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Abstract

The current predominant approach to neuroimaging data analysis is to use voxels as units of
computation in a mass univariate approach which does not appropriately account for the existing
spatial correlation and is plagued by problems of multiple comparisons. Therefore, there is
a need to explore alternative approaches for inference on neuroimaging data that accurately
model spatial autocorrelation, potentially providing better type I error control and more sensitive
inference. In this project we examine the performance of a trend surface modeling (TSM)
approach that is based on a biologically relevant parcellation of the brain. We present our
results from applying the TSM to both task fMRI and resting-state fMRI and compare the latter
to the results from the parametric software, FSL. We demonstrate that the TSM provides better
Type I error control, as well as sensitive inference on task data.
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1. Introduction

The development of advanced medical imaging techniques over the last few decades have revo-
lutionized medical diagnosis and treatment. Especially in the case of the brain which is one of
the most complex systems existing in nature, the advent of high resolution non-invasive imaging
techniques has transformed our understanding of an organ that is otherwise di�cult to study.
Functional magnetic resonance imaging (fMRI) in particular has proved to be an invaluable tool
for the study of the functioning of the brain. Several statistical methods have been developed
over the last thirty years to model and draw inferences from fMRI data.

The main goal of fMRI studies is to understand the behavior of neurons in response to pres-
ence (or absence) of external stimuli in order to draw conclusions about the areas of the brain
that control the performance of a speci�c task, or to study the connectivity of di�erent brain
regions. The fMRI achieves this by capturing the nature of blood �ow to di�erent brain regions,
based on the understanding that an activated region of the brain consumes higher levels of oxy-
genated blood. Since blood �ow cannot be observed at the neural level the image space of the
brain is partitioned into three-dimensional sub-units called voxels. Hence a typical brain scan
from fMRI is composed of hundreds of thousands of voxels. This gives fMRI scans high spatial
resolution and also high localization power for the observed signals, thus allowing reasonable
accuracy in pin-pointing regional activations.

However, there is a downside to the large number of voxels in fMRI � the predominant ap-
proach to fMRI data analysis has been the mass-univariate approach, which considers the voxels
to be independent and �ts a univariate linear model at each voxel. As a result, when performing
inference over the whole brain or large regions of the brain one is faced with the problem of
multiple comparisons and has to correct for it. Since fMRI is spatial in nature the voxels are
spatially correlated, contrary to the assumptions of the mass-univariate approach, thus requiring
complex post-hoc correction procedures for the multiple comparisons problem � such as the Ran-
dom Field Theory. Thus the commonly used fMRI data analysis software such as FSL and SPM
are based on the combination of the mass-univariate approach and the Random Field Theory.

In Eklund et al. (2016) [1], the authors examined the statistical validity of SPM and FSL
using resting state fMRI data as the real-world null data and found that these packages provide
conservative voxelwise inference and invalid clusterwise inference, with a high degree of false
positives. They conclude that this is because the spatial nature of the real data violates the as-
sumptions made by the Random Field Theory regarding the spatial autocorrelation of the data.
As a result, there is a need for alternative approaches for inference on fMRI data that accurately
model its spatial nature and potentially provide optimal Type I error control, as well as sensitive
inference.

In this context we examine the performance of a trend surface model proposed by Huertas,
I. et al. (2017) [2]. In contrast to the classical approaches, the trend surface model uses a parsi-
monious set of biologically meaningful basis functions derived from Instantaneous Connectivity
Parcellation [3] (typically consisting of a few hundred basis functions) instead of voxels, and a
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Bayesian regression model is employed to a �nd an appropriate linear-weighted sum of these basis
functions to �t an imaged brain region of interest. We test this approach on the resting-state
fMRI data used by Eklund et al. (2016) in line with their analysis and �nd that the trend
surface model provides optimal inference as opposed to the in�ated false positives from FSL
(Fig. 4.3). We further test the trend surface model on task fMRI data to con�rm that the good
speci�city is not at the cost of its sensitivity, and we demonstrate that this is indeed the case,
using task data from multiple tasks from the Human Conectome Project (Figs. 4.4 � 4.7).

Organization of manuscript

The rest of this manuscript is organized as follows:

Chapter 2 introduces functional magnetic resonance imaging (fMRI). After a brief de-
scription of di�erent neuroimaging modalities and the principles of image acquisition in
MRI, we describe the process of fMRI signal acquisition, the properties of the signal and
the challenges that arise as a result. We also introduce the experimental designs and the
pre-processing steps used for fMRI studies and provide information about the statistical
software that was used for the research presented in this thesis. The goal of Chapter 2 is to
provide a familiarity with the nature of fMRI data in order to enable a better appreciation
for the choice of statistical methods to analyze the data, which are presented in Chapter
3.

Chapter 3 gives the theoretical background for the research presented in this thesis.
We �rst provide an overview of the types of statistical models commonly used and the
main approaches for inference for fMRI data. Then we delve into more detail for the two
approaches that are directly relevant to this thesis � the mass-univariate approach and
the trend surface modeling approach. We describe the mass-univariate approach and the
assumptions involved and consequently, the challenges that arise in the context of modeling
fMRI data, namely, the multiple comparisons problem and the impact of spatial correlation.
We then describe the trend surface modeling approach proposed by Huertas, I. et al. (2017)
[2] � the performance of which is the focus of research for this thesis. The aim of Chapter
3 is to lay down the theoretical groundwork and explain the state-of-the-art in fMRI data
analysis that motivated our research, which is presented in Chapter 4.

Chapter 4 presents our research � the performance of the trend surface model as compared
to the popular mass-univariate based software for fMRI data analysis. Our work involves
three main parts � (i) the replication of previous work published by Eklund et al. (2016)
on the validity of popular software packages for fMRI data analysis with respect to Type I
error control, (ii) a similar analysis using the trend surface model on the same resting-state
fMRI dataset in order to provide an equitable comparison of the speci�city of the trend
surface model , and (iii) analyzing task fMRI data from the Human Connectome Project
to test the sensitivity of the trend surface model . We provide a detailed description of the
resting-state and task fMRI data used in this research, followed by the steps involved in
our analysis of this data at the subject and group levels. Finally we present our results to
demonstrate that the trend surface model provides optimal Type I error control as well as
sensitive inference.

Chapter 5 provides a discussion of our research. We provide a recapitulation for the
motivation and relevance of our research and discuss some of the challenges that we faced
in the course of our work. We also mention possible solutions to these challenges, which
will be the focus of our future research.
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2. Introduction to Functional Magnetic

Resonance Imaging

An Overview of Neuroimaging

Over the last 30 years neuroimaging techniques have become invaluable tools for studying the
brain by virtue of their high spatial resolution and non-invasive nature. The development of
several di�erent modalities of imaging the brain such as PET, (f)MRI, DTI and CAT to name a
few, have allowed researchers much insight into the structural and functional aspects of the brain.

Structural neuroimaging enables the study of the structural aspects of the brain � such as
the contrast between di�erent tissues (cerebrospinal �uid (CSF), grey matter and white mat-
ter) and therefore plays a key role in the diagnoses of structural anomalies in the brain, such
as tumors, strokes and injury. Computed Tomography (CT) and structural MRI are the most
popular structural imaging techniques.

Functional imaging techniques enable the study of the physiology of mental processes by
capturing neuronal activity in response to a stimulus, thus making them invaluable in the study
of brain function, as well as dysfunction as in the case of psychiatric disorders. The neuronal
activity in the brain can be studied in two ways: (i) through electricity, which is a direct measure
of neural activity and (ii) through blood �ow in the brain, which is an indirect measure of neural
activity. Functional techniques such as PET and fMRI utilize the blood �ow patterns in the
brain while EEG and MEG use the electrical impulses in the brain to measure neuronal activity.
In this section we brie�y describe structural and functional neuroimaging techniques.

A. Structural neuroimaging techniques

Computed Tomography (CT)

CT is a tomographic modality, that is, it produces cross�sectional images. CT forms an image
by sending energy in the form of X-rays into the body and measuring how that energy is altered
when passing through the tissues. The amount of energy absorbed by body tissue is calculated
from the energy remaining in the beam after the beam passes through the body tissue. The
X-ray beam is applied at di�erent angles to generate a cross-sectional image. The amount of
energy absorbed is re�ected in the observed brightness of tissue. For instance, since bone is one
of the densest tissues in the body it absorbs more X-rays and appears bright on the CT scan.
Tissues of low-density, such as blood and CSF, absorb much lesser energy and appear darker.

Structural MRI

MRI broadly works similar to CT scans but instead of X-rays, radio frequency (RF) waves are
used. As a result the image brightness and contrast, and hence the interpretation of the images,
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are based on completely di�erent principles. Brightness in an MRI scan is indicative of the tissue
interaction with radio waves inside a magnetic �eld. The radio waves and magnetic �elds used in
MRI can be manipulated in many ways to alter the appearance of speci�c tissues, thus enabling
MRI to detect the distinctions between di�erent soft tissues, for example. Since MRI does not
use ionizing radiation like the X-rays, there is much lesser risk of tissue damage from repeated
scans, compared to CT.

B. Functional neuroimaging techniques

Functional imaging techniques can be classi�ed based on whether they use blood �ow (haemody-
namic techniques) or neural electrical impulses (electro-magnetic techniques) to measure brain
activity. Haemodynamic techniques o�er very good spatial resolution (∼ 2mm) but poorer tem-
poral resolution (∼ 1s) compared to electro-magnetic techniques (< 1 milli-second) and the latter
have poor spatial resolution. Therefore the choice of the modality depends on the speci�c needs
of the study at hand.

Electroencephalography (EEG)

Neurons communicate with each other through tiny electrical impulses at the rate of thousands
of times per second. In the brain, populations of neurons are organized into connected networks.
When these networks �re in sync, the dynamics of the combined electrical activity can be de-
tected and recorded outside the skull. Thus electrical impulses can be measured at milli-second
resolution, but it is hard to localize the electrical signal since we do not have realistic models
of the head and di�erent tissues have di�erent conductivity properties and hence distort the
electrical signal di�erently, before it is measured outside the skull (Fig. 2.1).

Figure 2.1: Apparatus for EEG. Source: Functional Neuroimaging
(http://www.psych.nyu.edu/pylkkanen/Neural_Bases/07_slides/05_Methods.pdf)

Magnetoencephalography (MEG)

MEG is based on the natural phenomenon of the creation of magnetic �elds around electric
currents. The main advantage of MEG over EEG is that it o�ers better spatial resolution � in
the order of mm for the cortex, and this deteriorates as the source of the signal is located deeper
in the brain. This is possible because unlike electrical impulses, magnetic �elds pass through
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skull and various tissues undistorted. Thus the distribution of the magnetic �eld around the head
provides a good indication of the underlying electrical activity in the brain. The magnetic �elds
generated by neural activity are tiny � about a hundredth the strength of the Earth's magnetic
�eld and a millionth the strength of the �elds in an urban environment. Therefore great care
needs to be taken to capture the tiny signals from the brain � this is ensured by placing the
MEG apparatus in a magnetically shielded room and using superconductive sensors in the MEG
machine (Fig. 2.2).

Figure 2.2: Apparatus for MEG, placed inside a magnetically shielded room. Source: Functional
Neuroimaging (http://www.psych.nyu.edu/pylkkanen/Neural_Bases/07_slides/05_Methods.pdf)[4]

Positron emission tomography (PET)

PET works by introducing radioactive energy via a radioactive tracer into the body and mea-
suring the decay of the radioactive element, to form an image of the radioactive quantity and
distribution. Injected contrast agents emit tiny particles called positrons that are detected by the
scanning device. PET imaging is unique because the radioactive material used can be attached
to various substances like glucose. The amount of glucose accumulated in a tissue is indicative
of tissue metabolism, and hence normal tissue can be di�erentiated from cancerous tissue, as
the latter has much higher rates of metabolism. PET images are of lower resolution compared
to MRI but provide unique information on organ function. There are also hybrid systems, for
example PET/CT and PET/MRI, that combine both a high resolution anatomical image and
a corresponding image of metabolism in the same exam. Areas of metabolic activity can be
directly correlated to anatomic location, which is useful in tumor detection and removal.

Other medical imaging techniques such as nuclear medicine and SPECT also produce images
by measuring the decay of injected radioactive tracers, though in these cases the particles emitted
are gamma rays.
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Functional MRI (fMRI)

When a particular region of the brain is activated, there is an increased �ow of oxygenated blood
to support the increased metabolic activity in that region. fMRI uses magnetic �eld generated
in an MRI scanner to measure the blood oxygenation level dependent (BOLD) signal based on
the di�erence in magnetic properties of oxygenated and de-oxygenated blood. Therefore unlike
PET, no radioactive tracers are required which makes fMRI safer and possibly cheaper than PET.
fMRI also provides good spatial resolution and has enough temporal resolution to distinguish
between trials (though not enough to distinguish the di�erent stages of stimulus processing, due
to the nature of the haemodynamic response, as explained in Section 2.2). The next section
elaborates on the properties of fMRI, and the rest of this thesis provides a brief overview of
statistical methods and software for fMRI analysis and results from the analysis of fMRI data to
test a trend surface model .

Magnetic Resonance Imaging (MRI)

MRI is one of the several non-invasive imaging techniques that produce cross sectional images
- known as tomographic images. Other widely used tomographic modalities are Computed To-
mography (CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission
Tomography (PET) and Ultrasound. Since MRI uses radio waves there is no risk of radiation
exposure, unlike CT (which uses X-rays) and PET or SPECT which require injection of a ra-
dioactive tracer into the body. Ultrasound also does not involve radiation exposure; however,
since ultrasound measure the energy of sound waves and sound does not travel well through air
or bone, some areas of the body such as the lungs and the skeleton cannot be properly imaged
using ultrasound.

Figure 2.3: Apparatus for MRI. Source: Novel MRI-Based Scoring System Assesses Disease
Severity in Juvenile Dermatomyositis, Sheila Jacobs (https://www.rheumatologyadvisor.com/pediatric-
rheumatology/jdm-image-score-assesses-disease-severity-in-juvenile-dermatomyositis/article/779149/)

Medical imaging methods form an image by sending energy into the body and measuring
how that energy is absorbed or changed when passing through the body's tissues. In MRI, the
brightness in the image depicts the di�erences in how tissues interact with radio waves and is
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therefore an indicator of the di�erences in molecular composition and environment of the tissues.
The radio waves and magnetic �elds used in MRI can be manipulated to alter the appearance of
speci�c tissues for greater versatility through MRI sequences � which are particular settings of
radiofrequency pulses and gradients resulting in a speci�c type of image. MRI acquisitions can
also be made to show di�erences in blood �ow (functional MRI), fat content, di�usion charac-
teristics (di�usion-weighted MRI) and several other traits.

