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ABSTRACT

The main purpose of this thesis is to analyze and propose new im-
provements in the field of Automatic Keyphrase Extraction, i.e., the
field of automatically detecting the key concepts in a document. We
will discuss, in particular, supervised machine learning algorithms
for keyphrase extraction, by first identifying their shortcomings and
then proposing new techniques which exploit contextual information
to overcome them.

Keyphrase extraction requires that the key concepts, or keyphrases,
appear verbatim in the body of the document. We will identify the
fact that current algorithms do not use contextual information when
detecting keyphrases as one of the main shortcomings of supervised
keyphrase extraction. Instead, statistical and positional cues, like the
frequency of the candidate keyphrase or its first appearance in the
document, are mainly used to determine if a phrase appearing in a
document is a keyphrase or not. For this reason, we will prove that a
supervised keyphrase extraction algorithm, by using only statistical
and positional features, is actually able to extract good keyphrases
from documents written in languages that it has never seen. The algo-
rithm will be trained over a common dataset for the English language,
a purpose-collected dataset for the Arabic language, and evaluated on
the Italian, Romanian and Portuguese languages as well.

This result is then used as a starting point to develop new algo-
rithms that use contextual information to increase the performance in
automatic keyphrase extraction. The first algorithm that we present
uses new linguistics features based on anaphora resolution, which
is a field of natural language processing that exploits the relations
between elements of the discourse as, e.g., pronouns. We evaluate
several supervised AKE pipelines based on these features on the well-
known SEMEVAL 2010 dataset, and we show that the performance
increases when we add such features to a model that employs statis-
tical and positional knowledge only.

Finally, we investigate the possibilities offered by the field of Deep
Learning, by proposing six different deep neural networks that per-
form automatic keyphrase extraction. Such networks are based on
bidirectional long-short term memory networks, or on convolutional
neural networks, or on a combination of both of them, and on a neural
language model which creates a vector representation of each word
of the document. These networks are able to learn new features using
the the whole document when extracting keyphrases, and they have
the advantage of not needing a corpus after being trained to extract
keyphrases from new documents, since they don’t rely on corpus-
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based features like TF-IDE. We show that with deep learning based
architectures we are able to outperform several other keyphrase ex-
traction algorithms, both supervised and not supervised, used in lit-
erature and that the best performances are obtained when we build
an additional neural representation of the input document and we
append it to the neural language model.

Both the anaphora-based and the deep-learning based approaches
show that using contextual information, the performance in super-
vised algorithms for automatic keyphrase extraction improves. In fact,
in the methods presented in this thesis, the algorithms which ob-
tained the best performance are the ones receiving more contextual
information, both about the relations of the potential keyphrase with
other parts of the document, as in the anaphora based approach, and
in the shape of a neural representation of the input document, as in
the deep learning approach. In contrast, the approach of using statis-
tical and positional knowledge only allows the building of language
agnostic keyphrase extraction algorithms, at the cost of decreased pre-
cision and recall.
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Part 1

INTRODUCTION

This Part introduces the field of Automatic Keyphrase Ex-
traction, by defining it and describing the typical approaches
used by the research community to solve this problem.
Moreover, in this part, we’ll introduce the notation used
throughout this work.






INTRODUCTION TO KEYPHRASE EXTRACTION

1.1 WHAT IS KEYPHRASE EXTRACTION?

Many scholars already gave their own definition of what Keyphrase
Extraction (henceforth KE) is, thus we begin this thesis safely by stand-
ing on the shoulders of giants.

The historical definitions of KE are the following ones:

e Turney [115] defined keyphrase extraction as “the automatic se-
lection of important, topical phrases from within the body of a
document”. Moreover, the author stated that “a keyphrase list
[is defined] as a short list of phrases (typically five to fifteen
noun phrases) that capture the main topics discussed in a given
document.”

e Witten et al. [121] defined keyphrases as phrases that “provide
semantic metadata that summarize and characterize documents.”

¢ According to Mihalcea and Tarau [80], “the task of a keyword
extraction application is to automatically identify in a text a set
of terms that best describe the document.”

Let us consider, for example, the page from the online encyclopedia
Wikipedia about itself [119]:

Wikipedia is a free online encyclopedia with the aim to
allow anyone to edit articles. Wikipedia is the largest and
most popular general reference work on the Internet and

is ranked the fifth-most popular website. Wikipedia is owned
by the nonprofit Wikimedia Foundation.

Wikipedia was launched on January 15, 2001, by Jimmy
Wales and Larry Sanger. Sanger coined its name, a port-
manteau of wiki and encyclopedia. There was only the
English-language version initially, but it quickly developed
similar versions in other languages, which differ in con-
tent and in editing practices. With 5,469,575 articles, the
English Wikipedia is the largest of the more than 290 Wiki-
pedia encyclopedias. Overall, Wikipedia consists of more
than 40 million articles in more than 250 different lan-
guages and, as of February 2014, it had 18 billion page
views and nearly 500 million unique visitors each month.

As of March 201y, Wikipedia has about forty thousand
high-quality articles known as Featured Articles and Good
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Articles that cover vital topics. In 2005, Nature published

a peer review comparing 42 science articles from Ency-
clopaedia Britannica and Wikipedia, and found that Wikipedi-
a’s level of accuracy approached that of Encyclopeedia Bri-
tannica.

Wikipedia has been criticized for allegedly exhibiting sys-
temic bias, presenting a mixture of "truths, half truths, and
some falsehoods", and, in controversial topics, being sub-
ject to manipulation and spin.

Some example keyphrases (abbreviated KPs) may be “Wikipedia”,

77 “”

“online encyclopedia”, “Jimbo Wales”, “Larry Sanger”, “250 different lan-
guages”, “40 million articles”, and so on. These are my personal key-
phrases; however, an individual biased against Wikipedia’s open edit
policy may choose to add “system bias” to the list, while someone who
blindly supports the online encyclopedia’s philosophy may decide to
ignore its potential weaknesses and disregard it.

This problem arises because all the above definitions of keyphrase
extraction rely on some very non-formal terms, suggesting that, to
extract keyphrases, we should “characterize documents”, identify their
“main topics”, or find the words that “best describe” them. Unfortu-
nately, this non-formality is innate in the task of keyphrase extrac-
tion, which is subjective by its own nature. The Wikipedia example
showed how easy is to find controversial keyphrases even for a small
document.

Even if keyphrase extraction is, due to this ambiguity, an inher-
ently difficult task, it has application in several domains, such as doc-
ument summarization [125], document clustering [50], recommender
systems [99], user modeling [89], and so on. Moreover, AKE has re-
ceived widespread attention in the research community: for example,
KE has been the subject of two different SEMEVAL competitions in
2010 and 2017 [8, 63].

The remainder of this Chapter will be devoted to the description of
the principal techniques which has been used to attempt to solve the
KE task, the principal datasets used in the KE community, and the
definitions and the notation I will use throughout this thesis.

To end this section, we give our definition of the task of Keyphrase
Extraction in Definition 1.1.1.

Definition 1.1.1 ( Automatic Keyphrase Extraction). The task of Au-
tomatic Keyphrase Extraction (AKE) is the problem of automatically
identifying a list of short phrases (typically, from one to five words
long) in the content of a document that allow someone to grasp its
content without actually reading it.
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1.2 ALGORITHMS FOR KEYPHRASE EXTRACTION

The performance of the state of the art KE systems is still much
lower than many other NLP tasks. A hint of the current top perform-
ing systems can be obtained by looking at the results of “SEMEVAL
2010 Task 5: Automatic Keyphrase Extraction from Scientific Articles”
[63], where systems were ranked by F-score on the top 15 extracted
keyphrases. The best system, presented by Lopez and Romary [72],
achieved a Fi1-score of 27.5. Seven years later, a new SEMEVAL com-
petition was held, and the best system achieved an F1-Score of 43.0
[8]. While the performance improvement may seem important, it is
worth noting that the documents SEMEVAL 2010 competition were
full papers, while for SEMEVAL 2017 only abstract were used. This
difference is crucial, as it is apparently easier to extract keyphrases
from shorter documents [52]: for example, Hulth [58] obtained re-
sults comparable with the SEMEVAL 2017 competition more than ten
years before, but on the Inspec abstract corpus [57].

We can categorize the algorithms for keyphrase extraction in three
categories. The first two make up the “classic” approaches to KE,
namely supervised machine learning based KE and unsupervised
graph-based KE. The third approach, that we’ll call deep keyphrase
extraction (abbreviated DLKE), emerged only recently, and while it is
still based on supervised machine learning (henceforth ML), its huge
differences with “classic” supervised extraction deserves an analysis
on its own.

1.2.1  Supervised Keyphrase Extraction

The first algorithms to appear in literature were the Supervised AKE
ones, in the late gos of the last century [115, 121]. Since then, all the
supervised algorithms had almost the same overall structure:

1. First, low-level NLP operations are performed, i.e. sentence split-
ting, tokenization, part-of-speech tagging, and stemming;

2. The resulting information is used to generate the candidate key-
phrases, for example by selecting n-grams that match with cer-
tain part-of-speech patterns or using chunking algorithms [57];

3. Each candidate keyphrase is associated with some feature, e.g.
its frequency in the document or in a corpus, the number of
words in the candidate keyphrase, and so on;

4. Each candidate keyphrase is scored by a machine learning al-
gorithm trained using the values of the features calculated in
the previous step and a corpus of documents and their human
assigned keyphrases.
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Many of the most influential or successful methods are based on
this simple structure. For example, of the works cited until now, Wit-
ten et al. [121], Turney [115], Hulth [57], and Lopez and Romary [72]
rely on this approach.

There is no general agreement on what is the best ML algorithm
for keyphrase extraction. A non comprehensive list of ML algorithms
used throughout the year contains Support Vector Machines [72, 118],
decision trees [11, 48, 72, 115], neural networks [11, 16, 72], logistic
regression [11, 48], Naive Bayes [121], and so on.

However, there is even less agreement on what are the best features
for keyphrase extraction. Many scholars build on top of KEA’s orig-
inal features [121], e.g. Hulth [57, 58], Kim and Kan [62], Lopez and
Romary [72], and Nguyen and Kan [9o] and the author himself in
Basaldella, Chiaradia, and Tasso [11] and Basaldella et al. [16]. KEA
used only two features: TF-IDF and the position of the first appear-
ance of the keyphrase in the document, which have been used as an
inspiration for a number of similar features. For example, Haddoud
and Abdeddaim [47] and Kim and Kan [62] develop their own vari-
ants of TF-IDF by calculating it over specific sections of the input
documents; other scholars use the position of the last appearance of
the keyphrase as a feature as well, like for example Kim and Kan [62]
and Pudota et al. [99], while Medelyan, Frank, and Witten [77] and
Pudota et al. [99] use the length of the portion of the document be-
tween the first and the last appearance of the keyphrase as a feature.

In Table 1.1 we collected a list of over 60 features used in supervised
keyphrase extraction. While the list is by no means exhaustive, since
it has been compiled by using only about 15 papers from the KE
domain, it can help to give an idea of the type of features that are
used by scholars.

The features found can be categorized by their format, i.e., they are
either numbers, strings, or Booleans, and by how they are calculated,
i.e. using only the input document, using a corpus, or using an ex-
ternal source, like e.g., a search engine [116] or Wikipedia [87]. It is
straightforward to note that the majority of the features are numeric
and document-based. Most of the features, in fact, rely on the fre-
quency of a keyphrase in different variations, e.g. on the frequencies
of the words that compose the keyphrase, of their stems, and so on.

Feature Meaning Data | Type | Used in
Number of words Number of words | N D [48, 62, 72,
in the candidate 115]
keyphrase
Number of characters | Number of characters | N D [76]
in the candidate key-
phrase




1.2 ALGORITHMS FOR KEYPHRASE EXTRACTION

Feature Meaning Data | Type | Used in
Candidate first occur- | First occurrence of the | N D [39, 48, 57,
rence stemmed phrase in the 62,72, 87,90,
document, counting 99, 115, 121]
with words
Candidate last occur- | Last occurrence of the | N D [62, 87, 99]
rence stemmed phrase in the
document, counting
with words
Lifespan on sentences | Difference = between | N D [77, 87, 99]
the last and first
appearance in the
document
Candidate stem first | First occurrence of a | N D [115]
occurence stemmed word of the
candidate, counting
with words
Normalized  phrase | Frequency of the | N D [48, 57, 87,
frequency (TF) stemmed phrase in 99, 115]
the document (TF)
Relative length Number of characters | N D [115]
of the candidate
Proper noun flag Candidate is a proper | B D [115]
noun
Final adjective flag Candidate ends with | B D [115]
an adjective
Verb flag Candidate contains a | B D [115]
known verb
Acronym flag Candidate is an | B D [62, 90]
acronym
TF-IDF over corpus TF-IDF of the candi- | N C [39, 47, 48,
date in the corpus 57, 62,72, 76,
90, 115, 116,
121]
Keyphrase frequency Frequency of the can- | N C [39, 72, 116]
didate as a keyphrase
in a corpus
Candidate frequency Frequency of the can- | N C [57]
didate in the corpus
POS sequence Sequence of the POS | S D [57, 76, 90]
tags of candidate
Distribution of the | Distribution of the | N C [62]
POS sequence POS tag sequence
of candidate in the
corpus
Number of named en- | Number of named en- | N D [76]
tities tities in the candidate
Number of capital let- | Used to identitify | N D [76]
ters acronyms
IDF over document Inverse document fre- | N D [48]
quency
Variant of TF-IDF - 1 log(TF-IDF) N C [48]
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Feature Meaning Data | Type | Used in
First sentence First occurrence of the | N D [48]
phrase in the docu-
ment, counting with
sentences
Head frequency Number of occur- | N D [48]
rences of the candi-
date in the first quarter
of the document
Average sentence | Average length of the | N D [48]
length sentences that contain
a term of the candi-
date
Substring frequencies | Sum of the term | N D [48]
sum frequency of all the
words that compose
the candidate
Generalized Dice coef- | See [48, 72] N D [48, 62, 72]
ficient
Maximum likelihood | Estimation of the prob- | N D [48]
estimate ability of finding the
candidate in the docu-
ment
Kullback-Leibler diver- | See [48] N C [48]
gence
Document phrase | Ratio of the frequency | N D [48]
maximality index | of the keyphrase and
(DPM) its superstrings
DPM x TF-IDF Self-explanatory N C [48]
Variant of TF-IDF - 2 TF-IDF of the candi- | N C [48]
date / TF-IDF of its
most important word
k-means of the posi- | See [48] N C [48]
tion
GRISP presence Presence in the GRISP | B E [72]
database
Wikipedia keyphrase- | Probability of the can- | N E [72]
ness didate to be an anchor
in Wikipedia
Title presence Presence of the candi- | B D [72]
date in the title
Abstract presence Presence of the candi- | B D [72]
date in the abstract
Introduction presence | Presence of the candi- | B D [72]
date in the introduc-
tion
Section title presence Presence of the candi- | B D [72]
date in a title of a sec-
tion
Conclusion presence Presence of the candi- | B D [72]

date in the conclusions




Feature

1.2 ALGORITHMS FOR KEYPHRASE EXTRACTION

Meaning

Data

Type

Used in

Reference or book title
presence
Variant of TF-IDF - 3

Variant of TF-IDF - 4

Variant of TF-IDF - 5

Variant of TF-IDF - 6

Variant of TF-IDF - 7

Section information

Section TF

Candidate
occurrence

TF Occurence in titles

Occurence in titles

Semantic similarity - 1

Semantic similarity - 2

Variant of Dice coeffi-
cient - 1

Variant of Dice coeffi-
cient - 2

Variant of Dice coeffi-
cient - 3

Presence of the candi-
date in at least one ref-
erence or book title

TF includes the TF of
substrings of the can-
didate

TF of substrings of the
candidate without the
TF of the candidate

TF normalized by
candidate types (noun
phrases vs simplex
words vs...)

TF normalized by can-
didate types as a sepa-
rate feature

IDF using Google n-
grams

Weight the candidate
based on its location
(abstract, title, ...)

TF of the candidate in
key sections

Number of sections in
which the candidates
co-occur

Occurrence in the Cite-
Seer title collection as
substring of a title

TF of the candidate in
the CiteSeer title col-
lection as substring of
a title

Contextual similarity
among candidates

Semantic  similarity
among candidates
using external knowl-
edge

Normalized TF by
candidate types (noun
phrases vs simplex
words...)
Weighting by
didate types
phrases vs
words...)

Normalized TF and
weighting by
didate types
phrases vs
words...)

can-
(noun
simplex

can-
(noun
simplex

D

[72]

[62]

[62]

[62]

[62]

[62]

[62, 90]

[62]

[62]

[62]

[62]

[62]

[116]

[62]

[62]

[62]
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Feature Meaning Data | Type | Used in

Suffix sequence Sequence of the suf-| S D [62, 90]
fixes of the words that
from the candidate

Wikiflag Presence of the candi- | B E [87]
date as a Wikipedia
page title or surface
(e.g. Big Blue vs IBM)

Noun value Number of nouns in | N D [87, 99]
the candidate

Table 1.1: A non-comprehensive list of features used in supervised key'—
phrase extraction. In the column Data, the letter N marks a feature
which value is numeric, the letter B marks a boolean feature and the
letter S marks a feature where the value is a string. In the column
Type, the letter D marks a feature that is calculated using only the
input document, the letter C marks a boolean feature that is calcu-
lated using an external corpus, and the letter E marks a feature
that is calculated using some other kind of external knowledge
(e.g. an ontology).

TF-IDF is undoubtedly one of the most influential features, since it
was used by almost all the supervised algorithms and we were able
to identify seven different variants of this feature as well. In such vari-
ants, the TF-IDF value is normalized in different ways, or calculated
using external knowledge, or multiplied with the value of other fea-
tures. Other numerical features are calculated using statistical tech-
niques, such as the Generalized Dice Coefficient used in Haddoud
et al. [48], Kim and Kan [62], and Lopez and Romary [72], the fre-
quency of the keyphrase in particular sections of the input document
(e.g. the abstract), or by counting the number of letters that compose
the keyphrase, the number of capital letters, and so on.

Only few features rely on linguistics; for example, [57] uses the se-
quence of part-of-speech tags of the words composing the keyphrase
as a feature in string format. Pudota et al. [99] counts the number
of nouns that appear in a keyphrase, while Kim and Kan [62] and
Nguyen and Kan [9o] follow another approach, by feeding the ML
model with the sequences of the suffixes of the word that compose
the candidate keyphrase (for example, the suffix sequence of “suffix
sequence” is “fix nce”). This feature can be useful to catch certain
technical words belonging to specific fields, e.g. words ending with
“-itis” are very likely to be a disease (e.g. “arthritis”), and is indeed
typical of the field of entity recognition in specialized domains [14].
Finally, Turney [115] used Boolean flags to check whether the candi-
date keyphrase contained a verb or ended with an adjective, but this
feature has been superseded by the introduction of the candidate gen-
eration phase based on part-of-speech regular expressions [30, 47, 57,
58, 62, 72, 90, 99] which guarantees that the candidate keyphrases are
well-formed phases (e.g. not ending with determiners).
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Some features instead use external knowledge trying to provide valu-
able information to the ML model. Most notably, the winner system
of the SEMEVAL 2010 competition, presented in [72], used the pres-
ence of the candidate in Wikipedia and in the technical term database
GRISP [71] as a feature, starting from “the assumption [...] that a
phrase which has been identified as controlled term in these resources
tend to be a more important keyphrase.” Nart and Tasso [87] used a
Boolean flag which was set to true when the candidate keyphrase
was the title of a page in Wikipedia. Kim and Kan [62] used Google
Ngrams [79] and other scholars used search engines [116] to compute
variants of TF-IDF on a wider corpus.

1.2.2  Unsupervised Keyphrase Extraction

Since this dissertation is mainly about supervised KE, I will not go
deep in the details of unsupervised KE methods. However, a brief
analysis of the history of such methods is important, because super-
vised and unsupervised KE techniques evolved somehow in parallel.

Historically, one of the first unsupervised approaches was proposed
by Barker and Cornacchia [10], and it was a simple technique based
on the extraction and filtering of noun phrases. Then, Tomokiyo and
Hurst [112] proposed a technique for unsupervised KE which used a
statistical language model to rank KPs.

Later, Mihalcea and Tarau [80] proposed a novel technique of ex-
tracting KPs called TextRank, where the document is represented
using a graph structure, whose nodes are candidate KPs. Then, the
popularity of each candidate is evaluated using graph algorithms usu-
ally derived from the PageRank algorithm [94]. Other scholars, most
notably Bougouin, Boudin, and Daille [23], Litvak, Last, and Kandel
[68], and Wan and Xiao [117] evolved the original TextRank algorithm
with different goals, e.g. splitting the document in topics [23] or ensur-
ing the language-independence of the algorithm [68]. The TextRank
method was also challenged by Liu et al. [69], who were able to out-
perform the graph-based techniques using a novel approach based
on clustering.

In general, unsupervised KE approaches obtained wide attention
by the academic community, due to their inherent advantages of
being both domain-independent and easier to port to different lan-
guages. However, to date, their performance has been lower when
supervised and unsupervised techniques were evaluated in the same
setting. In fact, in both the SEMEVAL 2010 [63] and 2017 [8] tasks
on keyphrase extraction the winner algorithms were based on super-
vised techniques.

For a more exhaustive review of unsupervised KE methods, the
author suggests the survey by Hasan and Ng [52], which covers also
methods not mentioned in this chapter.

