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ABSTRACT – English 

 

In the last decades, concerns on the negative drawbacks of chemical pesticides 

on human health and environment have raised interest in safer alternatives; 

biopesticides, such as biogenic elicitors, represent an encouraging solution. The 

regulatory approach in the European Union does not distinguish biopesticides as a 

specific category of plant protection, and for this reason they are subjected to the same 

regulations as synthetic chemicals, requiring several authorization steps for the final 

approval and marketing. Among others, protein-based products and peptide fragments 

can stimulate plant growth, and represent a wide category of elicitors able to reduce 

the symptoms of common crop diseases, by acting as stimulators of plant defence and 

influencing systemic resistance processes, which can be regarded as effective 

alternative to synthetic chemical pesticides. The final objective of the current doctoral 

project was to provide new insights on the use of bioactive protein-based products 

against crop diseases, to further develop new sustainable strategies for organic 

agricultural practices. More in details, as well as providing an updated overview of the 

regulatory procedures for the authorization of biopesticides, the specific goals of the 

present research were i) to characterize the mode of action of protein-based products 

against crop diseases and ii) to optimize a method for the low-cost production of 

bioactive protein-based products. For this purpose, we analysed the mechanisms of 

action of a protein derivative called nutrient broth (NB) against grapevine downy mildew 

(caused by Plasmopara viticola), focusing on its roles as resistance inducer and 

nutritional source for phyllosphere microbial populations (Chapter 2). We showed that 

NB reduced downy mildew symptoms and induced the expression of defence-related 

genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine 

defence processes. Furthermore, NB increased the number of culturable phyllosphere 

bacteria, and altered the composition of bacterial and fungal populations on grapevine 

leaves. Thus, modifications in the structure of leaf populations caused by NB 

application could partially contribute to downy mildew control by competition for 

space/nutrients with the pathogen or other biocontrol strategies. Particularly, changes 

in the abundance of phyllosphere microorganisms may provide a contribution to the 

resistance induction, partially affecting the hormone-mediated signalling pathways 

involved. Later, we optimized an experimental procedure to develop low-cost protein 

hydrolysates starting from plant agro-industrial by-products, since animal-derived 

protein derivatives may create concerns about food safety (Chapter 3). Particularly, we 
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compared the effect of enzymatic and acid hydrolysis on different plant protein sources 

(soybean, rapeseed and guar protein meals), in terms of efficacy against the powdery 

mildew of Cucurbitaceae (caused on courgette plants by Podosphaera xanthii), 

investigating the potential contribution of amino acids and peptide fragments generated 

during the hydrolysis to the activation of plant resistance. Our results showed that the 

original protein source affected the biocontrol properties of protein hydrolysates, and 

two hydrolysis processes improved the functional properties of guar protein meal 

against powdery mildew. A positive correlation was found between the efficacy and 

degree of hydrolysis of guar acid hydrolysates, suggesting that the hydrolysis method 

may enhance the functional properties of the original protein source. In addition, 

significant correlations were revealed between the efficacy of guar hydrolysates and 

concentrations of specific peptide fragments and amino acids, which may be involved 

in the regulation of the plant defence response. Specifically, guar enzymatic 

hydrolysates did not present a direct toxic effect against the germination of pathogenic 

conidia, suggesting a mode of action mainly based on the stimulation of plant 

resistance mechanisms, as observed for NB. 

The possibility of controlling crop diseases with the preventive foliar application 

of protein-based products represents an innovative approach, especially in a view of 

reducing harmful chemical pesticides in integrated pest management programs. 

However, further studies are required to fully clarify their modes of action and the 

impact on phyllosphere microorganisms under field conditions. 
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RIASSUNTO – Italiano 

 

Negli ultimi anni, la preoccupazione della popolazione per le conseguenze 

negative dell’uso intensivo dei pesticidi chimici tradizionali sulla salute umana e 

sull’ambiente sta portando le comunità scientifica ed i rappresentanti politici verso un 

crescente interesse per i prodotti fitosanitari a base biologica, considerati un’alternativa 

sicura da inserire nei programmi di lotta integrata. Ad oggi, l’approccio legislativo 

dell’Unione Europea non riconosce i cosiddetti ‘biopesticidi’ come categoria di prodotti 

fitosanitari e per questo essi sono soggetti alle stesse regolamentazioni dei pesticidi 

tradizionali, con molti livelli di valutazione per arrivare all’approvazione finale e alla 

commercializzazione. Oltre alla loro ben nota azione biostimolante per il metabolismo e 

la crescita della pianta, i prodotti a base proteica rappresentano una vasta categoria di 

induttori di resistenza, composti non tossici capaci di ridurre i sintomi delle malattie più 

comuni grazie alla presenza di aminoacidi e peptidi, che vengono riconosciuti come 

molecole segnale dalla pianta e permettono l’attivazione dei meccanismi naturali di 

difesa, costituendo di conseguenza una valida alternativa ai prodotti fitosanitari di 

sintesi chimica. Lo scopo finale di questo progetto di dottorato è stato quello di 

sviluppare nuove conoscenze riguardo l’utilizzo di prodotti a base proteica nella lotta 

contro i fitopatogeni, per ipotizzare l’introduzione di nuove strategie sostenibili per la 

protezione delle colture. Più in dettaglio, oltre a presentare la versione aggiornata delle 

procedure regolative necessarie alla registrazione dei ‘biopesticidi’ in Europa e Stati 

Uniti d’America, gli obiettivi specifici sono stati quelli di i) caratterizzare il modo di 

azione dei prodotti a base proteica biologicamente attivi contro le malattie delle colture 

e ii) ottimizzare un metodo low-cost per la loro produzione su larga scala. Per questo 

scopo, abbiamo analizzati il meccanismo di azione del derivato proteico nutrient broth 

(NB) contro la peronospora della vite (causata da Plasmopara viticola), approfondendo 

anche il suo ruolo di fonte nutrizionale per le comunità microbiche fogliari (Capitolo 2). I 

trattamenti fogliari preventivi con NB permettono di ridurre i sintomi della peronospora 

della vite tramite l’attivazione di geni di difesa in piante cresciute in serra ed in vitro. 

Inoltre, NB aumenta il numero dei batteri coltivabili, e altera la composizione delle 

popolazioni di batteri e funghi residenti sulle foglie delle piante in serra. Le modifiche 

delle comunità microbiche dovute al trattamento con NB potrebbero parzialmente 

contribuire al controllo della peronospora, attraverso la competizione per spazio o 

nutrienti con il patogeno. Inoltre, i cambiamenti nelle dinamiche del microbioma fogliare 

potrebbero fornire un contributo all’induzione di resistenza, influenzando parzialmente i 
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segnali ormono-dipendenti coinvolti. Inoltre, è stata ottimizzata una procedura 

sperimentale per l’ottenimento di idrolizzati proteici da matrici proteiche a basso costo 

e di origine vegetale, considerando le preoccupazioni riguardo la sicurezza alimentare 

create dai prodotti a base proteica di origine animale (Capitolo 3). In particolare, è stato 

confrontato l’effetto dell’idrolisi chimica e enzimatica su differenti fonti proteiche 

vegetali (farine di soia, colza e guar), in termini di efficacia di biocontrollo contro l’oidio 

dello zucchino (causato da Podosphaera xanthii), analizzando il potenziale contributo 

dato da aminoacidi e peptidi all’attivazione della resistenza nella pianta. I risultati 

hanno dimostrato come l’attività di biocontrollo degli idrolizzati proteici vegetali dipenda 

dalla fonte proteica originale e dal metodo di idrolisi. In particolare, due specifici 

processi di idrolisi hanno permesso di intensificare le proprietà funzionali delle proteine 

di guar contro i sintomi dell’oidio. Le analisi hanno rivelato una correlazione positiva tra 

i livelli di efficacia degli idrolizzati chimici e il loro grado di idrolisi, suggerendo come 

questo metodo possa rafforzare le proprietà funzionali della fonte proteica originale. 

Inoltre, sono state trovate correlazioni significative tra i valori di efficacia e le 

concentrazioni di specifici aminoacidi e peptidi, che potrebbero essere coinvolti nella 

regolazione della risposta innata di difesa della pianta.  

In conclusione, l’applicazione fogliare degli estratti proteici in agricoltura può 

rappresentare un approccio innovativo da inserire nei programmi di lotta integrata di 

molte colture, soprattutto al fine di ridurre l’uso dei prodotti fitosanitari di sintesi 

chimica. Tuttavia, saranno necessari ulteriori studi per approfondire il loro meccanismo 

di azione e gli effetti sui microorganismi fogliari delle piante in condizioni di campo. 
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1.1 Crop diseases and the use of pesticides 

Humans and animals directly or indirectly depend on plant for food. 

Unfortunately, several external agents can cause disease in plants, such as pathogenic 

microorganisms (e.g. viruses, bacteria, fungi, protozoa and nematodes) and 

unfavorable environmental conditions (e.g. lack or excess of nutrients, moisture and 

light, and the presence of toxic chemicals in air or soil). In addition, plants suffer from 

competition with other plants (weeds), and they are often damaged by attacks of 

insects. In the last 100 years, the control of plant diseases and other plant pests was 

increasingly relying on the use of toxic pesticides (Agrios, 2005). Using chemical 

pesticides presents several positive outcomes, such as the improving of crop quality 

and production and the resulting increased farm and agribusiness profits. However, 

their extensive application has produced a concomitant impact on the environment 

(Skevas et al., 2013). Indeed, only a tiny part of the sprayed amount of pesticides 

reaches the target organism (W. J. Zhang et al., 2011), while the rest ends up in the 

soil or on the crops, from where the pesticides can diffuse to other environmental 

sectors or enter the food chain (Storck et al., 2017), posing serious and irreversible 

environmental risks and costs. Hence, chemical pesticides have toxic effects on 

humans, livestock and wildlife (Schulz et al., 2002), while among the risks they pose 

are related to the toxic residues in food, water and soil, which harm the agro-

ecosystems, have adverse effects on untarget biota, and develop pest resistance 

(Levitan, 2000; Looser et al., 2000; Smalling et al., 2013). More in details, these 

substances can be dangerous for human health when the level of exposure exceeds 

the safety levels. Additionally, the decline in the number of beneficial pest predators 

has led to the proliferation of various pests with adverse impacts on fauna and flora 

(Pimentel & Greiner, 1997), and some chemicals applied to crops could end up in 

ground and surface water pollution (Sharpley et al., 2001). Finally, pesticide-resistant 

weeds and pests can trigger increased pesticide applications to reduce the damage, 

resulting in higher economic costs for farmers. Therefore, numerous formerly 

authorized and widely used pesticides are now banned because unexpected and/or 

unacceptable risks emerged after their initial introduction to the market. Moreover, 

much of modern research in plant pathology aims at finding environmentally friendly 

means of control of plant diseases, and the most promising approaches include 

conventional breeding and genetic engineering of disease-resistant plants, the 

application of disease-suppressing cultural practices, RNA and gene-silencing 

techniques, of plant defense promoting, non-toxic substances, and, to some extent, the 



12 

 

use of biological agents antagonistic to the microorganisms that cause plant disease 

(Agrios, 2005). The member states of the European Union (EU) have a long history of 

controlling pesticide use through many country-specific programmes. However, the 

increase in pesticide use and the increasing presence of pesticides in aquatic 

environments, together with the fact that the current pesticide regulatory framework 

does not sufficiently address the reduction of use of pesticides, has led the and the 

European Commission (EC) to consider an overhaul of the pesticide regulations (FAO, 

2004). 

 

1.2 Registration of plant protection products in Europe and its difference to the 

US procedure 

Over the past 50 years, pest management in the industrialized countries has 

been based on the intensive application of synthetic chemical pesticides, in order to 

keep up with the increasing need of food availability (Chandler et al., 2011). Because of 

negative side effects on human health and the environment (Tilman, 1999), and the 

development of resistance in pest populations (van Emden & Service, 2004), the 

introduction of new regulations has resulted in the withdrawal from the market of many 

synthetic active substances (Czaja et al., 2015). Hence, biological control has started 

to play a central role in the cultivation of many crops, and scientific community and 

policy makers have turned the attention to alternative and more sustainable pest 

management tactics. Integrated pest management (IPM) is a systems approach that 

combines different crop protection practices with careful monitoring of pests and their 

natural enemies, in order to balance agricultural production and health and 

environmental demands (Barzman et al., 2014). Generally, biopesticides are a set of 

crop protection tools used in IPM, and they constitute a special group of active 

substances for plant protection that occur naturally, or are nature-identical synthetic 

substances. They also include a number of living organisms, having different modes of 

action (Czaja et al., 2015). They may be used as fungicides, insecticides and 

herbicides, leading to many positive outcomes, such as decreased pesticide residues 

in food, low-risk to non-target organisms and fast degradation (Czaja et al., 2015). For 

this reason, there is strong interest for their use in IPM practices (Villaverde et al., 

2014). The related legislation varies greatly worldwide, because countries have 

different requirements, guidelines and legal limits for plant protection products 

(Handford et al., 2015). The number of biopesticides authorisations in the EU and 
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United States is increasing: in the EU almost 100 biopesticide active ingredients have 

been registered (around 40 microorganisms, 30 pheromones and semiochemicals, 25 

botanicals and other alternatives), whereas in the US more than 430 biopesticide active 

ingredients and 1320 active product registrations have been recorded until 2013. The 

pesticide registration process in the US is under the responsibility of the Environmental 

Protection Agency (EPA), and it is primarly based on the Regulation No. 40 CFR, Part 

158 (EPA, 1991). In order to assess whether the use of proposed pesticides may pose 

unreasonable risks of harm to human health and the environment, including non-target 

organisms, EPA requires that registrants submit a variety of data about the 

composition, toxicity, degradation and other physical/chemical characteristics of the 

pesticide, and is committed to extensively review this information (Leahy et al., 2014). 

Aiming to encourage a more sustainable approach to crop protection, EPA promotes 

the development and application of low risk biological pesticides. In addition to 

biochemical and microbial pesticides, the definition of biopesticide in the US includes 

plant-incorporated protectants, namely substances produced by plants containing 

added genetic material. Contrary to EU law, the registration of biopesticides in the US 

follows a separate regulation compared to synthetic chemicals, with different 

requirements. In particular, the Biopesticides and Pollution Prevention Division was 

established in 1994 in EPA’s Office Pesticide Programs, and it is responsible for all 

regulatory activities associated with biologically-based pesticides. Since biopesticides 

are usually less toxic than conventional pesticides, their registration may require a 

significantly reduced data set, and there are limited associated fees to help registration 

processes. This reduces the registration time from 3-5 years for synthetic pesticides to 

1.5-2.5 years for biopesticides. Accordingly, biochemical and microbial pesticides are 

subject to different data requirements for registration than conventional chemicals, 

which are listed in 40 CFR Part 158 (Subpart U Biochemical Pesticides 158.2000 and 

Subpart V: Microbial Pesticides 158.2100) (EPA, 1991). Furthermore, EPA has 

published a guidance for developing these data in the Biochemical Pesticides Test 

Guidelines OSCPP Series 880, and in the Microbial Pesticides Test Guidelines OSCPP 

Series 885, respectively. Briefly, the active components of the product must be 

chemically identified, and the active component must be shown to be responsible for 

the pesticide activity. Even if characterized, mixtures of several active components or 

several organisms can be difficult and costly to register. Most successful products 

involve a single active component. The main types of data include information on the 

manufacturing and characterization of the product, toxicology/safety data, 
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environmental safety data, and product performance. The two most important factors in 

biochemical classification are that the product must be of natural origin and that it must 

have a non-toxic mode of action against the target pest (Braverman et al., 2003). 

In Europe, the term ‘plant protection product’ (PPP) is often used interchangeably 

with ‘pesticide’; however, pesticide is a broader term that also covers non plant/crop 

uses, for example biocides (EU, 2017). PPPs protect crops or desirable or useful 

plants, and contain at least one active substance (or active ingredient, namely the 

active component against pests/plant diseases), and may also include other 

components such as safeners and synergists. The EC evaluates each active 

substance for safety before it reaches the market as a commercial product, and 

substances must be proven to be safe for human health, including their residues in 

food, animal health and the environment. In details, marketing and use of PPPs is 

covered by Regulation EC 1107/2009 (EC, 2009), and specific data requirements for 

applications are contained in Regulation EU 283/2013 (EC, 2013a), and Regulation EU 

284/2013 (EC, 2013b). Only active substances registered on the EU's list of approved 

active substances and subsequently authorized as PPPs by each EU Member State 

can be released into the environment, and the authorization is granted only if proposed 

uses are not expected (or known) to have harmful effects on environmental, animal, or 

human health. After the submission of a dossier by a pesticide company, the first step 

of the authorization process is the production of an initial draft assessment report 

(DAR) by an EU designated rapporteur member state (RMS) (Figure 1). The RMS can 

modify and amend, and concludes on the risk assessment provided by the pesticide 

company including (i) the identity of the active substance and its biological efficacy, (ii) 

its toxicology and metabolism in mammals, (iii) its metabolic pathway and its residues 

in plants, crops and livestock and the risk for consumers, (iv) its environmental fate and 

behavior in soil, water and air, (v) its ecotoxicological impact on several non-target soil 

and aquatic organisms, including soil microorganisms and (vi) any relevant information 

found in the literature, if available. The second step is the peer review of the RMS's 

dossier, including the risk assessment, which is coordinated by the Pesticides Unit of 

EFSA. In the third step, the Pesticides Unit of EFSA produces a conclusion report. Risk 

managers of the Standing Committee on Plants, Animals, Food and Feed analyzes the 

EFSA's conclusions, and decide whether or not to register the compound on the EU's 

list of approved active substances (step 4). The first approval of an active substance 

must not exceed 10 years (15 years for low-risk substances), but review of the 
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approval can be requested by the EC at any time if risk concerns emerge (according to 

article 21 of 1107/2009). 

