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Dear Editor, 

 

I would like to submit the manuscript entitled “Reducing the glycemic index of short dough 

biscuits by using apple pomace as a functional ingredient” by Marilisa Alongi, Sofia Melchior, 

Monica Anese for consideration for publication in LWT - Food Science and Technology.  

The manuscript reports on the formulation of short dough biscuits with reduced glycemic index 

by partially replacing wheat flour with apple pomace. Reusing apple pomace, which is a by-

product of apple juice processing, within food formulation would concomitantly satisfy the 

need for dietary strategies to manage type 2 diabetes and for the valorization of food 

discards.  
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Monica Anese 
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Abstract 11 

The present research aimed at enriching short dough biscuits with apple pomace to evaluate the 12 

effect on glycemic index. Apple pomace was dehydrated and milled to a powder, which was 13 

characterized for soluble and insoluble dietary fiber, and for phenolic content. Apple pomace was 14 

used to partially replace wheat flour (10 and 20% w/w) in biscuits, which were characterized for 15 

their sensory properties and submitted to in vitro digestion to predict the glycemic index. Results 16 

indicated that the apple pomace contained impressive amounts of dietary fiber (nearly 40%), mainly 17 

represented by insoluble fiber (more than 25%). Apple pomace led to a significant reduction in the 18 

expected glycemic index of reformulated biscuits. The conventional biscuit presented a glycemic 19 

index of 70 and was thus classified as high glycemic index food. Substituting wheat flour by 10 and 20 

20% with apple pomace reduced biscuit glycemic index to 65 and 60 respectively, thus ranking the 21 

product within the intermediate glycemic index foods. 22 

 23 

Keywords: type 2 diabetes; formulation; apple pomace; by-product, short dough biscuits 24 

 25 

26 
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1. Introduction 27 

During the last century dietary habits have considerably changed, leading to an excessive 28 

consumption of highly refined sugars and high-calorie-density foods. Such dietary change, together 29 

with sedentary lifestyle, has been correlated with the increasing incidence of chronic metabolic 30 

diseases. Among these, one of the most alarming is type 2 diabetes, which is expected to become 31 

the 7
th

 death cause by 2030 worldwide (WHO, 2003). As type 2 diabetes is characterized by chronic 32 

hyperglycemia, dietary changes have been suggested to limit its occurrence (American Diabetes 33 

Association, 2004; WHO, 2003). Several foods have demonstrated antidiabetic properties, due to 34 

the presence of bioactive compounds, which mainly act by modulating digestive enzyme activity 35 

and intestinal transit rate, resulting in a low glycemic index. Phenolic compounds have been 36 

reported to inhibit α-amylase and α-glucosidase, thus slowing down carbohydrates digestion and 37 

glucose absorption (Kwon, Apostolidis, & Shetty, 2008; Ríos, Francini, & Schinella, 2015). The 38 

latter is also affected by dietary fiber that increases matrix viscosity and modifies gastrointestinal 39 

transit, resulting in a reduced accessibility of starch to enzymatic hydrolysis (Brennan, 2005; 40 

Juvonen et al., 2009). 41 

A promising formulation approach for type 2 diabetes management is thus using functional 42 

ingredients rich in phenolics and dietary fiber, which are typically contained in fruit and vegetables 43 

(Stamataki et al., 2016; Laguna, Salvador, Sanz, & Fiszman, 2011; Plazzotta, Calligaris, & 44 

Manzocco, 2018). These are often processed, generating tons of discards that are generally disposed 45 

of or used to produce energy, but that are still rich in bioactives (Rodríguez, Jiménez, Fernández-46 

Bolaños, Guillén, & Heredia, 2006). Biochemical processing or chemical extraction have also been 47 

proposed to recover such value-added compounds, but they are costly and require an efficient 48 

management framework. Reusing processing discards, upon only negligible changes, might be a 49 

promising approach to obtain foods designed to address specific functions. 50 

It is noteworthy that each year 10 million tons apple pomace are obtained from apple juice 51 

production worldwide. Apple pomace consists of flesh, peels, seeds, and stalks and contains a great 52 
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amount of high value-added compounds, mainly represented by dietary fiber (Wolfe & Liu, 2003). 53 

