
04 May 2024

Università degli studi di Udine

Original

Mass detection in nanobeams from bending resonant frequency shifts

Publisher:

Published
DOI:10.1016/j.ymssp.2018.06.022

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1143616 since 2019-01-22T19:11:35Z



Mass detection in nanobeams from bending resonant
frequency shifts

M. Dilenaa, M. Fedele Dell’Ostea,∗, J. Fernández-Sáezb, A. Morassia, R. Zaerab
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Abstract

Nanobeams are frequently used as vibration based-sensors to detect mass changes

caused, for instance, by attachment of foreign atoms/molecules or chemical/molecular

absorption. This paper deals with the bending vibration of a uniform nanobeam

carrying a single point mass (direct problem) as well as the identification of the

attached mass (inverse problem). The nanobeam is described using the modified

strain energy theory adapted to the Euler-Bernoulli beam model, and the nat-

ural vibration frequencies have been obtained. Under the assumption of small

intensity of the concentrated mass, a solution of the inverse problem based on

the measurement of the mass-induced shifts in the first two eigenfrequencies is

proposed. Both the cases of simply supported and cantilever end conditions are

discussed in detail. The theoretical method is verified by numerical simulation

and numerical tests agree well with analytical results.
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1. Introduction

The use of nanostructures (carbon nanotubes, CNTs, graphene sheets, GSs,

nanobeams and nanowires) as nano-sensors has focused a great interest of the

scientific community over the past few years, and a wide range of applications

such as gas detection, early disease detection, gene mutation detection, deoxyri-5

bonucleic acid (DNA) sequencing have been devised. Several reviews and books

have been recently published showing the different capabilities of the nanostruc-

tures as efficient nanosensors [1, 2, 3, 4, 5].

The study of nanobeams-based sensors constitutes a very active research field

(see [6, 4] and also Chapter 3 of [5], among others), due to the high sensitivity,10

low cost and fast response. Moreover, the high specificity of this kind of sensors

makes them very suitable in many applications for detection purposes in liquid,

gaseous, or vacuum media.

In this research we are interested in a class of mechanical nanoresonator

sensors which could be modelled as Euler-Bernoulli beams and, in particular,15

in the use of vibration based-methods as identification techniques. The sensing

principle is based on the measurement of the variations of lower order resonant

frequencies caused by (unknown) additional masses located on certain positions

of the initial system. The perturbation (added masses) can be caused by at-

tachments of foreign atoms, molecules or virus particles on the surface of the20

nanobeams, as well as by chemical/molecular absorption or by the protein-

protein and protein-DNA interactions.

The conventional detection principle considers the mass perturbation as local

addition of mass modelled, for detection purposes, as Dirac-delta point masses,

having unknown intensities and locations, superimposed to the given mass den-25

sity of the nanoresonator. This detection approach has been successfully used

by Morassi and Dilena [7] to identify a point mass located on full-scale classical

rods or beams (see also [8] for the case of rods), assuming that the added mass

2



is small with respect to the total mass of the structure. The identification prob-

lem for a point mass located on a classical rod or beam, without any a priori30

assumption on the smallness of the attached mass, has been recently solved by

Morassi and coworkers [9, 10]. It is possible to show that this inverse problem

occurs as an auxiliary problem in the identification of a (not necessarily small)

crack in a rod or beam from resonant frequency data.

It is worth to point out that all the above cited works [7, 8, 9, 10] consider35

that the mechanical systems obey the laws of classical elasticity. However, it is

well-known that classical continuum mechanics, due to its scale-free character,

cannot predict the relevant size effects present in the mechanical behaviour of

nanostructures which compose the nanoresonators. Therefore, other formula-

tions based on generalized continuum mechanics approaches taking into account40

this size-dependent behaviour must be explored.

Among the generalized continuum theories, we cite here three main groups:

1. The microcontinuum theory [11] including micropolar, microstretch and

micromorphic (3M) theories (Cosserat micropolar elasticity [12] should

be considered in this category, being the simplest formulation among 3M45

theories).

2. The strain gradient elasticity theory, including the couple stress theory

[13, 14, 15], the first and second strain gradient theories of Mindlin [16, 17],

the modified couple stress theory [18], and the modified strain gradient

theory [19].50

3. The nonlocal continuummechanics theories initiated by Kröner [20], Krumhansl

[21] and Kunin [22], simplified subsequently by Eringen and coworkers

[23, 24, 25], and formulated originally in integral form for linear homoge-

neous isotropic nonlocal elastic materials.

Eringen showed in [26] that, for a specific class of kernel functions, the55
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nonlocal integral constitutive equation can be transformed into a differential

form. Exploiting this transformation, which fairly simplify the analysis, and

from the pioneering work by Peddieson et al. [27], the differential approach

has been widely used to analyze the mechanical behaviour of nanostructures.

The list of papers related with these applications is extremely long, and it60

is not feasible to quoted here the whole of them. Therefore, we refer to the

recent published reviews on the application of nonlocal continuum theories to

nanostructures [28, 29, 30].

Several scholars used the Eringen elasticity theory to asses the vibrational

behaviour of beams with attached masses [31, 32, 33, 34], and some attempts65

have been done to identify the added mass [32, 33], but the analysed configura-

tions are rather specific and a general formulation of the identification problem

is still not available, to the authors’s knowledge.

Nevertheless, the main drawback using the fully nonlocal elasticity theory

of Eringen has been pointed out by Romano et al. [35], who shown that, in70

the majorities of the cases, the fully nonlocal elasticity theory leads to severely

ill-posed problems that have no solution in general. The analysis developed in

[35] clearly explains the paradoxical results found by several authors when this

theory is applied to the static behaviour of nanobeams in tension [36] and also

to the bending behaviour of nanocantilevers, both in static [27, 37, 38, 39, 40]75

and in dynamic regime [41]. However, it can be shown that using the two-phase

local/nonlocal constitutive model originally proposed by Eringen [24, 42], the

ill-posedness of the purely nonlocal problem can be removed, see, for example,

[35]. In this respect, several papers have been recently published using the

two-phase theory to study static bending [43, 44] and buckling [45] of Euler-80

Bernoulli nanobeams. The bending vibration of Euler-Bernoulli nanobeams has

been also studied using the Finite Element (FE) approach [46]. We refer to

the recent paper by Fernández-Sáez and Zaera [47] for an analytical study of

the free axial and bending vibration of a uniform beam modelled within the
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two-phase nonlocal elasticity theory.85

Other non-classical elasticity theories arise as attractive alternatives to over-

come the difficulties associated with the fully nonlocal elasticity framework.