Magnetic resonance imaging is based on the principle of nuclear magnetic resonance. An
atom belonging to any element is composed of a nucleus containing equal number of protons
(with a positive electric charge) and neutrons (with no electric charge), and electrons (with a
negative electric charge) that are equal in number to the protons. The magnetic properties of an
element depend on the number and spin of electrons and protons in its atoms. Elements that are
ferromagnetic, such as iron, are strongly attracted by a magnetic �eld and can be magnetised,
acting as magnets themselves after the removal of the external magnetic �eld. Elements that
have unpaired magnetic spins and are only slightly attracted or repelled by an external mag-
netic �eld are called paramagnetic (example, oxygen) or diamagnetic (example, gold) respectively.

An MRI scanner utilizes a strong magnetic �eld and radiofrequency pulses to excite the atoms
in the body. Since hydrogen is by far the most abundant element in the body due to its presence
in water, fat and protein molecules, the MRI scanners are often set up to collect images on the
basis of hydrogen atoms. The hydrogen atom is composed of one proton (and one electron),
and the charged and spinning proton produces a magnetic �eld of its own, thus acting as a tiny
magnetic dipole. Under ordinary conditions, the magnetic dipoles of the hydrogen nuclei are
oriented randomly, resulting in no net magnetization. However when the hydrogen nuclei are
place in a strong external magnetic �eld such as that created inside an MRI scanner (say B0),
the atomic dipoles are forced to align parallel (low energy state) or anti-parallel(high energy
state) to the external �eld such that the number of dipoles aligned parallel is slightly larger than
those aligned anti-parallel � producing a net magnetization M in the direction of the external
�eld B0 (Fig. 2.4). At this stage, the hydrogen nuclei are in a state of equilibrium.

Figure 2.4: Illustration of magnetization of hydrogen nuclei in the body in the presence of a strong
external magnetic �eld. Source: MRI for Technologists, Basic Principles of MRI, Daniel R. Thedens
(http://www.icpme.us/)

In order to record images from a scanner, the equilibrium state of the hydrogen nuclei is per-
turbed by transferring energy to them through externally applied radio frequency (RF) pulses.
The appropriate frequency of the RF pulse to be supplied is a function of the element (hydrogen
in this case) and the externally applied magnetic �eld (B0 from the MRI scanner). When the
RF pulse is turned o� the excited nuclei release the absorbed energy, which is the source of the
signal for the MRI scan images.
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The release of the absorbed energy by the nuclei to return to their equilibrium state (called
relaxation) happens through two events � decay of magnetization in the transverse plane (trans-
verse relaxation) and decay of magnetization in the longitudinal direction (longitudinal relax-
ation). These two types of relaxation are characterized by the time constants T1 and T2 and
are dependent on the particular tissue being observed. T1 describes how rapidly the relaxation
process occurs in the longitudinal axis after the RF pulse is turned o�. A short T1 value means
that the longitudinal magnetization is restored rapidly and a longer T1 value means that the
magnetization recovers more slowly.

On the other hand, T2 is a time constant that characterizes the decay of the MR signal after
the RF pulse is turned o�. A short T2 time means that the transverse magnetization is lost
more quickly than it is for a tissue with a longer T2 time. T2 must be shorter than T1 and may
be shorter by a factor of 10 or more. Once the transverse magnetization is lost, the signal to
be recorded for imaging no longer exists. In a clinical context, these quantities can be used to
determine di�erent types of body tissue. The values of T1 and T2 can be manipulated to gen-
erate images that re�ect subtle di�erences between soft tissues, resulting in the demonstration
of �ne anatomical details. Thus images can be acquired under various conditions that highlight
(or minimize) the in�uence of T1 and T2, making MRI a powerful and �exibile technique.

Limitations of MRI

Since MRI uses strong magnetic �elds, it cannot be used for patients with ferromagnetic metal
in the body such as dental wires, cardiac pacemakers, surgical implants and shrapnel or other
metallic foreign bodies, due to safety concerns. Many modern surgical implants such as stents
and orthopedic screws are being made from MRI-compatible materials and do not provide a
safety risk. However the presence of metal implants in or around the area of scanning may
generate artifacts that make the scan partly unreadable. Also, MRI scans are typically longer
than that of CT and ultrasound and therefore are prone to image artifacts generated by patient
movement. MRI is also more expensive. Additionally, it is not an option for patients who are
claustrophobic.

Functional Magnetic Resonance Imaging (fMRI)

fMRI data is used to serve several objectives of brain analysis. Broadly, these can be classi�ed
into four categories: (1) detection of activated brain regions (2) to infer brain connectivity (3)
prediction of an individual's brain activity or clinical or behavioural response, and (4) imaging
genetics. The presence (or absence) of neuronal activity in response to stimuli is used to describe
brain function networks, to assess brain development, or to assess impairment related to condi-
tions, such as alcoholism and brain trauma.

The fundamental goal of fMRI studies is to understand the behavior of neurons, most often
either to uncover the regions of the brain that are activated by a particular task, or to understand
how di�erent regions of the brain are connected. Neural excitation occurs in milliseconds and
cannot be directly observed with fMRI. However, neuronal activity is associated with localized
changes in metabolism � as a region of the brain becomes active, there is an increase in local
oxygen consumption resulting in more oxygen-rich blood �ow to the active brain area. The
magnetic properties of oxygen can therefore be exploited to measure what is called the blood
oxygen level dependent (BOLD) signal contrast, which serves as a proxy for neuronal activation
in fMRI studies

8



The BOLD response is not observed at the neural level. So the image space is partitioned
into voxels in a rectangular 3D lattice (about 200,000 voxels for a 3 Tesla scanner) and the
BOLD response is observed for each voxel every 2-3 seconds, at several hundred time points dur-
ing the scan. Thus time series of BOLD responses are produced at every voxel, as the temporal
evolution of brain activity at that location (Figure 2.5). As an fMRI experiment on a single
subject can yield hundreds of scans in a single session, fMRI data are massive collections of
hundreds of thousands of time series arising from spatially distinct locations. The brain image
at each time point is captured one slice at a time rather than all at once. In most experiments,
30 to 500 images are collected.

Blood �ow, however, is not a discrete on-o� process, but instead something that happens

Figure 2.5: Obtaining time series at each voxel. Source: Lindquist, M. A. and Wager, T. D., Principles
of fMRI (2015) [5]

continuously and depends on the location of the voxel and the nature of the task. When a
neuron becomes active, there is typically a 1â��2 second delay before an increase in blood �ow
is detectable. Then blood �ow peaks approximately 5â��8 seconds after neuronal activation
and experiences a decay after 10â��12 seconds, �nally returning to baseline levels after 20â��30
seconds (Fig. 2.6). The nature of dispersion of the BOLD signal both in space and time is
described using a hemodynamic response function (HRF). We brie�y describe common models
for the HRF in this section.

It was observed by Miezin et al. (2000)[7] that the HRF �uctuates to varying degrees due
to change in stimulus/task, change in activated brain region and between subjects � with the
most variation observed between di�erent brain regions (for the same subject and task). Despite
these issues, neuroimaging researchers frequently assume a common HRF across the entire brain
for the sake of simplicity during statistical analysis.

Several models for the HRF have been proposed. For instance, Friston et al. (1994)[8] pro-
posed a Poisson function of the form

h(t) =
e−dsdτ−1s

(τ − 1)!
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Figure 2.6: The standard canonical model for the HRF used in fMRI data analysis. Source: Analytic
Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R [6]

Lange et al (1997)[9] proposed gamma functions of the form

h(t) = θ2(θ2t)
θ1−1exp{(−θ2t)/(Γ(θ1))}

and Friston et al. (1995)[10] proposed Gaussian functions. A canonical HRF modeled using a
di�erence of two gamma densities is given by Friston et al. (1998)[11]

h(t) = (t/d1)
a1 exp

{
− t− d1

b1

}
− c(t/d2)

a2 exp

{
− t− d2

b2

}
Another common choice is the inverse logit function, generated as a superposition of three sep-
arate inverse logit functions, proposed by Lindquist et al (2007)[12]

h(t) = α1L((t− T1)/D1) + α2L((t− T2)/D2) + α3L(t− T3)/D3), L(x) = 1/(1 + e−x)

The haemodynamic response varies in nature between subjects and between areas of the
brain, and therefore there is a need to allow for �exibility in the shape of the HRF function.
One approach is to parametrise the shape of the HRF and �t the shape parameters to the data,
which involves non-linear �tting. An easier approach is to use linear basis sets to span the space
of the expected HRF shapes, such as using linear combinations of temporal derivatives of an
explanatory variable.

Constructing fMRI regressors

A voxel-wise fMRI analysis with an additive mean structure is most commonly assumed � since
the BOLD signal is a�ected by many components acting independently of one another. Let yv,t

10



be the BOLD response at voxel v at time t, av,t be a baseline trend function, fv,t be the activation
pro�le, and εv,t be the measurement error. Then, the assumed model is give by

yv,t = av,t + fv,t + εv,t. (2.1)

The linear variation of this model, for p stimuli and Tv images (or time series) collected at the
vth voxel, is given by

yv = wT δv +Xvβv + εv (2.2)

The most common statistical model of a time series of BOLD responses relies on the Gaussian
linear model, as �rst proposed by Friston et al. (1994)[8] . This models the observed fMRI signal
as the underlying BOLD response plus a noise component, assuming that the baseline behavior
wT δv is accounted for before statistical analysis.

A widely used model to account for the lapse of time between the stimulus onset and the
vascular response considers the BOLD signal to be the convolution of the stimulus pattern with
the hemodynamic response function (HRF) (Figure 2.7). This implies that in model (Eq.2.2)
each column (task or input stimulus) of Xv is modeled as

Xv =

∫ 1

0
x(s)hv(t− s)ds,

where x(s) is the known, external time-dependent stimulus function for a particular task.

Figure 2.7: Obtaining the predicted response at a voxel. Source: FSL Course
(http://fsl.fmrib.ox.ac.uk/fslcourse/) [13]

Spatial and temporal properties of fMRI

Since neuronal activity in the brain unfolds over space and time, the spatial and temporal reso-
lution of fMRI studies have a huge impact on the conclusions that can be drawn from the data.
The spatial resolution of fMRI determines its ability to distinguish between adjacent regions of
the brain, and the temporal resolution determines the ability to separate brain events in time.
The manner in which fMRI data is collected makes it impossible to simultaneously increase both
spatial and temporal resolution (due to the limited number of k-space measurements; a topic
beyond the scope of this thesis). It is therefore important to balance the need for spatial resolu-
tion with that of adequate temporal resolution.

While technology has evolved to allow for high spatial resolution scans through MRI, the
time required to acquire such scans is prohibitively high. The potential high resolution of scans
is further limited by several factors � such as the need to smooth fMRI data prior to analysis,
and normalization of brains scans from di�erent subjects to a common template (as explained
in Section 2.2.3). As a consequence of all the blurring e�ects the activations in small regions
may be mis-labelled or entirely missed. Advances in data acquisition and pre-processing can
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potentially improve spatial inference in fMRI. Enhanced inter-subject normalization techniques,
better smoothing techniques, improvements in signal acquisition (parallel imaging) are some such
methods developed in recent years.

Temporal resolution of an fMRI study depends on the time interval between acquisition of
each individual image (repetition time, denoted as TR), which typically ranges between 0.5 � 4
seconds. Though the underlying neuronal activity takes place on the order of tens of millisec-
onds, the BOLD response that is used as a proxy measurement for neuronal activity occurs in the
order of seconds and peaks 5�8 seconds after the neural activation. Thus fMRI has a temporal
limitation due largely to the latency and duration of the hemodynamic response to a neural event.

fMRI data exhibit short-range serial correlations that have to be modeled in order to obtain
an accurate estimate of the degrees of freedom. Due to serial correlations the e�ective degrees
of freedom are lower than in the case of independence, which would lead to a biased estimate of
the standard error when calculating the t- or F-statistic and give invalid test results. Thus the
covariance matrix has to be estimated assuming non-sphericity. This is achieved through gener-
alized leasts squares estimation by decorrelating (or pre-whitening) the data and then obtaining
an ordinary least squares (OLS) estimate. Another approach is to �rst obtain the OLS estimate
assuming the errors are IID, and then perform a post-hoc correction. In addition to the serial
correlations in the error, there are also correlations induced in the design matrix through the
experimental design, caused by various sources such as heartbeat and breathing.

Noise in fMRI

The data in fMRI is very noisy as it is in�uenced by a variety of external sources of noise. The
noise in fMRI data can be broadly classi�ed into three types � thermal noise, system noise and
subject/task-related noise [14]. Thermal and system noise occur in the scanner, while subject-
and task- related noise is due to the motion of the subjects in the scanner.

Thermal motion occurs when electrons collide with atoms, and the rate of thermal motion
goes up as the temperature of the system (MR scanner in this case) increases and also as the
strength of the magnetic �eld increases. This leads to a distortion of the MR signal over the
course of an imaging session. While in theory it is possible to eliminate thermal noise by reducing
the temperature in the MR scanner, in practice this is not feasible. Therefore the e�ects of the
thermal noise are mitigated by pre-processing the MR signal, typically by averaging over data
points since thermal noise does not have spatial structure.

System noise is introduced due to the �uctuations in the functioning of the MR hardware,
commonly due to non-uniform magnetic �eld and instability in the gradient �elds. This causes
a drift in the MR signal recorded; that is, over the course of an experiment the signal intensity
at any given voxel gradually and systematically changes.

By far the most statistically interesting noise in fMRI data is generated by the subjects
themselves. Since the scan records a time-series at each voxel that is typically 2 mm in size, even
a small amount of motion is su�cient to displace the recorded activation to neighboring voxels
and induce extra spatial correlation. A subject in the scanner is instructed to stay still, but since
a scanning session lasts for several minutes subjects often �nd it hard to remain stationary for
so long. In addition, head motion also occurs due to regular activities like swallowing, blinking,
breathing and heartbeat, which cannot be avoided. Often, motion is also related to the task
being performed by the subject in the scanner � for example, in a simple visual task where the
subject has to follow a dot on the screen, there is a natural tendency to move the head along
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with the eyes, even if slightly. In this case the head motion is correlated with the task and it
is therefore necessary to remove the e�ects of head motion before studying the signal for task
activation.

Pre-processing

Before functional MRI data can be analyzed it is typically subjected to several pre-processing
steps to detect and correct for artifacts in the data (caused by the scanner or the subject - such as
distortion correction and motion correction) or to prepare the data for statistical analysis (such
as smoothing). The preprocessing of fMRI data involves a standard list of methods, though it can
vary substantially between di�erent software packages and research groups. We brie�y explain
some of the preprocessing steps that are employed for functional MRI data analysis, based on [15].

� Slice timing correction:

Since most image-acquisition sequences acquire brain images slice by slice, there can be a
di�erence of 1�3 seconds between the acquisition of the �rst slice and acquisition of the last
slice, as a result of which the data from di�erent slices are shifted in time relative to each
other. However, an analysis assumes that all the voxels in an image acquired at a given
time point of the time series are acquired at the same time. Therefore there is a need to
calculate the signal intensity of all the slices at the same moment in the acquisition period.
This is done by interpolating the signal intensity at the chosen time point from the same
voxel in previous and subsequent acquisitions using interpolation techniques for signal re-
construction, such as bilinear and sinc interpolations. Event-related experiments require
a more precise control over the onset time of the stimulus than block design experiments.
Since the stimulus in block design typically lasts many seconds, the interpolation is often
not necessary in block designs as there is not much sensitivity lost in all the slices are not
collected at the same time.

