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Entropy on normed semigroups

(Towards a unifying approach to entropy)

Dikran Dikranjan Anna Giordano Bruno

Abstract

We present a unifying approach to the study of entropies in mathematics, such as measure entropy, various forms of
topological entropy, several notions of algebraic entropy, and two forms of set-theoretic entropy. We take into account only
discrete dynamical systems, that is, pairs (X,φ), where X is the underlying space (e.g., a probability space, a compact
topological space, a group, a set) and φ : X → X is a transformation of X (e.g., a measure preserving transformation, a
continuous selfmap, a group homomorphism, a selfmap). We see entropies as functions h : X→ R+, associating to each flow
(X,φ) of a category X either a non-negative real number or ∞.

First, we introduce the notion of semigroup entropy hS : S → R+, which is a numerical invariant attached to endomor-
phisms of the category S of normed semigroups. Then, for a functor F : X→ S from any specific category X to S, we define
the functorial entropy hF : X→ R+ as the composition hS ◦ F , that is, hF (φ) = hS(Fφ) for any endomorphism φ : X → X
in X. Clearly, hF inherits many of the properties of hS, depending also on the functor F . Motivated by this aspect, we study
in detail the properties of hS.

Such a general scheme, using elementary category theory, permits one to obtain many relevant known entropies as
functorial entropies hF , for appropriately chosen categories X and functors F : X→ S. All of the above mentioned entropies
are functorial. Furthermore, we exploit our scheme to elaborate a common approach to establish the properties shared by
those entropies that we find as functorial entropies, pointing out their common nature. We give also a detailed description of
the limits of our approach, namely entropies which cannot be covered.

Finally, we discuss and deeply analyze the relations between pairs of entropies through the looking glass of our unifying
approach. To this end we first formalize the notion of Bridge Theorem between two entropies h1 : X1 → R+ and h2 : X2 → R+

with respect to a functor ε : X1 → X2, taking inspiration from the known relation between the topological and the algebraic
entropy via the Pontryagin duality functor. Then, for pairs of functorial entropies we use the above scheme to introduce the
notion and the related scheme of Strong Bridge Theorem. It allows us to shelter various relations between pairs of entropies
under the same umbrella (e.g., the above mentioned connection of the topological and the algebraic entropy, as well as their
relation with the set-theoretic entropy).

Keywords: entropy, semigroup, semilattice, normed semigroup, semigroup entropy, bridge theorem, algebraic entropy, topo-
logical entropy, measure entropy, frame entropy, set-theoretic entropy, duality.
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1 Introduction

1.1 Historical background

The first notion of entropy in mathematics was the measure entropy hmes for measure preserving transformations of probability
spaces, studied by Kolmogorov [82] and Sinai [103] in ergodic theory. Analogously, Adler, Konheim and McAndrew [1]
introduced the topological entropy htop for continuous selfmaps of compact spaces by using open covers. Later, Hofer [76]
proposed a quite natural extension hfin-top of the topological entropy htop to continuous selfmaps of arbitrary topological
spaces, by simply replacing the open covers by finite open covers.

Another notion of topological entropy hB for uniformly continuous selfmaps of metric spaces was given by Bowen [13]
and Dinaburg [51]; it coincides with htop on compact metric spaces. Later on, Hood [78] extended Bowen-Dinaburg’s entropy
to uniformly continuous selfmaps of uniform spaces. This notion of entropy is sometimes called uniform entropy, and it
coincides with the topological entropy in the compact case, when the given compact topological space is endowed with the
unique uniformity compatible with the topology (see [47, 50] for more detail). In particular, this topological entropy can be
studied for continuous endomorphisms of topological groups.

Indeed, the topological entropy was thoroughly studied for continuous endomorphisms of compact groups, starting from
the work of Yuzvinski [117], where the so-called Addition Theorem was proved, and also the so-called Yuzvinski’s formula
relating the topological entropy with the Mahler measure. Moreover, a Uniqueness Theorem is available in this case due to
Stoyanov [105]. Recently, the topological entropy was studied for totally disconnected locally compact groups in [59, 67], and
for totally bounded abelian groups in [49].

Entropy was taken to Algebraic Dynamics by Adler, Konheim and McAndrew [1] and by Weiss [113]; they studied the
algebraic entropy ent for endomorphisms of torsion abelian groups, which was further investigated in [45], where in particular
an Addition Theorem and a Uniqueness Theorem were provided. Then Peters [92] defined its extension halg to automorphisms
of abelian groups; finally in [33, 35, 36, 40] the algebraic entropy halg for group endomorphisms was introduced in general,
developing all its fundamental properties, with the Addition Theorem playing a crucial role among them. In particular, the
relation of the algebraic entropy with Lehmer’s problem from number theory was pointed out, by means of the so-called
algebraic Yuzvinski’s formula (see [65, 66]).

Peters [93] gave a further generalization of his notion of entropy halg for continuous automorphisms of locally compact
abelian groups, which was recently extended by Virili [109] to continuous endomorphisms; the commutativity can be removed
as noted in [35]. The recent paper [61] is dedicated to the study of the algebraic entropy for a class of locally compact not
necessarily abelian groups where the Addition Theorem is available.

As a dual notion of the algebraic entropy ent, the adjoint algebraic entropy ent? for group endomorphisms was investigated
in [41] (see also [68, 101]), and its topological version in [58]. A notion of algebraic entropy for module endomorphisms was
introduced in [100], namely, for i an invariant of a module category the algebraic i-entropy enti for module endomorphisms.
This entropy was deeply investigated in case i is a length function, when the Addition Theorem holds (see [96, 97]). The
adjoint version of the algebraic i-entropy was studied in [108]. In particular, the algebraic dimension entropy entdim for
discrete vector spaces was thoroughly analyzed in [60], and carried to locally linearly compact vector spaces in [20]. A
topological dimension entropy ent?dim was studied for locally linearly compact vector spaces in [21].

Finally, one can find in [4] and [35] two mutually “dual” notions of entropy for selfmaps of sets, namely the covariant
set-theoretic entropy h and the contravariant set-theoretic entropy h∗.

We briefly mention here that nowadays notions of entropy are studied also in much more general contexts, namely for
(semi)group actions, for example, the measure entropy and the topological entropy for amenable group actions (e.g., see
[80, 81, 86, 90, 91, 104]; analogues of the Addition Theorem and the Yuzvinski’s formula can be found in [23, 30, 84, 86, 105]).
The algebraic entropy for amenable group actions was recently considered in [85, 107, 111]. For amenable semigroup actions,
the measure entropy and the topological entropy were introduced in [22] and the algebraic entropy in [32]. For a survey on
entropy in the very general case of sofic groups see [114] (see also [16, 17, 79]). In another direction, entropy was extended to
actions of finitely generated semigroups using regular systems in [77] (see also [8, 56] and [9, 10]).

1.2 The general scheme

We list here all the entropies that we take into account:

- the covariant set-theoretic entropy h and the contravariant set-theoretic entropy h∗ (see §5.1);

- the topological entropy htop for continuous selfmaps of compact spaces (see §5.2) or for continuous endomorphisms of
locally compact groups (see §7);

- the topological entropy hfin-top for continuous selfmaps of topological spaces (see §5.3 and §5.8);

- the frame entropy hfr for endomorphisms of frames (see §5.3);

- the measure entropy hmes for measure preserving transformations of probability spaces (see §5.4);

- the algebraic entropy ent for endomorphisms of torsion abelian groups (see §5.5);

- the algebraic entropy halg for group endomorphisms (see §5.5) and for continuous endomorphisms of locally compact
groups (see §7);

- the algebraic i-entropy enti for endomorphisms of modules (see §5.6);

- the adjoint algebraic entropy ent? for group endomorphisms (see §5.7);

- the algebraic dimension entropy entdim for discrete vector spaces (see §5.9);

- the topological dimension entropy ent?dim for linearly compact vector spaces (see §5.9).
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Each of the above listed entropies has its specific definition, usually given by a limit computed on some “trajectories” and
then by taking the supremum of these quantities (we will see their definitions explicitly in §5). Their basic properties are
very similar, but the proofs in the literature take into account the particular features of the specific case each time. Since it
appears that all these definitions and basic properties share a lot of common features, the aim of our approach is to “unify”
them under a general scheme, pointing out their common nature. To this end we need some easy tools from category theory.

Let X be a category. A flow of X is a pair (X,φ), where X is an object and φ : X → X is an endomorphism in X. A
morphism between two flows (X,φ) and (Y, ψ) of X is a morphism α : X → Y in X such that the diagram

X
φ //

α

��

X

α

��
Y

ψ
// Y.

commutes. This defines the category FlowX of flows of X.
If α is an epimorphism we say that (Y, ψ) is a factor of (X,φ), if α is a monomorphism then (X,φ) is a subflow of (Y, ψ),

and if α is an isomorphism we say that the flows (X,φ) and (Y, ψ) are isomorphic and the morphisms φ and ψ are conjugate.

Example 1.1. Given a commutative ring R and letting X be the category ModR of R-modules, the category FlowX is
equivalent to the category ModR[X] of modules over the ring of polynomials R[X] with coefficients in R.

Let R≥0= {r ∈ R : r ≥ 0} and R+= R≥0 ∪ {∞}. To classify flows of a category X up to isomorphisms one can use
R+-valued invariants, that is, functions

h : FlowX → R+, (1.1)

which take the same values on isomorphic flows. We generally refer to such invariants as entropies or entropy functions of X.
For simplicity and with some abuse of notation, we adopt the following

Convention 1.2. If X is a category and h an entropy of X we write (with some abuse of notation)

h : X→ R+

in place of h : FlowX → R+ as in (1.1).

In order to pursue our unifying aim, in §3 we introduce a general notion of semigroup entropy

hS∗ : S∗ → R+

on the category S∗ of normed semigroups and semigroup homomorphisms.
Most of the time we are involved with the non-full subcategory S of S∗ consisting of normed semigroups and contractive

semigroup homomorphisms; in this case we denote the semigroup entropy by

hS : S→ R+.

The next step towards the main aim is done in §4, where for a category X and a functor F : X → S (respectively,
F : X→ S∗), the functorial entropy hF of X is defined to be

hF = hS ◦ F : X→ R+

(respectively, hF = hS∗ ◦ F : X→ R+), as described by the following diagram.

X

F

��

h=hF

,,YYYYYYYYYYYYYYYYY

R+

S
hS

22eeeeeeeeeeeeeeeee

(1.2)

Finally, in §5 and in §7 all specific entropies listed above are obtained in our scheme as functorial entropies.

For every specific functor F that we consider, an order is available on the normed semigroup in the target of F , and the
norm of the semigroup is monotone with respect to this order; this circumstance is exploited in the section dealing with the
Bridge Theorem, in order to introduce the Strong Bridge Theorem, where the functorial entropies are involved.

All the entropies listed at the beginning of this section can be obtained as functorial entropies hF with respect to functors
F with target S, except the two considered in §7 and the contravariant set-theoretic entropy h∗, for which the larger category
S∗ is needed. Furthermore, beyond the category S, we often make use of several subcategories of S (see the diagram in
(2.1)).

In fact, when the target of the specific functor F is S, the norm is subadditive in all specific cases considered in §5, then
one ends up in the full subcategory S† of S consisting of all normed semigroups with subadditive norm. Actually, most
of the time the target of F is the subcategory L† of S† of normed semilattices with subadditive norm, that is the bottom
in the diagram of categories (2.1). In addition, with respect to the order naturally available in semilattices, the semigroup
homomorphisms are monotone.

To describe the remaining few cases, let M†p denote the subcategory of S† consisting of all normed preordered monoids
with subadditive norm, and let PL† be its full subcategory of all normed presemilattices with subadditive norm. The target
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of the functor is PL† for the topological entropies, and M†p for the algebraic entropy considered on the category of all discrete
groups.

Clearly, we make use of this additional wealth of useful properties of the semigroup and of its norm in order to exploit
better the semigroup entropy, and consequently the functorial entropy. Anyway, we thickly underline that this additional
structure, which is present in most of the specific cases, is not needed for the general setting.

The category S and all its above mentioned subcategories are studied in §2. Here, we list all the basic properties of the
semigroup entropy, clearly inspired by those of the known entropies, that we prove in §3:

- Monotonicity for factors;

- Invariance under conjugation;

- Invariance under inversion;

- Logarithmic Law;

- Monotonicity for subflows;

- Continuity for direct limits;

- Vanishing on quasi-periodic flows;

- Weak Addition Theorem.

It is in §4 that we show that the basic properties of hF can be deduced from those of hS, by taking into account the properties
of the specific functor F .

To obtain all specific entropies in our scheme in §5 and §7, we deal with the categories:

- Mes of probability measure spaces and measure preserving transformations (for hmes);

- Top of topological spaces and continuous maps (for hfin-top);

- Top0 of T0 topological spaces and continuous maps (for hfin-top);

- Top1 of T1 topological spaces and continuous maps;

- CTop of compact topological spaces and continuous maps (for htop);

- CTop2 of compact Hausdorff spaces and continuous maps (for htop);

- LPG of linearly topologized precompact groups and continuous homomorphisms (for hfin-top);

- TdCG of totally disconnected compact groups and continuous homomorphisms (for htop);

- Frm of frames and frame homomorphisms (for hfr);

- Grp of groups and group homomorphisms (for halg and ent?);

- LCG of locally compact groups and continuous homomorphisms (for halg and htop);

- LCA of locally compact abelian groups and continuous homomorphisms (for halg and htop);

- CAG of compact abelian groups and continuous homomorphisms;

- TdCAG of totally disconnected compact abelian groups and continuous homomorphisms;

- AG of abelian groups and group homomorphisms (for ent and halg);

- TAG of torsion abelian groups and group homomorphisms (for ent);

- ModR of right modules over a ring R and R-module homomorphisms (for enti);

- ModK of discrete vector spaces over a field K and linear transformations (for entdim);

- LCVectK of linearly compact vector spaces over a discrete field K and continuous linear transformations (for ent?dim);

- Set of sets and maps (for h);

- Setfin of sets and finite-to-one maps (for h∗).

We dedicate to each specific entropy a subsection of §5 and of §7, each time giving explicitly the relevant functor that
permits one to obtain the given entropy as a functorial entropy, and describing the basic properties of the specific entropy
and how to deduce them from those of the semigroup entropy. Some of these functors and the known entropies obtained as
functorial entropies are summarized by the following diagram.

Mes

mes

*
*

*
*

*

��*
*

*
*

*

hmes

&&&&&&&&&&&&&&

��&
&&&&&&&&&&&&&

AG

ent
��������������

����������������

sub
�

�
�

�
�



�
�

�
�

�

CTop

cov
>

>
>

>
>

��>
>

>
>

>

htop

3333333333333

��3
333333333333

Grp

pet
�

�
�

�
�

���
�

�
�

�

halg















��














Frm

fin-covfr

QQQQQ

((QQQQQ

hfr

DDDDDDDDDDDDD

""DDDDDDDDDDDDD

Grp

sub?
o o o o o

wwo o o o o

ent?
||||||||||||

~~||||||||||||

Set

im
ZZZZZZZ

,,ZZZZZZZ

h
PPPPPPPPPPPPPPP

((PPPPPPPPPPPPPPP

ModR

subi
e e e e e e

rre e e e e e

enti
nnnnnnnnnnnnn

wwnnnnnnnnnnnnn

S

hS

��
R+
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Moreover, in §4 we discuss the notion of Bernoulli shifts in an arbitrary (abstract or concrete) category X with products
or coproducts. Moreover, for such categories X we give the more general definitions of backward and forward generalized
shift.

In particular, the backward generalized shift is a morphism σλ : KY → KX in X, corresponding to a map λ : X → Y in
the category Set of sets and maps and a fixed object K of X. This defines a contravariant functor BK : Set → X, sending
X ∈ Set to the product KX and λ : X → Y to σλ, which sends coproducts (in Set) to products (in X). Up to natural
equivalence, these are all the functors Set→ X with this property.

Analogously, for a category X with coproducts, the forward generalized shift is a morphism τλ : K(X) → K(Y ) in X,
corresponding to a map λ : X → Y in Set and a fixed object K of X. It defines a covariant functor FK : Set→ X, sending
X ∈ Set to the coproduct K(X) and λ : X → Y to τλ, which sends coproducts (in Set) to coproducts (in X). Up to natural
equivalence, these are all the functors Set→ X with this property.

1.3 Bridge Theorem

The connections between pairs of entropies are analyzed in §6 from a categorical point of view. This is inspired by the
following remarkable connection between the algebraic and the topological entropy, which will be called Bridge Theorem
throughout this paper.

For a locally compact abelian groupG, denote by Ĝ its Pontryagin dual, that is, the group of all continuous homomorphisms
G → T, where T = R/Z is the circle group, endowed with the compact-open topology; moreover, for an endomorphism

φ : G→ G, denote by φ̂ : Ĝ→ Ĝ its dual, that is, φ(χ) = χ ◦ φ for every χ ∈ Ĝ.

Theorem 1.3. If G is an abelian group and φ : G → G an endomorphism, then halg(φ) = htop(φ̂). Equivalently, if K is a

compact abelian group and ψ : K → K a continuous endomorphism, then htop(ψ) = halg(ψ̂).

This theorem was proved when G is a torsion abelian group (i.e., K is a totally disconnected compact abelian group) by
Weiss [113]; later Peters [92] obtained a proof for G countable and φ an automorphism (i.e., K metrizable and ψ a topological
automorphism). The theorem in this general form was recently proved by the authors in [36].

It is not known whether this result holds in general for locally compact abelian groups. Anyway, in [39] it was proved
for locally compact abelian groups G with totally disconnected Pontryagin dual (i.e., G is compactly covered) as stated in
Theorem 1.4. Indeed, this hypothesis on the group G permits one to compute more easily the algebraic entropy of the
continuous endomorphism φ : G→ G and the topological entropy of its dual φ̂ : Ĝ→ Ĝ, avoiding the use of the Haar measure
that appears in the definition (see [35, 39]). Moreover, one can apply in this setting the so-called limit-free formulas, arising
from an idea of Yuzvinski [117] exploited then in [34, 58, 61, 67].

Theorem 1.4. Let G be a locally compact abelian group such that Ĝ is totally disconnected and φ : G → G a continuous
endomorphism. Then halg(φ) = htop(φ̂).

Furthermore, the following result for topological automorphisms of locally compact abelian groups was stated in [93], but
several gaps in the proof were pointed out in [50]. Now it is a consequence of a much more general result from [110].

Theorem 1.5. Let G be a locally compact abelian group and φ : G→ G a topological automorphism. Then halg(φ) = htop(φ̂).

Inspired by Theorem 1.3, we consider here a far reaching generalization (using the same term) that tends to relate two
entropies h1 : X1 → R+ and h2 : X2 → R+, defined on two categories X1 and X2 connected by a functor

ε : X1 → X2. (1.3)

Definition 1.6. Consider the functor (1.3) and let h1 : X1 → R+ and h2 : X2 → R+ be entropies. The pair (h1, h2) satisfies
the Bridge Theorem with respect to ε with constant 0 < C ∈ R+ (briefly, BTε,C) if, for every φ : X → X in X1,

h2(ε(φ)) = Ch1(φ).

If C = 1 we write simply BTε.

One can summarize BTε by (very roughly) saying that the following diagram commutes.

X1

ε

��

h1

,,YYYYYYYYYYYYYYYYY

R+

X2
h2

22eeeeeeeeeeeeeeeee

(1.4)

In Definition 1.6 we allow also C =∞, with the natural convention

∞ · h1(φ) =

{
∞ if h1(φ) > 0,

0 if h1(φ) = 0.

In these terms, if C =∞, then h2(ε(φ)) takes only two values, namely,

h2(ε(φ)) =

{
∞ if h1(φ) > 0,

0 if h1(φ) = 0.

In this scheme, denoting by ̂: LCA→ LCA

the Pontryagin duality functor, Theorem 1.3 can be read as:
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(a) for ̂: AG→ CAG, the pair (halg, htop) satisfies BT̂;

(b) for ̂: CAG→ AG, the pair (htop, halg) satisfies BT̂.

In §6.2, using the functorial nature of the entropy seen in (1.2), we discuss various stronger levels of the Bridge Theorem,
by passing through the category S of normed semigroups and using hS. We call these stronger versions Strong Bridge
Theorems (see Definition 6.8 and (6.1)).

This more precise approach permits one to find a new and transparent proof of Weiss’ Bridge Theorem (see Theorem 6.27)
as well as of many other Bridge Theorems, that we state in these new terms and prove in §6.4.

Beyond their explicit beauty, the Bridge Theorems may offer a very clear practical advantage, by reducing the computation
of an entropy to some more appropriate environment. The best example to this effect are the (Strong) Bridge Theorems
making use of the set-theoretic entropies expounded in §6.5. Here the topological entropy of the backward generalized shifts
in CTop2 and the algebraic entropy of the forward generalized shifts in AG are computed in terms of the set-theoretic
entropies.

1.4 The limits of the general scheme

A natural side-effect of the wealth of nice properties of the functorial entropy hF = hS ◦ F , obtained from the semigroup
entropy hS through functors F : X→ S, is the loss of some known entropies that we explain below. Indeed, such a functorial
entropy admits the Invariance under inversion property hF (φ) = hF (φ−1) (see Lemma 3.9), while it is known that some
specific entropies do not have this property.

A first case is Bowen’s topological entropy for uniformly continuous selfmaps of non-compact metric spaces, and its exten-
sion by Hood to uniform spaces. For a counterexample to hB(φ−1) = hB(φ) for Bowen’s entropy hB , take the automorphism
φ : R→ R defined by φ(x) = 2x, which has hB(φ) = log 2 and hB(φ−1) = 0.

Fortunately, as far as the category LCG of locally compact groups and their continuous endomorphisms is concerned,
one can include within our scheme Bowen’s topological entropy, as well as its algebraic counterpart recalled above, using the
larger category S∗ as done in §7.

On the other hand, in the general case of a non-compact metric space X, one would need a kind of poly-norm, i.e., a family
of norms that corresponds to the family of all compact subspaces of X. Led by this idea, one could consider the category of
semigroups provided with families of norms, and develop the subsequent theory in the line of that presented in this paper.

