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Abstract. 

The adsorption of Pt(IV) by iron oxide (Fe3O4) superparamagnetic nanoparticles (SPION) 

functionalized with 3-mercaptopropionic acid (3-MPA) is investigated by means of  

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and isothermal 

titration calorimetry (ITC). Experimental ICP data are better fitted by Langmuir rather 

than Freundlich isotherms. The whole thermodynamic parameters and maximum loading 

capacity for the adsorption process of Pt(IV) on the functionalized SPION nanoparticles 

(SPION@3-MPA) are obtained. The process is enthalpy-driven while entropy is largely 

unfavourable suggesting that some other interaction should be present in addition to the 

electrostatic ones with the coverage surface. When compared to other thiol-functionalized 

materials, the SPION@3-MPA can be considered an interesting adsorbent for Pt(IV), 

especially with respect to the short contact time evidenced.  

 

Introduction  

The special properties displayed by platinum such as chemical inertness, high corrosion 

resistance, high melting temperature determine the large range of application of the metal 

[1]. Platinum finds application in the manufacturing of electronic and electrical devices, 

catalysts, jewelry, biomedical devices, fuel cell production, plating and coatings, and 

many more products. Because of the increasing demand for platinum in various 

industries, and the limited natural resources available, the recovery of the metal from 

aqueous solutions is economically attractive. Also the treatment of hospital liquid waste 

containing CPC (Cancerostatic Platinum Compounds) compounds originated has become 



a growing topic in the last decade, since the dispersion in sewage water of such mutagenic 

compounds is highly undesirable.  

The methods for the recovery of platinum from aqueous solutions include precipitation, 

co-precipitation, liquid–liquid extraction, and adsorption [2,3]. 

Among these methods, adsorption technology has proven to be one of the best techniques 

for metal wastewater treatment  because it offers flexibility in design and operation [4]. 

Furthermore, since this process is often reversible, adsorbed species can be recovered by 

suitable desorption process and the material regenerated for its re-use.  

Nanoparticles attracted much attention for metal ion recovery from water because of their 

high surface area to volume ratio, fast reaction kinetics, the possibility to be chemically 

modified on their surface [4–6]. These materials can be then separated from the liquid 

samples with relatively simple methods. Among them, nanosized metal oxides 

demonstrated to be promising materials for metal removal from wastewaters [4,6,7].   As 

an example, in several recent studies functionalized materials have been used as 

adsorbents for platinum(IV) in aqueous solution [8]. 

Recently, Super Paramagnetic Iron Oxide Nanoparticles (SPION), received special  

attention for their low toxicity, low cost and easy recovery from aqueous media by 

magnetic separation [4,9,10].  In addition, iron is one of the widespread elements in the 

earth and easily accessible [11], rendering the material a low-cost adsorbent which is a 

requisite for wastewaters treatment. It is also important to develop protection strategies 

to stabilize the magnetic nanoparticles against their degradation, such as core-shell, which 

are also used for functionalization of the adsorbent material for selective application. 

Hence, if the surface of magnetite is coated with an compound containing a thiol or amino 

group, the removal of   metals should be enhanced enabling, in addition, the magnetic 

separation of the adsorbent from the solution [8,12–16]. 

In this work, the adsorption of Pt(IV) on iron oxide (Fe3O4) SPION functionalized with 

3-mercaptopropionic acid (SPION@MPA) is studied by means of Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) technique in parallel with Isothermal 

Titration Calorimetry (ITC). The aim is to investigate the efficiency of the nano-adsorbent 

but also to gain parameters on the thermodynamic of adsorption of Pt(IV) by 

functionalized SPION@MPA.  

The organic ligand 3-MPA has been selected as promising ligand for surface 

functionalization of magnetite nanoparticles. It contains a carboxyl group, which 

facilitates the coating with iron oxide due to the high affinity of the carboxyl group 



towards iron [7], whereas the additional thiol group has shown good adsorption properties 

for noble-metal ions and some other metals [8,12–16]. 