� Realignment/Motion Correction:

All subjects undergoing a scan move their heads to varying degrees during scanning and
this can signi�cantly impact the fMRI data collected, even if it is due to something like
swallowing or breathing. This is due to a mismatch of the location of images in the time
series obtained during the same scan. Such e�ects can be corrected by re-aligning the
images in the time series to a common reference image using image registration methods
and then re-slicing the aligned images to obtain re-aligned versions of the original images
collected in the scan. The techniques which correct for simple movement of the head in
the images typically model head motion as a rigid body transformation.

� Smoothing:

Spatial smoothing essentially blurs the (high resolution) images obtained from the scan
by removing the high-frequency information, which increases the signal-to-noise ratio for
signals with larger spatial scales. Since activations in fMRI scans of the brain typically
span many voxels, a gain in signal for larger features due to smoothing outweighs the cost
of losing �ner features. An additional advantage of smoothing is to reduce the mismatch
of activation location across individuals in a group study that occurs due to the variability
in the spatial location of functional regions across subjects. Smoothing also prepares the
data for some analysis methods, such as the Gaussian Random Field Theory that requires a
speci�c degree of spatial smoothness in order to satisfy the assumptions involved in random
�eld theory.
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Spatial smoothing is often achieved using the convolution of the three-dimensional image
with a three-dimensional Gaussian kernel. The degree of spatial smoothing imposed by
the kernel is determined by the full width of the distribution at half the maximum of the
distribution (full-width at half-maximum, FWHM).

FWHM = 2σ
√

2 ln(2) ≈ 2.55σ

where σ is the standard deviation of the applied kernel.

The smoothness of the image depends on the smoothing applied to the image during pre-
processing, as well as the smoothness intrinsic to the image due to the correlated nature
of fMRI activations across voxels. The resulting smoothness of the image is given by

FWHM =
√
FWHM2

intrinsic + FWHM2
applied.

� Normalization:

MRI data of a single individual is of interest in the cases when it is necessary to understand
the structural and functional aspects of that particular individual's brain, such as when
planning a surgery to excise a tumor. However, most of the time fMRI data is collected
from a group of individuals in order to draw inferences that can be extended to the human
species in general. This requires that we should be able to integrate the data from di�erent
individuals to obtain summary statistics at the group level. However, even though human
brains are very consistent in their overall structure across individuals, there exists a great
deal of variability in the �ner aspects of brain structure from subject to subject (such as
in the size and the shape of the head). To allow for meaningful group level analyses it is
necessary to perform spatial normalization to spatially transform the brain images from
each individual to reduce the variability between individuals.

Di�erent types of reference frames are used to align individuals � three-dimensional Carte-
sian co-ordinate spaces (Talairach space), atlases (Talairach atlas) and templates (MNI
templates).

Experimental Design

The experimental design of an fMRI study has to account not only for the standard issues present
in psychological experiments, but also for issues related to data acquisition and stimulus presen-
tation. Apart from the number of trials of a given set of conditions, the spacing and ordering of
events is also a crucial aspect of the design. An optimal experimental design takes into consid-
eration the psychological nature of the task and the ability of the fMRI signal to track changes
introduced by the task over time. Additionally, it is necessary to consider the implications of the
design for subsequent statistical analyses, as the e�ciency of the statistical analysis is directly
related to the experimental design. Therefore a good experimental design aims to maximize both
the statistical power and psychological validity of the experiment.

Commonly used designs for neuroimaging studies are block design, event-related design and
mixed block/event-related designs. This section focuses on block and event-related designs, which
are the designs used in this research project. Both the designs have their bene�ts and drawbacks,
and the choice of design is made based on the task being performed. For example, block designs
are more e�cient in detecting di�erences (such as pain vs. no pain), and event�related designs
are more suitable to link neuronal activity to particular events.
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Figure 2.8: Typical steps for image processing and analysis. The primary data are commonly pre-
processed, e.g. realigned, anatomically normalized, and �ltered. A statistical model is chosen, deter-
mined by the experimental design and the previous model selection procedures. A test statistic is chosen
and model parameters are estimated. Finally, statistical inference represented as a statistic image is ob-
tained, taking into account multiple non-independent comparisons and possible temporal autocorrelation.
(Source: Karl Friston, SPM workshop (May 2011))

Block design

Block design experiments utilize blocks of identical stimulus. For example, the tasks of interest
(A and B) are repeated in alternating blocks, separated by a rest block. The comparison between
the blocks is then used to compare the di�erences in signal between the two conditions (A - B)
or between one of the conditions and rest. Increasing the length of each block leads to a larger
evoked response and a greater separation in the two types of signal, which leads to increased
power. Thus block design experiments are e�cient since they aggregate across many trials to
attain an adequate signal-to-noise ratio. They are also innately suited for detecting regions of
interest (ROI) for particular tasks. Additionally, block designs are robust to uncertainties in the
speci�cation of the HRF, since the predicted BOLD signal depends on total activation caused
by a series of identical stimuli rather than variations in shape of responses to individual stimuli.

However, the block design can not distinguish between trial types within a block (for example,
correct versus error trials), nor can they identify interesting within trial or across trial events.
They do not account for the transient responses at the beginning and end of task blocks. It is
assumed that the same mental processes are evoked throughout each block, therefore long block
lengths that lead to fatigue or boredom should be avoided so that this assumption is not violated.

Event-related design

Event-related designs are more complex task paradigms that allow the extraction of information
regarding underlying neuronal activity from the BOLD signal. The stimuli (events) are presented
brie�y in random order (for example, �ashing lights), with a random inter-stimulus interval
(unlike the �xed interval in block designs, Fig. 2.9). The inter-stimulus interval should be short
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Figure 2.9: An illustration of a block design and an event-related design based on the same stimuli.

but not shorter than 2 � 5 s, in order to allow for the delay in the heamodynamic response.
Event related designs are based on the assumption that neural activity will occur for short and
discrete intervals. The random order of the stimuli rather than an alternating pattern o�ers more
�exibility in experimental design. Such designs also allow for the estimation of key features of the
HRF (such as onset and width). Another advantage of event-related designs is that the e�ects
of fatigue and boredom can be avoided.A drawback of the event-related design is a decrease of
signal-to-noise leading to less power than block designs of similar timing.

Statistical inference in Neuroimaging data

In neuroimaging, the frequentist approach to inference has been employed predominantly, as
discussed in Chapter 3. Here we introduce some basics of frequentist inference.

Hypothesis Testing

Hypothesis testing plays a key role in limiting the subjective interpretation of a statistical model,
by laying down rules and procedures to quantify decision errors. In order to test the occurrence
of a particular phenomenon, it is observed under precise experimental conditions designed for the
purpose. Under the null hypothesis (H0), the observation of the phenomenon occurs by chance
and is not related to the conditions of the experiment. What is an acceptable occurrence under
chance (denoted by α) is decided beforehand, typically based on consensus in the �eld. If the
observed occurrence exceeds this measure, then it is concluded that the phenomenon is not a
spurious observation and the null hypothesis `is rejected'.

When several measurements are made under speci�c experimental conditions, a summary
statistic based on the multiple measurements is calculated as the test statistic that can be com-
pared to its null distribution to decide how plausible such a statistic is under the null hypothesis.
In neuroimaging, the F-statistic and the t-statistic are most commonly used. The p-value �
de�ned as the chance of observing a test statistic as extreme or more extreme than the observed
test statistic � quanti�es the evidence against the null hypothesis for any test statistic.

When p-values are used to judge a null hypothesis two types of errors are possible. The
rejection of H0 when there is no e�ect is the false positive error or the Type I error, and the
failure to reject the H0 when there is indeed an e�ect is the false negative error or the Type II
error. The ability of a statistical test to guarantee that false rejections of the null hypothesis are
bound by the chosen α% is the Type I error control of the test, while its ability to reject the null
hypothesis when there is actually an e�ect is the Type II error control or power of the test. A
statistical test is said to be 'valid` if the chance of a Type I error is less than or equal to α, and
among such valid tests we look for the tests with the maximum power.
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In neuroimaging, the false positive risk over the entire region of interest is measured mostly
through the familywise error rate (FWER) and to some extent the more lenient false discovery
rate (FDR). The FWER is de�ned as the chance of one or more false positives in the image. The
FDR is the ratio of the false positives to all the positives detected in the image.

Challenges in Neuroimaging

In the absence of ground truth, it is di�cult to choose the best procedure to analyze data. Neu-
roimaging analyses are largely comprised of group level analyses carried out to study behavioral
or genetic variables to extend inference to a particular population. The main di�culty in such
studies is due to the existence of inter-subject variability in brain shape and structure and the
typical approach to solve this issue is to register and normalize the subject brains to a common
reference space. Since it is not possible to achieve perfect voxel-to-voxel correspondence, addi-
tional smoothing is also carried out to reduce the e�ects of anatomical variability.

The main approach in neuroimaging is to �t and test a model at each voxel - the univariate
voxel-wise approach - that results in several hypothesis tests being simultaneously performed,
leading to the multiple comparisons problem (which is dealt with in more detail in section 3.2.1).
In order to account for this multiplicity, measures of error such as the familywise error rater
(FWER) and the false discovery rate (FDR) are de�ned, and controlled by procedures such as
the Bonferroni correction and the Benjamini-Hochberg procedure, respectively. Accounting for
the spatial correlation existing in the data and additionally introduced by pre-processing means
that the above corrections are too conservative, since the voxels are no longer independent. This
calls for more complex correction methods such as the Random Field Theory, which is explained
in more detail in section 3.2.2.

Another challenge is to identify an appropriate function of time to represent the haemo-
dynamic response, namely, the haemodynamic response function (HRF). While the qualitative
character of the HRF is well known, the exact relationship between the quantity of interest, the
neuronal activity and the BOLD response is unknown. The exact nature of the BOLD response
(especially the delay until response) varies between subjects, and across the brain within a sub-
ject.

Yet another challenge lies in accounting for the temporal autocorrelation of fMRI data. Many
approaches to modeling the BOLD response treat the response as a linear time-invariant system,
which means that the predicted haemodynamic response is the convolution of a �xed HRF with
the waveform of the experimental paradigm. The time invariance implies that the HRF is inde-
pendent of time and previous responses, that is, it is stationary. However, it is known that the
transformation over the experimental paradigm, the neural activity and the BOLD response to
obtain the measured fMRI signal is not linear or time-invariant. It is to be noted that linearity
assumption of the BOLD response is distinct from the linearity of the statistical model. Several
recent approaches have been developed to take into consideration the non-linear time-invariant
structure of the BOLD response.

The GLM is based on the assumption that the residual errors are mean zero, with constant
variance and independent. However, since fMRI time-series display autocorrelation, estimates of
variability are biased and as a result the calculation of the signi�cance of e�ects and the false
positive rates is altered. The linear model approaches to handle this problem are the generalized
least squares (GLS) and the ordinary least squares (OLS) with adjustment for correlated errors.
The GLS decorrelates or whitens the data and then applies the OLS, as shown in section 3.2.
When using OLS on the correlated data, the null distribution of the test statistics is approximated
by using the `e�ective degrees of freedom' instead of the conventional degrees of freedom. In the
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context of a mass univariate model, where the same regressors are used at every voxel in case of
independent data, the presence of temporal autocorrelation means that the same model for the
autocorrelation function should also be used at each voxel.

Some neuroimaging and data analysis softwares

This section focuses on the softwares that have been used in this thesis, which are mainly tools
for visualization, image processing and statistical analysis of Neuroimaging data.

FSL

The FMRIB Software Library (FSL) [16] is a library of tools for statistical analyses and image
processing for functional, structural and di�usion MRI data. The research presented in this
thesis chie�y uses the FEAT software tool to perform model-based fMRI data analysis. FEAT
analysis can be set-up using the GUI as well as a processing script. The tool automates many
of the analysis decisions by setting defaults, though it is important to note that the defaults
may change across versions and hence result in di�erent results. For the results presented in this
thesis, we used FSL 5.0.9 for analysis and FSLeyes from FSL 5.0.11 for visualization and images.

The FEAT software tool in FSL o�ers both �xed e�ects (FE) and mixed e�ects (ME) higher-
level modeling. Two di�erent kinds of ME modeling are available:

1. Ordinary Least Squares (OLS) ignores all subject-level variance and applies a simple higher-
level model over the subjects in the group. This is a fast estimation technique but it is also
the least accurate.

2. FMRIB's Local Analysis of Mixed E�ects (FLAME) is a two-stage estimation process that
uses Bayesian modeling and estimation. This technique allows for separate modeling of
variances in di�erent subject groups and forces the random error variance to be positive.
Most of the times it is su�cient to use just the �rst stage (FLAME 1) to obtain signi�cantly
more accurate results compared to OLS, at a comparable speed. The second stage takes
the voxels that are shown in the �rst stage to be close to the threshold and performs a
full MCMC-based analysis at those points. However FLAME 1+2 improves the accurately
only slightly over FLAME 1 and takes much longer. FLAME 1+2 provides a signi�cant
value when running a higher-level analysis on a small group of subjects (say, n < 10).

Python

We mainly use the Python libraries NumPy, SciPy and NiBabel for modeling and statistical
tests and Matplotlib for visualization. Since these packages are open-source softwares written in
Python that do not depend on the original code base, they are easily shareable and reproducible.

NumPy

The NumPy library supports large multi-dimensional arrays and matrices, and enables high-level
mathematical operations on the arrays. The core functionality of NumPy is its n-dimensional
array data structure (�ndarray�). Besides its numeric capabilities, NumPy can also be used as an
e�cient multi-dimensional container of generic data. Arbitrary data-types can be de�ned, which
allows NumPy to seamlessly integrate with a wide variety of databases. Additionally, some linear
algebra, Fourier transform and random number capabilities are also available.

We use NumPy to load data and perform vector and matrix operations on the data.
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SciPy

SciPy library is used for scienti�c and technical computing and contains modules for linear alge-
bra, integration, ODE solvers, special functions and signal and image processing, to name a few.
The basic data structure used by SciPy is a multi-dimensional array provided by NumPy.

We mainly use the scipy.stats module which contains a large number of probability distribu-
tions as well as statistical functions.

NiBabel

NiBabel provides read and write access to some common medical and neuroimaging �le formats,
such as NIFTI. The various image format classes give full or selective access to header (meta)
information and access to the image data is made available via NumPy arrays. A nibabel image
is the association of three things: (i) a 3D or 4D array of image data, (ii) an a�ne array that
conveys the position of the image array data in a reference space and (iii) image metadata
describing the image, usually in the form of an image header.