Thus, the modified couple stress theories [18] improving the classical couple

stress formulations [13, 14, 15], or the modified strain gradient elasticity pro-

posed by Lam et al. [19] based on previous developments by Mindlin [17] and90

Fleck and Hutchinson [48]. These approaches need new additional equilibrium

equations to govern the behavior of higher-order stresses, and the corresponding

models contain new non-classical constants (one in the case of modified couple

stress model, and three when the modified strain gradient is used) in addition

to the two classical for isotropic linear elastic materials.95

It is worth to note that the modified strain gradient formulation is more

general that the couple stress theory. In fact, this last theory can be considered

a special case of the proposed one by Lam et al. [19]. The classical continuum

theory can be also recovered cancelling the scale parameters present in the

strain gradient theory. Moreover, the results obtained with this theory are in100

good agreement with the experimental results corresponding to bending tests

of micro-cantilevers [49]. Therefore, in this paper we use the modified strain

theory to take into account size effects in nanobeams.

Regarding the use of this theory to model the mechanical behaviour of

nanobeams, we mention the work by Kong et al. [50], who studied the static and105

dynamic bending behaviour of Euler-Bernoulli beams, and the research devel-

oped by Wang et al. [51], dealing with the analogous problem for Timoshenko

beams. From this, the study of beams using the modified strain gradient model

has led to numerous works. Akgoz and Civalek [52] derived analytical solutions

for the buckling problem of axially loaded nano-sized beams with both uni-110

form and variable cross section, using the Euler-Bernoulli theory. Later on, the

same authors used a non-classical sinusoidal shear deformation to study buck-

ling of a beam [53], and bending of beam embedded in an elastic medium [54].
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Mohammadi and Mahzoon [55] investigated thermal effects on postbuckling of

microbeams, considering Euler-Bernoulli theory and a nonlinear (Von-Kármán)115

strain measure. Miandoab et al. [56] estimated the Young’s modulus and the

length-scale parameters of the modified strain gradient model from experimen-

tal measurements of the voltages for static bending pull-in of different micro-

and nano-beams. Besides the previous analytical works, Kahrobaiyan et al. [49]

developed an Euler-Bernoulli beam element, and Zhang et al. [57] developed a120

Timoshenko beam element for the study of static bending, free vibration and

buckling behavior of microbeams. The interested reader can see the very recent

review by Thai et al. [30].

Using the modified strain gradient theory, Morassi et al. [58] analysed for

the first time the axial vibration of a uniform nanorod with a single attached125

mass, and proposed an identification method for determining mass intensity

and position based on an eigenvalue perturbation approach. To the authors’s

knowledge, there is no theoretical investigation on the bending vibration of

nanobeams with an attached point mass, and on related inverse problems, when

the modified strain gradient elasticity theory of Lam et al. [19] is used as130

constitutive framework. Therefore, main goals of the present research are: (i) to

derive a continuum mechanical model able to describe the bending vibration of

a nanoresonator modelled as a Euler-Bernoulli beam carrying a single additional

point mass; and (ii) to develop a method for the identification of the point mass

from minimal eigenfrequency data. In particular, as in [58], we shall consider135

the inverse problem in which the added mass is small with respect to the total

mass of the nanobeam.

We shall study in detail the effect of the point mass intensity, location as

well as the value of the scale parameter when the nanobeam is modelled using

the modified strain gradient theory proposed by Lam et al. [19] and is sub-140

jected to simply supported or cantilever boundary conditions. For the case of

small intensity of the concentrated mass, a first-order perturbative approach is
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used to estimate the natural frequencies of the nanobeam, and the approximate

results are compared with those corresponding to the exact solution. Basing

on the explicit expression of the first-order eigenfrequency change induced by145

the point mass, we are able to formulate and solve the inverse problem, con-

sisting in the identification of the location and intensity of the point mass in a

uniform nanobeam from minimal eigenfrequency data. In particular, for simply

supported nanobeams, the method gives closed-form expressions of both the

location and the intensity of the point mass in terms of a suitable pair of eigen-150

frequencies. To check the robustness of the identification method, the effect of

frequency measurement errors on the estimated variables (mass intensity and

location) has been illustrated by means of statistical analysis.

The paper is organized as follows. The problem of the free bending vibration

of the nanobeam with and without point mass is briefly recalled in Section 2.155

Section 3 is devoted to address the inverse problem of identifying the position

and the intensity of the small point mass from eigenfrequency shifts. Applica-

tions and results of numerical simulations, both for the direct and the inverse

eigenvalue problem, are reported and discussed in Section 4.

2. Free bending vibration of a nanobeam carrying a point mass160

2.1. Brief resume of the strain gradient theory for nanobeams in bending

The modified strain gradient theory was presented by Lam et al. [19]. Be-

sides the classical stress and strain definitions, higher-order stress and strain

gradients are included in this formulation. Accordingly, additional equilibrium

equations are needed and, for isotropic materials, these equations contain three165

non-classical material parameters in addition to the conventional Lame moduli.

Brief resumes of the theory are presented, among other papers, in references

[50], [59], [58].

Let us specialize the general modified strain gradient theory to the free

undamped small motions of a slender straight uniform nanobeam of length L,
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vibrating transversally with respect to its longitudinal axis x. Assuming the

kinematic hypotheses of the Euler-Bernoulli beams, the equation governing the

transverse displacement U(x, t) of the nanobeam reads as, see [50] for details,

SU IV (x, t)−KUV I(x, t) = −ρÜ(x, t), (1)

where U ′(x, t) and U̇(x, t) indicate the first partial derivative of the function

U with respect to x and t, respectively, x ∈ (0, L) and t > 0. The coefficient170

ρ = γA is the constant mass per unit length, where γ is the volume mass density,

and A is the cross-sectional area. The constant coefficients S and K take the

following expressions [59]:

S = EI + 2GAl20 +
120

225
GAl21 +GAl22, K = I

(
2Gl20 +

4

5
Gl21

)
. (2)

It should be noted that the expression of the parameter S differs from that given

by Kong et al. [50]. For the case l0 = l1 = l2 = l, the above parameters take175

the form:

S = EI +
795

225
GAl2, K =

14

5
IGl2. (3)

In the above expressions, I is the second moment of area about the axis through

the centroid of the cross-section, at right angles to the plane of vibration. G =

E/(2(1+ ν)), G > 0, is the shear modulus, defined in the classical way in terms

of the Young’s modulus E, E > 0, and ν, ν > 0, is the Poisson’s ratio. The180

parameters l0, l1 and l2 > 0, are the three additional materials constants needed

to complete the model. Note that when l0 = l1 = 0, the modified couple stress

theory is recovered, while for l0 = l1 = l2 = 0 this formulation coincides with

the classical continuum one.