 

 

Figure 1. Schematic presentation of the stepwise process of pesticide 
authorization in the EU, modified from Storck et al. (2017). 

 
 

The review of an approval should not exceed 15 years. In the same manner as for the 

initial approval, the review of the approval starts with the designation of an RMS by the 

EC in charge of providing a renewed assessment report (RAR) taking into 

consideration data resulting from post-authorization monitoring and literature search. 

The RAR is then subjected to the same procedure as the DAR. Finally, risk managers 

of each EU Member State separately take the final decision at the national level of 

granting or not granting authorization to use an EU-authorized active substance in a 

PPP without EFSA being involved (step 5) (Storck et al., 2017). EU-Regulation 

1107/2009/EC introduced for the first time the division of Europe into three 

geographical zones according to pedo-climatic criteria (i.e. Scandinavian, temperate, 

and Mediterranean zones proposed in Annex I) to harmonize and speed up the 

regulatory process in different Member States. Within the same zone, the peer review 

procedure on PPPs is similar to that of active substances. First, the RMS evaluates the 
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registration report of the PPP, then the other Member States can comment on the first 

evaluation. The final decision is then taken by national governments based on the 

proposal of risk managers. National authorities may also impose risk mitigation 

measures and monitoring after authorization of a PPP. Contrary to US, the regulatory 

approach in Europe does not recognise biopesticides as a regulatory category of plant 

protection active ingredients, and for this reason they are subjected to the same 

regulations as synthetic chemicals. Subsequently, registration of new biopesticides 

usually requires the same or even more time as compared to conventional pesticides. 

Generally, biopesticides may be divided into several groups: products with pheromones 

or other semiochemicals as the active ingredient; microbial pesticides including fungi, 

bacteria and viruses; products containing living organisms such as invertebrates; plant-

extract and vegetable-oil-based product (Czaja et al., 2015). Subsequently, biologically 

active agents classified as biopesticides present the most varied sources, and 

therefore the application of the same safety criteria to all of them is very difficult, and 

their approval and registration as active PPPs present several difficulties (Czaja et al., 

2015). To avoid any confusion, EU recently introduced categories of low-risk active 

substances (LRAS) and basic substances (Huber, 2016). LRAS are substances, which 

have been evaluated as having a low-risk, fulfilling certain criteria such as being not 

carcinogenic, mutagenic or toxic to reproduction. A standard authorisation is still 

required for these products, and the general approval process is similar to conventional 

chemicals. A major benefit for applicants is that the active substance are approved for 

15 years instead of the standard 10 years for the first approval, and products are 

authorised in a few months, differently from conventional PPPs. For this reason, 

biopesticides are candidates for being approved as LRAS. On the other hand, basic 

substances are active substances that are not predominantly used as PPPs, but which 

may be of value for plant protection; however, they are not placed on the market as a 

PPP. A basic substance is an active substance useful in plant protection either directly 

or in a product consisting of the substance and a simple diluent, which presents neither 

an immediate or delayed harmful effect on human and animal health nor an 

unacceptable effect on the environment. For basic substances, the application is 

submitted by the applicant (including Member States) directly to the EC, who then 

forwards the application to EFSA for its scientific evaluation. A basic substance is 

already evaluated in accordance with other Community legislation (food, cosmetic, 

commodity chemical). An application can be made by any interested part, including 

member states themselves, according to the guidance document on Basic substances 
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(EU, 2017), template listed in Annex I. The authorisation as basic substances is 

granted by the Commission after a scientific evaluation by EFSA and after consulting 

all Member States. The entire procedure takes approximately one year. This 

authorisation has no expiration data (unlimited time), and has no data protection 

(EFSA, 2017). In conclusion, the future EU policy schemes aims at the sustainable use 

of pesticides in European agriculture, involving the reduction of risks and impacts of 

pesticide use on human health and the environment. Accordingly, the design of optimal 

pesticide policies requires insight into the relationships between production decisions 

on crop yields and their quality, the environmental and health spillover impacts of 

pesticide use, and how policies and regulations influence production decision making. 

Furthermore, a key policy consideration should be balancing the incentives for 

economic growth against the adverse impact on the environment, which includes the 

management of land, water and air, as well as the overall stability and biodiversity of 

the ecological system (Skevas et al., 2013). 

 

1.3 The two study pathosystems 

 

1.3.1 Grapevine (Vitis vinifera L.) and the pathogen Plasmopara viticola 

The grapevine has been a part of the human culture since the establishment of 

agricultural societies, and nowadays has become economically the most important fruit 

species in the world, because of the numerous uses of its fruit for the production of 

wine, juice, table grapes, dried fruits and organic compounds (Ferreira et al., 2004). 

The grapevine belongs to the kingdom of Viridiplantae, order Vitales and family 

Vitaceae, which comprises about 60 inter-fertile wild Vitis species distributed in Asia, 

North America and Europe under subtropical, Mediterranean and continental–

temperate climatic conditions. Some species as V. rupestris, V. riparia or V. berlandieri 

are principally used as rootstocks or genetic sources for breeding due to their 

resistance against pathogens (Terral et al., 2010). However, V. vinifera is currently the 

main cultivated species because of the high quality for the wine production. In 2014 

grapevine crop covers an area of 7.1 million hectares, with a global production of 74,5 

million tons, and Europe was the biggest grapes producer, especially in the 

Mediterranean countries owing to the favourable climatic conditions (FAO, 2014). Vitis 

vinifera is greatly affected by a large number of pathogens that cause diseases in pre- 

and post-harvest periods, affecting fruit yield and quality, as well as production, 
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processing and export (Armijo et al., 2016). The causal agents of grapevine diseases 

are diverse and include viruses, mycoplasma, bacteria, insects, worms, arthropods, 

oomycetes and fungi. Among others, some of the most destructive diseases are the 

grey mould, powdery mildew and downy mildew, caused by the necrotrophic 

deuteromycete Botrytis cinerea, the biotrophic ascomycete Erysiphe necator and the 

oomycete Plasmopara viticola, respectively. 

Downy mildew is one of the most dangerous and destructive disease of 

grapevine, particularly under warm and wet climates (Gessler et al., 2011). It originates 

from North East of the USA, imported in 1834 and spread to Europe by the end of the 

Century, where it caused widespread damages to the grape industry. Plasmopara 

viticola is an obligate biotrophic organism belonging to the Peronosporaceae family, 

and attacks all green parts of the plant. Sexual reproduction of P. viticola involves 

specialized reproductive structures where meiosis can occur and gametes are formed. 

In particular, oospores are often produced at the end of the growing season from the 

fertilisation of oogonia by antheridia, and are resistant to survive until conditions are 

suitable for new growth (Burruano, 2000). The primary infection starts early in the 

season, when oospores in fallen leaves or mycelium in dormant twigs are activated by 

adequate climate conditions to produce sporangia. In the presence of water, the 

mature sporangium releases self-motile biflagellate zoospores that infect plants 

tissues. Zoospores are able to place on the abaxial surface of leaves close to stomata, 

then germinate and penetrate through the stomatal cavities, where they form a 

substomatal vesicle. This vesicle gives rise to primary hyphae and mycelium, which 

grows through intercellular spaces, enclosed by the veins of the leaf and enters to the 

cell of the mesophyll by its cell-wall-penetrating and feeding haustoria, which 

invaginates the plasma membrane of the parenchyma cells. Sporangiophores arise 

and emerge through stomata, and sporangia may be carried by wind and rain to nearby 

healthy plants, germinate quickly and produce many zoospores that causes secondary 

infections and thus spread the disease (Gessler et al., 2011). All young grapevine 

tissues of V. vinifera are susceptible to downy mildew infection. More specifically, foliar 

symptoms appear as yellow circular spots with an oily appearance, and the affected 

area becomes soon brown or necrotic, until after warm and humid nights a white downy 

fungal growth appears on the abaxial leaf side (a phenomenon called sporulation). 

Severely infected leaves may curl and fall down, and this defoliation can reduce sugar 

level in the developing fruit and final yield. Moreover, in older leaves the lesions are 

restricted by veins to form small, angular, yellow to reddish-brown spots, which 
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combine to form a mosaic-like symptom. Young shoots, tendrils and petioles can also 

be infected by downy mildew. Indeed, infected shoot tips generally curl and become 

white due to downy mildew sporulation. Eventually, shoots turn and become brown or 

die at the late stages of infection. Flowers and young berries are also susceptible to 

this pathogen. At the flowering stage, infected bunches appear greyish in colour, and 

acquire a typical curl with an “S” shape. Infected bunches and berries are covered by 

downy mildew sporulation after raining periods, and they become brown at the late 

stages of infection. Young fruits can become resistant to infection from three to four 

weeks after bloom, because skin tissues evolve and stomata close. However, P. 

viticola can penetrate form the stomata of rachis or peduncles, and this infection 

causes brown rot symptoms, characterized by dry berries with a dark green and brown 

colour (Gessler et al., 2011). Downy mildew control is generally achieved by 

widespread applications of chemical fungicides in vineyards. Farmers agree to zonal 

warning, which take into account current meteorological conditions and grapevine 

phenological stages. Indeed, risks of infection are higher with warm and rainy weather, 

and during the period of intensive growth (i.e. from the end of May to the middle of 

July). However, in order to maintain their efficiency and to avoid the resistance of pest 

populations, it is necessary to alternate phytosanitary treatments, either with different 

mechanisms of action or with new active substances (Delaunois et al., 2014). In 

organic farming, this pathogen is mainly monitored by regular sprays with products 

based on copper (Gessler et al., 2011). However, these products do not eradicate 

existing infections, and concerns about their environmental effects are rising. 

 

1.3.2 Cucurbitaceae family and the pathogen Podosphaera xanthii 

The Cucurbitaceae or cucurbit family is one of the most important groups known 

worldwide of about 130 genera and 800 species, mainly distributed in tropical and 

substropical regions (Dhiman et al., 2012). Cultivars developed by breeders, especially 

of pumpkin (Cucurbita pepo), melon (Cucumis melo), cucumber (Cucumis sativus), and 

water melon (Citrullus lanatus) present economically important uses in food, agriculture 

and cosmetic industries (Ielciu et al., 2016), and the commercial role of derivatives from 

medicinal species is increasing rapidly (Kocyan et al., 2007). The courgette (Cucurbita 

pepo L.) is extremely diverse in fruit characteristics. Native to semi-arid and temperate 

regions of North America, it was domesticated at least twice, in Mexico over 10,000 

years ago and in the United States over 4000 years ago (Paris, 2016). The world 
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growing area of cucurbits both in the field and under cover of 8.6 million hectares is 

almost two times higher than the growing area of tomatoes (4.6 million ha) (FAO, 

2014). There are over 200 known cucurbit diseases of diverse aetiologies, and viruses 

borne by aphids, whiteflies, and other insects are some of the most destructive of 

Cucurbita pepo, tending to vary from region to region and year to year (Paris, 2016). In 

addition, other pathogens limit the production of pumpkins and squash, and the two 

powdery mildew fungi, namely the obligate biotrophic ectoparasites Podosphaera 

xanthii and Golovinomyces orontii, can be devastating and difficult to combat (Lebeda 

et al., 2016), because they weaken plants over the course of the season, causing 

reduction in plant growth, premature desiccation of the leaves and consequent 

reduction of the quality and marketability of the fruits. In Italy, powdery mildew is 

particularly serious on crops such as melon and zucchini (Gilardi et al., 2012). 

Podosphaera xanthii, previously named Sphaerotheca (Podosphaera) fusca 

emend. (s. lat), Spaerotheca fulginea f. cucurbitae (Erysiphaceae family) usually 

grows on the plant surface, obtaining nutrients from the host epidermal cells by 

means of haustoria. With respect to the asexual life cycle, after landing on a 

susceptible host, conidia produce a short germ tube, ending in a primary 

differentiated appressorium with a primary haustorium. Then, a primary hypha arises, 

forming first secondary appressoria and haustoria, and later the branches of 

secondary hyphae. Conidiophores emerge from some of the secondary hyphae, and 

conidia are produced in chains. The mat of secondary hyphae and conidia forms the 

white mycelium on the surface of the plant (Perez-Garcia et al., 2009). In addition, 

the sexual reproduction occurs with the production of a chasmothecium from the 

union of two hyphae of opposite mating types. Chasmothecia are, in general, 

considered to be overwintering sources of inoculum. Like other powdery mildew 

diseases, the symptoms of P. fusca are characterized by the whitish, talcum-like, 

powdery fungal growth that develops on both leaf surfaces, petioles and stems 

(Perez-Garcia et al., 2009). The fungus feeds the plant nutrients, reduces 

photosynthesis and causes yellowing, and sometimes the death of leaves. A severe 

infection may kill the plant. Crop yields can be reduced because of reduced size or 

number of fruits, and fruit from affected plants can have low quality (Perez-Garcia et 

al., 2009). The most common strategy to control the powdery mildew of C. pepo 

includes the use of resistant cultivars, but actually traditional fungicides are the most 

effective means of control. Unfortunately, fungicides generally have a high risk of 

developing resistance in pest populations, because they have specific modes of 
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action, and P. xanthii has a high potential for resistance development  (McGrath, 

2001). Most of the fungicides to control powdery mildew are primarily preventive. 

Other non-systemic fungicides, such as sulfur and copper, have some efficacy to 

control powdery mildew outbreaks. Sulfur is one of the oldest natural fungicides to 

control powdery mildews. However, sulfur only provides a moderate level of control, 

and phytotoxicity as scorch occurs when sulfur is applied to the leaves (Nuñez-

Palenius et al., 2006). 

 

1.4 The plant self-protection system 

Plants are sessile organisms, constantly exposed to a wide range of harmful 

pests. Despite the lack of specialized immune cells or organs, plants are surprisingly 

resilient to pathogen attacks, relying entirely on innate immune responses (Jones & 

Dangl, 2006). Although plants evolved an array of constitutive defences, such as 

structural barriers and preformed antimicrobial metabolites to prevent or at least 

attenuate the invasion, many microbes succeed in breaking through this pre-invasive 

layer of defence. However, a broad spectrum of inducible plant defences can be 

recruited to limit further pathogen entrance (Pieterse et al., 2009). For this purpose, 

plants employ a two-tier innate immune system that involves plasma membrane-

localized and intracellular immune receptors (Zipfel, 2014). So far, these levels have 

been called basal or horizontal disease resistance and gene-based (R) or vertical 

disease resistance, respectively; however, the two forms are currently defined by a 

new terminology that found immediate acceptance within the scientific community. The 

primary immune response recognises common features of pathogens, such as 

flagellin, chitin, glycoproteins and lipopolysaccharides, referred to as Pathogen- or 

Microbial-Associated Molecular Patterns (PAMPs or MAMPs), and activate Pattern-

Recognition Receptors (PRRs), which in turn initiate a multitude of downstream 

signalling events that result in the activation of a basal resistance named PAMP-

Triggered Immunity (PTI; Figure 2a). In addition, plant molecules that are breakdown 

products of wounding or infection, known as Damage-Associated Molecular Patterns 

(DAMPs), can also induce PTI following interaction with host PRRs (Boller & Felix, 

2009; Miller et al., 2017). During the co-evolutionary arms race between pathogens and 

their hosts, pathogens acquired effector molecules that are transported into the host 

cell to suppress PTI and promote virulence of the pathogen, resulting in Effector-

Triggered Susceptibility (ETS; Fig 2b). In turn, plants acquired resistance (R) proteins 
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that recognize these attacker-specific effectors, resulting in a secondary immune 

response called Effector-Triggered Immunity (ETI; Fig. 2c) (Pieterse et al., 2009). 

 

 

Figure 2. Simplified schematic representation of the plant immune system, 
modified from Pieterse et al. (2009). 