Matplotlib

Matplotlib is part of the NumPy stack of libraries and provides an object-oriented API for
embedding plots into applications. It is a Python 2D plotting library which produces plots
of publication quality in a variety of hardcopy formats and interactive environments, across
platforms.
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3. Statistical Methods in Neuroimaging

Introduction

During the last thirty years a signi�cant body of work has been developed to provide a framework
to investigate functional neuroimaging data and enable scienti�cally sound inference. Statistical
model building and model �tting are essential to characterize the nature of the signals present in
the data, while inferential methods are necessary to test hypotheses and determine the con�dence
of the estimates obtained from the models that determine the predictability of the observed ef-
fects. Accurate statistical inference needs a well �tting statistical model.

In this chapter, we �rst provide a brief overview of the major classes of approaches to modeling
neuroimaging (speci�cally, fMRI) data and the types of inferential approaches[17]. In the later
sections, we elaborate on the speci�c models and inferential procedures that directly pertain to
the research and analysis presented in this thesis � namely, the mass univariate approach and
the Bayesian approach to modeling neuroimaging data, and the classical approach to inference.

Models

In the construction of statistical models, explicit and implicit assumptions are made about the
data, and it is important that the assumptions and approximations are su�ciently ful�lled by
empirical data. It is also crucial, that in the case where the assumptions are not fully met, the
models still perform robustly.

Several approaches have been proposed to tackle the complex nature of neuroimaging data,
and we brie�y introduce the broad types of popular approaches.

A. Mass-univariate models

The neuroimaging data from scans is typically composed of images that are subdivided into
three-dimensional cubic units called voxels, with a unit measure of 2mm � 4mm depending on
the resolution of the scanner. The most common neuroimaging analysis strategy is to �t iden-
tical univariate models at each voxel � the mass-univariate approach. One motivation for this
approach is that there are usually far more voxels (∼ 200,000 for a 3T scanner) than observations
( number of scans, typically in the 10s or 100s) which prevents the use of a standard multivari-
ate structure since the covariate matrix is singular. Another reason is that treating each voxel
individually retains the localizing power and allows for statistical inference at speci�c voxels.

Univariate modeling estimates the relationship between the known e�ects (such as the ex-
perimental conditions, subject and performance) and the observed data. The estimated e�ects
are used to account for the systematic variability in the data and the residual variability is used
to estimate the variance parameters of the model. Hence determining a univariate model in-
volves a trade-o� between parsimony and including all conceivable e�ects. Including too many
explanatory variables can over-�t the data and degrade the generalizability of the results. In
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an over-parametrized model each additional e�ect modeled consumes degrees of freedom (dof)
while not explaining much additional variance in the model, thus reducing the power. This is
particularly so in the case where there are few dof, such as in random e�ects models (as explained
in more detail in the next section), where additional e�ects will, by reducing the dof, increase
uncertainty in the estimation of model variance and decrease the signi�cance of a given e�ect
(unless the additional e�ect signi�cantly reduces the residual variability).

On the other hand, not accounting for a relevant e�ect will in�ate the residual variability
and bias the estimate of model variance. The unmodeled e�ects will introduce dependencies in
the residuals, which violates the assumptions of standard inference procedures, namely, that the
residuals are independent and identically distributed. However in a reduced model, there are
more dof available to estimate the model, decreasing the uncertainty in the estimation of model
variance and increasing the signi�cance of the e�ects � this bene�cial e�ect is negligible when
the model has high dof and a few additional dof are unlikely to make much impact.

Another source of random variation is introduced in the case of univariate models that are
modeled with mixed or random e�ects � the between-subject variation as a consequence of con-
sidering the subjects to be drawn randomly from a population (for the purposes of population
level inference). A �xed-e�ects model only considers the �xed and unknown e�ects in�uenced
by within-subject variability and as such is concerned only with the residual error variation.
However, the inference from a �xed e�ects model only pertains to the speci�c sample and cannot
be extended to the population of interest.

The general linear model is a framework that encompasses all basic univariate �xed e�ects
models, and methods have been developed to incorporate hierarchical mixed or random e�ects
to enable population level inference. This will be considered in more detail in section 3.2.

B. Multivariate models

While the mass univariate approach provides reliable identi�cation of task-dependent signal
changes at the voxel-level (that is, has good localizing power), it explicitly precludes the possi-
bility that responses arise from the co-ordinated dynamics between di�erent areas of the brain.
Conversely, multivariate analyses take advantage of the spatial and temporal dependencies among
image elements, thus enabling inference across space and time.

Multivariate analyses can be broadly divided into two kinds - exploratory and con�rmatory.
Exploratory techniques are primarily used to identify robust patterns of co-varying neural activ-
ity (such as principal component analysis (PCA) and independent component analysis (ICA))
and to possibly relate these patterns to design variables (Canonical variate analysis (CVA),
canonical correlation analysis(CCA), partial least squares (PLS)). These methods do no need
the speci�cation of an explicit hypothesis about the contribution of di�erent brain regions (or
about the di�erentiations of conditions or groups in case of experimental studies) and are usu-
ally data driven. On the other hand, con�rmatory analyses are used to test speci�c hypotheses
and an explicit model of regional interactions is formulated and its performance tested on the
data (such as structural equation modeling (SEM), dynamic causal modeling(DCM)). For the
purposes of this thesis, we focus on the exploratory multivariate analyses techniques of PCA
and ICA, and provide a brief overview below.

� Principal Component Analysis (PCA) factorizes a data matrix with many variables
into a new set of variables called principal components, each of which is a linear combi-
nation of the original variables such that they are all mutually uncorrelated, and the �rst
principal component captures the greatest variance in the data and the last one captures
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the least. Thus in neuroimaging PCA can be used to summarize a typical dataset of hun-
dreds of thousands of voxels into a much smaller number of principal components (which
is limited by the rank of the matrix and hence often the same as the number of scans per
subject or the number of subjects in a group).

PCA is performed by �rst using singular value decomposition (SVD) to deconstruct a data
matrix Xn×p (n observations and p variables � voxels in voxel-based approaches) into its
basic structure

X = UBFT

where Un×n and Fn×p are the orthonormal matrices composed of the left and right singular
vectors, respectively, and Bn×n is a diagonal matrix of singular values. At the subject-level
in a voxel-based approach, the number of observations n refers to the number of scans ob-
tained for the subject (which is typically about a hundred) and the number of variables p is
the number of voxels (typically in the hundreds of thousands). Therefore in this scenario,
the rank of X is given by the lesser of n and p, that is, the number of scans. The vector
F(i) contains the weights that indicate the degree to which each voxel contributes to the
i-th principal component � that is, it is a spatial image of that principal component. The
vector U(i) contains weights that indicate the dgree to which the i-th principal component
is expressed in each scan n � that is, the eigentimeseries. The i-th squared singular value
from B is proportional to the portion of variance accounted for by the i-th principal com-
ponent.

Since PCA concentrates as much variance as possible in as few components as possible, it
can be used to reduce dimensionality further, such as by selecting the �rst k components
that account for a desired percentage of overall variance. Also, PCA aggregates variance
in components by appropriately weighing original variables that tend to co-vary and as
a result, it isolates prominent patterns of regional covariation � that represent functional
interactions. These functional networks can then be tested for task or group signi�cance
using methods like the CVA. We employ PCA in our analysis to generate orthogonal basis
functions based on a biologically relevant brain atlas, as we explain in section 4.1.

� Independent Component Analysis (ICA) also seeks to reduce the dimensionality of
the data like PCA by choosing components with maximum inter-dependencies, but unlike
PCA that produces components that are mutually uncorrelated spatially and temporally,
ICA produces components that are maximally statistically independent only in one domain
(spatial or temporal, not both). ICA assumes that independent components were mixed
to give rise to the observed signal � in a neuroimaging context, ICA assumes that the
neural activity measured in di�erent voxels is a linear cobination of a small number of
underlying independent sources. Like the PCA, ICA also creates a new set of axes to
represent the data in, but instead of the axes being orthogonal they are oriented such that
the projection of data points onto the axes is maximally non-Gaussian. The model for ICA
can be represented as

XT = AS

where Xn×p is the observed data matrix with n scans (observations) and p voxels (vari-
ables), Sr×n is the source matrix with r sources and their activity in each of the n scans,
and Ap×r is the mixing matrix that represents how the sources were combined to produce
the observed signals in X.

Both spatial ICA (independence in spatial domain) and temporal ICA (independence in
temporal domain) are employed in neuroimaging , based on the requirements of the data
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and the problem at hand. For instance, spatial ICA is more commonly used for fMRI data
since task-related activations are assumed to be relatively sparse in a volume consisting
of thousands of voxels and independent components can isolate networks of regions that
overlap minimally. Spatial ICA assumes that the rows of S are independnet, while temporal
ICA assumes that the columns of S are independent. ICA tries to simultaneously estimate
both A and S through an iterative process, by maximizing the non-Gaussianity of either
the rows or the columns of S. The ICA �nally projects the original data into source space:

A−1X = S.

A−1 is called the unmixing matrix whose rows are spatial maps that represent the partic-
ipation of each brain region.

ICA cannot be used to estimate the number of underlying sources in the data and in fact
requires that the number of sources be speci�ed before the analysis. Additionally, since
ICA is an iterative algorithm that is a computationally expensive, in practice the typical
approach is to �rst perform PCA and choose the �rst k components that explain the
desired percentage of variability and then perform ICA on these principal components to
obtain maximally independent components. To generate the Instantaneous Connectivity
Parcellation atlas that we employ in our analysis, van Oort, E.S.B. et al. (2016) employ
a spatial ICA algorithm (Section 3.3).

Given the nature of functional neuroimaging data multivariate approaches would seem to be a
natural �t for data analysis. Several voxel based multivariate approaches have been adapted to
suit the needs of functional neuroimaging data. These approaches attempt to characterize the
overall distribution pattern of the changes in brain activity without regard to the location, and
therefore lack localizing power.Additionally, the high dimensionality of functional neuroimaging
data relative to the number of observations (scans) rules out the straighforward application of
standard multivariate statistics, as the estimated covariance structure of the data would be sin-
gular. The presence of spatial correlations in the neuroimaging data and regional changes in
error variance lead to non-sphericity in the error terms, which would require a large number of
parameters to be estimated for each voxel.

C. Bayesian models

Bayesian methods can be used to enforce soft constraints on the parameter estimates by in-
corporating prior knowledge through the speci�cation of priors. In a frequentist approach, the
observed data are considered as a realization of a random process and the parameters of the
model are �xed but unknown quantities. The Bayesian approach on the other hand regards the
parameters as random variables as well. Before an experiment is performed, the parameters of
interest are considered to have a prior distribution that is based on existing knowledge in the
�eld. After the experiment is performed, the information gathered through the experiment is
used to `update' the prior knowledge, to give a posterior distribution which is used to address
queries about the parameters of interest. As the number of observations from the experiment
(the information) increases, the importance of the prior decreases and the Bayesian results con-
verge to the frequentist result.

As we shall see in Section 3.2, fMRI data is often described and analyzed using a hierarchi-
cal approach, which makes the Bayesian framework a natural �t for the analysis of fMRI data.
Spatio-temporal models are another class of fMRI models that also lend themselves well to the
Bayesian approach. As fMRI methods have become more widespread, a wealth of information
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has been accumulated about brain activation, which can be used to build prior distributions
for a Bayesian analysis. The main hindrance to the adoption of Bayesian methods in fMRI has
been the cost of computation, given the large and high-dimensional datasets and the complex
relationships within and among voxel time-series. Early attempts at Bayesian models relied on
simpli�ed assumptions and computational shortcuts to make the analyses feasible, as we shall
see in Section 3.3. However, with rapid advances in computational capacity, the �eld of fMRI is
fast adopting Bayesian models.

D. Functional networks and connectivity analysis

The mass-univariate, multivariate and Bayesian models study changes in brain activity and
how these changes covary with the experminetal paradigm. Research has suggested that higher
cognitive functions of the brain are the result of the network interactions between di�erent brain
regions, thus necessitating the study of interactions between brain regions. Friston (1994) de�ned
functional connectivity as the observed correlations over time between di�erent brain regions
that are independent of the sources of these correlations. Considering that brain regions that are
part of a functional network have correlated activities, the interactions between the regions are
studied based on the covariance pattern observed in functional neuroimaging data. However,
this poses several challenges. For instance, the actual sources of inter-regional covariances are
unknown. Several sources for the same have been proposed, but these might be confounded
with correlations due to e�ective connectivity (the in�uence that one neural system exerts over
another, such as fatigue, attention drift etc.). The presence of spurious correlations biases the
results unless they are removed or properly accounted for. One approach to study inter-regional
correlations is to examine the partial correlation coe�cients between pairs of pre-selected regions
of interest. Another approach is based on selecting a reference region or voxel and studying the
correlations of this region or voxel with the rest of the brain (or select regions of interest). These
solutions involve problems with multiple comparisons, and some methods have been proposed to
tackle this issue (Petersson et al. 1999b).

Inference

Inference in neuroimaging has largely been restricted to classical inference based on statistical
parametric maps. Statistical parametric maps are constructed using general linear model and
a thresholding procedure such as the random �eld theory to test hypotheses about regionally
speci�c e�ects. There are multiple ways to summarize a statistic image, and here we de�ne
voxel-level, cluster-level and set-level approaches.

In a voxel-level approach, the test statistic at each and every voxel is individually tested
for evidence against the null hypothesis. If the statistic at a particular voxel exceeds a pre-
determined threshold u, then the voxel is classi�ed as `active' or `signi�cant'. Thus voxel-wise
inference allows for a highly spatially speci�c inference, provided the threshold u is chosen prop-
erly. However, such a voxel-by-voxel inference does not take into account the spatially extended
nature of fMRI signals � often the activated brain regions are much larger than the dimensions
of a voxel, and additionally, during pre-processing fMRI data is often spatially smoothed and
oversampled during spatial normalization.

Cluster-wise inference allows to take advantage of this spatial nature of fMRI data by mak-
ing inference about clusters of activated voxels rather than individual voxels. The most common
approach to cluster-level inference involves two stages. First, clusters of voxels are de�ned by
applying a `cluster-de�ning threshold' uc to the statistic image and identifying groups of con-
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tiguous � voxels above uc. In the second stage, the clusters thus identi�ed are deemed signi�cant
if their size (in voxels) is above a certain threshold k. Cluster-level inference has greater power
than voxel-level inference, given its ability to better detect a signal that is larger in scale than
the smoothness of the nose in the data. However, this greater power comes at the lack of spatial
speci�city � it is not possible to pin-point which voxels in a cluster are activated; it is only
possible to conclude that at least one voxel in a signi�cant cluster has evidence against the null
hypothesis. While this is not a problem when the cluster size is small, when the clusters are
very large it may lead to no useful inference. In such instances the cluster forming threshold
uc (which can be arbitrarily chosen, in principle) can be increased to obtain smaller clusters,
but this in turn leads to a multiple testing problem (which is discussed in section 3.2). Also,
assigning signi�cance to clusters based on their size ignores the statistic values within the cluster.