Using the separation of variables method, the transverse displacement U(x, t)

can be expressed as

U(x, t) = u(x) exp iωt, (4)

where u = u(x) is the amplitude of the normal vibration mode (eigenfunction)

associated to the natural (radian) frequency ω, and i =
√
−1 is the imaginary
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unit. Substituting Eq.(4) into Eq.(1), the following ordinary differential equa-

tion is obtained

SuIV −KV I = λρu, in (0, L), (5)

λ = ω2 being the eigenvalue. We shall be concerned with the following sets of185

classical and non-classical boundary conditions, see Kong et al. [50].

Simply-Supported (S-S)

Classical Boundary conditions:

u(0) = 0, −Su′′(0) +KuIV (0) = 0, (6)

u(L) = 0, −Su′′(L) +KuIV (L) = 0. (7)

Non-classical boundary conditions:

u′′(0) = 0, u′′(L) = 0. (8)

Cantilever (C-F)190

Classical Boundary conditions:

u(0) = 0, u′(0) = 0, (9)

−Su′′(L) +KuIV (L) = 0, −Su′′′(L) +KuV (L) = 0. (10)

Non-classical boundary conditions:

u′′(0) = 0, Ku′′′(L) = 0. (11)

The non-classical boundary conditions selected above are only one of the

two possible non-classical boundary conditions for nanobeam models based on

strain gradient theories, see, for example, [49, 60, 61]. However, it should be195

noted that our identification method of the point mass is essentially based on

the explicit expression of the sensitivity of the eigenvalues of the problem to the
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added mass. As will be shown in Section 3 (Theorem 3.1), this expression is in-

dependent of the boundary conditions of the eigenvalue problem and, therefore,

the analysis could be extended without particular novelties also to the other200

set of non-classical boundary condition. For this reason, and also for the sake

of conciseness on the presentation of the results, our analysis will be focused

on the end conditions (8) and (11), for the simply-supported and the cantilever

nanobeam, respectively.

2.2. The eigenvalue problem with a point mass205

In this section we shall describe the free undamped bending vibration of a

uniform nanobeam, of length L, carrying a point mass M > 0 at x = s, 0 < s <

L. To fix ideas, we assume that the nanobeam is supported at the ends, namely

the transverse displacement and the classical bending moment vanish at the

boundary, together with the strain gradient (non classical boundary condition).

Therefore, the set of admissible configurations of the supported nanobeam is

given by

H = {f : (0, L) → R | f ∈ H3(0, s)∪H3(s, L), f = f ′′ = 0 at x = 0 at x = L,

[[f(s)]] = [[f ′(s)]] = [[f ′′(s)]] = 0}, (12)

where [[f(s)]] ≡ (f(s+)−f(s−)) = limx→s+ f(x)−limx→s− f(x), and (·)′ denotes

the derivative of (·) with respect to x. Hereinafter, for any integer m ≥ 0 and

for any real numbers a, b, with −∞ < a < b < +∞, Hm (a, b) denotes the real-

valued Hilbert space of the Lebesgue measurable functions f : (a, b) → R such

that
∫ b

a

(
f2 +

∑m
i=1

(
dif
dxi

)2)
< +∞, where dif

dxi is the ith weak derivative of f .210

Moreover, for i = 0, ...,m−1, dif
dxi (a

+) and dif
dxi (b

−) are the traces of the function

f and its derivatives up to the order m − 1 at x = a and x = b, respectively.

We recall that, when m = 0, H0(a, b) coincides with the space L2(a, b) of the

square integrable functions in (a, b).
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Following Kong et al. [50], the Rayleigh’s quotient R : H \ {0} → R of the

nanobeam is

R[φ] =

∫ L

0
(S(φ′′)2 +K(φ′′′)2)

Mφ2(s) +
∫ L

0
ρφ2

, (13)

where the positive constants S and K depend on the macroscopic and micro-215

scopic properties of the system, as it was shown in (2).

Basing on the Variational Theory presented in [62], the eigenvalues can be

defined by the following chain of minimum problems: for every n ≥ 1, we have

λ̃n = min
φ∈Vn\{0}

R[φ] = R[ũn], (14)

where

Vn = {g ∈ H | Mg(s)ũi(s) +

∫ L

0

ρgũi = 0, i = 1, ..., n− 1} (15)

and ω̃n =

√
λ̃n is the nth radian frequency of the free undamped vibration of

the nanobeam and ũn = ũn(x) is the corresponding eigenfunction.

The weak formulation of the eigenvalue problem (14)–(15) can be obtained

by imposing the stationarity of the Rayleigh’s quotient at φ = ũ, where ũ ∈

H\{0}. Let δ > 0 be a given number. For every ϵ ∈ [−δ, δ] and for every v ∈ H,

the function

Φ : [−δ, δ] → R, Φ(ϵ) = R[ũ+ ϵv], (16)

is continuous and with continuous first derivative in [−δ, δ]. The stationarity of

R[·] at ũ requires Φ′(ϵ)|ϵ=0 = 0. By imposing this condition and elaborating,220

we obtain the wished weak formulation of the eigenvalue problem (14)–(15):

to find {ũ ∈ H \ {0}, λ̃ ∈ R} such that∫ L

0

(Sũ′′v′′ +Kũ′′′v′′′) = λ̃

(
Mũ(s)v(s) +

∫ L

0

ρũv

)
for every v ∈ H. (17)

It should be noticed that, under our assumptions on the coefficients and on the

functional space H, there exists an infinite sequence of real positive eigenvalues