 
 

The outcome of the battle depends on the balance between the ability of the pathogen 

to suppress the plant’s immune system and the capacity of the plant to recognize the 

invader and to activate effective defences (Chisholm et al., 2006; Jones & Dangl, 2006; 

Gohre & Robatzek, 2008; Pieterse et al., 2009). Typically, PAMPs are widely 

conserved across genera, making the PTI responsible for non-host-specific resistance, 

whereas effectors and ETI are often strain-specific (van Wees et al., 2000; Spoel & 

Dong, 2012). Nevertheless, the nature of the defence responses activated during PTI 

and ETI shows substantial overlap (Tsuda et al., 2008), and immediately leads to 

transcriptional and metabolic modulations, such as cell wall fortification through the 

synthesis of callose and lignin (Kim et al., 2005) and production of antimicrobial 

secondary metabolites, among which phytoalexins (Harborne, 1999). Early cellular 

events comprise also the increase of [Ca2+] cytosolic (Lecourieux et al., 2002), the 

production of nitric oxide (NO) (Delledonne et al., 1998), and subsequent rapid 

activation of mitogen-activated protein kinases (MAPKs) (Jonak et al., 2002). The 

recognition of pathogen-specific effectors through the ETI system is followed by a burst 
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of Reactive Oxygen Species (ROS) that culminates in a programmed hypersensitive 

cell death and necrosis at the site of invasion, leading to local resistance, in order to 

keep the pathogen isolated from the rest of the plant and prevent further damage 

(DeWit, 1997; Spoel & Dong, 2012). This local hypersensitive response can also 

immunise plants (Spoel & Dong, 2012). Indeed, once plant defence responses are 

activated at the site of infection, a systemic defence response is induced in distal plant 

parts to protect undamaged tissues against subsequent attacks. This long-lasting and 

broad-spectrum resistance is referred to as Systemic Acquired Resistance (SAR) 

(Durrant & Dong, 2004), and is characterized by the coordinate activation of a specific 

set of Pathogenesis-Related (PR) genes, encoding PR proteins with antimicrobial 

activity, that currently comprise 17 families including defensin proteins and lytic 

enzymes such as chitinase, glucanase and protease (van Loon et al., 2006). The onset 

of SAR requires the accumulation of Salicylic Acid (SA) (Yalpani et al., 1991), locally at 

the primary site of infection and often also systemically in non-infected separated 

tissues (Mishina & Zeier, 2007; Tsuda et al., 2008), although SA does not appear to be 

the primary long-distance signal (Ryals et al., 1996). Beneficial soil-borne 

microorganisms, such as mycorrhizal fungi and plant growth–promoting rhizobacteria 

and their metabolites, can induce a phenotypically similar form of systemic immunity, 

known as Induced Systemic Resistance (ISR) (van Wees et al., 2008). Like those of 

pathogens, different beneficial MAMPs are recognized by the plant, resulting in a mild 

but effective activation of the immune response in systemic tissues (Pieterse et al., 

1996; Pieterse et al., 1998; van Wees et al., 2000; Pieterse et al., 2009). In contrast to 

SA-dependent SAR, ISR triggered by beneficial microorganisms is commonly regulated 

by jasmonic acid (JA)- and ethylene (ET)-dependent signalling pathways (Pieterse et 

al., 2009), and provides advantages in terms of energy costs for the plant, because is 

associated with the priming, defined as the physiological state resulting in a stand-by of 

defences after an initial stimulus. In particular, primed plants show faster and/or 

stronger activation of defence responses when they are subsequently challenged by 

biotic or abiotic stress, which frequently results in a better tolerance compared to non-

primed plants (Conrath et al., 2006; van der Ent et al., 2009). Subsequently, three 

endogenous plant signalling molecules, namely SA, JA and ET are involved in plant 

defence (Kunkel & Brooks, 2002). Evidences are emerging that SA-dependent and the 

SA-independent pathways do not function independently, but rather influence each 

other through a complex network of regulatory interactions (Kunkel & Brooks, 2002). In 

other words, the cross-talk between them provides great regulatory potential for 
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activating multiple resistance mechanisms in varying combinations (Pieterse & van 

Loon, 1999). 

 

1.5 The induction of resistance in grapevine and Cucurbitaceae 

Concerns about the negative impact of chemicals on human health and the 

environment have sparked increasing interest in developing safer alternative strategies. 

An attractive sustainable approaches to manage crop diseases is the boost of plant 

self-protection against pathogens, and therefore studies have increasingly targeted 

living microorganisms and exogenous molecules that are able to stimulate and/or 

potentiate the plant defence responses, called elicitors (Boller & Felix, 2009). Elicitors 

can be derived from biological origins or synthetic analogues of plant signalling 

molecules (Wiesel et al., 2014), and include compounds belonging to different chemical 

families, such as proteins and glycoproteins, glycans and lipids. They can be 

constituents of the pathogen or secreted by it, or they are released from the plant or 

pathogen cell walls by hydrolytic enzymes from the pathogen or the plant (Garcia-

Brugger et al., 2006). The perception by the host cell of these warning signals activate 

a battery of defence reactions, including accumulation of host-synthesized 

phytoalexins, deposition of phenolics, lignin or callose-like materials, increased activity 

of PR proteins with hydrolytic activity, and often hypersensitive response. Altogether, 

these reactions are able to reduce the pathogen growth (Garcia-Brugger et al., 2006). 

In last decades, several elicitor compounds have been tested on grapevine. In 

details, resistance mechanisms have been shown to be activated by the application of 

fosetyl-aluminum (Dercks & Creasy, 1989), ß-aminobutyric acid (BABA) 

(Hamiduzzaman et al., 2005) and benzothiadiazole-7-carbothioic acid S-methyl ester 

(BTH) (Perazzolli et al., 2008; Banani et al., 2014), as well as vitamins like thiamine 

and riboflavin (Boubakri et al., 2012; Boubakri et al., 2013). Likewise, bacterial elicitors 

such as flagellin and harpin proteins stimulated innate immunity in grapevine (Qiao et 

al., 2010; Chang & Nick, 2012; Trdà et al., 2014), and ß-1-3-glucan laminarins and 

sulfated laminarins derived from the brown alga Laminaria digitata were also proved to 

act as efficient elicitor agents (Aziz et al., 2003; Trouvelot et al., 2008; Trouvelot et al., 

2014). Similarly, oligogalacturonides were shown to induce grapevine resistance 

against B. cinerea (Aziz et al., 2004; Allegre et al., 2009), as well as native or sulfated 

oligoglucuronans (Caillot et al., 2012), elicitins from Pythium oligandrum (Mohamed et 

al., 2007), rhamnolipids (Varnier et al., 2009) and ergosterol (Laquitaine et al., 2006). 
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Likewise, chitin-derivative (chitosan) elicitors were effective against B. cinerea and P. 

viticola (Repka, 2001; Aziz et al., 2006; Trotel-Aziz et al., 2006). The resistance against 

grapevine downy mildew was induced by beneficial microorganisms such, as 

Trichoderma harzianum T39 (Perazzolli et al., 2008; Perazzolli et al., 2011; Perazzolli 

et al., 2012) and Aureobasidium pullulans (Harm et al., 2011), as well as by plant 

extracts, for example Rheum palmatum (Godard et al., 2009) and Solidago canadensis 

extracts (Harm et al., 2011), and other organic amendments (Thuerig et al., 2011). An 

optimized chitosan formulation (Iriti et al., 2011) and a complex of chitosan fragments 

(COS-OGA) reduced grapevine powdery mildew severity (van Aubel et al., 2014). 

Likewise, an extract from the green macroalga Ulva armoricana controlled powdery 

mildew by inducing plant defence through the JA pathway (Jaulneau et al., 2010; 

Jaulneau et al., 2011). Moreover, knotweed extracts (giant Milsana) were reported as 

resistance inducers with moderate efficacy against powdery mildew (Delaunois et al., 

2014). BTH activated grapevine resistance also against powdery mildew (Dufour et al., 

2013).  

Likewise, several elicitor compounds have been experimented on Cucurbitaceae. 

In particular, the systemic resistance has been induced by spraying cucumber leaves 

with solutions of oxalate or phosphate salts (Mucharromah & Kuc, 1991). More in 

details, foliar spray of phosphate salts (Reuveni et al., 1993) and application of 

phosphate through a hydroponic system (Reuveni et al., 2000) induced systemic 

resistance against powdery mildew on cucumber plants. Likewise, BABA was 

demonstrated to activate defence mechanisms in Cucurbitaceae against several 

pathogens (Cohen, 2002; Zeighaminejad et al., 2016), and a laminarin-based product 

was proved to manage powdery mildew in squash (Zhang et al., 2016). Application of 

osthol, a cumarinic compound extracted from dried fruits of Cnidii monnieri, induces a 

resistance response against powdery mildew in pumpkin leaves (Shi et al., 2007), and 

the product Milsana, the commercial name given to extracts from leaves of the giant 

knotweed Reynouthria sachalinensis, induced resistance in powdery mildew-infected 

cucumber plants, correlating with the induction of chalcone synthase and chalcone 

isomerase (Fofana et al., 2002). Other chemical inducers for resistance induction 

against powdery mildew of cucumber under greenhouse conditions are flusilazole, SA, 

potassium dihydrogen phosphate, magnesium sulfate, ferrous sulfate, oxalic acid and 

potassium monohydrogen phosphate (Hamza et al., 2017). Several microbiological 

strategies have been proposed to control powdery mildew in cucurbits, using 

mycoparasites or microbial antagonists, such as Bacillus spp. (Romero et al., 2004; 
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Romero et al., 2007), Streptomyces lydicus (S. A. Zhang et al., 2011) and 

Ampelomyces quisqualis (Angeli et al., 2016), but little is known about the use of 

microorganisms as resistance inducers. Prior inoculation with avirulent or hypovirulent 

pathogens or with non-pathogenic isolates, such as Alternaria cucumarina or 

Cladosporium fulvum, activated resistance mechanisms in the non-inoculated leaves, 

and provided long-lasting protection (Reuveni & Reuveni, 2000). Likewise, the 

induction of systemic defence responses against P. xanthii was observed after foliar 

application of a water extract of a species of the cyanobacterium Anabaena (Roberti et 

al., 2015) on C. Pepo. Furthermore, specific strains of Bacillus spp. can elicit resistance 

that results in reduction in disease severity in watermelon and cucumber by a broad 

range of pathogens (Kloepper et al., 2004). 

In agriculture, treatments of plants with elicitors in the absence of virulent 

pathogens can lead to a defence response, and provide protection against subsequent 

pathogen challenges (Wiesel et al., 2014). However, elicitors confers highly variable 

and incomplete protection (40–80%), while conventional pesticides have a protective 

efficacy of around 90–100% (Dagostin et al., 2011). This could be explained by their 

composition, which includes molecules with broader modes of action compared to 

conventional molecules targeting metabolic cycles in specific pathogens. Moreover, the 

variability of the results could be related to external conditions, and 

environment/plant/pathogen systems (Atkinson & Urwin, 2012). 

 

1.6 Protein-based products and their physicochemical properties 

In the past two decades, increasing attention has been paid to the bioactive role 

of protein-based products manufactured from various sources (Clemente, 2000). 

Among others, protein hydrolysates are mixtures of active peptide fragments and free 

amino acids obtained by hydrolysis of protein contained in agro-industrial by-products 

of animals (i.e. leather, viscera, feathers, blood, collagen and other animal waste) or 

plant origin (i.e. crop residues or seed), and enzymes and strong acids or alkalis can 

be alternatively employed in hydrolysis (Maini, 2006; Schaafsma, 2009; Calvo et al., 

2014; Colla et al., 2015). Proteolysis enhances the functional properties of the original 

protein (Chabanon et al., 2007), allowing the activation of the latent biological activities 

of peptides encrypted in the protein structure (Sinha et al., 2007). The biological activity 

of protein hydrolysates is modulated by changes in amino acid and peptide 

compositions (Jamdar et al., 2010). Indeed, the efficiency of a protein hydrolysate is 
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linked to the type and composition of peptides generated during hydrolysis (Mahmoud, 

1994; Panyam & Kilara, 1996), and peptide functionalities depend on molecular size, 

structure and amino acid sequences (Chabanon et al., 2007). The degree of hydrolysis 

(DH, the percentage of cleaved peptide bonds) is one of the main parameters used to 

indicate the extent of protein hydrolysis, and consequently the properties of 

hydrolysates (Adler-Nissen, 1982; Cheison et al., 2009). Indeed, the extent to which 

the functional properties of a protein may be altered by hydrolysis is very much 

dependent on the degree to which the protein has been hydrolysed (Spellman et al., 

2003). Characteristics and functional properties of hydrolysates are influenced by the 

method used for hydrolysis, and by the choice of the original protein source (Pecha et 

al., 2012). The chemical hydrolysis, performed under acid or alkaline conditions, is 

favourable from an economical point of view, but it presents several disadvantages 

compared to the enzymatic process (Lisiecka et al., 2011; Colla et al., 2015). Because 

the high  temperatures used, the process  is very aggressive, and attacks randomly all 

peptide bonds of proteins, leading to the destruction of some essential amino acids 

(e.g. tryptophan) and other thermolabile compounds (e.g. vitamins) (Colla et al., 2015), 

and produces a high content of free amino acids in total (high DH), which can 

encumber the final osmotic balance (Jeewanthi et al., 2015). Another critical aspect of 

the chemical hydrolysis is the phenomenon called racemisation, namely the conversion 

of free amino acids from L-form to D-form, which cannot be used from plants in their 

metabolism, making the hydrolysate less effective or even potentially toxic for plants 

(Chen et al., 2016). Finally, the use of strong acids or alkalis during hydrolysis causes 

an increase of salinity of protein hydrolysates (Colla et al., 2015). On the other hand, 

the enzymatic hydrolysis is performed by proteolytic enzymes, which hydrolyse 

proteins more gently. They do not need high temperature to exert their function, and 

usually target specific peptide bonds, producing low-salted well-defined mixtures of 

amino acids and peptides of different length. Finally, enzymatic hydrolysis requires low 

energy, resulting more environmental friendly (Colla et al., 2015). Moreover, the 

biological activity of hydrolysates can be affected by the choice of the original protein 

source (Pecha et al., 2012). Cerdan et al. (2009) demonstrated that repeated foliar 

applications of animal-derived protein hydrolysates caused phytotoxic effect on plant 

growth, and this negative effect could be attributed to an unbalanced amino acid 

composition (Oaks et al., 1977), a higher concentration of free amino acids (Moe, 

2013) and a high salinity (Colla et al., 2014). Because the use of animal-derived protein 

hydrolysates generates heavy concerns in terms of food safety, the European 
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Regulation 354/2014 recently prohibited the application of these products on the edible 

parts of organic crop. Conversely, specific peptides from plant origin have been 

demonstrated to act as non-toxic signalling molecules for plant defence, growth and 

development (Ryan et al., 2002). Compared to animal-based product, plant-derived 

protein hydrolysates present a higher amount of minerals and other compounds, which 

can be involved in the biocontrol action, such as fats, carbohydrates and phenols 

(Ertani et al., 2013). 

 

1.6.1 The biostimulant action of protein-based products 

The products manufactured from animal- (Kumar et al., 2013) and plant-derived 

proteins (Gibbs et al., 2004) are widely investigated as natural antioxidant compounds, 

with interesting applications in food science and nutrition and pharmaceutical 

preparations, and influence numerous biological processes, evoking hormonal and 

immunological responses (Phelan et al., 2009). Moreover, protein hydrolysates 

produce biostimulant effects on crops, especially under stressed environmental 

conditions (du Jardin, 2015; EBIC, 2017), decreasing the need of chemical fertilizers by 

up to 50% (Subbarao et al., 2015). When applied to plants, they are mostly used as 

foliar applications, but soil applications and seed coating also exist with some of them 

(du Jardin, 2015). In particular, foliar applied biostimulants were shown to reach 

mesophyll cells by absorption through cuticle and epidermal cells (Fernández & Brown, 

2013), and when supplied through soil, the absorption occurs through root epidermal 

cells and gets redistributed through xylem (Chen, 1964). Although they are commonly 

used in small quantities, bioactive peptide fragments and amino acids can be readily 

absorbed through diffusion processes and easily reach active sites (Stiegler et al., 

2013). The protein hydrolysates can act as growth regulators, and improve the 

performance of several horticultural crops, by enhancing the activity of the antioxidant 

system and boost plant metabolism, including increased shoot and root biomass, thus 

promoting the productivity and fruit quality of several crops (Lisiecka et al., 2011; Colla 

et al., 2014; Ertani et al., 2014; Colla et al., 2015). For example, the treatment of plant 

leaves and roots with protein hydrolysates has been demonstrated to increase nitrogen 

and iron metabolism, nutrient uptake, and water and nutrient use efficiencies for both 

macro and microelements (Ertani et al., 2009; Cerdan et al., 2013). Their effects on 

carbon and nitrogen metabolism, and plant primary and secondary metabolism have 

been also reported by Maini (2006), Parrado et al. (2008) and Schiavon et al. (2008). 
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Owing to the presence of specific peptides and precursors of phytohormone 

biosynthesis, such as tryptophan, protein hydrolysates could also interfere with the 

phytohormone balance of the plant, thus affecting plant development (Colla et al., 

2014). In addition, several bioactive peptides have been identified to have hormone-like 

activities (Ito et al., 2006; Kondo et al., 2006), and the application of plant-derived 

protein hydrolysates triggered auxin- and gibberellin-like activities, promoting crop 

performances (Schiavon et al., 2008). Moreover, protein hydrolysates have been 

shown to improve the quality of fruits and vegetables in terms of phytochemicals (i.e. 

carotenoids, flavonoids, polyphenols) (Ertani et al., 2014), and to reduce undesired 

compounds, such as nitrates (Liu et al., 2007). Finally, protein hydrolysates 

applications have been displayed to avoid or reduce losses in production caused by 

unfavourable soil conditions and environmental stresses, including thermal stress, 

salinity, drought, alkalinity, and nutrient deficiency (Colla et al., 2014). More in details, 

the root application of plant-derived protein hydrolysates has been proved to facilitate 

the uptake and subsequent assimilation of iron in plants grown under an iron-deficiency 

situation (Cerdan et al., 2013), and treatments with a biostimulant composed of a 

complex of vitamins, amino acids, proteins and betaines produced positive effects on 

drought-stressed tomato plants in terms of the biomass production and chlorophyll 

fluorescence (Petrozza et al., 2014). Moreover, plant-protein hyrolysates increased 

plant yield and biomass even when plants are grown under salinity conditions, 

stimulating plant nitrogen metabolism and antioxidant systems (Ertani et al., 2013; 

Lucini et al., 2015). 

