies the following
result, which shows that the special A-sets tu(T) with u ∈ S are “enough” to establish whether a
subset of T is A-permitted.

Theorem 6.4 ([47, Theorem 1.3]). A set X ⊆ T is A-permitted if and only if for every u ∈ S there
exists v ∈ S such that X ∪ tu(T) ⊆ tv(T).

Going back to Eliaš solution to the problem of the inclusion tu(T) ⊆ tv(T), for u,v ∈ S, we recall
first of all that, by [47, Theorem 1.1], for a strictly increasing sequence u in N+ and m ∈ Z there exists
an eventually null sequence r in Z (called a good expansion of m by u) such that

m =
∑
n∈N

rnun, where

∣∣∣∣∣∣
∑
j≤n

rjuj

∣∣∣∣∣∣ ≤ un+1

2
for every n ∈ N. (6.3)

So, if v is another strictly increasing sequence in N+, for every i ∈ N there exists a good expansion ri
of vi by u. Using the approach from [5], consider each ri as the i-th row of a countable infinite matrix
M ; then

v = Mu.

Note that M is row-finite, that is, each row ri is eventually null. We state now Eliaš’ result by using
this notation.
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Theorem 6.5 ([47, Theorem 1.2]). Let u,v ∈ S and let M = (ai,j)i,j∈N be the row-finite integer
matrix such that each row ri of A is a good expansion of vi by u (so v = Mu). Then tu(T) ⊆ tv(T)
if and only if:

(C) cj is eventually null for each column cj of M ;

(R) there exists m ∈ N such that
∑

j∈N |ai,j | ≤ m for every i ∈ N (i.e., supi∈N ‖ri‖1 < +∞).

Theorem 6.5 was strengthened in [5], where characterized subgroups of R are considered. For a
sequence u in R, let

τu(R) := {x ∈ R : unx→ 0 mod Z} .

A subgroup H of R is characterized if H = τu(R) for some sequence u in R. Note that, if u is a
sequence in Z, then τu(R) = $−1(tu(T)).

Characterized subgroups of R were studied in relation to uniform distribution of sequences modulo
Z by Kuipers and Niederreiter in the book [64], where it is proved in [64, Theorem 7.8] that τu(R) has
Lebesgue measure zero, if u is a sequence in R not converging to 0 in R (they give credit to Schoenberg
for this result, see [78]). Moreover, Borel proved in [15, Proposition 2] that if H = τv(R) is a non-trivial
proper characterized subgroup of R, then there exist γ ∈ R and a strictly increasing sequence u in N+

such that γH = τu(R). This underlines the strict relation between characterized subgroups of R and
characterized subgroups of T. Borel proved also that every countable subgroup of R is characterized
and left open the general question of a full description of the characterized subgroups of R.

In [5] the characterized subgroups τu(R) of R are always considered under the assumption that u
is in R \ {0} and |bun| → +∞, (where bun = un

un−1
for n ∈ N+ and u0 = 1). Thus, the cardinality of

τu(R) is c. Moreover, we can always assume that such sequences are in R+, since for any sequence w
in R we have τw(R) = τ|w|(R) where |w| := (|wn|)n∈N.

Theorem 6.6 ([5, Theorem 1.1]). Let u and v be sequences in R+ such that vn = αnun for every
n ∈ N. If αn → +∞ and αn ≤ κbun+1 eventually for some κ < 1, then τu(R) 6⊆ τv(R).

The relation vn = αnun for n ∈ N+ can be written as v = Mu, where M is an infinite diagonal
matrix with the values αn on the diagonal. In [5], this suggested to consider the situation when u and
v are sequences in R such that

v = Mu,

where M = (ai,j)i,j∈N is a row-finite infinite real matrix.

The following result extends Theorem 6.5 to a more general setting. Indeed, under the assumptions
of Theorem 6.5 the condition (6.4) is satisfied with κ = 1

2 , hence Theorem 6.5 follows directly from
Theorem 6.7 and Equation (6.3).

Theorem 6.7 ([5, Corollary 1.3]). Let u be a sequence in R \ {0} such that |bun| → +∞. Let M =
(ai,j)i,j∈N be a row-finite integer matrix such that there exists 0 < κ < 1 with∣∣∣∣∣∣

∑
j≤n

ai,juj

∣∣∣∣∣∣ ≤ κ · |un+1| for every n, i ∈ N. (6.4)

If v = Mu, then τu(R) ⊆ τv(R) if and only if (C) and (R) hold.