Set-level inference provides an overall test to see if there are any signi�cant signals anywhere
in the brain, without indicating the location of the signals with any degree of speci�city. For
arbitrarily chosen cluster-de�ning threshold uc and cluster size threshold k, the test statistic for
set-level inference is the number of signi�cant clusters. A signi�cant set-level p-value indicates
that there are an unusually large number of signi�cant clusters, but provides no information
regarding the location of the signi�cant clusters.

The thresholds k (for cluster-level inference) and u (for voxel-level inference) are chosen using
thresholding procedures described in section 3.2. In this thesis we mainly use voxel-level inference
as a basis to explain the concepts of inference, unless otherwise speci�ed.

Classical approach: The General Linear Model

Mass univariate models

All classical analyses of functional neuroimaging data are based on the general linear model.
Analysis consists of model speci�cation, parameter estimation and inference. We �rst look at
the model speci�cation in this section.

Let Yi denote a response variable measured (a random variable), for instance, during an
experiment. Let xij(j = 1, . . . p) denote the explanatory variables which may be continuous
covariates, functions of covariates or dummy variables. A general linear model explains the
relationship between the response variable Yi and the explanatory variables as

Yi = xi1β1 + xi2β2 + · · ·+ xipβp + εi (3.1)

where βj (j = 1, . . . , p) are the unknown parameters that are to be estimated and εi are the
errors that are independent and identically distributed (iid) normal random variables with zero
mean and variance σ2. The equivalent matrix notation is

Y = Xβ + ε

where Y is the column vector of N observations, ε the column vector of error terms corresponding
to each of the N observations, and β the column vector of parameters β = [β1, . . . , βp]

T . The
N × p matrix X is the design matrix which provides near complete explanation of the model;
the remaining assumptions are about the distribution of errors.

�What is considered `contiguous' depends on how a neighborhood is de�ned. In 3D two voxels above the
threshold uc can be considered connected based on a 6-connectivity (when only connection of faces is considered)
or 18-connectivity (when edges are also considered) or 26-connectivity (when corners are also considered)
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Parameter estimation: Ordinary Least Squares (OLS)

The simultaneous equations implied by the general linear model (considering ε = 0) cannot be
solved since the number of parameters p is typically less than the number of observations N .
This calls for a method to estimate the parameters to obtain a best �t of the data � such as the
ordinary least squares method (OLS).

Let the parameter estimates be denoted by β̂ = [β̂i, . . . , β̂p]
T that give the predicted responses

Ŷ = [Ŷ1, . . . , ŶN ]T = Xβ̂ with the residual errors e = y − Ŷ = y − Xβ̂ = [e1, . . . , eN ]T , where
y is the value of Y observed during the experiment. Then the residual sum of squares obtained
as S =

∑n
i=1 e

2
i = eT e is the sum of the square di�erences between the actual and �tted values,

and measures the �t of the model provided by these parameter estimates. The least squares
estimates are the parameter estimates that minimize the residual sum of squares:

S = eT e = (y −Xβ̂)T (y −Xβ̂)

= yT y − 2β̂TXT y + β̂TXTXβ̂

which is minimised * when

∂S

∂β̂
= 0

=⇒ − 2XT y + 2XTXβ̂ = 0

=⇒ XTXβ̂ = XT y

If the inverse of XTX exists, then by premultiplying the above equation on both sides with
(XTX)−1 we obtain the estimate

β̂ = (XTX)−1XT y

which is the best linear unbiased estimator (BLUE) for the general linear model .

If X has linearly dependent columns (the model is overparametrized or overdetermined) then
it is rank de�cient and (XTX) is singular and therefore has no inverse. In this case a set of
least squares estimates can be found by imposing constraints on the estimates, or by obtaining a
pseudo-inverse of (XTX), such as the Moore-Penrose pseudo-inverse denoted by (XTX)−. Then
the set of least squares estimates is given by

β̂ = (XTX)−XT y

Using the pseudo-inverse for parameter estimation in overdetermined models does not allow
testing for the linear combinations of e�ects for which there exist an in�nite number of solutions.
However, it does allow for the estimation of unique mixtures without changing howX is speci�ed.

Non-sphericity

In neuroimaging the presence of spatial and temporal non-sphericity can have signi�cant impact.
Sphericity is the assumption that the error terms are independent and identically distributed. If
the error terms are not identically distributed then the observations are heteroschedastic, and
correlation among error terms indicate dependence. The presence of spatial correlations in the
neuroimaging data and regional changes in error variance lead to non-sphericity in the error
terms, which would require a large number of parameters to be estimated for each voxel.

*This is indeed a minimum: on taking the second derivative of S with respect to β̂ we obtain 2XTX which is
a positive de�nite matrix as long as X is full rank.
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Parameter estimation: Generalized Least Squares (GLS)

In the context of non-sphericity, the Gauss-Markov assumptions are violated (the errors are no
longer uncorrelated) and therefore the OLS estimates are no longer optimal. This calls for the
transformation of the general linear model to be able to obtain parameter estimates.

Let Y represent the smoothed time series and ε the error term such that ε ∼ N(0, V ), V 6=
σ2I.Since V is a positive semi-de�nite matrix, it can be decomposed as V = KTK. For the
general linear model

Y = Xβ + ε

the optimum estimator of β is obtained by unsmoothing the data by multiplying by K−1 and
applying least squares to the uncorrelated data Then

K−1Y = K−1Xβ +K−1ε, V ar(ε) = K−1V K

or Ỹ = X̃β + ε̃ where ε̃ is now uncorrelated and the original β is still the linear parameter, so
the OLS can now be applied to obtain

β̂GLS = (X̃T X̃)−1X̃T Ỹ = (XTV −1X)−1XTV −1Y (3.2)

and it can be shown that E[β̂GLS ] = β and V ar[β̂GLS ] = (XTV −1X)−1. The variance V is esti-
mated using a restricted maximum likelihood method (ReML) and the expectation maximization
(EM) algorithm.

Inference

If X is full rank then the parameter estimates β̂ = (XTX)−1XT y are normally distributed as
β̂ ∼ N(β, σ2(XTX)−1). For a column vector c containing p weights,

cT β̂ ∼ N(cTβ, σ2cT (XTX)−1c)

A hypothesis H0 : cTβ = d can be assessed by calculating

t =
cTβ − d√

σ2cT (XTX)−1c
(3.3)

and obtaining a p-value by comparing t with a t-distribution having N−p degrees of freedom[18].

General Linear Models for fMRI data

Since fMRI data represent time-series, there is serial correlation involved and temporal non-
sphericity needs to be modeled. Additionally, the data are a result of dynamical processes and
require a convolution model for their modeling. Parametric softwares such as FSL employ voxel
based methods to �t models to neuroimaging data. Each voxel carries a time varying signal
which is measured and compared to the predicted response from a particular stimulus to detect
activation at that voxel. The predicted response is obtained from a convolution of the applied
stimulus signal with the heamodynamic response function (HRF) as discussed in the previous
chapter.

Single subject analysis

Regressors are constructed from each type of stimulus provided during an experiment and these
are then �t to the observed signal at each voxel using a linear model. Thus a set of regression
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parameters (e�ect sizes) and a residual function is obtained at each voxel (Figure 3.1). Therefore
at each voxel we have,

y = Xβ + e (3.4)

where y contains the signal recorded at the voxel, X contains the regressors/predicted responses
from each stimulus supplied during the experiment, β is the vector of parameters to be estimated
(that is speci�c to each voxel) and e is the residual at each voxel.

Figure 3.1: The linear modeling framework at each voxel. Source: FSL Course
(http://fsl.fmrib.ox.ac.uk/fslcourse/)[13]

The actual parameter estimate at each voxel is divided by the error in the estimation of that
parameter to obtain a t-value (as in Eq. 3.3, with d = 0), which can be converted to a t- or
z-statistic. Images made up of t-values (or z- values) show how strongly each voxel is related to
each explanatory variable (EV). Additionally, the parameter estimates can be compared to see if
one EV is more relevant than others, by developing contrast maps, by choosing the appropriate
vector for c in Eq. 3.3. These contrast maps can be used to query the data and test for signi�cant
e�ects. In order to control false positives across the whole brain, a threshold is determined for
voxel signal intensities such that only 5% (typically) or less of these contrast maps show a voxel
above the determined threshold (as detailed in Section 2.2.4).

Multi-subject analysis

Research studies using fMRI typically aim to answer questions about the activation e�ects in
a population of subjects, and therefore involve data from multiple subjects analyzed to allow
for inference at the group level. For a group-level analysis it is simple to formulate a complete
single-level general linear model relating the parameters of interest at the group level to the full
set of time-series data (for example, Cnaan et. al, 1997 [19]). However, since the computational
costs involved in fMRI are relatively high it becomes cumbersome to re-analyze individual sub-
ject level data for group level inference. In this case it is desirable to be able to make group-level
inferences using only the results of the subject-level analysis. Beckmann et. al (2003)[20] demon-
strated that the single-level GLM can be decomposed into an equivalent two-level model so that
group analyses can be performed using only the parameter estimates and their covariances from
the lower-level. The group level inference can be obtained through a �xed e�ects approach, or
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through a mixed e�ects model.

For a group of size n, for a subject k the �xed e�ects model is represented as

Yk = Xkβk + εk (3.5)

βk = Xgβg, βg =
1

n

n∑
k=1

βk, Xg = [1]n×1 (3.6)

Mixed e�ect modeling, by accounting for the between-subject variance in the group (εg),
allows for inference that is more representative of the population.

Yk = Xkβk + εk (3.7)

βk = Xgβg + εg, βg =
1

6

n∑
k=1

βk, Xg = [1]n×1 (3.8)

The inferences from a �xed e�ects analysis are limited to the cohort of subjects studied,
while those from random e�ects analyses are used to make inferences about the population
sampled. The only variance modeled in a �xed e�ects model (of repeated observations on a
group of subjects) is the within-subject variability within the speci�c experimental condition,
that is, the variability from scan to scan of the same condition within an individual. This
represents measurement variability confounded with physical, physiological and cognitive e�ects.
The random e�ects analyses also account for the between-subject variability, which is particularly
important for group-level comparisons especially for fMRI where the within-subject variability is
most certainly smaller than the between-subject variability � as a result of which the signi�cance
of between-group di�erences will be overestimated in a �xed-e�ects analysis.

Multi-level general linear model

Let N be the number of subjects and for each subject i let Xi denote the design matrix and βi
denote the corresponding subject-level parameter estimates. A single-level general linear model
relates the �rst-level parameters to the to the individual datasets as

Yi = Xiβi + εi

where εi are the single-subject residuals such that E[εi] = 0, Cov(εi) = Vi.

A two-level model for this situation can be speci�ed as

Y = Xβ + ε

β̂ = XGβG + η
(3.9)

where XG is the group-level design matrix,βG is the vector of group-level parameters and η gives
the residuals of the group activation. E[η] = 0, Cov(η) = VG and Cov(ε) = V denote the block-
diagonal form of the �rst level covariance matrices Vi.
The BLUE can be calculated using the generalized least squares (GLS) approach (Eq. 3.2),
giving at the �rst level [20]:

β̂ = (XTV −1X)−1XTV −1Y

Cov(β̂) = (XTV −1X)−1
(3.10)
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and at the second level:

β̂G = (XT
GV
−1
G XG)−1XT

GV
−1
G β̂

Cov(β̂G) = (XT
GV
−1
G XG)−1

(3.11)

However in practice, only the estimates of the �rst-level parameters, β̂, are used as inputs for
the second-level. So the second level in Eq. 3.9 should instead be given as

β̂ = XGβG + η′

where Cov(η′) = VG2. Therefore the BLUE at the second level is now

β̂G = (XT
GV
−1
G2 XG)−1XT

GV
−1
G2 β̂

Cov(β̂G) = (XT
GV
−1
G2 XG)−1

(3.12)

Now substituting the value of the �rst-level parameter estimate β̂ gives

β̂G = (XT
GV
−1
G2 XG)−1XT

GV
−1
G2 (XTV −1X)−1XTV −1Y

The two-level model can be collapsed into a single-level model by substitution, giving

Y = XXGβG + γ where,

γ = Xη + ε

E(γ) = 0, Cov(γ) = W = XVGX
T + V

(3.13)

The BLUE for this general linear model is obtained as

β̂G = (XT
GX

TW−1XXG)−1XT
GX

TW−1Y

Cov(β̂G) = (XT
GX

TW−1XXG)−1
(3.14)

which relates the group level parameter estimate to the full data vector Y for N subjects, thus
involving the solution for matrices of greatly increased size.

In order to employ the computationally more e�cient approach of using only the parameter
estimates from the �rst-level for the second-level inference, the estimated group parameter in
Eq. 3.12 should be equal to that in Eq. 3.13. Using the Sherman�Morrison�Woodbury formula
to write

W−1 = V −1 − V −1X(V −1G +XTV −1X)−1XTV −1

the equivalence relation can be obtained as

VG2 = VG + (XTV −1X)−1

which expresses the second-level covariance as the sum of the group covariance from the single-
level model (Eq. 3.13) and the parameter covariance from the �rst-level of the two-level model
(Eq. 3.12). The group level parameter estimate can now be re-written as

β̂G = (XT
G(VG + (XTV −1X)−1)−1XG)−1XT

G(VG + (XTV −1X)−1)−1β̂

that is, as a function of the �rst level parameter estimates β̂ and their covariances (XTV −1X)−1.
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Inference

For inference at the group level, hypothesis tests such as one-sample t-test, two-sample t-test,
paired t-test and one-way ANCOVA are used. For our research we use one-sample and two-
sample t-tests, which we elaborate on here [18].

One-sample t-test

The one-sample t-test can be used to test the null hypothesis that the mean of n subjects is zero.
The model for this can be speci�ed as

Y = xβ1 + ε

where x is a vector of ones and ε ∼ N(0, σ2I), the null hypothesis is H: β1 = 0. The t-value is
computed as:

T =
β̂1√
σ̂2/n

∼ tn−1

where σ̂2 =
∑n

i=1(Yi − Ŷi)2/(n− 1), Ŷi = (xiβ̂1)i = β̂1.

Two-sample t-test

Two-sample t-tests are used to test the null hypothesis that the means of two groups are equal.
The design matrix consists of three columns: the �rst two columns encode the group membership
of each subject and the third models a common constant across subjects of both groups. This
model is overdetermined by one degree of freedom, i.e. the sum of the �rst two regressors equals
the third regressor.

If the groups considered have n1 and n2 subjects, then the �rst regressor consists of n1 ones
followed by n2 zeros, the second regressor consists of n1 zeroes followed by n2 ones and the third
regressor consists of n1+n2 ones. In order to test the null hypothesis H: β1−β2 = 0 the contrast
vector required is c = [1,−1, 0]T . The matrix

XTX =

n1 0 n1
0 n2 n2
n1 n2 n1 + n2


is rank de�cient (since it is overdetermined) and therefore the pseudo-inverse (XTX)− is used
to compute the t-statistic. Applying the contrast c for the desired hypothesis,

cT (XTX)−c = 1/n1 + 1/n2

giving the t-statistics as

T =
β̂1 − β̂2√

σ̂2/(1/n1 + 1/n2)
∼ t(n1+n2−2)

where σ̂2 =
∑n

i=1(Yi− Ŷi)2/(n1 +n2−2), assuming equal variance in both groups. This assump-
tion would be violaed in the case when one group consists of healthy subjects and the other is
composed of patients. Typically in research studies, n1 = n2.