 

1.6.2 Protein-based products as inducers of plant resistance 

Beyond their well-known biostimulant activity, protein hydrolysates and peptides 

from various sources can act as initial triggers, mediators or amplifiers of plant 

immunity, and increasing attention has recently been devoted to investigation of their 

bioactive role in plant defence (Albert, 2013). Several peptides originating from 

microbial pathogens can act as MAMPs and activate the plant innate immune 

responses (Huffaker et al., 2006), including fungal elicitors like Pep13 (Brunner et al., 

2002), AVR9 (Vandenackerveken et al., 1993) and elicitins (Kamoun, 2001), and 

bacterial elicitors like elf18 (Kunze et al., 2004), flg22 (Navarro et al., 2004), NPP1 

(Fellbrich et al., 2002) and hrpZ (He et al., 1993). Moreover, endogenous plant 

peptides generated as degradation products from precursor proteins during pathogen 
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infection were demonstrated to act as DAMPs, showing a similar mode of action 

(Yamaguchi & Huffaker, 2011; Bartels & Boller, 2015; Choi & Klessig, 2016). A recent 

review classifies peptides relevant in plant defence response according to their origin 

(Albert, 2013). In details, the active form of systemin in Solanaceae family (Pearce et 

al., 1991; Schaller & Ryan, 1996), and the peptide AtPep1 in Arabidopsis thaliana 

(Huffaker et al., 2006; Pearce et al., 2008) and its homologue ZmPep1 in maize 

(Huffaker et al., 2011) were shown to be internal signals for plant defence mechanisms 

derived from cytosolic proteins. A similar function was demonstrated for peptides 

originating from secreted precursors, such as hydroxyproline-rich systemins in potato 

(Bhattacharya et al., 2013) and phytosulphokines in A. thaliana (Igarashi et al., 2012). 

Finally, several peptides released from the degradation of proteins with separate 

primary functions were shown to elicit plant defence responses, such as the inceptin 

family in the cowpea (Schmelz et al., 2007), and other peptide fragments like a 

subtilisin-like protein in the soybean (Pearce et al., 2010; Yamaguchi & Huffaker, 

2011). All of them are active as elicitors, and evoke typical molecular steps involved in 

the immune signalling pathway (Ma et al., 2013), such as the increase of cytosolic 

[Ca2+], the production of NO and ROS, the activation of MAPKs and the expression of 

typical defence marker genes (Schaller, 2001; Albert, 2013). Recently, casein and 

soybean hydrolysates have been shown to control green mould of citrus (Lachhab et 

al., 2015), and elicit grapevine defence mechanisms against downy mildew (Lachhab 

et al., 2014) and grey mould caused by B. cinerea (Lachhab et al., 2016) by the up-

regulation of PR genes. Likewise, a protein derivative was effective in controlling the 

powdery mildew of courgette and grapevine under file conditions, and activated the 

expression of defence-related genes in grapevine, suggesting the stimulation of plant 

resistance mechanisms (Nesler et al., 2015). Plant-derived protein hydrolysates 

generated by agro-industrial by-products may represent a low-cost organic strategy 

against crop diseases, considering their potential biocontrol properties and their 

harmless origin. Furthermore, they could become a sustainable solution to the 

inconvenience of industrial waste disposal, making their production interesting from 

environmental and economic points of view (Pecha et al., 2012; Baglieri et al., 2014). 

 

1.7 The phyllosphere microbiota 

Besides the biostimulant effect and plant resistance activation, proteins and 

peptides contained in hydrolysates can also serve as nutritional substrate for microbial 
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phyllosphere populations (Colla et al., 2015). Indeed, plant leaves are naturally 

inhabited by epiphytic communities of bacteria and fungi, which metabolize resources 

such as carbohydrates, small peptide fragments, amino acids and organic acids 

passively leaked by plants (Leveau & Lindow, 2001; Trouvelot et al., 2014). Their 

composition and functional properties can be affected by environmental (e.g. UV 

radiation, pollution, nitrogen fertilization, water availability) and biotic (e.g. leaf age, 

invading microorganisms, host genotype) factors (Lindow & Brandl, 2003; Vorholt, 

2012; Copeland et al., 2015), as well as by farming practices and applications of 

pesticides and fertilizers (Berlec, 2012). Most phyllosphere-colonizing microorganisms 

live as beneficial commensals on their host plants (Mueller & Ruppel, 2014), and 

frequently show positive influences on plant health and growth (Penuelas & Terradas, 

2014). Specifically, epiphytes of aerial plant surfaces are involved in processes as 

carbon and nitrogen cycle cycles (Lindow & Brandl, 2003), and live closely related to 

the air microbiome, especially to air-borne pathogens (Lindow & Brandl, 2003; Rastogi 

et al., 2013). In addition, some phyllosphere microorganisms are recognised to act as 

natural biological control agents, thanks to their ability to reinforce natural plant 

defences and to their antagonism to pathogens (Vorholt, 2012; Ritpitakphong et al., 

2016) through the induction of plant resistance, production of antimicrobial compounds, 

competition for space and nutrients, parasitism, or by combinations of these 

mechanisms (Pal & McSpadden Gardener, 2006). In this respect, the phyllosphere 

represents a niche with great agricultural and environmental significance (Whipps et 

al., 2008), and many studies have recently shown that plant-microbe interactions are 

not only crucial for better investigating plant growth and health, but also to develop new 

sustainable strategies in crop protection (Berg et al., 2014). Understanding the 

population dynamic balance between the organisms of the phyllosphere as an 

ecological system should lead to new approaches in agronomy, crop protection and 

breeding that enhance sustainability (Newton et al., 2010). In details, grapevine is 

naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms 

that interact with the plant, having either beneficial or phytopathogenic effects, and play 

a great role in fruit yield, grape quality and evolution of grape fermentation and wine 

production, affecting the final quality (Pinto et al., 2014). In addition, the microbial 

community can activate the plant defence pathways, inducing the accumulation of PR 

proteins of grapevine as a protection against fungal pathogen attacks or other 

biological stresses (Ferreira et al., 2004). 
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1.8 Aim of the study 

Increasing concerns about the negative impacts of chemical pesticides on human 

health and the environment require the development of safer alternatives, and scientific 

community have turned the attention to more sustainable pest management strategies, 

including the use of low-risk substances and biopesticides. Besides the biostimulant 

action, protein-based products contain a large variety of amino acids and bioactive 

peptide fragments which could potentially be recognised by plants as elicitors and act 

as stimulators of plant immunity. 

The final objective of the current doctoral project was to provide new insights on 

the application of bioactive protein-based products against crop diseases, to further 

develop new sustainable alternatives to be included in organic integrated pest 

management programs. For this purpose, my doctoral thesis critically presents the 

current regulations for the biopesticides registration, describing the procedures 

required in Europe and overseas for their authorization process. In order to analyse the 

multiple mechanism of action of the protein derivative nutrient broth (NB), recently 

proved to control the grapevine powdery mildew in vineyards by the activation of innate 

defence responses, we tested its efficacy against grapevine downy mildew symptoms 

and its ability to up-regulate some defence-related genes on in vitro- and greenhouse 

grown-grown plants, using a standard resistance inducer based on laminarins (LAM) as 

control. Moreover, a metabarcoding approach on NB- and LAM-treated plants was 

performed to investigate the possible contribution of the phyllosphere microbiota 

(Chapter 3). Since the use of animal-derived products generates heavy concerns in 

terms of food safety, the current doctoral project focused on the analysis of the 

biocontrol activity of plant-derived protein hydrolysates (Chapter 4). Initially, we 

optimised an experimental procedure to create hydrolysates by testing different 

hydrolysis methods and protein sources, namely low-cost agro-industrial by-products 

such as soybean, rapeseed and guar meals, commonly used in animal feeding fot their 

high protein content. Then, we investigated the potential contribution of amino acids 

and peptide fragments generated during hydrolysis to the activation of plant resistance, 

in order to compare the effect of acid and enzymatic hydrolysis in terms of biocontrol 

efficacy against the powdery mildew of Cucurbitaceae under greenhouse conditions. 
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1. Supplementary Results 
 
 
Characterization of Culturable Leaf Microorganisms 

In order to evaluate the effect of NB on phyllosphere microorganisms, viability of 
culturable bacteria and fungi on grapevine leaves was assessed by a plating method 
on selective media. Numbers of colony forming units (CFU) of culturable bacteria were 
greater on NB-treated plants in comparison to H2O-treated and UNT plants at T0 and 
T1 in both experiments (Figures S1A and S1B). CFU numbers were generally greater 
at T1 in comparison to T0 on H2O-treated plants, and the absence of bacteria in the 
inoculum suspension (data not shown) indicated a possible stimulation by the moist 
chamber used for pathogen inoculation. CFU of culturable fungi were not significantly 
influenced by the treatments tested, except for an increment caused by NB on 
grapevines of Exp 1 (Figures S1C and S1D). 

Because NB application increased the number of culturable bacteria on 
grapevine leaves, some representative bacterial isolates (60 from the Exp 1, and 37 
from the Exp 2) were selected visually based on colony morphological features from 
samples of H2O- and NB-treated plants. Indicators of biological control properties were 
analyzed for each representative isolate: percentages of bacteria with protease activity, 
siderophore production and antagonistic activities against the oomycete Phytophthora 
infestans were comparable among isolates collected from NB- and H2O-treated plants 
at both time points (Table S2). Furthermore, seven and six bacterial isolates were 
randomly selected for Exp 1 and Exp 2, respectively, and tested against Plasmopara 
viticola on leaf discs. Two bacterial isolates collected from NB-treated plants 
significantly reduce downy mildew severity on leaf disks with a disease reduction lower 
than that of the biocontrol agent Lysobacter capsici AZ78 (Figure S2). These isolates 
corresponded to a Pseudomonas spp. (KU596386; T1_NB_7 of Exp 1) and an 
Enterobacter spp. (KU596387; T1_NB_13 of Exp 2) by sequencing of the V6-V8 
hypervariable region of the 16S rRNA gene. 
 
Identification, Richness and Diversity of Leaf Microbial Communities 

Pyrosequencing analysis of bacterial (16S rRNA gene) and fungal (ITS fragment) 
amplicons (Table S3) was carried out to identify microorganisms collected from 
grapevine leaves of plants under greenhouse conditions. After filtering out low-quality 
reads and short sequences, 403,900 (Exp 1) and 274,911 (Exp 2) reads of bacteria, 
and 78,542 (Exp 1) and 74,859 (Exp 2) reads of fungi were obtained (Tables S4 and 
S5). The total number of filtered reads for each replicate ranged from 2,703 to 52,719 
(Exp 1) and from 1,415 to 54,709 (Exp 2) for bacteria (Table S4), and from 1,979 to 
8,652 (Exp 1) and from 1,982 to 10,174 (Exp 2) for fungi (Table S5). Good’s coverage 
was used to estimate the completeness of sampling with a probability calculation based 
on randomly selected sequences, and it ranged from 82.1 to 97.5% (Exp 1) and from 
95.8 to 99.3% (Exp 2) for bacterial data (Table S4), and from 95.8 to 98.0% (Exp 1) 
and from 95.6 to 98.1% (Exp 2) for fungal data (Table S5). Likewise, rarefaction curves 
confirmed that a sufficient saturation was reached for both bacterial and fungal 
populations of each replicate (Figures S3 and S4). Chao1 index revealed that more 
than 88% and 74% for bacteria (Table S4) and more than 79% and 67% for fungi 
(Table S5) of the estimated richness was covered by the sequencing effort in Exp 1 
and Exp 2, respectively.  

Bacterial and fungal data were normalized to the lowest number of filtered reads 
(1415 in H2O at T1 replicate A in Exp 2, and 1979 in H2O at T1 replicate C of Exp1, 
respectively) and OTU were recalculated for each sample. In Exp 1, richness of 
bacterial communities was lower on NB-treated plants in comparison to H2O-treated 
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and LAM-treated plants at T0, while OTU numbers at T1 were comparable among all 
treatments (Figure S5A). In Exp 2, bacterial richness was significantly lower on H2O-
treated plants at T0 with respect to all other treatments at T1. Richness of fungal 
populations was comparable among treatments in Exp 2, and it was greater on H2O-
treated plants at T0 in comparison to T1 (Figure S5B). 

Bacterial diversity estimated by the Simpson index significantly increased by the 
grapevine treatments at both time points compared to UNT plants in Exp 1, except for 
NB-treated plants at T0 and LAM-treated plants at T1. Conversely, in Exp 2 the 
diversity estimator had the highest value on NB-treated leaves at T1 and the lowest 
value on H2O-treated leaves at T0 (Figure S6A). For fungal populations, the Simpson 
index significantly differed only between T0 and T1 of H2O-treated plants in Exp 1, and 
between H2O-treated plants at T0 and LAM-treated plants at T1 in Exp 2 (Figure S6B). 
 
Distribution of Bacterial Phyla among Experiments, Treatments and Time Points 

Almost the totality of bacterial reads (99.95%) were assigned to taxa at phylum 
level, 11 different bacterial phyla were detected in total (Table S6) and 7 dominant 
phyla were presented (more than 0.4 % of relative abundance in at least one sample, 
Figure S7). In Exp 1, the relative abundance of Cyanobacteria, Unknown phyla and 
Planctomycetes was greater on H2O-treated plants in comparison to UNT plants 
(Figure S7A). On leaves collected at T0, the abundance of Firmicutes was greater on 
NB-treated plants in comparison to H2O-treated leaves, while levels of all other phyla 
were lower. Furthermore, lower abundances of Cyanobacteria, Unknown phyla and 
Planctomycets were detected on LAM-treated plants in comparison to H2O-treated 
plants. At T1, sizes of bacterial phyla were comparable on H2O-, NB- and LAM-treated 
leaves. Considering the proportions of bacterial phyla at the two time points, the levels 
of Actinobacteria, Cyanobacteria, Acidobacteria, Unknown phyla and Planctomycetes 
on H2O-treated plants were reduced from T0 to T1. The relative abundance of 
dominant phyla was comparable on NB- and LAM-treated leaves at the two time points, 
except for the reduction of Actinobacteria on LAM-treated leaves from T0 to T1. 

In Exp 2, H2O application on grapevine leaves did not influence phyla proportions 
(Figure S7B). On leaves collected at T0, phyla abundances were similar on NB- and 
H2O-treated plants, and the Cyanobacteria abundance was greater on LAM-treated 
plants in comparison to H2O-treated plants. At T1, abundances of Proteobacteria and 
Firmicutes were lower and greater on NB-treated plants in comparison to H2O-treated 
plants, respectively. Moreover, abundances of Proteobacteria decreased and those of 
Firmicutes increased from T0 to T1, and lower abundance of Actinobacteria and 
Cyanobacteria was detected at T0 with respect to T1 on LAM-treated plants. 
 
Distribution of Fungal Phyla, Family and Genera among Experiments, Treatments 
and Time Points 

Ascomycota was the most common fungal phylum detected, and only 2.3% of 
total fungal OTU (24 out of 1051) was attributed to Basidiomycota and Zygomycota. Of 
fungal reads, 85.5% was attributed to taxa at the family level (796 OTU), and 89.2% 
was assigned to a fungal genus (768 OTU); 34, 53 and 87 different fungal families, 
genera and species were identified in total, respectively (Table S7). The proportions of 
the 10, 7 and 15 dominant families (Figure S9), genera (Figure S10) and species 
(Figure S11) were homogeneous between the two experiments, and they were only 
slightly affected by treatments and time points. 