11
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1.2.3 Deep Learning and Keyphrase Extraction

Deep Learning (hence DL), i.e. the application of neural networks
with many hidden layers, is a relatively new branch of Artificial Intel-
ligence that gained popularity in the early 2010s due to the availabil-
ity of new software and hardware tools that made the training of such
networks feasible in short time. DL revolutionized many fields, from
image classification to speech recognition [43], and it found many
applications in Natural Language Processing (abbrv. NLP) thanks to
the concurrent discovery of word embeddings by Mikolov et al. [81].
Chapter 4 will serve as a brief introduction of the DL concepts rele-
vant to KE.

The applications of DL on keyphrase extraction still are relatively
few. For example, Zhang et al. [123] used Recurrent Neural Networks
to extract keyphrases from Tweets. Meng et al. [78] used deep neural
networks to extract and generate keyphrases from scientific publica-
tions, obtaining good results on many datasets. At the time of writing,
the most recent examples of DLKE are the systems proposed at the
SEMEVAL 2017 competition [8], where the winner system was based
on Long-Short Term Memory networks (LSTM) [6]. Actually, the top
three systems in SEMEVAL 2017 were all based on DL techniques,
using DL in combination with other supervised machine learning al-
gorithms (in particular, with Conditional Random Fields).

1.3 DATASETS
1.3.1 English datasets

The most popular language for AKE in academia is undoubtedly En-
glish, since most of the datasets are available in this language; the
only two competitions organized on keyphrase extraction, SEMEVAL
2010 [63] and 2017 [8], used English datasets. In particular, the re-
sults of 2010 edition of the competition served as reference for many
scholars afterwards, since they had a reference dataset and shared
evaluation scripts to assess their work [11, 16, 23, 47, 48, 78]. At the
time of writing, it is still to early to tell if the 2017 edition will have the
same impact on the AKE community as the 2010 edition, but given
the success of the previous one, it is likely that it will be the case.

Other publicly available datasets worth mentioning here are the
INSPEC corpus, introduced by Hulth [57], and later used by other
scholars to compare with her work, as for example Meng et al. [78],
Mihalcea and Tarau [80], and Pudota et al. [99] did. Wan and Xiao
[117] evaluated their work on documents from the DUC 2001 dataset,
a dataset for text summarization from the 2001 edition of the Docu-
ment Understanding Conferences series, while Nguyen and Kan [90]
collected scientific papers from the internet instead.
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The typical approach to collect keyphrases for all the previously
mentioned datasets is to have “experts” annotating the documents.
These experts can be either the author(s) of the document, or univer-
sity students, or both. However, it is very rare that keyphrases are
produced by more than one annotator, and it is instead very com-
mon that the quality of the annotations is low. According to Meng
et al. [78], who analyzed some of the previously mentioned datasets,
in some of them more than 50% of the annotated keyphrases are not
present in the documents.

However, recently, new approaches to collect and evaluate KPs
using crowdsourcing emerged. Crowdsourcing, portmanteau of crowd
and outsourcing, is the act of using internet users (the crowd) as work-
force to solve a problem or execute a task, and it has recently gained
popularity in both academia and industry as a quick and relatively
cheap solution for obtaining data. Marujo et al. [76] collected an AKE
dataset for English using Amazon Mechanical Turk, while Chuang,
Manning, and Heer [26] used crowd workers to rate the quality of
automatically selected KPs. We will continue to investigate the use of
crowd sourcing for KE in Chapter 2.

1.3.2 Non-English Keyphrase Extraction

Even if the majority of the datasets for KE are available for the English
language, this does not necessarily mean the AKE is an English-only
field. In fact, scholars started working with algorithms for multi lin-
gual AKE from the beginning. For example, Tseng [113] used AKE in
order to provide approaches for IR users to handle multilingual doc-
uments, by building an unsupervised, language-independent AKE
system and demonstrating its effectiveness on English and Chinese
documents. Since then, many language-independent approaches have
been proposed but most of them are unsupervised, as anticipated in
Section 1.2.2. Unfortunately, due to the lack of non-English resources,
such algorithms often require the collection of ad-hoc corpora when
evaluated on different languages.

For example, DegExt [68] was introduced as an unsupervised lan-
guage independent keyphrase extractor. DegExt uses a simple graph-
based syntactic representation of text and web documents [107]. The
evaluation was performed on an English corpus (DUC 2002) and on
one purpose-built corpus of 50 Hebrew documents. Paukkeri and
Honkela [95] and Paukkeri et al. [96] presented Likey, a language-
independent keyphrase extraction method based on statistical anal-
ysis and the use of a reference corpus. Likey has been tested using
exactly the same configuration with 11 European languages using
an automatic evaluation method based on Wikipedia intra-linking,
and on the English language using the SEMEVAL 2010 corpus [63].
Bougouin, Boudin, and Daille [23] proposed TopicRank as an unsu-

13
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pervised, language-independent AKE system. TopicRank creates a
graph of the document where each node is a topic appearing in the
document, then it uses graph ranking techniques to score the topics
and select keyphrases belonging to the top ranked ones. The authors
evaluate their approach on four datasets, two on the English language
(the SEMEVAL 2010 corpus [63] and the Inspec dataset [57]), and two
on the French language, one freely available and one purpose-built
by them.

However, supervised systems were used for multi language key-
phrase extraction as well. DIKpE-G [30] was proposed as a novel
multi-language, unsupervised, knowledge-based approach towards
keyphrase generation. DIKpE-G integrates several kinds of knowl-
edge for selecting and evaluating meaningful keyphrases, ranging
from linguistic to statistical, meta/structural, social, and ontological
knowledge, and it has been evaluated on the Italian language using
a custom-built dataset of 50 scientific papers. LIKE [7] was presented
as a supervised method that uses feed-forward neural networks for
automatically extracting keywords from a document regardless of the
language used in it. Unfortunately, while the authors claim that LIKE
is a truly language-independent AKE system, it is trained and evalu-
ated only over the English language.

There is a growing community of scholars working on AKE on the
Arabic language as well. For example, in order to train and evalu-
ate their KP-Miner system for Arabic AKE, El-Beltagy and Rafea [32]
used manually annotated documents, including Wikipedia articles
and their meta-tags. Awajan [9] instead used a mixed approach of
previously tagged document and manually annotated ones as train-
ing and evaluation dataset. However, in this dataset, only 73% of the
human-generated keywords are actually found in the text, severely
undermining the quality of the dataset and the performance of the
KPE algorithm itself.

1.4 APPLICATIONS OF AUTOMATIC KEYPHRASE EXTRACTION

Keyphrases have been widely used in many applications throughout
the years in many fields, e.g. in document indexing [45], clustering
[45, 50, 51], similarity [120], and summarization [124]. The author
contributed to two applications of AKE as well, in the fields of User
Modeling (Nart et al. [89]) and of Social Network Analysis (Nart et al.
[88]).

We will not analyze these works in depth, as this thesis is about im-
proving AKE, rather than on its applications. However, as an example
of application of AKE, in Figure 1.1 we show the temporal analysis
of the evolution of the topics in the Italian Research Conference on
Digital Libraries. As we have described in Nart et al. [88], in order
to achieve temporal modeling, papers are grouped by year, then a
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Europeana
m Big data
Digital humanities
B Semantic web
Natural language processing
B Recommender systems
® Machine learning
Cultural heritage
® Digital libraries
W Information retrieval

2005 20068 2007 2008 2009 2010 2011 2012 2013 2014

Figure 1.1: An example application of AKE: the temporal evolution of the
topics of the IRCDL conference, reproduced from Nart et al. [88].

topic graph is built by means of AKE, under the assumption that the
size of a fraction of papers including a specific term is a significant
measure of how much widespread such term is at a specific time. We
can see that “Digital Libraries”, i.e. the topic of the conference, is by
far the most important topic in the papers accepted over the ten year
time span we analyzed. On the other hand, we can also notice how
the first editions covered less topic than the most recent ones, with an
minimum of three topics in 2006, and maximum of 8 topics in 2011,
2012 and 2014. This happened due to the emergence of new trends,
i.e. the appearance of topics like “Europeana”, “Big Data”, or others,
which were not covered in the first editions.

1.5 TERMINOLOGY

Throughout this work, unless stated otherwise, I will use the termi-
nology defined in Table 1.2. Mathematical operators are used with
their usual meaning, e.g., X is a vector, |D| is the cardinality of the set
D, and so on.

Symbol Definition

D A document corpus

deD A document belonging to a corpus D

Sa The set of the sentences belonging to a
document d

Sdi € Sa The i-th sentence of the document d

kp A keyphrase

t A token

freq(t,d) and Functions that calculate the frequency of

freq(kp, d) t or of kp in a document d.

Table 1.2: Terminology used in the present thesis.

15
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1.6 EVALUATION

The task of evaluating an AKE algorithm is not a simple one. In fact,
several techniques have been investigated throughout the years in
order to assess the performance of AKE. However, the most common
used metrics are precision, recall and f-measure.

Definition 1.6.1 (Precision). Let KP¢orrect be the set of the correctly
extracted keyphrases and KPextractea the set of the extracted key-
phrases (both correct and wrong), the precision P of an AKE algo-
rithm is defined as follows:

P= |KPcorrect| (1'1)
|KPextracted|

i.e. the ratio between the number of correctly extracted keyphrases,
and the number of all the extracted keyphrases.

Definition 1.6.2 (Recall). Given KP¢orrect as before and let KPgo14 be
the set of the human-annotated keyphrases, the recall R of an AKE
algorithm is defined as follows:

|KPcorrect|
R=—7—"—"—" 1.2
|KPgold| ( )

i.e. the ratio between the number of correctly extracted keyphrases,
and the number of human-annotated keyphrases (i.e. the size of the
gold standard).

Definition 1.6.3 (F-Measure). Let P and R precision and recall, the
F-measure F1 is defined as follows:

_2><P><R

Fl1 = PR (1.3)

i.e. the harmonic mean of P and R.

Note that these metrics are often used on a subset of the keyphrases
extracted by an AKE systems, namely on the top n; in this case, the
metrics are called “Precision@n” , “Recall@n”, “F1-Score@n”, abbre-
viated respectively as P@n, R@n, Fi@n. For example, the systems
trained on the SEMEVAL 2010 dataset are typically evaluated using
n =5 n = 10 and n = 15 [63]. However, these values are not the
standard ones: for example, Meng et al. [78] evaluate their system
with F1@5 and F1@10 only, and El-Beltagy and Rafea [32] use n =7,
n =15 and n = 20 as thresholds.

Some scholars used other metrics to evaluate their own systems.
Litvak, Last, and Kandel [68] used Area Under Curve (AUC), which
is the area under the Receiver Operating Characteristics (ROC) curve.
An efficient algorithm to calculate AUC is presented by Fawcett [37].
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Liu et al. [70] introduced binary preference measure (Bpref) and mean
reciprocal rank (MRR) as tools to evaluate AKE. Bpref is used to eval-
uate the performance of AKE algorithms considering the ordering of
the extracted keyphrases, while MRR is used to evaluate how the first
correct keyphrase for each document is ranked.

Definition 1.6.4 (Binary Preference Measure (Bpref)). Given a doc-
ument and a KP extraction system, M is the total number of key-
phrases extracted by the system, of which R are correct. We say that
1 is a correctly extracted KP and n is an incorrectly extracted KP. So,
the binary preference measure is defined as follows:

] In ranked higher than 7|
Bpref = R é (1 M ) (1.4)

Definition 1.6.5 (Mean reciprocal rank (MRR)). Given a document set
D, a document d € D, the rank of the first correct keyphrase within
all the extracted keyphrases is denoted as rank(d). Then, the mean
reciprocal rank is defined as follows:

1 1
MRR= — § — .
D > rank(d) (1.5)
deD

Marujo et al. [76] instead proposed normalized Discounted Cumu-
lative Gain (nDCG) as a metric to evaluate their system against the
crowd-assigned keyphrases, and Schluter [108] cited the same metric
as ideal for evaluating an AKE system. Note that this metric needs a
dataset where the KPs are ranked to be used, so it is not applicable
on most of the datasets mentioned in Section 1.3. Here we use the
definitions of DCG and nDCG as presented by Marujo et al. [76]:

Definition 1.6.6 (Discounted cumulative gain (DCG)). Let rel; be the
number of workers which selected the i-th phrase as relevant, the
Discounted Cumulative Gain is defined as follows:

rely
log, 1

n
DCG =rel; + ) _
i=2

(1.6)

Definition 1.6.7 (Normalized Discounted cumulative gain (nDCG)).
Given DCG, and let iDCG be the ideal ordering for a list of key-
phrases, the normalized Discounted Cumulative Gain is defined as
follows:

DCG
nDCG = DCG (1.7)
In this thesis we will mainly use Precision, Recall and F1-Score as
metrics, but we believe that ranking has to be held in account when
evaluating a system as well. In fact, we suggest that an AKE system

may offer an interesting contribution even if it is just able to provide a
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| I O O
AV IV V|V |V XX XX X[ X|X|X|X]|X
B X | X| X | X| X | X|X|X|X| X\ /| V|V |/]|V
CllvV |V |V | X | V| X|X|X|X|/|X|X|X|X|V

P | R | F1 | MaAP

A || 033|033 033]| 033

B || 033 ]| 0.33 | 0.33 | 0.02

C | 040 | 0.40 | 0.40 | 0.31

Table 1.3: Hypothetical Precision, Recall, F1-Score and MAP of three sys-
tems A, B and C over a document with 15 correct keyphrases. A
tick mark (v') indicates a system assigned correct keyphrase, while
an x mark (X) a wrong one.

better ranking of the keyphrases. A good system is, arguably, one that
puts the better keyphrases on the top of the output, while leaving the
bad, potentially wrong, keyphrases on the bottom.

However, this better ranking could not be caught by Precision, Re-
call and F1. For example, suppose we have two systems participating
in SEMEVAL 2010, where algorithms are ranked by the F1-Score of
the top 15 keyphrases returned by the algorithms. We call this sys-
tems A and B. Suppose that, looking at A’s output, only the first 5
keyphrases are correct, while the other 10 are wrong. Then, suppose
that B’s output is the opposite, i.e. the first 10 keyphrases are wrong,
and the last 5 are good. Thus, these systems will have the same preci-
sion (33%), the same recall and the same F1-Score, but the ranking of
the system A is arguably better than the ranking provided by B.

Therefore, when necessary to evaluate the ranking produced by
AKE systems, we will use the Mean Average Precision (MAP) metric
as an alternative to the metrics presented in this section, as it is more
suitable to evaluate a ranking than simply using precision and recall.
MAP is easy to calculate (differently from AUC), it takes into account
the ranking of all the KPs selected by the system (differently from
MRR), it is closely related to the already used P@n metric (differently
from Bpref), and it does not need a ranked output (differently from
nDCG). We give our definition of MAP for keyphrase extraction by
adapting the definition given by Manning, Raghavan, and Schiitze
[74] in Definition 1.6.8.

Definition 1.6.8 (Mean Average Precision (MAP)). Let D ={kp(p 1), ...

kp(D,n)} be the set of correct keyphrases for a document and Rp i be
the set of retrieved keyphrases for the document D until you get to
the k-th keyphrase, the Mean Average Precision is defined as

~
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j
MAP(D, R)

333

Precision(Rp k)
j=1 1

3\~

k=

Where Precision(Rp i) is the Precision@k score of the system over
document D for the first k retrieved documents.

As an example, we can see the systems A and B compared in Ta-
ble 1.3, on a document with 15 gold keyphrases. The two systems
share the same P, R and F1 scores, while MAP is radically different,
being much higher for system A than for system B. If we suppose to
have another system C, which gets the 15t,24 37d 5th oth and 15t
keyphrases correct, we have that C shows higher P, R and F1 scores
than systems A and B but lower MAP than A. This is due to A’s bet-
ter quality of the first results or, in other words, because of the higher
“weight” of A’s correct keyphrase in the 4" position than C’s correct
keyphrases in 10" and 15" position.

1.7 RESEARCH QUESTION

The purpose of this thesis is to analyze the strengths and weaknesses
of the current supervised approach to the automatic keyphrase ex-
traction problem, and to propose new methods based on linguistics
and deep learning that which can be helpful in the improvement of
AKE using more contextual information.

As seen in Section 1.2, supervised AKE algorithms are currently
considered the state-of-the art approach. However, as stressed in Sec-
tion 1.2.1, at present most of the features used in such systems rely
mostly on statistical, language-independent features: when training
a model, in fact, scholars usually feed it neither with the whole doc-
ument, nor even with the words that compose the keyphrase. This
means that a supervised model actually “knows” very little of what
the input document is about, what are its topics, what are the rela-
tionships between the keyphrases that appear in it, and so on.

For this reason, we will try to prove these claims:

* First, that the “classic” approach to supervised AKE, not receiv-
ing any information about the content of the input document,
is basically language-independent. We will show that training
a machine learning model for supervised AKE on a language
yields good performance on other languages as well.

e Starting from this point, we will try to add more contextual
information in supervised AKE, by using features based on lin-
guistics and in particular on anaphora resolution.

* Finally, we will try to exploit deep learning techniques based on
neural language models to build a supervised AKE algorithm
that actually reads the document.
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1.8 CONTRIBUTIONS AND OUTLINE

In order to prove the claims we made in Section 1.7, we developed
several experiments which are described throughout the present dis-
sertation. All these experiments have been developed in the Artificial
Intelligence Laboratory at the university of Udine. Below, we summa-
rize the main contributions presented in the present Thesis:

¢ Chapter 1, i.e. the present Chapter, presented the problem of Au-
tomatic Keyphrase Extraction. We investigated the current state-
of-the-art approaches, we presented the most common dataset
for AKE and the main metrics used to evaluate AKE algorithms.

¢ Chapter 2 covers the collection a new AKE dataset for the Ara-
bic language, and its application in developing a multilanguage
AKE pipeline. The work covered in this Chapter has been pub-
lished in Basaldella et al. [16] and Helmy et al. [54].

e Chapter 3 describes the process of using linguistic in order to
use contextual information to improve AKE. The results of this
Chapter have been published in Basaldella et al. [14].

e Chapters 4 and 5 cover the applications of Deep Learning on
AKE and the development of several DLKE pipelines that per-
form AKE by using the whole document. A seminal version
of the work presented in has been accepted for publication in
Basaldella et al. [17].

The experiments covered in Chapters 2 and 3 have been developed
using the Distiller framework, a framework that the author developed
during the course of its Ph.D. in order to provide the research com-
munity a flexible testbed for AKE and similar information extraction
tasks. The Distiller framework is described in Appendix A, and it has
been presented in Basaldella, Nart, and Tasso [12], and later its im-
provements have been analyzed in Basaldella, Serra, and Tasso [13].
We released all the code of the Distiller framework as Open Source
software.

Appendix B contains the description of the software developed in
order to perform the algorithms presented Chapter 5. As for the Dis-
tiller framework, we plan to release the source code presented in this
Appendix as Open Source software at the moment of the publication
of the present dissertation.

1. OTHER CONTRIBUTIONS

Since the present dissertation is mainly about AKE, it does not cover
some of the works developed using the course of the author’s Ph.D..
These works include:
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* The assessment of the performance of workers in Crowdsourc-
ing experiments with different time constraints. This work, pre-
sented in Maddalena et al. [73], has been helpful to gain ex-
perience in the Crowdsourcing field, and some of the concepts
learned while performing this experiments have been reused
while collecting the AKEC dataset presented in Chapter 2;

¢ The application of AKE techniques on dictionary-based entity
recognition on the biomedical domain, and the subsequent inte-
gration of the Distiller with the OntoGene software developed
by the university of Zurich [100] to build an hybrid dictionary-
based/machine learning entity extraction system for biomedi-
cal entities. These works have been presented in Basaldella et
al. [14, 15], they have been influential in some of the develop-
ment choices of the Distiller framework, and they have been
very helpful to gain experience in a natural language process-
ing task closely related to AKE.






Part II

CLASSICAL SUPERVISED KEYPHRASE
EXTRACTION

This Part describes the relationship between language and
Automatic Keyphrase Extraction. First, we show how, due
to the nature of supervised AKE algorithms, the input lan-
guage seems to be not important at all, since many (if not
all) of the classical supervised approaches do not rely on
the meaning of the words contained in the document, but
just on their statistical distribution. Then, we show how
the use of linguistics can actually improve AKE. We use
the information conveyed by anaphors, which allow us to
exploit the relationships between a candidate keyphrase
and its surrounding context.






MULTILANGUAGE KEYPHRASE EXTRACTION

As explained in Section 1.2.1, supervised AKE algorithms are typi-
cally implemented using mostly features that rely on statistical and/or
positional knowledge, i.e. features that use the frequency of a key-
phrase in the document or in a corpus, and features which use the
position(s) of the keyphrase in the input document. This considera-
tion suggests that such algorithms do not actually learn how to find
the key concepts in the documents using information from its con-
tent. This is in strong contrast with unsupervised techniques, which
instead rely typically on graph-based techniques that exploit the cor-
relations between each word in the document to identify keyphrase,
as already pointed out in Section 1.2.2.

Following this path, in this Chapter we will investigate a multi-
lingual keyphrase extraction pipeline, which successfully performs
keyphrase extraction in English, Arabic, Italian, Portuguese and Ro-
manian, even if it’s trained on the first two languages only. In order
to do that, we first have to collect an AKE dataset in the Arabic lan-
guage, since to the best of our knowledge no quality datasets are
publicly available for any of these languages but English.

The work discussed in this chapter has been presented in Helmy et
al. [54] at the 2016 International Conference on Asian Language Pro-
cessing (IALP 2016), held in Tainan, Taiwan in 2016 and in Basaldella
et al. [16] at the 2017 edition of the conference Recent Advances in
Natural Language Processing (RANLP 2017) held in Varna, Bulgaria,
in 2017.