{λ̃n}∞n=1, with 0 < λ̃1 < λ̃2 < ... and limn→∞ λ̃n = ∞, see [63].
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Finally, the strong or differential formulation of the eigenvalue problem can

be derived from the weak formulation by assuming enough additional regularity

on ũ. By integrating by parts in (17) in the subintervals (0, s) and (s, L), and

following a standard procedure of Calculus of Variations, we have

(−Sũ′′ +KũIV )(0)v′(0) + (Sũ′′ −KũIV )(L)v′(L)+

+ [[(Sũ′′′ −KũV )(s)]]v(s) + [[(−Sũ′′ +KũIV )(s)]]v′(s) + [[−Kũ′′′(s)]]v′′(s)+

+

∫ L

0

(SũIV −KũV I)v = λ̃

(
Mũ(s)v(s) +

∫ L

0

ρũv

)
, (18)

for every v ∈ H. By the arbitrariness of v ∈ H, the strong formulation of the225

eigenvalue problem consists in determining {ũ ∈ (H6(0, s) ∪ H6(s, L)) \ {0},

λ̃ ∈ R+} such that

SũIV −KũV I = λ̃ρũ, in (0, s) ∪ (s, L),

ũ(0) = ũ′′(0) = 0,

(−Sũ′′ +KũIV )(0) = 0,

[[ũ(s)]] = 0,

[[ũ′(s)]] = 0,

[[ũ′′(s)]] = 0,

[[(−Sũ′′′ +KũV )(s)]] = −λ̃Mũ(s),

[[(−Sũ′′ +KũIV )(s)]] = 0,

[[Kũ′′′(s)]] = 0,

(−Sũ′′ +KũIV )(L) = 0,

ũ(L) = ũ′′(L) = 0.

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

The unperturbed eigenvalue problem can be deduced from (19)–(29) by taking

M = 0. It consists in finding {u ∈ H6(0, L) \ {0}, λ ∈ R+} such that230
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SuIV −KuV I = λρu, in (0, L),

u(0) = u′′(0) = uIV (0) = 0,

u(L) = u′′(L) = uIV (L) = 0,

(30)

(31)

(32)

see also Kong et al. [50] (Section 4).

The strong formulation of both the perturbed and unperturbed problems

(19)–(29) and (30)–(32), respectively, will be used in the next sections to find

closed form expressions for the eigenpairs of uniform nanobeams.235

3. Identification of a small point mass in a nanobeam by two resonant

frequencies

In this section we consider the problem of identifying a small point mass in

a nanobeam by minimal resonant frequency data, that is we assume

M << ρL. (33)

We first study the first-order effects of the added mass on the eigenvalues of the

unperturbed problem (Section 3.1). Next, we shall apply the resonant frequency

shift formula (35) to identify the point mass in a nanobeam under supported240

(Section 3.2) and cantilever (Section 3.3) end conditions.

3.1. First-order eigenvalue shift

The first order approximation for the eigenvalues of the perturbed problem

can be obtained by using the following result.

Theorem 3.1. Denoting by (λ̃n, ũn) the nth eigenpair of (19)–(29), n ≥ 1, for

a given position s ∈ (0, L) of the point mass, the function λ̃n = λ̃n(M) is a

C1-function in (0,∞), and we have

∂λ̃n

∂M
= −λ̃n

ũ2
n(s)

Mũ2
n(s) +

∫ L

0
ρũ2

n

. (34)
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A proof of Theorem 3.1 and expression (34) can be obtained by adapting245

the arguments of the proof of Proposition 3.1 in [58] to the weak formulation

(17). We omit the details.

By (34), the first order approximation of the nth perturbed eigenvalue is

λ̃n(M) = λn − λnu
2
n(s)M, (35)

where the mass-normalization condition
∫ L

0
ρu2

n = 1 has been taken into ac-

count.

We conclude this section with two remarks. First, it should be noted that250

the expression (35) of the resonant frequency induced shift by the small point

mass M is independent from the boundary conditions. Second, it is easy to

prove that expression (35) can be derived also for smooth variable (positive)

coefficients S = S(x), K = K(x) and ρ = ρ(x).

3.2. Identification in a supported nanobeam255

The eigenpairs of (30)–(32) for the unperturbed nanobeam under supported

end conditions have the following closed-form expression:

λn =
(nπ
L

)6 [K
ρ

+
S

ρ

1(
nπ
L

)2
]
, (36)

un(x) =

√
2

ρL
sin
(nπx

L

)
, n ≥ 1. (37)

In fact, a direct inspection shows that (36)–(37) are eigenpairs of (30)–(32).

In order to prove that these are the all eigenpairs of (30)–(32), we proceed by

contradiction. Let us assume there exists another eigenfunction y, y ∈ H6(0, L)\

{0}, associated to the eigenvalue λ, with λ ̸= λn for every n ≥ 1. By the weak

formulation of the eigenvalue problem for the eigenpairs (un, λn) and (y, λ), we

have ∫ L

0

(Su′′
ny

′′ +Ku′′′
n y′′′) = λn

∫ L

0

ρuny, (38)
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∫ L

0

(Su′′
ny

′′ +Ku′′′
n y′′′) = λ

∫ L

0

ρuny, (39)

and then, subtracting term by term and recalling that λ ̸= λn, we have∫ L

0

uny = 0, for every n ≥ 1. (40)

Equation (40) states that every Fourier’s coefficient of the function y, evaluated

on the family F = {sin
(
nπx
L

)
}∞n=1 vanishes. Since the family F is a complete

family in L2(0, L), we have y = 0 in [0, L], a contradiction.