The relative abundance of Arthrodermataceae decreased on UNT, LAM- and NB-
treated plants in comparison to H2O-treated plants at T0 in Exp 1, while comparable 
abundances were observed for the other dominant families among treatments (Figure 
S9A). At T1, the presence of Agaricaceae was greater on LAM-treated plants in 
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comparison to H2O-treated plants and comparable abundances were observed for all 
fungal families between NB- and H2O-treated plants. Considering the proportions of 
fungal families at the two time points, abundances of Agaricaceae increased on H2O- 
and LAM-treated plants from T0 to T1, while those of Arthrodermataceae decreased on 
H2O-treated plants from T0 to T1. In Exp 2, H2O treatment partially influenced family 
proportions at T0, and the relative abundance of Microascaceae and Erysiphaceae 
decreased compared to UNT plants (Figure S9B). Relative abundances of fungal 
families were comparable on NB- and H2O-treated plants, and the presence of 
Apiosporaceae increased on LAM-treated plants at T0 and T1. Considering proportions 
of fungal families at two different time points, only the abundance of Onygenaceae and 
Arthrodermataceae changed on NB- and LAM-treated plants from T0 to T1, 
respectively. 

In Exp 1, relative abundances of dominant fungal genera were generally 
comparable on H2O-treated and UNT plants, only the presence of Peniciullium spp. 
was decreased by H2O treatment (Figure S10A). Percentages of fungal genera were 
comparable for H2O-, NB- and LAM-treated plants at T0, while the presence of 
Hansfordia spp. was greater on LAM-treated plants in comparison to H2O- and NB-
treated plants at T1. Relative abundance of bacterial genera was comparable on H2O-, 
NB- and LAM-treated plants at the two time points, except for an increase in Hanfordia 
levels on LAM-treated plants from T0 to T1. In Exp 2, H2O application did not affect 
genera proportions at T0 (Figure S10B). Relative abundances of fungal genera were 
comparable on NB- and H2O-treated plants at T0 and T1. Comparing H2O- and LAM-
treated plants, the presence of Aspergillus decreased at T0, whereas that of Arthrinium 
spp. increased at T0 and T1. Moreover, abundances of Chrysosporium spp. and 
Hansfordia spp. increased on NB- and LAM-treated leaves from T0 to T1, respectively. 
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2. Supplementary Figures 
 
 

 
 
FIGURE S1 | Assessment of culturable microorganisms of grapevine leaves. 
Colony forming units (CFU) of bacteria (A, B) and fungi (C, D) per unit of grapevine leaf 
area (cm2) were assessed for untreated plants (grey), and plants treated with water 
(blue), nutrient broth (orange) or laminarin (green) collected just before (T0) and one 
day after (T1) Plasmopara viticola in the experiment 1 (A, C) and experiment 2 (B, D), 
by plating method on selective media. Mean Log10 (CFU/cm2) values and standard 
errors from three replicates (each as a pool of two plants) are presented for each 
sample. Different lowercase and uppercase letters indicate significant differences at T0 
and T1 according to Fisher’s test (α = 0.05), respectively. 
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FIGURE S2 | Effect of culturable bacterial isolates against Plasmopara viticola. 
Seven and six bacterial isolates were randomly selected for experiment 1 and 
experiment 2, respectively, and tested against P. viticola on surface-sterilized leaf 
disks. Bacterial codes indicate time points (T0 or T1) and treatments (H2O or NB) of 
leaf samples from where each bacteria was isolated, and a progressive numerical code 
assigned to the representative isolates. The pure P. viticola suspension (water) and the 
biocontrol strain Lysobacter capsici AZ78 (AZ78) were used as controls and disease 
severity was assessed as percentage of disc area covered by P. viticola sporulation 
seven days after inoculation. Mean severity and standard error values of five replicates 
(five dishes with five leaf disks each) of one representative experiment are reported for 
each treatment. Different letters indicate significant differences according to Fisher’s 
test (α = 0.05). Isolates with the greatest efficacy corresponded to a Pseudomonas sp. 
(T1_NB_7 of Exp 1) and an Enterobacter sp. (T1_NB_13 of Exp 2). 
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FIGURE S3 | Rarefaction curves of bacterial communities identified on grapevine 
leaves in the experiment 1 (A) and experiment 2 (B). Curves were obtained by 
random resampling without replacement using QIIME, for samples collected from 
untreated plants (UNT), and plants treated with water (H2O), nutrient broth (NB) or 
laminarin (LAM) collected just before (T0) and one day after (T1) Plasmopara viticola 
inoculation. Three replicates (each as a pool of two plants) were analyzed for each 
treatment and each time point (replicate A: solid lines; B: dotted lines; C: dashed lines). 
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FIGURE S4 | Rarefaction curves of fungal communities identified on grapevine 
leaves in experiment 1 (A) and experiment 2 (B). Curves were obtained by random 
resampling without replacement with QIIME, for samples collected from untreated 
plants (UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin 
(LAM) collected just before (T0) and one day after (T1) Plasmopara viticola inoculation. 
Three replicates (each as a pool of two plants) were analyzed for each treatment and 
time point (replicate A: solid lines; B: dotted lines; C: dashed lines). 
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FIGURE S5 | Richness of bacterial (A) and fungal (B) populations on grapevine 
leaves. Operational taxonomic units (OTU) were determined for untreated plants 
(grey), and plants treated with water (blue), nutrient broth (orange) or laminarin (green) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation, and 
normalized to the lowest number of quality filtered reads in experiment 1 (solid bars) 
and experiment 2 (striped bars). Mean and standard error values of three replicates 
(each as a pool of two plants) were analyzed for each treatment and time point. 
Different uppercase and lowercase letters indicate significant differences of experiment 
1 and experiment 2 according to Fisher’s test (α = 0.05), respectively. 
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FIGURE S6 | Diversity of bacterial (A) and fungal (B) populations on grapevine 
leaves. The Simpson index was determined for untreated plants (grey), and plants 
treated with water (blue), nutrient broth (orange) and laminarin (green) collected just 
before (T0) and one day after (T1) Plasmopara viticola inoculation, and normalized to 
the lowest number of quality filtered reads in experiment 1 (solid bars) and experiment 
2 (striped bars). Mean and standard error values of three replicates (each as a pool of 
two plants) were analyzed for each treatment and time point. Different uppercase and 
lowercase letters indicate significant differences of experiment 1 and experiment 2 
according to Fisher’s test (α = 0.05), respectively. 
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FIGURE S7 | Relative abundance of the dominant (more than 0.4 % of relative 
abundance in at least one sample) bacterial phyla on grapevine leaves. 
Percentages of relative abundance were determined for leaves of untreated plants 
(UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in the 
experiment 1 (A) and experiment 2 (B). Mean and standard error values of three 
replicates (each as a pool of two plants) were analyzed for each treatment and time 
point. For each taxon, the intensity of the color gradient and letters reported in the table 
indicate significant differences among treatments and time points according to Fisher’s 
test (α = 0.05).  
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FIGURE S8 | Relative abundance of the dominant (more than 0.5 % of relative 
abundance in at least one sample) bacterial species on grapevine leaves. 
Percentages of relative abundance were determined for leaves of untreated plants 
(UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in the 
experiment 1 (A) and experiment 2 (B). Mean and standard error values of three 
replicates (each as a pool of two plants) were analyzed for each treatment and time 
point. For each taxon, the intensity of the color gradient and letters reported in the table 
indicate significant differences among treatments and time points according to Fisher’s 
test (α = 0.05). 
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FIGURE S9 | Relative abundance of the dominant (more than 0.5 % of relative 
abundance in at least one sample) fungal families on grapevine leaves. 
Percentages of relative abundance were determined for leaves of untreated plants 
(UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in the 
experiment 1 (A) and experiment 2 (B). Mean and standard error values of three 
replicates (each as a pool of two plants) were analyzed for each treatment and time 
point. For each taxon, the intensity of the color gradient and letters reported in the table 
indicate significant differences among treatments and time points according to Fisher’s 
test (α = 0.05).  
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FIGURE S10 | Relative abundance of the dominant (more than 2 % of relative 
abundance in at least one sample) fungal genera on grapevine leaves. 
Percentages of relative abundance were determined for leaves of untreated plants 
(UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in the 
experiment 1 (A) and experiment 2 (B). Mean and standard error values of three 
replicates (each as a pool of two plants) were analyzed for each treatment and time 
point. For each taxon, the intensity of the color gradient and letters reported in the table 
indicate significant differences among treatments and time points according to Fisher’s 
test (α = 0.05).  
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FIGURE S11 | Relative abundance of the dominant (more than 1 % of relative 
abundance in at least one sample) fungal species on grapevine leaves. 
Percentages of relative abundance were determined for leaves of untreated plants 
(UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) 
collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in the 
experiment 1 (A) and experiment 2 (B). Mean and standard error values of three 
replicates (each as a pool of two plants) were analyzed for each treatment and time 
point. For each taxon, the intensity of the color gradient and letters reported in the table 
indicate significant differences among treatments and time points according to Fisher’s 
test (α = 0.05). 
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3. Supplementary Tables 
 
 
TABLE S1 | Primer sequences for quantitative real-time PCR expression analysis of grapevine defence-related genes. 
 

Gene 
abbreviati
on 

Gene name NCBI 
accession 
number 

Grapevine gene 
(http://genomes.cribi.unipd.it/g
rape/) 

Primer sequencece 
forward 

Primer sequencece 
reverse 

PR-1 
Pathogenesis 
related protein 1 

AJ536326 VIT_203s0088g00700 
ACTTGTGGGTGGG
GGAGAA 

TGTTGCATTGAACC
CTAGCG 

PR-2 
Pathogenesis 
related protein 2 

AJ277900 VIT_208s0007g06060 
GTTATTTCAGAGA
GTGGTTGGC 

AACATGGCAAACAC
GTAAGTCT 

PR-4 
Pathogenesis 
related protein 4 

CF074510 VIT_214s0081g00030 
CAGGCAACGGTG
AGAATAGT 

ACCACAGTCCACAA
ACTCGTA 

CHIT-3 
Acidic 
endochitinase 3 

NM_0012811
19.1 

VIT_216s0050g02220 
GTCCATTCCCAGA
TAAGTTCCT 

CAGAAGGTTATTGG
TGTTGCC 

OSM-1 Osmotin 1 
XM_0022829
28.2 

VIT_202s0025g04310 
CGCTGCGCTAAAG
ACTACC 

AAAAACCTTGAGTA
ATCTGTAGCA 

OSM-2 Osmotin 2 AB372569.1 VIT_202s0025g04280 
CGCTGCGCTAAAG
ACTACC 

AAAAACCTTGAGTA
ATCTGTAGCA 

Act Actin 
XM_0106591
03.1 

VIT_212s0178g00200 
ATTCCTCACCATC
ATCAGCA 

GACCCCCTCCTACT
AAAACT 

      

      

References of primer pairs are: PR-1, PR-2 and PR-4 (Perazzolli et al. 2011 Biol Control 58: 74-82); CHIT-3, OSM-1 and 
OSM-2 (Perazzolli et al. 2012 BMC Genomics 13: 660) 
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TABLE S2 | Biocontrol features of culturable bacteria. Percentage (%) of culturable bacteria with proteolytic activity, siderophore 
production and antagonistic activity against Phytophthora infestans were assessed for 60 and 37 representative bacterial isolates of 
experiment 1 and experiment 2, respectively. Representative bacterial isolates were selected visually based on colony morphological 
features from cultures originating from plants treated with water (H2O) or nutrient broth (NB), and collected just before (T0) and one day 
after (T1) Plasmopara viticola inoculation. 

 

 Culturable bacteria - Experiment 1 Culturable bacteria - Experiment 1 

 Protease 
activity 

Siderophore 
production 

Antagonism to 
P. infestans 

Protease 
activity 

Siderophore 
production 

Antagonism to 
P. infestans 

H2O T0 66.7 71.4 66.7 33.3 43.3 66.7 

NB T0 68.8 81.3 46.7 50.0 55.0 66.7 

H2O T1 43.8 43.8 33.3 33.3 43.3 16.7 

NB T1 23.1 61.5 33.3 30.0 40.0 16.7 
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TABLE S3 | Fusion primers for pyrosequencing. Sequences of primer pairs used for amplification and sequencing of the 16S rRNA 
gene (V6-V8 region) and ITS fragment (ITS3-f and ITS4-r) are reported, including the multiplex identifier (MID) codes for each DNA 
sample. 
 

 

BACTERIA Primer A Key MID Template specific forward MID Code Full primer sequence Sample Code

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGAGTGCGT ATGCAACGCGAAGAACCT MID-1 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGAGTGCGTATGCAACGCGAAGAACCT UNT.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGCTCGACA ATGCAACGCGAAGAACCT MID-2 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCTCGACAATGCAACGCGAAGAACCT UNT.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ATAGAGTACT ATGCAACGCGAAGAACCT MID-33 CCATCTCATCCCTGCGTGTCTCCGACTCAGATAGAGTACTATGCAACGCGAAGAACCT UNT.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TGATACGTCT ATGCAACGCGAAGAACCT MID-11 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGATACGTCTATGCAACGCGAAGAACCT H2O.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CATAGTAGTG ATGCAACGCGAAGAACCT MID-13 CCATCTCATCCCTGCGTGTCTCCGACTCAGCATAGTAGTGATGCAACGCGAAGAACCT H2O.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CGTAGACTAG ATGCAACGCGAAGAACCT MID-21 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGTAGACTAGATGCAACGCGAAGAACCT H2O.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGACTATACT ATGCAACGCGAAGAACCT MID-30 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGACTATACTATGCAACGCGAAGAACCT NB.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TGTACTACTC ATGCAACGCGAAGAACCT MID-19 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGTACTACTCATGCAACGCGAAGAACCT NB.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGACTACAG ATGCAACGCGAAGAACCT MID-20 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGACTACAGATGCAACGCGAAGAACCT NB.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TAGAGACGAG ATGCAACGCGAAGAACCT MID-24 CCATCTCATCCCTGCGTGTCTCCGACTCAGTAGAGACGAGATGCAACGCGAAGAACCT LAM.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCGTCGCTCG ATGCAACGCGAAGAACCT MID-25 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCGTCGCTCGATGCAACGCGAAGAACCT LAM.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CAGTAGACGT ATGCAACGCGAAGAACCT MID-35 CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGTAGACGTATGCAACGCGAAGAACCT LAM.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ATACGACGTA ATGCAACGCGAAGAACCT MID-15 CCATCTCATCCCTGCGTGTCTCCGACTCAGATACGACGTAATGCAACGCGAAGAACCT H2O.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCACGTACTA ATGCAACGCGAAGAACCT MID-16 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACGTACTAATGCAACGCGAAGAACCT H2O.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TACTCTCGTG ATGCAACGCGAAGAACCT MID-23 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACTCTCGTGATGCAACGCGAAGAACCT H2O.T1.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGCGTCGTCT ATGCAACGCGAAGAACCT MID-31 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGCGTCGTCTATGCAACGCGAAGAACCT NB.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGTACGCTAT ATGCAACGCGAAGAACCT MID-32 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACGCTATATGCAACGCGAAGAACCT NB.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCTCTATGCG ATGCAACGCGAAGAACCT MID-10 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCTATGCGATGCAACGCGAAGAACCT NB.T1.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGCGAGTAT ATGCAACGCGAAGAACCT MID-27 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCGAGTATATGCAACGCGAAGAACCT LAM.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACTACTATGT ATGCAACGCGAAGAACCT MID-28 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACTATGTATGCAACGCGAAGAACCT LAM.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACTGTACAGT ATGCAACGCGAAGAACCT MID-29 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTGTACAGTATGCAACGCGAAGAACCT LAM.T1.C

Primer B Key MID Template specific reverse Full primer sequence

CCTATCCCCTGTGTGCCTTGGCAGTC TCAG TAGCGATTCCGACTTCA CCTATCCCCTGTGTGCCTTGGCAGTCTCAGTAGCGATTCCGACTTCA

FUNGI Primer A Key MID Template specific forward MID Code Full primer sequence Sample Code