The aim of the present study was to elucidate whether a partial replacement of wheat flour by apple 54 

pomace in a short dough biscuit decreased its glycemic index. 55 

 56 

2. Materials and methods 57 

 58 

2.1.Apparatus and chemicals 59 

The following apparatuses were used to carry out the experimental trials: vacuum oven (Bicasa, 60 

Milano, Italy), oven (Electrolux Professional, Pordenone, Italy), mill (Retsch, Hann, Germania), 61 

kneading machine (Kenwood, Milano, Italy), food laminating machine (Imperia & Monferrina, 62 

Roma, Italy), centrifuge (Brea, California, USA), spectrophotometer (Shimadzu Corporation, 63 

Kyoto, Japan), micro-centrifuge (Hittich, Tuttlingen, Germania), tristimulus colorimeter (Minolta, 64 

Osaka, Japan), texture analyzer (Instron LTD, High Wycombe, UK), freeze-drier (Edwards Alto 65 

Vuoto, Milano, Italia). α-Amylase from Bacillus sp., porcine pepsin, porcine pancreatin, porcine 66 

bile extract, amyloglucosidase from A. niger, L-(+)-arabinose, D-(-)-fructose, D-(+)-glucose, sucrose, 67 

HCl, NaOH, CaCl2(H2O)2, Na2CO3, NaHCO3, NaCl, KCl, KH2PO4, MgCl2(H2O)6, (NH4)2CO3 and 68 

total dietary fiber assay kit were purchased form Sigma Aldrich (Milano, Italy). Folin-Ciocâlteau’s 69 

reagent, acetonitrile and ethanol 98% (v/v) were purchased form Carlo Erba Reagents (Milano, Italy). 70 

Deionized water (System advantage A10®, Millipore S.A.S, Molsheim, France) was used. 71 

 72 

2.2.Apple pomace preparation 73 

Apple pomace, consisting of peel, pulp, seeds, and stem, was recovered during the extraction of 74 

Golden delicious apple juice at laboratory or industrial scale. It was immediately dehydrated by 75 

using a vacuum oven (75 °C and 0.1 MPa) or a freeze-drier. Oven-dried and freeze-dried apple 76 

pomaces obtained at laboratory scale were named APod and APfd, respectively, while apple pomace 77 
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recovered at industrial scale was oven-dried and named APind. Samples were milled (particle size < 78 

200 µm) and stored at 20 °C and 5% RH. 79 

  80 

2.3.Short dough biscuits preparation 81 

Biscuit without (Control) or with 10% (R10) or 20% (R20) apple pomace were prepared (Table 1). 82 

The ingredients were mixed by a kneading machine and the dough was left to stand for 30 min at 4 83 

°C. The dough was rolled out into a 2-mm layer and 50 mm diameter discs were obtained. Samples 84 

were baked at 140 °C for 15 min, removed from the oven, cooled to room temperature and sealed 85 

under vacuum in flexible polylaminate pouches for storage in dark conditions until analysis. 86 

 87 

2.4.In vitro digestion 88 

In vitro digestion was carried out according to the protocol proposed by Minekus et al. (2014), with 89 

minor changes. The simulated salivary (SSF), gastric (SGF) and intestinal (SIF) fluids were 90 

prepared and stored at 4 °C. The fluids were preheated to 37 °C just before in vitro digestion. 91 

Biscuits were milled for 30 s and 1 g sample was placed into a 50-mL falcon tube with 0.1 g L-(+)-92 

arabinose as internal standard. The oral phase was started by adding 6 µL of CaCl2(H2O)2 (0.3 M), 93 