By substituting the expressions (36)–(37) in (35) we obtain

CS
n = M sin2

(nπs
L

)
, (41)

with

CS
n = −

(
λ̃n − λn

)
λn

ρL

2
, n ≥ 1. (42)

Therefore, the procedure shown in Section 4 of [58] can be used to identify the

point mass by the pair of natural frequencies (λn, λ2n), n ≥ 1. More precisely,

if CS
n > 0, then the following closed-form expressions for mass intensity and

position hold

M =
CS

n

1− CS
2n

4CS
n

, (43)

P = cos

(
2nπs

L

)
=

CS
2n

2CS
n

− 1. (44)

Conversely, if CS
n = 0 for certain n ≥ 2, then P = 1 and the point mass

is located in one of the nodal points of the nth vibration mode. The mass260

intensity remains undetermined in this case. It should be noticed by (44) that

the measurement of the first two natural frequencies determines uniquely the

position of the point mass up to symmetry with respect to x = L
2 .
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3.3. Identification in a cantilever nanobeam

The eigenpairs {u ∈ H6(0, L) \ {0}, λ ∈ R+} of the unperturbed uniform265

nanobeam, with coefficients {S,K,L} and under cantilever end conditions, are

the solutions to the eigenvalue problem

SuIV −KuV I = ω2ρu, in (0, L),

u(0) = u′(0) = u′′(0) = 0,

−Su′′(L) +KuIV (L) = 0,

−Su′′′(L) +KuV (L) = 0,

Ku′′′(L) = 0,

(45)

(46)

(47)

(48)

(49)

see, for instance, [50], where ω =
√
λ, u = u(x) is the radian frequency and the

amplitude of the transverse harmonic vibration, respectively. Unlike the simply-

supported case discussed in the previous section, the eigenvalue problem (45)–

(49) does not admit closed-form expressions for the eigensolutions. Therefore,

a non trivial solution to (45) is sought as u(x) = exp(αx), where the exponent

α, α ∈ C and α2 = z, can be found by solving the polynomial equation

f(z, ω) = Kz3 − Sz2 + ω2ρ = 0. (50)

Depending on the value of ω2, we can distinguish the following three case:

i) (0 <) ω2 < 4
27

S3

ρK2 (low frequency regime);270

ii) ω2 > 4
27

S3

ρK2 (high frequency regime);

iii) ω2
∗ = 4

27
S3

ρK2 (critical frequency value ω∗).

In all cases cases i)–iii), there exists exactly one simple negative root of (50),

say z1, with − S
3K < z1 < 0, z1 < − S

3K for ω < ω∗, ω > ω∗, respectively. In

addition, in case i) there exist two simple real positive roots of f(z, ω), say z2

and z3, with 0 < z2 < 2S
3K and 2S

3K < z3 < S
K . Therefore, the general solution to
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the differential equation (45) can be written as

u(x) = c1 sin
(√

−z1x
)
+ c2 cos

(√
−z1x

)
+ c3 sinh (

√
z2x)+

+ c4 cosh (
√
z2x) + c5 sinh (

√
z3x) + c6 cosh (

√
z3x) , (51)

where ci, i = 1, . . . , 6, are real constants. In the high frequency regime ii), the

equation (50) has the simple negative root z1 and two complex conjugate roots

z2, z3 = z2, and the general solution to (45) takes the form

u(x) = c1 sin
(√

−z1x
)
+ c2 cos

(√
−z1x

)
+ c3 exp(ax) sin(bx)+

+ c4 exp(−ax) sin(bx) + c5 exp(ax) cos(bx) + c6 exp(−ax) cos(bx), (52)

where ci, i = 1, . . . , 6, are real constants and (a+ ib)2 = z2. Finally, the general

solution to the limit case iii) can be written as

u(x) = c1 sin
(√

−z1x
)
+ c2 cos

(√
−z1x

)
+

+ (c3 + c4x) exp

(
−
√

2S

3K
x

)
+ (c5 + c6x) exp

(√
2S

3K
x

)
. (53)

The boundary conditions (46)–(49) are written in terms of the general solution

to obtain a 6×6 homogeneous linear system M(ω2)c = 0 in the unknown vector

c = (c1, · · · , c6). In order to determine the natural frequencies as the roots of275

the frequency equation detM(ω2) = 0, the following numerical procedure was

used. Once an initial value for ω was set, say ω̃, the third order polynomial

equation (50) was solved with respect to the variable z and the expression of

the general solution to (45) was determined. By imposing the six boundary

conditions of the problem, the value of detM(ω̃2) was calculated. Next, by280

repeating the procedure for ω̃+∆ω, where ∆ω is a proper frequency resolution,

the graph of the function detM(ω2) was reconstructed in a given frequency

interval. Eigenfrequencies are evaluated by a bisection method applied between

two consecutive values of ω corresponding to a change of sign of detM(ω2).

Finally, for each eigenfrequency value, after solving M(ω2)c = 0, the vector c285
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of the constants of integration is calculated and the corresponding normal mode

is determined.

At this stage, the identification of the small point mass M from the first two

eigenvalue shifts δλ1, δλ2 can be formulated and solved. Writing the first-order

eigenvalue expression (35) for n = 1, 2, and dividing side-by-side, the possible

positions of the mass are the solutions of the equation

CC
2

CC
1

=
u2
2(s)

u2
1(s)

≡ g(s), (54)

where

CC
n = − (λ̃n − λn)

λn
, (55)

n = 1, 2. A typical behaviour of the function g = g(s) is plotted in Figure 1 for

the nanobeam considered in Section 4. Postponing the general study of g = g(s)

to future work, in the sequel we shall investigate numerically on the solutions of290

(54). It should be noticed that the ratio δλ2/δλ1 allows the unique localization

of the point mass whenever the ratio value is ’large’ enough, e.g., greater than

the critical value 1.00076 in Figure 1. On the contrary, two different positions

correspond to the same value of δλ2/δλ1 when the frequency ratio is smaller

than 1.00076. We refer to the second part of Section 4.3 for an application.295

3.4. An extension: identification of two point masses

We conclude Section 3 by presenting an extension of the above results to

multiple point mass detection. The analysis developed in the sequel will be

focussed on the identification of two point masses (s1,M1), (s2,M2) in a uniform

supported nanobeam from minimal resonant frequency shift data.300

Let us assume that 0 < s1 < s2 < L. The undamped free transverse

vibrations of the perturbed nanobeam satisfy the boundary value problem (19)–

(29), where the differential equation (19) holds in the set (0, s1)∪(s1, s2)∪(s2, L)

and the jump conditions (22)–(27) hold at the cross-sections x = s1, x = s2. On

18



proceeding as in Section 3.1 and with the above notation, the first order change

of the nth eigenvalue is given by

CS
n = M1 sin

2
(nπs1

L

)
+M2 sin

2
(nπs2

L

)
, (56)

where CS
n is defined in (42), n ≥ 1.