This more general approach, tailored to include Bowen’s topological entropy in full generality, unfortunately creates many
technical difficulties (especially in defining the morphisms), a too high price to pay for adding a single entropy to the list.

Another entropy which does not admit the Invariance under inversion property is the intrinsic algebraic entropy from
[43] (see also [98]), hence it cannot be obtained as a functorial entropy induced by a functor with target S. This entropy
is a generalization of the algebraic entropy ent (as it coincides with ent on torsion abelian groups) but does not vanish on
torsion-free abelian groups. A similar failure in satisfying the Invariance under inversion property can be observed in the
pretty analogous case of the algebraic and the topological dimension entropy for locally linearly compact vector spaces from
[20, 21] (see Remark 5.37).

Unlike the favorable outcome in the case of Bowen’s topological entropy in the category LCG, now one has a second more
substantial obstacle. Namely, the definition the intrinsic entropy is based on the concept of inert subgroup, that was deeply
investigated in several papers (see [26, 28, 42, 48, 70]). Similarly, the dimension entropies mentioned above use the fact that
the open linearly compact linear subspaces are inert (in a similar, appropriate sense) with respect to all continuous linear
maps (see [26]).

In order to include the intrinsic and the dimension entropies in a scheme similar to that presented in this paper one
needs to find an appropriate counterpart of the notion of inert subgroup (subspace). Unfortunately, the norm of a semigroup,
used in the definition of the semigroup entropy to measure the growth of the partial trajectories of an endomorphism, seems
inappropriate to “encode” also this subtle property. Indeed, a notion of “inert element” would require a different tool, namely,
a kind of “distance”, that measures when two elements of the a semigroup are “close”. Therefore, a possible way to include
the intrinsic and the dimension entropies mentioned above in a scheme similar to that presented in this paper would be to
replace the target S∗ with an appropriate category of semilattices provided with a “distance” in the above sense (having
some additional properties).

Again, as a consequence of this very specialized and additionally complicated approach tailored to cover only these few
missing entropies, one would miss the relevant cases covered by our current approach (as the topological entropy and the
algebraic entropy, among other entropies). This would certainly push us apart from the main aim of the present paper to
unify entropies.

In [38], as a particular case of the notion of semigroup entropy hS, we introduced the notion of semigroup entropy h0
S(x)

of an element x of a normed semigroup S.
The idea of defining this notion was supported at least from three examples of entropy functions, that can be described

in terms of h0
S, namely, the entropy of finite length endomorphisms of Noetherian local rings [88], the dynamical degree of

rational maps [102], and the growth rate of endomorphisms of finitely generated groups [15].

1.5 Final remarks

A preliminary version of these ideas is expounded in the survey [38], with only few (concise) proofs and with a particular
emphasis on the connection of the algebraic entropy to the growth of groups [38, §4.3].

In this paper, we first extend our setting and we give all proofs and details. Moreover, we add some new entropies under
the umbrella of hF (in §5.8 and §5.9), in particular [38, §§3.1–3.9] are covered (and largely extended) by §5 and §7.
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Furthermore, the major change and novelty in this paper is the completely renewed and extended §6 on the Bridge
Theorem.

The second named author gave a talk on what is exposed in §6 of this paper about the Bridge Theorem in the special session
“Algebraic Entropy and Topological Entropy” of the First Joint International Meeting RSME-SCM-SEMA-SIMAI-UMI held
in Bilbao in 2014.

We started this project with our coauthor and friend Simone Virili, so we thank him also for many useful discussions and
ideas; in particular, the idea to use semigroups in place of semilattices belongs to him. He is presenting his own version of
this general approach in [110].

The essential and explanatory term Bridge Theorem was coined by our coauthor and friend Luigi Salce, who is one of the
main contributor in the theory of the algebraic entropy for groups and modules since its rediscovery in the joint paper [45]
with Dikranjan, Goldsmith, and Zanardo.

It is fair to mention the substantial contribution of our friend and colleague Peter Vámos towards a better and deeper
understanding of the algebraic entropy. At the Workshop on Commutative Rings and Their Modules held in Bressanone in
2007 he discussed with the first named author and Luigi Salce the subtle connection between entropy and length functions
and multiplicity. These contacts continued further, involving also Simone Virili and led to [96], inspired also by [45, 99, 100].
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2 The category S of normed semigroups

2.1 Definition and examples

We denote by Z the set of integers, by N the set of natural numbers and by N+ the set of positive integers.
We start introducing the notion of normed semigroup.

Definition 2.1. A norm on a semigroup (S, ·) is a map v : S → R≥0. A normed semigroup is a semigroup provided with a
norm.

If S is a monoid, a monoid norm on S is a semigroup norm v such that v(1) = 0; in such a case S is called normed monoid .

Denote by S∗ the category of all normed semigroups and all semigroup homomorphisms. Nevertheless, the following
stronger notion of morphisms in S∗ appears both natural and also quite useful as we shall see in what follows.

Definition 2.2. A semigroup homomorphism φ : (S, v)→ (S′, v′) between normed semigroups is contractive if

v′(φ(x)) ≤ v(x) for every x ∈ S.

We denote by S the category of normed semigroups, whose morphisms are all the contractive semigroup homomorphisms,
i.e., S is a non-full subcategory of S∗, having the same objects, but less morphisms. If φ : S → S is an isomorphism in S,
then v(φ(x)) = v(x) for every x ∈ S.

Moreover, let M be the non-full subcategory of S with objects all normed monoids and with morphisms all contractive
monoid homomorphisms.

S∗

S

M

Given a normed semigroup (S, v), a normed subsemigroup T of S is a subsemigroup of S with norm the restriction of v to
T . Note that the inclusion T → S is a morphism in S.

Convention 2.3. In this paper, most often we consider contractive semigroup endomorphism φ : S → S, so it is safe to
think that a semigroup endomorphism φ is contractive, unless otherwise stated.

We use the category S∗ when we define the semigroup entropy in §3, and then only in §5.1 (for the contravariant set-
theoretic entropy), in §6 (to discuss the Strong Bridge Theorems) and in §7 (for the algebraic and the topological entropy for
locally compact groups).

Now we introduce special forms of norm, in particular subadditive semigroup norms will be fundamental in the paper.

Definition 2.4. Let (S, v) be a normed semigroup. The norm v is:

(a) subadditive if v(x · y) ≤ v(x) + v(y) for every x, y ∈ S, in such a case we call (S, v) briefly subadditive semigroup (or
subadditive monoid, in case it is a monoid);

(b) bounded if there exists C ∈ N+ such that v(x) ≤ C for all x ∈ S;

(c) arithmetic if for every x ∈ S there exist a constant Cx ∈ N+ such that v(xn) ≤ Cx · logn for every n ∈ N with n ≥ 2.

Obviously, bounded norms are arithmetic.

We denote by S† the full subcategory of S of subadditive semigroups and by M† the full subcategory of M of subadditive
monoids.

S∗

S

yyyy
DDDDD

S† M

M†

DDDD
{{{{

A sequence {an}n∈N of non-negative real numbers is subadditive if an+m ≤ an + am for every n,m ∈ N. The following
known fact is applied in Theorem 3.13 to prove the existence of the limit defining the semigroup entropy in S†.

Lemma 2.5 (Fekete Lemma [55]). For a subadditive sequence {an}n∈N of non-negative real numbers, the sequence {an
n
}n∈N

converges and

lim
n→∞

an
n

= inf
n∈N

an
n
.

Next we give several examples of norms on the semigroup (N,+).

Example 2.6. Consider the monoid S = (N,+).

(a) Subadditive norms v on S correspond to subadditive sequences {an}n∈N in R≥0 via v 7→ {v(n)}n∈N. Then limn→∞
an
n

=
infn∈N

an
n

exists by Lemma 2.5.

(b) For 0 < p ≤ 1, define vp : S → R≥0 by vp(x) = xp for x ∈ S. Then the norm vp is a subadditive monoid norm, but vp
is not arithmetic.
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(c) Define vl : S → R≥0 by vl(x) = log(x + 1) for x ∈ S. Then vl is a subadditive monoid norm, as vl(0) = 0 and, for
x, y ∈ S,

vl(x+ y) = log(x+ y + 1) ≤ log(xy + x+ y + 1) = log(x+ 1) + log(y + 1) = vl(x) + vl(y).

Moreover vl is arithmetic, since for every x ∈ S, nx+ 1 ≤ nx+1 for every n ∈ N with n ≥ 2.

(d) For a ∈ N, a > 1, consider

va(m) =

{
0 if m ∈ aN,
m if m ∈ N \ aN.

Then the norm va on S is neither arithmetic nor subadditive.

For b ∈ N+ consider the semigroup endomorphism

%b : x 7→ bx

of (S, va). Then %b is in S (i.e., %b is contractive) if and only if either b = 1 or a|b.
We can define the norm vl in item (c) also for S = (R≥0,+), i.e., with R≥0 in place of N. Then vl, defined by vl(x) =

log(x + 1) for every x ∈ S, is a subadditive and arithmetic monoid norm. Moreover, in this case the range is completely
covered by vl(S), i.e., vl(S) = R≥0.

2.2 Normed preordered semigroups and normed semilattices

None of the more specific forms of normed semigroup considered in this subsection is formally needed for the definition of
the semigroup entropy. Nevertheless, they provide significant and natural examples, as well as useful tools in the proofs, to
justify our attention.

Definition 2.7. A triple (S, ·,≤) is a preordered semigroup if (S, ·) is a semigroup and ≤ is a preorder such that, for every
x, y, z ∈ S,

x ≤ y ⇒ x · z ≤ y · z and z · x ≤ z · y.
The positive cone of S is

P+(S) = {a ∈ S : x ≤ x · a and x ≤ a · x for every x ∈ S}.
If S is a preordered monoid, P+(S) = {a ∈ S : a ≥ 1}.

Definition 2.8. If S is a preordered semigroup, a subset T of S is cofinal in S if, for every s ∈ S, there exists t ∈ T such
that s ≤ t.

As usual, we call a map φ : (S1,≤)→ (S2,≤) between preordered sets monotone provided φ(x1) ≤ φ(x2) for x1, x2 ∈ S1

with x1 ≤ x2.

In the next example we see that for every commutative monoid there exists a natural preorder that makes it a preordered
monoid and such that every monoid homomorphism is monotone.

Example 2.9. If (S, ·) is a commutative monoid, it admits an intrinsic preorder ≤d defined for every x, y ∈ S by x ≤d y
if and only if there exists z ∈ S such that x · z = y (i.e., x “divides” y). Then (S, ·,≤d) is a preordered semigroup with
P+(S) = S. If (T, ·) is another commutative monoid, then every semigroup homomorphism φ : (S, ·) → (T, ·) is monotone
with respect to the respective preorders ≤d of S and T .

So, the assignment S 7→ (S,≤d) gives a concrete functor (i.e., a functor that does not change the supporting sets and
maps) from the category of commutative monoids to the category of preordered commutative monoids with morphisms the
monotone monoid homomorphisms.

A semilattice is a partially ordered set (S,≤) such that for every x, y ∈ S there exists the least upper bound x∨y of x and
y. Moreover, we assume that a semilattice (S,≤) admits a least element 0 ∈ S. Equivalently, a semilattice is a commutative
monoid (S,∨) such that x ∨ x = x for every x ∈ S (witnessed by the preorder ≤d which is a partial order in this case).

Example 2.10. (a) Each lattice (L,∨,∧) with 0 and 1 gives rise to two semilattices, namely (L,∨) and (L,∧).

(b) A filter F on a given set X is a semilattice with respect to the intersection, with zero element the set X.

The following notion offers a convenient weaker form of semilattice. For a preordered set (X,≤) and x, y ∈ X, we write

x ∼ y ⇔ x ≤ y and y ≤ x.

Definition 2.11. A presemilattice is a preordered commutative monoid (S,∨,≤) such that x ∨ x ∼ x for every x ∈ S.

Now we equip the above semigroups with a monotone norm, that is, a monotone map v : (S, ·,≤)→ (R≥0,+,≤).

Definition 2.12. (a) A normed preordered semigroup (respectively, semilattice, presemilattice) is a preordered semigroup
(respectively, semilattice, presemilattice) (S, ·,≤) endowed with a monotone norm.

(b) A preorder ≤ on a normed semigroup (S, v) is compatible with a semigroup endomorphism φ : (S, v)→ (S, v) if both v
and φ are monotone with respect to ≤.

Clearly, a (normed) semilattice is a (normed) presemilattice, while a (normed) presemilattice is a (normed) preordered
semigroup. Hereinafter we use the following notation:

- Sp is the subcategory of S of normed preordered semigroups and monotone semigroup homomorphisms;

- Mp = Sp ∩M is the subcategory of M of normed preordered monoids and monotone monoid homomorphisms;

- PL is the full subcategory of Mp with objects all normed presemilattices;
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- L is the full subcategory of M with objects all normed semilattices.

Note that a morphism in L is necessarily monotone.

Moreover, let:

- S†p = Sp ∩S†;

- M†p = Mp ∩S†;

- PL† = PL ∩S†;

- L† = L ∩S†.

S∗

S

OOOOOOOOO

qqqqqqqqq

M

99999 Sp

�����
<<<< S†

�����

Mp

MMMMMMMM S†p

PL

MMMMMMMM M†p

L

NNNNNNNNN PL†

L†

(2.1)

Obviously, the norm of a normed presemilattice (S,∨) is arithmetic.

Finally, we propose another notion of monotonicity for a semigroup norm which does not require the semigroup to be
explicitly endowed with a preorder.

Definition 2.13. Let (S, v) be a normed semigroup. The norm v is d-monotone if

max{v(x), v(y)} ≤ v(x · y) for every x, y ∈ S.

When (S, v) is a commutative normed monoid, v is d-monotone precisely when v is monotone with respect to ≤d.
The inequality in Definition 2.13 may become a too stringent condition when S is close to being a group; indeed, if S

is a group, then it implies that v(S) = {v(1)}, that is, v is constantly zero. Nevertheless, this will have no impact on our
approach to entropy since the specific semigroups that appear in all cases considered hereinafter are indeed quite far from
being groups.

The following connection between monotonicity and s-monotonicity is clear.

Lemma 2.14. Let S be a preordered semigroup. If S = P+(S) (in particular, if S is a lattice), then every monotone norm
of S is also d-monotone.

3 The semigroup entropy

3.1 Definition

In this section we introduce the concept, fundamental in this paper, of semigroup entropy.

For (S, v) a normed semigroup, φ : S → S an endomorphism (not necessarily contractive) and n ∈ N+, consider the n-th
φ-trajectory of x ∈ S

Tn(φ, x) = x · φ(x) · . . . · φn−1(x)

and let cn(φ, x) = v(Tn(φ, x)).
We give the following definition of semigroup entropy in the general case of the category S∗, but we will consider it mainly

in the category S, that is, for contractive semigroup endomorphisms.

Definition 3.1. Let S be a normed semigroup and φ : S → S an endomorphism in S∗. The semigroup entropy of φ with
respect to x ∈ S is

hS∗(φ, x) = lim sup
n→∞

cn(φ, x)

n
.

The semigroup entropy of φ is
hS∗(φ) = sup

x∈S
hS∗(φ, x).

Convention 3.2. When we are in the category S, we denote the semigroup entropy by hS. In particular, when we write
hS(φ, x) or hS(φ) we intend that φ is contractive, even if we do not say that explicitly.
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In the next example we consider the semigroup entropy of the identity map idS of a normed semigroup S; since idS
is always contractive, we can write hS(idS). In item (a) we see that hS(idS) = 0 for normed semigroups with arithmetic
norm, but also in other cases. This will be generalized to other contracting endomorphisms (namely, quasi-periodic ones) in
Theorem 3.11 and Theorem 3.17. In item (b) we see that hS(idS) can be infinite; this case can occur even for subadditive
semigroups as we will see in Example 3.16.

Example 3.3. Let (S, v) be a normed semigroup.

(a) It is easy to see that if v is arithmetic, then hS(idS) = 0.

Nevertheless, hS(idS) = 0 may occur also when v is not arithmetic. To this end consider S = (N,+) with the norm

vp from Example 2.6(b), with 0 < p < 1. Then hS(idS , x) = 0 for every x ∈ S, since limn→∞
(nx)p

n
= 0, and so

hS(idS) = 0.

(b) Consider S = (N,+) with the norm va, for some a ∈ N, a > 1, from Example 2.6(d), which is not arithmetic and not
subadditive. Then hS(idS , x) = x for every x ∈ N, and so hS(idS) =∞.

The next is another example of computation of the semigroup entropy.

Example 3.4. (a) Consider (N,+) with the norm vl(x) = log(x + 1) for every x ∈ N from Example 2.6(c), which is
subadditive and arithmetic. Let a ∈ N+ and %a : N → N defined by %a(x) = ax for every x ∈ N; note that %a is not
contractive if a > 1. Moreover, hS∗(%a, x) = log a for every x ∈ N+, so hS∗(%a) = log a.

(b) Consider (R≥0,+) with the norm vl(x) = log(x+ 1) for every x ∈ R≥0. Let a ∈ R≥0, a > 0 and %a : R≥0 → R≥0 defined
by %a(x) = ax for every x ∈ R≥0. If a ≤ 1, then %a is contractive and hS(%a) = 0. If a > 1, then %a is not contractive
and hS∗(%a) = log a as above.

An open problem in the context of the topological and the algebraic entropy is whether the infimum of the positive values
of entropy is still positive. This is equivalent to Lehmer’s problem from number theory on the values of the Mahler measure
(see [35, 40] for more details). Following this idea, for a fixed S ∈ S we consider the set

ES∗(S) = {hS∗(φ) : (S, φ) ∈ FlowS∗} ⊆ R+

of all possible values of the semigroup entropy on endomorphisms of S, and we let

`S∗(S) = inf(ES∗(S) \ {0}).

Inspired by the counterpart of Lehmer’s problem for the topological and the algebraic entropy, one can ask how well the set
ES∗(S) \ {0} approximates 0, i.e., whether `S∗(S) = 0. In contrast with the highly difficult case of the topological or the
algebraic entropy, from Example 3.4(b) one gets

`S∗(R≥0, vl) = 0

by taking a > 1 arbitrarily close to 1. This is even more striking since a single semigroup S allows to get `S∗(S) = 0, whereas
in the framework of the topological or the algebraic entropy it is not known whether 0 can be attained even by taking a
second inf on (i.e., varying) the supporting “space” S.

3.2 Entropy in S

From now on, in this section we consider entropy in S (and not in S∗), so when we write homomorphism/endomorphism we
mean in S (i.e., contractive).

We list the main properties of the semigroup entropy, starting from its monotonicity under taking factor flows.

Lemma 3.5 (Monotonicity for factors). Let S, T be normed semigroups and φ : S → S, ψ : T → T endomorphisms. If
α : S → T is a surjective homomorphism such that α ◦ φ = ψ ◦ α, i.e., the following diagram commutes,

S
φ //

α

��

S

α

��
T

ψ
// T

(3.1)

then
hS(ψ) ≤ hS(φ).

Proof. Fix y ∈ T and find x ∈ S with y = α(x). Then cn(ψ, y) ≤ cn(φ, x) for every n ∈ N+. Dividing by n and taking the
lim sup gives hS(ψ, y) ≤ hS(φ, x). So hS(ψ, y) ≤ hS(φ). When y runs over T , we conclude that hS(ψ) ≤ hS(φ).

Applying twice the above lemma, we obtain the following fundamental property of the semigroup entropy.

Corollary 3.6 (Invariance under conjugation). Let S be a normed semigroup and φ : S → S an endomorphism. If α : T → S
is an isomorphism, then

hS(φ) = hS(α ◦ φ ◦ α−1).

The next lemma shows that also the monotonicity under taking subsemigroups is available.

Lemma 3.7 (Monotonicity for subflows). Let (S, v) be a normed semigroup and φ : S → S an endomorphism. If T is a
φ-invariant normed subsemigroup of (S, v), then

hS(φ) ≥ hS(φ �T ).

Equality holds provided that S is preordered, φ and v are monotone and T is cofinal in S.
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Proof. The first part is just a consequence of the definitions. Suppose that S is preordered, φ and v are monotone and T is
cofinal in S. Given s ∈ S, choose t ∈ T such that t ≥ s and let us show that, for all n ∈ N+, Tn(φ, s) ≤ Tn(φ, t). Indeed, for
n = 1 this comes from the choice of t. If n > 1 and we already proved our result for n− 1, then, using the monotonicity of φ,

Tn(φ, s) = Tn−1(φ, s) · φn−1(s) ≤ Tn−1(φ, t) · φn−1(s) ≤ Tn−1(φ, t) · φn−1(t) = Tn(φ, t).

We can conclude applying the definition of entropy and the monotonicity of v.

The above monotonicity for subsemigroups applies to the subsemigroups Si in the next result.

Proposition 3.8 (Continuity for direct limits). Let (S, v) be a normed semigroup and φ : S → S an endomorphism. If
{Si : i ∈ I} is a directed family of φ-invariant normed subsemigroups of (S, v) with S = lim−→i∈I

Si and φ = lim−→i∈I
φ �Si , then

hS(φ) = sup
i∈I

hS(φ �Si).

Proof. By Lemma 3.7 we have that hS(φ) ≥ hS(φ �Si) for every i ∈ I, so

hS(φ) ≥ sup
i∈I

hS(φ �Si).

To verify the converse inequality, let x ∈ S. Since S = lim−→i∈I
Si, there exists i ∈ I such that x ∈ Si. Then

hS(φ, x) = hS(φ �Si , x) ≤ hS(φ �Si).

Hence, we can conclude that hS(φ) ≤ supi∈I hS(φ �Si).

The next lemma fully exploits our blanket hypothesis that φ is an automorphism in S (see §7).

Lemma 3.9 (Invariance under inversion). Let S be a commutative normed semigroup and φ : S → S an automorphism.
Then

hS(φ−1) = hS(φ).

Proof. It suffices to see that hS(φ−1, x) = hS(φ, x) for each x ∈ S. In order to compute hS(φ−1, x) note that, for every
n ∈ N+,

cn(φ, x) = v(x · φ(x) · . . . · φn−1(x))

= v(φn−1(x · φ−1(x) · . . . · φ−n+1(x))

= v(x · φ−1(x) · . . . · φ−n+1(x))

= cn(φ−1, x).