The use of calorimetry is a novel approach used here to quantify an adsorption process 

from aqueous solution to solid phase. Indeed, this technique was widely used by our group 

mainly to characterize chemical equilibria processes in aqueous or non-aqueous solutions 

[17–26]. Meanwhile, a few number of ITC applications in adsorption studies are found in 

the recent literature [27–30], being the enthalpy associated to desorption process usually 

calculated indirectly by van’t Hoff equation [31,32]. Nevertheless, many studies revealed 

serious discrepancies between enthalpy values calculated from van’t Hoff equation and  

obtained directly from ITC and,  evidencing large uncertainties associated to the former 

method [33–36]. On the contrary, ITC analysis provides independent and robust 

thermodynamic parameters, which allows to gain information of specificity of 

functionalization towards metal ions adsorption and about the possible nature of the 

interactions at play between the surface and the anionic ligand.  

 

Experimental  

Material preparation  

All reagents used in the experiment were analytical grade and used without further 

purification. Ammonium hydroxide (NH4OH), hydrochloric acid (HCl), Iron (II) chloride 

(FeCl2·4H2O), Iron (III) chloride (FeCl3·6H2O) and 3-mercaptopropionic acid (3-MPA) 

were purchased from Sigma-Aldrich.  

The metal stock solution was prepared by dissolving hydrogen hexachloroplatinate (IV) 

hydrate (Aldrich) in HCl solutions prepared in milliQ water.     

Iron oxide nanoparticles were synthesized by a co-precipitation method, as described 

elsewhere [15,16,37].   

The SPION were functionalized with 3-MPA (SPION@3-MPA) by ligand addition 

method [15]. A known amount of synthesized SPION was suspended in water acidified 

with HNO3 to pH = 2.0, to have the surface charged positively (pHpzc of the SPION = 6.8) 

[38]. Then, 10mL of SPION suspension were stirred for 24h in N2 atmosphere, with a 

solution of the 3-MPA 150 mM in toluene. After phase separation using magnetic 

decantation, the particles were washed with ethanol, dried at room temperature and stored 

in dry box in N2 atmosphere. The nanoparticles were characterized as previously 

described in ref. [15] by means of BET (Micromeritics Tristar 3000 gas adsorption 

analyzer),  FT-IR  and thermogravimetry (Q500 TGA, TA Instruments). The pHpzc of 



SPION@3-MPA was determined following the published methodology [39]. The overall 

results on the characterization of the SPION@3-MPA resulted to be in good agreement 

with ref. [15].  

  

 

Adsorption studies 

The adsorption experiments for Pt(IV) were performed at 298 ±1K by suspending 5mg 

of SPION@3-MPA to 10mL solutions containing the metal ion in the 0.1-1.0 mM 

concentration range.  The pH of the solution was adjusted at pH = 3.0 with HCl where the 

main Pt(IV) species should be PtCl6
2- and PtCl5(H2O)- complex [8,37,40]. The pH value 

was chosen  in order to avoid the hydrolysis of chloro-complex of Pt(IV)  (at pH > 3.5) 

[41] and the eventual dissolution of  magnetic particles (at pH < 2). 

The suspension was sonicated during 30 min and then allowed 2 hours in contact, due to 

a relatively low kinetic of adsorption of Pt(IV). In preliminary experiments the contact 

time necessary between nanoparticles and Pt(IV) was found to be about 100 minutes, as 

no significant variation of adsorption % was observed after that time. The magnetic 

adsorbent was separated from the aqueous phase and the Pt(IV) concentration in the 

filtered solution was determined by ICP-OES (Varian VISTA-MPX CCD Simultaneous 

ICP-OES). Iron content was also determined to control the particle dissolution, which did 

not occur in our experimental conditions. 

Adsorption data were fitted by the Langmuir and Freundlich isotherms, as it has been 

demonstrated that such models better fit the adsorption from solutions [42]. These models 

are expressed by eq. 2 and eq. 3 respectively [43]: 
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Ce = solute equilibrium concentration (M), Cads= solute adsorbed at equilibrium (mol g-

1), Qmax = maximum quantity of solute adsorbed per gram of adsorbent (mol g-1) and  

b = Langmuir constant (M-1).  
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Kf = Freundlich constant ((L·mmol-1 g-1)1/n), n = adsorption intensity, Ce = equilibrium 

concentration of adsorbate (M), Cads = amount of Pt adsorbed at equilibrium (mol g-1). 