The following question was left open in [5]. For two subgroups H, K of an infinite group G say
that H is almost contained in K if [H : K ∩H] is finite. Similarly, say that H is weakly contained in
K if [H : K ∩H] is at most countable.

Question 6.8 ([5, Question 1.4]). Do the characterizations for inclusion given in Theorem 6.6 and
Theorem 6.7 remain true also for almost inclusion or for weak inclusion in the above sense?
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6.2 Dirichlet sets of T

In 1981, Erdös, Kunen and Mauldin proved that if P is a non-empty perfect set of R, then there exists
a perfect set M of R of Lebesgue measure zero such that P + M = R (see [50]). Eliaš improved this
result:

Theorem 6.9 ([48, Theorem 3.2]). For every perfect subset P of T, there exists a perfect D-set D of
T such that P +D = T.

This answers in the negative the problem of the existence of a perfect N -permitted set from [2].

For an arithmetic sequence u and for L ⊆ N, using the representation given by Theorem 2.11, in
[4] the following set was introduced

Ku
L := {x ∈ T : suppu(ϕ−1(x)) ⊆ L},

imitating the same set for the specific sequence (2n)n∈N defined in [67] (see also [19]). Clearly, 0 ∈ Ku
L

since suppu(0) = ∅.
We assume the subset L of N to be infinite and non-cofinite, since we are interested in those sets

Ku
L that are D-sets; indeed, finite Ku

L are always D-sets and Ku
L D-set implies L non-cofinite. Under

these assumptions on L, the set Ku
L is closed and perfect.

In [4] a characterization is given of those Ku
L that are D-sets (see Theorem 6.10 below). To

state it we need some technical details. Since L is an infinite non-cofinite subset of N, one has a
partition L =

⋃
n∈N+

Ln, where each Ln = {mL
n , . . . ,M

L
n } is a finite set of consecutive naturals and

the consecutive intervals Ln and Ln+1 are not adjacent (i.e., ML
n < mL

n+1 − 1). For every n ∈ N+, let
Gn = {ML

n + 1, . . . ,mL
n+1 − 1} be the non-empty set “between” Ln and Ln+1, and let

b̃Ln :=
∏
i∈Gn

bui =
umLn+1−1

uML
n

.

Theorem 6.10 ([4, Theorem 1.7]). If u is an arithmetic sequence and L is an infinite non-cofinite
subset of N, then Ku

L is a D-set precisely when supn∈N b̃
L
n = +∞.

To better understand this result, recall that an infinite non-cofinite subset L of N is large if and
only if the sequence (|GLn |)n∈N is bounded. First, if L is non-large, then Ku

L is a D-set. Moreover, a
consequence of Theorem 6.10 is that, when {bun : n ∈ N \L} is not bounded, Ku

L is always a D-set; on
the other hand, when u is q-bounded, Ku

L is a D-set if and only if L is non-large.
So, taking an infinite non-cofinite subset L of N which is non-large and with G := N \L non-large,

we obtain that Ku
L and Ku

G are D-sets; for u = (2n)n∈N, this is due to Marcinkiewicz (see [67]). Since
we have also that

T = Ku
L +Ku

G, (6.5)

we can state the following result, related to Erdös - Kunen - Mauldin Theorem (see Theorem 6.9
above).

Theorem 6.11. The circle group T can be written as the sum of two closed perfect D-sets (which
have necessarily Haar measure zero).

Since in the above notations, Ku
L and Ku

G are D-sets, there exist v, w subsequences of u such that
v, w “witness” respectively that Ku

L , Ku
G are D-sets, so in particular Ku

L ⊆ tv(T) and Ku
G ⊆ tw(T).

Then Equation 6.5 gives also that T = tv(T) + tw(T), and therefore we can state the following result;
recall that a subgroup of T is a-characterized if it is characterized by an arithmetic sequence.
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Corollary 6.12 ([4, Theorem 1.12]). The circle group T can be written as the sum of two proper
a-characterized subgroups.

This answers a problem from [6], that now we discuss in detail. A subgroup H of T is factor-
izable (respectively, a-factorizable), if H = tv(T) + tw(T) with proper characterized (respectively,
a-characterized) subgroups tv(T) and tw(T) (see [4]). Clearly, a-factorizable implies factorizable.

Problem 6.13 ([6, Question 5.1]). For sequences u and v in Z, describe tu(T) + tv(T) in terms of u
and v.

(a) When is a given factorizable subgroup of T characterized?