Now the definition of hS(φ−1, x) and hS(φ, x) applies.

Notice that in the above lemma we have to impose the hypothesis that our semigroup is commutative. In §3.5 we give an
example of a flow of normed semigroups (S, φ) whose semigroup entropy does not coincide with the entropy of its inverse flow
(S, φ−1). We refer to that section for a more complete description of the entropy of the inverse flow. Similar considerations
hold for the second part of the following lemma.

Proposition 3.10 (Logarithmic Law). Let (S, v) be a commutative d-monotone normed semigroup and φ : S → S an
endomorphism. Then, for every k ∈ N+,

hS(φk) = k · hS(φ).

Furthermore, if φ : S → S is an automorphism, then for all k ∈ Z \ {0},

hS(φk) = |k| · hS(φ).

Proof. Fix k ∈ N+. Let x ∈ S and let y = x · φ(x) · . . . · φk−1(x). For every n ∈ N+ we have that

cn(φk, y) = v(y · φk(y) · . . . · φ(n−1)k(y)) = cnk(φ, x).

Then

hS(φk) ≥ hS(φk, y) = lim sup
n→∞

cn(φk, y)

n
= k · lim sup

n→∞

cnk(φ, x)

nk
= k · hS(φ, x).

The last equality in the above formula holds for the following reason. For every j ∈ N+ there exists n ∈ N such that
nk ≤ j < (n+ 1)k. Since

Tj(φ, x) = Tnk(φ, x) · φnk · . . . · φj−1(x) and T(n+1)k(φ, x) = Tj(φ, x) · φj(x) · . . . · φ(n+1)k−1(x),

it follows that
cnk(φ, x) ≤ cj(φ, x) ≤ c(n+1)k(φ, x),

and so
nk

j
· cnk(φ, x)

nk
≤ cj(φ, x)

j
≤ (n+ 1)k

j
·
c(n+1)k(φ, x)

(n+ 1)k
.
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Since limn→∞ nk/j = limn→∞(n+ 1)k/j = 1, we have

lim sup
n→∞

cnk(φ, x)

nk
= lim sup

n→∞

c(n+1)k(φ, x)

(n+ 1)k
= lim sup

j→∞

cj(φ, x)

j
= hS(φ, x).

We conclude that hS(φk) ≥ k · hS(φ, x) for all x ∈ S, and consequently, hS(φk) ≥ k · hS(φ).

Suppose v to be d-monotone. Then, for every n ∈ N+ and x ∈ S, we have that

cnk(φ, x) = v(Tnk(φ, x)) ≥ v(x · φk(x) · . . . · (φk)n−1(x)) = v(Tn(φk, x)) = cn(φk, x).

Therefore,

hS(φ, x) ≥ lim sup
n→∞

cnk(φ, x)

nk
≥ lim sup

n→∞

cn(φk, x)

n · k =
1

k
· lim sup
n→∞

cn(φk, x)

n
=
hS(φk, x)

k
.

Hence, k · hS(φ) ≥ hS(φk, x) for every x ∈ S, and so k · hS(φ) ≥ hS(φk). We conclude that hS(φk) = k · hS(φ).

If φ is an automorphism and k ∈ Z \ {0}, apply the previous part of the proposition and Lemma 3.9.

We call Logarithmic Law the property hS(φk) = k · hS(φ) for every k ∈ N+. Of course, if the Invariance under inversion
is also available, then one has hS(φk) = |k| · hS(φ) for every k ∈ Z, with k 6= 0, when φ is an automorphism. In case k = 0,
that is, φk = idS , the equality holds only if hS(idS) = 0 (e.g., when (S, v) is arithmetic). We shall adopt the terminology
Logarithmic Law also with respect to other entropy functions.

A flow (S, φ) of S is quasi-periodic if there exists a pair of naturals m < k such that φk = φm.

Proposition 3.11 (Vanishing on quasi-periodic flows). If (S, φ) is a quasi-periodic flow of S such that S is commutative
and d-monotone, then either hS(φ) = 0 or hS(φ) =∞.

Proof. Assume that φk = φm for a pair of naturals m < k. Then, by Proposition 3.10,

k · hS(φ) = hS(φk) = hS(φm) = m · hS(φ).

Since m < k, the equality k · hS(φ) = m · hS(φ) implies that either hS(φ) = 0 or hS(φ) =∞.

Now we consider products in S. Let {(Si, vi) : i ∈ I} be a family of normed semigroups and let S =
∏
i∈I Si be their

direct product in the category of semigroups. In case I is finite, S becomes a normed semigroup with the max-norm vΠ, i.e.,
for x = (xi)i∈I ∈ S,

vΠ(x) = sup{vi(xi) : i ∈ I}; (3.2)

so (S, vΠ) is the product of the family {Si : i ∈ I} in the category S.

Theorem 3.12 (weak Addition Theorem - products). Let (Si, vi) be a normed semigroup and φi : Si → Si an endomorphism
for i = 1, 2. Then the endomorphism φ = φ1 × φ2 of (S, v) = (S1 × S2, vΠ) has

hS(φ) = max{hS(φ1), hS(φ2)}.

Proof. For x ∈ S, let x1 ∈ S1 and x2 ∈ S2 be such that x = (x1, x2). Then

hS(φ, x) = lim sup
n→∞

v(Tn(φ, x))

n

= lim sup
n→∞

max{v1(Tn(φ1, x1)), v2(Tn(φ2, x2))}
n

= max{hS(φ1, x1), hS(φ2, x2)}.

Using the fact that for families of positive real numbers {ai}i∈I and {bj}j∈J

sup
(i,j)∈I×J

max{ai, bj} = max{sup
i∈I

ai, sup
j∈J

bj}, (3.3)

we can conclude that hS(φ) = max{hS(φ1), hS(φ2)}.

If I is infinite, S =
∏
i∈I Si need not carry a semigroup norm v such that every projection pi : (S, v) → (Si, vi) is a

morphism in S. This is why the product of the family {(Si, vi) : i ∈ I} in S is actually the subset

Sbnd = {(xi)i∈I ∈ S : sup
i∈I

vi(xi) ∈ R}

of S with the norm vΠ defined by (3.2) for x = (xi)i∈I ∈ Sbnd.
We will again consider the product of normed semigroups in §3.4 below, in particular a comparison of Theorem 3.12 and

Theorem 3.19.
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3.3 Entropy in S†

In this section we consider the semigroup entropy for endomorphisms φ : S → S of subadditive semigroups. Obviously, a
subsemigroup of a subadditive semigroup S is subadditive, too.

As we see in the next theorem, the superior limit in the definition of the semigroup entropy is actually a limit in this
setting. Recall that here endomorphism means contractive semigroup endomorphism.

Theorem 3.13. Let (S, v) be a subadditive semigroup and φ : S → S an endomorphism. Then for every x ∈ S the limit

hS(φ, x) = lim
n→∞

cn(φ, x)

n
(3.4)

exists and satisfies hS(φ, x) ≤ v(x).

Proof. The sequence {cn(φ, x)}n∈N+ is subadditive. Indeed, for every n,m ∈ N+,

cn+m(φ, x) = v(x · φ(x) · . . . · φn−1(x) · φn(x) · . . . · φn+m−1(x))

= v((x · φ(x) · . . . · φn−1(x)) · φn(x · . . . · φm−1(x))

≤ cn(φ, x) + v(φn(Tm(φ, x))

≤ cn(φ, x) + v(Tm(φ, x)) = cn(φ, x) + cm(φ, x),

where the first inequality follows from the subadditivity of v. By Fekete Lemma 2.5, the limit limn→∞
cn(φ,x)

n
exists and

coincides with infn∈N+

cn(φ,x)
n

. Finally, hS(φ, x) ≤ v(x) follows from cn(φ, x) ≤ n · v(x) for every n ∈ N+.

Remark 3.14. In the above notation, we have seen at the end of the proof of Theorem 3.13 that, for every n ∈ N+,

cn(φ, x) ≤ n · v(x).

Hence, the growth of the function n 7→ cn(φ, x) is at most linear.

By Theorem 3.13 we have that hS(φ, x) is always finite if (S, v) is a subadditive semigroup. On the other hand, hS(φ, x) =
∞ may occur, if (S, v) is not subadditive as the following example shows.

Example 3.15. Consider S = (N,+) with the norm v2 as in Example 2.6(d), which is not subadditive. The endomorphism
%2 : (S, v2)→ (S, v2) defined by x→ 2x for every x ∈ S is contractive (see Example 2.6(d)). For every n ∈ N+,

Tn(%2, 1) = 2n − 1,

and so
cn(%2, 1) = v2(Tn(%2, 1)) = 2n − 1.

Hence, applying the definition, we have that
hS(%2, 1) =∞.

In Example 3.3(a) we have seen that hS(idS) = 0 when the norm of the normed semigroup S is arithmetic. We show that
hS(idS) can be infinite even if the norm is subadditive.

Example 3.16. Consider S = (N,+) with the norm v(x) = x, which is subadditive; anyway, hS(idS , x) = x for every x ∈ N,
and so hS(idS) =∞.

Now we extend item (a) of Example 3.3 as well as Theorem 3.11. A flow (S, φ) of S is locally quasi-periodic if for every
x ∈ S there exists a pair of naturals m < k such that φk(x) = φm(x).

Theorem 3.17. If (S, φ) is a locally quasi-periodic flow of S† such that the norm of S is arithmetic, then hS(φ) = 0.

Proof. We have to prove that hS(φ, x) = 0 for an arbitrarily chosen x ∈ S. Pick a pair of naturals m < k such that
φk(x) = φm(x) and let d = k −m > 0. Then, for all i ∈ N,

φm+id(x) = φm(x).

Let
w = φm(Td(φ, x)).

Since the norm is arithmetic, there exist Cw ∈ N+ such that v(wn) ≤ Cw logn for every n ≥ 2.
Pick an arbitrary natural n > m+ 2d and find ı̄ ∈ N such that

m+ ı̄d < n ≤ m+ (̄ı+ 1)d;

then ı̄ ≥ 2. Put l = n− (m+ ı̄d), so that 0 < l ≤ d. Now let

u = Tl(φ, x);

then φm+ı̄d(u) = φm+ı̄d(x) · . . . · φn−1(x). Therefore, since n = m+ ı̄d+ l,

Tn(φ, x) = Tm(φ, x) · wı̄ · φm+ı̄d(u).

Thus, by the subaddititvity of the norm,

cn(φ, x) = v(Tn(φ, x)) ≤ v(Tm(φ, x)) + Cw log ı̄+ v(Tl(φ, x)).

Since v(Tm(φ, x)) and v(Tl(φ, x)) are bounded, we deduce that

hS(φ, x) = lim
n→∞

cn(φ, x))

n
= 0,

as required.
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3.4 Entropy in M

We collect below some additional properties of the semigroup entropy in the category M of normed monoids, where also
coproducts are available.

If (Si, vi) is a normed monoid for every i ∈ I, the direct sum

S⊕ =
⊕
i∈I

Si =

{
(xi) ∈ S =

∏
i∈I

Si : |{i ∈ I : xi 6= 1}| <∞

}

becomes a normed monoid with the norm

v⊕(x) =
∑
i∈I

vi(xi) for any x = (xi)i∈I ∈ S⊕.

This definition makes sense since each vi is a monoid norm, so vi(1) = 0. Hence, (S⊕, v⊕) is a coproduct of the family
{(Si, vi) : i ∈ I} in M.

Note that
S⊕ ⊆ Sbnd,

so one can consider on S⊕ both the norm v⊕ and the norm induced by vΠ; by the definitions of the two norms, we have that

vΠ(x) ≤ v⊕(x)

for every x ∈ S⊕.

Lemma 3.18. The category M† is stable under taking submonoids and direct sums.

Proof. The first assertion follows from the fact we mentioned above that S† is stable under taking subsemigroups. If (Si, vi)
is a normed monoid for every i ∈ I and S⊕ =

⊕
i∈I Si, then we have to check that v⊕ is subadditive whenever each (Si, vi)

is subadditive. This easily follows from the definitions.

Now we consider the case when I is finite, that can easily be reduced to the case of binary products, so we assume
I = {1, 2} without loss of generality and we have two normed monoids (S1, v1) and (S2, v2). The product and the coproduct
have the same underlying monoid S = S1 × S2, but the norms v⊕ and vΠ on S are different and give different values of the
semigroup entropy hS (compare Theorem 3.12 and the following one).

Theorem 3.19 (weak Addition Theorem - coproducts). Let (Si, vi) be a normed monoid and φi : Si → Si an endomorphism
for i = 1, 2; moreover, let (S, v) = (S1 ⊕ S2, v⊕) and φ = φ1 ⊕ φ2 : S → S. Then

hS(φ) ≤ hS(φ1) + hS(φ2).

If v is subadditive, then
hS(φ) = hS(φ1) + hS(φ2).

Proof. For x ∈ S, let x1 ∈ S1 and x2 ∈ S2 be such that x = (x1, x2). Then

hS(φ, x) = lim sup
n→∞

v(Tn(φ, x))

n

= lim sup
n→∞

v1(Tn(φ1, x1)) + v2(Tn(φ2, x2))

n

≤ hS(φ1, x1) + hS(φ2, x2).

Therefore, applying the definition and (3.3), we have that hS(φ) ≤ hS(φ1) + hS(φ2).

Assume that the norm v is subadditive; clearly this occurs if and only if both norms v1, v2 are subadditive. Hence, by
Theorem 3.13,

hS(φ, x) = lim sup
n→∞

v(Tn(φ, x))

n

= lim sup
n→∞

v1(Tn(φ1, x1)) + v2(Tn(φ2, x2))

n

= hS(φ1, x1) + hS(φ2, x2).

Applying the definition and (3.3), we conclude that hS(φ) = hS(φ1) + hS(φ2).

Now we consider the main example in entropy theory, that is, the Bernoulli shifts, in the category of normed monoids.

Example 3.20. For a normed monoid (M, v) ∈ M, let B(M) be the direct sum M (N) equipped with the coproduct norm.
The right Bernoulli shift is defined by

βM : B(M)→ B(M), βM (x0, . . . , xn, . . .) = (1, x0, . . . , xn, . . .),

while the left Bernoulli shift is

Mβ : B(M)→ B(M), Mβ(x0, x1, . . . , xn, . . .) = (x1, x2, . . . , xn, . . .).

Then:
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(a) hS(Mβ) = 0;

(b) hS(βM ) = supx∈M v(x).

To verify (a), note that for every x = (xn)n∈N ∈ B(M), there exists m ∈ N+ such that Mβ
m(x) = 1. So

Tn(Mβ, x) = Tm(Mβ, x) for every n ≥ m,

hence dividing by n and letting n converge to infinity we obtain hS(Mβ, x) = 0.
We are left with (b). For x ∈M consider x = (xn)n∈N ∈ B(M) such that x0 = x and xn = 1 for every n ∈ N+. Then, for

every n ∈ N+,
v⊕(Tn(βM , x)) = n · v(x),

so hS(βM , x) = v(x). Hence, hS(βM ) ≥ supx∈M v(x). Now let x = (xn)n∈N ∈ B(M) and let k ∈ N be the greatest index such
that xk 6= 1; then, for every n ≥ k,

v⊕(Tn(βM , x)) =

k+n−1∑
i=0

v(Tn(βM , x)i)

=

k−1∑
i=0

v(xi · . . . · x0) + (n− k) · v(xk · . . . · x0) +

k∑
i=1

v(xk · . . . · xi).

Since the first and the last summand do not depend on n, after dividing by n and letting n tend to infinity, we obtain that

hS(βM , x) = lim
n→∞

v⊕(Tn(βM , x))

n
= v(xk · . . . · x0) ≤ sup

x∈M
v(x),

and this gives the equality in (b).

3.5 Alternatives for the definition of trajectories

Here we discuss a possible different notion of semigroup entropy. Let (S, v) be a normed semigroup, φ : S → S an endomor-
phism, x ∈ S and n ∈ N+. One could define the “left” n-th φ-trajectory of x as

T#
n (φ, x) = φn−1(x) · . . . · φ(x) · x,

changing the order of the factors with respect to the above definition of Tn(φ, x). With these new trajectories it is possible
to define another entropy letting

h#
S(φ, x) = lim sup

n→∞

v(T#
n (φ, x))

n
,

and
h#
S(φ) = sup{h#

S(φ, x) : x ∈ S}.
In the same way as above, one can see that the limit superior in the definition of h#

S(φ, x) is a limit when v is subadditive.

Obviously h#
S and hS coincide on the identity map and in commutative normed semigroups. Anyway, one can produce

examples of flows (e.g., see Example 3.23(b)) whose entropy hS differs from their “left entropy” h#
S . On the other hand, in

the next result we describe the relation between these two notions of entropy in the case of an automorphism (compare with
Lemma 3.9).

Proposition 3.21. Let (S, v) be a normed semigroup and let φ : S → S be an automorphism. Then

hS(φ−1) = h#
S(φ).

Proof. It suffices to see that hS(φ−1, x) = h#
S(φ, x) for each x ∈ S. Indeed, given x ∈ S and n ∈ N+,

v(Tn(φ−1, x)) = v(x · φ−1(x) · . . . · φ−n+1(x))

= v(φ−n+1(φn−1(x) · . . . · φ(x) · x) =

= v(φn−1(x) · . . . · φ(x) · x) = v(T#
n (φ, x)).

Apply the definitions of hS(φ−1, x) and h#
S(φ, x) to conclude.

Next we give suitable hypotheses on a flow in S to conclude that hS coincides with h#
S . Recall that an anti-isomorphism

i : S → S is a bijective map such that i(x ·y) = i(y) ·i(x) for every x, y ∈ S. The second statement in the following proposition
should be compared with Lemma 3.9.

Proposition 3.22. Let (S, v) be a normed semigroup, φ : S → S an endomorphism and assume that there exists an anti-
isomorphism i : S → S such that i ◦ φ = φ ◦ i and v(i(x)) = v(x) for every x ∈ S. Then

hS(φ) = h#
S(φ).

In particular, if φ is an automorphism, then
hS(φ) = hS(φ−1).
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Proof. For every n ∈ N+ and x ∈ S we have that v(Tn(φ, x)) = v(i(Tn(φ, x)) and

i(Tn(φ, x)) = i(φn−1(x)) · . . . · i(φ(x))i(x) = φn−1(i(x)) · . . . · φ(i(x))i(x) = T#
n (φ, i(x));

so, v(Tn(φ, x)) = v(T#
n (φ, i(x))). Therefore hS(φ, x) = h#

S(φ, i(x)), and hence hS(φ) = h#
S(φ).

That hS(φ) = hS(φ−1) in case φ is an automorphism follows from the first assertion and from Proposition 3.21.

Part (a) of the following example shows that it may occur that h#
S and hS do not coincide “locally”, while they coincide

“globally”. Moreover, modifying appropriately the norm in part (a), Jan Spevák found the example in part (b) for which h#
S

and hS do not coincide even “globally”. This example was given in [38], we repeat it here for the sake of completeness.

Example 3.23. Let X = {xn}n∈Z be a faithfully enumerated countable set and let S be the free semigroup generated by
X. An element w ∈ S is a word w = xi1xi2 . . . xim with m ∈ N+ and ij ∈ Z for j = 1, 2, . . . ,m. In this case m is called the
length `X(w) of w, and a subword of w is any w′ ∈ S of the form w′ = xikxik+1 . . . xil with 1 ≤ k ≤ l ≤ n.

Consider the automorphism φ : S → S determined by φ(xn) = xn+1 for every n ∈ Z.

(a) Let s(w) be the number of adjacent pairs (ik, ik+1) in w such that ik < ik+1. The map v : S → R≥0 defined by
v(w) = s(w) + 1 is a subadditive semigroup norm. Then φ : (S, v)→ (S, v) is an automorphism of normed semigroups.

It is straightforward to prove that, for w = xi1xi2 . . . xim ∈ S:

(i) h#
S(φ,w) = hS(φ,w) if and only if i1 > im + 1 or i1 ≤ im − 1;

(ii) h#
S(φ,w) = hS(φ,w)− 1 if and only if im = i1 or im = i1 − 1.

Moreover,

(iii) h#
S(φ) = hS(φ) =∞.

In particular, hS(φ, x0) = 1 while h#
S(φ, x0) = 0.

(b) Define a subadditive semigroup norm ν : S → R≥0 as follows. For

w = xi1xi2 . . . xin ∈ S

consider its subword w′ = xikxik+1 . . . xil with maximal length satisfying

ij+1 = ij + 1

for every j ∈ Z with k ≤ j ≤ l − 1 and let ν(w) = `X(w′). Then φ : (S, ν) → (S, ν) is an automorphism of normed
semigroups.

It is possible to prove that, for w ∈ S:

(i) if `X(w) = 1, then ν(Tn(φ,w)) = n and ν(T#
n (φ,w)) = 1 for every n ∈ N+;

(ii) if `X(w) = k with k > 1, then ν(Tn(φ,w)) < 2k and ν(T#
n (φ,w)) < 2k for every n ∈ N+.

From (i) and (ii), and from the definitions, we immediately obtain that

(iii) hS(φ) = 1 6= 0 = h#
S(φ).

4 The functorial entropy

4.1 Definition and basic properties

In this section X will always be a category and F : X→ S a functor.

We define below the functorial entropy and establish its basic properties. We give the proofs only for the case when the
functor F : X→ S is covariant (for contravariant F one can consider F : Xop → S).

Recall that we write hF : X→ R+ in place of hF : FlowX → R+ for the sake of simplicity.

Definition 4.1. Define the functorial entropy hF : X→ R+ on the category X by letting, for any endomorphism φ : X → X
in X,

hF (φ) = hS(F (φ)).

For x ∈ F (X), the functorial entropy of φ with respect to x is

HF (φ, x) = hS(F (φ), x).

Clearly, in the above notation,
hF (φ) = sup

x∈F (X)

HF (φ, x).

The same definition can be naturally extended to the more general case of a functor F : X→ S∗, for which we keep the
same notation hF .

Now we prove the basic properties of the functorial entropy. The proofs of most of them require the target of the functor
to be in S.