2.1 INTRODUCTION

This Chapter will investigate the possibility of building a multi lan-
guage, supervised keyphrase extraction pipeline, that is able to ex-
tract keyphrases from documents written in languages different from
the one(s) it’s trained with.

For this work, we choose as input languages for our AKE system
English, Arabic, Italian, Portuguese and Romanian. The choice of En-
glish is straightforward, as it’s the most popular language in the AKE
community, so there is plenty of datasets available for this language.
Arabic, Italian, Portuguese and Romanian were chosen because, in
order to validate our approach, we were able to work with mother-
tongue speakers.

To prove our point, we decided to train the AKE pipeline in two
languages, and to evaluate it on the others. To the best of our knowl-
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edge there are no publicly available AKE datasets for Arabic, Italian,
Portuguese and Romanian, so we had to collect a dataset in one of
these languages to carry out our experiment.

We chose Arabic as a second training language since there is a
growing interest around the problem of AKE in the Arabic language.
Arabic is, in fact, the fifth most spoken language in the world, with
more than 240 million native speakers'. Nevertheless, there is no
shared, standard dataset that scholars can use to assess the perfor-
mance of their Arabic AKE systems. For example, [32] and [9] used
custom-made corpora in their work, remarking the absence of a stan-
dard dataset.

In Section 2.2, we will describe the process we followed to collect a
KP dataset for the Arabic language. In Section 2.3, in order to prove
our hypothesis, we first train a ML model that can extract keyphrases
in English and Arabic, we use such model to extract keyphrases in
the other languages, and finally we validate the proposed solution
using expert knowledge from mother-tongue speakers.

2.2 AKEC: AN ARABIC KEYPHRASE EXTRACTION CORPUS

To collect a KP dataset, as already described in Section 1.3, there
are different possible solutions. An easy solution is to use author-
assigned tags, as it's a common practice in academia to use them to
describe a paper upon submission. However, there is no constraint
that such tags should appear verbatim in the body of the paper. For
this reason, they are often integrated with reader-assigned keyphrases:
students or experts are asked to read the document and choose key-
phrases that should appear in the document. However, often such
readers also choose keyphrases that do not appear in the original doc-
ument [57, 63], undermining the quality of the dataset.

For this reason, to collect our dataset we use crowdsourcing, an
approach that has already been explored by Marujo et al. [76]. The
dataset collection process will be the following: first, we collect a set
of documents in the Arabic language from several domains. Then,
we use crowd workers from the Crowdflower platform® to assign
keyphrases to such documents. Finally, we analyze and merge the
selected keyphrase to provide a reliable, sorted keyphrase list for
each document in the corpus. We will call our dataset the Arabic
Keyphrase Extraction Corpus (abbr. AKEC).

1 https://www.ethnologue.com/statistics/size
2 http://www.crowdflower.com
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2.2 AKEC: AN ARABIC KEYPHRASE EXTRACTION CORPUS

2.2.1  The Crowdsourcing task

2.2.1.1  Document Collection

The document collection we used contains 160 documents selected
from four general purpose, freely available corpora: 46 documents
from the Arabic Newspapers Corpus (ANC) [5], 53 from the Corpus
of Contemporary Arabic (CCA) [4], 31 from the Essex Arabic Sum-
maries Corpus (EASC) [33, 34], and 30 from the Open Source Arabic
Corpora (OSAC) [104].

The documents are categorized into the following topics:

e Art and music (18 documents)

¢ Environment (18 documents)

¢ Finance (18 documents)

e Health (19 documents)

e Politics (18 documents)

* Religion (17 documents)

* Science and technology (18 documents)
* Sport (17 documents)

e Tourism (17 documents)

After preprocessing the documents by eliminating unrelated text
like headers, image captions, and corpus metadata, their lengths vary
between 500 and 1000 words, with a median of 735.5 words.

The analysis process involves three different forms of Arabic text
for both documents and selected KPs. The first one is the original
form, which is the text without processing or removing any character.
The second one, that we will call “pure form”, includes only the ba-
sic Arabic alphabet and numbers. In other words, “pure” KPs are the
selected phrases with Arabic diacritic sighs and non-Arabic charac-
ters removed. To obtain this result, the text is cleaned by removing all
unnecessary characters like special Arabic punctuation marks, diacrit-
ics, and Kashida3. In addition, some Arabic characters have various
forms which we normalize into a single one to decrease the process-
ing complexity.

The third one offers a more in-depth analysis of the documents and
the selected KPs, since we extracted the root form of the words, i.e.
we removed any information about gender, number, pronouns, etc.
attached to the word. Usually for the English language, a stemming
algorithm is used to perform this task. In Arabic, however, stemming

Also called Tatweel, it is a form of Arabic text justification that, instead of adding
whitespace, adds an horizontal, slightly curvilinear stroke between certain letters.
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Word Meaning Lemma Meaning
L. 4s  OurSchool | &u,us A School

Osw,M!  The Teachers | . )xs A Teacher
OswlWl The Students | . )l5 A Student
U9 Lessons SIL A Lesson

ol>  TheirStudy | Ll,>  AStudy

Table 2.1: Examples of Arabic words and their lemmatized forms.

is much less effective than in other languages, since it simply removes
the derivational affixes of the word and is often not able to get its
true root (stem). Thus, many words with different meanings would
be reduced to the same stem.

To tackle this problem, [32] used a more aggressive, custom-made
stemmer. A similar approach was used by [9], which combined two
different softwares to get to an acceptable root form of each word.
We did not want to use custom-made solutions, so we decided to use
lemmatization instead of stemming. Lemmatization, performed with
the AraMorph lemmatizer [24], applies vocabulary and morphologi-
cal analysis on the word to get its dictionary form (lemma), resulting
in a much more precise “cut” of the originally selected words. This
way we could obtain a standard root form of each selection, which
allowed us ultimately to merge similar selections together. Table 2.1
provides an example of such technique for a set of Arabic words. All
of these words have the same Arabic stem which is (>, translated

as “study”), but have different lemmas.

2.2.2  Pilot Experiment

First of all, we launched a pilot experiment on the Crowdflower plat-
form with 10 documents, to tune our task for the whole corpus. Each
worker was shown one document and had to assign 5 different KPs.
Each documents was analyzed by 5 different workers that had to as-
sign 5 different KPs to that document. This way, we had 250 total KP
assignments. The workers were simply asked to select from the docu-
ment phrases that they considered important inside the text without
any guidance on how these phrases were composed, i.e., if the se-
lected phrases should contain or not nouns, verbs, etc. A worker’s
work was discarded if the time spent on the document was lower
than go seconds. Each worker could read and annotate up to five
documents. The worker could select phrases from one to five words
long.
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Count Selected Pure Lemmatized

1 171 169 165
2 24 25 27
3 5 5 5
4 4 4 4
Total 204 203 201

Table 2.2: Frequency of uniquely selected KPs in the pilot experiment.

el

N sl ) ddlall

o iy (oM i yall o plifinl B () 58 guay () 3 el S 2ll3 18

BETTEWE

o) i | S o) pas” ilaial 5 Allanall 8 5 ) e Ly agliShe 5[0 galisall o g1 A land 3 i e Lo (g (3l gt pe e S0 6

JdeLuall iyl 5 aall et ) s Al s e
3 Y b o i (B gata

el N S el ) (A5 sa ge

Cpmaleall ) a1 S1 S AL e it g1 s b el i atay iUy

Y ety ey " e

10 0 7) L G 5 Dl Jaad

4y yaall A jladl) ol ua g peandl )
Ogalaal 5l Al Ao laa F-N
&l Al il Ty

gyl Gt

Figure 2.1: The user interface that the workers used to select keyphrases in
Arabic documents.

The experiment was completed by 33 distinct workers. The average
number of documents analyzed by each worker was 1.5. Table 2.2
shows the analysis of the KPs selected by the users.

The KPs were manually inspected to analyze the behavior of the
workers. On a total of 204 distinct KPs, we marked 45 phrases as
“wrong”, i.e. we found that workers selected 28 phrases which in-
cluded a verb, 12 phrases that were meaningless, and 5 phrases that
likely contained a selection error, i.e. first or last character missing.
After removing diacritics and lemmatizing phrases, we obtained an
average of 20.1 KPs per document, which lowers to 3.6 taking only
the KPs selected by at least two workers.

2.2.2.1  Main Experiment

Following what we learned from the pilot experiment, we launched
the full experiment adjusting some parameters. First, we decided to
use 10 workers per document, and to ask each worker to select 10 KPs,
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Percentage of units completed by workers by country
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Figure 2.2: Percentage of units completed on the main experiment by coun-
try. Country names are abbreviated using ISO 3166 3-letter
Codes.

while in the pilot experiment we required just 5 KPs by 5 workers.
Moreover, we adjusted the task instructions to guide workers to not
select phrases beginning with stopwords, verbs, or adjectives. Each
unit was discarded if the worker did not spent at least 120 seconds
on the document. Each worker could read and annotate up to ten doc-
uments, i.e., could complete up to ten units. Moreover, we required
Crowdflower to select only medium and highest quality workers.

Figure 2.1 shows the user interface we developed to let crowd work-
ers select the KPs in the Arabic documents. Workers were allowed to
select entire words only, to prevent selection errors; wrong selections
were automatically expanded to the closest full word (e.g., if a worker
selected "Crowsourci", the selection was automatically extended to
"Crowdsourcing"). Moreover, workers were prevented to manually in-
sert KPs in the text fields, forcing them to select only KPs that appear
in the document. Finally, workers were prevented to continue if they
didn’t select at least 10 KPs.

2.2.2.2  Descriptive Statistics

The experiment was launched and completed by a total of 226 work-
ers, for a mean of 7.07 documents per worker. The time spent reading
a document had an average of 302 seconds (5 minutes) and a median
of 222 seconds (less than 4 minutes). We collected a total of 10,646
distinct KPs, i.e., 66.5 per document on average.

We performed the whole task in two sessions, and each of them
required about 12 hours. The sessions were carried out respectively
the 3rd and the 6th of February, 2016. The mean time spent by a
worker for extracting 10 keyphrases from a document is 302 seconds
(5 minutes and 2 seconds) while the median time is 222 seconds (3
minutes and 42 seconds).
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. 1 to 5 unique workers . 6 to 10 unique workers 11 to 20 unique workers . 21 to 100 unique workers - more than 100 unique workers

Figure 2.3: The geographic distribution of the crowd workers that completed
the main keyphrase collection experiment.

Figures 2.2 and 2.3 show that, geographically, the crowd workers
came prominently from North Africa. In fact, more than 75% of the
workers were based in one of four countries, namely Egypt, Alge-
ria, Saudi Arabia and Tunisia. Only 2.2% of the workers came from
countries where Arabic is not an official language, i.e., Germany, In-
donesia, Netherlands, France, and Turkey. However, since Islam is
the main religion of Indonesia and Turkey, and since there are strong
German, Dutch and French Muslim minorities, we assume that these
workers must know Arabic as a religious language.

Figure 2.4 shows the frequency of the lemmatized phrases, when
selected by at least n workers. It is noteworthy that some phrases,
when lemmatized, have a frequency higher than 40, and that in at
least half of the documents, more than five of the lemmatized key-
phrases is selected by at least three workers, backing up our aim of
building an high-quality dataset.

2.2.3 The Arabic Keyphrase Collection

2.2.3.1  Selecting High Quality Keyphrases

Taking all the data as is makes the average number of KPs per doc-
ument dramatically high. For example, the SEMEVAL 2010 collec-
tion provides an average of only 14.81 KP per document, while if we
took all the crowd collected phrases without any kind of filtering, we
would end up with a big low-quality dataset including badly selected
text, invalid KPs such as stopwords, verbs, etc.

To generate a high-quality collection, we reduced the total number
of 16,000 KPs by using the approaches described in Section 2.2.1.1.
Considering only pure KPs (i.e., without diacritics and forbidden
symbols) leads to a total number of 10,602 different KPs; if we further
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Figure 2.4: Number of lemmatized phrases selected by at least n out of 10
workers.

apply lemmatization we obtain 10,286 KPs, for an average of 64.2 lem-
matized phrases per document. To improve the collection quality, we
adopted two additional selection approaches:

 Frequentist: we order KPs by the number of times that they have
been selected by workers, then we discard all the KPs that have
not been selected at least twice.

* Linguistic: we build a language model and sort the KPs using
that model; then, we keep the best 15 ranked phrases per docu-
ment and discard the others. Note that we keep all phrases that
are at tied the 15" position of the raking, so the actual number
of KPs per document will be variable.

Looking at Figure 2.4, we can see that almost any document is
associated with at least 15 KPs selected by at least two workers and
with a KP that has been selected by at least 5 workers. Table 2.3 offers
a more detailed analysis of these data. We see that some documents
will have very high-quality KPs, as they were selected by at least 8
workers. Table 2.3 also shows that the number of KPs selected by at
least n > 2 workers are pretty similar to the SEMEVAL 2010 dataset.

The linguistic approach is used to discriminate phrases which are
substrings of other KPs. We built a language model (LM) for each
document for a total of 160 LMs. The corpus of each LM consisted
in the set of the crowd-assigned KPs and its features are the n-grams
(with n = 1...5) generated by these KPs. For each LM, we calculated
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n Worker Median Mean Min Max

2: 18 17.8 10 24

4 4 4.1 1 10

6: 1 1.5 0 4

8: 0 0.5 0 2

10: 0 0.1 0 1

Linguistic cut: 15 15.5 15 19
SEMEVAL: 14 15.1 8 37

Table 2.3: Number of KPs which have been selected by at least n crowd
workers for each document.

the sum of the columns of the relative frequency table, obtaining a
score for each feature, which was dependent from how many times
that feature occurred as a (or as part of a) worker selected KP. Then,
we excluded the features which were not crowd-assigned KPs, and
ranked them by score, obtaining our final linguistic ranking.

The difference between the two approaches is that the language
model favors conceptually similar phrases. For example, suppose we

have three phrases selected from a document: “computer science teacher”,

“science teacher” and a completely unrelated word, which is most
probably an error, e.g., “foo”. Assuming that the first word has been
selected three times, while the second and the third one have been se-
lected once, “science teacher” and “foo” have exactly the same score
and will be discarded by the frequentist model. The language model,
instead, is able to say that “science teacher” is similar to a more fre-
quent KP, pushing it higher in the ranking.

Obviously, each model has its pros and cons; the LM may promote
phrases which are actually not important, while the frequentist model
may suffer from worker error. Nevertheless, we claim that they are
both good ways of ranking worker selected KPs, so we release both
rankings in the final dataset.

2.2.3.2 Data Validation

To validate our approaches, we selected a subset of 56 documents
from the corpus and had an expert (an Arabic native speaker attend-
ing a Ph.D. on AKE) manually assess the quality of the KPs that the
crowd selected. The expert was shown the KPs in random order to
avoid any bias.

Since we have ranked KPs, it is natural to use classical “top-heavy”
ranking metrics, well studied in the IR community. In particular we
use the classical ones: Average Precision (AP) and Mean AP (MAP),
as well as MAP@s5, MAP@10, and MAP@15 to show the quality of the
first ranked KPs. Indeed, we show boxplots of AP values (i.e., a repre-
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sentation of the distribution of AP values over the various documents
— one dot, one document) to see the variability over documents.

Figure 2.5 shows that, for all documents and for both linguistic
and frequentist approaches, AP@5 and AP@1o0 values are very high:
median values are around 0.9 or higher. AP@15 values are similarly
high. MAP@5, MAP@10, and MAP@15 (i.e., the mean AP values, rep-
resented as red dots in the figure), are all above 0.8. This means that
the sets of the first 5, 10, or 15 KPs in both ranks (i.e., linguistic and fre-
quentist) are very good and sometimes almost perfect. The leftmost
boxplot pair in figure shows that AP and MAP values are slightly
lower but still well above 0.6: although some of the KPs are not good
ones according to our expert, even when using all of them we get a
reasonable quality.

We are confident that, when compared with the quality of the other
similar KP datasets in the literature, our dataset is at least as reliable.
For example, the authors of the SEMEVAL 2010 dataset recognize that
only 85% and 81% of their reader- and author-assigned KPs, actually
appear in the text and, in contrast to our approach, they simply trust
that their readers assigned correct KPs, without any kind of post-
collection quality control process like the one we perform.

2.2.3.3 Applying a Baseline KPE System on the Dataset

Various KPE systems employ TF-IDF as a numerical and statistical
method to extract and rank KPs to measure the importance of key-
words to a document in a dataset or corpus [32, 76, 90]. Therefore, to
further validate our dataset, an Arabic TF-IDF based testbed system
was implemented as a baseline KPE to evaluate the quality of the
dataset KPs and assess workers performance.

For each document, two lists of words have been generated. The
first list contains words of all KPs extracted by the workers excluding
stopwords while the second one is a sorted list of the important words
generated and ranked by the testbed system. After that, the two lists
were compared and the precision of the workers selections against
the TF-IDF generated list was calculated. The precision was about 0.6,
which means that 60% of workers KPs words are recognized by the
system; we take this as a good result, especially if compared with the
scores of the aforementioned KP extraction systems which rely on
this feature.

2.3 CROSS-LANGUAGE SUPERVISED KEYPHRASE EXTRACTION
2.3.1  Multilanguage Keyphrase Extraction

Now that we have our Arabic dataset, we can proceed on building
the multilanguage AKE pipeline introduced in Section 2.1.
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Figure 2.5: AP of the two approaches at different cuts.

To build a multilanguage AKE system the first step is to understand
which parts of the pipeline need to be customized to work on more
languages. Therefore, we divide the AKE pipeline in modules and we
identify the language-dependent ones:

1. Low-level NLP: sentence and word segmentation, part-of-speech
tagging and stemming;

2. Candidate generation: selection of the possible keyphrases in
the document. It is usually performed by detecting the phrases
which match certain known part-of-speech tags patterns;

3. Feature extraction: candidates are assigned some features, like
position in the text, frequency, etc.

4. Candidate scoring: the feature extracted in the previous step are
used to assign a score to the candidates; then, the top ranked
candidates are usually used to evaluate the pipeline.

In this Chapter we focus on the first, second and fourth steps,
which are the ones which rely mostly on language-specific knowl-
edge, by implementing several AKE pipelines in the Distiller key-
phrase extraction framework described in Appendix A.

2.3.2 Low-level NLP

The first step of the AKE pipeline consists in preparing the docu-
ment to identify the potential keyphrases, by splitting the text into
sentences and the sentences into tokens and, finally, performing part-
of-speech tagging, stemming and/or lemmatization.

We use off-the-shelf libraries to perform these tasks. For the En-
glish and Arabic languages, we used the Stanford CoreNLP library
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[75] for all the tasks except stemming, since it offers state-of-the-art
performance. Due to the limited availability of languages available for
CoreNLP, for the Portuguese and Italian languages we used the the
Apache OpenNLP* library with the default models for Portuguese
and Ciapetti’s models for the Italian language®. For the Romanian
language, the models were not available, so we built them ourselves;
we describe this process in Section 2.3.2.1.

To stem the tokens, we used the Porter stemmer [98] for all lan-
guages but Arabic, where lemmatization was used instead of stem-
ming, as we already explained in Section 2.2.1.1. Thus, the lemmatizer
used for the Arabic language is the AraMorph lemmatizer [24].

2.3.2.1 Romanian

We were not able to find any suitable CoreNLP or OpenNLP models
for the Romanian language to perform sentence splitting, tokeniza-
tion, and PoS tagging. Thus, we decided to build our own models
for Apache OpenNLP using the ROMBAC® dataset [59], which was
collected by the Research Institute for Artificial Intelligence of the
Romanian Academy.

The corpus is divided in five domains: journalism (news and edito-
rials), pharmaceutics and medicine, law, biographies of Romanian lit-
erary personalities, and fiction. The documents are tokenized, morpho-
syntactically tagged, lemmatized, shallow parsed (chunked) and en-
coded in an XCES compliant format. The tagset used in the ROMBAC
corpus is quite large, with about 614 MSD tags [35]. The corpus con-
tains about 41,000,000 words, including punctuation. We tested differ-
ent training/testing split to obtain the best possible performance. For
the training of the sentence detector and tokenizer, we used the jour-
nalism domain, while to train the POS tagger we used the journalism,
medicine, and fiction domains.

We tested the models on the remaining genres. The sentence detec-
tor obtained a F1-score of 72.0, the tokenizer a F1i-score of 98.61 and
the PoS tagger obtained a F1-Score 94.41.

While the performance for the tokenizer and the PoS tagger is sat-
isfactory, the sentence detector model we trained offers a somewhat
underwhelming performance. We tried to obtain better performance
by tweaking the parameters offered by the OpenNLP library or dif-
ferent training/testing split but, after careful analysis, we concluded
that the problem lies in the input data. The ROMBAC dataset, in fact,
is constituted by files which contain all the original page formatting
data, such as title, chapter name, author, page number, and so on, so
the library is not able to fit a better sentence splitting model.

4 https://opennlp.apache.org/
5 https://github.com/aciapetti/opennlp-italian-models
6 The Romanian Balanced Annotated Corpus
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Anyway, we evaluated the model on the set of documents we used
to perform AKE in Romanian (see Section 2.3.4). After a manual in-
spection of the results we decided to continue to use this model, since
for the scope of our experiments the performance was good enough.

2.3.2.2  Arabic

Being very different from the Western languages we previously de-
scribed [36, 46], the Arabic language documents needed additional
text preprocessing steps before we were able to extract candidate key-
phrases successfully.