(b) When is a given characterized subgroup of T factorizable? In particular, is T factorizable?

Consider the counterpart of these questions for a-characterized and a-factorizable subgroups of T as
well.

First of all, Corollary 6.12 states that T is a-factorizable, answering the last part of Problem
6.13(b). Moreover we have the following description of all countable subgroups of T (that are all
characterized as recalled above) that are factorizable and a-factorizable.

Theorem 6.14. Let H be a countable subgroup of T. Then:

(a) H is factorizable if and only if H is non-cocyclic;

(b) H is a-factorizable if and only if H is a-characterized and non-cocyclic.

Since this result solves completely the countable case, we are left with the uncountable characterized
subgroups of T. In this case we find a family of uncountable a-characterized subgroups of T that are
a-factorizable:

Theorem 6.15 ([4, Theorem 1.14]). Let u be an arithmetic sequence in N such that bun → +∞. Then
the a-characterized subgroup tu(T) is a-factorizable.

We conjecture that the condition bun → +∞ can be replaced by the weaker one supn∈N+
bun = +∞:

Conjecture 6.16. Let u be an arithmetic sequence in N that is not q-bounded. Then the a-characterized
subgroup tu(T) is a-factorizable.

The following general problem remains open.

Problem 6.17. Describe the uncountable (a-)factorizable (a-)characterized subgroups.

The following question is left open as well.

Question 6.18. Suppose that an (a-)characterized subgroup tu(T) is factorizable. Is it true that it is
also a-factorizable?

As a consequence of the results above, a countable factorizable subgroup H of T is a-factorizable
precisely when H is a-characterized.
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7 Characterized subgroups of topological abelian groups

The following notion appeared first in [28] and later also in Dikranjan-Milan-Tonolo [40].

Definition 7.1. [[40]] For G a topological abelian group and u a sequence in Ĝ, let

su(G) = {x ∈ G : un(x)→ 0}.

A subgroup H of G is said to be characterized by a sequence u in Ĝ if H = su(G). When the sequence
u is not relevant, we shortly say that H is characterized.

At the first stages the name basic g-closed subgroups was coined (e.g., in Dikranjan-Milan-Tonolo
[40] and later also in [11]). Formally the name “characterized” started to appear only later on, to
replace the terminology “has a characterizing sequence” (or set) used in [56, 57, 38].

If G = T, then we can identify T̂ = Z, so tu(T) = su(T) for a sequence u in Z.

Note that su(G) =
⋂
N≥2

⋃
m∈N

⋂
n≥m

{
x ∈ G : ‖un(x)‖ ≤ 1

N

}
. Then, if K is a compact abelian

group, then:

(a) su(K) is a Borel set, and so either su(K) is countable or |su(K)| = c;

(b) µ(su(K)) = 0 if u is faithfully indexed (see [22, Lemma 3.10] and see [74] for locally compact
abelian groups).

For G an abelian group and H ≤ G, let

gG(H) =
⋂
{su(G) : u ∈ ĜN, H ≤ su(G)};

H is g-closed if H = gG(H).
It is proved in [40] that a topological abelian group G is maximally almost periodic if and only if

every cyclic subgroup of G is g-closed.

Resolving [40, Problem 5.1], Lukács [66], Beiglböck-Steineder-Winkler [11, Theorem 3.6] and
Dikranjan-Kunen [38, Corollary 1.9] independently and simultaneously proved the following

Theorem 7.2 ([66, 11, 38]). All countable subgroups of a compact abelian group are g-closed.

The question of whether countable subgroups of arbitrary compact metrizable abelian groups
are characterized was raised in [14] (in a somewhat implicit form, as the notion of characterized
subgroup was not introduced at that stage). Dikranjan-Kunen [38] and Beiglböck-Steineder-Winkler
[11], independently and using different techniques, answered this question:

Theorem 7.3 ([38, 11]). If K is a compact metrizable abelian group, then every countable subgroup
of K is characterized.

Every characterized subgroup of K is Fσδ. Inspired by Biró’s Theorem 3.3, Gabriyelyan [53,
Theorem 2] proved that if K is an uncountable Kronecker set of an infinite compact metrizable abelian
group X, then 〈K〉 is not Polishable. In particular, 〈K〉 cannot be characterized.

Theorem 7.4 ([31]). Every Gδ-subgroup of a compact abelian group K is characterized.

Gabriyelyan [53, Corollary 1] proved that every characterized subgroup H of a compact metrizable
abelian group K admits a finer Polish (and locally quasi-convex) group topology.