We formulate the inverse problem in terms of the changes in the first four

natural frequencies. By writing (56) for n = 1, 2, 3, 4, we obtain the following

system of nonlinear equations to be solved with respect to the four parameters

(s1,M1), (s2,M2):305 

M1 sin
2 πs1

L +M2 sin
2 πs2

L = CS
1 ,

M1 sin
2 2πs1

L +M2 sin
2 2πs2

L = CS
2 ,

M1 sin
2 3πs1

L +M2 sin
2 3πs2

L = CS
3 ,

M1 sin
2 4πs1

L +M2 sin
2 4πs2

L = CS
4 ,

(57)

(58)

(59)

(60)

where

CS
i > 0, i = 1, 2, 3, CS

4 ≥ 0. (61)

The unperturbed nanobeam is symmetric with respect to the mid-point of the

beam axis. Therefore, the configurations {(s1,M1), (s2,M2)}, {(L−s1,M1), (L−

s2,M2)}, {(L − s1,M1), (s2,M2)}, {(s1,M1), (L − s2,M2)} cannot be distin-

guished from natural frequency data. Taking into account this intrinsic non-

uniqueness of the problem, it is not restrictive to assume

0 < s1 < s2 ≤ L

2
. (62)

It is worth noticing that system (57)–(60) shows a structure similar to that

of the system (13) − (16) encountered in [64] in the identification of two open

cracks of different severity in a (classical) bending beam under simply supported

end conditions. Therefore, we take advantage of the identification method illus-310

trated in [64] for finding the explicit solution to the nonlinear system (57)–(60).

Omitting the details and referring the interested reader to the above mentioned
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paper for precise statements, in the sequel we simply recall the main result: the

knowledge of the first four natural frequencies allows to uniquely determine the

intensity and the location of the two point masses, up to symmetry with respect315

to the mid-span cross-section. Remarkably, closed-form expressions both for the

mass positions and intensities can be obtained in terms of the natural frequency

data.

4. Applications

Aim of this section is three-fold. First, we shall evaluate the accuracy of320

the perturbation approach illustrated in Section 3.1 in estimating the first two

natural frequencies of a nanobeam with a small point mass. Second, we shall

apply the resonant-based detection method described in Section 3.2 and 3.3

to identify the position and the intensity of the point mass. For the sake of

completeness, both the supported and cantilever end conditions are considered325

in this analysis. Finally, in the last part of the section we shall investigate on

the stability of the identification method to errors on the input data.

4.1. The specimen

For illustration purposes, the material properties of the nanobeam used in

the calculations are those used by Kong et al. [50], i.e., E = 1.44 GPa and330

ν = 0.38. We also assume that the three material length scale parameters are

equal, i.e., l0 = l1 = l2 = l = 17.6 µm, and that the equivalent cross-section

is rectangular with b/h = 2 and I = bh3

12 . The geometrical properties of the

nanobeam are collected in Table 1.

4.2. Exact versus perturbative eigensolutions335

The variation of the first two eigenvalues λ̃n, n = 1, 2, with respect to

the mass intensity M is plotted in Figures 2-3, and 4-5 for supported and

cantilever end conditions, respectively, and for different values of h such as
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h/l = 1, 2, 5, 10. The mass M is normalized to the total mass ρL of the

nanobeam, and three positions of the point mass are considered in simulations,

namely s/L = 0.10, 0.25, 0.50 and s/L = 0.10, 0.50, 0.90 in the supported and

cantilever case, respectively. Eigenvalues λ̃n are normalized to the correspond-

ing eigenvalues λ0n of the ”classical” local beam, that is the beam with K = 0,

S = EI, and without the attached mass. In particular, the figures compare

the exact values of the eigenvalues, as determined by solving the problem (19)–

(29) for the supported case and its analogous for the cantilever case, and their

approximate values obtained via the perturbative solution (35). As an exam-

ple, and adopting the notation of Section 3.3, the frequency equation of the

supported nanobeam in the low frequency regime (i.e., see case i) λ < ω2
∗) is

fS−S(λ) = K
√
−z1

√
z2
√
z3(z1 − z2)

2(z1 − z3)
2(z2 − z3)(z3 − z2)·

· sin
(
L
√
−z1

)
sinh (L

√
z2) sinh (L

√
z3)−

1

2
M(z1 − z2)(z1 − z3)(z2 − z3)·

· {
√
−z1

√
z3λ(z1 − z3) sin

(
L
√
−z1

)
sinh (L

√
z2) sinh (L

√
z3) sinh (2s

√
z2)−

−
√
−z1

√
z2λ(z1 − z2) sin

(
L
√
−z1

)
sinh (L

√
z2) sinh (L

√
z3) sinh (2s

√
z3)+

+
√
z2
√
z3λ(z3 − z2) sinh (L

√
z2) sinh (L

√
z3) cos

(√
−z1(L− 2s)

)
−

− 2
√
−z1

√
z3λ(z1 − z3) sin

(
L
√
−z1

)
cosh (L

√
z2) sinh (L

√
z3) sinh

2 (s
√
z2)+

+ 2
√
−z1

√
z2λ(z1 − z2) sin

(
L
√
−z1

)
sinh (L

√
z2) cosh (L

√
z3) sinh

2 (s
√
z3)−

−
√
z2
√
z3λ(z3 − z2) cos

(
L
√
−z1

)
sinh (L

√
z2) sinh (L

√
z3)}. (63)

An expression analogous to (63) has been determined for the uniform nano-

cantilever with a single point mass. However, the closed-form expression is

rather huge and it is not reported here for the sake of brevity.

Numerical results suggest that, besides on the mass intensity M , the agree-

ment between exact and first-order eigensolutions depends on the position of340

the attached point mass. Typically, the smaller the amplitude un(s), the better

the accuracy. In the supported case, the maximum difference is encountered

at s/L = 0.50 and s/L = 0.25 for the first and second mode, respectively.
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Maximum deviations are about 1, 4, 9 % (first mode) and 1, 5, 11 % (second

mode) for M/(ρL) = 0.05, 0.10, 0.15, respectively. In the cantilever case, per-345

centage errors on the first eigenfrequency for s/L = 0.90 are about 2, 9, 20%

for M/(ρL) = 0.05, 0.10, 0.15, respectively. Numerical results show that the

accuracy of the perturbative frequency estimate seems to be quite uniform with

respect to the scale factor l, at least in the range of values considered.