Lemma 4.2 (Invariance under conjugation). If (X,φ) and (Y, ψ) are isomorphic flows of X, then

hF (φ) = hF (ψ).
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Proof. Let α : X → Y be an isomorphism in X such that ψ = α ◦ φ ◦ α−1. Since F (α) : F (X)→ F (Y ) is an isomorphism in
S, we have that F (ψ) = F (α) ◦ F (φ) ◦ F (α)−1, and it suffices to apply Corollary 3.6 to conclude that

hF (ψ) = hS(F (α) ◦ F (φ) ◦ F (α)−1) = hS(F (φ)) = hF (φ).

This completes the proof.

Next we see the an invertible flow of X and its inverse flow have the same functorial entropy.

Lemma 4.3 (Invariance under inversion). Let φ : X → X be an automorphism in X and F (X) a commutative normed
semigroup. Then

hF (φ−1) = hF (φ).

Proof. Since F (φ) : F (X)→ F (X) is an automorphism in S, Lemma 3.9 gives immediately

hF (φ−1) = hS(F (φ)−1) = hS(F (φ)) = hF (φ),

and this concludes the proof.

Lemma 4.4 (Logarithmic Law). Let (X,φ) be a flow of X. Then hF (φk) ≤ k ·hF (φ) for all k ∈ N+. If F (X) is commutative
and has a d-monotone norm, then for all k ∈ N+,

hF (φk) = k · hF (φ).

Moreover, if φ is an automorphism, then for all k ∈ Z \ {0},

hF (φk) = |k| · hF (φ).

Proof. According to the definition,
hF (φk) = hS(F (φk)) = hS(F (φ)k)

and hF (φ) = hS(F (φ)), so it suffices to apply Proposition 3.10.

Now we see that, under suitable conditions, the functorial entropy of quasi-periodic flows vanishes. In particular, the
entropy of the identity morphism is zero.

Lemma 4.5 (Vanishing on quasi-periodic flows). If F : X→ S† has the property that all F (X) have arithmetic norm, then
for every quasi-periodic flow (X,φ) of X one has hF (φ) = 0.

Proof. If (X,φ) is a quasi-periodic flow of X, then (F (X), F (φ)) is a quasi-periodic flow of S† and the norm of F (X) is
arithmetic by hypothesis. Then, by Theorem 3.17, we conclude that hF (φ) = hS(F(φ)) = 0.

In the following lemma we see that the functorial entropy of a subflow of a flow (X,φ) of X is always smaller than the
functorial entropy of (X,φ).

Lemma 4.6 (Monotonicity for subflows). Let (X,φ) be a flow of X and Y a φ-invariant subobject of X. If F is covariant
and F (Y ) is a subsemigroup of F (X) (or if F is contravariant and F (Y ) is a factor of F (X)), then

hF (φ �Y ) ≤ hF (φ).

Proof. Assume that F is covariant and that F (Y ) is a subsemigroup of F (X). Since

hF (φ �Y ) = hS(F (φ �Y )) = hS(F (φ) �F (Y )),

Lemma 3.7 can be applied to conclude that hS(F (φ) �F (Y )) ≤ hS(F (φ)) = hF (φ).

Now we see that under suitable conditions, if (X,φ) and (Y, ψ) are flows of X such that (Y, ψ) is a factor of (X,φ), then
hF (ψ) ≤ hF (φ).

Lemma 4.7 (Monotonicity for factors). Let (X,φ) be a flow of X and α : X → Y a quotient in X such that α ◦ φ = ψ ◦ α.

X
φ //

α

��

X

α

��
Y

ψ
// Y

If F is covariant and F (α) : F (X)→ F (Y ) is a surjective homomorphism in S (or, if F is contravariant and F (α) : F (Y )→
F (X) is a subobject embedding in S), then

hF (ψ) ≤ hF (φ).

Proof. Assume that F is covariant and F (α) : F (X)→ F (Y ) is a surjective homomorphism in S. Since F (α ◦ φ) = F (ψ ◦α)
implies F (α) ◦ F (φ) = F (ψ) ◦ F (α), Lemma 3.5 yields

hF (ψ) = hS(F (ψ)) ≤ hS(F (φ)) = hF (φ),

and this concludes the proof.
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Next we discuss the “continuity” of the functorial entropy with respect to direct and inverse limits.

Lemma 4.8. Assume that for every flow (X,φ) of X, F (X) is a preordered normed semigroup such that the norm is monotone,
and F (φ) : F (X)→ F (X) is monotone as well.

(a) (Continuity for direct limits) Assume that the functor F is covariant. Let (X,φ) be a flow of X and X = lim−→Xi, with
Xi a φ-invariant subobject of X for every i ∈ I. If lim−→F (Xi) is cofinal in F (X), then

hF (φ) = sup
i∈I

hF (φ �Xi). (4.1)

(b) (Continuity for inverse limits) If F is contravariant and (X,φ) is a flow of X such that X = lim←−Xi, with (Xi, φi) a
factor of (X,φ) for every i ∈ I, and lim−→F (Xi) is cofinal in F (X), one has

hF (φ) = sup
i∈I

hF (φi). (4.2)

Proof. (a) Let Y = lim−→F (Xi). By Lemma 3.7, hS(F (φ)) = hS(F (φ �Y )). On the other hand,

hS(F (φ �Y )) = sup
i∈I

hS(F (φ �Xi)),

by Proposition 3.8. This proves (4.1).
(b) As F is contravariant, the functor F : Xop → S is covariant, so (a) applies.

Corollary 4.9. (a) (Continuity for direct limits) Assume that the functor F is covariant, sending direct limits to direct
limits, and (X,φ) is a flow of X with X = lim−→Xi, such that Xi a φ-invariant subobject of X for every i ∈ I. Then (4.1)
holds.

(b) (Continuity for inverse limits) For a contravariant functor F , sending inverse limits to direct limits, and a flow (X,φ)
of X such that X = lim←−Xi, with (Xi, φi) a factor of (X,φ) for every i ∈ I, (4.2) holds.

Now we pass to finite products and coproducts.

Lemma 4.10. Assume that the functor F : X → M preserves subobjects and that, for every object X in X, F (X) is a
preordered normed monoid such that the norm is subadditive and monotone.

Let (X,φ) and (Y, ψ) be flows of X such that F (φ) : F (X)→ F (X) and F (ψ) : F (Y )→ F (Y ) are monotone.

(a) Assume that F is covariant and sends the finite coproduct X⊕Y in X to an object F (X⊕Y ) in M such that F (X)⊕F (Y )
is contained and cofinal in F (X ⊕ Y ). Then

hF (φ⊕ ψ) = hF (φ) + hF (ψ).

(b) Assume that F is contravariant and sends the finite product X × Y in X to an object F (X × Y ) in M such that
F (X)⊕ F (Y ) is contained and cofinal in F (X × Y ). Then

hF (φ× ψ) = hF (φ) + hF (ψ).

Proof. (a) Let f = φ ⊕ ψ. We first show that the subobject F (X) ⊕ F (Y ) of F (X ⊕ Y ) is F (f)-invariant. To this end we
note that X and Y are f -invariant subobjects of X⊕Y . This obviously implies that both F (X) and F (Y ) are F (f)-invariant
subobjects of F (X ⊕Y ). Then F (X)⊕F (Y ), as a sum of two F (f)-invariant subobjects, is still an F (f)-invariant subobject
of F (X ⊕ Y ). Now we can apply Lemma 3.7 to the F (f)-invariant subobject F (X)⊕ F (Y ) of F (X ⊕ Y ) to deduce

hS(F (φ⊕ ψ)) = hS(F (φ)⊕ F (ψ)).

Furthermore, Theorem 3.19 yields the equality

hS(F (φ)⊕ F (ψ)) = hS(F (φ)) + hS(F (ψ)).

To conclude it suffices to apply the definition of functorial entropy.
(b) As F is contravariant, the functor F : Xop → S is covariant, so (a) applies.

The first part of the following result follows from the above proposition, the second part from the first one by the Duality
Principle in category theory.

Corollary 4.11 (weak Addition Theorem). Let (X,φ) and (Y, ψ) be flows of X.

(a) Assume that F : X→M† is covariant and sends finite coproducts in X to finite coproducts in M†. Then

hF (φ⊕ ψ) = hF (φ) + hF (ψ).

(b) Assume that F : X→M† is contravariant and sends finite products in X to finite coproducts in M†. Then

hF (φ× ψ) = hF (φ) + hF (ψ).

(a∗) Assume that F : X→M† is covariant and sends finite products in X to finite products in M†. Then

hF (φ⊕ ψ) = max{hF (φ),hF (ψ)}.

(b∗) Assume that F : X→M† is contravariant and sends finite coproducts in X to finite products in M†.
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4.2 Shifts

We define the Bernoulli shifts in an arbitrary category X admitting countably infinite powers. Let K be an object of X,
consider KN and for every n ∈ N let πn : KN → K be the n-th projection. The (one-sided) left Bernoulli shift

Kβ : KN → KN

is the unique morphism in X such that, for every n ∈ N,

πn ◦ Kβ = πn+1. (4.3)

KN

πn+1
!!DDDDDDDD

Kβ // KN

πn

��
K

Analogously, the (two-sided) left Bernoulli shift

K β̄ : KZ → KZ (4.4)

is the unique morphism in X such that (4.3) holds for every n ∈ Z.
Moreover, the (two-sided) right Bernoulli shift

β̄K : KZ → KZ (4.5)

is the unique morphism in X such that, for every n ∈ Z,

πn+1 ◦ β̄K = πn. (4.6)

KZ

πn
!!CCCCCCCC

β̄K // KZ

πn+1

��
K

It is easy to deduce from (4.3) and (4.6), that K β̄ ◦ β̄K = β̄K ◦ K β̄ = idKZ , so K β̄ and β̄K are isomorphisms in X, inverse to
each other.

We will see in §5 the Bernoulli shifts in concrete categories.

Now we introduce the notion of backward generalized shift in an arbitrary category X admitting arbitrary powers, which
extends that of Bernoulli shift. First we note that this blanket condition on X implies the existence of a terminal object of
X that is uniquely determined up to isomorphism (as it is the product of the empty family of objects of X; it will be denoted
hereinafter by 1). Let K be an object of X and let X be a non-empty set. For x ∈ X we denote by πx : KX → K the
projection relative to the x-th member of the family consisting of |X|-many copies of K.

Definition 4.12. For non-empty sets X, Y , and a map λ : X → Y , define the backward (or contravariant) generalized shift

σλ : KY → KX

as the unique morphism in X such that, for every x ∈ X,

πx ◦ σλ = πλ(x),

KY

πλ(x) ""EEEEEEEEE
σλ // KX

πx

��
K

If X is a concrete category with forgetful functor U : X→ Set such that U(KX) = U(K)X and the U(πx) are the canonical
projections U(K)X → U(K) in Set, then

U(σλ) : U(K)Y → U(K)X

is simply the map f 7→ f ◦ λ.
For a selfmap λ : X → X, the backward generalized shift σλ : KX → KX is an endomorphism in X, so one can discuss

its entropy once X has an entropy defined on its flows. See §5.2, §5.5 and §6.5 for more details on the backward generalized
shifts in specific categories.

Remark 4.13. If X = Y = N and λ : N→ N is defined by n 7→ n+ 1, then

σλ = Kβ

is the one-sided left Bernoulli shift. Analogously, the two sided Bernoulli shifts can be seen as backward generalized shifts as
well.
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Now we see that the generalized shifts represent essentially all contravariant functors Set → X sending coproducts to
products. For a fixed K ∈ X, let

BK : Set→ X (4.7)

be the contravariant functor defined by sending a non-empty set X to

BK(X) = KX

and ∅ to the fixed terminal object 1 of X. For a map λ : X → Y let

BK(λ) = σλ : KY → KX

when both X and Y are non-empty, and let BK(λ) : KY → 1 = BK(∅) be the only morphism to 1 when X is empty.

Remark 4.14. By the functoriality of BK , if λ : X → X is a selfmap of a set X, then

σλm = (σλ)m for all m ∈ N. (4.8)

It is not hard to prove that the contravariant functors BK : Set → X send coproducts to products. Up to natural
equivalence these are the unique functors Set→ X with this property:

Theorem 4.15. Every contravariant functor ε : Set → X sending coproducts to products is naturally equivalent to BK for
an appropriate K ∈ X.

Proof. For a singleton {x} let Kx = ε({x}), and for a pair of singletons {x1}, {x2} let

jx1,x2 : {x1} → {x2}

be the unique bijective map. This gives an isomorphism

ξx2,x1 = ε(jx1,x2) : Kx2 → Kx1

in X. Fix a singleton ∗ and for every singleton {x} rename, for brevity, jx = j∗,x : ∗ → {x} and K = ε(∗) = K∗. This gives
the following corresponding commutative diagrams of isomorphisms in X.

∗
jx1 //

jx2   AAAAAAAA {x1}

jx1,x2

��

K Kx1

ε(jx1 )
oo

{x2} Kx2

ε(jx2 )

``BBBBBBBB
ξx2,x1

OO (4.9)

Every non-empty set X can be written as a coproduct of its singletons

X =
⊕
x∈X

{x}

determined by the inclusions
ix : {x} → X.

Then, by hypothesis,

ε(X) =
∏
x∈X

Kx

and
px = ε(ix) :

∏
x∈X

Kx → Kx

is the canonical projection. We distinguish the product
∏
x∈X Kx from the power KX , where all components coincide with

K. In this case we denote the projection relative to x ∈ X by πx : KX → K.

Since the initial object of Set is ∅, while the terminal object of X is 1, we deduce that ε(∅) = 1, in view of our hypotheses.
The morphism ε(λ) :

∏
y∈Y Ky →

∏
x∈X Kx corresponding to a map λ : X → Y between two sets X, Y is the unique

morphism in X such that, for every x ∈ X, the following square commutes.

∏
x∈X Kx

px

��

∏
y∈Y Ky

ε(λ)oo

pλ(x)

��
Kx Kλ(x)

ξλ(x),x

oo

(4.10)

Let η∅ = id1 : 1→ 1 and, for every non-empty set X, let

ηX :
∏
x∈X

Kx → KX

be the unique morphism
∏
x∈X Kx → KX in X such that, for every x ∈ X,

πx ◦ ηX = ε(jx) ◦ px, (4.11)
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i.e., the following diagram commutes. ∏
x∈X Kx

px

��

ηX // KX

πx

��
Kx

ε(jx)
// K

It remains to prove that η is a natural equivalence between ε and BK . Since ηX is clearly an isomorphism for every X in
Set, we need to prove that, for every map λ : X → Y in Set,

ηX ◦ ε(λ) = σλ ◦ ηY , (4.12)

namely, the following diagram commutes.

ε(X)
ηX // KX

ε(Y )
ηY
//

ε(λ)

OO

KY

σλ

OO

By the categorical properties of the product KX , (4.12) is equivalent to the conjunction of the equalities

πx ◦ ηX ◦ ε(λ) = πx ◦ σλ ◦ ηY , x ∈ X.

Note that πx ◦ ηX = ε(jx) ◦ px and πx ◦ σλ = πλ(x), in view of (4.11) and the definition of the generalized shift σλ. This
ensures the first and the last equality in the following chain of five equalities

πx ◦ ηX ◦ ε(λ) = ε(jx) ◦ px ◦ ε(λ) = ε(jx) ◦ ξλ(x),x ◦ pλ(x) =

= ε(jλ(x)) ◦ pλ(x) = πλ(x) ◦ ηY = πx ◦ σλ ◦ ηY ,

while the second one follows from (4.10), the third one from (4.9), and the fourth one from (4.11), applied to ηY and
λ(x) ∈ Y .

Now we introduce the notion of forward generalized shift in an arbitrary category X with arbitrary coproducts. This
blanket condition on X implies the existence of an initial object of X that is uniquely determined up to isomorphism (as is the
coproduct of the empty family of objects of X; it will be denoted by 0). Let K be an object of X and let X be a non-empty
set. For x ∈ X we denote by ιx : K → K(X) the canonical morphism relative to the x-th member.

Definition 4.16. For non-empty sets X, Y , and a map λ : X → Y , define the forward (or covariant) generalized shift

τλ : K(X) → K(Y )

as the unique morphism in X such that, for every x ∈ X,

τλ ◦ ιx = ιλ(x). (4.13)

K(X) τλ // K(Y )

K

ιx

OO

ιλ(x)

;;vvvvvvvvv

For a selfmap λ : X → X of a set X, the forward generalized shift τλ : K(X) → K(X) is an endomorphism in X, so one
can discuss its entropy once X has an entropy defined on its flows. See §5.5 and §6.5 for more details on the generalized shifts
in concrete categories.

Now we see that the forward generalized shifts represent essentially all covariant functors Set→ X sending coproducts to
coproducts. For a fixed K ∈ X, let

FK : Set→ X (4.14)

be the covariant functor defined by sending a non-empty set X to

FK(X) = K(X)

and ∅ to the fixed initial object 0 of X. For a map λ : X → Y let

FK(λ) = τλ : K(X) → K(Y )

when both X and Y are non-empty, and let FK(λ) : 0 = FK(∅)→ K(Y ) be the only morphism from 0, when X is empty.
It is not hard to prove that the covariant functors BK : Set → X send coproducts to coproducts. That up to natural

equivalence these are the unique functors Set → X with this property follows from Theorem 4.15 by the general Duality
Principle in category theory.

Theorem 4.17. Every covariant functor γ : Set→ X sending coproducts to coproducts is naturally equivalent to FK for an
appropriate K ∈ X.
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5 Obtaining known dynamical invariants

In this section we describe how the known entropies can be obtained as functorial entropies hF for appropriate functors
F : X → S. The range of the functors F : X → S considered in §5 and §6 is most of the time the category L†, sometimes
PL†, only once M†p and once S∗. Also in §7 we make use of functors F : X→ S∗.

By an observation made after the definition of the category L, for a functor F : X→ L† and a morphism φ : X1 → X2 in
X, the morphism F (φ) is automatically monotone, so we do not write it explicitly each time.

We follow the next general scheme.

(FE1) Definition of the specific (classical) entropy h : X→ R+.

(FE2) Description of the assigned normed semigroup and the functor F : X→ S.

(FE3) Proof of the equality h = hF .

(FE4) Basic properties of h derived from the known general properties of hF :

- Invariance under conjugation,

- Invariance under inversion,

- Logarithmic Law,

- Vanishing on quasi-periodic flows,

- Monotonicity for subflows,

- Monotonicity for factors,

- Continuity for direct/inverse limits,

- weak Addition Theorem.

We use the following observations. As the norms are subadditive in all cases considered in this section, the limit in
the definition of each entropy is justified in view of Theorem 3.13. This holds true with the exception of the contravariant
set-theoretic entropy, for which we use a functor with target S∗ instead of S. Moreover, as noted in §2.2, if (S, v) is a normed
semilattice then v is arithmetic. By Lemma 2.14, if (S, v) is a normed preordered monoid and S = P+(S) (in particular,
when S is a semilattice), then v is d-monotone.

5.1 Set-theoretic entropy

First we consider the category Set of sets and maps and we construct the functor im : Set → L†, which gives the covariant
set-theoretic entropy h introduced in [4] as a functorial entropy. Then we discuss the contravariant set-theoretic entropy h∗

from [35]. These entropies h and h∗ are related to invariants for selfmaps of sets (i.e., the string number and the antistring
number, see [2, 44, 57, 64]).

For a set X, denote by S(X) the family of all finite subsets of X.

Definition 5.1. Let X be a set and λ : X → X a selfmap. For D ∈ S(X) and n ∈ N+ the n-th λ-trajectory of D is

Tn(λ,D) = D ∪ λ(D) ∪ · · · ∪ λn−1(D).

The covariant set-theoretic entropy of λ with respect to D ∈ S(X) is

h(λ,D) = lim
n→∞

|Tn(λ,D)|
n

.

The covariant set-theoretic entropy of λ is h(λ) = sup {h(λ,D) : D ∈ S(X)} .
For a set X, define v(A) = |A| for every A ∈ S(X). Then:

(i) (S(X),∪, v,⊆) is a normed semilattice with neutral element ∅;
(ii) v is subadditive, arithmetic, monotone and d-monotone.

Consider a map λ : X → Y between sets and define im(λ) : S(X) → S(Y ) by A 7→ λ(A) for every A ∈ S(X). With
im(X) = S(X), we have a covariant functor

im : Set→ L†.

Theorem 5.2. Let X be a set and λ : X → X a selfmap. Then h(λ,D) = Him(λ,D) for every D ∈ S(X), so

h(λ) = him(λ).

Proof. Let D ∈ S(X). Since Tn(λ,D) = Tn(λ,D) for every n ∈ N+, we have that |Tn(λ,D)| = cn(im(λ), D) for every n ∈ N+.
Hence,

h(λ,D) = hS(im(λ), D) = Him(λ,D),

so the thesis.

In view of the properties of the functor im, by the results in §4, it is easy to check that h is invariant under conjugation
and under inversion, is monotone for invariant subsets and for functors, satisfies the Logarithmic Law and vanishes on quasi-
periodic flows. Moreover, the weak Addition Theorem holds for coproducts in Set, indeed, if (X1, λ1) and (X2, λ2) are flows
of Set then for the coproduct X1 tX2, then h(λ1 t λ2) = h(λ1) + h(λ2).

In analogy with the covariant set-theoretic entropy, we give here another notion of entropy for selfmaps, using counterim-
ages in place of images.
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Definition 5.3. Let X be a set and λ : X → X a finite-to-one selfmap of X. For D ∈ S(X) and n ∈ N+, the n-th
λ-cotrajectory of D is

T∗n(λ,D) = D ∪ λ−1(D) ∪ . . . ∪ λ−n+1(D).

The contravariant set-theoretic entropy of λ with respect to D ∈ S(X) is

h∗(λ,D) = lim sup
n→∞

|T∗n(λ,D)|
n

.

The contravariant set-theoretic entropy of λ is h∗(λ) = sup {h∗(λ,D) : D ∈ S(X)} .
Remark 5.4. For surjective finite-to-one selfmaps the contravariant set-theoretic entropy h∗ defined above coincides with the
contravariant set-theoretic entropy defined in [35] (this occurs for injective selfmaps as well, see below). We denote here that
entropy by h∗p, in order to distinguish it from h∗, as these two entropies may differ for non-surjective finite-to-one selfmaps.