It turned out that this necessary condition can be reinforced so that it becomes sufficient (although
not always necessary) as follows. According to Gabriyelyan [54], a group G is characterizable if there
is a compact metrizable abelian group X and a continuous monomorphism p : G → X with dense
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image such that p(G) is a characterized subgroup of X; G is called strongly characterizable if for
every compact metrizable abelian group X and every continuous monomorphism p : G → X with
dense image the subgroup p(G) is a characterized subgroup of X. It was shown by Gabriyelyan [54]
that every second countable locally compact abelian group is characterizable, he asked if every second
countable locally compact abelian group is strongly characterizable. Negro [70] positively answered
Gabriyelyan’s problem. In particular, this shows that a dense subgroup of a compact metrizable abelian
group admitting a finer locally compact group topology (i.e., having locally compact associated Polish
topology) is necessarily characterized. In [37], the second named author and Impieri proved that
when X = T, the proper characterized subgroups with locally compact associated Polish topology are
exactly the countable subgroups, and T is the only compact abelian group with that property.

Protasov-Zelenyuk [72] introduced the concept of a T -sequence in an abelian group G – this is a
non-trivial sequence u in G that converges to 0 in some Hausdorff group topology on G.

Definition 7.5. [[6, 40]] A non-trivial sequence u in an abelian group G is a TB-sequence if there
exists a precompact topology τ on G such that un

τ−→ 0.

Protasov-Zelenyuk [72] gave a complete characterization of T -sequences. A counterpart of this for
TB-sequences was obtained by Dikranjan-Milan-Tonolo [40]:

Theorem 7.6 ([40]). Let u be a non-trivial sequence in an abelian group G.

(a) If τ is a totally bounded group topology on G, then τ = TH for some H ≤ Ĝ and un
τ−→ 0 if and

only if H ≤ su(Ĝ).

(b) T
su(Ĝ)

is the finest totally bounded group topology τ on G with un
τ−→ 0.

(c) u is a TB-sequence if and only if su(Ĝ) is dense in Ĝ.

In [40, Theorem 3.3] one can also find a description of the subsequences of the sequence 1/pn in
Z(p∞) that are TB-sequences.

For other results on characterized subgroups and related topics see the recent papers [38, 31, 32,
33, 35, 36, 37, 52, 53, 54, 55, 70].

8 Topologically u-torsion subgroup vs characterized subgroups

8.1 Separation axioms via sequential limit laws

Here we give an alternative approach to topologically torsion elements and subgroups (given so far in
Definition 2.7), better adapted for not necessarily abelian groups. This is why, we use only in this
section multiplicative notation for groups. In particular, we denote by eG the neutral element of a
group G.

Taylor [77] introduced appropriately limit laws in order to describe varieties of topological algebras
in parallel with Birkhoff’s theorem describing varieties of universal algebras by means of identities.
Analogously, for every sequence u = (un)n∈N in Z, a sequential limit law depending on u was defined
by Kopperman-Mislove-Morris-Nickolas-Pestov-Svetlichny [62, 69]: a topological group G is said to
satisfy the sequential limit law u if

xun → eG (8.1)

for all elements x of G. More generally, when G does not satisfy the limit law u one can still consider
the subset tu(G) of all elements x ∈ G that satisfy (8.1). When G is abelian, then tu(G) is a subgroup
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of G, coinciding with the subgroup already defined in Definition 2.7 (this is why we use the same
notation).

Following [24, 26, 28], for every element x of a topological group G one can consider the set SG(x)
of all sequential limit laws satisfied by x, i.e.,

SG(x) =
{

u ∈ ZN : lim
n→∞

xun = eG

}
.

It is easy to see that SG(x) is a subgroup of ZN. When no confusion is possible we shall omit the
subscript G in SG(x). Let

t(x) = {y ∈ G : S(x) ⊆ S(y)} =
⋂
{tu(G) : u ∈ S(x)}.

i.e., this is the set of all elements y of G that satisfy all sequential limit laws valid for the element x.
Similarly, for a subgroup (or just a subset) H of G we set

SG(H) = {u ∈ ZN : H = tu(T)} ≤ ZN and t(H) =
⋂
{tu(G) : u ∈ SG(H)}.

We say that H is t-closed (respectively, t-dense), if t(H) = H (respectively, t(H) = G). In case
H = tu(G) for some u (necessarily belonging to SG(H)), we say that H is basic t-closed.