4.3. Identification results350

In this section, numerical applications of the identification method are pre-

sented, both for supported and cantilever end conditions. Resonant frequencies

are obtained by solving exactly the direct problem in referential and perturbed

configuration for different position and intensity of the point mass. Simulations

are performed with noise-free data. It should be noticed, however, that even355

in these cases an intrinsic error is present on the eigenfrequency data, since the

higher order terms on M are neglected in the first order Taylor series approxi-

mation (35).

The first series of simulations refers to the supported nanobeam. Figure 6

shows the results varying continuously the position s/L of the point mass within360

the interval [0, 1/2] and using selected values of the normalized mass intensity

M/(ρL) = 0.010, 0.025, 0.050, 0.100, 0.150, 0.200. These values correspond ap-

proximately to maximum relative shifts δλn/λn equal to 2, 5, 9, 17, 23, 29% and

2, 5, 9, 16, 22, 26% for n = 1 and n = 2, respectively. Identification errors on the

mass position are of order of few points per cent and, surprisingly enough, the365

estimate remains accurate even for high mass values, e.g., the maximum error

is about 5% for M/(ρL) = 0.200. In particular, the discrepancy vanishes when

the point mass approaches either the support or the mid-point of the nanobeam,

and the maximum error is typically attained at s/L ≃ 0.200. The determination

of the mass intensity is less accurate, with errors up to 15− 30% and 40− 50%370

for M/(ρL) = 0.050 − 0.100 and M/(ρL) = 0.150 − 0.200, respectively. More
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precisely, when the point mass is approaching the support, the estimate of the

intensity becomes very inaccurate and the identification is seriously compro-

mised. This behaviour is a consequence of the vanishing sensitivity of both the

eigenvalues (e.g., un(0) = 0, n = 1, 2) and of the occurrence of an indeterminate375

quotient 0/0 in the expression (43) of M as s → 0+.

Figure 7 shows the results of identification for the cantilever nanobeam.

According with the analysis developed in Section 3.3 (see also Figure 1), the

knowledge of the changes in the first two eigenfrequencies is not always suffi-

cient for the unique localization of the point mass. The results presented in380

Figure 7 refer to the actual position of the point mass only. In particular, the

mass intensity M has been evaluated via (35) with n = 1. As in the sup-

ported case, mass location errors are almost negligible, whereas the accuracy

on mass intensity evaluation is worse, with maximum errors up to 30%, 40%

for M/(ρL) = 0.150, 0.200, respectively. Some numerical instability was found385

for point mass located near the clamped end, probably because of very small

eigenfrequency variations between unperturbed and perturbed configuration.

4.4. Stability of identification to errors on the frequency data

In order to test the robustness of the method, the identification for the

cantilever in bending vibration was carried out by perturbing the noise-free

eigenvalues λ̃n, n = 1, 2 as follows√
λ̃err
n =

√
λ̃n + τn. (64)

Here, τn is a random Gaussian variable with vanishing mean and standard

deviation σ such that 3σ = Π(
√
λn −

√
λ̃n), where Π is the maximum ad-390

mitted error. Ten thousands simulations were performed by fixing the mass

position at s = 0.55L, and investigating several levels of the maximum er-

ror Π and of the normalized mass intensiy M/(ρL). Table 2 collects the re-

sults obtained for the set of values Π = 0.05, 0.10, 0.15, 0.20 and M/(ρL) =
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0.010, 0.025, 0.050, 0.100, 0.150, 0.200. It can be seen that the estimates are sta-395

ble and accurate, with percentage deviations for Π = 0.20, defined as the ratio

between the standard deviation and the average of considered parameter, less

than 2% and 5% for the mass position and the mass intensity, respectively.

5. Conclusions

Nanobeams are commonly used for mass-sensing, provided by the shift of400

natural frequencies from attached nanoparticles. At the scale of these sensors,

the hypotheses of the classical continuum mechanics are no longer valid due to

the discreteness of the matter. Thus generalized continuum mechanics theories

should be used to capture the dynamic features of the system. To the authors

knowledge, no theoretical investigation on the bending vibration of nanobeams405

with attached point masses using the modified strain gradient elasticity theory

proposed by Lam et al. [19] has been previously presented. The present paper

is a contribution to this matter. More precisely, we have focused on deriving

a continuum mechanical model for the bending vibration of a nanoresonator

modelled as an Euler-Bernoulli beam with an attached small point mass, and410

on developing a method for the identification of the mass from minimal eigen-

frequency data. The first order approximation for the eigenvalues of the beam

with attached mass have been obtained for supported and cantilever bound-

ary conditions, which seems to be in good agreement with the exact results for

moderate values of the mass. This allows to propose a method for the unique415

identification of the mass intensity by a pair of natural frequencies; the first

two have been considered in the numerical calculations presented in this work.

Likewise the mass position can be uniquely identified, up to a symmetrical point

in the supported case, and up to critical ratio of the two frequency shifts in the

cantilever case. In general terms, the accuracy of the method is very high for420

the position, and somewhat worse for the intensity. Moreover, the effect of the

frequency measurement errors on the estimated variables (mass intensity and
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location) has been illustrated with a statistical analysis, showing the robustness

of the identification method. The results obtained herein encourage the use of

bending vibration of nanobeams as a sensing technique, and show the feasibil-425

ity of using strain gradient theories -more suitable for the analysis of solids at

the nanoscale– for the identification of mass changes. Furthermore, the present

study opens the possibility to investigate the identification of a point mass of

finite - not necessarily small - magnitude. To that aim, the methods presented

in [9] and [10] may be useful.430
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[64] L. Rubio, J. Fernández-Sáez, A. Morassi, Identification of two cracks with

different severity in beams and rods from minimal frequency data, Journal

of Vibration and Control 22 (2016) 3102–3117.

32



Table Captions

Table 1. Geometrical properties of the nanobeam. Length in µm.610

Table 2. Results of identification for the cantilever nanobeam with noise data

as in (64) for point mass M located at s = 0.55L, for increasing (normalized)

mass intensity M/ρL and different values of the maximum error Π. Percentage

errors: err(s) = 100 × (saverage − sexact)/L, err(M/(ρL)) = 100 × (Maverage −

Mexact)/Mexact.615
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Figure Captions

Figure 1. Typical behaviour of the function g(s) defined in equation (54).