To recall the definition of h∗p, we first recall the definition of surjective core of a map λ : X → X of a set X, given by

sc(λ) =
⋂
n∈N

λn(X).

Then λ �sc(λ) is surjective and this is the largest restriction of λ that is surjective.
For a selfmap λ : X → X in Setfin,

h∗p(λ) = h∗(λ �sc(λ)).

Clearly, h∗p(λ) ≤ h∗(λ) for every λ : X → X in Setfin.
For every D ∈ S(X),

h∗(λ,D) = h∗(λ,D ∩ sc(λ)),

as the increasing chain {T∗n(λ,D)}n∈N+ stabilizes whenever D∩sc(λ) = ∅. Then the computation of h∗(λ,D) can be limited to
finite subsets D of sc(λ). Nevertheless, even for D ⊆ sc(λ), the trajectory T∗n(λ,D) may be much larger than T∗n(λ �sc(λ), D);
in particular, h∗p(λ) = 1 <∞ = h∗(λ) may occur (for an example see [35, Remark 3.2.41]).

On the other hand, if λ is injective, then T∗n(λ,D) ⊆ sc(λ) for every finite D ⊆ sc(λ), so

h∗(λ) = h∗(λ �sc(λ)) = h∗p(λ).

Our preference to h∗ here is based on the possibility to obtain it as a functorial entropy (see Theorem 5.6) in the sense of
this paper. Further comments on the possibility of obtaining also h∗p in a functorial way are given in Remark 6.34.

The limit superior in the above definition was proved to be a limit when λ is surjective in [35], even if in general the
sequence {|T∗n(λ,D)|}n∈N+ does not need to be subadditive, as the following example from [35] shows, and so Fekete Lemma
does not applies (one can see that it is subadditive when λ is injective).

Example 5.5. Let λ : N→ N be a selfmap defined by λ(1) = λ(0) = 0, λ(2n+2) = 2n and λ(2n+3) = 2n+1 for every n ∈ N.
Then T∗2(λ, {0}) = {0, 1, 2} and so |T∗2(λ, {0})| = 3, while T∗1(λ, {0}) = {0} and hence |T∗1(λ, {0})|+ |T∗1(λ, {0})| = 2 < 3.

Now we aim to obtain h∗ as a functorial entropy. To this end, for a set X, let cim(X) = S(X), while for a finite-to-one
map λ : X → Y the morphism cim(λ) : cim(Y )→ cim(X) is given by A 7→ λ−1(A). This defines a contravariant functor

cim : Setfin → S∗.

The necessity to “enlarge” the target category (from S to S∗) comes from the fact that cim(λ) is contractive if and only if λ
is injective. So one necessarily ends up in S∗, not in S. In particular, this shows that the blanket hypothesis on contractivity
of the endomorphisms in Theorem 3.13 is necessary.

Theorem 5.6. Let X be a set and λ : X → X a selfmap. Then h∗(λ,D) = Hcim(λ,D) for every D ∈ S(X), so

h∗(λ) = hcim(λ).

Proof. We can assume without loss of generality that λ is surjective. Let D ∈ S(X). Since T∗n(λ,D) = Tn(λ,D) for every
n ∈ N+, we have that |T∗n(λ,D)| = cn(cim(λ), D) for every n ∈ N+. Hence,

h∗(λ,D) = hS(cim(λ), D) = Hcim(λ,D),

and this concludes the proof.

It is known from [35] that the entropy h∗p is invariant under conjugation and inversion and it is monotone for invariant
subsets and for factors. Moreover, h∗p vanishes on locally quasi-periodic flows, the Logarithmic Law holds and the weak
Addition Theorem holds for coproducts (that is, if (X1, λ1) and (X2, λ2) are flows of Set then their coproduct λ1 t λ2 :
X1 t X2 → X1 t X2 satisfies h∗p(λ1 t λ2) = h∗p(λ1) + h∗p(λ2)). On the other hand, the Continuity for inverse limits is not
available, since it was observed in [4] that in the category Setfin the inverse limits need not exist.

The entropy h∗ introduced here shares the same properties as those of h∗p, with a few exceptions: h∗ need not vanishes
on locally quasi-periodic flows and we are not aware whether h∗ satisfies the Logarithmic Law (nevertheless, h∗ vanishes on
quasi-periodic flows).
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5.2 Topological entropy for compact spaces

In this subsection we show that the topological entropy htop introduced in [1] can be obtained as a functorial entropy via an
appropriate functor cov : CTop→ PL†, where CTop is the category of compact spaces and continuous maps.

For a topological space X let cov(X) be the family of all open covers U of X, with the convention that ∅ may belong to
U . Clearly, every base of X belongs to cov(X). For m ∈ N+ and U1, . . . ,Um ∈ cov(X), let

U1 ∨ . . . ∨ Um =

{
m⋂
i=1

Ui : Ui ∈ Ui

}
.

For a continuous selfmap φ : X → X, U ∈ cov(X) and n ∈ N+, let

φ−n(U) = {φ−n(U) : U ∈ U}.

Then φ−n(U1 ∨ . . . ∨ Um) = φ−n(U1) ∨ . . . ∨ φ−n(Um) for every n,m ∈ N+.

Definition 5.7. Let X be a compact space and φ : X → X a continuous selfmap. For U ∈ cov(X) let

N(U) = min{|V| : V is a finite subcover of U}.

The topological entropy of φ with respect to U ∈ cov(X) is

Htop(φ,U) = lim
n→∞

logN(U ∨ φ−1(U) ∨ . . . ∨ φ−n+1(U))

n
. (5.1)

The topological entropy of φ is
htop(φ) = sup{Htop(φ,U) : U ∈ cov(X)}.

For a topological space X, let UX denote the largest open cover (i.e., the whole topology of X) and EX = {X} the trivial
cover. Then (cov(X),∨, EX) is a commutative monoid. This monoid has a natural partial order by inclusion that turns it
into a (pre)ordered monoid. In what follows we consider a richer preorder that turns out to be more relevant.

For U ,V ∈ cov(X) we say that V refines U (denoted by U ≺ V) if for every V ∈ V there exists U ∈ U such that V ⊆ U .
Let U ∼ V if U ≺ V and V ≺ U . Then ≺ is a preorder on cov(X) that is not an order and has bottom element EX ∼ UX (if
U is an open cover of X and X ∈ U then U ∼ EX).

For U ,V ∈ cov(X) we let
VU = {V ∈ V : V ⊆ U for some U ∈ U}.

Clearly, VU = V if and only if U ≺ V. Moreover, VU refines U , although it need not be a cover when V itself does not refine
U . If V is a base, then VU is still a base, so in particular, a cover. In this case VU is a subcover of V that refines U .

For a compact space X and U ∈ cov(X), let
v(U) = logN(U).

If U ≺ V then v(U) ≤ v(V).
In general, U ∨ U 6= U , yet U ∨ U ∼ U , and more generally U ∨ U ∨ . . . ∨ U ∼ U . Therefore, v(U ∨ U ∨ . . . ∨ U) = v(U).
Then:

(i) (cov(X),∨, v,≺) is a normed pre-semilattice with zero EX ;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

For X, Y topological spaces, a continuous map φ : X → Y and U ∈ cov(Y ), let

cov(φ) : cov(Y )→ cov(X)

be defined by U 7→ φ−1(U). Obviously, cov(φ) is monotone with respect to the order ≺. So, this defines a contravariant
functor cov from the category of all topological spaces to the category of commutative semigroups (actually, presemilattices).

For every continuous map φ : X → Y of compact spaces and W ∈ cov(Y ), the inequality v(φ−1(W)) ≤ v(W) holds (if φ is
surjective, then equality holds). Consequently, the assignments X 7→ cov(X) and φ 7→ cov(φ) define a contravariant functor

cov : CTop→ PL†.

Theorem 5.8. Let X be a compact space and φ : X → X a continuous selfmap. Then Htop(φ,U) = Hcov(φ,U) for every
U ∈ cov(X), and so

htop(φ) = hcov(φ).

Proof. Let U ∈ cov(X). For every n ∈ N+, since

U ∨ φ−1(U) ∨ . . . ∨ φ−n+1(U) = Tn(cov(φ),U),

we conclude that
logN(U ∨ φ−1(U) ∨ . . . ∨ φ−n+1(U)) = cn(cov(φ),U),

and so Htop(φ,U) = hS(cov(φ),U) = Hcov(φ,U).
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The contravariant functor cov takes factors in CTop to subobject embeddings in PL†, subobject embeddings in CTop to
surjective morphisms in PL†. Therefore, the properties proved in §4 yield that the topological entropy htop is invariant under
conjugation and inversion, it is monotone for restrictions to invariant subspaces and for factors, it satisfies the Logarithmic
Law, and it vanishes on quasi-periodic continuous selfmaps.

The fact that ≺ is a preorder on cov(X) compatible with cov(φ) will now be used to check the Continuity for inverse
limits. To see this, we apply Proposition 5.9 below, Lemma 4.8 and Theorem 5.8, to conclude that

htop(φ) = sup
i∈I

htop(φi),

for an inverse system {(Xi, pi,j)}i∈I of compact spaces Xi with pi,j : Xi → Xj , for i, j ∈ I with j ≤ i, and its inverse limit
X = lim←−i∈I Xi with canonical projections pi : X → Xi. Indeed, in this case each cov(pi) : cov(Xi)→ cov(X) is an embedding

that allows us to consider lim−→i∈I
cov(Xi) in cov(X).

Proposition 5.9. In the above notation, lim−→i∈I
cov(Xi) is cofinal in cov(X).

Proof. For every i ∈ I we identify cov(Xi) with the family

B∗i = {cov(pi)(V) : V ∈ cov(Xi)}

in cov(X). Then lim−→i∈I
cov(Xi) can be identified with L =

⋃
i∈I B

∗
i . It is known that

B =
⋃
L

is a base of X by [53, 2.5.5], in particular B ∈ cov(X).
In order to check that L is cofinal in cov(X), pick U ∈ cov(X). Then BU is a subcover of B such that U ≺ BU ; moreover,

BU is a base of X as noted above, so BU ∈ cov(X). By the compactness of X there exists a finite subcover

W = {p−1
ik

(Vik ) : Vik ∈ UXik , p
−1
ik

(Vik ) ⊆ Uk, for some Uk ∈ U , k = 1, . . . , n}

of BU , in particular U ≺ W. It remains to prove that
W ∈ L.

To this end, take an index i0 ≥ ik, for k = 1, . . . , n and let

Wk = p−1
i0,ik

(Vik )

for k = 1, . . . , n. Since pik = pi0,ik ◦ pi0 , we have that p−1
ik

(Vik ) = p−1
i0

(Wk), and obviously Wk is an open subset of Xi0 for
k = 1, . . . , n. Let

W∗ = {Wk : k = 1, . . . , n}.
Since pi0 : X → Xi0 is surjective and W = p−1

i0
(W∗) ∈ cov(X), we deduce that W∗ ∈ cov(Xi0). Hence, W = cov(pi0)(W ∗) ∈

L.

It is known that the Weak Addition Theorem holds for the topological entropy, that is, for any pair of continuous selfmaps
φ : X → X and ψ : Y → Y one has

htop(φ× ψ) = htop(φ) + htop(ψ).

This was announced in [1, Theorem 3] and correctly proved in [73].
The topological entropy satisfies also another version of weak Addition Theorem for coproducts (see [1, Theorem 4]

and [35, Proposition 4.1.9]). Indeed, if (X,φ) and (Y, ψ) are flows in CTop, and we consider the coproduct X t Y , then
htop(φ t ψ) = max{htop(φ), htop(ψ)}. This result follows from Corollary 4.11 and Theorem 5.8.

It is worth recalling that in the computation of the topological entropy it is possible to reduce to surjective continuous
selfmaps of compact spaces (see [105, 112]).

In the category CTop the Bernoulli shifts defined in (4.2), (4.4) and (4.5) have obviously the following concrete form.
For K ∈ CTop

Kβ : KN → KN, Kβ(x0, x1, . . . , xn, . . .) = (x1, x2, . . . , xn+1, . . .), (5.2)

while

K β̄ : KZ → KZ, Kβ((xn)n∈Z) = (xn+1)n∈Z, (5.3)

and
β̄K : KZ → KZ, Kβ((xn)n∈Z) = (xn−1)n∈Z. (5.4)

As far as the topological entropy of the Bernoulli shifts is concerned, it is known (see also Theorem 6.33 and Corollary 6.21
below) that in case K is a compact Hausdorff space,

htop(Kβ) = htop(K β̄) = htop(β̄K) = log |K|, (5.5)

with the convention that log |K| =∞ if X is infinite.

More generally, for a selfmap λ : X → X of a non-empty set X, and K a topological space, the backward generalized shift
from Definition 4.12 has the form

σλ : KX → KX , f 7→ λ ◦ f ; (5.6)

it was introduced and studied in [2, 4] as a generalized version of the Bernoulli shifts recalled in (5.2), (5.3), (5.4) (see
Remark 4.13). It is known from [4] that, if K is a compact Hausdorff space, then

htop(σλ) = h(λ) · log |K|, (5.7)

with the convention that log |K| = ∞ if K is infinite. In particular, this covers the formula in (5.5) and will follow from
Theorem 6.33.
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5.3 Entropy for topological spaces and entropy for frames

Topological entropy functions for non-compact topological spaces were discussed by Hofer [76], who proposed a quite natural
extension of the topological entropy htop to continuous selfmaps of arbitrary topological spaces, by simply replacing the open
covers by finite open covers. For a topological space X let fin-cov(X) denote the subfamily of cov(X) consisting of all finite
open covers of X. For every continuous selfmap φ : X → X and for every U ∈ fin-cov(X) define Hfin-top(φ,U) and hfin-top(φ)
as in Definition 5.7.

For continuous selfmaps of compact spaces obviously hfin-top = htop, as every open cover of a compact space has a finite
open subcover.

Obviously, fin-cov(X) is a submonoid of the commutative monoid (cov(X),∨). It is important to underline that if the
topological space X is not compact, then the latter monoid is not normed. Nevertheless, the norm v = logN(−) is well-defined
on the submonoid fin-cov(X) and furthermore, considering on fin-cov(X) the restriction of the refinement relation ≺ recalled
above for cov(X):

(i) (fin-cov(X),∨, v,≺) is a normed presemilattice with zero EX ;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

Since for every continuous map f : X → Y the map cov(f) : cov(Y )→ cov(X) sends fin-cov(Y ) to fin-cov(X), the restriction
fin-cov(f) of cov(f) to fin-cov(Y ) defines a morphism fin-cov(f) : fin-cov(Y ) → fin-cov(X) which is monotone and so it is in
PL†. In this way we obtain a new contravariant functor

fin-cov : Top→ PL†.

The proof of the next theorem is similar to that of Theorem 5.8.

Theorem 5.10. Let X be a topological space and φ : X → X a continuous selfmap. Then Hfin-top(φ,U) = Hcov(φ,U) for
every U ∈ fin-cov(X), and so

hfin-top(φ) = hfin-cov(φ).

Remark 5.11. The functor fin-cov does not extend the functor cov : CTop→ PL† defined above. In fact, if X is a compact
space, then

fin-cov(X) ⊆ cov(X).

Anyway, fin-cov(X) is cofinal in cov(X). Moreover, if φ : X → X is a continuous selfmap of a compact space X, then
fin-cov(X) is a cov(φ)-invariant normed subsemigroup of cov(X), since fin-cov(φ) is defined as the restriction of cov(φ) to
fin-cov(X). Then Lemma 3.7 gives that

hfin-cov(φ) = hS(fin-cov(φ)) = hS(cov(φ)) = hcov(φ),

and hence htop(φ) = hfin-top(φ) by Theorems 5.8 and 5.10.

By the results in §4, hfin-top is invariant under conjugation and invariant under inversion, moreover it satisfies the Logarith-
mic Law and it vanishes on quasi-periodic continuous selfmaps. We consider the monotonicity for closed invariant subspaces
and for factors in Theorem 5.14 below.

Lemma 5.12. If Y is a closed subspace of a topological space X, and j : Y ↪→ X is the subspace embedding of Y in X, then
fin-cov(j) : fin-cov(X)→ fin-cov(Y ) is surjective.

Proof. For every U = {U1, . . . , Un} ∈ fin-cov(Y ) define a cover U∗ = {U∗0 , U∗1 , . . . , U∗n} ∈ fin-cov(X), where U∗0 = X \ Y and
U∗i is an open set of X such that U∗i ∩ Y = Ui for i = 1, 2, . . . , n.

On the other hand, if Y is not closed in X, then fin-cov(j) need not be surjective even when X is compact, as the following
example shows.

Example 5.13. Let Y = N endowed with the discrete topology, and X = aN be the one-point Aleksandrov compactification
of Y . Let U1 (respectively, U2) be the set of all odd (respectively, even) numbers in Y . Then U = {U1, U2} ∈ fin-cov(Y ), yet
U 6= fin-cov(j)(U∗) for any U∗ ∈ fin-cov(X).

As a corollary of the general properties in §4, we obtain the following properties of the entropy hfin-top, announced in [76]
and proved in [47].

Theorem 5.14. Let X be a topological space and φ : X → X a selfmap.

(a) If Y is a topological space, q : X → Y is a continuous surjective map and φ : Y → Y a selfmap such that φ ◦ q = q ◦ φ,
then hfin-top(φ) ≤ hfin-top(φ).

(b) If Y is a closed invariant subspace of X, then hfin-top(φ �Y ) ≤ hfin-top(φ).

Proof. (a) The map fin-cov(q) : fin-cov(Y ) → fin-cov(X) is injective and the image of fin-cov(Y ) in fin-cov(X) is invariant
under fin-cov(φ). Hence, Lemma 4.6 applies.

(b) Let j : Y ↪→ X be the subspace embedding of Y in X. As we noticed in Lemma 5.12, fin-cov(j) : fin-cov(Y ) →
fin-cov(X) is surjective, so Lemma 4.7 applies.
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One may object that hfin-top(φ �Y ) ≤ hfin-top(φ) may still remain true regardless of the fact that Y is closed or not in
X. That this is not the case follows from an example similar to that provided in Example 5.13, where Y is just Z and
X = aY is the one-point Aleksandrov compactification of Y . The selfmap φ : X → X is defined by φ(p) = p (that is the
extra point added to Y to get X = aY ) and φ(n) = n+ 1. Then hfin-top(φ �Y ) =∞ (see [76]), while hfin-top(φ) = 0 (actually,
hfin-top(φ) = 0 for every continuous selfmap φ of X, according to [4]).

We do not know whether the Continuity for inverse limits and the weak Addition Theorem hold for hfin-top. The arguments
applied in the previous section for htop use the compactness of the spaces, so they do not apply to the present case.

A careful analysis of the above definitions of topological entropy shows that the points of the space are completely absent
from the definitions. All necessary information to define the entropies is encoded in the complete lattice O(X) of all open
sets of the topological space X. Note that in O(X) one has the distributive law(⋃

i∈I

Ui

)
∩ V =

⋃
i∈I

(Ui ∩ V ).

Recall that an algebraic structure with this property is called a frame (or a complete Heyting algebra). Namely, a frame
consists of a supporting set L with two operations ∨ and ∧ such that (L,∨) is a complete semilattice, (L,∨,∧) is a distributive
lattice and the following stronger distributive law holds as well; in fact, for arbitrary sets I,(∨

i∈I

ui

)
∧ v =

∨
i∈I

(ui ∧ v).

In particular, L has a top element 1 =
∨
u∈L u. A frame homomorphism φ : L → L′ preserves the operations (hence, it

preserves the bottom and the top element as well). This defines the category Frm of all frames and frame homomorphisms,
and we will introduce entropy in the category Frm.

Definition 5.15. Let L be a frame. A (finite) cover of L is a (finite) subset U = {ui : i ∈ I} of L such that
∨
i∈I ui = 1.

If U is a cover and U ′ ⊆ U is still a cover of L, then we call U ′ a subcover of U . For two covers U and U ′ of a frame L,
let

U ∨ U ′ = {u ∧ u′ : u ∈ U , u′ ∈ U ′}.
One can check that this is still a cover of L. Denoting by fin-covfr(L) the family of all finite covers of a frame L, it is easy
to see that if U ,U ′ ∈ fin-covfr(L), then U ∨ U ′ ∈ fin-covfr(L). This turns (fin-covfr(L),∨) into a commutative monoid with
neutral element the cover {1}. One can define also a preorder ≺ on fin-covfr(L) as above given by the refinement. Moreover,
define a norm on fin-covfr(L) by letting v(U) be the logarithm of the minimum size of a subcover of U . Obviously, v({1}) = 0,
so v is a monoid norm. Similarly to the case of fin-cov, we have that:

(i) (fin-covfr(L),∨, v,≺) is a normed presemilattice with zero EX ;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

For a frame homomorphism φ : L → L′ and U ∈ fin-covfr(L) let φ(U) = {φ(u) : u ∈ U}. This defines a a monotone monoid
homomorphism fin-covfr(φ) : fin-covfr(L)→ fin-covfr(L

′), and consequently a covariant functor

fin-covfr : Frm→ PL†

by sending L 7→ fin-covfr(L) and φ 7→ fin-covfr(φ).

In particular, for every frame endomorphism φ : L→ L and n ∈ N+ one has the possibility to define the n-th φ-trajectory
Tn(φ,U) = U ∨ φ(U) ∨ . . . ∨ φn−1(U) of a (finite) cover U . If U ∈ fin-covfr(L), then also Tn(φ,U) ∈ fin-covfr(L), so one can
define the frame entropy as follows.

Definition 5.16. Let (L, φ) be a flow of Frm. The frame entropy of φ with respect to U ∈ fin-covfr(L) is

Hfr(φ,U) = lim
n→∞

v(Tn(φ,U))

n
.

The frame entropy of φ is
hfr(φ) = sup{Hfr(φ,U) : U ∈ fin-covfr(L)}.

It follows directly from the definition that Hfr(φ,U) = Hfin-covfr (φ,U) for every flow (L, φ) of Frm and every U ∈
fin-covfr(L). So we can conclude that

hfr = hfin-covfr . (5.8)

5.4 Measure entropy

In this subsection we consider the category MesSp of probability measure spaces (X,B, µ) and measure preserving maps,
constructing a functor mes : MesSp → L† in order to obtain from our general scheme the measure entropy hmes from [82]
and [103].