194 µL of water and 800 µL of a 6.4 mg/mL α-amylase solution, prepared in SSF and providing 75 94 

U/mL activity in the final mixture. The sample was maintained at 37 °C under stirring for 2 min. At 95 

the end of the oral phase, the pH was adjusted to 3.0 with 40 µL HCl (1 M). Subsequently, 140 µL 96 

water and 1.82 mL of a 0.31 mg/mL pepsin solution, prepared in SGF and providing 2,000 U/mL 97 

activity in the final mixture, were added to start the gastric phase. The mix was stirred at 37 °C for 2 98 

h. At the end of the gastric phase, the pH was adjusted to 7.0 with 30 µL NaOH (1 M). The 99 

intestinal phase was initiated by adding 8 µL CaCl2(H2O)2 (0.3 M), 262 µL of water, 3.2 mL of 100 

22.15 mg/mL pancreatin solution, prepared in SIF and providing 100 U/mL activity in the final 101 

mixture, and 0.5 mL of 160 mM bile extract prepared in SIF. The mix was stirred at 37 °C for 2 h. 102 

A secondary intestinal phase was conducted by adding 0.1 mL amyloglucosidase to the digestion mix, 103 
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which was maintained under stirring at 37 °C for 2 h. After 20, 60, 90 and 120 min from the beginning 104 

of the secondary intestinal phase, a sample was collected and the in vitro digestion was stopped by 105 

adding ethanol 98% (1:4 v/v). Samples were centrifuged at 10,000 g for 5 min at 4 °C. The 106 

supernatant was collected and analyzed for sugar content, as described in paragraph 2.5.3. White 107 

bread (62.3% flour, 34.6% water, 1.2% salt, 1.0% bakery yeast, 0.9% sugar, w/w) was also in vitro 108 

digested and analyzed for sugar content. 109 

 110 

2.4.1. AUC and glycemic index computation 111 

Glucose release during the secondary digestion phase was plotted against time and the area under 112 

curve (AUC) was obtained (Matthews et al., 1990). The glycemic index was computed (Wolever, 113 

Jenkins, Jenkins, & Josse, 1991) as reported in Equation 1. 114 

 115 

   
    

    
      (1) 116 

 117 

where      and      represent respectively the area under curve of glucose release relevant to the 118 

sample or to the reference food, i.e. white bread (Brouns et al., 2005). 119 

 120 

2.5.Solids and dietary fiber 121 

Total solids were determined by gravimetric method (AOAC, 1995). Soluble and insoluble dietary 122 

fiber was analyzed by using the total dietary fiber assay kit (AOAC International, Method 985.29, 123 

1997), and expressed on dry weight basis. 124 

 125 

2.6.Total phenolic content 126 

Five g apple pomace were extracted in 75 mL water, for 60 min at 100 °C. The mixture was cooled 127 

down and centrifuged at 7,000 g for 10 min at 4 °C to collect the apple pomace extract. Total 128 
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phenol content was determined according to Singleton, Orthofer, and Lamuela-Raventos (1999). 129 

Briefly, 100 µL apple pomace extract was added to 900 µL water, 5 mL Folin-Ciocâlteau’s reagent 130 

and 3.5 mL of Na2CO3 (150 g/L). The mixture was incubated for 2 h at 25 °C and absorbance was 131 

measured at 765 nm. Total phenolic content was calculated as mggallic acid equivalent (GAE)/gdry weight. 132 

 133 

2.7.Sugars 134 

The apple pomace extract and the supernatant collected after in vitro digestion of biscuits and bread 135 

were analyzed according to Englyst et al. (1999). Sugar were separated by an HPLC (Agilent 1260 136 

Infinity Quaternary LC, Agilent Technologies, Germany) equipped with an auto-injector (1260 137 

ALS), a chromatographic column (Amino 100 A, 5 µm, 250 mm, 4.6 mm, SephaChrom, Rho, 138 