To make our pipeline able to work on arbitrary documents, and still
be compatible with the AKEC dataset we introduced in Section 2.2,
we had to apply the same preprocessing step we used in the corpus.
Thus, in order to align the documents with the “pure text” represen-
tation we introduced in Section 2.2.1.1 we use the same preprocessing
techniques, i.e. we remove again all unnecessary characters like the
special Arabic punctuation marks, diacritics, and Kashida, and we
normalize Arabic characters.

Another issue about Arabic is that punctuation is used differently
than in English and other Western languages. In fact, Arabic has tra-
ditionally no punctuation, and it is still usual to find modern Arabic
books written in this way [31]. In the other languages we analyzed,
we trivially assume that all the words of a keyphrase have to appear
within the same sentence. Since it may be not possible to distinguish
sentences in an Arabic input text, we follow the approach described
by Helmy et al. [53], assuming that the tokens of a keyphrase in the
Arabic language should appear in the same syntactic noun phrase.

2.3.3 Candidate Generation

Candidate generation requires more domain knowledge than simply
using an off-the-shelf library. To generate the candidate keyphrases,
we scan the text for phrases that match certain part-of-speech tag se-
quences (we will call such sequences PoS patterns from now on). For
example, for the present Chapter, a valid keyphrase may be “multilin-
gual keyphrase extraction”, which PoS pattern is “(adjective, noun,
noun)”.

These patterns, as introduced in Section 1.2, are the most common
way of generating the candidates in supervised AKE and they require
to be engineered by a domain expert, since they are significantly dif-
ferent from language to language. For example, the English phrase
“software engineering” is translated in Italian as “ingegneria del software”,
where del is an articulated preposition, i.e. the union of an article with
a preposition, a part of speech which does not exist in the English
language. This example shows also that in some languages we will
look for shorter n-grams, while other, more verbose languages may
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require a larger n. For example, in English we look typically up to 3-
grams [63, 99], while in Italian our system will look for 1 to 5-grams.

For the English and Arabic languages we used known PoS patterns
from the literature [53, 62]. For the other languages, we constructed
or own PoS patterns. For this purpose, we collected about 500 author
assigned keyphrases in Italian, Portuguese and Romanian from scien-
tific repositories and we performed PoS tagging on them. Then, we
selected the most frequent patterns, after manually removing or cor-
recting the erroneous ones (e.g. pattern with only conjunctions, etc.).

2.3.3.1 Features Extraction

After the identification of the candidate keyphrases we assign to each
of them seven features. Most of the features assigned to candidate
keyphrases rely simply on statistical and structural information (like
the position in the text, frequency, TF-IDF, and so on) [52]. As already
pointed out in Section 1.2.1, researchers have developed language-
dependent features, based e.g. on part of speech tags [57], or based
on external knowledge like Wikipedia [77], but this kind of features
requires long computational times and specialized tools which may
not be available for all languages. Thus, for the sake of simplicity, we
decided to leave them out of our pipeline.

To describe the features we implemented we use the notation we
defined in Section 1.5. In our system, we take four features from Pu-
dota et al. [99] and we use them for unsupervised keyphrase extraction
only. These features are:

NORMALIZED FREQUENCY i.e. the number of times a candidate ap-
pears in the document normalized to the number of sentences,
i.e. given a candidate kp for a document d,

m .
norm_frequency(kp,d) = |{1|P|S€|51,d}|
d

HEIGHT i.e. the relative position of the first occurrence of the candi-
date in the document, i.e. given a candidate kp for a document

d,

e e s
height(kp, d) = mml{1||s:| € Sial

DEPTH i.e. the relative position of the last occurrence of the candidate
in the document, i.e. given a candidate kp for a document d,

Jilk .
depth(kp, d) — maxl{lsz € si,a}

LIFESPAN i.e. the difference between the last and the first appearance
of the candidate, i.e. given a candidate kp for a document d,

lifespan(kp, d) = depth(kp, d) — height(kp, d)



2.3 CROSS-LANGUAGE SUPERVISED KEYPHRASE EXTRACTION

We add three other features to this set to perform supervised key-
phrase extraction, namely:

FREQUENCY i.e. the number of times a keyphrase kp appears in a

document d, i.e. the function freq(kp, d) defined in Section 1.5;
While this feature may seem redundant since we already have
the normalized frequency in our model , our experiments showed
that using both features leads to better results. To see why, just
consider the word “candidate” in the present document: it has
been repeated many times in the same sentence, e.g. in the def-
inition of the lifespan feature;

TF-IDF i.e. one of the first features used for AKE along with height

DPM

[121]. A common statistic used in information retrieval to iden-
tify which candidates are peculiar of that particular document
with respect to a corpus, is the product of the term frequency tf
and the inverse document frequency idf. This feature are some of
the most popular ones in supervised AKE, so it’s straightfor-
ward to include them in the model (see Section 1.2.1) detail, we
define tf and idf as

freq(kp, d)

kp,d) = LeduP, &)

tilkp, &) = v e an
idf(kp, D) DI

=1
OgI{dGD:kad}l

so have that

tfidf(kp, d, D) = tf(kp, d) x idf(kp, D)

i.e. Document Phrase Maximality, is used to discriminate be-
tween overlapping keyphrases and it helped to reach new state-
of-the-art performance in the AKE task on the SEMEVAL 2010
dataset [47]. Given a document d and the candidate keyphrase
kp, we define the set sup(kp, d) of the superterms of kp candi-
date keyphrase, i.e. the set of the candidates that contain kp as
a substring. For example, if we have a document d which talks
about “software engineering”, we have that “software engineering”
€ sup(“software”, d). Then, DPM is defined as

freq(s, d)

DPM(kp,d) =1 _maXS€sup(kp,d)W

2.3.3.2 Candidate Scoring

To score the candidates, the most trivial approach in this kind of AKE
pipeline is to assign heuristically crafted weights to the features, like
in Pudota et al. [99]. Typically, however, one can train a machine learn-
ing algorithm over a dataset, like the SEMEVAL 2010 dataset [63], and
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Feature Name Weight

Frequency 0.10
Height 0.32
Depth 0.16
Lifespan 0.12

Table 2.4: Values for the weights of the features used in Section 2.3.3.3

use the generated model to identify keyphrases of new documents.
Unfortunately, as pointed out in the introduction, datasets are avail-
able only for a minority of languages, so this is not always a viable
option.

In our system we used three different scoring techniques. First,
since we do not have training sets for all five languages, we assigned
manual weights to four of our features, using values which have
proven to work on the English language [99]. Then, we trained two
models, one for English using the SEMEVAL 2010 dataset and one for
Arabic using the AKEC dataset. Finally, we used the models trained
on these languages to score keyphrases in Italian, Romanian and Por-
tuguese as well.

2.3.3.3 Manual Weights

In this approach we follow a very simple technique. Given a candi-
date keyphrase kp, a feature f, and the set of the features F, we define
value(kp, f) as a function which returns the value of f for the can-
didate kp. For each feature, we also assign a weight w, whose value
is defined below. Then, the score of a keyphrase kp is computed as
follows:

|F|
score(kp) = Zwi x value(kp, fi)
i=1
As mentioned in Section 2.3.3.1, the features used in this step are
normalized frequency, height, depth, and lifespan, and the values of their
weights w; are displayed in Table 2.4, as presented in Pudota et al.
[99]. There, the authors used a set of 1000 keyphrases assigned to 215
documents from [9o0] to calculate them”. We did not re-compute the
values of the weights by ourselves, because authors already proved
its effectiveness, and since we just want to use them as a baseline.

7 Here we call Pudota et al. [99]’s phrase last occurrence and depth as depth and height
respectively, but their values are computed in the same way. We do not use the noun
value feature because it has proven ineffective in our experiments.
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2.3.3.4 Supervised Weights

The manual weights technique is trivially limited by the fact that
these weights are used to compute a simple linear function, so it can’t
cope with complex interactions of the features. Many machine learn-
ing algorithms such as multilayer neural networks, support vector
machines, decision trees, and so on, are instead able to learn non-
linear functions, and for this reason are commonly used for AKE in
literature [52].

Thus, in our final step we train a multilayer neural network to ex-
tract keyphrases in English and Arabic, using two different training
sets. For the English language, we use the dataset from the “SEMEVAL-
2010 Task 5: Automatic Keyphrase Extraction from Scientific Articles”
challenge [63] (herein, simply SEMEVAL 2010). For the Arabic lan-
guage, the network has been trained on the AKEC corpus described
in the previous Section. The corpora have 244 and 160 documents
respectively, of which 144 are used for training and 100 for testing
in the SEMEVAL 2010 dataset, and 100 are used for training and 60
for testing in the AKEC dataset (see Table 2.5) . Both datasets, as
described in the previous Sections, have about 15 human-assigned
keyphrases per document (see Table 2.3). Moreover, as described in
Table 2.5, while the SEMEVAL dataset is composed by scientific pa-
pers, hence the mean length of its documents is of about 8ooo words,
the AKEC dataset is composed by much shorter documents from a
variety of sources, from religion to news, with a mean length of about
750 words. For this reason, we expect that the two networks will have
quite different weights, so in Section 2.3.5 we will use Garson’s algo-
rithm [41] to analyze the importance of each feature in both datasets.

The neural network has been trained using the nnet package in the
R programming language using the entropy parameter. The network
uses one neuron per input feature, a hidden layer with two times the
input neurons, and one output neuron. The keyphrases are ranked
according to the score assigned by the network, which is the value of
the output neuron.

We use the models trained on these datasets to extract keyphrases
in all our five languages. This is possible because, as already pointed
out, the neural network ignores the text of the actual candidate key-
phrase, since it does not receive any information about its words or
about its meaning, but only statistical information about its appear-
ance(s) in the input document.

2.3.4 Experimental Evaluation

While it is straightforward to analyze the performance of our model
in English and Arabic since both the SEMEVAL 2010 and AKEC
datasets provide test sets, for Italian, Portuguese and Romanian we
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Dataset Size Mean length o length
Semeval 2010 | 244 8020 1946
AKEC 160 757 145
English 20 3717 1877
Italian 20 4699 3412
Portuguese 20 4335 2482
Romanian 20 802 730

Table 2.5: The datasets used to train and test the pipelines, with their num-
ber of documents, their mean length in words, and the standard
deviation o of the length in words.

are not aware of publicly available collections of keyphrase extraction
datasets.

For this reason, we asked mother tongue speakers of these three
languages to collect 20 documents per language and assign 15 key-
phrases to each document, ranking them by importance. To have
a further verification of our techniques, we repeated the same pro-
cess for 20 documents in the English language as well. The collected
datasets are described in Table 2.5, in which we show the mean num-
ber of words and the standard deviation of the number of words of
the documents of each dataset. For English, Italian and Portuguese,
we have collected similar datasets with a majority of scientific docu-
ments, which is reflected by mean of about 4000 words per document.
For Romanian, we collected mainly newswire documents, so we have
a mean of 800 words per document, close to the AKEC dataset. All
the purpose-built datasets have a greater variability in the number
of words with respect to the SEMEVAL 2010 and AKEC datasets, be-
cause while these datasets are composed by only one kind of doc-
uments with strict constraints on the length, our test datasets are
mixed, containing scientific papers, newswire text, web pages, etc.

Note that for our own datasets, since they have only 15 expert-
assigned keyphrases, the Precision score and the F1 score on the top
15 candidates are equalg, so for these datasets we show only the for-
mer.

For all three approaches, we evaluate our algorithms using Preci-
sion computed on the top 5 extracted keyphrases (herein Precision@5
or P@s5), and Precision and F1-score computed on the top 15 extracted
keyphrases (herein P@15 and F1@i15), which are the same metrics
used to evaluate the SEMEVAL 2010 dataset [63]. Since these met-
rics do not take in account the order of the extracted keyphrases,
we add Mean Average Precision (MAP) to this set, as anticipated in
Section 1.6. Note that for our own datasets, since they have only 15

Because the size of the set of the retrieved documents is equal to the size of the set
of the relevant documents, hence Precision = Recall.
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Dataset Pipeline P@s P@is MAP Fi@is
. Manual weights | 0.13 0.1 0.076  0.10
English .
English model | 0.29 o0.21 o0.151 0.21
(SEMEVAL) )
Arabic model | 0.25 0.18 o.117 0.18
Manual weights | 0.46 037 0.158 0.145
Arabic English model | 0.63 o0.47 0.185 0.18

Arabic model | 0.61 048 o0.190 0.19

Manual weights | 0.33 026 0.232
English English model | 0,51 0.35 0.320

Arabic model | 047 0.32 0.280

Manual weights | 0.37 0.23 0.182
Italian English model | 0.44 0.26 o0.209

Arabic model | 041 0.23 0.185

Manual weights | 0.40 0.27 0.226
Portuguese English model | 042 0.24 o0.221

Arabic model | 0.45 0.31 0.250

Manual weights | 0.34 026 0.229

Romanian English model | 047 0.3 0.266

Arabic model | 0.39 0.28 0.248

Table 2.6: The results obtained with the different 15 experiment we executed.

expert-assigned keyphrases, the Precision score and the F1 score on
the top 15 candidates are equal?, so for these datasets we show only
the former.

2.3.5 Experimental Results

We present the results obtained in our experiments in Table 2.6. As ex-
pected, the manual weights method achieves the lowest performance.
This is true in particular for the SEMEVAL 2010 dataset, where its
performance by F1-Score would have been only the second-to-last in
the original event. On the other datasets, though, the performance
is higher, with 40% and 46% P@s5 score on the Portuguese language
and Arabic language respectively. These scores seem to be particu-
larly good, since the best performing system in the SEMEVAL 2010
challenge obtained 40% in P@s.

Using the English model we obtained better performance on the
SEMEVAL 2010 dataset with 21% F-Score, which would be enough

Because the size of the set of the retrieved documents is equal to the size of the set of
the relevant documents, hence Precision = Recall, hence, since the F1-Score is the
harmonic mean of Precision and Recall, we have Precision = Recall = F1-Score.
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to be placed 9" over 19 systems in the challenge. Since we were not
interested in getting the best score but we want to get an average AKE
system, this result looks acceptable. Moreover, the score obtained by
our neural network greatly outperforms the manual baseline, so we
were satisfied and we decided to use it on the other languages.

The Arabic model obtains similarly satisfactory results on the AKEC
dataset. We have no other systems to compare our model with, since
the dataset has been recently released, but the 61% P@5 Score is
hugely outperforming the best system in the SEMEVAL 2010 chal-
lenge and a 15% improvement over the manual weights, so we’re
satisfied with this result. As shown in Table 2.6, Precision@15, MAP,
and the F1-Score improve as well, so we were satisfied with the per-
formance of this model.

After we validated the machine learning models, we proceeded
to use them for the other languages. Using the English and Arabic
models to extract keyphrases in Italian, Portuguese, and Romanian
offers always an improvement with respect to the manual weights,
and the same holds for our English countercheck collection.

Analyzing the results for each language, we see that the English
model outperforms the Arabic one on the English, Italian and Ro-
manian language, while the Arabic model performs better on the
Portuguese language only. However, both models obtain good perfor-
mance, with at least around 40% Precision on the top 5 keyphrases
which, as we previously mentioned, would be a top score on the SE-
MEVAL 2010 challenge.

Looking at the Precision@15 score, of particular interest is the En-
glish model on the English and Romanian collections, and the Arabic
model again on the English collection and on the Portuguese one, all
of which reach and/or surpass 30%, outperforming again the best
performing systems on the SEMEVAL 2010 dataset.

Anyway, a direct comparison of our results with the one obtained
in the SEMEVAL challenges is clearly not fair, since the documents
in our collections (other than written in different languages!) are sig-
nificantly shorter, so we generated much less candidate keyphrases
and the problem we had to solve was easier [52]. This is the reason
why our English model performs better on our collections than on the
SEMEVAL 2010 dataset, the reason why the Arabic model performs
better on the AKEC collection than on the other datasets, and a prob-
able reason of the poor performance of the unsupervised weights,
since Pudota et al. [99] tailored them on documents with a different
length (i.e. the already mentioned Inspec corpus [57]).

This difference is reflected in the weights of the two neural net-
works, as we see in the results of Garson’s algorithm for the com-
putation of the relative importance of the weights in a network [41]
plotted in Figure 2.6. On the one hand, on the AKEC dataset, where
the documents are short, presumably there are less repetitions and
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Figure 2.6: The result of Garson’s weight analysis algorithm [41] on the mod-
els trained on the SEMEVAL 2010 and AKEC datasets.

terms are sparsely positioned in the document, so the most impor-
tant feature used by the network is TF-IDE. On the other hand, for
the SEMEVAL 2010 dataset, documents are much longer, there are
more repetitions, and the documents are more structured, having an
abstract, a body, and the conclusion, so important terms are expected
to appear in a certain position of the document. The network seems
to take into account these factors, since while TF-IDF is still the most
important feature for the SEMEVAL 2010 dataset according to Gar-
son’s algorithm, normalized frequency is the second most important
feature with a close gap, followed equally by the features which take
into account the position of the candidate in the document.

2.4 CONCLUSIONS

In order to build the multilanguage AKE system, we first had to com-
plete our first effort in building a new KP dataset for Arabic docu-
ments by means of crowdsourcing. Being our first take in building
such a corpus, there is plenty of directions to explore in the future. It
is possible that we will enlarge the corpus by including more docu-
ments; before doing so, however, we intend to study in more detail
some issues. For example, we intend to try different approaches and
variants to filter the high quality KPs besides those presented in Sec-
tion 2.2.3.1. It will also be important to understand which is the ideal
number of workers per document; we have used 10 in our experi-
ment, and a first research direction may be to see if some sampling
technique can lead to accurate KPs with lower numbers and, thus,
lower cost.

Finally, on a related note, we also plan to try different experimen-
tal designs. For instance it would be interesting to try an approach
similar to the well known ESP game [2], including the mechanism of
taboo words to avoid the crowd to repeatedly select already known
KPs.
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The dataset is available at https://github.com/ailab-uniud/akec,
and as anticipated is structured as follows: 100 randomly selected doc-
uments to be used as the training set, and 60 documents as test set.
For both sets, for each document, we provide a list of all KPs selected
by the workers, randomly ordered, and the two lists of good quality
KPs generated with the approaches discussed in Section 2.2.3.1. This
split is the one we used in the present Chapter to train our multilan-
guage pipeline.

Our approach showed that it is possible to build an effective su-
pervised keyphrase extraction pipeline for an under-resourced lan-
guage which lacks a keyphrase extraction gold standard by train-
ing it on another language. In fact, by training our AKE pipeline
over English and Arabic, we were able to obtain good performance
on Italian, Romanian and Portuguese as well. However, the English
and Arabic pipeline still obtained better performance on their respec-
tive language corpora. Moreover, the actual performance of our AKE
pipelines seems to depend more on the length and the domain of
the document than on its language, since in general the accuracy of
the extracted keyphrases seems to increase with the decrease of the
length of our test document, confirming what Hasan and Ng [52]
pointed out in their survey.

As a future work, to validate this hypothesis, it should be consid-
ered to perform further experiments on documents in several lan-
guages coming from several domains and of different lengths, to ver-
ify if a supervised AKE algorithm performs better if trained on the
same language or if it is trained on the same domain.


https://github.com/ailab-uniud/akec

IMPROVING SUPERVISED KEYPHRASE
EXTRACTION WITH LINGUISTICS

After the investigation of how training and testing an AKE algorithm
on different languages, in this Chapter our focus will be adding more
contextual information using linguistics in AKE instead. As already
discussed in the previous Chapters, most of the supervised algo-
rithms used in AKE do not make use of linguistic information to
train the models. The technique presented in this Chapter tries to
invert this trend, by making use of the information conveyed by ana-
phoras.

The work discussed in this chapter has been presented in Basaldella,
Chiaradia, and Tasso [11] at the 26'"™ International Conference on
Computational Linguistics held in Osaka, Japan in 2016.

3.1 INTRODUCTION

In this chapter we follow the path of exploring new features and
new ways of using linguistic knowledge from anaphora resolution
in order to detect more contextual information and to improve AKE
performance. We started from the following hypotheses:

* If an n-gram is referenced many times inside a document, i.e. it
has many anaphors, its relevance as a KP may increase;

e If a pronoun can be replaced with the noun (or noun phrase)
that it substitutes, we may detect information about said noun
that otherwise would be lost; this information could be used to
detect better KPs.

To check if these hypotheses hold we used the following approach.
First, we set a baseline to compare our hypotheses against by choos-
ing a minimal set of features that defined a system behaving like an
average SEMEVAL 2010 contestant, using a pipeline similar to the
one used in the previous Chapter, and implemented it in the Distiller
system described in Appendix A. Then, we designed two approaches,
one based on the new linguistic features and the other based on a text
preprocessing stage which applies anaphora-antecedent substitutions.
Finally, we evaluated the performance of several ML algorithms us-
ing the SEMEVAL 2010 dataset and different feature sets combination
which include the first hypothesis, the second one, or both.
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3.2 ANAPHORA RESOLUTION

Anaphora resolution (hence AR) is the problem of resolving what a
pronoun or a noun phrase refers to. For example, in the phrase “His
tail between his legs, the dog walked out the door”: the goal of an AR
algorithm is to understand that the pronoun his refers to the dog.

AR is a problem with a long history in the NLP community. For
example, to solve this problem, Lappin and Leass [66] proposed “an
algorithm for identifying both intrasentential and intersentential an-
tecedents of pronouns in text”: they used syntactical and morpholog-
ical filters to find out dependencies between pronouns and possible
related noun phrases (herein NPs), scoring the candidates by consid-
ering salience to select an adequate antecedent for each pronoun not
flagged as pleonastic.’