  

 



Isothermal Titration Calorimetry (ITC) 

A TAMIII isothermal microcalorimeter (TA Instruments) connected with an automatic 

titration syringe was used to measure the heat of adsorption of the Pt(IV) metal ion on 

SPION@3-MPA.  The titration cell was filled with a solution at pH = 3.0 (adjusted by 

HCl) in which ~0.5g L-1 SPION@3-MPA were dispersed. The suspension was stirred 

continuously at 120rpm. The cell content was titrated with 14 additions of 14μL of 5mM 

metal ion solution. A delay time of 2 hours between consecutive injections, because of 

Pt(IV) slow kinetics. The reference cell was filled with 0.7 mL of MilliQ water. 

The values of b and Qmax obtained by the fit of the Langmuir isotherm obtained from  ICP-

OES data, have been used as input data in eq. 4 to calculate Ce for each titrant addition 

by numerically solving eq. 2 with the same experimental conditions as the calorimetric 

titrations [44,45]. Then, the ∆Hads (kJ mol-1) value has been calculated to best fit the 

experimental heat according to the isotherm (eq. 4):  

max

1
e

cum ads

e

Q bC
q H

bC
= ∆

+
     (4) 

qcum = total heat involved at each titrant addition per gram of SPION@3-MPA (kJ g-1). 

Dilution heat (qdil) was also determined to correct the total heat measured (qmeas) by the 

instrument. Thus qcum = (qmeas – qdil)/w represents only the heat involved on the adsorption 

reaction. Data fitting and statistical analysis of the results has been done with the MS-

Excel Solverstat and EST tools [46,47]. 

 

Results and discussion 

 

The adsorption data have been fitted with Langmuir and Freundlich isotherms, and the 

obtained parameters are summarized in Table 1, while the experimental points and 

calculated curves are reported in Figure 2. The best fit is obtained with the Langmuir 

isotherm as evident from the significantly higher quality of the fit (higher R2, Table 1 and 

Figure 2), indicating the presence of a homogeneous adsorption by the formation of a 

monolayer adsorbate on the adsorbent surface.   

The calorimetric titration of the SPION@3-MPA suspension is shown in Figure 3a, while 

the experimental and calculated qcu values are reported in Figure 3b as obtained by using 

eq. 4. The corresponding ∆Hads is reported in Table 2 together with the calculated entropy 

values. A strong exothermic effect (ΔHads= -50 kJ mol-1) is associated to the process 

together with a high negative entropy value (TΔSads= - 18.2 kJ mol-1), as calculated by 



the ΔG value obtained from b value (ΔGads= -31.8 kJ mol-1) in Table 1. In a recent work 

[48], negative enthalpy and entropy values were obtained for the interaction of Cr(VI) 

with a nanocomposite adsorbent based on grafted Fe3O4/poly(methylmethacrylate) (ΔH= 

-97.5kJ mol-1 ΔS= -320 J mol-1K-1). 

The low solvation of anions in water, as compared to cations,[49] should partially account 

for the thermodynamic values relative to Pt(IV) adsorption, but also some concomitant 

effects at probably at play. 

Indeed, the adsorption mechanism could be due to the i) coordination on thiol group in a 

pendant fashion or in combination with vicinal hydroxyl groups and ii) electrostatic 

attraction between charges of opposite sign. In our experimental conditions Pt(IV) is in 

anionic form and the adsorbent surface is positively charged so electrostatic interactions 

are certainly possible. Nevertheless, also some interaction with the thiol groups could be 

present. In any case, the fact that the anionic PtCl6
2- species is poorly solvated could be 

responsible of the negative ∆S: in this case the loss of degrees of freedom of the adsorbate 

prevails on the desolvation processes regarding the solute and the surface.      

The adsorption efficiency of the SPION@3-MPA towards Pt(IV) (0.31mmol g-1) is 

poorer with respect to other adsorbents as evidenced from the comparison with data 

reported in Table 2[50–52], but higher with respect to the adsorption  capacity shown by 

magnetic cellulose functionalized with thiol and amine[8]. 