Figure 2. Simply supported nanobeam. Normalized first eigenvalue versus

dimensionless point-mass, for different mass position and different values of the

length scale parameter.620

Figure 3. Simply supported nanobeam. Normalized second eigenvalue versus

dimensionless point-mass, for different mass position and different values of the

length scale parameter

Figure 4. Cantilever nanobeam. Normalized first eigenvalue versus dimension-

less point-mass, for different mass position and different values of the length625

scale parameter.

Figure 5. Cantilever nanobeam. Normalized second eigenvalue versus dimen-

sionless point-mass, for different mass position and different values of the length

scale parameter.

Figure 6. Supported nanobeam: identification using the variations of the630

first two eigenfrequencies of the bending vibration for different values of the

point-mass. Left column: percentage errors on the mass position, err(s) =

100× (sident−sexact)/L. Right column: percentage errors on the mass intensity,

err(M/(ρL)) = 100× (Mident −Mexact)/Mexact.

Figure 7. Cantilever nanobeam: identification using the variations of the635

first two eigenfrequencies of the bending vibration for different values of the

point-mass. Left column: percentage errors on the mass position, err(s) =

100× (sident−sexact)/L. Right column: percentage errors on the mass intensity,

err(M/(ρL)) = 100× (Mident −Mexact)/Mexact.
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Table 1: Geometrical properties of the nanobeam. Length in µm.

Thickness Width Length

h b = 2h L = 20h

50 100 1000
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Table 2: Results of identification for the cantilever nanobeam with noise data as in (64)

for point mass M located at s = 0.55L, for increasing (normalized) mass intensity M/ρL

and different values of the maximum error Π. Percentage errors: err(s) = 100 × (saverage −

sexact)/L, err(M/(ρL)) = 100× (Maverage −Mexact)/Mexact.

Case Stat. property Mass position s/L Mass intensity M/ρL

M/ρL Π = 0.05 Π = 0.10 Π = 0.15 Π = 0.20 Π = 0.05 Π = 0.10 Π = 0.15 Π = 0.20

0.010 min 0.541 0.534 0.520 0.513 0.0093 0.0089 0.0086 0.0079

max 0.562 0.567 0.584 0.589 0.0103 0.0109 0.0111 0.0117

average 0.552 0.552 0.552 0.552 0.0098 0.0098 0.0098 0.0098

error (%) 0.2% 0.2% 0.2% 0.2% -1.7% -1.7% -1.6% -1.6%

std dev 0.0024 0.0048 0.0073 0.0097 0.00012 0.00024 0.00036 0.00048

0.025 min 0.544 0.537 0.524 0.516 0.0229 0.0218 0.0203 0.0197

max 0.563 0.572 0.578 0.587 0.0252 0.0266 0.0275 0.0282

average 0.554 0.554 0.554 0.554 0.0240 0.0240 0.0240 0.0240

error (%) 0.4% 0.4% 0.4% 0.4% -4.1% -4.1% -4.0% -4.1%

std dev 0.0023 0.0048 0.0071 0.0096 0.00029 0.00058 0.00087 0.00115

0.050 min 0.550 0.541 0.529 0.520 0.0441 0.0425 0.0390 0.0364

max 0.567 0.577 0.584 0.593 0.0481 0.0509 0.0524 0.0548

average 0.559 0.559 0.558 0.559 0.0461 0.0461 0.0461 0.0461

error (%) 0.9% 0.9% 0.8% 0.9% -7.8% -7.8% -7.8% -7.8%

std dev 0.0023 0.0046 0.0069 0.0092 0.00055 0.00109 0.00164 0.00218

0.100 min 0.558 0.549 0.541 0.522 0.0818 0.0780 0.0737 0.0721

max 0.573 0.584 0.592 0.601 0.0895 0.0936 0.0972 0.1035

average 0.566 0.566 0.566 0.566 0.0858 0.0858 0.0858 0.0859

error (%) 1.6% 1.6% 1.6% 1.6% -14.2% -14.2% -14.2% -14.1%

std dev 0.0022 0.0044 0.0067 0.0088 0.00099 0.00201 0.00300 0.00397

0.150 min 0.563 0.553 0.543 0.539 0.1156 0.1110 0.1046 0.0989

max 0.581 0.588 0.595 0.604 0.1261 0.1311 0.1383 0.1419

average 0.572 0.572 0.572 0.572 0.1206 0.1206 0.1206 0.1206

error (%) 2.2% 2.2% 2.2% 2.2% -19.6% -19.6% -19.6% -19.6%

std dev 0.0021 0.0043 0.0064 0.0085 0.00137 0.00272 0.00409 0.00543

0.200 min 0.570 0.561 0.553 0.546 0.1456 0.1396 0.1290 0.1272

max 0.585 0.591 0.603 0.605 0.1578 0.1631 0.1714 0.1821

average 0.578 0.578 0.578 0.578 0.1517 0.1517 0.1517 0.1516

error (%) 2.8% 2.8% 2.8% 2.8% -24.2% -24.2% -24.2% -24.2%

std dev 0.0020 0.0041 0.0062 0.0082 0.00170 0.00335 0.00502 0.00677
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1.00076

Figure 1: Typical behaviour of the function g(s) defined in equation (54).
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Figure 2: Simply supported nanobeam. Normalized first eigenvalue versus dimensionless

point-mass, for different mass position and different values of the length scale parameter.
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Figure 3: Simply supported nanobeam. Normalized second eigenvalue versus dimensionless

point-mass, for different mass position and different values of the length scale parameter.
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Figure 4: Cantilever nanobeam. Normalized first eigenvalue versus dimensionless point-mass,

for different mass position and different values of the length scale parameter.
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Figure 5: Cantilever nanobeam. Normalized second eigenvalue versus dimensionless point-

mass, for different mass position and different values of the length scale parameter.
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Figure 6: Supported nanobeam (19)–(29): identification using the variations of the first two

eigenfrequencies of the bending vibration for different values of the point-mass. Left column:

percentage errors on the mass position, err(s) = 100 × (sident − sexact)/L. Right column:

percentage errors on the mass intensity, err(M/(ρL)) = 100× (Mident −Mexact)/Mexact.
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Figure 7: Cantilever nanobeam: identification using the variations of the first two eigen-

frequencies of the bending vibration for different values of the point-mass. Left column:

percentage errors on the mass position, err(s) = 100 × (sident − sexact)/L. Right column:

percentage errors on the mass intensity, err(M/(ρL)) = 100× (Mident −Mexact)/Mexact.
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