A close problem to anaphora resolution is coreference resolution. These
two fields share similar information, so they overlap in a certain way:
both problems, in fact, have the ultimate goal of detecting the “cohe-
sive agency” [49] which points back to some previous item”?.

We can define the process of binding an antecedent to an anaphora
as anaphora resolution; coreference resolution instead is defined the
process of detecting when anaphors and their antecedent(s) have in
common the same referent in the real world. Consider this the exam-
ple by Mitkov [84]:

This book is about anaphora resolution. The book is de-
signed to help beginners in the field and its author hopes
that it will be useful.

Then the NP “the book” and both the pronouns “its” and “it” are ana-
phors referring to the antecedent “This book”, and all three anaphors
have the same real-word referent, which is “this book”. So anaphors
and their antecedent(s) are coreferential and form a chain, called coref-
erence chain, in which all the anaphors are linked to their antecedent.

In our experiments we used the Stanford Coreference Resolution
System module dcoref in the Stanford CoreNLP library [75] to re-
trieve anaphors and referents to implement our linguistics based fea-
tures. We choose this software because of its good performance, since
it is the direct descendant of the top ranked system at the CoNLL-
2011 shared task. Moreover, both the Distiller and Stanford’s system
are Java-based, thus the integration of the two systems is easier. To
resolve both anaphora and coreference, dcoref extracts the couples
of anaphors and their relative referents, according to the matching of
phrases” attributes, such as gender and number.

Other strategies to perform anaphora resolution, as the one intro-
duced by Ge, Hale, and Charniak [42], use statistical information to

1 A pleonastic pronoun is tipically used in phrasal verbs as subject or object but with-
out an effective meaning (i.e. it seems, it is known, etc.)
2 Cohesion will be discussed in detail in Section 3.3.1



3.3 ANAPHORA IN KEYPHRASE EXTRACTION

resolve pronouns. They use the distance between pronoun and the
proposed antecedent to check the probability of the connection be-
tween them, information about gender, number, and animacity of the
proposed antecedent as hints for the proposed referent, and head in-
formation to make selectional restrictions and mention count.

3.3 ANAPHORA IN KEYPHRASE EXTRACTION
3.3.1 Motivation

To understand why we hope that AR can be helpful in detecting good
keyphrases, it may be useful to understand the roots of human com-
munication. In fact, when we (humans) communicate, whether in a
spoken or written form, generally we express a coherent whole, i.e.,
a consistent and logical collection of words, phrases, and sentences.
In many languages, including English, people often use abbreviated
or alternative linguistic forms, such as pronouns, referring to or re-
placing some items that were previously mentioned in the discourse.
Thus, to fully understand the discourse we need to interpret these
elements, which depend on the elements they refer to. In linguistics,
this process of interpretation is called cohesion [84].

On the other hand, when a document is processed for AKE, non in-
fluential words are usually removed. These words, commonly called
stop words, are excluded from the text because they appear to be not
significant, even if they are extremely frequent. Among them there
are also pronouns such as he, she, it, that, who, and so on. Moreover,
using the PoS pattern method we described in Section 2.3.3 to gen-
erate candidate keyphrase we automatically discard pronouns, since
they are not included in the noun-phrase like patterns typically used
for AKE [62].

The removal of such elements causes a loss of cohesion, both syn-
tactically and semantically. This happens because pronouns have a
relevant role in the discourse, since they allow the author to enrich
his writing using a fuller vocabulary, composing more complex sen-
tences, and so on. In fact, pronouns are parts of the text which typ-
ically have the function of a substitute: depending on the case, they
can replace a subject or an object, they can indicate possession, places,
or refer back to previously mentioned things or people. Given these
premises, disregarding all pronouns without replacing them with a
valuable substitute could lead to a loss of syntactical and/or seman-
tical information. In fact, during the reading process we are able to
decode the information conveyed by pronouns because we automat-
ically replace them with the entity they refer to. In NLP this process
is performed by anaphora resolution algorithms, thus our idea is to
use this information, which would be otherwise lost, for AKE.
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3.3.2 Definitions

We augment the terminology we introduced in Section 1.5 with the
following definitions Given a document d and a keyphrase kp, S4(kp)
is the set of sentences s € d in which kp appears, i.e.

Sa(kp) ={s € d|d € D,kp € s}

We also define |C4| as the number of clauses in the document d,
which are defined as a “simple sentences”. In details, clauses are de-
fined as the smallest grammatical units which can express a complete
proposition?, while sentences can be composed by more than one
clause.

Finally, we remind that given a sentence S we denote with [S| the
number of words in S, with |[kp| the number of tokens in kp, with
ISa(kp)| the number of sentences in the set S, and so on.

3.3.3 First approach: Use of anaphora as a feature

In our first approach we decided to use linguistic knowledge pro-
vided by anaphors to produce some new features. In detail, we de-
signed a statistical feature that counts all the pronouns/pronominal
anaphors which point to an entity (the antecedent), and a feature based
on lexical noun phrase anaphors, which are realized as definite noun
phrases and proper names [84]. We will call them nominal anaphors
and proper name anaphors respectively.

For the first feature we follow this process: first, we use the Stan-
ford CoreNLP Coreference Resolution System to find all the anaphors
contained in a text and link them to their antecedent. Then, we select
the pronominal anaphors, which are anaphors identified by personal
pronouns (he, she, ...), reflexive pronouns (him, her, ...), possessive pro-
nouns (himself, itself, ...), demonstrative pronouns (that, those, ...), and
relative pronouns (which, who, ...). Finally, we normalize the references
counted for each antecedent dividing them by the number of clauses
in the document.

Formally, we call PA 4 xp the set of pronominal anaphors for which
kp is the antecedent in the document d. We define:

PA
numOfReference(d, kp) = ||Cd’]|<p|
d

In our opinion, the use of sentences for normalization is not correct
because within a sentence we could find more than one pronoun, thus
skewing the normalization. If we choose the number of clauses to nor-
malize the feature we are instead sure that 0 < numOfReference < 1.
For clarity, consider the “this book” example from [84] we introduced

3 Here we use clause and proposition as defined in [65].
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in Section 3.2: by normalizing over sentences, the value of the feature
would be 2 = 2, while by normalizing over clauses the value of the
feature is % =0.4.

The other linguistic feature we implemented is based on nominal
and proper name anaphors. A nominal anaphora instead arises when
the referring expression has a non-pronominal noun phrase as its an-
tecedent: it is the case of clauses in which anaphora and antecedent
are implicitly related, i.e., they do not stand in a structural or gram-
matical relationship, but they are linked by a strong semantic one.
Consider this example from Wikipedia®:

Margaret Heafield Hamilton (born August 17, 1936) is a
computer scientist, systems engineer and business owner.
She was Director of the Software Engineering Division of
the MIT Instrumentation Laboratory, which developed on-
board flight software for the Apollo space program. In
1986, she became the founder and CEO of Hamilton Tech-
nologies, Inc. in Cambridge, Massachusetts. The company
was developed around the Universal Systems Language
based on her paradigm of Development Before the Fact
(DBTF) for systems and software design.

Here “Margaret H. Hamilton” is the antecedent and the correspond-
ing anaphors are the underlined words in the quote. “Computer sci-
entist”, “Director of the Software Engineering Division” are all exam-
ples of nominal anaphors.

The Wikipedia excerpt continues with this sentence:

Hamilton has published over 130 papers, proceedings, and
reports about the 60 projects and six major programs in
which she has been involved.

Here, “Hamilton” is a proper name referring to “Margaret Heafield
Hamilton”, and realizes a proper name anaphora.

When we read these anaphoric patterns we automatically link, for
example, the concept of being a “computer scientist” to a property
of the subject of this sentence, i.e. Mrs. Hamilton, while in AKE this
information is lost. Hence, the basic idea behind this feature is to
reward all the candidate KPs which appear in a nominal or proper
name anaphora because they implicitly refer to the mentioned subject,
highlighting important aspects of it.

In details, we process the document as previously defined. Then,
for each candidate KP, we count all the times it appears in the set of
the lexical noun phrases, i.e., the set of nominal and proper name ana-
phors. Finally we normalize the obtained score by the total number
of appearances of the candidate in the document.

4 https://en.wikipedia.org/wiki/Margaret_Hamilton_(scientist)
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Formally, given a keyphrase kp and the set NPA4 of the lexical
noun phrase anaphors in the document d, the inAnaphora feature can
be computed as follows:

{a € NPA4[kp = aff

inAnaphora(d, kp) = Salkp)]

3.3.4 Second approach: Use of anaphora for preprocessing

While the previous approaches are able to capture some information
about anaphora, they are not powerful enough to catch other knowl-
edge that anaphora convey. For example, frequency-based features
such as TF-IDF, which plays an important role in several AKE algo-
rithms since its first introduction in [39], may be recalculated using
the anaphors in the frequency count as well.

This leads us to a different strategy: transforming the text into
something that resembles the original human reading process as de-
scribed in Section 3.2. To achieve this goal, we add to the our system
a pre-processing stage that receives the original text from the dataset
and substitutes in it all the non pleonastic pronouns with their an-
tecedent. After this preprocessing phase, we perform AKE as usual
and then we evaluate the results.

Consider the example we introduced in Section 3.3.3. If we apply
the pre-processing, the sentence becomes:

Margaret Heafield Hamilton (born August 17, 1936) is a
computer scientist, systems engineer and business owner.
Margaret Heafield Hamilton was Director of the Software
Engineering Division of the MIT Instrumentation Labora-
tory, MIT Instrumentation Laboratory developed on-board
flight software for the Apollo space program. In 1986, Mar-
garet Heafield Hamilton became the founder and CEO of
Hamilton Technologies, Inc. in Cambridge, Massachusetts.
The company was developed around the Universal Sys-
tems Language based on Margaret Heafield Hamilton par-
adigm of Development Before the Fact (DBTF) for systems
and software design.

Unfortunately, the original articles from the SEMEVAL 2010 Task 5
are transformed into plain text using the UNIX tool pdftotext. The
output of this tool is a very unstructured text, where not only informa-
tion about title, sections, etc., is lost, but also figures and tables may
be placed inside content paragraphs, sentences may be badly split,
and so on. This caused problems with the anaphora resolution and
substitution algorithm, whose precision was undermined by these
conversion errors. Moreover, these formatting problems may cause
an erroneous coreference chain where the effects of an early bad res-
olution are amplified while going further in the text.
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Thus, to improve anaphora resolution (and then substitution) in the
original text, we segment the original text into sections. In this way,
we improve the reliability of the parsing tree for the sentences and so
we obtain a more correct performance in searching the antecedent. To
perform this segmentation we use some heuristics to distinguish the
title, the authors, and the email addresses, and to detect the bound-
aries of sections, paragraphs, figures, and so on. As a result, the text
to process becomes more similar to the original graphical appearance
in the PDF format, it is more structured, and it contains also less
errors.

Then, by using this structure, we work on single sections, generat-
ing and using the coreference chain with the Stanford CoreNLP Coref-
erence Resolution System to collect all the pronominal anaphors. Fi-
nally, we go back to the antecendent of each pronoun detected in the
chain and we replace the former with the latter. The text turns out to
be simpler, maybe even grammatically wrong, but more informative
for our AKE algorithm: by replacing the pronouns in the document
we have no loss of information, while we are able to recover statisti-
cal and semantical information about the antecedents that would be
otherwise lost.

The choice of substituting only pronominal anaphors is justified by
the fact that nominal anaphors may not be just synonyms but also
very different words, possibly with a different meaning. This hap-
pens because nominal anaphors have only the property of referring
to the same entity in common, thus substituting a nominal anaphora
with its antecedent could change the meaning of the sentence. For ex-
ample, from the text above, “Computer scientist”, “system engineer”,
“Director of the Software Engineering Division”, are all references to
“Margaret Heafield Hamilton”, but if we substitute them with the
head of chain (i.e. “Margaret Heafield Hamilton”), the meaning of
the sentence is completely different (actually, it becomes nonsensical).
Considering proper name anaphors is worthless as well: replacing a
proper name anaphora with its antecedent could lead to a substitu-
tion that in our opinion could be useless or wrong. For example, in a
biography there could be more people referenced by a common sur-
name. Thus, an arbitrary substitution of all proper name anaphors
could be wrong, because the anaphora resolution software may fail
to identify the correct subject: in our example, if the head of the coref-
erence chain is “Hamilton”, we risk to replace “Margaret Heafield
Hamilton” with her husband, whose surname is Hamilton too.

To summarize this approach, we follow this process: first, we parse
the article from the dataset and use some heuristics to divide it into
correctly formatted sections. Then, we process each section with the
Stanford CoreNLP Coreference Resolution System, we collect all the
pronominal anaphors, and we replace each anaphora with the cor-
rect antecendent. Finally, we submit the preprocessed text to the AKE
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process along with the value of the InAnaphora feature. Regarding
the numOfReference feature, which concerns only pronominal ana-
phors, its use has to be taken into consideration as well because when
documents are preprocessed with substitution, different coreference
chains could be discovered.

3.4 METHODOLOGY
3.4.1 Baseline algorithm

In order to evaluate the impact of the proposed features, we used
the Distiller framework to implement a baseline keyphrase extraction
algorithm with few basic features. As usual, our baseline algorithm
candidate KPs are n-grams selected from the text if they match a
given set of part-of-speech patterns.

The baseline feature set for our experiment is a set of well-accepted
features for AKE, i.e., given a candidate KP, we consider:

e TF-IDF;
* relative position of the first appearance of the candidate (height);

e difference between the position of the last and the first appear-
ance (lifespan);

* number of appearances of the candidate in the text, normalized
by number of sentences.

Then, we consider a new feature set, in which we add to the base-
line a fifth feature called Document Phrase Maximality (DPM). We
use this feature because it supposedly should help to discriminate
between candidate keyphrases which often appear as substring of an-
other candidate. We deem this feature as necessary because, by using
our substitution algorithm, we usually substitute an anaphora with a
longer antecedent, thus leading to an increase of frequency of all the
words contained in the antecedent. In our example, we will substitute
the anaphors with “Margaret Heafield Hamilton”, thus increasing the
frequency, e.g., of the word “Hamilton”, but DPM allows us to assign
a low score to the single words while assigning an high score to the
full name of the scientist.

Note that we already defined how we calculate these features in
Section 2.3.3.1, so we won’t repeat such definitions here. However,
we must note that here the feature set is slightly different because we
tuned our experiment differently, in order to obtain the best perfor-
mance with this feature set.

The machine learning algorithms we choose are logistic regression,
neural networks, and boosted decision trees, since these algorithms
have a reputation of being good algorithms in the AKE community
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Figure 3.1: Scores obtained by running our keyphrase extraction algorithm
over different feature sets. Note that “B” stands for “Baseline”,
“Sub” indicates the baseline features ran on the preprocessed doc-
uments, “inA” marks the inAnaphora feature, “NoR” marks the
numberOfReference feature, “DPM” stands for the Document
Phrase Maximality feature, and “All” indicates that the feature
set contains all the aforementioned features.

[52]. We used their implementation with the R software, using the glm,
nnet and C5.0 libraries to train the respective models. We used no
particular tweaking on the algorithms; the neural network used was
a simple Multi Layer Perceptron (MLP) with one hidden layer. Then,
we ranked KPs using the raw scores assigned by the algorithms.

As in Chapter 2, we didn’t choose a bigger feature set because
there is no agreement on which are the “state of the art” features for
AKE. As stated in Section 1.2.1, the top performing systems use many
different strategies: for example, Lopez and Romary [72], use few fea-
tures, but a custom “post-machine learning” ranking algorithm; You,
Fontaine, and Barthes [122] use few features, but a different candidate
generation algorithm; in the work by Haddoud et al. [48], we can find
more than 20 features instead.

Moreover, this simple feature set is enough to get an average per-
formance on the SEMEVAL task. With the MLP, our baseline system
showed an F-score of 19.69% on the best 15 keyphrases, which is good
enough to be ranked 11" out of 20 contestant in the SEMEVAL 2010
challenge. The same position would be achieved using logistic regres-
sion, with a score of 19.22%, while the use of decision trees causes a
slip of one position down, with a score of 18.95%.

3.5 RESULTS

Combining the baseline features defined in Section 3.4.1 with our new
features defined in Section 3.3.3 and the pre-processing technique we
described in Section 3.3.4, we defined a total of 36 different AKE
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pipelines. These pipelines were built by running the three machine
learning algorithms we choose on the baseline feature set first, then
adding DPM and our anaphora-based features, then combining the
features together, both on the original SEMEVAL 2010 dataset and
the text preprocessed with our technique.

The neural network was the best performing algorithm overall, and
we can see its results in Figure 3.1. The first impression is that there
is generally a little improvement in F1-Score, with the baseline algo-
rithm on the original documents still being the second best feature
set with this metric.

Nevertheless, looking at the Precision@5 score, we see that our ap-
proach has a significant impact: as shown in Figure 3.1 (left column),
the combination of the linguistic features with the statistical ones,
both in the original documents and in the ones with preprocessing,
the precision score is greater than the one obtained for the baseline set.
In particular, starting from the result of 25.60% for the baseline, we
reach a score of 27.60% in precision just by using inAnaphora feature
and 30.00% adding also numOfReference and DPM. A similar behavior
can be observed in the results when considering that the substitution
technique is performed in the preprocessing. In fact, while on the pre-
processed text the baseline features show no improvement, a more
interesting result can be seen using the linguistic features, for which
precision score raises from the baseline’s 23.40%, to 26.00% adding
inAnaphora, and to 29.00% combining all the features together.

Looking at the scores of MAP, we can see that using all features on
the original dataset offers the best ranking, as it would be expected
by the high Precision@5 score; this confirms our idea of combining
the anaphora-based features with DPM. Interestingly enough, most
of the other feature sets show a slight decrease in the quality of the
ranking, probably because the gain in precision is not high enough to
balance the decrease in recall.

Taking into account just the second approach, the results provide
evidence of our initial assumptions on the importance of using inAnaphora
feature over preprocessed text. Precision and Fi-Score show a more
significant increment when using preprocessed documents, and the
reason can be found in a second parsing with more coherent coref-
erence chains. In details, coreference resolution and so our features
that depend from it improve because the substitution of pronouns
with the common antecedent in the first chain produces a text with
more noun phrases and less pronouns. This way, the parse tree of the
preprocessed text is simpler, so the relationships between the “new”
noun phrases are more clear. This allows the anaphora resolution li-
brary to find more anaphors and to better detect pleonastic pronouns,
thus obtaining a more precise score for our feature.

The other ML algorithms (not shown in the figures) seem to prove
the conclusions we obtain from the neural network: using either de-
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cision trees or logistic regression the behavior is similar to the one
described for the neural network, with a relatively stable F1-Score on
the top 15 extracted keyphrases, but a significant increase in Preci-
sion@5 and MAP score when adding linguistic features. It is interest-
ing that for both algorithms, using all features on the original doc-
uments offers highest Precision@5 and MAP scores, confirming the
results shown in Figure 3.1. In particular, with this features/dataset
combination, with the glm library we see slight rises in Precision@s,
F1-Score@15 and MAP from 24% to 24.4%, from 19.22% to 20.30%
and from o0.127 o0 0.136 respectively; for 5.0, while F1-Score rises
from 18.95% to just 19.29%, Precision@5 and MAP shows a more sig-
nificant improvement from 22.2% to 26.8% and from o0.123 to 0.137
respectively, thus supposedly showing a better ranking of the key-
phrases found. On the other hand, using the same feature set over
the preprocessed documents still shows an improvement from the
baseline, but with slightly lower scores.

3.6 CONCLUSIONS

Our analysis shows that anaphora and coreference resolution can be
used for AKE with significant results. Like in [57], we see that by ex-
ploiting linguistic knowledge in a keyphrase extraction algorithm it is
possible to increase the precision of the results. We think that it is im-
portant to analyze the relationships which could arise when linguistic
features are combined together with statistical features. For example,
it is clear that preprocessing the input text by substituting the pro-
nouns with the entity they refer to could increase the frequency of
certain terms, thus statistical features like DPM can be useful to gain
a performance boost.

A better result could be obtained by improving anaphora resolu-
tion performance, since the software we used was not always able to
find all the correct anaphors, even if it is (or it is close to) the state
of the art system for anaphora and coreference resolution at the time
of writing. For example, looking at the example we introduced in
Section 3.3.3, the algorithm was not able to detect the anaphora di-
rector from the sentence “She was Director of the Software Engineering
Division”, which means that we would not able to detect and replace
correctly all the pronouns in the coreference chains or compute the
value of our features correctly. This is confirmed by the fact that the
numOfReference feature, which is based on the count of pronominal
anaphors, had a positive impact on performance even after the text
preprocessing, which should have had replaced all the pronouns with
their antecedents.

As a future work, we consider the idea of using the outcomes of our
preprocessing stage for improving anaphora resolution specifically
for the task of keyphrase extraction, developing an ad-hoc mining
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algorithm for the parsing trees, with the goal of producing a better
pre-processing algorithm and finding for each valuable pronoun a
good candidate antecedent. Moreover, another interesting approach
would be looking for statistical features other than DPM which are
able to better interact with the anaphora-related ones.



Part III

DEEP SUPERVISED KEYPHRASE EXTRACTION

This Part describes the effort of applying Deep Learning
techniques to Automatic Keyphrase Extraction. First, we
will analyze which parts of DL can be useful for improv-
ing AKE. Then, we will show how we applied this con-
cepts, to design several network architectures that have
been able to outperform several other AKE algorithms on
the well known Inspec Dataset.