We recall that a measure space is a triple (X,B, µ), where X is a set, B is a σ-algebra over X (the elements of B are
called measurable sets) and µ : B → R≥0 ∪ {∞} is a probability measure. A selfmap ψ : X → X is a measure preserving
trasformation if µ(ψ−1(B)) = µ(B) for every B ∈ B.
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For a measure space (X,B, µ) and a measurable partition ξ = {Ai : i = 1, . . . , k} of X, define the entropy of ξ by
Boltzmann’s Formula

H(ξ) = −
k∑
i=1

µ(Ai) log µ(Ai).

For two partitions ξ, η of X, let
ξ ∨ η = {U ∩ V : U ∈ ξ, V ∈ η}

and define ξ1∨ξ2∨ . . .∨ξn analogously for partitions ξ1, ξ2, . . . , ξn of X. For a measure preserving transformation ψ : X → X
and a measurable partition ξ = {Ai : i = 1, . . . , k} of X, let

ψ−j(ξ) = {ψ−j(Ai) : i = 1, . . . , k}.

For a measure space (X,B, µ) let P(X) be the family of all measurable partitions ξ = {A1, A2, . . . , Ak} of X.

Definition 5.17. Let X be a measure space and ψ : X → X a measure preserving transformation. The measure entropy of
ψ with respect to ξ ∈ P(X) is

Hmes(ψ, ξ) = lim
n→∞

H(
∨n−1
j=0 ψ

−j(ξ))

n
.

The measure entropy of ψ is
hmes(ψ) = sup{Hmes(ψ, ξ) : ξ ∈ P(X)}.

For a measure space (X,B, µ) and ξ ∈ P(X), we have that ξ ∨ ξ = ξ. Consider again on P(X) the preorder ≺ given by
the refinement. Then:

(i) (P(X),∨, H,≺) is a normed semilattice with zero ξ0 = {X};
(ii) H is subadditive (see [112]), arithmetic, monotone and d-monotone.

Consider a measure preserving map T : X → Y . For ξ = {Ai}ki=1 ∈ P(Y ) let

T−1(ξ) = {T−1(Ai)}ki=1.

Since T is measure preserving, one has T−1(ξ) ∈ P(X) and µ(T−1(Ai)) = µ(Ai) for all i = 1, . . . , k. Hence,

H(T−1(ξ)) = H(ξ)

and so mes(T ) : P(Y ) → P(X), defined by ξ 7→ T−1(ξ), is a morphism in L†. Therefore the assignments X 7→ P(X) and
T 7→ mes(T ) define a contravariant functor

mes : MesSp→ L†.

Theorem 5.18. Let X be a measure space and ψ : X → X a measure preserving transformation. Then Hmes(ψ, ξ) =
Hmes(ψ, ξ) for every ξ ∈ P(X), and so

hmes(ψ) = hmes(ψ).

Proof. Let ξ ∈ P(X). For every n ∈ N+, since

ξ ∨ ψ−1(ξ) ∨ . . . ∨ ψ−n+1(ξ) = Tn(mes(ψ), ξ),

applying the definitions we can conclude that

H(U ∨ ψ−1(U) ∨ . . . ∨ ψ−n+1(U)) = cn(mes(ψ), ξ),

and so Hmes(ψ, ξ) = hS(mes(ψ), ξ) = Hmes(ψ, ξ).

The functor mes is covariant, and sends subobjects embeddings in MesSp to surjective morphisms in L and surjective
maps in MesSp to embeddings in L. Hence, similarly to htop, also the measure entropy hmes is invariant under conjugation
and inversion, it is monotone with respect to taking restrictions to invariant subspaces and factors, it satisfies the Logarithmic
Law and it vanishes on quasi-periodic measure preserving transformations.

It is known that the measure entropy satisfies also the weak Addition Theorem, namely, if (X,φ) and (Y, ψ) are flows of
Mes, then hmes(φ × ψ) = hmes(φ) + hmes(ψ), where φ × ψ : X × Y → X × Y . But it is not clear whether it is possible
to apply directly Lemma 4.10, indeed to prove the needed cofinality a preliminary restriction is required (see [112, Theorem
4.23] and its proof).

5.5 Algebraic entropy

Here we consider the category Grp of all groups and their homomorphisms and its subcategory AG of all abelian groups. We
construct two functors sub : AG → L† and pet : Grp → M†p that permit to find from the general scheme the two algebraic
entropies ent and halg as functorial entropies.

We start recalling the definition of the entropies ent and halg following [35]. For a group G let H(G) = S(G) \ {∅} be the
family of all finite non-empty subsets of G and F(G) be its subfamily of all finite subgroups of G.
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Definition 5.19. Let φ : G→ G be an endomorphism. For F ∈ H(G), and for n ∈ N+, the n-th φ-trajectory of F is

Tn(φ, F ) = F · φ(F ) · . . . · φn−1(F ).

The algebraic entropy of φ with respect to F ∈ H(G) is

Halg(φ, F ) = lim
n→∞

log |Tn(φ, F )|
n

;

The algebraic entropy of φ : G→ G is
halg(φ) = sup{Halg(φ, F ) : F ∈ H(G)},

while
ent(φ) = sup{Halg(φ, F ) : F ∈ F(G)}.

If G is abelian, then
ent(φ) = ent(φ �t(G)) = halg(φ �t(G)). (5.9)

Moreover, halg(φ) = ent(φ) if G is locally finite, that is every finite subset of G generates a finite subgroup; note that every
locally finite group is obviously torsion, while the converse holds true under the hypothesis that the group is solvable (the
solution of Burnside’s problem shows that even groups of finite exponent fail to be locally finite).

For a group G, let v(F ) = log |F | for every F ∈ H(G). In case G is abelian one has:

(i) (F(G),+, v,⊆) is a normed semilattice with zero {0};
(ii) v is subadditive, arithmetic, monotone and d-monotone.

For every group homomorphism φ : G→ H, the map F(φ) : F(G)→ F(H), defined by F 7→ φ(F ), is a morphism in L†.
Therefore, the assignments G 7→ F(G) and φ 7→ F(φ) define a covariant functor

sub : AG→ L†.

Theorem 5.20. Let G be a group and φ : G → G an endomorphism. Then Halg(φ, F ) = Hsub(φ, F ) for every F ∈ F(G),
and so

ent(φ) = hsub(φ).

Proof. Let F ∈ F(G). Since Tn(φ, F ) = Tn(F(φ), F ) for every n ∈ N+, applying the definitions we can conclude that
log |Tn(φ, F )| = cn(F(φ), F ) for every n ∈ N+, and so

Halg(φ, F ) = hS(F(φ), F ) = Hsub(φ, F );

this concludes the proof.

Since the covariant functor sub takes factors in AG to surjective morphisms in S, embeddings in AG to embeddings
in S, and direct limits in AG to direct limits in S, in view of the properties proved in §4, the algebraic entropy ent is
invariant under conjugation and inversion, it is monotone for restrictions to invariant subspaces and for factors, it satisfies
the Logarithmic Law, it vanishes on quasi-periodic endomorphisms and it is continuous for direct limits.

The weak Addition Theorem holds as well. Indeed, for an abelian group G and an endomorphism φ : G→ G, the order ⊆
is compatible with F(φ). So, if ψ : H → H is another group endomorphism and H is abelian, since F(G)⊕F(H) is cofinal in
F(G⊕H) and the restriction of the norm of F(G⊕H) to F(G)⊕F(H) coincides with v⊕, Lemma 4.10 applies and together
with Theorem 5.20 gives

ent(φ⊕ ψ) = ent(φ) + ent(ψ).

For an arbitrary group G, one has:

(i) (H(G), ·, v,⊆) is an ordered normed monoid with neutral element {1};
(ii) v is subadditive, monotone and d-monotone.

Remark 5.21. If G is an abelian group, then H(G) is commutative and v is arithmetic since for every F ∈ H(G),

|Tn(idG, F )| ≤ (n+ 1)|F |,

where clearly
Tn(idG, F ) = F + . . .+ F︸ ︷︷ ︸

n

(note that the latter inequality extends also to nilpotent groups, see [29]).
More precisely, for a group G the following conditions are equivalent:

(a) (H(G), v) is arithmetic;

(b) G has polynomial growth;

(c) G is locally virtually nilpotent.

Indeed, we say that G has polynomial growth if for every F ∈ H(G) with 1 ∈ G, the map n 7→ |Tn(idG, F )| is polynomial, so
the equivalence (a)⇔(b) follows from a straightforward computation. Moreover, (b)⇔(c) follows from the celebrated Gromov’s
theorem, stating that a finitely generated group G has polynomial growth if and only if G is virtually nilpotent. For more
details on the connection of the algebraic entropy with the group growth from geometric group theory see [35, 38, 62, 63].

31



For every group homomorphism φ : G→ H, the map H(φ) : H(G)→ H(H), defined by F 7→ φ(F ), is a morphism in M†p.
Consequently the assignments G 7→ (H(G), v) and φ 7→ H(φ) give a covariant functor

pet : Grp→M†p

(the notation pet was chosen to honor Justin Peters who inspired the definition of the entropy halg). The functor sub is a
subfunctor of pet as F(G) ⊆ H(G) for every abelian group G.

Theorem 5.22. Let G be a group and φ : G → G an endomorphism. Then Halg(φ, F ) = Hpet(φ, F ) for every F ∈ H(G),
and so

halg(φ) = hpet(φ).

Proof. Let F ∈ H(G). Since, for every n ∈ N+,

Tn(φ, F ) = Tn(H(φ), F ),

applying the definitions we conclude that
log |Tn(φ, F )| = cn(H(φ), F ).

So, Halg(φ, F ) = hS(H(φ), F ) = Hpet(φ, F ).

As for the algebraic entropy ent, since the covariant functor pet takes factors in Grp to surjective morphisms in S†p,
embeddings in Grp to embeddings in S†p, and direct limits in Grp to direct limits in S, in view of the properties in §4 we
have automatically that the algebraic entropy halg is invariant under conjugation, it is monotone for restrictions to invariant
subgroups and for quotients, it satisfies the Logarithmic Law in the abelian case (for the general setting see [35, Proposition
5.1.8]) and it is continuous for direct limits. The Invariance under inversion follows in the abelian case from Lemma 4.3, in

the general case from Proposition 3.22 applied to the inversion x
i7→ x−1; it follows also from a remark in [38].

The weak Addition Theorem holds as well. Indeed, for a group G and an endomorphism φ : G → G, the order ⊆ is
compatible with H(φ). So, if ψ : H → H is another group endomorphism, since H(G)⊕H(H) is cofinal in H(G⊕H) and the
restriction of the norm of H(G⊕H) to H(G)⊕H(H) coincides with v⊕, Lemma 4.10 applies and together with Theorem 5.22
gives

halg(φ⊕ ψ) = halg(φ) + halg(ψ).

In view of Remark 5.21 and Lemma 4.5, the algebraic entropy halg vanishes on quasi-periodic endomorphisms of locally
virtually nilpotent groups. In particular, halg of the identity automorphism of a locally virtually nilpotent group is zero, while
this is no more true in general. In fact, halg(idG) > 0 precisely when the group G has exponential growth, and in this case
halg(idG) = ∞ by the Logarithmic Law. On the other hand, there exist groups G of intermediate growth, as Grigorchuck’s
group, namely, groups having growth that is neither polynomial nor exponential (and so halg(idG) = 0 yet G is not locally
virtually nilpotent).

In the context of the algebraic entropy one considers the right Bernoulli shifts for direct sums. Let G be a group; the
(one-sided) right Bernoulli shift is

β⊕G : G(N) → G(N), (x0, x1, . . . , xn, . . .) 7→ (1, x0, x1, . . . , xn−1, . . .), (5.10)

while the (two-sided) right Bernoulli shift is

β̄⊕G : G(Z) → G(Z), (xn)n∈Z 7→ (xn−1)n∈Z. (5.11)

Obviously, the two-sided right Bernoulli shift β̄⊕G coincides with the restriction to the direct sum of the two-sided right
Bernoulli shift defined in (4.5) considered in the category Grp.

Remark 5.23. We recall that, if G is an abelian group and Ĝ is its compact Pontryagin dual group, then

β̂⊕G = Ĝβ and ̂̄β⊕G = Ĝβ̄.

It is known that, for any group G,
halg(β

⊕
G) = halg(β̄

⊕
G) = log |G|, (5.12)

with the convention that log |G| =∞ if G is infinite.

For a finite-to-one map λ : X → Y between two non-empty sets, and a group K, the generalized shift σλ : KY → KX

sends K(Y ) to K(X) (as f ∈ K(X) precisely when f has finite support). We denote

σ⊕λ = σλ �K(Y ) . (5.13)

In particular, when Y = X, then K(X) is a σλ-invariant subgroup of KX precisely when λ is finite-to-one. It is known from
[35, Theorem 7.3.3] and [2] that, for the contravariant set-theoretic entropy h∗p defined there (see Remark 5.4),

halg(σ
⊕
λ ) = h∗p(λ) log |K|, (5.14)

with the convention that log |K| =∞ if K is infinite. As proved in [2], the formula in (5.12) can be deduced from (5.14).
Moreover, in the concrete category AG, the forward generalized shift from Definition 4.16 has the following description.

Let K be an abelian group and λ : X → Y a map. Then

τλ : K(X) → K(Y ), (kx)x∈X 7→

 ∑
x∈λ−1(y)

kx


y∈Y

, (5.15)

with the convention that a sum on the empty set is 0.
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Remark 5.24. Let us see now that the right Bernoulli shifts are forward generalized shifts, in the same way as we have seen
above that the left Bernoulli shifts are backward generalized shifts. Indeed, if λ : N→ N is defined by n 7→ n+ 1, then

τλ = β⊕K

is the one-sided right Bernoulli shift recalled in (5.10). The same occurs for the two-sided right Bernoulli shift β̄⊕K in (5.11).

It is proved in [32], in the more general case of amenable semigroup actions, that, for K an abelian group and λ : X → X
a selfmap,

halg(τλ) = h(λ) · log |K|,
with the convention that log |K| =∞ if K is infinite. This generalizes the formula (5.12) for the right Bernoulli shifts and it
will follow from Lemma 6.38 below.

5.6 Algebraic i-entropy

Let R be a ring. Here i : ModR → R≥0 is an invariant of ModR (i.e., i(0) = 0 and i(M) = i(N) whenever M ∼= N). We
consider the algebraic i-entropy introduced in [100], giving a functor subi : ModR → L†, to find enti from the general scheme.

Consider the following conditions:

(a) i(N1 +N2) ≤ i(N1) + i(N2) for all submodules N1, N2 of M ;

(b) i(M/N) ≤ i(M) for every submodule N of M ;

(b∗) i(N) ≤ i(M) for every submodule N of M .

The invariant i is called subadditive if (a) and (b) hold, additive if equality holds in (a), preadditive if (a) and (b∗) hold.

For a right R-module M , denote by L(M) the family of all its submodules and let

Fi(M) = {N ∈ L(M) : i(N) <∞}.

Definition 5.25. Let i be a subadditive invariant, M be an R-module and φ : M → M an endomorphism. The algebraic
i-entropy of φ with respect to N ∈ Fi(M) is

Hi(φ,N) = lim
n→∞

i(Tn(φ,N))

n
;

The algebraic i-entropy of φ is
enti(φ) = sup{Hi(φ,N) : N ∈ Fi(M)}.

For M ∈ModR, L(M) is a lattice with the operations of intersection and sum of two submodules, the bottom element is
{0} and the top element is M . For a subadditive invariant i of ModR and for a right R-module M , letting v = i on Fi(M),
we have that:

(i) (Fi(M),+, i,⊆) is a normed subsemilattice of L(M) with zero {0};
(ii) v is subadditive, since i is subadditive; moreover, v is arithmetic.

The norm v is not necessarily monotone. On the other hand,

(iii) if i is both subadditive and preadditive, v is monotone and d-monotone.

For every homomorphism φ : M → N in ModR, Fi(φ) : Fi(M) → Fi(N), defined by Fi(φ)(H) = φ(H), is a morphism in
L†. Therefore, the assignments M 7→ Fi(M) and φ 7→ Fi(φ) define a covariant functor

subi : ModR → L†.

Theorem 5.26. Let i be a subadditive invariant. Let M be a right R-module and φ : M → M an endomorphism. Then
Hi(φ,N) = Hsubi(φ,N) for every N ∈ Fi(M), and so

enti(φ) = hsubi(φ).

Proof. Let N ∈ Fi(G). Since, for every n ∈ N+,

Tn(φ,N) = Tn(Fi(φ), N),

applying the definitions we can conclude that i(Tn(φ,N)) = cn(Fi(φ), N). So,

Hi(φ,N) = hS(Fi(φ), N) = Hsubi(φ,N),

and this concludes the proof.

By the results in §4, enti is invariant under conjugation and under inversion, moreover it vanishes on quasi-periodic
endomorphisms.

It is known that in general enti is not monotone for quotients. If i is preadditive, the covariant functor subi sends
monomorphisms to embeddings and so enti is monotone for invariant submodules. If i is both subadditive and preadditive
then for every R-module M the norm of subi(M) is d-monotone, so enti satisfies also the Logarithmic Law.

Under these assumptions also the weak Addition Theorem holds for the algebraic i-entropy. Indeed, for every R-module
M and every endomorphism φ : M →M , the order given by the inclusion ⊆ is compatible with Fi(φ) : Fi(M)→ Fi(M). So
let N be another R-module and ψ : N → N an endomorphism. Now Fi(M) ⊕ Fi(N) is cofinal in Fi(M ⊕ N) with respect
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to the order given by ⊆, and the restriction of the norm of Fi(M ⊕ N) to Fi(M) ⊕ Fi(N) coincides with v⊕. Therefore,
Lemma 4.10 gives

hsubi(φ⊕ ψ) = hsubi(φ) + hsubi(ψ),

so by Theorem 5.26 we have the weak Addition Theorem for the algebraic i-entropy.

It was proved in [96] that, if i is a length function (i.e., i is upper continuous and additive) and i is discrete (i.e., the set of
finite values of i is order-isomorphic to N), then enti is continuous for direct limits. More precisely, under these assumptions,
for an R-module endomorphism φ : M →M , we have that

enti(φ) = sup
F∈Ffi (M)

Hi(φ, F ),

where Ffi (M) is the subsemilattice of Fi(M) of all finitely generated submodules of M with finite i (see [96]). Therefore, if
one defines the functor

subfi : ModR → L†

by M 7→ Ffi (M) and φ 7→ Ffi (φ) as above, one obtains

enti = h
sub

f
i
.

Now subfi sends direct limits to direct limits and so enti is continuous for direct limits by Corollary 4.9 and Theorem 5.26.

A clear example, studied in detail in [60], is given by vector spaces and i = dim (see §5.9).

5.7 Adjoint algebraic entropy

Again we consider the category Grp of all groups and their homomorphisms, giving a functor sub? : Grp → L† such that
the entropy defined using this functor coincides with the adjoint algebraic entropy ent? introduced in [41] for abelian groups.
The abelian groups of zero adjoint entropy are studied in [101].

For a group G denote by C(G) the family of all subgroups of finite index in G. For an endomorphism φ : G→ G, N ∈ C(G)
and n ∈ N+, defined the n-th φ-cotrajectory of N by

Cn(φ,N) = N ∩ φ−1(N) ∩ . . . ∩ φ−n+1(N).

Since the map induced by φn on the partitions {φ−n(N)g : g ∈ G} → {Ng : g ∈ G} is injective, it follows that φ−n(N) ∈ C(G)
for every n ∈ N. Therefore, Cn(φ,N) ∈ C(G) for every n ∈ N+, because C(G) is closed under finite intersections.

Definition 5.27. Let G be a group and φ : G → G an endomorphism. The adjoint algebraic entropy of φ with respect to
N ∈ C(G) is

H?(φ,N) = lim
n→∞

log[G : Cn(φ,N)]

n
. (5.16)

The adjoint algebraic entropy of φ is
ent?(φ) = sup{H?(φ,N) : N ∈ C(G)}.

The pair (C(G),∩) is a subsemilattice of (L(G),∩). For N ∈ C(G), let v(N) = log[G : N ]. Then:

(i) (C(G),∩, v,⊇) is a normed semilattice with zero G;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

For every group homomorphism φ : G→ H, the map C(φ) : C(H)→ C(G), defined by N 7→ φ−1(N), is a morphism in L†.
Then the assignments G 7→ C(G) and φ 7→ C(φ) define a contravariant functor

sub? : Grp→ L†.

Theorem 5.28. Let G be a group and φ : G → G an endomorphism. Then H?(φ,N) = Hsub?(φ,N) for every N ∈ C(G),
and so

ent?(φ) = hsub?(φ).

Proof. Let N ∈ C(G). Since, for every n ∈ N+,

Cn(φ,N) = Tn(C(φ), N),

the definitions yield the equality log[G : Cn(φ,N)] = cn(C(φ), N). So,

H?(φ,N) = hS(C(φ), N) = Hsub?(φ,N),

and this concludes the proof.
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The contravariant functor sub? need not send the subgroup inclusion j : H ↪→ G to a surjective map C(j) : C(G)→ C(H);
indeed, take an abelian group H with C(H) 6= {H} and G its divisible hull (so C(G) = {G}). This fact suggests that the
adjoint algebraic entropy is not monotone under taking restrictions to invariant subgroups; indeed, this is the case as shown
by a counterexample in [41, Example 4.8].

Moreover, the adjoint algebraic entropy is not continuous for inverse limits (see [41]).
On the other hand, since the contravariant functor sub? takes factors in Grp to embeddings in L, by the properties proved

in §4 we have automatically that ent? is invariant under conjugation and inversion, it is monotone for factors, it satisfies the
Logarithmic Law and it vanishes on quasi-periodic endomorphisms.

As in the case of the algebraic entropy, the weak Addition Theorem holds for the adjoint algebraic entropy. Indeed, for every
group G and every endomorphism φ : G→ G, the order given by the containment ⊇ is compatible with C(φ) : C(G)→ C(G).
So let ψ : H → H be another group endomorphism. Then C(G)⊕C(H) is cofinal in C(G×H) with respect to ⊇ and the norm
of C(G×H) restricted to C(G)⊕ C(H) coincides with v⊕. So Lemma 4.10 applies and together with Theorem 5.28 gives

ent?(φ× ψ) = ent?(φ) + ent?(ψ).