Italy), a temperature control system (1260 TCC) and a quaternary pump (1260 Quat Pump), 139 

generating a flow rate of 1 mL/min. The mobile phase was represented by water and acetonitrile 140 

(30:70, v/v) and the injection volume was 20 µL. Monosaccharides were detected by a refractive 141 

index detector (1260 RID). A solution of D-(+)-glucose (0.05 g/mL), D-(-)-fructose (0.025 g/mL) 142 

and sucrose (0.05 g/mL) was diluted to 1:5, 1:10, 1:20 (v/v), added with L-(+)-arabinose (0.01 143 

g/mL) as internal standard and used for calibration. 144 

 145 

2.8.Water-holding capacity (WHC) and oil-adsorption capacity (OAC) 146 

Apple pomace WHC was determined according to Sudha, Baskaran, and Leelavathi (2007), with 147 

slight modifications. Aliquots of 0.05 g of apple pomace were mixed with 1 mL water in a 148 

microcentrifuge tube, centrifuged at 13,000 g for 30 min, and decanted the excess water. The 149 

sample was weighed, and WHC was expressed as gwater/gdry weight. OAC was similarly determined, 150 

by using sunflower oil instead of water. OAC was expressed as goil/gdry weight. 151 

 152 
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2.9.Color 153 

Color was analyzed using a tristimulus colorimeter and expressed in CIE units as L* 154 

(lightness/darkness), a* (redness/greenness) and b* (yellowness/blueness) (Clydesdale, 1978). 155 

 156 

2.10. Firmness and thickness 157 

Dough firmness was determined by penetrating 3 mm a 20-mm-thick dough layer at 100 mm/min 158 

with a 6.2 mm cylindrical probe attached to a 0.1 kN unit. Biscuit firmness was determined by 159 

compressing 10 g sample at 150 mm/min speed with a ten-blade Kramer shear cell attached to a 5.0 160 

kN unit. Force-distance curves were recorded (Automated Materials Testing System, Version 5, 161 

Series IX, Instron Ltd.), and firmness was taken as the maximum force required to compress 162 

samples. The thickness of biscuits before and after baking was also measured. 163 

 164 

2.11. Sensory analysis 165 

Thirty panelists were involved in the sensory evaluation under laboratory conditions. A 7-point 166 

hedonic scale (1 low intensity, 7 high intensity) was used and panelists were instructed to compare 167 

the sample (R10 and R20) to the reference (control), which was attributed 4 points. Seven 168 

parameters representative of quality attributes (Popov-Raljić, Mastilović, Laličić-Petronijević, 169 

Kevrešan, & Demin, 2013), i.e. texture, crispiness, sweetness, sourness, shortbread flavor, baked 170 

flavor and fruit flavor, were considered. 171 

 172 

2.12. Statistical analysis 173 

Data were reported as mean ± standard deviation of at least three measurements on two replicated 174 

samples. Analysis of variance (ANOVA) was performed with significance level set to p<0.05; the 175 

Bartlett procedure was used to test the homogeneity of variances, using R software, version 3.4.3 176 

(The R Foundation for Statistical Computing, 2018). 177 

 178 
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3. Results and discussion 179 

3.1.Physical and chemical properties of apple pomace 180 

Results of chemical and physical analyses of APod and APfd are reported in Table 2. Both APod and 181 

APfd presented a low moisture content, accounting for nearly 5%. Dry matter was mainly 182 

represented by TDF (37%), consisting of SDF and IDF with a ratio 1:3, in agreement with the 183 

literature (Carson, Collins, & Penfield, 1994; Rana, Gupta, Rana, & Bhushan, 2015). TDF was 184 

determined only in the APod sample as drying is not expected to affect its content. TDF was in the 185 

same range as reported by other authors, i.e. 30 to 50% of total solids (Yan & Kerr, 2013; Shea et 186 

al., 2015; Sudha et al., 2007). The wide span of fiber concentration described in the literature can be 187 

attributed to the high matrix variability. Additionally, since apple pomace residues from apple juice 188 

processing, its composition is affected not only by the extrinsic (e.g. climatic conditions) and 189 

intrinsic (e.g. variety, ripeness degree) factors influencing apple growth, but also by storage 190 

conditions and dehydration techniques (Gullón, Falqué, Alonso, & Parajó, 2007). The latter, and in 191 

particular thermal processing, are expected to induce phenolics degradation (Lu and Foo, 1997). 192 