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGAGTGCGT GCATCGATGAAGAACGC MID-1 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGAGTGCGTGCATCGATGAAGAACGC UNT.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGCTCGACA GCATCGATGAAGAACGC MID-2 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCTCGACAGCATCGATGAAGAACGC UNT.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ATAGAGTACT GCATCGATGAAGAACGC MID-33 CCATCTCATCCCTGCGTGTCTCCGACTCAGATAGAGTACTGCATCGATGAAGAACGC UNT.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TGATACGTCT GCATCGATGAAGAACGC MID-11 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGATACGTCTGCATCGATGAAGAACGC H2O.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CATAGTAGTG GCATCGATGAAGAACGC MID-13 CCATCTCATCCCTGCGTGTCTCCGACTCAGCATAGTAGTGGCATCGATGAAGAACGC H2O.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CGTAGACTAG GCATCGATGAAGAACGC MID-21 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGTAGACTAGGCATCGATGAAGAACGC H2O.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGACTATACT GCATCGATGAAGAACGC MID-30 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGACTATACTGCATCGATGAAGAACGC NB.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TGTACTACTC GCATCGATGAAGAACGC MID-19 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGTACTACTCGCATCGATGAAGAACGC NB.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGACTACAG GCATCGATGAAGAACGC MID-20 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGACTACAGGCATCGATGAAGAACGC NB.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TAGAGACGAG GCATCGATGAAGAACGC MID-24 CCATCTCATCCCTGCGTGTCTCCGACTCAGTAGAGACGAGGCATCGATGAAGAACGC LAM.T0.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCGTCGCTCG GCATCGATGAAGAACGC MID-25 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCGTCGCTCGGCATCGATGAAGAACGC LAM.T0.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG CAGTAGACGT GCATCGATGAAGAACGC MID-35 CCATCTCATCCCTGCGTGTCTCCGACTCAGCAGTAGACGTGCATCGATGAAGAACGC LAM.T0.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ATACGACGTA GCATCGATGAAGAACGC MID-15 CCATCTCATCCCTGCGTGTCTCCGACTCAGATACGACGTAGCATCGATGAAGAACGC H2O.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCACGTACTA GCATCGATGAAGAACGC MID-16 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACGTACTAGCATCGATGAAGAACGC H2O.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TACTCTCGTG GCATCGATGAAGAACGC MID-23 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACTCTCGTGGCATCGATGAAGAACGC H2O.T1.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGCGTCGTCT GCATCGATGAAGAACGC MID-31 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGCGTCGTCTGCATCGATGAAGAACGC NB.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG AGTACGCTAT GCATCGATGAAGAACGC MID-32 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGTACGCTATGCATCGATGAAGAACGC NB.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG TCTCTATGCG GCATCGATGAAGAACGC MID-10 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCTATGCGGCATCGATGAAGAACGC NB.T1.C

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACGCGAGTAT GCATCGATGAAGAACGC MID-27 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCGAGTATGCATCGATGAAGAACGC LAM.T1.A

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACTACTATGT GCATCGATGAAGAACGC MID-28 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACTATGTGCATCGATGAAGAACGC LAM.T1.B

CCATCTCATCCCTGCGTGTCTCCGAC TCAG ACTGTACAGT GCATCGATGAAGAACGC MID-29 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTGTACAGTGCATCGATGAAGAACGC LAM.T1.C

Primer B Key MID Template specific reverse Full primer sequence

CCTATCCCCTGTGTGCCTTGGCAGTC TCAG CCTCCGCTTATTGATATGC CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCTCCGCTTATTGATATGC
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TABLE S4 | Pyrosequencing results of phyllosphere bacteria. Number of total quality filtered reads, coverage (Good's coverage), 
richness (Chao1) and diversity (Simpson) estimators were calculated for bacteria collected from grapevine leaves in two independent 
experiments (experiment 1 and experiment 2). Operational taxonomic units (OTU) were assessed before and after the normalization to 
the lowest number of quality filtered reads (1415 in H2O_T1_A, Exp 2). The 16S rRNA were amplified from DNA extracted from leaf-
washing suspensions of untreated plants (UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) collected just 
before (T0) and one day after (T1) Plasmopara viticola inoculation. Data of three replicates (named from A to C), mean and standard error 
values of three replicates are reported for each sample. 
 

 
  

Total filtered 

reads
Good's coverage Chao1 Simpson Identified OTUs

Identified OTUs in 

1415 reads
Filtered reads Good's coverage Chao1 Simpson Identified OTUs

Identified OTUs in 

1415 reads

A 52719 0.93 420 0.69 953 165 54709 0.99 65 0.78 236 44

B 23569 0.89 613 0.91 1014 245 7626 0.96 253 0.51 154 71

C 19509 0.92 377 0.73 642 184 14096 0.97 157 0.46 228 59

Mean Value 31932.33 0.91 470.29 0.78 869.67 198.00 25477.00 0.97 158.34 0.59 206.00 58.00

Std Error 10459.21 0.01 72.50 0.07 115.19 24.13 14734.85 0.01 54.21 0.10 26.10 7.81

A 28603 0.86 668 0.95 1513 315 12322 0.98 180 0.53 150 48

B 20667 0.83 842 0.99 1601 423 9301 0.98 90 0.44 122 40

C 25472 0.87 591 0.98 1034 345 17429 0.98 90 0.42 127 40

Mean Value 24914.00 0.85 700.24 0.97 1382.67 361.00 13017.33 0.98 120.00 0.46 133.00 42.67

Std Error 2307.85 0.01 74.09 0.01 176.17 32.19 2371.97 0.00 30.00 0.03 8.62 2.67

A 18471 0.97 117 0.78 180 75 14338 0.96 203 0.84 241 92

B 18786 0.98 116 0.87 222 85 12088 0.98 116 0.65 186 68

C 9046 0.96 175 0.92 246 122 12832 0.98 82 0.49 134 49

Mean Value 15434.33 0.97 135.98 0.86 216.00 94.00 13086.00 0.97 133.33 0.66 187.00 69.67

Std Error 3195.46 0.00 19.51 0.04 19.29 14.29 661.82 0.01 35.99 0.10 30.89 12.44

A 46839 0.95 260 0.87 787 144 30484 0.96 194 0.81 376 118

B 43368 0.82 905 0.96 1849 411 19448 0.96 249 0.62 418 88

C 30558 0.89 648 0.96 1309 264 41675 0.99 30 0.31 111 24

Mean Value 40255.00 0.88 604.17 0.93 1315.00 273.00 30535.67 0.97 157.78 0.58 301.67 76.67

Std Error 4950.95 0.04 187.66 0.03 306.59 77.21 6416.43 0.01 65.62 0.15 96.10 27.72

A 2703 0.97 212 0.84 162 114 1415 0.97 148 0.74 85 85

B 2705 0.97 176 0.91 158 123 2709 0.98 133 0.76 130 98

C 4517 0.97 180 0.94 178 116 2216 0.97 177 0.84 123 105

Mean Value 3308.33 0.97 189.44 0.90 166.00 117.67 2113.33 0.97 152.69 0.78 112.67 96.00

Std Error 604.33 0.00 11.45 0.03 6.11 2.73 377.06 0.00 12.94 0.03 13.98 5.86

A 5817 0.96 195 0.91 226 128 4735 0.98 120 0.86 126 77

B 19429 0.96 195 0.95 351 125 3952 0.97 127 0.88 140 96

C 5109 0.96 183 0.92 229 122 3698 0.98 130 0.86 112 80

Mean Value 10118.33 0.96 191.00 0.93 268.67 125.00 4128.33 0.97 125.32 0.86 126.00 84.33

Std Error 4659.82 0.00 3.87 0.01 41.18 1.73 312.07 0.00 3.01 0.01 8.08 5.90

A 3692 0.96 237 0.89 214 126 3178 0.98 128 0.75 122 88

B 6629 0.95 249 0.82 242 136 2046 0.98 136 0.76 102 93

C 15692 0.97 198 0.95 279 117 4614 0.97 164 0.94 180 113

Mean Value 8671.00 0.96 227.72 0.89 245.00 126.33 3279.33 0.97 142.90 0.82 134.67 98.00

Std Error 3611.43 0.00 15.49 0.04 18.82 5.49 743.05 0.00 11.04 0.06 23.39 7.64

NB.T1

LAM.T1

H2O.T0

Bacteria - EXPERIMENT 1 Bacteria - EXPERIMENT 2

LAM.T0

H2O.T1

UNT

Sample Replicate

NB.T0
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TABLE S5 | Pyrosequencing results of phyllosphere fungi. Number of total quality filtered reads, coverage (Good's coverage), 
richness (Chao1) and diversity (Simpson) estimators were calculated for fungi collected from grapevine leaves in two independent 
experiments (experiment 1 and experiment 2). Operational taxonomic units (OTU) were assessed before and after normalization to the 
lowest number of quality filtered reads (1979 in H2O_T1_C, Exp 1). The ITS fragments were amplified from DNA extracted from leaf-
washing suspensions of untreated plants (UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) collected just 
before (T0) and one day after (T1) Plasmopara viticola inoculation. Data for three replicates (named A to C), mean and standard error 
values of three replicates are reported for each sample. 
 

 
  

Total filtered 

reads
Good's coverage Chao1 Simpson Identified OTUs

Identified OTUs 

in 1979 reads

Total filtered 

reads
Good's coverage Chao1 Simpson Identified OTUs

Identified OTUs 

in 1979 reads

A 8652 0.97 216 0.90 233 123 2136 0.97 203 0.93 139 136

B 2652 0.97 203 0.91 156 135 1982 0.98 174 0.90 128 127

C 3268 0.96 283 0.93 230 179 3815 0.96 291 0.90 203 156

Mean Value 4857.33 0.97 233.85 0.91 206.33 145.67 2644.33 0.97 222.34 0.91 156.67 139.67

Std Error 1905.65 0.00 24.83 0.01 25.18 17.02 587.02 0.00 35.07 0.01 23.38 8.57

A 3501 0.96 275 0.95 216 181 3460 0.96 280 0.91 190 157

B 4059 0.96 257 0.93 219 168 3287 0.98 180 0.93 159 126

C 4169 0.96 304 0.93 237 179 4009 0.97 202 0.92 181 134

Mean Value 3909.67 0.96 278.36 0.94 224.00 176.00 3585.33 0.97 220.66 0.92 176.67 139.00

Std Error 206.79 0.00 13.61 0.00 6.56 4.04 217.64 0.00 30.24 0.00 9.21 9.29

A 3802 0.97 204 0.91 182 131 4685 0.97 205 0.88 204 140

B 3165 0.96 278 0.91 212 174 3790 0.97 199 0.87 151 128

C 3956 0.96 291 0.94 248 182 10174 0.96 319 0.92 338 175

Mean Value 3641.00 0.97 257.46 0.92 214.00 162.33 6216.33 0.97 240.94 0.89 231.00 147.67

Std Error 242.12 0.00 27.23 0.01 19.08 15.84 1995.63 0.00 39.02 0.01 55.64 14.10

A 3692 0.97 238 0.94 214 167 3093 0.97 206 0.83 147 123

B 3275 0.97 244 0.93 197 158 3193 0.97 231 0.94 169 136

C 3362 0.98 184 0.93 162 118 3746 0.97 191 0.89 160 128

Mean Value 3443.00 0.97 222.04 0.93 191.00 147.67 3344.00 0.97 209.06 0.89 158.67 129.00

Std Error 127.01 0.00 19.09 0.00 15.31 15.06 203.06 0.00 11.51 0.03 6.39 3.79

A 4546 0.97 208 0.91 186 125 2813 0.97 195 0.90 160 136

B 5323 0.97 221 0.87 216 141 2686 0.96 311 0.91 181 165

C 1979 0.97 170 0.90 121 121 2407 0.97 212 0.92 138 123

Mean Value 3949.33 0.97 199.70 0.89 174.33 129.00 2635.33 0.97 239.46 0.91 159.67 141.33

Std Error 1010.38 0.00 15.38 0.01 28.04 6.11 119.91 0.00 36.23 0.01 12.41 12.41

A 2216 0.98 139 0.92 115 111 2174 0.98 155 0.87 111 108

B 4437 0.97 234 0.92 196 139 2914 0.97 194 0.94 158 139

C 2932 0.97 243 0.92 173 148 4332 0.97 210 0.92 206 142

Mean Value 3195.00 0.97 205.11 0.92 161.33 132.67 3140.00 0.97 186.13 0.91 158.33 129.67

Std Error 654.49 0.00 33.23 0.00 24.10 11.14 633.13 0.00 16.26 0.02 27.42 10.87

A 3214 0.96 263 0.93 195 153 3353 0.97 244 0.90 175 146

B 3155 0.98 178 0.93 136 115 2950 0.98 244 0.83 109 90

C 3187 0.96 251 0.94 218 176 3860 0.97 189 0.85 160 125

Mean Value 3185.33 0.97 230.54 0.93 183.00 148.00 3387.67 0.97 225.70 0.86 148.00 120.33

Std Error 17.05 0.00 26.65 0.01 24.42 17.79 263.27 0.00 18.27 0.02 19.97 16.33

Fungi - EXPERIMENT 1 Fungi - EXPERIMENT 2

LAM.T1

Sample Replicate

UNT

H2O.T0

NB.T0

LAM.T0

H2O.T1

NB.T1
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TABLE S6 | Bacterial operational taxonomic units (OTU) identified on grapevine leaves. Read counts are reported for each OTU 
identified using the GreenGenes database at 97% of sequence similarity for each replicate (named from A to C) of leaf samples collected 
from untreated plants (UNT), and plants treated with water (H2O), nutrient broth (NB) or laminarin (LAM) collected just before (T0) and one 
day after (T1) Plasmopara viticola inoculation in two independent experiments (experiment 1 and experiment 2). Taxonomy indicates 
kingdom (K), phylum (P), class (C), order (O), family (F), genus (G), and species (S) of identified OTU. 
 
TABLE S7 | Fungal operational taxonomic units (OTU) identified on grapevine leaves. Read counts are reported for each OTU 
identified using the GreenGenes database at 97% of sequence similarity for each replicate (named from A to C) of leaf samples collected 
from untreated plants (UNT), and plants treated with water (H2O), nutrient broth (NB) and laminarin (LAM) collected just before (T0) and 
one day after (T1) Plasmopara viticola inoculation in two independent experiments (experiment 1 and experiment 2). Taxonomy indicates 
kingdom (K), phylum (P), class (C), order (O), family (F), genus (G), and species (S) of identified OTU. 
 
 
Available online at: https://www.frontiersin.org/article/10.3389/fpls.2016.01053 
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TABLE S8 | Beta-diversity analysis of bacterial communities. PERMANOVA and Permutation tests were calculated with an ADONIS 
function and a Bray-Curtis dissimilarity matrix for bacterial data of untreated plants (UNT), and plants treated with water (H2O), nutrient 
broth (NB) or laminarin (LAM) collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in two independent 
experiments (experiment 1 and experiment 2). Beta-diversity analysis was carried out for T0 samples, for T0 and T1 samples excluding 
UNT, and for T1 samples. Treatments considered by each permutation pairwise comparison test are indicated by the symbol ×. 
 

 
  

P-value Significance P-value Significance Pairwise comparisons P-value Significance P value Code

Treatment 0.0001 *** 0.002 ** UNT x H2O 0.0001 *** > 0.05 not significative (NS)

Experiment 0.0001 *** 0.001 *** H2O x NB 0.0062 ** < 0.05 *

UNT x NB 0.0044 ** < 0.01 **

H2O x LAM 0.0788 NS < 0.001 ***

UNT x LAM 0.1536 NS

NB x LAM 0.0037 **

P-value Significance P-value Significance Pairwise comparisons P-value Significance

Treatment 0.0077 ** 0.011 ** H2O x NB 0.0094 **

Time 0.0001 *** 0.001 *** H2O x LAM 0.2334 NS

Experiment 0.0001 *** 0.001 *** NB x LAM 0.0062 **

Treatment x Time 0.0329 ** 0.028 **

P-value Significance P-value Significance Pairwise comparisons P-value Significance

Treatment 0.0354 ** 0.195 H2O x NB 0.4528 NS

Experiment 0.0354 ** 0.001 *** H2O x LAM 0.5759 NS

NB x LAM 0.6483 NS

SignificancePERMANOVA CAP PERMUTATION TEST

T0 treated samples

PERMUTATION PAIRWISE COMPARISON

CAP PERMUTATION TEST

T0 + T1 treated samples

T1 treated samples

PERMANOVA

PERMANOVA CAP PERMUTATION TEST PERMUTATION PAIRWISE COMPARISON

PERMUTATION PAIRWISE COMPARISON
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TABLE S9 | Beta-diversity analysis obtained for fungal communities. PERMANOVA and Permutation tests were calculated with an 
ADONIS function and a Bray-Curtis dissimilarity matrix for fungal data of untreated plants (UNT), and plants treated with water (H2O), 
nutrient broth (NB) or laminarin (LAM) collected just before (T0) and one day after (T1) Plasmopara viticola inoculation in two independent 
experiments (experiment 1 and experiment 2). Beta-diversity analysis was carried out for T0 samples, for T0 and T1 samples excluding 
UNT, and for T1 samples. Treatments considered by each permutation pairwise comparison test are indicated by the symbol ×. 
 