If 〈x〉 = 〈y〉, then obviously S(x) = S(y) (more precisely, 〈y〉 ≤ 〈x〉 implies S(x) ⊆ S(y)). The
question of whether the converse is also true leads one to introduce the following classes of topological
groups (see [30]):

(a) G1 – all topological groups G such that S(x) = S(y) implies 〈x〉 = 〈y〉, for every pair of elements
x, y ∈ G.

(b) G2 – all topological groups G such that S(x) ⊆ S(y) implies 〈y〉 ≤ 〈x〉 (i.e., y ∈ t(x) implies
y ∈ 〈x〉 for every pair of elements x, y ∈ G);

(c) G3 – all topological groups G such that for every cyclic subgroup 〈x〉 of G there exists u ∈ S(x)
such that 〈x〉 = tu(G).

It is easy to see that G1 ⊇ G2 ⊇ G3 and that G ∈ G2 (respectively, G ∈ G3) if and only if every
cyclic subgroup of G is t-closed (respectively, characterized).

As pointed out in [30], one can consider the above three classes as an appropriate form of “sepa-
ration axioms” for topological groups.

Let us specify these notions in the case G = T. The fact that all countable subgroups of T are t-
closed (in particular, T ∈ G2) was exposed by the second named author at the Summer Conference on
General Topology and Its Applications in New York in 2001 (see [28]). The stronger property T ∈ G3

is nothing else but Theorem 3.5. So, following also the terminology of §3, the equality 〈x〉 = tu(G)
for a sequence (sequential limit law) u in (c) means that u characterizes the cyclic subgroup 〈x〉.
Furthermore, u is a characterizing sequence of a subgroup H of T if and only if H is a basic t-closed
subgroup of T. The correspondence H 7→ SG(H) defines a Galois correspondence between subgroups
of T and subgroups of ZN (see [24, 28, 40]). Let us reformulate Problem 4.7, faced also by Di Santo
[24], in the new terms:

Problem 8.1 ([24], Maharam-Stone 2001). Given a characterized subgroup H of T, describe the
subgroup SG(H) of ZN.
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Towards a (partial) solution of this problem we give below a number of properties of these subgroups
SG(H) in the general case.

First of all, one can easily reduce the study of SG(H) to that of SG(x) for single elements x ∈ G
by noticing that SG(H) =

⋂
x∈H SG(x). Actually a much “smaller” intersection will do; in fact, if

H = 〈xi : i ∈ I〉, then SG(H) =
⋂
i∈I SG(xi).

Lemma 8.2 ([26]). Let G, H be topological groups and f : G → H a continuous homomorphism.
Then for x ∈ G and u ∈ ZN,

S(x) ⊆ S(f(x)) and f(tu(G)) ⊆ tu(H).

The proof of the above lemma uses only the continuity of the restriction f �〈x〉. Actually, one can
prove that if the groups G and H are metrizable, then the inclusion S(x) ⊆ S(f(x)) is equivalent to
the continuity of the restriction f �〈x〉. Indeed, S(x) 6 S(y) precisely when f sends convergent to 0
sequences in 〈x〉 to convergent to 0 sequences in 〈y〉, i.e., f �〈x〉 is continuous. This leads to:

Lemma 8.3 ([26]). Let G be an abelian metrizable group and x, y ∈ G. Then the following conditions
are equivalent:

(a) S(x) 6 S(y);

(b) y ∈ t(x) (in other words, y ∈
⋂
{tu(G) : u ∈ S(x)});

(c) there exists a continuous homomorphism f : 〈x〉 → 〈y〉 with f(x) = y.

This provides a simple description of the t-closure of a cyclic subgroup in the metric case:

Corollary 8.4. Let G be an abelian metrizable group and let x ∈ G. Then

t(x) = {y ∈ G : ∃ f : 〈x〉 → G continuous homomorphism, f(x) = y}.

In the sequel we provide two series of examples from [26] clarifying the properties of the class G1.

Example 8.5. [26]

(a) Let Bp = 〈xp〉 be a cyclic p-group for every p prime and let BP =
∏
p∈P Bp, where P is a non-

empty set of prime numbers. Then, for every a = (ap)p∈P ∈ BP , the following conditions are
equivalent:

(1) ord(ap) = ord(xp) for every p ∈ P ;

(2) a ∈ BP is a topological generator of BP ;

(3) t(a) = BP .

If some of these equivalent conditions holds, then BP 6∈ G1 whenever P is infinite (as S(a) = S(b)
for any pair a, b of topological generators of BP ).