DEEP LEARNING BASICS

This Chapter will provide a gentle introduction to the concepts and
techniques we will face in Chapter 5. We didn’t analyze deeply the
machine learning algorithms we used in the previous Chapters be-
cause, as stated in Section 1.2.1, there is at present not a proper state-
of-the-art algorithm used in the “classical” supervised AKE approach,
since all the algorithms used by scholars seem to offer decent perfor-
mance, thus the justification in choosing an algorithm over another
can be even just boiled down to the training speed [72].

On the other hand, when using Deep Learning techniques, we
won’t simply try to attach a weight to a feature: all the algorithms
presented in Chapter 5, in fact, will be based on word embeddings,
whose goal is to encode the meaning of single words. The use of a
different architecture dramatically affects how such embeddings are
interpreted and used to learn new features by the networks.

For this reason, while we won’t delve deeply into the concepts of
Deep Learning, in the present Chapter we will introduce the math-
ematical and philosophical foundations of the concepts that will be
later applied to AKE. For the reader interested in a full introduction
on Deep Learning, the book by Goodfellow, Bengio, and Courville
[43] provides an excellent introduction to the subject.

4.1 WHAT IS DEEP LEARNING?

To understand why Deep Learning KE needs a different analysis from
“classic” supervised KE, we analyze the difference between DL and
“classical” supervised algorithms used in KE. The performance of the
machine learning algorithms used in KE depends heavily from the
features that the scholars designed to identify relevant KPs, i.e., it de-
pends on the representation of the input data. As we already stated by
using, e.g., logistic regression, a decision tree, or a support vector ma-
chine, the algorithm is not endowed with the possibility to learn from
raw input data, i.e. it does not “see” the actual words that compose
the content of the document. Instead, we feed it some higher-level
information (the features) about each potential KPs, e.g., the position
in the document, the number of occurrences, and so on.

On the other hand, deep learning can be seen as a branch of repre-
sentation learning. In representation learning, the algorithm does not
only learn the mapping from the features (i.e. the representation) to the
output, but also the feature themselves [43]. DL differs from simpler
representation learning techniques because it allows to build addi-
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Figure 4.1: An example of representation learning: the first layer receives
the input pixel and the subsequent hidden layers learn a more
and more abstract representation that ultimately lets the network
classify the image. Image reproduced from [43].

tional abstract representations of the data, by implementing neural
networks with many layers (i.e. deep networks). Specifically, when we
talk about DL, we are addressing the multi-layer perceptron (abbr. MLP)
or its variants, which is a neural network with more than one hidden
layer. In a MLP, the first hidden layer learns an abstract representa-
tion of the input values, e.g., the pixel that composing an image; the
second layer, uses the information from the first layer to build a new
representation; and so on. For example, in Figure 4.1 we see what
happens when training a MLP to recognize if an image contains a
person, a car, or an animal: the first hidden layer leans to recognize
the edges, the second layer learns to recognize the contours, the third
layer learns to recognize specific parts of the body (e.g. head, torso,
eyes ...), and the last layer uses such information to assign the input
image to the correct class.

Deep Learning has been successfully applied to problems closely
related to AKE as, for example, summarization [86, 102] or sentence
classification [64], and some scholars, as already mentioned in Sec-
tion 1.2.3, introduced deep learning Keyphrase Extraction algorithms
[8, 78, 123] for extracting keyphrases from scientific papers or Twitter.
The following Sections will introduce the DL concepts that we believe
can aid the DLKE task.
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4.2 NEURAL LANGUAGE MODELS

When working on images we have to learn from the pixels, as we
have seen in the previous Section. On the contrary, when working on
documents, we have to deal with words. For this reason, we have to
find a representation of the language of the input document which is
suitable to be handled by a MLP. MLPs take in input only numeric
data, i.e., numbers or vectors of numbers, so we must transform the
words in a numerical value accepted by the MLP.

The simplest solution is the one-hot vector representation. For exam-
ple, suppose we have the input sentence:

The cat is on the table

We can build a dictionary X containing all the words of the docu-
ments, i.e.
Y = {the, cat, is, on, the, table}

Then, we can assign each word a vector v, based on its position in the
dictionary:

Vihe = [100000]
Veat = [010000]

Vtable = [00000”

Now, all the records of each vector are zeros but the one marking
the position in the dictionary, hence the name one-hot. Now we could
give such one-hot representations in input to the MLP. However, this
approach has several drawbacks: first, if the number of words in the
input document (or corpus) is high, each one-hot vector can be very
long (e.g., it can be even 100,000 elements long), with a consequent
waste of space. Second, the one-hot representation does not carry
any information about the words. For example, when two vectors
are close (i.e. the “1” entry is close), this does not necessarily imply
that their meaning is close. We can see this fact even in our example:
Vihe and v¢qt have a completely different meaning, even if they are
one next to the other.

Language models try to overcome the limitations about the context
by modeling the probabilities of sequences of n words (i.e. n-grams),
by computing the conditional probability of finding the n-th word
given the preceding n — 1-gram. Mathematically speaking, we have
that

o

P(x1,..,x0) = Plxt, oo, xn1) [ [ Pxelxenin, o xe1) (42)

t=n
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Figure 4.2: Example relations in the GloVe pre-trained word embeddings
[97]. Here we see that the relation between “man” and “wom-
an” is similar to the one between “king” and “queen” (a), that
the NLM was able to associate each city to the corresponding
ZIP code (b), and each word to its comparative (c). Images repro-
duced from https://github.com/stanfordnlp/GloVe.

However, we can see that modeling the joint probabilities of se-
quences of words leads to a problem called the curse of dimensionality
[18]. For example, if we want to model 10-words long sequences from
a vocabulary of size |X| = 108, we have 100000'° — 1 = 10°° — 1 free
parameters.

The solution for the curse of dimensionality is to build a distributed
representation for using with neural language models (henceforth
NLM), introduced by Bengio et al. [18]. In NLMs, a neural network
builds a vector for each word of the dictionary, called word vector or
word embedding. A popular way of calculating such vectors is the Skip-
Gram architecture introduced by Mikolov et al. [83], where the neural
network tries to predict a word based on its context, i.e. its previous
and next words. Word vectors show interesting properties that make
them very interesting for NLP applications. For example, it’s possible
to add and subtract word vectors to find relations, as pointed out by

[83]:

To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X =
vector(“biggest”) —vector(“big”) + vector(”small”).

The solution is the word vector closest to X. Moreover, words having
a close relationship between them are often organized by NLMs ac-
cordingly. For example, Mikolov et al. [82] found that the names of
countries and their capital cities are organized efficiently by running a
principal component analysis of a 1000-dimensional skip-gram vector
space; in other words, the model seemed to learn what a “country”
and a “capital city” are, since it associated each capital city to the
correct country in the learned vector space. Figure 4.2 shows other
examples of the self-organization of NLMs.

In practice, given a vocabulary X, to compute the word vectors we
proceed in this way: we associate to each word of the vocabulary an
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index, e.g. in the example above we may assign the = 1, cat = 2, and
so on. To limit the size of ¥, we often rank the words by frequency,
and we keep only the n most frequent words. Then, we decide the
size of our word vectors, and we compute them by running a NLM
architecture (like the skip-gram introduced in [82, 83]) over a corpus.
The larger the corpus, the higher will be the quality of the vectors.
The result of the training is the NLM, where each word vector is a list
of word indexes. For example, in our simple sentence, we may have
that veqr =v(2) =1,3,4.

In DLKE, we represent the input documents using word vectors.
However, since training word vectors is computationally very expen-
sive, we use Stanford’s GloVe pre-trained word vectors [97]. These
vectors are trained using a vocabulary with 400 thousand uncased
words and 6 billion tokens, and the resulting vectors are available in
four different lengths (50, 100, 200, and 300).

Word vectors are the first step to introduce contextual information
in AKE algorithms. However, to let the neural network learn from
the context in a more efficient way, we will also use two particular
architectures, which will be introduced in the following Sections.

4.3 RECURRENT NEURAL NETWORKS

The first architectures that we analyze are Recurrent Neural Networks
(RNNs) and Long-Short Term Neural Networks (LSTMs). These archi-
tectures are more interesting for AKE than “regular” NNs because
they take in input a sequence of words (represented by word embed-
dings) and at each step the weights of the network are updated taking
in account the previous weights as well.

Formally, given an input sequence of word representations x1, ...,
Xn, a Recurrent Neural Network computes the output vector y; of
each word x by iterating the following equations from t times, with
t iterating from 1 to n:

hy = o(Ux¢ + Vhi_1 + bp) (4.2)
Yt = 0(Why + by) (4.3)

where x; and h are respectively the input and the hidden vectors at
time t. U, V and W are respectively the weight matrices connecting
the input layer and the hidden layer, the hidden layer with the hidden
layer at the previous time step, and the hidden layer with the output
layer. by, and by, are the bias vectors, and o is the activation function
of the hidden layer and output layers. The important bit in Equation
4.2 is that a RNN has connections between the previous hidden state
hi_1 and the current state, thus RNNs can make use of previous
context.

In practice, however, the RNN is not able to manage efficiently long
sequences due to the vanishing gradient problem [56]. To overcome this
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problem, Hochreiter and Schmidhuber [55] proposed the Long Short-
Term Memory (LSTM) architecture, a variation of the RNN that is
supposed to effectively learn on broader input sequences.

LSTMs are defined similarly as RNNs, with exception for the fact
that hidden layer updates are enhanced by specific units called “mem-
ory cells”, designed to solve the vanishing gradient problem by keep-
ing track of long dependencies.

The LSTM works by sequentially updating its internal state, ac-
cording to the values of three sigmoid gates. Specifically, a LSTM is
implemented using the following functions:

ft = o(Wxsxe + Whrhie1 + by) (4.4)
i = o(Wxixt + Whihi—1 + Weice—1 + bi) (4.5)
Ct = tanh(Wxext + Whehe—1 +be) (4.6)
Cy = fCeo1 + 1t Cy (4-7)
ot = 0(Wxoxt + Whohi—1 +Weoct +bo) (4-8)
hi = ot tanh(Cy) (4-9)

where o is the activation function, i, f, o, and C are respectively the
input gate, the forget gate, the output gate and the cell activation
vectors, and all bs are the learned biases. We won’t go deep into the
mathematical details here, but an high-level explanation of the LSTM
is the following:

* the activation function o is the logistic sigmoid or a similar func-
tion ranging from o to 1;

¢ the forget gate f; decides if is worth “remembering” the old cell
state C¢_1. To understand why, see how the value computed in
Equation 4.4 is used in Equation 4.7;

¢ Equation 4.5 and 4.6 generate the new candidate cell state, that
will be combined with the result of the forget state in Equa-
tion 4.7 to create the new cell state Cy;

¢ Equations 4.8 and 4.9 compute the actual output of the cell, i.e.
the new hidden layer, using the cell state C and information
from the previous hidden layer h;_.

One shortcoming of both RNNs and LSTMs is that they consider
only the previous context. However, in the keyphrase extraction task,
where the whole document is given in input, we want to exploit fu-
ture context as well. For example, consider the phrase “John Doe is a
lawyer; he likes fast cars”. When we first encounter “John Doe” in the
phrase, we still don’t know whether if he’s going to be an important
entity; then, we find the word “lawyer” and the pronoun “he”, which
clearly refer to him, stressing his importance in the context.
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In order to overcome the limitations of RNNs and to use informa-
tion from the future context as well, in our approach we adopt a
Bidirectional LSTM network [44] (Bi-LSTM). In fact, with this archi-
tecture we are able to make use of both past and future contexts of the
word evaluated at each time step. The Bi-LSTM consists of two sepa-
rate hidden layers. It first computes the forward hidden sequence }:E),
then it computes the backward hidden sequence l<1_t Finally, it com-
bines }Ti and }Tt to generate the output y;. It is implemented by the
following composite functions:

— —

hy = H(Wxﬁxt +Wﬁﬁ hy 1+ bw) (4.10)

F

hy = H(Wxﬁxt +W??%t,1 + bﬁ) (4.11)
%

Yt :Wﬁy ht +Wﬁy?t+by (4.12)

where the hidden states are represented with LSTM blocks.

4.4 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) are neural networks where
matrix multiplication is replaced by convolution [43]. While the most
common application for Convolutional Neural Networks is image
processing, they have been successfully used on many NLP tasks,
such as sentiment analysis [105], sentence classification [64], or an-
swer selection [38]. CNNs are based on three important concepts:
sparse interaction, parameter sharing and equivariant representations. Sparse
interaction is a concept in contrast with traditional NNs, where ma-
trix multiplication is used to make each input interact with each out-
put unit. In a CNN instead we use a filter (also named kernel) which
is much smaller than the input. This small filter is reused, i.e., is
applied to each position of the input, hence the concept of parame-
ter sharing. Having to store (and learn) fewer parameters, CNNs are
usually faster and use less memory than traditional NNs [43].

This kind of parameter sharing leads to the concept of equivariant
representation. A function f(x) is defined equivariant to a function g
if f(g(x)) = g(f(x)). Convolutional operators are equivariants with re-
spect to translation, i.e., the position of a learned feature in the input
is irrelevant [38], a property desirable in many NLP applications.

To understand how CNNs work on text, we propose an exam-
ple adapted from Kim [64]. Suppose that we have a input sentence
of length n S = x3,...%x,, where each word is represented by a k-
dimensional word embedding; we denote a slice xi.i4j the concatena-
tion of the words ranging from index i to index j. The convolution
operator consists in a filter W € R"¥, applied to h k-dimensional
word embeddings to produce a feature. For example, a feature c; is
generated from a slice Xi.i1h—1 as:
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Figure 4.3: An example of max-pooling over a 4 x 4 matrix, with a 2 x 2
filter and stride = 2. Image reproduced from https://commons.
wikimedia.org/wiki/File:Max_pooling.png and licensed with
Creative Commons BY-SA 4.0 license.

ci = f(W-xi:i4n—1+b)

where b is the bias term an f is a nonlinear function, such as tanh.

After the convolutional filter, almost all CNNs employ an opera-
tion called pooling [28, 43], which replaces the output of the convolu-
tional layer with a statistical summary of nearby outputs; we see an
example of pooling in Figure 4.3. The two most popular approaches
are max-pooling and average polling, which take respectively the maxi-
mum value of an output window (in our example ¢ = max{c}) or the
mean of the values of the output windows. In our architectures, how-
ever, we will stick to max-pooling, since it better deals with different
sentence lengths in a more efficient way [64].

4.5 FINAL REMARKS ON DL

This Chapter introduced the main deep learning concepts that we
believe are helpful in the field of keyphrase extraction. While we did-
n’t deeply investigate the mathematical details of DL, we introduced
three concepts that can, at least in principle, be useful for AKE:

¢ Word vectors, which can help a machine learning model to bet-
ter understand the topics of the input document. In fact, by em-
bedding the meaning of each word in a vector, they should help
to overcome the limitations of “classic” supervised ML AKE al-
gorithms, which do not “see” the words but only their features.

¢ Long-Short Term Memory networks, which can help us to write
algorithms that mimic how humans read documents. In fact, we
can use LSTMs to build a DL algorithm that scans a document,
word by word, keeping memory of the what it has previously
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read. Bidirectional LSTMs can further enhance this ability by
reading the document twice; one, from the beginning to the
end, and one from the end to the beginning.

¢ Convolutional Neural Networks, which, while intuitively seem
more useful for image processing, have been successfully used
in many NLP tasks closely related to AKE, like summarization
of answer selection. They show some properties that are desir-
able when working on AKE, like the translation-invariance of
the learned features, which may help to understand if a con-
cept appears in a document regardless of where it appears.

In the next Chapter we will apply all these concepts to build and
evaluate different DL architectures in order to improve the AKE task.
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ARCHITECTURES FOR DEEP KEYPHRASE
EXTRACTION

In this Chapter we will apply the concepts we introduced in Chapter 4
to AKE, in order to explore different network architectures for Deep
Keyphrase Extraction. We will evaluate such architectures on a well-
known dataset: the Inspec abstract dataset introduced by Hulth [57].

Each of these architectures will follow the path, introduced in Chap-
ter 3, of exploiting the context of each potential keyphrase in order
to build a more efficient AKE algorithm. Moreover, we will take ad-
vantage from the neural language models and architectures we intro-
duced in Chapter 4.

A seminal part of the work presented in this Chapter will be pre-
sented in Basaldella et al. [17] at the 14" Italian Research Conference
on Digital Libraries (IRCDL 2018), which will be held in Udine, Jan-
uary 25-26, in 2018.

5.1 INTRODUCTION

By now, to the best of our knowledge, the proposed deep learning
architectures for AKE have been fairly conventional. For example,
Zhang et al. [123] proposed a joint-layer RNN; Meng et al. [78] pro-
posed a bidirectional Gated Recurrent Unit, an architecture fairly sim-
ilar to the LSTM layer we described in Section 4.3, and an encoder-
decoder architecture to generate KPs not present in the input docu-
ment. Ammar et al. [6] proposed a more complex model, with a LSTM
followed by a Conditional Random Field (hence CRF), but with the
caveat that the they were competing for SEMEVAL 2017, where the
challenge was not only to recognize keyphrase but also to categorize
them, hence the use of the CRF. Tsujimura, Miwa, and Sasaki [114],
who participated to the SEMEVAL 2017 challenge as well, used a
LSTM stacked with a fully connected layer, obtaining the third place
overall. All these architectures use word embeddings to represent the
input words.

The techniques we propose in this Chapter will try to enhance these
architectures. After developing a simple LSTM-based network, in fact,
we will introduce new architectures inspired from Paragraph Vectors
[67] and Document Embeddings [29]. In short, we will develop sev-
eral architectures which will be based all on the same concept, i.e.,
creating a summary of the document inside the network and using
such summary to extract better keyphrases.
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As anticipated, we will evaluate our architectures on the Inspec
dataset introduced by Hulth [57]. The choice of this dataset is mo-
tivated by two reasons: first, it's an historical dataset in the AKE
community, with several results to compare with. Second, differently
from many other datasets, it is quite large’, with 1000 training docu-
ments, compared with the only 144 provided by the SEMEVAL 2010
challenge and 350 provided by the SEMEVAL 2017 challenge.

Differently from what presented in Chapters 2 and 3, here we will
evaluate our system using not only Precision, Recall and F1-Score on
the top 5,10, and 15 KPs (see Section 1.6), but also on all the KPs
extracted by the system. In this way, we will be able to compare our
results with the ones obtained by Hulth, by the TextRank system [80],
and by the RAKE system [101].

Moreover, we will compare our results with the ones obtained by
the only other®* DLKE algorithm evaluated on the Inspec corpus [78],
i.e. the F1-Score@10 obtained by their Copy-RNN algorithm and by
TF-IDF, KEA [121], TextRank [80] and SingleRank [117]. CopyRNN
obtained the best result of 34.2 F1-Score on the Inspec dataset outper-
forming all other algorithms, and we use this result as our baseline.

5.2 NETWORK ARCHITECTURES

All the network architectures presented in the current Chapter are
written in Python, using the Keras [25] and Theano [3] libraries. The
code is collected in a repository called deepkeyphraseextraction,
which is described in detail in Appendix B. We leave the technical
details in the Appendix; for the scope of the present Chapter, it’s
worth noting that as word embeddings, we use Stanford’s GloVe pre-
trained embeddings [97] with a dimensionality of 300, and to per-
form all low-level NLP operations (splitting, tokenizing, etc.) we use
Python’s NLTK library [19].

5.3 ARCHITECTURE I: BIDIRECTIONAL LONG-SHORT TERM MEM-
ORY NETWORKS

The first architecture, depicted in Figure 5.1, is a somewhat basic deep
neural network, similar to the one presented in other DL-based AKE
algorithms [113, 123]. In this architecture the contextual information
is given simply by the Bi-LSTM layer, which “scans” the input doc-
ument back and forth, and learns how to label the sequences corre-
sponding to keyphrases in the input document.

Borrowing from the field of NER, in fact, we represent each doc-
ument using the list of the words composing it, where each word

1 The Inspec dataset is large in keyphrase extraction terms. Common training sets for
image recognition problems, for example, can have millions [43] of training examples.
2 to the best of our knowledge
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Figure 5.1: The first DL architecture: a Bi-LSTM layer followed by a fully
connected layer a softmax output layer; after the LSTM layer and
the dense layer we apply Dropout [110] to prevent overfitting.

is mapped into three possible output classes: NO_KP, BEGIN_KP, and
INSIDE_KP, which respectively mark tokens that are not keyphrases,
the first token of a keyphrase, and the other tokens of a keyphrase.

For example, if our input sentence is “We train a neural network using
Keras”, and the keyphrases in that sentence are “neural network” and
“Keras”, the tokens’ classes will be the following:

We/NO_KP train/NO_KP a/NO_KP neural/BEGIN_KP
network/INSIDE_KP using/NO_KP Keras/BEGIN_KP

The network will be then trained to recognize such sequences. In
detail, the steps of the AKE algorithm are the following:

e First, we split the input document into tokens using NLTK, and
we prepare the input by associating each token to its pre-trained
word vector, and the output by associating each token to its
class. Please note that we will omit this step in further descrip-
tions of DLKE architectures, as it will be common for all of
them.