Thresholding

In this section the case of voxel-wise inference - which needs a height threshold - is used to elab-
orate on the process of choosing a threshold for statistical parametric maps. In general there are
also cluster-wise and set-level inference which require height threshold as well as spatial extent
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thresholds to be chosen.

Under the null hypothesis, the voxel values in a statistical parametric map (SPM)[18] are
distributed according to a known probability function, typically the t- or F-distributions. Every
voxel is analyzed using a univariate statistical test for activation on a particular explanatory
variable and the resulting statistical parameters are assembled to obtain the SPM. Unexpected
deviations in the SPM are interpreted as regional e�ects as a result of the experiment the subject
has undergone. In order to decide if the observed statistic at a voxel is the result of a signal or
re�ects underlying noise, the statistic is compared to its assumed value under a null distribution
(H0) � which is typically that there is no activation in the brain region of interest as a result of
the external stimulus. An acceptable Type I error level is chosen (usually α = 0.05) and for a
one-sided test the null hypothesis is rejected if P (T > t0|H0) < α, where t0 is the value of the
test statistic corresponding to α.

Therefore an important step in the inference is to choose an appropriate t-value to threshold
the statistical map. A high threshold value ensures good speci�city, but risks falsely concluding
there is no signal in the data. Likewise, a low threshold enables detection of more of the signal
but risks falsely concluding there is an e�ect when there is none (Fig. 3.2). In many cases it
is not known where in the brain the activation will arise, which means that the entire volume
of the brain has to be taken into account and the familywise error controlled across the whole
brain. Since the whole brain volume comprises typically of 100,000 voxels or higher (depending
on the resolution of the scanner) there is a need to control for multiple comparisons across voxels.

Standard hypothesis tests are designed to control the error rate only per test, and not meant
to be used repeatedly for multiple related tests. Therefore for fMRI data, the false positive risk
needs to be measured over the entire image, and this is most commonly accomplished using the
Familywise error rate.

a. Familywise error rate

The Familywise error rate (FWE) is the chance of one or more false positives anywhere in
the image. For a valid procedure with αFWE , there is at most a αFWE% chance of any false
positives across the statistical map. In voxel-wise inference, for each voxel a `corrected p-value'
is calculated, which is the smallest αFWE that allows detection of that voxel. Several procedures
are available to obtain valid corrected p-values, three of which we brie�y present here.

(i) Bonferroni correction

The `corrected p-value' at each voxel is obtained as follows:

P (Type 1 error at voxel) = αv

=⇒ P (no Type 1 error across n independent voxels) = (1− αv)n

=⇒ P (atleast one Type 1 error across n independent voxels) = 1− (1− αv)n

=⇒ FWER = 1− (1− αv)n ≈ nαv

using the Binomial expansion for large n and small αv, where αv is the threshold at each voxel and
FWER is the familywise error rate to be controlled for over the entire volume of voxels. In order
to control for a particular FWER across the brain, the t-statistic at each voxel should be chosen
corresponding to an αv = FWER/n. Thus if the brain region is composed of n=1000 voxels
and the required FWER over the brain region is chosen as 0.05, then the threshold t-statistic at
each voxel is computed from αv = 0.05/1000 = 0.00005. After the statistical parametric map
for this region has been thresholded, if there are more than 5% of voxels with t-statistic values
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greater than the threshold, then the null hypothesis is rejected and the brain region is concluded
to show activation in response to the stimulus.

Figure 3.2: Choosing an appropriate threshold for inference. (Source: Presentation, RFT for Dummies
- Part 1 (2009), Lea Firmin and Anna Jafarpour)

In reality, due to the nature of brain activations in fMRI there is spatial correlation between
adjacent voxels. Pre-processing steps that are typically carried out such as spatial normalization,
realignment and smoothing introduce further spatial correlation in the data. Therefore the
Bonferroni correction is usually strongly conservative and there is a need for correction procedures
that account for the dependency among the voxels.

(ii) Random Field Theory (RFT)

The random �eld theory [21] is used to obtain a more accurate threshold for the statistical maps
by �rst estimating the smoothness of the statistical map and then using this value to obtain
the expected value of the Euler Characteristic, E[EC] corresponding to the chosen tolerance for
Type 1 error.

The smoothness of an SPM is estimated from the spatial correlation in the images. The
calculated smoothness is used to compute the value of a Resel, which is de�ned as the block of
pixels that are the same size as the FWHM (full width at half maximum) value of the smoothness
in the SPM. Thus, for a two-dimensional image with pixels of size 2 mm and smoothness of 8
mm, a Resel is (8/2)dimension = 4× 4 = 16 pixels. If the entire image is composed of 256 pixels,
then the number of resels in the image is given by 256/16 = 16 resels.

The Euler Characteristic (EC) is approximately given by the number of "blobs" above the
threshold in a thresholded SPM. At high threshold, the FWE rate can be approximated by
the E[EC] [21]. For a two-dimensional image, the expected value of the Euler Characteristic is
computed by

E[EC] = R
4 ln(2)√
((2π)3)

zt exp(−z
2
t

2
)

where R is the number of resels and zt is the desired z-score threshold. By setting E[EC] =
FWE, the required z-score threshold for the statistical parametric map is obtained.

Assumptions of Random Field Theory Any statistical inference that uses RFT to
correct for multiple comparisons also needs to conform to the assumptions [21] of the Random
Field Theory, namely

(i) The error �elds are "reasonable lattice approximations" to an underlying random �eld with
a multivariate Gaussian distribution.
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(ii) The random �elds are continuous with twice-di�erential autocorrelation function.

(iii) Nonparametric approaches

An alternative approach is to use the data itself to obtain empirical null-distribution of the test
statistic of interest, rather than making parametric assumptions about the data to obtain approx-
imate p-values. The bootstrap and the permutation test are the most popular non-parametric
options, of which the former is an asymptotic method while the latter provides exact control of
the false positive risk.

The main idea behind a permutation test is that under the null hypothesis, the group labels
are irrelevant and therefore by repeatedly shu�ing the assignment of the group labels and an-
alyzing the data for each shu�e gives a distribution of statistic values that would be expected
under the null hypothesis. For fMRI data the permutation test is di�cult to apply for a sin-
gle subject's data since the temporal autocorrelation makes the time series autocorrelated (and
hence not exchangeable) and computationally demanding procedures are required to decorrelate
the data. However for group level fMRI analysis, the permutation is much easier to apply.

Through repeated permutation, a distribution for the maximal statistic (for voxel-wise infer-
ence, this is the largest intensity in the statistic image) is constructed and the FWE corrected
p-value is calculated as the proportion of maxima in the permutation distribution that is as or
more extreme than the observed statistic value.

The main disadvantage of permutation methods is their computational intensity � where
RFT methods take seconds, a typical permutation analysis takes a few minutes to an hour on
modern computing hardware.

b. False Discovery Rate (FDR)

An alternative measure of error in neuroimaging that is more lenient than the FWE is the FDR.
The FDR measures the proportion of false positives among all rejected tests. If TP is the number
of true positives (the null hypothesis is rejected when it is not true) and FP the number of false
positives or false discoveries (the null hypothesis is rejected when it is true), then the FDR is
de�ned as

FDR =
FP

TP + FP

The FDR is equivalent to the FWER when all the null hypotheses are true, and any procedure
that controls the FWER will also control the FDR. Therefore a procedure that controls for the
FDR instead of the FWER is less stringent and leads to greater power. Since by de�nition the
FDR depends only on the p-values rather than the actual test statistics, it is applicable to any
valid statistical test, as opposed to the FWER based on RFT that requires the test statistics to
follow a known distribution.

The greater sensitivity of the FDR comes with greater false positive risk. Additionally, voxel-
level FDR lacks spatial speci�city � in a statistical map of FDR - signi�cant voxels, it is only
possible to state that on average not greater than x% (where x is the FDR level) of voxels on
average are false positives, and it is not possible to pick out signi�cant voxels individually.

Drawbacks of parametric methods

In their recent work Eklund et al. (2016) [1] examined the statistical validity of the popular
fMRI software packages SPM, FSL and AFNI using resting state fMRI data as the null data.
The authors found that all three statistical packages lead to conservative voxelwise inference and

34



invalid clusterwise inference for both one- and two-sample t-tests, with a high degree of false
positives (up to 70%, compared to the nominal 5%) for clusterwise inference. They found that
the choice of smoothing and cluster de�ning threshold a�ect the familywise error (FWE) rate
of the parametric methods. They concluded that the principal cause for the invalid clusterwise
inference is that the spatial autocorrelation in the data violates the assumptions made by para-
metric methods used to correct for multiple comparisons, principally Gaussian Random Field
Theory.

These results call for a need to explore alternative approaches for inference on neuroimag-
ing data that accurately model spatial autocorrelation, potentially providing better type I error
control and more sensitive inference. In contrast to RFT, the trend surface modeling approach
models spatial correlation using a set of biologically informed basis functions derived from rest-
ing state fMRI, then performs inference over the coe�cients for these basis functions. Since this
approach involves only a few hundred basis functions the penalty for multiple comparisons is
greatly reduced and there is no longer a need for complex corrections and a simpler measure
such as the Bonferroni correction can be used instead.

Voxel based features also not suitable for multivariate approaches such as pattern-recognition
(which can model the correlations between the brain regions) since they lead to highly ill-posed
problems on account of the large number (∼ 100, 000) of features versus much fewer observations
(scans or subjects; ∼ 10 or 100). Therefore for mass-univariate as well as multivariate approaches
it is more optimal to �nd parsimonious representations of brain function (or structure) that would
better represent the underlying signal.

Bayesian spatial statistics approach: Trend surface model

Bayesian methods for fMRI

As mentioned earlier, most early Bayesian models for fMRI relied on simplifying assumptions and
computational short-cuts to make Bayesian analysis feasible for the large and complex datasets.
Friston et a. (2002)[22] and Friston and Penny (2003)[23] proposed an empirical Bayes ap-
proach, where in the parameters of the priors are estimated from the data rather than depending
on hyper-priors (which is the case in Full Bayes approach). The �rst Fully Bayes approaches
to fMRI data were proposed by Genovese(2000)[24] and Kershaw et al. (1999)[25], where they
use a non-informative Je�rey's prior for all parameters to avoid computational issues. However,
these methods still assumed the time-series at each voxel to be independent and do not account
for the spatial properties of fMRI. This was quickly remedied by other research works: Hartvig
(2002)[26] use a marked point process to describe the spatial activation pattern. Woolrich et
al. (2004)[27] propose a model for the HRF that includes a spatial noise component. Spatial
knowledge was also incorporated in the form of priors using Markov random �elds (Gössl et al.
2000[28], 2001[29]) and mixture models (Hartvig and Jensen, 2000[30]).

Another impediment to adoption of Bayesian methods is the computational complexity in
computing analytically intractable posterior distributions using expensive procedures like the
Markov Chain Monte Carlo (MCMC) simulations. A popular approach to avoid complex simu-
lations is to obtain analytically tractable posteriors, such as by using conjugate priors. In this
case a Variational Bayes approach can be used to approximate the true posterior distribution by
estimating it using a posterior factorized over subsets of the model parameters and minimizing
the di�erence between the true and approximate distributions using the conjugate prior. When
the models are not conjugate, as is often the case, then further approximations are needed,
such as by using the Approximate Variational Bayes approach. Another approach to simplify
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Bayesian inference is a hybrid of frequentist and Bayesian approaches � for instance, Neumann
and Lohmann (2003)[31] use the ordinary general linear model without priors for the subject
level analysis and only incorporate a Bayesian scheme at the second level.

The Bayesian approach enables the exploration of questions beyond those related to localiza-
tion of the BOLD signal, because once the posterior distributions of the parameters are available
they can be used to answer a wide range of questions about the parameters. For instance, Gen-
ovese (2000)[24] explored whether the strength of the response to a stimulus increases with the
di�culty of the task � which is a very tough question to answer based on frequentist methods.

Applying principles of spatial statistics

Several approaches have been proposed to account for the spatial dependence in fMRI data, based
on the principles of spatial statistics. Discrete spatial models that provide local smoothing for
the parameter estimates from mass-univariate analysis were proposed by Penny et al (2005)[32]
and Woolrich et al (2004)[27]. However, these models cannot accommodate long range spatial
dependencies that are characteristic of neuroimaging data. The spatial mixed model, that ac-
counts for spatial dependencies through a continuous (typically Gaussian) spatial random �eld,
is a more accurate approach. In this model the covariance matrix of the spatial random e�ect
describes the spacial correlations between the statistical units. However, in order to obtain the
estimates it is necessary to invert the covariance matrix, which poses a computational burden
when used on the whole brain space and is therefore more useful when examining restricted re-
gions of interest in the brain. Another option is to use data reduction techniques to approximate
the underlying spatial process, as demonstrated by Hyun et al (2014)[33] and Zhu et al (2014)[34].

Instead of working with high dimensional spatial processes, a more e�cient approach is to
obtain low rank models by approximating the covariance matrix using a reduced number of basis
functions, as shown by Cressie and Johannesson (2008)[35]. The basis functions are typically
non-linear functions such as radial basis functions, b-splines or wavelets. Another recent ap-
proach proposed by Gershman et al (2011)[36] models fMRI data as a superposition of image
sources constructed from adaptive radial basis functions. Thus they abstract away from the
voxels, but the basis functions do not clearly map on to the biology.

Huertas, I. et al. (2017) [2] propose a spatial model based on a data-driven parcellation of
the brain that is derived from measures of brain function as proposed by van Oort, E.S.B. et al.
(2016) [3] (Instantaneous Connectivity Parcellation ), and a Bayesian linear model is used for
model �tting. This model is motivated by recent evidence of temporally independent, spatially
overlapping subnetworks within functional networks in the human brain that are believed to
represent �ne-scale computational units. This model is generic and can be adapted for many dif-
ferent brain regions. It o�ers the bene�t of a substantial reduction in the number of parameters
to be estimated and clinical interpretability of the inferences. Additionally, the Bayesian frame-
work o�ers a quanti�cation of uncertainity in the parameter estimates. The model proposed by
Huertas, I. et al. (2017) [2] is employed for the research presented in this thesis and is discussed
in more detail in the next section.