TPC actually accounted for 1.06 mgGAE/gdry weight in APod, while a higher content was detected in 193 

APfd (2.0 ± 0.1 mgGAE/gdry weight), in agreement with literature findings (Wolfe, Wu, & Liu, 2003). 194 

Despite low-temperature dehydration technologies could prevent phenolics degradation, they 195 

require higher costs when compared to high-temperature methods, which represent thus a more 196 

feasible option for food industries aiming at valorizing processing by-products. 197 

Consistently with literature data, fructose was the major component of APod and APfd sugars, 198 

accounting for 66 and 64% of total sugar content, respectively, while glucose and sucrose accounted 199 

for 25 and 24, and 9 and 12%, respectively (Gullón et al., 2007). 200 

Color parameters indicated a golden yellow hue of both samples. A lower lightness was observed in 201 

APod, as compared to APfd, which resulted also less reddish. As observed by other authors (Martins, 202 

Jongen, & Van Boekel, 2001; Yan & Kerr, 2013), exposure to high temperature during drying may 203 

induce color changes of apple pomace due to the Maillard reaction. 204 
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The hydration properties of apple pomace fell in the same range reported by other authors, namely 205 

1.6-8.4 gwater/gdry weight for WHC and 1.2-2.0 goil/gdry weight for OAC (Figuerola et al., 2005; Sudha et 206 

al., 2007; Rana et al., 2015). Apple pomace presented a 2.5-fold higher WHC than wheat flour 207 

(Joshi, Liu, & Sathe, 2015). The good hydration properties of apple pomace could be attributed to 208 

its higher content in soluble dietary fiber (more than 10%), when compared to wheat flour, in which 209 

SDF generally accounts for less than 5% (Taneyo, Di Silvestro, Dinelli, & Gianotti, 2017). 210 

 211 

3.2.Effect of apple pomace use on biscuit physical, chemical and sensory properties 212 

Apple pomace was used to partially substitute wheat flour in biscuits. Only APod was used, due to 213 

the higher feasibility of conventional dehydration techniques. The physical and chemical properties 214 

of biscuits prepared by replacing wheat flour with APod at 10 and 20% levels are presented in Table 215 

3. As the concentration of APod increased, the thickness of biscuits decreased, when compared to 216 

the conventionally formulated biscuit (i.e. control), in agreement with the literature (Sudha et al., 217 

2007). The limited volumetric increase can be attributed to the strong WHC of apple fiber (Table 2) 218 

which in turn might be related to changes in dough firmness (Chen, Rubenthaler, Leung, & 219 

Baranowski, 1988). The latter significantly increased when wheat flour was partially replaced by 220 

apple pomace, corresponding to 1.1 ± 0.1, 1.6 ± 0.1 and 1.7 ± 0.1 N
 
for control, R10 and R20 221 

respectively, potentially impinging volume increase during baking. In fact, firmness of R10 and 222 

R20 biscuits (Table 3) resulted lower (p<0.05) than that of the control sample. Similarly, Matejová, 223 

Fikselová, Čurlej, and Czako (2016) observed a reduction in biscuit firmness when wheat flour was 224 

replaced with apple, buckwheat and grape pomaces. Such a difference is not expected to rely on 225 

moisture, which was comparable for all biscuits (i.e. 3.5 ± 0.6%), but could depend on other 226 

interactions occurring within the matrix. The partial removal of wheat flour reduced gluten content, 227 

thus limiting gluten development during mixing and resulting in softer biscuits (Devisetti, Ravi, & 228 