There exists also a version of the adjoint algebraic entropy for modules, namely the adjoint algebraic i-entropy ent?i (see
[108]), obtained by a preadditive invariant i : ModR → R≥0 for a ring R. We omit the detailed outline of this case that can
be treated analogously.

5.8 Topological entropy for linearly topologized precompact groups

Let (G, τ) be a linearly topologized precompact group, i.e., (G, τ) has a local base VG(1) at 1 consisting of open normal
subgroups of G of finite index. Each V ∈ VG(1) defines a finite open cover UV = {x·V }x∈G ∈ fin-cov(G) with N(UV ) = [G : V ].
Moreover, let

fin-covs(G) = {UV : V ∈ VG(1)} ⊆ fin-cov(G).

We first prove the following useful claim.

Claim 5.29. Let G be a linearly topologized precompact group, φ : G→ G a continuous endomorphism. Then fin-covs(G) is
a fin-cov(φ)-invariant cofinal subsemigroup of fin-cov(G).

Proof. Take U ∈ fin-cov(G). Let K be the compact completion of G. There exists W ∈ fin-cov(K) such that

U = {G ∩W : W ∈ W}.

Since W is a finite open cover of K and since K is zero dimensional (being linearly topologized), there is a finite refinement
V of W that is an open partition of K. Then each V ∈ V is a clopen set of K. Hence, there exists a finite set {Ni,V : i ∈ IV }
of open subgroups of K and (finitely many) cosets xi,VNi,V such that

V =
⋃
i∈IV

xi,VNi,V

(note that the enumeration i 7→ Ni,V need not be one-to-one). Then

N =
⋂
V ∈V

⋂
i∈IV

Ni,V

is still an open subgroup of K as the intersection is finite. The finite cover

UKN = {y ·N}y∈K ∈ fin-cov(K)

of K refines V. Therefore, for N ∩G ∈ VG(1), UN∩G is a refinement of U .

The following result was proved in [35] under the stronger hypothesis that G is a totally disconnected compact group (so,
hfin-top coincides with htop).

Proposition 5.30. Let G be a linearly topologized precompact group, φ : G→ G a continuous endomorphism. Then

hfin-top(φ) = sup{H?(φ,U) : U ∈ VG(1)}.

Proof. Each V ∈ VG(1) defines a finite cover UV = {x · V }x∈G ∈ fin-cov(G) with N(UV ) = [G : V ]. Clearly,

φ−i(UV ) = Uφ−i(V ) and UV1 ∨ UV2 = UV1∩V2 . (5.17)

for i ∈ N and V1, V2 ∈ VG(1). Therefore,

UV ∨ φ−1(UV ) ∨ . . . ∨ φ−n+1(UV ) = UCn(φ,V ).

for every n ∈ N+. This gives
N(UV ∨ φ−1(UV ) ∨ . . . ∨ φ−n+1(UV )) = log[G : Cn(φ, V )].

Then, for every V ∈ VG(1),
Hfin-top(φ,UV ) = H?(φ, V ).

Now it suffices to note that, by Claim 5.29, Lemma 3.7 and Theorem 5.14, we have that

hfin-top(φ) = sup{Hfin-top(φ,UV ) : V ∈ VG(1)},

and this concludes the proof.
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For a linearly topologized precompact group G, let v(V ) = log[G : V ] for every V ∈ VG(1). Then:

(i) (VG(1),∩, v,⊇) is a normed semilattice with zero G;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

For a continuous homomorphism φ : G → H between linearly topologized precompact groups, the map VH(1) → VG(1),
defined by V 7→ φ−1(V ), is a morphism in L†. Letting also sub?o(G) = VG(1), this defines a contravariant functor

sub?o : LPG→ L†,

which satisfies sub?o = sub? ◦U , where U : LPG→ Grp is the standard forgetful functor. Therefore the functor sub?o has the
properties of the functor sub? mentioned in §5.7 (see Remark 5.33 for the properties of the entropy hfin-top).

It is easy to deduce the following result from Proposition 5.30.

Theorem 5.31. Let G be a linearly topologized precompact group and φ : G→ G a continuous endomorphism. Then

hfin-top(φ) = hsub?o
(φ).

Remark 5.32. One can apply Proposition 5.30, Claim 5.29 and Theorem 5.31 to totally disconnected compact groups, since
they are known to be linearly topologized by a theorem of van Dantzig. Consider the restriction of the functor sub?o to the
category TdCG. As noticed above, htop coincides with hfin-top on TdCG. Therefore, htop(φ) = hsub?o

(φ) for any continuous
endomorphism φ : G→ G of a totally disconnected compact group G.

Remark 5.33. As mentioned in §5.3, hfin-top is invariant under conjugation and invariant under inversion, moreover it
satisfies the Logarithmic Law and it vanishes on quasi-periodic continuous selfmaps when considered on the category Top.
Moreover, due to Theorem 5.14 monotonicity under taking closed invariant subspaces and factors is also available. It is not
hard to see that the passage to dense invariant subgroups in LPG actually preserves the entropy hfin-top, so in conjunction
with the above mentioned properties in Top, one has monotonicity under taking arbitrary invariant subgroups in LPG.

5.9 Algebraic and topological entropy for vector spaces

Fix a discrete field K. The algebraic dimension entropy for discrete K-vector spaces (see Definition 5.34) is a particular case
of the i-entropy recalled in §5.6 (for the only invariant i available for K-vector spaces, namely the dimension), and was studied
in detail in [60]. For every K-vector space V let Fd(V ) be the family of all finite-dimensional linear subspaces N of V .

Definition 5.34. Let V be a vector space over K and φ : V → V an endomorphism. The algebraic dimension entropy of φ
with respect to N ∈ Fd(V ) is

Hdim(φ,N) = lim
n→∞

dimTn(φ,N)

n
;

the algebraic dimension entropy of φ is

entdim(φ) = sup{Hdim(φ,N) : N ∈ Fd(V )}.

For a K-vector space V and v = dim we have that:

(i) (Fd(V ),+, dim,⊆) is a normed semilattice with zero {0};
(ii) v is subadditive, arithmetic, monotone and d-monotone.

For every morphism φ : V →W in ModK, the map Fd(φ) : Fd(V )→ Fd(W ), defined by N 7→ φ(N), is a morphism in L†.
Therefore, as a particular case of what is described in §5.6, the assignments V 7→ Fd(V ) and φ 7→ Fd(φ) define a covariant
functor

subdim : ModK → L†.

Then, as a particular case of Theorem 5.26, we have that

hsubdim = entdim. (5.18)

As described in detail in §5.6, it can be deduced by the results in §4 that entdim is invariant under conjugation and
under inversion, monotone under taking quotients and invariant linear subspaces, satisfies the Logarithmic Law and the weak
Addition Theorem, moreover it is continuous for direct limits. This entropy can be computed also as follows.

Remark 5.35. Every flow φ : V → V of ModK can be considered as a K[X]-module Vφ letting X act on V as φ. Then
entdim(φ) coincides with the rank of the K[X]-module Vφ.

In Lefschetz duality (see [83]), the dual vector space of a discrete vector space is linearly compact. Recall that, given a
linearly topologized vector space V over the discrete field K (i.e., V has a local base at 0 consisting of linear subspaces), a
linear variety M of V is a coset v + W , where v ∈ V and W is a linear subspace of V . A linear variety M = v + W is
said to be open (respectively, closed) in V if W is open (respectively, closed) in V . A linearly topologized vector space V
over K is linearly compact if any collection of closed linear varieties of V with the finite intersection property has non-empty
intersection (equivalently, any collection of open linear varieties of V with the finite intersection property has non-empty
intersection) (see [83]).

In [21] the topological counterpart of the algebraic dimension entropy is introduced and studied for linearly compact vector
spaces. For a linearly compact vector space V denote by Fo(V ) the family of all open linear subspaces U of V (since V/U is
discrete and linearly compact, we have that V/U has finite dimension).
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Definition 5.36. Let V be a linearly compact vector space over K and φ : V → V a continuous endomorphism. The
topological dimension entropy of φ with respect to N ∈ Fo(G) is

H?
dim(φ,N) = lim

n→∞

dim(V/Cn(φ,N))

n
.

The topological dimension entropy of φ is

ent?dim(φ) = sup{H?
dim(φ,N) : N ∈ Fo(G)}.

The pair (Fo(V ),∩) is a semilattice. For N ∈ Fo(V ), let v(N) = dim(V/N). Then:

(i) (F(V ),∩, v,⊇) is a normed semilattice with zero V ;

(ii) v is subadditive, arithmetic, monotone and d-monotone.

Let LCVectK be the category of all linearly compact vector spaces over the discrete field K. For every continuous
homomorphism φ : V → W , the map Fo(φ) : Fo(W ) → Fo(V ), defined by N 7→ φ−1(N), is a morphism in L†. Then the
assignments V 7→ Fo(V ) and φ 7→ Fo(φ) define a contravariant functor

sub?dim : LCVectK → L†.

Analogously to Theorem 5.28, it is possible to prove that, if V is a linearly compact vector spaces over K and φ : V → V
is a continuous endomorphism, then

H?
dim(φ,N) = Hsub?

dim
(φ,N)

for every N ∈ Fo(V ), and so
ent?dim(φ) = hsub?

dim
(φ). (5.19)

As described in §5.7, it can be deduced by the results in §4, that ent?dim is invariant under conjugation and under inversion,
monotone under taking quotients, satisfies the Logarithmic Law and the weak Addition Theorem, and it vanishes on quasi-
periodic continuous endomorphisms. Since the functor sub?dim sends inclusions to quotient maps, it can be deduced from the
results in §4 that ent?dim is also monotone under taking closed invariant linear subspaces and it is continuous for inverse limits
(for the latter property one can use the same argument as in the case of compact topological space, see the text preceeding
Proposition 5.9).

Remark 5.37. In [20] and [21], the algebraic and the topological dimension entropy are studied in the more general case of
continuous endomorphisms φ : V → V of locally linearly compact vector spaces V ; a linearly topologized vector space V over
a discrete field K is locally linearly compact if it admits a local base at 0 consisting of linearly compact open linear subspaces
(see [83]).

It is easy to see that for a flow (V, φ) of ModK and N ∈ Fd(V ), one has

Hdim(φ,N) = lim
n→∞

dim(Tn(φ,N)/N)

n

for the algebraic dimension entropy recalled in Definition 5.34. In [20] this limit is used as a definition of the algebraic
dimension entropy of a flow (V, φ) with V a locally linearly compact vector space and N an open linearly compact linear
subspace of V .

Analogously, for a flow (V, φ) of LCVectK and N ∈ Fo(V ), one can obtain the topological dimension entropy recalled in
Definition 5.36 as

H?
dim(φ,N) = lim

n→∞

dim(N/Cn(φ,N))

n
.

In [21] this limit is used as a definition of the topological dimension entropy of a flow (V, φ) with V a locally linearly compact
vector space V and N an open linearly compact linear subspace of V .

As it occurs for the intrinsic algebraic entropy, the algebraic and the topological dimension entropy for locally linearly
compact vector spaces do not fit our general scheme.

6 Bridge Theorems

In this section we study in detail the notion of Bridge Theorem for functorial entropies, pointing out various situations where
such a phenomenon arises.

We start by introducing appropriate weaker forms of isomorphisms in S∗, in order to have a general scheme that covers
all possible Bridge Theorems, including the inspiring one (namely, Theorem 1.3 above for torsion abelian groups and totally
disconnected compact abelian groups; see also Theorems 6.25 and 6.27 below).

6.1 Uniform and weak isomorphisms in S∗

The property of Invariance under conjugation in S ensures the invariance of the semigroup entropy for isomorphic flows of
S, but isomorphisms in S that are not easy to come by. Our aim in this subsection is to replace isomorphisms in S by
(appropriate) isomorphisms in S∗.

The isomorphisms φ : S → S in S must be norm-preserving, i.e., v(φ(x)) = v(x) for all x ∈ S. Since this property is not
available in S∗, we introduce the following notion providing a partial remedy to this problem.

Definition 6.1. A homomorphism α : (S, v) → (S′, v′) in S∗ is a uniform isomorphism with coefficient 0 < r ∈ R if α is a
semigroup isomorphism and v′(α(x)) = rv(x) for every x ∈ S.
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If α : S → S′ is a uniform isomorphism in S∗ with coefficient r, then α−1 : S′ → S is a uniform isomorphism as well and
has coefficient r−1.

Lemma 6.2. A uniform isomorphism in S∗ with coefficient r is an isomorphism in S if and only if r = 1.

For a normed semigroup S and a normed preordered semigroup T , we give a weaker notion than that of uniform isomor-
phism:

Definition 6.3. A homomorphism α : S → T in S∗, where T is a normed preordered semigroup, is a weak isomorphism with
coefficient 0 < r ∈ R if α : S → α(S) a uniform isomorphism with coefficient r and α(S) is a cofinal subsemigroup of T .

Every semigroup admits the discrete preorder, in this case “cofinal” in the above definition means equal.

A uniform isomorphism is always a semigroup isomorphism, whereas a weak isomorphism is a semigroup isomorphism if
and only if it is a uniform isomorphism (with the same coefficient).

Easy examples show that the Invariance under conjugation, which holds in S, drastically fails in S∗. Nevertheless, one
can obtain a sharp substitute in S∗ as follows.

Proposition 6.4. Let φ : S → S be an endomorphism in S. If α : S → T is a uniform isomorphism in S∗ with coefficient
r > 0, then:

(a) ψ = α ◦ φ ◦ α−1 : T → T is an endomorphism in S;

(b) hS(ψ) = rhS(φ).

Proof. (a) Follows from the definition of uniform isomorphism and contractive endomorphism.
(b) Fix y ∈ T and find x ∈ S with y = α(x). Then cn(ψ, y) = rcn(φ, x) for every n ∈ N+, and so hS(ψ, y) = r · hS(φ, x).

So hS(ψ, y) ≤ r · hS(φ, x). Therefore,
hS(ψ) ≤ r · hS(φ).

Analogously, using α−1 in place of α, one can prove that

hS(φ) ≤ r−1 · hS(ψ).

This concludes the proof.

A weaker form of the Invariance under conjugation property remains true also considering weak isomorphisms in S∗:

Corollary 6.5. Let φ : S → S be an endomorphism in S. Let T be a normed semigroup with a preorder compatible with the
endomorphism ψ : T → T in S. If α : S → T is a weak isomorphism with coefficient 0 < r ∈ R and such that ψ ◦ α = α ◦ φ,
then:

(a) α(S) is ψ-invariant;

(b) hS(ψ) = rhS(φ).

Proof. (a) Follows immediately from the hypothesis.
(b) By Lemma 3.7, hS(ψ) = hS(ψ �α(S)). Moreover, hS(ψ �α(S)) = r · hS(φ) by Proposition 6.4.

We will need the following property.

Lemma 6.6. Let S ∈ S and S′, S′′ ∈ Sp. If α : S → S′ is a weak isomorphism with coefficient r > 0 and β : S′ → S′′ is a
monotone weak isomorphism with coefficient s > 0, then β ◦ α is a weak isomorphism with coefficient rs.

Proof. Clearly, β ◦ α : S → β(α(S)) is a uniform isomorphism with coefficient rs. That β(α(S)) is cofinal in S′′ follows from
the monotonicity of β, the cofinality of α(S) in S′ and the cofinality of β(S′) in S′′.

6.2 General scheme

The Bridge Theorem from Definition 1.6 is a property of a functor ε : X1 → X2 (with respect to entropies h1 : X1 → R+ and
h2 : X2 → R+). It is natural to expect that it is invariant under natural equivalence of functors, as we observe now.

Remark 6.7. Let ε, ε′ : X1 → X2 be naturally equivalent functors and let h1 : X1 → R+ and h2 : X2 → R+ be entropies. For
C > 0, the pair (h1, h2) satisfies BTε,C if and only if (h1, h2) satisfies BTε′,C .

Throughout this section ε : X1 → X2 is a functor and hF1 , hF2 are functorial entropies arising from functors F1 : X1 → Sp

and F2 : X2 → Sp such that F1 and F2ε are simultaneously covariant or contravariant. Our aim is to verify whether the pair
(hF1 ,hF2) satisfies the Bridge Theorem. To do this, it seems natural to consider the following notion which yields a higher
level of connection between the entropies hF1 , hF2 than the one given by the Bridge Theorem, as we shall see in Theorem 6.9.

Definition 6.8. The pair (hF1 ,hF2) satisfies the Strong Bridge Theorem with respect to ε with coefficient 0 < C ∈ R (briefly,
SBTε,C) if there exists a natural transformation

η : F1 → F2ε

such that ηX : F1(X)→ F2ε(X) is a uniform isomorphism with coefficient C.
If each ηX : F1(X)→ F2ε(X) is only a weak isomorphism with coefficient C, we say that (hF1 ,hF2) satisfies the Strongw

Bridge Theorem with coefficient C (briefly, SBTwε,C).
In case C = 1 we write simply SBTε (respectively, SBTwε ) and say that (hF1 ,hF2) satisfies the Strong Bridge Theorem

(respectively, the Strongw Bridge Theorem).
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As the next diagram shows, this definition provides two levels of a sort of “functorial Bridge Theorem”, that connects
both functors F1, F2.

X1

ε

��

F1

**VVVVVVVVVVVVVVVVVV h1=hF1

((
η

��
Sp

hS // R+

X2

F2

44hhhhhhhhhhhhhhhhhh
h2=hF2

66

(6.1)

In the next theorem we show that, roughly speaking,

SBTε,C ⇒ SBTwε,C ⇒ BTε,C ,

in particular, both the Strong Bridge Theorem and the Strongw Bridge Theorem yield the Bridge Theorem.

Theorem 6.9. In the above notation, we have that:

(a) if (hF1 ,hF2) satisfies SBTε,C then (hF1 ,hF2) satisfies SBTwε,C ;

(b) if (hF1 ,hF2) satisfies SBTwε,C then (hF1 ,hF2) satisfies BTε,C .

In particular, if the pair (hF1 ,hF2) satisfies SBTε then (hF1 ,hF2) satisfies SBTwε , and if (hF1 ,hF2) satisfies SBTwε then
(hF1 ,hF2) satisfies BTε.

Proof. (a) Follows from the fact that a uniform isomorphism is also a weak isomorphism.
(b) If (hF1 ,hF2) satisfies SBTε,C , in view of Corollary 6.5 we have that

hS(F2ε(φ)) = C · hS(F1(φ))

for every endomorphism φ in X1. This means that (hF1 ,hF2) satisfies BTε,C .

Remark 6.10. In the above notation, even when the target of the functors F1 and F2 is the category S, the existence of
a natural transformation η : F1 → F2ε in S∗ need not ensure that this natural transformation is in S (i.e., the morphism
ηX : F1(X) → F2ε(X) ensured by SBTε,C is an isomorphism in S∗, but need not be an isomorphism in S). According to
Lemma 6.2, ηX : F1(X)→ F2ε(X) is an isomorphism in S if and only if C = 1 (i.e., SBTε holds).

In the specific Bridge Theorems stated below, (at least) SBTwε is verified in many cases, but actually SBTε is available
in most of those cases.

Our choice to use Sp as a target is motivated by the fact that the definition of SBTwε,C makes recourse to a preorder on
the semigroups (whereas SBTwε,C perfectly works also for functors F1 : X1 → S and F2 : X2 → S). Let us point out that this
choice is quite painless since in all cases considered in §5 the functors have Sp as a target with the exception of cim; more
precisely, with the exception of pet, the targets are the subcategories PL† and L† of Sp.

Remark 6.11. Assume that h1 : X1 → Sp and h2 : X2 → Sp are entropies and that the functor ε : X1 → X2 is invertible.

(a) Then (h1, h2) satisfies BTε,C with 0 < C ∈ R if and only if (h2, h1) satisfies BTε−1,C−1 .

(b) Unlike the Strongw Bridge Theorem SBTwε,C , the Strong Bridge Theorem SBTε,C can be “inverted” in the following
more precise sense. If h1 = hF1 and h2 = hF2 for functors F1 : X1 → S and F2 : X2 → S, then (hF1 ,hF2) satisfies
SBTε,C if and only if (hF2 ,hF1) satisfies SBTε−1,C−1 .

The following facts are trivial, yet it is worth noting the preservation of entropy in these cases. Moreover, we see in §6.3
an interesting occurrence of the case of the forgetful functor and one of the identity functor.

Example 6.12. Let ε : X1 → X2 be a functor and h : X2 → R+ an entropy. Assume that ε is either an inclusion functor
or a forgetful functor. In the first case one can consider the restriction h : X1 → R+ keeping the same notation par abus de
language. Clearly, the pair (h, h) satisfies BTε. Moreover, if h = hF for some functor F : X2 → S, then (hFε,hF ) satisfies
SBTε. All this applies also when ε is a forgetful functor.

Lemma 6.13. In the above notation, let X = X1 = X2 and ε = idX.

(a) If F1 and F2 are naturally equivalent, then (hF1 ,hF2) satisfies SBTidX .

(b) If (hF1 ,hF2) satisfies SBTwidX , then hF1 = hF2 .

Proof. (a) is obvious and (b) follows directly from Corollary 6.5.

In particular, given an entropy function h : X → R+, if h = hF1 for some functor F1 : X → S and (hF1 ,hF2) satisfies
SBTwidX for some other functor F2 : X → S, then h = hF2 , and so one has an alternative description of h as a functorial
entropy. A relevant example to this effect is the following.

Example 6.14. (a) Consider the functors fin-cov : CTop → PL† and cov : CTop → PL†. In view of Remark 5.11, the
pair (hfin-cov,hcov) satisfies SBTwidCTop

. In particular, if φ : X → X is a morphism in CTop, then hfin-top(φ) = htop(φ)
by Lemma 6.13(b).

(b) Consider TdCG and the functors

cov : TdCG→ PL† and sub?o : TdCG→ PL†.