Trend surface model

A classical geostatistical model [37] is represented as

Y(s) = µ(s) + e(s) (3.15)

where Y(s) is the continuous spatial random �eld, µ(s) ≡ E[Y(s)] is the mean function (assumed
deterministic and continuous) and e(·) ≡ {e(s) : s ∈ D}, where s ∈ D and D ⊂ Rd(d = 2 or 3)
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is the study region of interest, is a zero-mean random error process satisfying the stationarity
condition. The mean function µ(·) accounts for large scale spatial variation and e(·) accounts
for small-scale spatial variation as well as measurement error, which can be further broken down
into these components as e(s) = η(s) + ε(s), where η(s) is the spatially dependent component
and ε(s) is the measurement error.
The most commonly used parametric mean model is a linear function given by

µ(s;β) = X(s)Tβ (3.16)

where X(s) is the vector of covariates observed at s and β is an unrestricted parameter vector.
The covariates often include the attributes of interest at the spatial co-ordinate s. However, if
data on such potentially useful attributes is not available then the mean functions is expressed
as a polynomial function of the spatial co-ordinate alone; such models are called trend surface
models.

A standard method of �tting a linear mean function to spatial data is ordinary least squares
(OLS). However due to the sensitivity of OLS estimators to outliers and their potential to have
large variances due to the possible multicollinearity of the covariate in a trend surface model,
there is a need for procedures that allow for more robust estimates.

Huertas, I. et al. (2017) [2] employ a spatial statistical modelling framework that mod-
els neuroimaging data using data-driven, biologically relevant basis functions obtained through
instantaneous correlation parcellations ([3]). A bayesian regression method is used to automat-
ically �nd a linear weighted sum of basis functions to �t an imaged brain region of interest. We
brie�y explain the trend surface model based on the presentation in Huertas, I. et al. (2017) [2].

Consider a dataset involving S subjects. The preprocessed three dimensional data voxels
from each of the S subjects is collected into a vector ys of length V . The objective is to predict
the data in ys using a set of basis functions {Φm(x)}Mm=1 that vary over the spatial domain x.

ys =
M∑
m=1

wmφm(x) + εs (3.17)

where, M is the total no. of basis functions, εs ∼ N(0, θ−1), θ is the noise precision and
ws = [w1,s, . . . , wM,s]

T is an M dimensional weight vector of regression coe�cients.

Empirical Bayes

This approach assumes that subjects are independent realizations of the same distribution.

p(Y,Φ,W | α, θ) =

S∏
s=1

p(ys | Φ, θ,ws)p(ws | α) (3.18)

where Φ is a V ×M matrix of basis functions, W = [w1, . . . ,wN ] is anM ×S matrix containing
the weight vectors for each subject and Y is a V × S matrix of the neuroimaging data for all
subjects.
A Gaussian prior p(ws | α) = N (ws | µ,Λ−1α ) is assumed over the weights for each subject, where
µ is assumed to be zero. Λα is the inverse covariance matrix, or the precision matrix, which
is shared across all the subjects and has α = [α1, . . . , αm]T as hyperparameters. The precision
matrix Λα is diagonal, with an independent parameter αm for each basis function that acts
as an automatic relevance determination (ARD) prior to emphasize informative basis functions
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consistently across all subjects. The precision parameters α are estimated from the data using
an empirical Bayes approach, as shown below. For �xed α and β the posterior distribution over
all parameters of interest (W in this case) can be computed in closed form, since the posterior
obtained from the combination of a Gaussian prior and a Gaussian likelihood is also Gaussian.
Therefore,

p(W | Y,Φ, α, θ) =
∏
s

p(ws | ys,Φ, α, θ) (3.19)

and ∏
s

p(ws | ys,Φ, α, θ) = N (ws | w̄s,A
−1) (3.20)

where A = θΦTΦ + Λα and w̄s = θA−1mbΦTys.

Full Bayes

The model speci�ed in eq.(3.18) does not account for the uncertainity in estimation of all the
parameters, nor does it explicitly account for spatial correlations between basis functions. A
fully bayesian approach is proposed to remedy these drawbacks.

p(Y,Φ,W,Λα, θ | γθ, γα) = p(θ | γθ)p(Λα | γα)
S∏
s=1

p(ys | X, θ,ws)p(ws | Λα) (3.21)

This model now accommodates spatial correlations between basis functions by allowing o�-
diagonal entries in Λα. The prior over the weights is the same as in the empirical bayes case and
additionally the other parameters are also assigned weights as follows:

The ARD (automatic relevance determination) precision matrix is assigned a Wishart prior:

p(Λα | γα) = Wish(Λα | N,P), (3.22)

where N is degrees of freedom and P is the precision of the prior. The prior over the regression
coe�cients has a Gamma distribution

p(θ | γθ) = Gamma(θ | a, b) (3.23)

where a, b are the shape coe�cients. This choice of priors once again utilizes the conjugacy of the
distributions and simpli�es the inference. A blocked Gibbs sampling algorithm samples from the
full conditional distribution of each block of variables conditioned on the current estimates of all
others, thus reducing a high-dimensional distribution to simpler low-dimensional distributions to
be sampled from.

For each of the t = 1, . . . , T iterations in the Markov chain samples are drawn from the full
conditional distributions of W, θ and Λα based on current estimates for other parameters:

p(W(t+1) | Λα
(t), θ(t),Y) =

S∏
s=1

N
(
w(t+1)
s | w̄(t+1)

s , (A−1)(t+1)
)

p(θ(t+1)) | Λα
(t),W(t),Y) = Gamma

(
θ(t+1) | a+

SV

2
, b+

1

2

∑
s

(ys −Φw(t)
s )T (ys −Φw(t)

s )

)

p(Λα
(t+1) |W(t), θ(t),Y) = Wish

(
Λα

(t+1) | N + S,P +
∑
s

w(t)
s (w(t)

s )T

)
(3.24)
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Huertas, I. et al. (2017) found that while Empirical Bayes approach is relatively e�cient for
small number of basis functions, it does not scale well for models involving a larger number of
basis functions and that the MCMC approach of Full Bayes is usually an order of magnitude
faster. The Full Bayes approach is also more robust to over�tting in the case of high numbers of
basis functions (with strong correlations). The Full Bayes approach quanti�es the uncertainty
across all modeled paramters and propagates that uncertainty through to the predictions � which
is necessary for applications where predictive uncertainty is important. In our implementation,
we use the trend surface model with the Full Bayes approach, and adjust the priors to be non-
informative.

Bene�ts of the TSM approach

This spatial approach provides an elegant alternative to the classical mass-univariate approach
and has several advantages. Firstly, the number of statistical tests needed for inference is greatly
reduced, leading to greater statistical power. Secondly, the computational units are biologically
meaningful unlike the arbitrary voxels, which enables more directly interpretable clinical out-
comes. Thirdly, the hierarchical structure of the basis functions allows for the capturing of long
range interactions as well as local dependencies. Finally, there is no commitment to a speci�c
scale of parcellation, as a result of which the trend surface model can be applied to regions with
di�erent scales of resolution.

Instantaneous Connectivity Parcellation (ICP)

Most existing parcellations of the brain employ a bottom-up strategy of creating a parcellation
by clustering smaller units, such as voxels. Such parcellations are dependent on the initial de�-
nition of their smallest atoms and any inaccuracies in the atom level parcellation can propagate
through to the highest levels. Voxels, which when convolved with the spatial smoothing kernel
form the smallest possible entities in MRI, have no inherent biological validity and are therefore
not the ideal starting point for parcellation.

ICP [3] adopts a top-down approach to parcellating the brain - a large-scale brain region of
interest (ROI) that is based on prior anatomical or functional knowledge is divided into smaller
sub-regions that are considered functionally homogenous, based on their temporal signature. van
Oort, E.S.B. et al. (2016) apply independent component analysis to resting state fMRI data
from the Human Connectome Project, after the data was transformed using a modi�ed Pearson
correlation to amplify minor temporal di�erences between individual voxels within the larger
brain ROI.

For our research we use a basis set that employs soft parcellations, as opposed to the common
practice of using hard partitioning of the brain through clustering techniques. Soft parcellation
allows a spatial unit to be involved in di�erent networks, and for a more gradual transition
between regions. This also mitigates the risk of mixing signals from di�erent brain regions if a
spatial parcel has been misspeci�ed.

Inference

We employ classical inference on the estimates from the trend surface model in order to enable a
direct comparison with the results of Eklund et al. (2016) [1]. We �t the trend surface model to
the contrast maps of the parameter estimates and their variances (that are results from subject-
level analysis using FSL), obtaining parameter estimates and variances in the ICP - based parcel
space, at the subject-level.

39



For group-level inference we create random groups of size N from the list of available subjects.
At each group we compute the group-level t-statistic at each parcel. Let β̂ki denote the estimate
of the parameter at parcel i, i = 1 . . . P for subject k where k = 1 . . . N and P is the total
number of parcels (or basis functions; in the order of a few hundred) in the basis set being used.
Let γ̂ki denote the mean of the variance of parameter estimates, and σ̂2ki denote the variance in
the variance of parameter estimates for subject k and parcel i. Then for subject k at each parcel
i an F-statistic[[20]] is computed

fki =
γ̂2ki

σ̂2ki

and the group-level pooled variance at each parcel is computed as

Fi =

∑N
k=1 fki
N − 1

and the t-statistic as

ti =

∑N
k=1 β̂ki/N√
Fi/N

We obtain a corrected p-value using the Bonferroni correction (since in this particular work
we employ uncorrelated basis functions)

αparcel = 0.05/P

for a nominal false positive rate of 5%, which is then used to test for the FWER across all parcels.
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4. Data Analysis and Results

Introduction

We have seen so far an overview of the state of the art in the statistical analysis and inference
of fMRI data. While the classical approach of mass-univariate analysis o�ers �exibility in the
modeling of fMRI data, due to the large number of tests that have to be performed simultane-
ously for hundreds of thousands of voxels there is a need for multiple testing correction. The
presence of spatial correlations in the data mean that straightforward correction procedures such
as the Bonferroni correction are no longer applicable, and instead complex post-hoc correction
procedures such as the random �eld theory need to be applied (Section 3.2). It has recently
been demonstrated by Eklund et al. (2016) that popular fMRI analysis packages such as FSL,
SPM and AFNI lead to very high false positives for cluster-wise inference and conservative false
positives for voxel-wise inference, when tested using resting-state fMRI data as real-world null
data. Eklund et al. (2016) inferred that the primary cause for such performance was the viola-
tion of one of the two underlying assumptions of random �eld theory , namely, that the spatial
autocorrelation in the data has a squared exponential structure.

In light of these results, there is a need to explore alternative modeling approaches to fMRI
data that do not involve the same drawbacks as the mass-univariate approach. Huertas, I. et al.
(2017) [2] propose one such approach that overcomes the multiple testing problem by using a
biologically meaningful, parsimonious basis set that divides the brain into a few hundred parcels
using instantaneous correlation parcellations [3]. Huertas, I. et al. (2017) [2] use a Bayesian
regression model that automatically �nds an appropriate linear-weighted sum of the parcels to
�t an imaged brain region of interest.

Our research evolved in this context � to examine the performance of the trend surface model
presented by Huertas, I. et al. (2017) [2] in line with the analysis performed by Eklund et al.
(2016) [1] in order to demonstrate that the trend surface model performs optimally with regard
to Type I error, without sacri�cing sensitivity. To this end, we �rst successfully replicate the
results obtained by Eklund et al. (2016) for FSL, using one of the datasets. Then we test for
the speci�city of the trend surface model on the same resting-state fMRI data and show that it
performs optimally. We further test for the sensitivity of the trend surface model to demonstrate
that the speci�city of the model does not come at the cost of its power � and we achieve this by
testing the trend surface model on task fMRI (`activated') data.

In this chapter, we �rst describe in detail the data used for our research, followed by the
steps involved in our analysis of the data at the subject and group levels. We present the results
obtained in our research to demonstrate the performance of trend surface model .
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Data

Based on the nature of activation, fMRI data consists of two kinds - resting state fMRI and
task fMRI data. Resting-state fMRI measures spontaneous, low frequency �uctuations in the
BOLD signal and is obtained by scanning subjects who are told not to perform any cognitive,
language or motor tasks. Such data has been used to identify spatially distinct areas of the brain
that demonstrate synchronized BOLD �uctuations at rest (called Resting State Networks, RSN).
Some examples of RSNs are the Default Mode Network (DMN), the somatosensory network, the
visual network and the auditory network.

Task fMRI on the other hand, is obtained using task based or stimulus driven paradigms
and has been critical to our current understanding of brain function. Certain areas of the brain
are inferred to be activated based on relative changes from baseline in the BOLD signal in those
regions during the performance of a task or in response to a stimulus by the subject in the
scanner. Typical tasks used for MRI experiments are timed experimental events such as �nger-
tapping, listening to sounds, or viewing faces. Every confounding parameter is controlled so
that only the performance of the task (or the state of rest in case of resting state fMRI data)
is supposed to create the measured BOLD signal �uctuations (for example, the subject can
be asked to close their eyes while performing a listening task, to avoid spurious visual events
causing undesired activations in the brain). More complex confounding factors such as breathing
or heart beat can be recorded and handled in image pre-processing (as explained in section 2.2.3).

We use publicly shared anonymized fMRI datasets that are subject to the ethics guidelines
of the review boards local to the collection sites, that approved the experiments and the dissem-
ination of the datasets. We use resting state fMRI data from the 1000 Functional Connectomes
Project as `null' data to test the speci�city of the trend surface model, and task fMRI data from
the Human Connectome Project to test for the sensitivity of the trend surface model .

Resting state fMRI data

The resting state fMRI data from 198 healthy controls was downloaded from the 1000 Functional
Connectomes Project [38] Cambridge dataset. This dataset was chosen because it was one of
the datasets used by Eklund et al. (2016) [1] for their analysis. The Cambridge dataset contains
data from 75 male and 123 female subjects between the ages of 18 � 30 years (mean 21.03, SD
2.31). The data was collected using 3 Tesla (T) scanners with a TR of 3 seconds, consisting of
119 time points per subject and 72 × 72 × 47 voxels of size 3 × 3 × 3 mm3.

A note on the suitability of resting state fMRI data as null data [1]

Resting-state data should not contain any systematic changes in brain activity such as those
observed in task fMRI data. However, while a subject does not perform any tasks during the
collection of resting state fMRI data, the brain may still be engaged in many forms of mental
activity and the data may also be a�ected by consistent trends or transients (due to the delay
of the hemodynamic response function) at the start of the scanning session. In order to counter
these possible e�ects, we follow the example of Eklund et al. (2016) and assume multiple activ-
ity paradigms (two block based and two event related) to induce randomness and destroy any
systematic e�ects present in the data. Also the residuals in task fMRI data have been found to
have resting-state networks (Fair et al (2007)), suggesting a similarity in the covariance structure
of task and resting-state fMRI data � which means that resting-state data and task noise are
similar in nature. This is con�rmed by Eklund et al. (2016) , who further concluded that such
autocorrelation is not brain related and is instead due to MR acquisition. Eklund et al. (2016)
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also performed a two-sample t-test on task fMRI data by comparing two groups of randomly
chosen subjects from a set of homogenous subjects (that should e�ectively destroy any activation
patterns in the data) that produced a similar rate of false positives as the resting state data,
con�rming the poor speci�city of the software packages examined.