Bhattacharya, 2015). 229 
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As expected, the control sample only contained sucrose, while the concentration of fructose, which 230 

was the major APod sugar (Table 2), increased as as apple pomace content increased. Even if 231 

glucose was found in APod, it was not detected in reformulated biscuits, due to its depletion upon 232 

Maillard reaction occurring during baking (Martins et al., 2001). 233 

The lightness of APod-containing biscuits significantly decreased when compared to the control, 234 

while a* and b* concomitantly increased, indicating a more pronounced browning of biscuits 235 

containing apple pomace, due to the presence of glucose and fructose, which represent reactants of 236 

the Maillard reaction. The latter is well known to induce browning in baked foods, caused by the 237 

development of melanoidins and other Maillard reaction products. These compounds also affect the 238 

sensory properties of baked foods, leading to characteristic flavors (Martins et al., 2001). To 239 

understand if and to what extent reformulation intervention affected the perception of biscuit 240 

sensory properties, some representative descriptors (Popov-Raljić et al., 2013) were evaluated based 241 

on a hedonic scale and results are reported in Fig. 1. Wheat flour replacement by APod did not affect 242 

the perception of most descriptors, such as firmness, crispiness, sweetness, sourness, and shortbread 243 

flavor (Fig. 1). On the contrary, the baked and fruit flavors were differently perceived in biscuits 244 

containing 10 and 20% APPod. Both reformulated biscuits presented significantly higher scores 245 

(p<0.05) for the baked flavor when compared to the control, probably due to the faster evolution of 246 

the Maillard reaction in APod-containing biscuits (Martins et al., 2001). The fruit flavor resulted 247 

significantly more intense (p<0.05) in biscuits containing the highest amount of APod (20%), while 248 

the lower concentration (10%) did not affect its perception when compared to control. An 249 

improvement in the sensory profile of bakery goods obtained with a partial substitution of wheat 250 

flour with apple pomace were observed by other authors (De Toledo, Nunes, Da Silva, Spoto, & 251 

Canniatti-Brazaca, 2017), who described also an improvement of nutritional properties in bread and 252 

biscuits. 253 

 254 
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3.3. Effect of apple pomace use on biscuit glycemic index 255 

Conventional and APod-containing biscuits were in vitro digested to assess the effect of 256 

reformulation on the predicted glycemic index. Fig. 2 shows glucose concentration during the 257 

second intestinal phase of in vitro digestion. 258 

Glucose concentration increased during in vitro digestion for all samples, presenting a sharper 259 

growth during the first 20 min of the second intestinal phase. As expected, the maximum glucose 260 

concentration, accounting for 155 mg/gdry weight after 90 min, was recorded in white bread. Glucose 261 

concentration in control biscuits increased up to 120 mg/gdry weight after 120 min. On the contrary, 262 

the maximum glucose concentration recorded for APod-containing biscuits corresponded to 98 and 263 

97 mg/gdry weight for R10 and R20, respectively, after 20 min. 264 

Glucose concentration data collected during the second intestinal phase of in vitro digestion were 265 

used to estimate the glycemic index of control, R10, and R20. The conventional biscuit (control) 266 

presented a glycemic index of 70.4 ± 0.2 and was thus classified as high glycemic index food. 267 

Substituting flour by 10 (R10) and 20 (R20) percent significantly (p<0.05) reduced biscuit glycemic 268 

index to 65.7 ± 1.8 and 60.8 ± 1.9 respectively, thus ranking the product within the intermediate 269 

glycemic index foods (American Diabetes Association, 2004). 270 

The reduction in the glycemic index, which resulted significant in biscuits with the highest APod 271 

content, can be attributed to the considerable TDF content of this by-product (Table 1). Total 272 

dietary fiber is well known to contribute to glycemic index reduction by several mechanisms. 273 