It is to underline that materials that reported a better efficiency than SPION@3-MPA, 

also showed a significant higher amount of sulphur present in the adsorbent (Table 2), 

which is related to the quantity of immobilized 3-MPA. This is a decisive factor for the 

sorbent ability of the material and, in addition, some aggregation present on our adsorbent 

could be responsible of the lower efficiency.  Despite that, SPION@3-MPA presents 

promising low contact time, which is a key parameter to be faced for possible 

applications. 

  

Conclusions  

The present work presents a complete thermodynamic characterization of the adsorption 

of Pt(IV) by SPION functionalized with the ligand 3-MPA in acidic aqueous solution.  

The Langmuir isotherm better fits experimental data providing the apparent stability 

constant and the maximun loading capacity. Direct calorimetric data show that the process 

is enthalpy-driven while entropy is largely unfavourable. If compared to other thiol-



functionalized materials, the SPION@3-MPA can be considered an interesting adsorbent 

for Pt(IV) mainly with respect to the short contact time evidenced. 
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Figures 

 

 

 Figure 1. Functionalization mechanism of 3-MPA on SPION (=Fe) surface.  



 

 

Figure 2. Adsorption isotherms showing the experimental data fitted with Langmuir 

(solid line) and Freundlich (dashed line) models. In the batch experiments, 5mg of the 

SPION@3-MPA were added to 10mL of the metal solutions, with a metal concentration 

varying from 0.1 to 1.0mM. 

 

 

 

 

 

  

Figure 3. Calorimetric titrations plots corresponding to the addition of Pt(IV) solution to 

0.7mL of 0.5g L-1 SPION@3-MPA suspension (a), and experimental calorimetric data 

(points) fitted with eq. 4 (line) for Pt(IV) adsorption process (b).  
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 Tables 

 

Table 1. Langmuir and Freundlich isotherm parameters for Pt(IV) by SPION@3-MPA 

at pH=3.0 

 

 

 

 

 

 

 

  Langmuir equation Freundlich equation 

Qmax b 
log b R2 n 

Kf 
R2 

(mol g-1) (M-1) (L mmol-1 g-1) 

Pt(IV) 
0.00031 

±0.00001 

368483 

±129319 

5.6 

±0.3 
0.997 

12  

±2 

0.342  

±0.008 
0.951 

 

  Langmuir equation Freundlich equation 

Qmax b 
log b R2 n 

Kf 
R2 

(mol g-1) (M-1) (L mmol-1 g-1) 

Pt(IV) 
0.00031 

±0.00001 

368483 

±129319 

5.6 

±0.3 
0.997 

12  

±2 

0.342  

±0.008 
0.951 

 



Adsorbent 
S %  

(mmol g-1) 

Initial 

Mn+  

(mM) 

Adsorbent 

dosage  

(g L-1) 

pH 

Temp. Contact 

time  

(h) 

Adsorption capacity b ∆Hads T∆Sads 

Ref. 
(K) (mmol g-1) (M-1) (kJ mol-1) (kJ mol-1) 

Magnetic cellulose 

functionalized with thiol and 

amine 

- 

0.03-0.25 

(5-50 mg L-

1) 

0.04 g 2.0 318 1 
0.21  

(40.48mg g-1) 

212641  

(1.09L mg-1) 
- - [8] 

Thiolated mesoporous silicas 
2.4 

(7.59%) 
- 1.0 2.0 298 48 

1.19  

(232.6mg g-1) 

2898948  

(14.86L mg-1) 
- - [50] 

Straw-SH 
2.71 

(8.70%) 
- - 1.0 room 24 

1.95 

(380mg g-1) 
- Exothermic - [51] 

Thiol functionalized 

mesoporous silica 
- 0.5 – 4  1.0 1.0 299 - 

4.4 

(861.9mg g-1) 
- - - [52] 

SPION@3-MPA 1.4 0.1 - 1.0 0.5 3.0 298 2a 0.31 ±0.01 368483 ±129319 -50 ±2 -18.2 
This 

work 

Table 2. Parameters of Pt(IV) adsorption for several thiol-functionalized adsorbents. In parentheses, the original values in the cited references are 

reported. aDelay time between metal solution additions. 