Task fMRI data

The task fMRI data used for the sensitivity analysis was from the 500 Subjects Release (2014)
of the Human Connectome Project, that includes behavioral and 3T MR imaging data from
over 500 healthy adult participants. We use data from four tasks (one contrast for each task)
: working memory(2BK-0BK), gambling (reward�punishment), emotion (faces � shapes) and
language (story � math). From a total of 339 unrelated subjects in the HCP database, we chose
the subset of subjects that were processed using the r227 image reconstruction algorithm.

Description of tasks

We describe each of the tasks used in our analysis on the basis of information provided by Barch
et al. (2014) [39]

1. Working Memory task (2BK - 0BK):
An N-back working memory task involves identifying whether the current stimulus pre-
sented is the same as that presented N stimuli before. Within each run, four di�erent
stimulus types (pictures of faces,places, tools and body parts) are presented in separate
blocks within the run. Within each run, half of the blocks use a 2-back working memory
task (respond â��targetâ�� whenever the current stimulus is the same as the one two
back) and half use a 0-back working memory task (a target cue is presented at the start
of each block, and the person must respond â��targetâ�� to any presentation of that
stimulus during the block). A 2.5 s cue indicates the task type (and target for 0-back) at
the start of the block. Each of the two runs contains 8 task blocks (10 trials of 2.5 s each,
for 25 s) and 4 �xation blocks (15 s each). On each trial, the stimulus is presented for 2
s, followed by a 500 ms inter-trial interval. Each block contains 10 trials, of which 2 are
targets, and 2â��3 are non-target lures (for example, repeated items in the wrong n-back
position, either 1-back or 3-back).

2. Gambling (Reward - Punishment):
Participants play a card guessing game where they are asked to guess the number on a
mystery card (represented by a �?�) in order to win or lose money. They are told that
potential card numbers range from 1â��9 and to indicate if they think the mystery card
number is more or less than 5 by pressing one of two buttons on the response box. Feedback
is the number on the card which is generated by the program as a function of whether the
trial was a reward, loss or neutral trial. The feedback is either: (i) a green up arrow with
�$1� for reward trials (ii) a red down arrow next to - $0.50 for loss trials or (iii) the number
5 and a gray double headed arrow for neutral trials. The �?� is presented for up to 1.5
s followed by feedback for 1.0 s. There is a 1.0 s inter-trial interval with a �+� presented
on the screen. The task is presented in blocks of 8 trials that are either mostly reward (6
reward trials pseudo randomly interleaved with either 1 neutral and 1 loss trial, 2 neutral
trials, or 2 loss trials) or mostly loss (6 loss trials interleaved with either 1 neutral and
1 reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there are 2
mostly reward and 2 mostly loss blocks, interleaved with 4 �xation blocks (15 s each). All
participants are provided with money as a result of completing the task, though it is a
standard amount across subjects.

3. Emotion �Hariri Task":
In this task developed by Hariri and colleagues (Hariri et al., 2002), participants are pre-
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sented with blocks of trials that either (i) ask them to decide which of two faces presented
on the bottom of the screen match the face at the top of the screen, or (ii) which of two
shapes presented at the bottom of the screen match the shape at the top of the screen.
The faces shown have either angry or fearful expressions. Trials are presented in blocks of
6 trials of the same task (face or shape), with the stimulus presented for 2 s and a 1 s inter-
trial interval. Each block is preceded by a 3s task cue (â��shapeâ�� or â��faceâ��), so
that each block is 21 s long, including the cue. Each of the two runs includes 3 face blocks
and 3 shape blocks.

4. Language (Story - Math):
The task consists of two runs that each interleave four blocks of a story task and four blocks
of a math task. The lengths of the blocks vary (average of approximately 30 s), but the
task was designed so that the math task blocks match the length of the story task blocks,
with some additional math trials at the end of the task to complete the 3.8 minute run as
needed. The story blocks present participants with brief auditory stories (5â��9 sentences)
adapted from Aesopâ��s fables, followed by a two-alternative forced-choice question that
asks participants about the topic (or 'moral') of the story. The math task also presents
trials auditorily and requires subjects to complete addition and subtraction problems and
choose the correct answer from the two choices provided following each arithmetic oper-
ation. The goal of including the math blocks was to provide a comparison task that was
demanded attention, was similar in auditory and phonological input, and unlikely to gen-
erate activation of anterior temporal lobe regions involved in semantic processing, though
likely to engage numerosity related processing in the parietal cortex.

Data Analysis

The data analysis involved two steps. A �rst -level analysis of the subjects was performed using
FSL to pre-process the data and to �t a general linear model to obtain contrasts of parame-
ters estimates and their variances at the subject-level. A second level analysis then used these
summary statistics from the subject-level in order to conduct group-level inference. This section
elaborates on the details of the two levels of analyses performed on the resting state fMRI and
task fMRI data.

First Level Analysis

Resting state fMRI (Cambridge) data

In order to replicate the results obtained by Eklund et al. (2016) we reproduce their �rst-level
analysis [1]. We use a processing script (set up using the FSL FEAT GUI) to perform a �rst level
analysis for each subject to obtain brain activation maps in a standard brain space (Montreal
Neurological Institute (MNI)). The pre-processing involved normalization to a brain template,
motion correction and four di�erent levels of smoothing (4 mm, 6 mm, 8 mm, 10 mm full width
half maximum (FWHM)). Additionally, a general linear model was applied to the preprocessed
data using two block designs (boxcar10 (B1), boxcar30 (B2)) and two event-related designs (E1,
E2) as in Eklund et al. (2016) . The spatial normalization to the brain template (MNI152 T1
2mm brain.nii.gz) was performed as a two step linear registration using the function FLIRT. One
fMRI volume was aligned to the anatomical volume using the boundary based registration) (BBR)
option in FLIRT. The anatomical volume was aligned to MNI space using a linear registration
with 12 degrees of freedom , and the two transforms were �nally combined. The �rst level models
were �t in the subject space after spatial smoothing, and the contrasts and their variances were
then transformed to the atlas space.
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Task fMRI (HCP) data

The downloaded HCP data consists of precomputed �xed e�ects analysis to estimate the aver-
age e�ects across runs within-participants . The motion correction, distortion correction, and
registration to MNI standard space for each individual task run were carried out in accordance
with the minimal preprocessing pipeline set forth in Glasser et al (2013) [40]. The volume data
for individual task runs was processed in a Level 1 analysis that included high-pass �ltering at
200s, and smoothing of 4 mm FWHM in volume space. FSL `�lm_gls' was employed for model
estimation and temporal autocorrelation. The two runs for each task and subject were then
combined in a Level 2 �xed-e�ects analysis to obtain the task fMRI analysis dataset for each
task and subject.

Group Level Analysis

As a result of the �rst-level analyses using FSL, we obtained the contrasts of parameter estimates
(`copes') and their variances (`varcopes') for each of the conditions in the task data as well as
each smoothing-level/study-design combination for the resting state fMRI data. The group level
analyses use these contrasts from the �rst level analyses for inference. The group-level analyses
on resting state fMRI data were performed using FSL FLAME 1 to replicate the results of
Eklund et al. (2016) , and using the trend surface model to test the speci�city of TSM. To test
the sensitivity of the trend surface model , we perform a group level analysis on the precomputed
�rst level HCP task fMRI data.

FSL FLAME 1

The group analyses were performed using FSL FLAME 1 that employs random e�ects group
analysis, i.e., it uses both the beta weight and the variance of each subject in the group and
estimates a between subject variance. A total of 1000 groups with 20 randomly selected subjects
each were generated and tested for group activity using a one sample t-test. A particular group
analysis was considered to give a signi�cant result if any cluster had a FWE-corrected p-value
< 0.05. Since the subjects were not performing any task and all are healthy and of a similar age,
the expected number of analyses with one or more signi�cant e�ects should follow the nominal
rate (5 % in our analysis).

Trend surface model (TSM)

We �rst perform principal component analysis (PCA) on the original set of basis functions that
were generated using instantaneous correlation parcellations to obtain an orthogonal set of basis
functions. We choose the �rst n principal components that explain 90% of variance in the model
(4.1). The subject level (�rst level) contrasts and their variances are �t with the trend surface
model to these n principal components to obtain parameter estimates and variances in the prin-
cipal component space at the subject level.

Then for the group level analyses, a total of 1000 groups of 20 subjects were randomly selected
from the list of subjects (the Cambridge dataset in case of the resting state fMRI data and the
list of unrelated HCP subjects in the case of the task fMRI data). We obtain group-level t-
statistics at each principal component using the subject level trend surface model estimates and
on the basis of these t-statistics the groups were tested for activation at the group level using
a one-sample t-test. A particular group analysis is considered to give a signi�cant result if any
principal component has a Bonferroni-corrected p-value < 0.05. Since the principal components
are orthogonal, the Bonferroni-corrected p-value would not be too conservative. The principal
components that show signi�cance in a majority (i.e., in > 50%) of the random group tests are
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mapped to the MNI space to produce a visualization and compared to the results published by
Barch et al. (2014) .

Figure 4.1: Selecting the principal components that explain 90 % of variance in the model

Results

Reproduction of results from Eklund et al. (2016)

Eklund et al. (2016) found that among the parametric software packages they tested, FSL
FLAME 1 produced much lower FWE compared to the other packages, that was often valid
(under 5%). We therefore reproduce the analysis performed by Eklund et al. (2016) for the
FLAME 1 package of FSL and use it as a benchmark to compare our results from the trend surface
model. We analyzed Cambridge dataset using four di�erent activity paradigms (two block based
(10s and 30s on-o�) and two event related (E1: 2s activation-6s rest and E2: 1-4s activation/3-
6s rest, randomised), four levels of subject-level smoothing (4mm, 6mm, 8mm, 10mm) and two
cluster de�ning thresholds (z=2.3,3.1), and we were able to successfully reproduce the results
obtained by Eklund et al. (2016) (Figure 4.2).

Figure 4.2: FLAME 1 results for one-sample t-test showing estimated FWE rates for Cambridge data
across all four smoothing levels and activity paradigms, using FWE-corrected threshold of P=0.05 and
cluster de�ning thresholds (CDT) of P=0.01 and P=0.001. The groups of 20 subjects were chosen based
on the permutations generated by Eklund et al. (2016) and 1,000 such random group analyses were
performed for each smoothing-level and activity paradigm.
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Figure 4.3: False positive rate obtained from TSM, in comparison to the software packages FSL, SPM
and AFNI for two cluster de�ning thresholds � P = 0.01 and P = 0.001 � as shown by Eklund et al.
(2016)

Speci�city analysis of the TSM

We analyzed data from the Cambridge dataset for a smoothness of 4mm and the boxcar30 block
design using trend surface model and performed a one-sample t-test, as explained in Section
4.3.2. We obtained a false positive rate of between 5 - 6 % (variation due to random tests) as
opposed to over 20 % false positive rate from FSL FLAME1, as shown in Fig. 4.3.

Sensitivity analysis of the TSM

We evaluate the performance of the TSM on task fMRI by comparing the resulting brain maps
to the results presented by Barch et al. (2014) . Based on this comparison we conclude that the
trend surface model captures all the networks of activation that are expected to arise under the
particular task.

47



Figure 4.4: Brain activation under the Working Memory task from Barch et al. (2014) [39] (top) and
that obtained using TSM (bottom).

Figure 4.5: Brain activation under the Gambling task from Barch et al. (2014) [39] (top) and that
obtained using TSM (bottom)
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Figure 4.6: Brain activation under the Emotion task from Barch et al. (2014) [39](top) and that
obtained using TSM (bottom).

Figure 4.7: Brain activation under the Language task from Barch et al. (2014) [39] (top) and that
obtained using TSM (bottom).
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5. Discussion

The classical approach to analyzing fMRI data that involves �tting independent linear models
at each of the hundreds of thousands of voxels requires a correction for multiple comparisons.
Given the spatial correlation in the data as a result of the spatial nature of fMRI as well as
the pre-processing steps involved, a Bonferroni correction is too conservative and this calls for
complex post-hoc correction procedures such as the Random Field Theory. It has been shown by
Eklund et al. (2016) that popular parametric softwares FSL and SPM that employ the random
�eld theory result in a high degree of false positives for cluster-wise inference. They conclude
that this occurs because the spatial correlation in the data violates the random �eld theory as-
sumptions regarding the spatial auto-correlation function.

This necessitates the exploration of other approaches to analyze fMRI data, and we choose to
examine the performance of the model set forth by Huertas, I. et al. (2017) [2]. Huertas, I. et al.
(2017) propose a trend surface model based on biologically relevant parcellation that overcomes
the multiple comparisons problem by regressing on parcels of the brain that are temporally cor-
related. In this work, we test the performance of this approach on resting state fMRI and task
fMRI data to test for speci�city and sensitivity, respectively. By using a subset of the data used
by Eklund et al. (2016) we show that the trend surface model performs optimally - achieving
the nominal familywise error rate while being sensitive to all activated brain regions in the task
fMRI data.

While voxel-based methods provide the advantage of greater spatial speci�city, a voxel (whose
dimensions are often arbitrarily chosen) is of no biological signi�cance and hence, unlike the
parcels in the TSM, does not provide a biologically meaningful interpretation. In addition, due
to the smoothness that is characteristic of fMRI data and also a consequence of the pre-processing
steps, the voxel is no longer well-de�ned. The TSM also o�ers the advantage of highly reduced
number of computational units, and hence a reduction of the multiplicity involved in the infer-
ence. As a consequence, there is no longer a need for complex correction procedures such as
the RFT. While permutation testing provides optimal inference, considering the computational
intensity of the procedure, the adequacy of simple correction procedures for inference using the
TSM make the latter an attractive option.

For our analysis we used a hierarchical basis set with two levels of hierarchy that was gen-
erated using the Instantaneous Connectivity Parcellation method. An exploratory analysis of
the basis set being used showed that there were signi�cant correlations among particular sets of
basis function in the second-level (each correlated set belonged to the same higher level parcel).
This was causing a high rate of false positives when the trend surface model was tested on the
resting state fMRI data. Therefore we had to perform principal components analysis (PCA) on
the original basis set to obtain uncorrelated regressors, and we chose the least noisy PCs that
explained 90% of the variance. A trend surface model based on these modi�ed orthogonal re-
gressors provides us with the nominal false positive rate � that is expected from the advantages
provided by the trend surface model . However, using this modi�ed basis set means that the
spatial biological structure of the brain is not re�ected in the regressors anymore.
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Therefore, as part of our future work, we plan to develop a new basis set that is biologically
relevant, while being composed of uncorrelated basis functions. We will test the performance
of the trend surface model on the same datasets using this basis set, and we expect optimal
performance. We will further expand the analysis to all the datasets analyzed by Eklund et al.
(2016) . This would also allow us to examine the performance of the trend surface model in the
presence of di�erent levels of spatial smoothing in the data. Since the trend surface model does
not use the random �eld theory or incorporate assumptions regarding the spatial correlation,
we expect that the model would perform equally well on all levels of smoothing.
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