Soluble dietary fiber can increase matrix viscosity at gastrointestinal level, contributing to the 274 

formation of a gel. The latter can envelop starch grains, protecting them from the amylolytic 275 

activity of digestive enzymes and thus impinging the release of free glucose, resulting in a reduced 276 

glycemic response (Brennan, 2005; Juvonen et al., 2009). Despite insoluble dietary fiber does not 277 

directly influence postprandial glucose excursions, it plays a part in affecting the glycemic 278 

response, as it was demonstrated to affect gut transit time and was associated with a significant 279 

reduction of type 2 diabetes risk (Weickert & Pfeiffer, 2018; Wilfart, Montagne, Simmins, Noblet, 280 
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& Van Milgen, 2007). Since APod presented a higher WHC than that reported in the literature for 281 

wheat flour, this by-product could entrap the water contained in the dough. Consequently, during 282 

biscuit baking, starch gelatinization would be partially prevented, inducing the retention of a high 283 

concentration of native starch. The latter can also be defined as resistant starch, since it is 284 

inaccessible to digestive enzymes due to the persistence of crystalline form (Miao, Jiang, Cui, 285 

Zhang, & Jin, 2015). In other words, resistant starch cannot be hydrolyzed in the gastrointestinal 286 

tract to release free glucose, thus not contributing to the glycemic response (Englyst et al., 1999). 287 

Despite sugar content increased from 46 (control) to 60 (R10) and 65% (R20), a significant 288 

reduction in the glycemic index estimate was found when apple pomace was used to partially 289 

replace wheat flour. A further reduction in the glycemic index could thus be pursued by balancing 290 

the amount of sucrose used in biscuit formulation with sugars deriving from apple pomace. 291 

 292 

3.4.Characterization and use of apple pomace deriving from industrial processing 293 

Since APod effectively reduced the glycemic index of biscuits, further trials were carried out to 294 

understand if apple pomace deriving from industrial processing (APind) presented performances 295 

similar to those of APod obtained at laboratory scale. Table 4 reports the major functional properties 296 

of APind, potentially affecting biscuit formulation. 297 

Despite TDF content of apple pomace obtained from the industrial process resulted higher than that 298 

found in apple pomace produced at laboratory scale (Table 2), it was in the same magnitude span 299 

and presented the same SDF:IDF ratio (i.e. 1:3) as reported by other authors (Carson et al., 1994; 300 

Rana et al., 2015). Analogously, WHC and OAC values corresponded to those relevant to apple 301 

pomace. Since APind presented functional properties similar to what observed for APod (Tables 2 302 

and 4), this by-product was used to replace by 20% the flour in biscuit (Table 1). The glycemic 303 

index was then assessed and resulted analogous (62.0) to that observed for biscuits containing the 304 

same amount of APod. Based on these results, it can be stated that the by-product of apple juice 305 
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production obtained at the industrial level could be exploited as an ingredient to reduce the 306 

glycemic index of biscuits. 307 

 308 

4. Conclusion 309 

Results acquired in the present study demonstrated the efficacy of a formulation approach aimed to 310 

reduce food glycemic index by reusing vegetables discards. This would concomitantly satisfy the 311 

need for dietary strategies to manage type 2 diabetes and for the valorization of food by-products. 312 

Reusing them within food formulation would not only reduce food discards, thus limiting the food 313 

production environmental impact, but could also deliver nutritional advantages. To this regard, 314 

further research would be required to characterize bioactives contained in processing by-products, 315 

as well as to minimize the effect of further processing, required to convert by-products into 316 

ingredients, on bioactives content. Nonetheless, the functionality of new formulations should be 317 

validated in vivo. 318 
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Captions for figures 422 

 423 

Fig. 1. Sensory scores attributed to biscuits containing 0 (control), 10 (R10) and 20 (R20) percent 424 

apple pomace (APod) on flour basis. 425 

 426 

Fig. 2. Glucose concentration as a function of time during the second intestinal phase, relevant to 427 

biscuits containing 0 (control), 10 (R10) and 20 (R20) percent of apple pomace (APod) on flour 428 

basis. 429 

 430 



Table 1 

Composition of biscuit dough samples. Ingredients are listed according to the adding sequence. 