 

P value Code

P-value Significance P-value Significance > 0.05 not significative (NS)

Treatment 0.5314 NS 0.559 NS < 0.05 *

Experiment 0.5314 NS 0.001 ** < 0.01 **

< 0.001 ***

P-value Significance P-value Significance

Treatment 0.8605 NS 0.851 NS

Time 0.1265 NS 0.117 NS

Experiment 0.3478 NS 0.001 **

Treatment x Time 0.2472 NS 0.245 NS

P-value Significance P-value Significance

Treatment 0.4453 NS 0.567

Experiment 0.4453 NS 0.001 **

Significance

PERMANOVA

T0 treated samples

PERMANOVA CAP PERMUTATION TEST

T0 + T1 treated samples

PERMANOVA CAP PERMUTATION TEST

CAP PERMUTATION TEST

T1 treated samples
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1. Supplementary Figures 
 
 

 
 

Figure S1: Efficacy of soybean (SOY), rapeseed (RAPE) and guar (GUAR) acid 
hydrolysates against courgette powdery under greenhouse conditions. Efficacy 
against powdery mildew was evaluated on courgette plants treated with hydrolysed 
protein sources and with 0.11 M K2SO4 as compared to water-treated plants. Acid 
hydrolysates were obtained by incubation of the protein source with 6 N H2SO4 at 
121°C for 15 min (6N A) and at 100°C for 8 h (6N B). An F-test revealed non-significant 
differences between three independent experiments (p > 0.05), and data were pooled. 
The mean effect of 0.11 M K2SO4 (39.5 ± 4.6%) was subtracted to efficacy data, mean 
and standard error values of 12 replicates (potted plants) in three experiments are 
presented for each treatment. Different letters indicate significant differences between 
treatments according to Fisher’s LSD test (p ≤ 0.05). 
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2. Supplementary Tables 
 

Table S1: Peptide composition of soybean samples. Peptides were analysed by liquid chromatography coupled with mass 
spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 121°C for 15 min (6N A) or at 100°C 
for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme (FLAV) at a dosage of 1% (ALCA 1% and 
FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein content. Peptides identified in hydrolysed 
samples were aligned with those detected in the N-H sample, and quantitation ratios were calculated for similar peptides (sequence 
identity equal to or higher than 70%) based on peptide peak areas. For each peptide, the amino acid sequence is reported, together with 
the identification number of the correspondent protein, the E-value of the alignment against Glycine max protein database 
(http://plant.thegpm.org/tandem/thegpm_tandem.html), the coverage (%) and the molecular weight (MW) of the protein. 
 
Table S2: Peptide composition data of rapeseed samples. Peptides were analysed by liquid chromatography coupled with mass 
spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 121°C for 15 min (6N A) or at 100°C 
for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme (FLAV) at a dosage of 1% (ALCA 1% and 
FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein content. Peptides identified in hydrolysed 
samples were aligned with those detected in the N-H sample, and quantitation ratios were calculated for similar peptides (sequence 
identity equal to or higher than 70%) based on peptide peak areas. For each peptide, the amino acid sequence is reported, together with 
the identification number of the correspondent protein, the E-value of the alignment against Brassica napus protein database 
(http://plant.thegpm.org/tandem/thegpm_tandem.html), the coverage (%) and the molecular weight (MW) of the protein. 
 
Table S3: Peptide composition data of guar samples. Peptides were analysed by liquid chromatography coupled with mass 
spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 121°C for 15 min (6N A) or at 100°C 
for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme (FLAV) at a dosage of 1% (ALCA 1% and 
FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein content. Peptides identified in hydrolysed 
samples were aligned with those detected in the N-H sample, and quantitation ratios were calculated for similar peptides (sequence 
identity equal to or higher than 70%) based on peptide peak areas. For each peptide, the amino acid sequence is reported, together with 
the identification number of the correspondent protein, the E-value of the alignment against the Viridiplantae protein database 
(http://plant.thegpm.org/tandem/thegpm_tandem.html), the coverage (%) and the molecular weight (MW) of the protein. 
 
Available online at: https://doi.org/10.4172/2155-9821.1000306  
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Table S4: Free amino acid composition of soybean samples. The concentration of each amino acid (μg/ml) was assessed by liquid 
chromatography coupled with mass spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 
121°C for 15 min (6N A) or at 100°C for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme 
(FLAV) at a dosage of 1% (ALCA 1% and FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein 
content. The mean and standard deviation (Std Dev) values of two independent analysis are reported for each amino acid and sample. 
 

 
  

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

L-Glicine 18.03 3.61 168.88 33.78 620.38 124.08 1845.05 369.01 118.24 23.65 164.43 32.89 2845.42 569.08

L-Alanine 33.03 6.61 509.63 101.93 755.59 151.12 300.98 60.20 428.29 85.66 340.30 68.06 929.45 185.89

L-Proline 0.00 0.00 322.25 64.45 15.03 3.01 146.76 29.35 163.73 32.75 0.00 0.00 599.83 119.97

L-Threonine 11.19 2.24 223.74 44.75 1177.78 235.56 231.60 46.32 520.67 104.13 336.64 67.33 712.74 142.55

L-Leucine/Isoleucine 0.89 0.18 240.93 48.19 122.49 24.50 211.22 42.24 5839.39 1167.88 530.76 106.15 88.62 17.72

L-Histidine 0.00 0.00 4.09 0.82 0.00 0.00 989.83 197.97 372.00 74.40 0.00 0.00 344.00 68.80

L-Aspartic acid 0.00 0.00 178.42 35.68 0.00 0.00 3134.10 626.82 383.93 76.79 5.39 1.08 0.00 0.00

L-Arginine 192.99 38.60 87.42 17.48 0.00 0.00 0.00 0.00 2390.78 478.16 238.12 47.62 0.00 0.00

DL-Homophenylalanine 0.10 0.02 76.86 15.37 12.20 2.44 0.05 0.01 2.44 0.49 1.10 0.22 10.74 2.15

L-Aspartic acid 0.05 0.01 70.76 14.15 2.32 0.46 0.49 0.10 3.05 0.61 0.78 0.16 18.54 3.71

L-Cysteine 0.14 0.03 12.20 2.44 7.20 1.44 1.34 0.27 5.73 1.15 1.83 0.37 3.66 0.73

L-Glutamic acid 0.05 0.01 90.28 18.06 12.08 2.42 1.90 0.38 3.54 0.71 0.07 0.01 14.40 2.88

L-Glutamine 0.01 0.00 21.96 4.39 3.29 0.66 2.34 0.47 9.27 1.85 0.90 0.18 8.30 1.66

L-Lysine 0.01 0.00 114.68 22.94 7.32 1.46 2.42 0.48 0.37 0.07 1.12 0.22 10.25 2.05

L-Methionine 0.05 0.01 25.62 5.12 8.17 1.63 1.81 0.36 11.47 2.29 0.93 0.19 8.54 1.71

L-Phenylalanine 0.23 0.05 85.40 17.08 1.59 0.32 1.63 0.33 7.93 1.59 1.56 0.31 7.32 1.46

L-Serine 0.09 0.02 98.82 19.76 7.69 1.54 0.24 0.05 9.27 1.85 0.32 0.06 19.76 3.95

L-Valine 0.04 0.01 53.68 10.74 2.07 0.41 1.90 0.38 11.96 2.39 1.24 0.25 10.74 2.15

Glycated L-Lysine 85.55 17.11 3772.72 754.54 710.36 142.07 103.30 20.66 614.01 122.80 110.10 22.02 728.52 145.70

Glycated-L-Arginine 0.00 0.00 247.13 49.43 12587.35 2517.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AMINO ACID
FLAV 1% FLAV 50 %N-H 6N A 6N B ALCA1% ALCA 50%
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Table S5: Free amino acid composition of rapeseed samples. The concentration of each amino acid (μg/ml) was assessed by liquid 
chromatography coupled with mass spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 
121°C for 15 min (6N A) or at 100°C for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme 
(FLAV) at a dosage of 1% (ALCA 1% and FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein 
content. The mean and standard deviation (Std Dev) values of two independent analysis are reported for each amino acid and sample. 
 

 
  

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

L-Glicine 0.05 0.01 14869.04 2973.81 343.93 68.79 361.53 72.31 114.19 22.84 968.82 19.38 1424.73 28.49

L-Alanine 12.25 2.45 322.79 64.56 3993.81 798.76 29.86 2.99 752.27 150.45 395.50 7.91 444.32 8.89

L-Proline 0.00 0.00 260.26 52.05 2850.19 570.04 225.95 22.59 118.58 23.72 1903.44 38.07 0.00 0.00

L-Threonine 2.02 0.00 493.55 98.71 2007.00 401.40 536.87 53.69 208.29 41.66 346.90 6.94 499.96 10.00

L-Leucine/Isoleucine 7.15 0.00 0.00 0.00 0.00 0.00 10439.60 1043.96 142.07 28.41 409.76 8.20 856.49 17.13

L-Histidine 0.00 0.00 0.00 0.00 0.00 0.00 97.65 9.77 5154.83 1030.97 0.00 0.00 0.00 0.00

L-Aspartic acid 1.17 0.23 7729.63 1545.93 51.38 10.28 4.66 0.47 5554.91 1110.98 0.00 0.00 0.00 0.00

L-Arginine 0.00 0.00 0.00 0.00 0.00 0.00 32.18 3.22 745.65 149.13 611.41 12.23 0.00 0.00

DL-Homophenylalanine 0.01 0.00 4.06 0.81 8.64 1.73 3.82 0.38 3.64 0.73 21.44 0.43 4.43 0.09

L-Aspartic acid 0.04 0.01 21.59 4.32 12.45 2.49 3.50 0.35 2.84 0.57 5.59 0.11 3.73 0.07

L-Cysteine 0.08 0.02 21.84 4.37 19.05 3.81 1.17 0.12 0.33 0.07 8.39 0.17 3.26 0.07

L-Glutamic acid 0.03 0.01 18.54 3.71 4.06 0.81 0.33 0.03 2.98 0.60 13.28 0.27 5.83 0.12

L-Glutamine 0.01 0.00 21.59 4.32 12.19 2.44 0.70 0.07 2.42 0.48 21.90 0.44 6.06 0.12

L-Lysine 0.01 0.00 1.78 0.36 20.57 4.11 1.26 0.13 0.23 0.05 16.31 0.33 20.51 0.41

L-Methionine 0.05 0.01 6.60 1.32 4.83 0.97 1.72 0.17 3.45 0.69 2.80 0.06 8.85 0.18

L-Phenylalanine 0.09 0.02 12.19 2.44 17.78 3.56 1.44 0.14 3.12 0.62 10.02 0.20 12.58 0.25

L-Serine 0.10 0.02 11.43 2.29 17.27 3.45 2.61 0.26 2.28 0.46 9.55 0.19 1.63 0.03

L-Valine 0.02 0.00 1.52 0.30 8.89 1.78 4.15 0.41 2.28 0.46 16.78 0.34 7.69 0.15

Glycated L-Lysine 4.47 0.89 887.28 177.46 1096.21 219.24 230.98 23.10 174.45 34.89 823.16 16.46 969.08 19.38

Glycated-L-Arginine 0.00 0.00 473.29 94.66 12115.92 2423.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FLAV 1% FLAV 50 %
AMINO ACID

N-H 6N A 6N B ALCA1% ALCA 50%
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Table S6: Free amino acid composition of guar samples. The concentration of each amino acid (μg/ml) was assessed by liquid 
chromatography coupled with mass spectrometry for the non-hydrolysed sample (N-H), for acid hydrolysates obtained with 6 N H2SO4 at 
121°C for 15 min (6N A) or at 100°C for 8 h (6N B), and for enzymatic hydrolysates obtained with Alcalase (ALCA) and Flavourzyme 
(FLAV) at a dosage of 1% (ALCA 1% and FLAV 1%, respectively) or 50% (ALCA 50% and FLAV 50%, respectively) of the protein 
content. The mean and standard deviation (Std Dev) values of two independent analysis are reported for each amino acid and sample. 
 

 
  

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

L-Glicine 7.28 1.46 1759.07 351.81 957.41 191.48 765.78 153.16 2795.26 559.05 19.35 3.87 680.86 136.17

L-Alanine 10.35 2.07 1143.61 228.72 645.22 129.04 411.33 82.27 2167.66 433.53 131.55 26.31 324.94 64.99

L-Proline 65.27 13.05 742.66 148.53 7592.92 1518.58 0.00 0.00 8387.26 1677.45 63.75 12.75 77.28 15.46

L-Threonine 5.36 1.07 2363.64 472.73 1017.80 203.56 938.78 187.76 2748.91 549.78 21.55 4.31 501.69 100.34

L-Leucine/Isoleucine 10.33 2.07 1043.69 208.74 369.67 73.93 10060.75 2012.15 0.00 0.00 0.00 0.00 7.20 1.44

L-Histidine 0.00 0.00 571.86 114.37 1216.54 243.31 683.07 136.61 5337.43 1067.49 68.85 13.77 0.00 0.00

L-Aspartic acid 237.44 47.49 2968.91 593.78 646.90 129.38 0.00 0.00 461.81 92.36 3.41 0.68 1101.03 220.21

L-Arginine 2.64 0.53 0.00 0.00 628.77 125.75 1322.86 264.57 3057.03 611.41 223.34 44.67 150.90 30.18

DL-Homophenylalanine 0.00 0.00 6.86 1.37 8.64 1.73 4.83 0.97 4.39 0.88 1.90 0.38 2.78 0.56

L-Aspartic acid 0.00 0.00 2.29 0.46 8.64 1.73 2.10 0.42 28.79 5.76 2.88 0.58 1.22 0.24

L-Cysteine 0.00 0.00 6.86 1.37 3.30 0.66 1.66 0.33 5.37 1.07 4.00 0.80 1.07 0.21

L-Glutamic acid 0.00 0.00 10.41 2.08 13.97 2.79 1.51 0.30 1.46 0.29 3.66 0.73 0.10 0.02

L-Glutamine 0.00 0.00 7.62 1.52 24.38 4.88 3.61 0.72 4.39 0.88 3.17 0.63 1.56 0.31

L-Lysine 0.00 0.00 5.59 1.12 23.37 4.67 3.90 0.78 24.89 4.98 2.20 0.44 3.71 0.74

L-Methionine 0.00 0.00 21.59 4.32 0.25 0.05 2.39 0.48 32.21 6.44 4.64 0.93 3.76 0.75

L-Phenylalanine 0.00 0.00 15.49 3.10 18.29 3.66 4.49 0.90 6.34 1.27 4.59 0.92 0.39 0.08

L-Serine 0.00 0.00 16.76 3.35 22.86 4.57 1.17 0.23 40.02 8.00 3.42 0.68 1.27 0.25

L-Valine 0.00 0.00 1.78 0.36 22.86 4.57 2.68 0.54 6.83 1.37 2.54 0.51 4.49 0.90

Glycated L-Lysine 9.51 1.90 1219.26 243.85 915.24 183.05 201.41 40.28 1866.21 373.24 217.05 43.41 190.25 38.05

Glycated-L-Arginine 0.00 0.00 0.00 0.00 2694.90 538.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FLAV 1% FLAV 50 %
AMINO ACID

N-H 6N A 6N B ALCA1% ALCA 50%
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Table S7: Pearson’s correlation between efficacy against powdery mildew and free amino acid concentrations of soybean 
enzymatic and acid hydrolysates. Pearson’s correlation analysis between efficacy values (%) against powdery mildew and free amino 
acid concentrations (μg/ml) was performed on all replicates (plotted plants) for enzymatic and acid hydrolysates of the soybean meal, 
correlation (R2 value) and significant (p-value ≤ 0.05) or non-significant (NS) values were calculated. The concentration of each amino acid 
was assessed by liquid chromatography coupled with mass spectrometry. 
 

 
  

L-Glicine -0.031 NS 0.067 NS

L-Alanine -0.015 NS 0.017 NS

L-Proline -0.003 NS -0.109 NS

L-Threonine -0.061 NS 0.073 NS

L-Leucine/Isoleucine -0.17 NS -0.082 NS

L-Histidine -0.234 NS -0.11 NS

L-Aspartic acid -0.206 NS -0.11 NS

L-Arginine -0.15 NS -0.032 NS

DL-Homophenylalanine 0.062 NS -0.105 NS

L-Aspartic acid 0.062 NS -0.109 NS

L-Cysteine -0.143 NS -0.074 NS

L-Glutamic acid 0.024 NS -0.106 NS

L-Glutamine -0.122 NS -0.105 NS

L-Lysine 0.051 NS -0.108 NS

L-Methionine -0.123 NS -0.097 NS

L-Phenylalanine -0.101 NS -0.109 NS

L-Serine 0.009 NS -0.108 NS

L-Valine -0.102 NS -0.109 NS

Glycated L-Lysine -0.047 NS -0.105 NS

Glycated L-Arginine - - 0.084 NS

Enzymatic hydrolysates Acid hydrolysates

Amino acid p- valueR
2 

valuep- valueR
2 

value
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Table S8: Pearson’s correlation between efficacy against powdery mildew and free amino acid concentrations of rapeseed 
enzymatic and acid hydrolysates. Pearson’s correlation analysis between efficacy values (%) against powdery mildew and free amino 
acid concentrations (μg/ml) was performed on all replicates (plotted plants) for enzymatic and acid hydrolysates of the rapeseed meal, 
correlation (R2 value) and significant (p-value ≤ 0.05) or non-significant (NS) values were calculated. The concentration of each amino acid 
was assessed by liquid chromatography coupled with mass spectrometry. 
 