¢ The sequence of word embeddings is passed to a bidirectional
LSTM layer with 600 neurons, built as described in Section 4.3;

¢ The output of the Bi-LSTM layer is passed to a fully connected
layer with 150 neurons for each input word, using as activation
function a rectified linear unit (ReLU) [85];

* The output of the fully connected layer is then passed to a layer
performing a three-neuron softmax for each word, i.e. assign-
ing each input token to the probability that it belongs to each
of the three output classes. We pick the class with the higher
probability assigned to each word as the output value of the
network.
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Note that, between the Bi-LSTM layer and the fully connected layer,
and between the fully connected layer and the softmax layer, we apply
0.25 dropout [110] to help prevent overfitting, and that the number
of neurons, the activation functions, and so on, have been tuned to
maximize the performance of the network.

5.4 ARCHITECTURE II: TWIN READER NETWORKS

A Bi-LSTM is an effective way of using context to enhance AKE and
is, apparently, enough to obtain a convincing performance, as we will
see in Section 5.8. However, we believe that it’s possible to train mod-
els which extract better KPs by using an even broader context than
the one provided by a single recurrent neural network. For example,
[67] introduced paragraph vectors, which are able to learn “fixed-length
feature representations from variable-length pieces of texts, such as
sentences, paragraphs, and documents”, which were later used by
[29] to create document embeddings, which they found to be similar
to word embeddings when performing vector operations (e.g. cosine
similarity) to evaluate their semantics.

In this Section, we propose two different architectures inspired to
such concepts. In these architectures, we build a vector representa-
tion of the input document using either a Bi-LSTM or a Convolu-
tional Neural Network. This representation is then concatenated to
each pre-trained word vector and fed to another Bi-LSTM network
using these “combined” vector as in the Bi-LSTM network presented
in Section 5.3. We will call these networks “reader” networks, to bet-
ter identify them with respect to the other twin architectures that will
be presented in the following Sections.

5.4.1 Twin LSTM

The second DLKE design is depicted in Figure 5.2. It is composed
by two Bi-LSTM networks, where the “left” one (in Figure) is used
to produce a neural representation of the input document, and the
“right” one uses such representation along the word embeddings to
extract the KPs. In details, this DLKE algorithm works as follows:

* The sequence of word embeddings is passed to a bidirectional
LSTM layer with 300 neurons;

¢ The output of the Bi-LSTM layer is passed to a fully connected
layer with 300 neurons, i.e., the size of the input word embed-
dings;

* The output of the fully connected layer is concatenated to each
word embedding, and it is fed to the “right” part of the network,
which is similar to the one presented in Section 5.3;
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Figure 5.2: The first twin DLKE “reader” architecture: a Bi-LSTM layer is
used to produce a document vector, which is then concatenated
to the word vectors and fed to another Bi-LSTM network. The
example input and output is the same as in Figure 5.1.

e The “right” part of the network consists in two Bi-LSTM lay-
ers with 300 and 150 output neurons each, followed by a fully-
connected layer;

* Finally, the output of the twin network is again a three-neuron
softmax layer built as in the previous section.

Again, here we use Dropout between each layer to prevent overfit-
ting, and the activation functions are the ones used in the previous
network.

5.4.2 Twin LSTM/CNN

In this third architecture, the “left” part of the twin network is com-
posed by a Convolutional Neural Network (see Section 4.4). In short,
we employ CNNs since they have been successfully used in other
NLP tasks, with the advantage of being faster to train. The network
architecture is the same as in the previous network, with the differ-
ence that the “left” network learning the document representation is
composed by three convolutional layers. These layers use 128, 128,
and 6o filters respectively, a kernel size of 32, 8 and 4 respectively,
with strides of 4, 2 and 1. Each convolutional layer is followed by a
max pooling layer, which is fully connected to the next convolutional
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Figure 5.3: The second twin DLKE “reader” architecture: the left convolu-
tional network is used to produce a document vector, which is
then concatenated to the word vectors and fed to a Bi-LSTM net-
work. The example input and output is the same as in Figure 5.1.

layer. The output of the last layer is flattened and then, as in the previ-
ous case, concatenated to the word embedding and fed to the “right”
part of the network.

5.5 ARCHITECTURE III: KEYPHRASE SELECTION WITH TWIN NEU-
RAL NETWORKS

The first three architectures we presented, are inspired from the NER
task, and they are no novelty in the deep learning field. For exam-
ple, Collobert and Weston [27] proposed a unified neural framework
for performing many NLP tasks, such as part-of-speech tagging or
NER, and all the top architectures presented in the SEMEVAL 2017
competition actually solve a task similar to ER, but there are many
earlier examples of DL applications for NER. Differently from such
approaches, for our last family of networks we will use some of the
techniques for AKE that were developed during the last 20 years, and
we will combine them with techniques from the field of Question
Answering (herein QA).
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In particular, we will develop a variation of the task of Answer
Selection, which is defined as follows [38]:

Definition 5.5.1 (Answer Selection). Given a question q and an an-
swer candidate pool A ={ay,..., an} for that question, the goal of an
Answer Selection algorithm is to select the correct answer ayx € A.

We can thus define our new AKE task this way:

Definition 5.5.2 (Keyphrase Selection). Given a document d, we de-
fine the candidate keyphrases pool for d as: C4 = C¢ ucd

correct wrong’

where C&, .ot = {kpgD’t),. ..,kp%D’t)} is the set the of correct key-

phrases of d, Cﬂvmng = {kpgD’ﬂ,. . .,ka(nD’f)} the set of the wrong

keyphrases of d and C&yrrect N Cihrong = 0.
The goal of a Keyphrase Selection (herein KS) algorithm is, given
in input d and C¢, to select from the candidate pool only the correct

keyphrases, i.e. to select the subset {kp € C4[kp € C&, . cce)-

Note that this problem is exactly the binary classification problem
solved by “classic” supervised AKE algorithms such as the ones we
analyzed in Chapters 2 and 3. However, it’s useful to introduce this
definition to differentiate the network we propose in this Section,
which will be identified as “KS” networks, from the networks pro-
posed in Sections 5.3 and 5.4, which we called “Reader” networks.

Feng et al. [38] and Tan, Xiang, and Zhou [111] analyzed several
architectures for QA, all based on the same concept: they proposed
many twin networks, where the first half of the network takes in
input the question, and the second half of the network in input takes
a candidate answer; one or more layers “read” the input and build a
neural representation of both the question and the answer, which are
then compared using cosine similarity. The layers of the network can
be Bi-LSTMs, CNNs, or a combination of both of them. Such models
obtained interesting results in the QA domain and are similar to the
ones we used in Section 5.4.

5.5.1 Twin LSTM

The first KS architecture we propose is based on a twin Bi-LSTM
network design, and it’s shown in Figure 5.4. This network works
similarly to the network presented in Section 5.4.1, with the difference
that the “right” LSTM does not receive the whole input document,
but only the candidate keyphrase. In detail, the network design is the
following:

¢ Two Bi-LSTM layers receive respectively the input document
and the candidate keyphrase, represented as sequences of word
embeddings;
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Figure 5.4: The first KS network: two Bi-LSTM networks receive the input
document d and the candidate keyphrase kp; a dense layer re-
ceives their output, which is then connected to a softmax layer
returns the probability that kp is a keyphrase for d.

e The output of the two Bi-LSTMs is then passed to two fully
connected layers;

¢ The output of the two fully connected layers is merged into
another fully connected layer;

* Finally, a softmax layer with two neurons assigns the probability
that the candidate is an actual keyphrase.

We use the usual dropout rate between the layers, the same activa-
tion functions as before for the Bi-LSTM layers, and tanh as activation
function for the dense layers. However, differently from the networks
presented in Section 5.3 and 5.4, here the Bi-LSTM layer does not re-
turn a temporal sequence. In other words, the fully connected layers
after the Bi-LSTMs, are connected to all neurons inside it, while in
the previous networks we had a dense layer connected to each time
step (word).

5.5.2 Twin CNN

The second KS network, depicted in Figure 5.5, is more similar to the
ones proposed for the QA task. In fact, with this model we explicitly
ask the network to compare the similarity between the input docu-
ment and the candidate keyphrase. This is the process followed by
this architecture:

* Exactly as in the previous architecture, two convolutional lay-
ers receive the input document and the candidate keyphrase,
represented as sequences of word embeddings;

¢ The output of the two convolutional layers is then passed to a
max pooling layer;
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Figure 5.5: The second KS network: two CNNs receive the input document
d and the candidate keyphrase kp; their output is flattened into
two vectors, which are compared with cosine similarity. Note
that on the left side of the network there are actually three con-
volutional and max pooling layers, but they are omitted for sim-

plicity.

¢ On the “left” side of the networks, other convolutional filters
and max pooling layers are applied, until the last max-pooling
layer output is the same size as the output of the “right” max-
pooling layer applied on the candidate keyphrase;

¢ The output of the two branches is merged and then we evaluate
their similarity, i.e., the output of the max-pooling layers is flat-
tened into two vectors, which are then compared using cosine
similarity.

* The cosine similarity is compared with the ground truth, using
the mean squared error as loss function.

The loss function that we use is much simpler than the one pro-
posed by Feng et al. [38]; however, as we will see in Section 5.8, it is
enough to obtain satisfactory results. Note that in the “left” side of
the network we apply three convolutional layers with 128 filters and
kernel sizes of 32, 8 and 4, and strides of 4, 2 and 1 respectively. On
the other hand, the “right” side of the network convolutional layer
has 128 filters, a kernel size of 4 and stride 1, since it has to deal with
a much smaller input. These values are tuned specifically on the In-
spec dataset in order to obtain two vectors of the same size to perform
cosine similarity. For this reason, these vector would have to be cal-
culated again if one wants to test this architecture on another dataset
containing longer documents (e.g., on the SEMEVAL 2010 dataset,
which contains full papers instead of only the abstracts).
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Figure 5.6: The third KS network: two Bi-LSTM layers receive the input doc-
ument d and the candidate keyphrase kp; then, two CNNs re-
ceive their input, and the output of the CNNs is in turn flat-
tened into two vectors, which are compared with cosine simi-
larity. Note that on the left side of the network there are actually
three convolutional and max pooling layers, but they are omitted
for simplicity.

5.5.3 Twin LSTM/CNN

The LSTM/CNN last architecture, described in Figure 5.6, is very
similar to the previous one, with the only difference that the CNN
layers are preceded by a Bi-LSTM layer, similarly to the networks
proposed for QA [38, 111]. We won’t describe this network in detail
as the only difference from the architecture presented in Section 5.5.2
is the aforementioned Bi-LSTM layer.

56 CANDIDATE KEYPHRASE GENERATION

Before delving in the details of the results obtained by our DL ar-
chitectures for AKE, we will analyze how we perform the candidate
generation phase. We covered the generation of candidate keyphrases
in “classical” AKE algorithms extensively in Chapters 1, 2 and 3; the
straightforward solution to build a training set could be then to use
these candidate generation techniques for KS as well, i.e. building
positive and negative example using part-of-speech patterns. How-
ever, the use of word embeddings offers new, different possibilities
when training DLKE algorithms.



56 CANDIDATE KEYPHRASE GENERATION

In fact, when developing “classic” supervised AKE algorithms, the
training set must be composed only by candidate keyphrases appear-
ing in the input document. This is straightforward, since phrases not
appearing in the document have zero value in most of their features,
e.g, they have zero depth, zero height, zero frequency, zero TF-IDF,
and so on’. Finally, even if these candidate keyphrases had a non-
zero feature vector, they would be impossible to generate, because
by definition they don’t appear in the input document. Thus, when
training our DLKE networks for KS, we used two different candidate
generation techniques.

The first technique is the same as the one used in “classical” su-
pervised AKE algorithms: we select from the input documents the
phrases matching certain part-of-speech patterns, and we use them
as candidate keyphrases. In this case, the positive examples are the
generated phrases that match with the gold keyphrases. This tech-
nique produces an heavily unbalanced set; for this reason, in Chapter
2 and 3 we used a random sampling technique, forcing a 1 : 9 ratio
between correct samples and wrong samples (i.e., out of ten sam-
ples, one is correct) and weighing them accordingly when training
the model. In this Chapter, since we use the Inspec dataset, the docu-
ments are shorter, hence we have less candidate keyphrases. However,
the number of negative samples still outcounts the number of positive
samples. For this reason, we weigh our samples proportionally, e.g.,
if the number of negative samples is 7 times the number of positive
samples, each positive sample will have weight 7 and each negative
sample will have weight 1%.

The second technique we address uses all the gold keyphrases as
training examples. We are able to do this because the nature of the
networks we developed does not require the presence of the candi-
date phrase in the input document. Thus, if we have a phrase which
does not appear in the document, but we still know that it represents
its contents well because it has been inserted in the gold standard, we
can use it to train our model anyways. Hence, our training set will be
composed, for each document, by all the correct gold keyphrases even
if they do not appear in the document and by the same number of part-of-
speech generated wrong keyphrases. Thus, the resulting training set
is smaller, with 19539 samples, compared to 37007 samples generated
by the PoS pattern technique; however, it has a perfect balance be-
tween correct and wrong samples and it contains a higher number of

Candidate KPs not appearing in the input document may still take non-zero values
on other features, like for example the features designed to incorporate external
knowledge (e.g., if a candidate appears in Wikipedia, its Wikiflag [12] feature can be
set to 1). However, as we have covered in Chapter 1, such features are the minority
in AKE domain, so having a feature vector with almost all zeros it’s not useful when
training a model.

Note that this is just an example; the actual weights are calculated automatically
using the sklearn library.
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System P R F1  Epochs Time (s)
Hulth [57] 25.2 51.7 33.9

TextRank [80] 31.2 43.1 36.2

RAKE [101] 33.7 415 37.2

“Reader” LSTM 34.7 523 41.7 28 34
“Reader” Twin LSTM 373 54.1 44.2 29 110
“Reader” LSTM/CNN 37.5 50.7 43.1 43 70
“KS” LSTM 42.5 42.8 42.7 8 317
“KS” CNN 382 447 41.2 9 4
“KS” LSTM/CNN 39.3 46.1 424 8 61

Table 5.1: Overall results of the DLKE algorithms we proposed compared
with results obtained by other systems over the same dataset. The
last two columns mark the number of epochs required by the cor-
responding network to converge and the duration, in seconds, of
each training epoch.

correct samples. As expected, with this technique we obtained better
results than using the PoS pattern generated candidates only, hence
we present only the scores obtained with the balanced training set.

5.7 HARDWARE AND SOFTWARE

All the DLKE networks were trained using the same hardware, i.e., a
workstation using Ubuntu Linux 16.04.2 LTS, with an in Intel Xeon E5-
1620 processor, 16 GB RAM and a Nvidia Titan X Pascal. The software
used is described in Appendix B and it will be published as open
source software on GitHub, correlated both with the specific versions
of the libraries we used and some scripts we wrote to ensure the
reproducibility of the results we obtained.

5.8 RESULTS

We present our results in Table 5.1, comparing them with the results
obtained by Hulth [57], TextRank [80], and RAKE [101]. It's impor-
tant to note that, for evaluation purpose, a keyphrase is considered
correct if its stemmed string matches with a stemmed gold keyphrase.
In order to perform stemming, we use the Porter stemmer [98], as the
authors of the other AKE algorithms do. It’s straightforward to see
that our algorithms are the best performing ones overall. The best
overall system is the “Reader”> Twin LSTM, with 44.2 F1-Score; how-
ever, the “KS” LSTM network obtains the best precision with 42,5%.

Remember that we label “Reader” networks the ones presented in Sections 5.3 and
5.4, while we call “KS” networks the one presented in Section 5.5.
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System F1@5 Fi@i1o0
TE-IDF 22.1 31.3
TextRank 22.3 28.1
SingleRank 21.4 30.6
ExpandRank 21.0 30.4
KEA 9.8 12.6
CopyRNN 27.8 34.2
“Reader” LSTM 31.8  40.1

“Reader” Twin LSTM  34.5 43.1
“Reader” LSTM/CNN  33.3 41.5

“KS” LSTM 32.3 40.3
“KS” CNN 30.2 38.2
“KS” LSTM/CNN 31.8 40.1

Table 5.2: F1@5 and F1@5 scores of our DLKE algorithms compared to other
systems in literature: TF-IDF, TextRank [80], SingleRank and Ex-
pandRank [117], and CopyRNN [78]. All the values of the systems
are taken from Meng et al. [78]’s work.

Comparing the F1@5 and F1@i10 scores obtained by our system
with the results obtained by TF-IDF, TextRank [80], SingleRank and
ExpandRank [117], and CopyRNN [78], we can still see that the
“Reader” Twin LSTM architecture described in Section 5.4.1 holds the
best results, outperforming both the unsupervised methods (TF-IDF,
TextRank, SingleRank and ExpandRank) and the supervised ones. We
show these results in Table 5.2.

However, it’s worth noting that the maximum recall that KS algo-
rithm can obtain is 59,33%, since the PoS pattern candidate generation
technique is not able to generate all the possible keyphrases, while the
“Reader” network can obtain a maximum recall of 76,91%, which is
the number of gold keyphrases actually present in the test documents.
In this work, we did not focus on “smart” techniques to generate can-
didates, so we suppose that these results can be improved. For ex-
ample, Hulth [57] showed that selecting all the n-grams not starting
or ending with a stopword as candidate keyphrases can improve the
precision.

It’s also interesting to look at the different times required by the
networks to converge. All the twin networks take more time to train
than the first architecture proposed by us, except for the twin CNN,
which takes only 4 seconds per epoch to converge, for the motivations
we already explained in Section 4.4. It’s also not surprising that the
“KS” LSTM network takes the longest time per epoch since, as we
already mentioned in Section 5.6, the training set size of the “KS”
networks is much bigger with 19539 samples, compared with the only
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500 input documents that we can use with the “Reader” architecture.
The bigger training set size of the “KS” networks, however, helps such
networks to converge faster in terms of number of epochs required.

5.9 CONCLUSIONS

In this Chapter we presented six different deep learning architectures
for keyphrase extraction. We proposed two different families of net-
works: the first one works similarly to Named Entity Recognition by
labeling sequences, while the second one is inspired from the Answer
Selection task, by comparing candidate keyphrase with his reference
document. We found that, using the Inspec corpus [57] as training
and evaluation set, our models outperform several known algorithms,
with the architecture presented in Section 5.4.1 obtaining the best F1-
score overall.

However, we believe that our results can be further improved. For
example, it may be useful to implement attention techniques [60] which
have already been proven useful, for example, in Question Answering
[111]. Moreover, we believe that it is also possible to further improve
the performance of the second family of networks by employing a
smarter technique of candidate keyphrase generation. In the future,
we plan to investigate these problems and to extend the evaluation of
our approach to other datasets, to further prove its effectiveness.
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CONCLUSIONS

6.1 SUMMARY OF THE PRESENTED WORK

In this thesis we presented some of the weaknesses and strengths of
the main algorithms for Supervised Automatic Keyphrase Extraction.
In Chapter 2, we showed how building a supervised multilanguage
keyphrase extraction algorithm is relatively easy, even when for a
specific language there is a lack of a corpus of documents with their
human selected keyphrases to train it. In order to build such algo-
rithms, we provided the description of the process to develop a new
dataset for keyphrase extraction in Arabic. In fact, in order to build
the dataset, Internet users from all around the world were asked to
assign keyphrases to Arabic document, instead of using expert knowl-
edge. This technique allowed us to collect the dataset quickly and to
train a supervised AKE algorithm using English and Arabic, and to
test it on Italian, Romanian and Portuguese as well, obtaining satisfac-
tory performances. However, this also showed how the most popular
features used to train algorithms for supervised keyphrase extraction
are quite “shallow”, since they are typically based only on positional
or statistical knowledge to distinguish between correct and wrong
keyphrases.

In Chapter 3 we tried to overcome this limitations, by develop-
ing linguistics-based features for AKE in order to introduce more
contextual information. Such features were based on the concept of
anaphora, i.e., on exploiting the dependencies within certain parts of
the discourse. We developed an algorithm which replaces pronouns
with the entity they refer to, and uses two novel anaphora-based fea-
tures. This algorithm obtained a better performance than a baseline
algorithm developed using statistical and positional information only;
however, it was impaired by the performance of current anaphora res-
olution techniques, which are slow and often not precise enough.

For this reasons, in Chapters 4 and 5 we turned to deep learning, an
emerging field of supervised learning [43]. We developed six differ-
ent deep learning architectures for keyphrase extraction which show
two strong advantages with respect to classical supervised AKE al-
gorithms. First, neural language models allow the machine learning
algorithm to grasp the meaning of each word of the input document.
Second, the network architectures we used (bidirectional long-short
term memory networks, and convolutional neural networks) are able
to use the whole content of the document to decide whether a candi-
date keyphrase is an actual keyphrase or not. With these architectures,
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we were able to outperform several other AKE algorithms when eval-
uating keyprase extraction performance on the Inspec dataset origi-
nally proposed by Hulth [57].

6.2 FUTURE WORK

The results presented in this work seem to show that, like many other
tields, deep learning techniques may have a strong impact on the field
of AKE. However, while even other scholars have presented DL algo-
rithms for AKE with convincing results, the author of the present
dissertation believes that the research in this field is still in an embry-
onic stage. First, the architectures we presented in Chapter 5 should
be tested on several datasets to confirm their effectiveness. Moreover,
as stated in Section 5.9, attentional techniques could further improve
the performance of such algorithms, and there are other network ar-
chitectures that could be evaluated as well: for example, Gated Recur-
rent Units, a variation of LSTMs, have already been proven effective
in keyphrase extraction [78].

An interesting work could be to repeat the experiments of Chap-
ter 2 by using deep learning to train a multilingual DLKE algorithm
which is able to extract KPs in “new”, unseen languages. For exam-
ple, it has been already proven possible to train DL algorithms to
translate between language pairs they have never seen: Johnson et al.
[61] showed, e.g., that a network built to translate from English to
Korean, and to Korean to Japanese, can also translate from English to
Japanese even if not trained to do it.