Wheat flour was substituted by 0 (control), 10 (R10) and 20 (R20) percent (w/w) of apple pomace 

on flour basis. 

Ingredients (% w/w) Control R10 R20 

Egg 20.7 20.7 20.7 

Sucrose 17.2 17.2 17.2 

Sunflower oil 8.6 8.6 8.6 

Wheat flour 51.6 46.4 41.3 

Apple pomace - 5.2 10.3 

NaCl 0.2 0.2 0.2 

Baking powder 1.7 1.7 1.7 

 

 

Table



Table 2 

Dry matter, total (TDF), soluble (SDF) and insoluble (IDF) dietary fiber, fructose, glucose and 

sucrose, total phenolic (TPC), color, water holding (WHC) and oil absorbing (OAC) capacity of 

oven-dried (APod) or freeze-dried (APfd) apple pomace powders. 
 

  APod APfd 

Dry matter (%)  94.6 ± 0.1
b 
 95.1 ± 0.1

a
 

TDF (%)  36.6 ± 0.2 n.d. 

 SDF 9.2 ± 0.2 n.d. 

 IDF 27.4 ± 0.1 n.d. 

Sugar (mg/gdry weight) Fructose 115.6 ± 0.5
a
 116.6 ± 0.5

a
 

 Glucose  44.4 ± 0.2
a
 42.2 ± 0.1

b
 

 Sucrose 14.9 ± 0.2
b
 21.1 ± 0.2

a
 

TPC (mgGAE/gdry weight)  1.1 ± 0.1
b
 2.0 ± 0.1

a
 

Color L* 77.8 ± 0.5
b
 84.9 ± 0.4

a
 

 a* 2.6 ± 0.2
a
 -0.7 ± 0.3

b
 

 b* 22.5 ± 0.4
b
 25.1 ± 0.4

a
 

Hydration properties WHC (gwater/gdry weight) 4.7 ± 0.2
a
 3.3 ± 0.1

b
 

 OAC (goil/gdry weight) 1.0 ± 0.6
a
 1.0 ± 0.1

a
 

n.d.: not determined 

Table



Table 3 

Sugar content, thickness, firmness, and color of biscuits containing 0 (Control), 10 (R10) and 20 

(R20) percent apple pomace powder (APod) on flour basis. 

 

 Sample 
Thickness 

(mm) 

Firmness 

(kN) 

Sugar (mg/gss)  Color 

Fructose Glucose Sucrose L* a* b* 

Control 4.4±0.5
a
 1.2±0.1

a
 n.d. n.d. 46.3±1.3

b
 86.1±0.5

a
 5.0±0.4

b
 16.2±0.8

b
 

R10 2.8±0.2
b
 0.8±0.0

c
 8.9±0.1

b
 n.d. 51.5±1.4

ab
 73.3±0.4

b
 10.8±0.3

a
 22.1±0.6

a
 

20 2.1±0.1
c
 1.0±0.1

b
 11.5±0.0

a
 n.d. 52.3±0.1

a
 72.4±0.3

c
 11.3±0.1

a
 21.6±0.4

a
 

n.d.: not detected. 

 

 

Table



Table 4 

Total (TDF), soluble (SDF) and insoluble dietary fiber (IDF), water holding (WHC) and oil 

absorbing capacity (OAC) of apple pomace powder deriving from industrial processing (APind). 
 

TDF (%)  47.2 ± 0.1 

 SDF (%) 12.7 ± 0.1 

 IDF (%) 34.5 ± 0.1 

Hydration properties WHC (gwater/gdry weight) 5.0 ± 0.4 

 OAC (goil/gdry weight) 1.2 ± 0.1 

 

Table
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