(b) If G ∈ G1, then G does not contain copies of Z(p)2 for every prime p. Indeed, it suffices to see
that the group Z(p)2 6∈ G1 for every prime p. In fact, if a is a non-zero element of Z(p), then the
elements x = (a, 0) and y = (0, a) of Z(p)2 have S(x) = S(y), but 〈x〉 6= 〈y〉. This proves that
every finite abelian subgroup of any group G ∈ G1 must be cyclic.

The next example introduces a new class that is “transversal” to the classes Gi:
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Example 8.6. [26] In every topological abelian group G the subgroups {0} and G are always t-closed.
Denote by D the class of all topological abelian groups having no proper g-closed subgroups. Clearly,
G ∈ D ∩G1 if and only if G ∼= Z(p) for some p ∈ P. In (a)–(d) we provide a huge series of groups in
D. This creates a lot of further examples of groups that do not belong to G1.

(a) For every prime p, the compact group Zp of p-adic integers belongs to D (hence Zp does not
belong to G1). To see that also the locally compact group Qp of p-adic numbers belongs to D
for every prime p note that if Aut(G) acts transitively in G \ {0}, then G ∈ D by Lemma 8.4.

(b) Let G be a compact abelian group. Then G ∈ D if and only if there exist p ∈ P and a cardinal α
such that either G = Zαp (if G torsion-free) or G = Z(p)α. This characterization can be extended
in an appropriate way to the general case of locally compact abelian groups (see [28]).

(c) If G is a topological group without non-trivial convergent sequences then S(x) = Z0 (where Z0

is the subgroup of ZN of sequences u with un = 0 for almost all n ∈ N) and t(x) = G for every
non-torsion x ∈ G. In particular, every torsion-free abelian group belongs to D when equipped
with its maximal precompact topology.

(d) For every non-zero r ∈ R, S(r) = Z0. Consequently, S(H) = Z0 and t(H) = R for every
subgroup H 6= 0 of R. This means that R ∈ D. In particular, R 6∈ G1.

8.2 A characterization of T via the Galois correspondence generated by topological
torsion

8.2.1 The non-discrete case

The next theorem from [26] gives a characterization of the non-discrete locally compact groups in
which all cyclic (countable) subgroups are t-closed:

Theorem 8.7 ([26]). Let G be a non-discrete locally compact group. Then the following conditions
are equivalent:

(a) every countable subgroup of G is t-closed;

(b) every cyclic subgroup of G is t-closed (i.e., G ∈ G2);

(c) G ∈ G1;

(d) G ∼= T.

This theorem, along with Theorem 3.5, shows that for a non-discrete locally compact group G all
three properties – G ∈ G1, G ∈ G2 and G ∈ G3 – are equivalent and determine G up to topological
isomorphism, namely G ∼= T. The proof uses the various cases of Example 8.5 and 8.6 in order to rule
out, one-by-one, the possibilities excluded by the theorem. It should be emphasized that the group G
is not supposed to be abelian in this theorem.

An analogous characterization can be given for the Cartesian powers Zαp of the p-adic integers (as
the torsion-free compact abelian groups having no proper t-closed subgroups – see Example 8.6(b)).

8.2.2 The discrete case

In the sequel we make use of the obvious fact that if G is an infinite discrete cyclic group, then G does
not belong to G1.

Lemma 8.8 ([26]). Let G be a group.
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(a) If G is torsion, then for i = 1, 2, 3 the group G equipped with some Hausdorff topology belongs to
Gi if and only if G ∈ Gi as a discrete group.

(b) If G ∈ G2 is discrete, then G is torsion.

In order to characterize the discrete groups in the class G1 and G ∈ G2 we need the following:

Lemma 8.9 ([26]). Let G be an abelian torsion group. Then the following conditions are equivalent:

(a) G belongs to G1;

(b) G ∈ G2;

(c) |C1| = |C2| implies that C1 = C2 for every pair of cyclic subgroups C1, C2 of G.

The following theorem from [26] provides the missing counterpart of Theorem 8.7 in the discrete
case.

Theorem 8.10 ([26]). Let G be a group. Then the following conditions are equivalent:

(a) every subgroup of the discrete group G is t-closed;

(b) G is torsion and (G, τ) ∈ G2, for some Hausdorff group topology τ ;

(c) G is torsion and (G, τ) ∈ G1, for some Hausdorff group topology τ ;

(d) G is isomorphic to a subgroup of Q/Z;

(e) G ∈ G3 when equipped with the discrete topology.
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