 

L-Glicine 0.072 NS 0.06 NS

L-Alanine -0.024 NS 0.436 0.013

L-Proline 0.133 NS 0.44 0.012

L-Threonine 0.156 NS 0.486 0.005

L-Leucine/Isoleucine 0.133 NS -0.517 0.002

L-Histidine -0.061 NS - -

L-Aspartic acid -0.063 NS 0.052 NS

L-Arginine 0.034 NS - -

DL-Homophenylalanine 0.137 NS 0.538 0.001

L-Aspartic acid 0.172 NS 0.359 0.044

L-Cysteine 0.126 NS 0.484 0.005

L-Glutamic acid 0.097 NS 0.157 NS

L-Glutamine 0.111 NS 0.353 0.048

L-Lysine 0.057 NS 0.439 0.012

L-Methionine -0.003 NS 0.432 0.014

L-Phenylalanine 0.053 NS 0.555 0.001

L-Serine 0.15 NS 0.555 0.001

L-Valine 0.14 NS 0.464 0.008

Glycated L-Lysine 0.08 NS 0.548 0.001

Glycated L-Arginine - - 0.424 0.015

Amino acid

Enzymatic hydrolysates Acid hydrolysates

p- valueR
2 

valuep- valueR
2 

value
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In order to reduce the massive use of chemical fungicides and develop new 

harmless strategies to be included in organic pest management programs, the 

objectives of my doctoral project were to analyse the current regulatory procedures 

required for the registration of biopesticide in agriculture, and to provide new insight on 

the production and mechanism of action of protein-based products against crop 

diseases. Amino acids and peptides contained in protein-based products may act as 

biostimulants because they enhance the abiotic stress tolerance (Colla et al., 2014), 

and morover they could potentially be recognised by plants as MAMPs (Jones & Dangl, 

2006) or DAMPs (Wu et al., 2014), and exert a bioactive role by triggering plant 

defence mechanisms (Albert, 2013), as recently reported for soybean and casein 

hydrolysates in grapevine (Lachhab et al., 2014; Lachhab et al., 2016). For this reason, 

they can be also considered as plant protection products and therefore they must be 

authorised according to the current regulations. In spite of their natural origin and the 

absence of toxicity and eco-toxicity, the EU regulation does not encourage their 

registration, which follows the same procedure and timelines as any other synthetic 

chemical pesticide. To support the registration process by characterizing the 

mechanism of action of these compounds, we focused on a protein derivative (NB), 

which previously showed activity against grapevine powdery mildew in vineyards 

across seasons through the activation of defence-related genes (Nesler et al., 2015). 

Beyond its properties as a resistance inducer, we hypothesized that NB might also act 

as nutritional source and affect the composition and dynamics of phyllosphere 

microbial populations, which in turn might contribute to resistance induction and/or 

display direct biocontrol properties against the pathogen. Hence, the first part of our 

research aimed to investigate the efficacy of NB against grapevine downy mildew and 

to assess whether its mode of action was related only to the induction of resistance, or 

eventually also to an indirect effect caused by its application on leaf microbial 

communities. Our results indicated that under axenic conditions, NB strongly reduced 

downy mildew symptoms and induced the expression of five defence-related genes 

(PR-2, PR-4, OSM-1, OSM-2 and CHIT-3), suggesting that it was effective against P. 

viticola through the induction of grapevine resistance. The expression of PR-1 (a 

marker gene of SA, that regulates the pathways of SAR) was not modulated by NB 

application under axenic conditions. Preventive foliar treatment with NB reduced downy 

mildew symptoms under greenhouse conditions, through the induction of all defence-

related genes tested, including PR-1. Accordingly, the expression profiles of in vitro-

grown plants partially differed from those of greenhouse-grown plants. Although 
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different expression levels between axenic and greenhouse conditions could be linked 

to different growing conditions of the plants, they could also be associated with the 

modifications occurred in the leaf microbiota after the application of NB on greenhouse 

plants, and these changes may partially affect the hormone-mediated signalling 

pathways involved, providing a contribution to the resistance induction. However, a 

higher efficacy of NB was observed under axenic conditions with respect to 

greenhouse conditions, and this can be explained by two reasons. We profiled that in 

greenhouse plants are naturally exposed to a wide variety of microorganisms, and 

resistance mechanisms might be already partially activated. In addition, some 

components of protein-derived products can be metabolized by the phyllosphere 

microorganisms, thus reducing the properties and efficacy of the originally applied 

product (Colla et al., 2015). Although NB induced a lower expression of some defence-

related genes (CHIT-3, OSM-1, OSM-2 and PR-4) in comparison with the LAM 

treatment, it presented a higher efficacy against downy mildew. These results suggest 

that multiple mechanisms of action are involved in the biocontrol role of NB, and 

additional biotic factors, such as the phyllosphere microbiota, could influence the 

efficacy against downy mildew. The metabarcoding analysis allowed the dissection of 

compositions and modifications of the bacterial and fungal populations residing on the 

grapevine phyllosphere after the treatments tested. Even though plants originated from 

the same nursery stock, and were grown under the same controlled conditions, 

significant differences among microbial populations were found between the two 

greenhouse experiments. Indeed, the plant phyllosphere act as an open system, and 

the structure of its microbial community reflects immigration, survival and growth of 

microbial colonists, which in turn is influenced by numerous environmental factors, in 

addition to the leaf physicochemical properties (Whipps et al., 2008). Subsequently, 

changes occurred in leaf microbial communities after the treatments were influenced by 

the composition of the originally residing microbiota. However, bacterial community 

structure was globally affected by time points and by NB treatment in both experiments, 

while no effect was noticed from LAM treatment. More specifically, NB act as nutritional 

substrate, changing proportions of some leaf microbial taxa that may be related to the 

biological control of plant pathogens, by competition or parasitism activity. For 

example, NB application increased abundances of the Exiguobacteraceae family and 

the Exiguobacterium genus as compared with H2O treatment at T0 in Exp 1 and T1 in 

Exp 2, respectively. Interactions between Exiguobacterium acetylicum and two other 

bacteria (namely Microbacterium spp. and Pantoea agglomerans) have been reported 
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to contribute to the suppression of the wheat root disease caused by Rhizoctonia solani 

(Barnett et al., 2006), indicating potential biocontrol properties of some 

Exiguobacterium strains. In Exp 2, the NB treatment increased the proportion of the 

Pseudomonadaceae family and the Pseudomonas genus as compared with UNT 

plants and H2O-treated plants at T0, and P. viridiflava and P. veronii levels showed the 

same trend. Some species of this genera are known as active resistance inducers (van 

Wees et al., 2008) and biocontrol agents, for their ability to produce proteases (Elad, 

2000), siderophores (van Wees et al., 2008) and antimicrobial metabolites (Ligon et al., 

2000). Specifically for grapevine plants, members of Pseudomonas have been 

demonstrated to effectively control Botrytis cinerea infections by induction of resistance 

mechanisms (Trotel-Aziz et al., 2008). Finally, the NB treatment increased also the 

proportion of P. alcaligenes at T0 in Exp 1, and this species has been reported as 

biocontrol agent against Fusarium oxysporum (Akhtar et al., 2010). In Exp 2, the 

Enterobacteriaceae family accounted for the majority of bacterial OTU at T0, and its 

abundance was affected by NB at both time points. The most dominant species was 

Serratia marcescens, which significantly increased by NB with respect to H2O-treated 

plants at T0 in Exp 1. S. marcescens was reported as biocontrol agent against the soil-

borne fungus Magnaporthe poae (Kobayashi et al., 1995) and the rice pathogen 

Magnaporthe oryzae (Jaiganesh et al., 2007), thanks to its chitinolytic activity. A strain 

of Lysobacter capsici reduced downy mildew symptoms in grapevine (Puopolo et al., 

2014), and the abundance of the Lysobacter genus on grapevine leaves increased as a 

result of NB treatment at T0 in Exp 2. On the other hand, the structure of fungal 

communities was similar in Exp 1 and Exp 2, and they were not globally affected by NB 

and LAM treatment, with a few exceptions. For example, the NB treatment modified the 

abundances of some specific fungal taxa, such as the Alternaria genus at T1 in Exp 1, 

and A. alternata was able to control P. viticola on leaf disks (Musetti et al., 2006). 

Relative abundances of Trichoderma spp. and Aureobasidium spp. were increased by 

the NB treatment at T1 in Exp 2. A strain of Trichoderma harzianum induces grapevine 

resistance (Perazzolli et al., 2011), and an isolate of Aureobasidium pullulans partially 

protects against downy mildew (Harm et al., 2011). However, fungal communities on 

grapevine leaves were more stable compared to bacterial ones, due to the preference 

of bacteria for protein and amino acids as nutritional source (Vorholt, 2012), or 

probably to the longer generation time of fungi, that actually did not allow to appreciate 

modifications within the short time of the experiment (four days). Although culturable 

microorganisms represent a limited fraction of the total, they are the most likely to be 
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influenced by NB, which is a laboratory microbiological medium. The increase of 

culturable microorganisms on NB-treated plants confirmed that the protein derivative 

had a nutritional role that affected mainly bacteria. However, in vitro assays suggested 

the absence of positive selection of potential biocontrol agents against oomycetes, 

since the NB treatment did not affect proportions of bacterial isolates with proteolytic 

activity, siderophore production and antagonistic activity against P. infestans. 

Nevertheless, two isolates from NB-treated plants showed a significant biocontrol 

activity against P. viticola on leaf disks, and these sequences were finally identified as 

Pseudomonas spp. and Enterobacter spp. Summarizing, the preventive foliar 

application of NB on grapevine plants under greenhouse conditions partially increased 

the number of culturable bacteria, and altered the structures and composition of the 

residing phyllosphere microbiota. These changes may contribute to pathogen control 

resulting from competition for space, parasitism or from other biocontrol strategies, 

resistance induction included. 

In practice, NB is an expensive microbiological medium, hard to be employed 

as biopesticides in pest management programs. Moreover animal-based products may 

create concerns about food safety, and cannot be used on the edible parts of organic 

crops (EC, 2014). For this reason, we focused our attention on plant-derived protein 

hydrolysates. Among other things, they contain organic compounds, such as phenols, 

lipids and carbohydrates (Colla et al., 2015), which have been shown to act as active 

signals of defence responses. Specifically, phenolic compounds are quickly 

synthesised at the infection site, resulting in the effective isolation of the pathogen 

(Nicholson & Hammerschmidt, 1992; Lattanzio et al., 2006), and lipids (Shah, 2005; 

Hoffmann-Benning, 2015) and carbohydrates (Trouvelot et al., 2014) have been 

similarly demonstrated to be involved in plant immunity. Conversely, animal-derived 

protein hydrolysates lack carbohydrates, phenols and phytohormones (Colla et al., 

2015), and repeated foliar applications can provoke phytotoxic effects on plant growth 

(Cerdan et al., 2009) that could be attributed to an unbalanced amino acid composition 

(Oaks et al., 1977) and a high salinity (Colla et al., 2014). Subsequently, we first 

optimized an experimental procedure to develop low-cost protein hydrolysates starting 

from plant agro-industrial by-products, namely soybean, rapeseed and guar meals. 

Later, we compared the effect of both acid and enzymatic hydrolysis in term of 

biocontrol efficacy against the powdery mildew of Cucurbitaceae (caused by the 

pathogen P. xanthii), investigating the potential contribution of amino acids and peptide 

fragments generated during the hydrolysis to the activation of plant resistance. Indeed, 
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the biocontrol properties of protein hydrolysates were previously proved to be affected 

by the original protein source, hydrolysis method and degree of hydrolysis (Cheison et 

al., 2009; Pecha et al., 2012), as well as by their biochemical characteristics 

(Chabanon et al., 2007; Jamdar et al., 2010). Our results showed that both enzymatic 

and acid methods significantly improved the efficacy of guar protein source against 

powdery mildew symptoms, in particular when the proteolytic process was carried out 

with the enzyme Alcalase at 50% E:S ratio, and with sulfuric acid 6N used at 100°C for 

8 h, respectively. Conversely, the biocontrol activity of soybean and rapeseed was not 

improved by the tested hydrolysis processes. In agreement with previous findings 

(Spellman et al., 2003), our results confirmed that the functional properties of a protein 

derivative may be altered by hydrolysis and depends on DH, suggesting that high 

hydrolysis time and temperature conditions could increase the biocontrol activity of the 

guar protein source. Indeed, we found significant positive correlations between efficacy 

values and DH of guar acid hydrolysates. In other words, DH affects the 

physicochemical characteristics of protein hydrolysates, and could in turn affect their 

functionality (Mahmoud, 1994; Panyam & Kilara, 1996). Among other things, amino 

acid and peptide compositions were proved to modulate the biological activity of protein 

hydrolysates (Jamdar et al., 2010), depending on molecular size, structure and specific 

sequence (Chabanon et al., 2007). Our results revealed significant correlations for guar 

enzymatic and acid hydrolysates between efficacy values and the quantitation ratios of 

specific peptide sequences, suggesting their crucial role against the disease. 

Specifically, some of them may be responsible for plant defence activation against 

powdery mildew, by possibly mimicking the biological activity of endogenous natural 

DAMPs. Indeed, specific peptides of plant origin have been demonstrated to act as 

non-toxic signalling molecules for innate plant defence (Ryan et al., 2002). In particular, 

peptides deriving from cytosolic proteins, such as the active form of systemin (Pearce 

et al., 2010) and the AtPep1 peptide (Huffaker et al., 2006), were shown to be internal 

signals for plant defence mechanisms in the soybean and A. thaliana respectively. A 

similar function was demonstrated for peptides originating from secreted precursors, 

such as hydroxyproline-rich systemins in the potato (Bhattacharya et al., 2013) and 

phytosulphokines in A. thaliana (Igarashi et al., 2012). Furthermore, several peptides 

released from the degradation of proteins with primary functions were shown to elicit 

plant defence responses, such as the inceptin family in the cowpea (Schmelz et al., 

2007) and other peptide fragments in the soybean (Pearce et al., 2010; Yamaguchi et 

al., 2011). All of them seem to be active as elicitors and can activate the expression of 
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typical defence marker genes (Albert, 2013). For guar acid hydrolysates, positive 

correlations were also found between efficacy values and amino acid concentrations, 

suggesting that they may contribute to efficacy against courgette powdery mildew. 

Indeed, the twenty proteinogenic amino acids play essential roles in the regulation of 

development, growth and stress responses in plants, and previous studies have 

revealed the activation of amino acid metabolism during plant disease responses 

(Scheideler et al., 2002; Liu et al., 2010; Ward et al., 2010; Cecchini et al., 2011). 

Finally, we analysed the direct toxic effect of enzymatic and acid hydrolysates against 

conidial germination on leaf disks. Guar enzymatic hydrolysates did not affect conidia 

germination, suggesting a mode of action mainly based on the stimulation of plant 

resistance mechanisms, as observed for NB. On the contrary, treatments with acid 

hydrolysates affected the conidia germination, because the use of strong acids, such 

as sulfuric acid during hydrolysis, caused an increase in the salinity of protein 

hydrolysates (Colla et al., 2015), and the formation of potassium sulfate in guar acid 

hydrolysates contributed to disease control. 
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CHAPTER 5. 

Conclusions 
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The current doctoral project presents an updated overview on the regulatory 

procedures for the registration of low-risk substances and biopesticide, and provides an 

innovative approach to reduce the use of chemical pesticides in integrated pest 

management programs, based on the preventive foliar application of protein-based 

products. This study shows a clear picture of the multiple mechanism of action 

displayed by the protein derivative NB, which acts like promising sustainable alternative 

for the control of grapevine downy and powdery mildew, considering its natural origin 

and the absence of negative effect on plant growth and yield, with minimal risks for 

grape production and quality (Nesler et al., 2015). As demonstrated for the control of 

powdery mildew (Nesler et al., 2015), the reduction of downy mildew symptoms is 

mainly based on the induction of resistance in grapevine, involving multiple signalling 

pathways. Furthermore, NB increased the number of culturable phyllosphere 

microorganisms, and changed proportions of some taxa that have previously been 

linked to the biological control of plant pathogens. Although the efficacy of NB in 

controlling grapevine downy mildew is mainly based on direct induction of grapevine 

resistance, modifying phyllosphere populations by increasing natural biocontrol agents 

with the application of selected nutritional factors can open new opportunities in terms 

of sustainable plant protection strategies. Aiming to avoid food safety concerns and 

high application costs, the current doctoral study focused on developing low-cost plant-

derived protein hydrolysates, providing new insights into their role as biopesticides, 

beyond the biostimulant activity. Our results indicate the efficacy of guar protein 

hydrolysates against the powdery mildew of Cucurbitaceae, and two specific hydrolysis 

methods led to the formation of bioactive products. As previously reported, the 

biocontrol activity is affected by the original protein source, the method and the degree 

of hydrolysis. Moreover, free amino acid and peptide composition could contribute to 

efficacy levels and regulate plant responses to pathogen infection. 

Thanks to the data produced in this doctoral project, it is possible to conceive 

the future development of protein-based products as low-risk active substances against 

phytopathogenic microorganisms. Preventive foliar application of protein-based 

products may offer considerable environmental and economic benefits, and they could 

activate systemic defence mechanisms. However, the economic advantages of using 

agricultural by-products (such as protein meals deriving from oil extraction) may be 

nullified, if expensive commercial enzymes need to be used in the hydrolysis process. 

Moreover, knowledge of the application of protein-based products to crops is far from 

being complete, and further studies are required in order to fully clarify the impacts of 
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phyllosphere microbial communities on the persistance of these compounds on plant 

leaves. 
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