Another path to explore could be to further enhance deep learning
algorithms with techniques inspired by “classical” supervised AKE.
In the present dissertation, taking inspiration from the design of DL
algorithms for Question Answering, we used just one candidate gen-
eration technique, but for example Hulth [57] showed that carefully
tuning this phase can lead to a better performance. Another interest-
ing direction may be that of appending the features used by “classi-
cal” supervised AKE to the word embedding vector. The techniques
we described in Chapter 3, for example, may be particularly useful,
since even if by using neural language models we are able to inform
the DL algorithm about the meaning of the words, the information
conveyed by pronouns it’s still lost.

However, it’s also possible that deep learning techniques can be
helpful to “classical” keyphrase extraction techniques: for example,
topic-based algorithms like, e.g., TopicRank [23] could benefit from
the use of neural language models to detect the different topics in a
document.
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6.3 CONCLUDING REMARKS

The work we presented in this dissertation has shown that incorporat-
ing more contextual information in supervised automatic keyphrase
extraction improves its performance. The early algorithms for key-
phrase extraction already used some sort of contextual information,
since they were all based on TF-IDF [115, 121], which gives infor-
mation about the frequency of a phrase in a corpus. In this work,
after showing the strengths and the limitations of such approach in
Chapter 2, from Chapter 3 onwards we restricted the context to the
single input document. First, we have shown that exploiting the rela-
tions between candidate keyphrases and the information conveyed by
pronouns we can improve the performance of AKE; however, this ap-
proach still relied on TF-IDF. Then, we employed Deep Learning tech-
niques, which allowed to develop AKE algorithms using the whole
content of the document as information to better detect keyphrases
by using only the words of the input documents, conveniently trans-
formed using a neural language model, in input.

The early works that apply deep learning on keyphrase extraction,
including the one presented in the present document, seem to show
that such algorithms are able to obtain better performance than older
supervised ones, that employed in particular statistical and positional
features [52] to detect keyphrases. However, performance is not the
only advantage. The ability of DL algorithms to get rid of TF-IDF,
a corpus-based metric, to successfully perform keyphrase extraction,
makes them them able to fill the gap with unsupervised AKE algo-
rithms. In fact, after training an unsupervised AKE algorithm, it is
possible to extract a keyphrase from a document without the need
of a whole corpus; this was not possible with supervised algorithms,
since they were all based on TF-IDEF, so they required a corpus to ex-
tract keyphrases from a document even after being trained. Now, with
DLKE algorithms, this is no longer the case.

However, the performance of state-of-the-art algorithms for AKE is
still far from being satisfactory, with the best performing algorithm
presented in the current dissertation having just over 50% F1-Score.
Nevertheless, we already listed a long list of research directions that
could still be explored to improve the performance of AKE algo-
rithms, with deep learning being the most promising field of research,
in the opinion of who’s writing this document. Moreover, even if AKE
datasets are still small and often not precise, the new possibilities of-
fered by Crowdsourcing make the collection of new, better datasets
an easy task, even in currently under-resourced languages.
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THE DISTILLER FRAMEWORK

In 2015, we introduced a novel knowledge extraction framework called
the Distiller Framework, with the goal of offering the research com-
munity a flexible, multilingual information extraction framework [12].
Two years later, the project has significantly evolved, by supporting
more languages and many machine learning algorithms. In this Ap-
pendix we present the current state of the framework and some of its
applications.

The work described in this section is contained in Basaldella, Nart,
and Tasso [12], which has been presented at the 1st AI*IA Workshop
on Intelligent Techniques At Libraries and Archives, held the 22nd
September 2015 in Ferrara, and in Basaldella et al. [17] at the 14th
Italian Research Conference on Digital Libraries (IRCDL 2018), which
will be held in Udine, January 25-26, in 2018.

A.1 INTRODUCTION

Today digital document archives contain a tremendous amount of
documents of various types, such as books, articles, papers, reports
etc. Therefore, there is a urgent demand to adequate tools to process
semantically documents in order to support the user needs.

Based on this demand, in this Chapter we present the current state
of the Distiller framework, an open source information extraction
framework written in Java at the University of Udine. Developed in
the Artificial Intelligence Laboratory, the Distiller framework allows
to annotate any document with linguistic, statistical, semantic or any
kind of information. We present the history of the framework and
related research in Section A.2; in Section A.3, we describe the design
of the framework; then, in in Section A.4, we explain how to down-
load and run the Distiller. In Section A.5, we briefly present research
performed using the Distiller framework in the fields of Keyphrase
Extraction and Named Entity Recognition in the biomedical domain.
Finally, Section A.6 presents the challenges that we will have to face
in future in the development of the framework.

A.2 RELATED WORK

The roots of the Distiller framework are in the AKE system DIKpE
presented by Pudota et al. [99]. Originally, the system was part of a
content recommendation framework, and performed AKE using five
features and heuristically selected weights. Later, [87] and [30] ex-
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tended the approach, offering the possibility of inferring keyphrases
not contained in the original document and of processing documents
in Italian as well. However, the software used in these projects was
adapted using a series of ad-hoc solutions, hence becoming difficult
to maintain and to further extend it with new functionality. For these
reasons, we introduced the Distiller framework in [12], with the goal
of building a more maintainable system which could be also used for
tasks different than AKE.

Other open source AKE systems exist in academia. KEA [121], one
of the first AKE algorithms, is available online as open source soft-
ware', but the project seems abandoned since 2007. A free implemen-
tation of the RAKE [101] algorithm is available online as well*, but
with little or no possible customization. PKE [22] is an open source’
implementation of many AKE algorithms, such as KEA, TopicRank
[23], WINGNUS [91] and others. However, it is focused on keyphrase
extraction only and it cannot be used for other NLP tasks. The MAUI
software* seems the closest system to the Distiller framework, offer-
ing an source implementation of an improved version of the KEA al-
gorithm, and algorithms for Named Entity Recognition or Automatic
Tagging [77]. However, many of these features are only available buy-
ing a commercial license, and the end user is left with no or little
possibility of customizing the pipelines.

A.3 DESIGN

The Distiller framework is written in Java 8, due to the robustness
of the language, its strong object-oriented paradigm, and due to the
availability of a large number of NLP and machine learning tools
already available for this language, such as the Stanford CoreNLP li-
brary [75], Apache OpenNLP>, Weka [103], and so on. Moreover, Java
gives the possibility of writing wrappers for other software, adding
flexibility to the framework. Many wrappers are already available
and developed by the open source community, both for generic tools
like R or Matlab, and for specialized tools, e.g., CRFSuite [93].

The design of the framework is somewhat similar to the Stanford
CoreNLP system [75]. In fact, like in Stanford CoreNLP, we offer the
possibility to annotate the text with a sequence of Annotator objects.
When the developer of an information extraction pipeline is working
with the Distiller, he will work by mainly using these classes of the
framework:

1 http://www.nzdl.org/Kea/download.html
2 https://github.com/aneesha/RAKE

3 urlhttps://github.com/boudinfl/pke

4 https://github.com/zelandiya/maui

5 http://opennlp.apache.org
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A.3 DESIGN
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Figure A.1: The high-level architecture of the framework. The workflow
is the following: first, the document is written on the black-
board. Then, a sequence of Annotators annotate the document,
eventually using previously produced annotations. When all
Annotators finish their job, the produced annotations are re-
turned as output. In this case, we put some example annotators
used for Keyphrase Extraction.

DocumentComponent: this class represents a unit of information within
a document. Such unit may be a chapter, a paragraph, a sen-
tence, or just text. It is designed using the Composite pattern
[40], where the composite object (i.e. a sentence, a chapter, a
section...) is represented by the DocumentComposite class and
the smallest component is represented by the Sentence class,
which in turn is an aggregation of Tokens.

Blackboard: this is the class that contains the original document
and all the information produced by the pipeline. It contains
a pointer to the root DocumentComponent of the document and a
dictionary of Annotations that can be filled at the developer’s
will.

Annotation: the class that represents an annotation. It can be added
to the Blackboard or any Annotable object. Example of anno-
table objects are any DocumentComponent, Tokens, Grams, etc.

Annotator: an abstract class that has to be extended by any class
that produces annotations. An annotator can be, e.g., a part-of-
speech tagger, it can count the occurrences of a word in a docu-
ment, it can call an external knowledge base (e.g. Wikipedia) to
get more information, it can be a machine learning algorithm,
and so on.

Figure A.1 shows an example of workflow of the Distiller frame-
work, applied to the case of AKE. In this case, the pipeline will follow
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the supervised AKE steps we defined in Section 1.2.1, by running the
following annotators:

1. Language detection: first, we detect the language of the docu-
ment;

2. Low-level NLP: then, we perform low-level NLP operations
on the document, such as tokenization, part-of-speech tagging,
stemming, and so on;

3. Candidate Generation: using the information produced at the
previous step, we generate the candidate keyphrases that match
certain part-of-speech patterns [11, 99];

4. Candidate Annotation: we annotate the candidate with infor-
mation from different domains, such as statistics (e.g. number of
occurrences of the candidate, length of the candidate...), linguis-
tics (number of nouns in the candidate [99], anaphors that have
the candidate as antecedent [11], ...), or from external knowl-
edge (e.g. Wikipedia [30]), and so on;

5. Candidate Scoring: we score the candidates using the annota-
tions produced at the previous steps. The score can be calcu-
lated using simple, handcrafted techniques [12, 99] or using ma-
chine learning algorithms [11].

Some annotators are already provided out-of-the-box. For example,
we provide two wrappers for Stanford CoreNLP and ApacheOpenNLP
that offer sentence segmentation, word tokenization, and PoS tag-
ging in many languages (as we’ve seen Chapter 2), a wrapper for
the Porter’s stemmer algorithm [98], a module that calculates statis-
tical information about n-grams contained in the document, and so
on.

A.4 OBTAINING AND RUNNING THE DISTILLER FRAMEWORK

Distiller is available as an open source project under the GPLv2 li-
cense. It is available online at the following URL:

https://github.com/ailab-uniud/distiller-CORE

After building it with Maven, it is possible to run the keyphrase
extraction pipeline described in Section A.3 by writing the following
code:

Listing A.1: Example Java code to call and run the Distiller.

1 |String document = ...
2 |Distiller d = distiller = DistillerFactory.
3 loadFromPackagedXML ("pipelines/defaultKE.xml") ;
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4 |Blacboard b = d.distill(document);
5 | Collection<Keyphrase> keyphrase =

6
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b.getGramsByType (Keyphrase.KEYPHRASE) ;

This code will load the default keyphrase extraction pipeline, run
it, and store the results in the keyphrase collection. The defaultKE
pipeline is based on the algorithm we described in Chapter 2, hence
it supports keyphrase extraction in Arabic, English, Italian, Romanian
and Portuguese. However, it’s worth noting note that this pipeline re-
quires R installed on your system, since it uses a MLP to score the
keyphrases; if R is not available, it is possible to run the implementa-
tion of [99] AKE algorithm, called fastKE, which does not need any
particular additional software.

As an example of the ease of configuration of the Distiller, in List-
ing A.1 we show (part of) the XML configuration file of the fastKE
pipeline. As you can see, the code is very compact and allow for easy
customization.

Listing A.2: The configuration XML code for the Distiller that implements
the pipeline presented in [99]

<bean id="fastKE"
class="it.uniud.ailab .dcore.annotation.Pipeline">
<property name="annotators">
<list>
<! >
<ref bean="openNLP"/>
<! >
<ref bean="nGramGenerator" />
<! >
<ref bean="statistical" />
<! >
<ref bean="linearEvaluator"/>>
<! >
<ref bean="skylineGramFilter"/>
</list>
</property>
</bean>

As we already mentioned, each module of the pipeline must im-
plement the Annotator interface. An example of Annotator is the
OpenNLPBootstrapper, a module that uses the Apache OpenNLP li-
brary to split, tokenize, and POS tag the document. This annotator is
defined as a bean, as in Listing A.3, in the XML file and then passed
to the pipeline as in Listing A.1. All the annotators must be defined
in the same XML file as the one that contains the definitions of the
pipeline.

Listing A.3: A configuration snippet

1 ‘<bean id="openNLP"
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class="it.uniud. ailab .dcore.wrappers. external .
OpenNlIpBootstrapperAnnotator">
<property name="modelPaths">
<map key-type="java.lang.String" value-type="java.lang.
String">

<entry key="en—sent" value="/opt/distiller /models/en—
sent.bin"/>
<entry key="en—token" value="/opt/distiller /models/en
—token.bin"/>
<entry key="en—pos-maxent" value="/opt/distiller/
models/en—pos—maxent.bin" />
<entry key="it—sent" value="/opt/distiller /models/it/
it—sent.bin"/>
<entry key="it—token" value="/opt/distiller/models/it
/it—token.bin"/>
<entry key="it—pos—maxent" value="/opt/distiller/
models/it/it—pos-maxent.bin" />
</map>
</property>
</bean>

This way, one can easily add the support for a language in the
pipeline, by just adding a reference to the new models in the openNLP
bean; on the other hand, it is also possible to replace OpenNLP with
for example the Stanford NLP library, by defining a bean and calling
it in the fastKE pipeline; it is possible to add a new annotator that
implements some custom feature for AKE, and so on.

A.5 APPLICATIONS

Since the beginning of the development of the framework we imme-
diately started to use it in actual research tasks, in order to gain ex-
perience about the challenges that developers face in designing tools
for the academic world.

In Chapter 2, we used the Distiller to implement a five-language
keyphrase extraction pipeline, working in English, Arabic, Portuguese,
Romanian and Italian. In Chapter 3, we successfully used the Dis-
tiller framework to demonstrate the possibility of extracting better
keyphrases using more linguistic knowledge than in the classic statis-
tics based approaches.

However, the framework was also used in [14, 15] for entity recog-
nition and linking, demonstrating its flexibility. In this case, we used
Distiller along OntoGene [100], a text mining framework developed
by the University of Zurich, in order to build an hybrid dictionary
based - machine learning system for the detection and linking of tech-
nical terms in the biomedical domain. The system, based on CRFs,
obtained promising results on the CRAFT corpus, with increased F1-
Score when compared to the current state-of-the art system.
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In the last years, deep learning techniques are attacking “classic” ap-
proaches for solving many problems, outperforming them in many
tasks. For example, in the Machine Translation domain, the WMT
2016 task saw a surge of Neural Machine Translation systems, which
vastly outperformed the systems presented the syntax-based system
presented in the previous edition [20, 21]. The same happened in
the ImageNet competition, where the introduction of DL techniques
brought the error rate down to 3,6% from the previous, pre-“Deep
Learning era” 26,1% state-of-the art [43]. DL approaches also im-
proved the state of the art in many other fields, such as speech recog-
nition and image segmentation, and are currently regarded of obtain-
ing “superhuman” performance in traffic sign classification [43].

Deep learning techniques have been developed also for AKE (as
we did in Chapter 5, Named Entity Recognition [106], and many
other NLP tasks with promising results. This will prove a challenge
for systems designed to be knowledge-based like the Distiller frame-
work. However, there are tasks where the “older” knowledge-based
approach is still dominant, as NER and Concept Recognition in spe-
cialized fields, e.g. when there is the necessity of binding concepts to
specialized ontologies [14]. In these cases, where algorithms need to
take into account rare words that DL models often fail to recognize,
we believe systems like the Distiller still has much to offer to the re-
search community. In addition, we believe that, due to the extensible
framework architecture of Distiller, our system will continue to be
useful in future, e.g. by integrating deep learning libraries inside it.
For example, the popular Tensorflow [1] library offers Java APIs, so
it would be easy to integrate it in the framework.
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In Chapter 5, we described the achievement obtained in Keyphrase
Extraction using Deep Learning techniques. As for Appendix A, where
we described the Distiller framework used in Chapters 2 and 3, here
we describe the software used to implement DLKE techniques.

However, this description will be much more compact. This is be-
cause, while the Distiller is a full-fledged framework that takes his
roots in a decade of software written in the Artificial Intelligence Lab-
oratory of the University of Udine, the software used in Chapter 5
is a simple proof of concept implementation of the algorithms we pre-
sented.

B.1 INTRODUCTION

Each Deep Learning KE pipeline is composed by a sequence of com-
mon steps, much like the “classic” supervised AKE pipelines we de-
scribed many times throughout this Thesis. The DLKE pipeline is the
following:

1. Low-level NLP: the input document is split into sentences, the
sentences are split into tokens, and (in the case of “KS” the
networks we described in Section 5.5) the same holds for the
candidate keyphrases;

2. Word embedding: each token is assigned a pre-trained word
embedding, and the same (eventually) holds for the candidate
keyphrases (see Section 4.2);

3. Test/Validation Sets Generation: using the information from
the previous steps, documents and candidate keyphrase are pro-
cessed to generate the training and (optionally") the validation
sets;

4. Model training: the model is trained using the sets generated
in the previous step.

5. (Optional®) Model tuning:: using the information provided by
the validation set (i.e. validation set accuracy, recall, etc.), the
model is fine tuned to obtain the best performance;

Steps 3 and 4 require to be customized for each network (recall the
different network architectures we presented in Sections 5.3, 5.4, and

1 Actually, while using a training set it’s optional, it’s highly recommended to use one.
2 see above.
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5.5). Steps 1,2, and 5, on the other hand, can be implemented in the
exact same way for all DLKE pipelines. For this reason, we decided to
implement a small library, called deep keyphrase extraction, where
each pipeline we implemented shares the same code for (at least)
steps 1,2, and 5. The benefit of such choice is two-folded: one the one
hand, the code is more maintainable, having only one code base for
all the experiments; on the other hand, the results of experiments are
perfectly comparable, as they differ only in minimal (albeit essential)
part.

B.2 DESIGN

Unfortunately, reusing the code of the Distiller framework, as pre-
sented in Appendix A, was not possible. In fact, while there are some
deep learning libraries available for Java (the language used for the
Distiller framework), the majority of the software developed by both
the academic and commercial deep learning communities is written
in Python.

One particular reason for choosing Python as a language is the
availability of the Keras library [25], which was the library we used
to develop our DLKE algorithms. Keras allows to quickly deploy a
deep learning algorithm without actually taking care of the under-
lying implementation, both mathematical, as the most common lay-
ers are already implemented, and “practical”, as Keras already offers
three different backends: Theano [3], developed by the University of
Montreal, Tensorflow [1], developed by Google, and Microsoft’s Cog-
nitive Toolkit (CNTK)[109]. All these backends offer the possibility of
training the network using the GPU using NVIDIA’s CUDA library
[92].

The design of the system is very simple. As mentioned above, most
parts of the KE pipeline are shared across the different DLKE algo-
rithms. For this reason, we can roughly describe the structure of a
DLKE script with the following pseudo-code:

dataset = KP_EXTRACTION_DATASET

train_data, val_data, test_data dataset.load_data()

train_data, val_data, test_data = preprocess_data(train_data,
val_data, test_data)

model.fit(...)

results = model.predict(...)
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results = postprocess_data(results)

18 | evaluate(results)

To implement this simple structure, the following source code files
are provided:

e data/dataset.py: this file contains the loaders for the different
datasets used in the experiments. While in Chapter 5 we exper-
imented only with the Inspec corpus, the code is already able
to load different datasets. Each loader inherits from an abstract
Dataset class that offers common facilities to load training, test-
ing and validation sets for each dataset.

* utils/preprocessing.py: this file contains the utilities to pre-
pare the dataset in a format that is accepted by Keras” model. fit()
function. These utilities take the documents, tokenize them, load
the pre-trained word embeddings in GloVe format [97] and out-
puts the training, testing and validation sets ready to be fed to
Keras.

e utils/postprocessing.py: this file contains the utilities that
convert the output of Keras” model.predict() function in a for-
mat accepted by the evaluation methods;

e eval/metrics.py: this file contains the methods to calculate
some common metrics for keyphrase extraction (see Section 1.6).

All these scripts depend on some other files to perform their op-
erations. For example, a nlp folder is provided, with scripts for tok-
enizing, chunking or cleaning the output using NLTK [19]. The utils
folder contains other utilities, e.g. for plotting the training graphs,
and the eval folder contains other utility scripts for evaluation pur-
poses.

B.3 REPRODUCIBILITY

All the scripts that implement a DLKE algorithm begin by setting
seed for the random number generators used by the different libraries
involved to ensure the reproducibility of the results over different
machines. Moreover, we provide some scripts that ensure that certain
CUDA features are disabled, to force deterministic training. However,
please note that due to different hardware or software versions, run-
ning the scripts on different machines may yield slightly different
results.
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B.4 OBTAINING THE DLKE SOFTWARE

The source code software described in the present Appendix and
used in Chapter 5 is available for download at https://github.com/
basaldella/deepkeyphraseextraction.Itis licensed under the Apache
2.0 License.

B.5 CONCLUSIONS AND FUTURE WORK

The software described in the present Appendix is an embryonic im-
plementation of what a more complex framework for AKE may be.
However, by being open source software, by offering simple methods
to load and evaluate algorithms on many of the most common AKE
tasks, and by using the high level DL library Keras, we believe it may
be a useful testbed for developing new AKE algorithms in the future
for the academic community. As stated in Section A.6 and in the Con-
clusions of the present dissertation, it may be interesting to integrate
it with the Distiller framework or other similar KE libraries, to de-
velop AKE algorithms that use both the newer, deep learning based
approach to AKE, and the old, statistics based approach.


https://github.com/basaldella/deepkeyphraseextraction
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