Let φ : K → K be a morphism in TdCG. By Theorem 5.8, we have that htop(φ) = hcov(φ). We see that
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the pair (hsub?o
,hcov) satisfies SBTwidTdCG

,

and hence htop(φ) = hsub?o
(φ) by Lemma 6.13(b).

To verify that (hsub?o
,hcov) satisfies SBTwidTdCG

, let

ηK : VK(1)→ cov(K), V 7→ UV ,

where we recall that UV = {xV : x ∈ K}. Hence, ηK(VK(1)) = fin-covs(K). By Claim 5.29, fin-covs(K) is cofinal in
fin-cov(K), while fin-cov(K) is cofinal in cov(K) since K is compact (see Remark 5.11); therefore, ηK(VK(1)) is cofinal
in cov(K). Moreover, ηK : VK(1)→ fin-covs(K) is an isomorphism in S since

v(V ) = log[K : V ] = logN(UV ).

Finally, η : sub?o → cov is a natural transformation, since φ−1(UV ) = Uφ−1(V ) for every V ∈ VK(1).

The next result extends the observation in Remark 6.7 to Strong Bridge Theorems.

Lemma 6.15. Let ε, ε′ : X1 → X2 be naturally equivalent functors and C > 0. Then:

(a) (hF1 ,hF2) satisfies SBTwε,C if and only if (hF1 ,hF2) satisfies SBTwε′,C ;

(b) (hF1 ,hF2) satisfies SBTε,C if and only if (hF1 ,hF2) satisfies SBTε′,C .

Proof. To prove (a) apply Lemma 6.6, while (b) follows from the definitions.

6.3 Preservation of entropy along (co)reflections and forgetful functors

In Lemma 6.13 we have seen that two distinct realizations of an entropy X→ R as a functorial entropy can be seen as a Strong
Bridge Theorem with respect to the identity functor. In this section we push further this line with respect to (co)reflections
and forgetful functors.

In the next remark we briefly discuss the connection between measure entropy and topological entropy.

Remark 6.16. If X is a compact metric space and φ : X → X is a continuous surjective selfmap, by Krylov-Bogolyubov
Theorem [12] there exists some φ-invariant Borel probability measure µ on X (i.e., making φ : (X,µ) → (X,µ) measure
preserving). Denote by hµ the measure entropy with respect to µ. The inequality hµ(φ) ≤ htop(φ) for every µ is due to
Goodwyn [72]. Moreover, the Variational Principle (see [71] and [112, Theorem 8.6]) gives the ultimate connection between
these two entropies:

htop(φ) = sup{hµ(φ) : µ φ-invariant measure on X}.
In the case of a compact group K and a continuous surjective endomorphism φ : K → K, the uniqueness of the Haar

measure of K implies that φ is measure preserving, as noted by Halmos [74]. In particular, both htop and hmes are available
for surjective continuous endomorphisms of compact groups, and they coincide as proved by Stoyanov [105] (see [13] for
metrizable compact groups).

Denote by CG the category of all compact groups and continuous homomorphisms, and by CGe the non-full subcategory
of CG having as morphisms all continuous surjective homomorphisms in CG. Then the above fact can be stated as a Bridge
Theorem as follows:

Theorem 6.17. Consider the forgetful functor V : CGe →Mes. The pair (htop, hmes) satisfies BTV .

We are not aware if this Bridge Theorem holds true at a “higher level”, namely as a Strong Bridge Theorem:

Question 6.18. Does the pair (hcov,hmes) satisfy SBTV ?

One can see the interaction between the topological entropy and the frame entropy as a Strong Bridge Theorem. Indeed,
to every topological space X corresponds the frame (O(X),∪,∩) of open sets of X, with top element X and bottom element ∅.
Every continuous selfmap φ : X → X gives rise to a frame endomorphismO(φ) : O(X)→ O(X) defined byO(φ)(U) = φ−1(U)
for U ∈ O(X). This gives a contravariant functor

O : Top→ Frm.

Moreover, every (finite) open cover U of X gives rise to a (finite) cover of O(X) and O(φ) : O(X) → O(X) takes (finite)
covers of O(X) to (finite) covers of O(X). Together with Theorem 5.10 and (5.8), this proves the following

Theorem 6.19. Consider the functor O : Top → Frm. The pair (hfin-cov,hfin-covfr ) satisfies SBTO. In particular,
(hfin-top, hfr) satisfies BTO.

Consider the T0-reflection
r : Top→ Top0,

where Top0 is the full subcategory of Top of T0 spaces. If rX is the T0-reflection of a topological space X, then for every
continuous selfmap φ : X → X the reflection φ : rX → rX in Top0 has the same topological entropy as φ. We want to
present this result from [47] as a Strong Bridge Theorem as follows.

Theorem 6.20. Consider r : Top → Top0. The pair (hfin-cov,hfin-cov) satisfies SBTr. In particular, (hfin-top, hfin-top)
satisfies BTr.

Proof. Let φ : X → X in Top. The reflection r assigns to X a surjective continuos map rX : X → rX. Then fin-cov(rX) :
fin-cov(rX) → fin-cov(X) is an isomorphism in S such that fin-cov(rφ) and fin-cov(φ) are conjugate by fin-cov(rX)−1. So it
suffices to take ηX = fin-cov(rX)−1. For the second part, hfin-top = hfin-cov by Theorem 5.10.
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This theorem reduces the study of hfin-top to the category of T0-spaces. In contrast with Theorem 6.20, one can show
that the reflection Top → Top1, where Top1 denotes the (full) subcategory of Top of T1 topological spaces, strongly fails
to preserve the topological entropy. For an example consider the topological space X obtained from Z, equipped with the
discrete topology and an extra point a, so that X = Z∪{a} has a as an isolated dense point, i.e., {{a, n} : n ∈ Z} is a base of
the topology of X. Clearly, X is a compact T0-space whose T1-reflection is a singleton, as {a} is dense in X. Let φ : X → X
be defined by φ(a) = a and φ(n) = n+ 1 for all n ∈ Z. Then φ is a homeomorphism having Z as a closed invariant subspace.
Since hfin-top(φ �Z) =∞ (see [52, 76]), we have that hfin-top(φ) =∞.

For convenience we give the following obvious corollary of the theorem about the restriction

r′ : CTG→ CG (6.2)

of the T0-reflection r : Top → Top0 to the subcategory CTG of compact topological groups (recall that T0-topological
groups are Hausdorff):

Corollary 6.21. For the functor (6.2) the pair (hfin-cov,hfin-cov) satisfies SBTr′ . In particular, (hfin-top, hfin-top) satisfies
BTr′ . Hence, (htop, htop) satisfies BTr′ .

The last assertion of the above corollary follows from Remark 5.11 (see also Example 6.14(a)). It shows that it makes
sense to consider the topological entropy for compact groups that are Hausdorff (indeed, in this paper compact groups are
usually intended to be Hausdorff).

Denote by TAG the full subcategory of AG whose objects are all torsion abelian groups. The coreflection

t : AG→ TAG (6.3)

that assigns to every abelian group G its torsion subgroup t(G) preserves the algebraic entropy ent in the sense of the first
equality in (5.9), since sub(G) = sub(t(G)).

Theorem 6.22. The pair (hsub,hsub) satisfies SBTt, where t is as in (6.3). In particular, (ent, ent) satisfies BTt.

Proof. Let φ : G → G in AG. The coreflection t assigns to G the embedding tG : t(G) → G. Then sub(tG) : sub(t(G)) →
sub(G) is an isomorphism in S such that sub(tφ) and sub(φ) are conjugate by sub(tG)−1. So it suffices to take ηG = sub(tG)−1.
For the second part, ent = hsub by Theorem 5.20.

Let RFAG be the full subcategory of AG with objects all residually finite groups. For an abelian group G the first Ulm
subgroup is

G1 =
⋂
m>0

mG.

The assignment G 7→ G/G1 gives a reflection
r : AG→ RFAG.

Since for every abelian group G the canonical homomorphism q : G→ G/G1 induces an isomorphism sub?(q) : sub?(G/G1)→
sub?(G), we have the following theorem (its proof is analogous to that of Theorem 6.20).

Theorem 6.23. Consider r : AG → RFAG. The pair (hsub? ,hsub?) satisfies SBTr. In particular, (ent?, ent?) satisfies
BTr.

6.4 Bridge Theorems for the algebraic entropy and the topological entropy

For a locally compact abelian group G the Pontryagin dual Ĝ is the group of all continuous character χ : G → T, endowed
with the compact-open topology; moreover, for a continuous endomorphism φ : G→ G, its dual endomorphism φ̂ : Ĝ→ Ĝ is
continuous (see [94, 75]). This gives the Pontryagin duality functor

̂: LCA→ LCA,

where LCA is the category of all locally compact abelian groups and all continuous homomorphisms. The Pontryagin duality
functor is invertible and coincides with its inverse (up to natural equivalence), by Pontryagin-van Kampen duality theorem.

For a subset A of G, the annihilator of A in Ĝ is

A⊥ = {χ ∈ Ĝ : χ(A) = 0},

while for a subset B of Ĝ, the annihilator of B in G is

B> = {x ∈ G : χ(x) = 0 for every χ ∈ B}.

Clearly, ⊥ reverses the inclusions.

The following Bridge Theorem was proved in [41]. We consider the restrictions of the Pontryagin duality functor

̂: AG→ CAG and ̂: CAG→ AG,

which are one inverse to each other.

Theorem 6.24. (a) Consider ̂ : AG → CAG. The pair (hsub? ,hsub) satisfies SBT .̂ In particular, the pair (ent?, ent)
satisfies BT .̂

(b) Consider ̂: CAG→ AG. The pair (hsub,hsub?) satisfies SBT .̂ In particular, the pair (ent, ent?) satisfies BT .̂
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Proof. (a) Let G be an abelian group and φ : G → G an endomorphism. The semilattice isomorphism C(G) → F(Ĝ) given
by N 7→ N⊥ preserves the norms, so it is an isomorphism in S, and it suffices to take η = ⊥.

(G,φ)

̂
��

sub? //

ent?

""

(C(G), sub?(φ))
hS

**VVVVVVVVVVV

⊥

��

R+

(Ĝ, φ̂)
sub //

ent

==

(F(Ĝ), sub(φ̂))
hS

44iiiiiiiii

For the second statement, note that ent? = hsub? and ent = hsub by Theorems 5.28 and 5.20.
(b) Follows from (a) and Remark 6.11(b).

The following result, covering (and inspired by) Weiss’ Bridge Theorem from [113], is our leading example. The proof
follows the idea of the original one. The restrictions of the Pontryagin duality functor̂: TAG→ TdCAG and ̂: TdCAG→ TAG

are inverse to each other.

Theorem 6.25. Consider ̂ : TAG → TdCAG. The pair (hsub,hcov) satisfies SBTŵ . In particular, the pair (ent, htop)
satisfies BT̂, and for ̂: TdCAG→ TAG, the pair (ent, htop) satisfies BT̂.

Proof. Let φ : G→ G be an endomorphism of a torsion abelian group G. Then Ĝ is a totally disconnected compact abelian
group and φ̂ : Ĝ → Ĝ a continuous endomorphism. The semilattice isomorphism F(G) → sub?o(Ĝ) given by N 7→ N⊥

preserves the norms, so it is an isomorphism in S. By Claim 5.29, there exists a weak isomorphism ιG : sub?o(Ĝ) → cov(Ĝ)

with coefficient 1. Therefore, ηG = ιG ◦ ⊥ : F(G)→ cov(Ĝ) is a weak isomorphism with coefficient 1.

(G,φ)

̂

��

sub //

hsub=ent

��

(F(G), sub(φ))

⊥
��

hS

((PPPPPPPPPPPPPPP

(sub?o(Ĝ), sub?o(φ̂))

ιG

��

R+

(Ĝ, φ̂)
cov
//

hcov=htop

BB

(cov(Ĝ), cov(φ̂))

hS

77nnnnnnnnnnnnnn

The second statement follows from the fact that ent = hsub and htop = hcov by Theorems 5.20 and 5.8, and from Re-
mark 6.11(b).

Question 6.26. Does the pair (hcov,hsub) satisfy SBT̂?

The conclusion of Theorem 6.25 that the pair (ent, htop) satisfies BT̂ can be obtained in an easier way by chosing a
different pair of functors. This option, exploited in Theorem 6.27, has also the advantage of producing a Strongw Bridge
Theorem (consequently, also a Bridge Theorem) in both directions ̂: TAG→ TdCAG and ̂: TdCAG→ TAG, whereas
Theorem 6.25 provides a Strongw Bridge Theorem only for the first functor.

Theorem 6.27. (a) Consider ̂ : TAG → TdCAG. The pair (hsub,hsub?o
) satisfies SBT̂. In particular, the pair

(ent, htop) satisfies BT̂.

(b) Consider ̂: TdCAG → TAG. The pair (hsub?o
,hsub) satisfies SBT̂. In particular, the pair (htop, ent) satisfies BT̂

with C = 1.

Proof. (a) Let G be a torsion abelian group and φ : G→ G an endomorphism. The semilattice isomorphism F(G)→ sub?o(Ĝ)
given by N 7→ N⊥ preserves the norms, so it is an isomorphism in S. Hence it suffices to take η = ⊥.

(G,φ)

̂
��

sub //

ent

##

(F(G), sub(φ))

⊥

��

hS

++VVVVVVVVVVV

R+

(Ĝ, φ̂)
sub?o //

htop

;;

(sub?o(Ĝ), sub?o(φ̂))
hS

44hhhhhhhhhh

For the second statement, note that ent = hsub and htop = hsub?o
by Theorems 5.20 and 5.31.

(b) Follows from (a) in view of Remark 6.11.
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The general Bridge Theorem recalled in Theorem 1.3 can be stated as follows.

Theorem 6.28. For the functor ̂ : AG → CAG and its inverse ̂ : CAG → AG, the pairs (halg, htop) and (htop, halg)
satisfy BT̂.

On the other hand, it is not known whether the respective functorial entropies satisfy the Strong Bridge Theorem.

Question 6.29. Do the pairs (hpet,hcov) and (hcov,hpet) satisfy SBT̂ or SBTŵ ?

The following Bridge Theorem was proved in [21] in the more general case of locally linearly compact vector spaces over
a discrete field K. We consider the restrictions of the Lefschetz duality functor from the category of locally linearly compact
vector spaces to the cases ˜: LCVectK →ModK and ˜: ModK → LCVectK, (6.4)

which are inverse to each other.

Theorem 6.30. For the functors (6.4):

(a) the pair (hsub?o
,hsubd) satisfies SBT ,̃ so in particular, (ent?dim, entdim) satisfies BT ;̃

(b) the pair (hsubd ,hsub?o
) satisfies SBT ,̃ so in particular, (entdim, ent?dim) satisfies BT .̃

Proof. (a) Let V be a linearly compact vector space over K and let φ : V → V be a continuous endomorphism. The semilattice

isomorphism Fo(V )→ Fd(Ṽ ) given by

N 7→ N⊥ = {χ ∈ CHom(V,K) : χ(N) = 0}

preserves the norms, by Lefschetz duality theory, so it is an isomorphism in S (see [21] for the details). Then it suffices to
take η = ⊥.

(V, φ)

˜
��

sub?dim//

ent?dim

""

(Fo(V ), sub?o(φ))
hS

**VVVVVVVVVVV

⊥

��

R+

(Ṽ , φ̃)
subdim//

entdim

<<

(Fd(Ṽ ), subd(φ̃))
hS

44iiiiiiiiii

For the second statement, note that ent?dim = hsub?
dim

and entdim = hsubdim by (5.19) and (5.18).
(b) Follows from (a) and Remark 6.11(b).

6.5 Bridge Theorems for the set-theoretic entropy

The Bridge Theorems that we analyze until the end of this section connect the topological entropy htop and the algebraic
entropy halg with the covariant set-theoretic entropy h by means of the backward and the forward generalized shifts, respec-
tively.

6.5.1 Topological entropy and backward generalized shifts

We start proving the following (Strong) Bridge Theorem between the set-theoretic and the topological entropy, then we give
its counterpart for CTop.

Theorem 6.31. Let ε : Set→ CG be a contravariant functor sending coproducts to products, and let K = ε(∗). Then:

(a) the pair (h, htop) satisfies BTε,∞, if K is infinite;

(b) the pair (him,hsub?o
) satisfies SBTwε,log |K|, if K is finite.

In particular, the pair (h, htop) satisfies BTε,log |K| (with the convention that log |K| =∞ if K is infinite).

In Lemma 6.32 we provide a proof of the theorem in the particular case of the functor (4.7) of the backward generalized
shift, then Theorem 6.31 follows immediately from Lemma 6.32, Theorem 4.15, Lemma 6.15(a), and Remark 6.7.

Lemma 6.32. Theorem 6.31 holds with ε = BK , for a compact group K.

Proof. Let X be a non-empty set. For F ∈ S(X) let ηX(F ) be the subgroup KX\F ×{1}F of KX . It is σλ-invariant, whenever
F is λ-invariant in X.

(a) Assume that K is infinite, and let λ : X → Y be a map. We have to check that:

(i) if h(λ) > 0, then htop(σλ) =∞;

(ii) if h(λ) = 0, then htop(σλ) = 0 as well.
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To check (i) assume that h(λ) > 0. Then there exists a λ-invariant infinite subset N = {x0, . . . , xn, . . .} of X, where λ acts
as a right shift, i.e., λ(xn) = xn+1 for every n ∈ N. Then the functor BK transforms the inclusion j : N → X into the
projection KX → KN and the restriction λ �N : N → N to σλ�N : KN → KN , which is conjugate to the left Bernoulli shift

Kβ : KN → KN. Since K is infinite, by the Monotonicity for factors, the Invariance under conjugation and (5.5), we conclude
that htop(σλ) ≥ htop(Kβ) =∞.

To verify (ii) assume that h(λ) = 0, i.e., every F ∈ S(X) is contained in a λ-invariant finite set F ′ ∈ S(X). This implies
that every subgroup of the form ηX(F ) of KX contains a subgroup (of the same form) ηX(F ′), with F ′ ∈ S(X), that is
σλ-invariant.

The group KX is the inverse limit of the inverse system of groups

K = {(KF , πFF ′) : F, F ′ ∈ S(X)}.

where πFF ′ : KF → KF ′ , for F ⊇ F ′ in S(X), is the standard projection. By what we observed above, KX is also the inverse
limit of the inverse system

Kinv = {(KF , πFF ′) : F, F ′ ∈ S(X), λ-invariant}.
Obviously, KX/ηX(F ) is topologically isomorphic to KF for every F ∈ S(X). Moreover, when F ∈ S(X) is λ-invariant, this
isomorphism extends to an isomorphism of the flows (KX/ηX(F ), σFλ ) and (KF , σλ�F ), where

σFλ : KX/ηX(F )→ KX/ηX(F )

is the endomorphism induced by σλ; equivalently, σFλ and σλ�F are conjugate and so htop(σ
F
λ ) = htop(σλ�F ).

Let ζ = λ �F : F → F for the sake of brevity. Since F is finite, we deduce there exist natural numbers m > k such that
ζm = ζk. By (4.8), this yields

(σζ)
m = σζm = σζk = (σζ)

k.

Therefore, σζ is quasi-periodic. By Lemma 4.5, we conclude that htop(σζ) = 0. Therefore, htop(σ
F
λ ) = 0.

This proves that htop(σλ) = 0 in view of the Continuity for inverse limits of htop.

(b) Assume that K is finite. Then ηX(F ) ∈ VKX (1) for every F ∈ S(X).

(X,λ)

BK

��

im //

h

##

(S(X), im(λ))
hS

++VVVVVVVVVVVV

ηX

��

R+

(KX , σλ)
sub?o //

htop

;;

(VKX (1), sub?o(σλ))
hS

33hhhhhhhhhhhh

Since every U ∈ VKX (1) contains ηX(F ) for some F ∈ S(X), we deduce that ηX has cofinal image in VKX (1). Moreover, the
norm of F in S(X) is |F |, while the norm of ηX(F ) is

log[KX : ηX(F )] = log |K||F | = |F | · log |K|.

This proves that ηX : S(X)→ VKX (1) is a weak isomorphism with coefficient log |K|. Therefore, the pair (him,hsub?o
) satisfies

SBTwBK ,log |K|.

The following is the counterpart of Theorem 6.31 for the category CTop2 of all compact Hausdorff spaces. It covers the
known formula recalled in (5.7).

Theorem 6.33. Let ε : Set→ CTop2 be a contravariant functor sending coproducts to products, and let K = ε(∗). Then:

(a) the pair (h, htop) satisfies BTε,∞, if K is infinite;

(b) the pair (him,hcov) satisfies SBTwε,log |K|, if K is finite.

In particular, the pair (h, htop) satisfies BTε,log |K| (with the convention that log |K| =∞ if K is infinite).

Theorem 6.33 can be proved following the line of the proof of Theorem 6.31. Indeed, Theorem 6.33 follows from The-
orem 4.15, Lemma 6.15(a), Remark 6.7, and the counterpart for CTop2 of Lemma 6.32. This can be obtained as follows.
Item (a) follows from a standard variation of the proof of item (a) of Lemma 6.32. For item (b) consider for every finite F
the projection pF : KX → KF . As KF is finite, so discrete, the set p−1

F (x) is open in KX for every x ∈ KF , hence such that

UF = {p−1
F (x) : x ∈ KF }

is a finite open cover of KX with
N(UF ) = |K|F .

Moreover, following the line of the proof of Claim 5.29, one can prove that the family

{UF : F ∈ S(X)}

is cofinal in fin-cov(X), and fin-cov(X) is cofinal in cov(X) by Remark 5.11. Hence, letting

νX(F ) = UF
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for every F ∈ S(X), one finds that ν is a natural transformation between im and cov ◦ BK such that, for every set X,
νX : S(X)→ cov(X) is a weak isomorphism with coefficient log |K|. Therefore, the pair (him,hcov) satisfies SBTwBK ,log |K|.

(X,λ)

BK

��

im //

h

##

(S(X), im(λ))
hS

++VVVVVVVVVVVV

νX

��

R+

(KX , σλ)
cov //

htop

;;

(cov(KX), cov(σλ))
hS

33hhhhhhhhhhh

Remark 6.34. Let K be a group and
B′K : Setfin → Grp

be the contravariant functor defined on Setfin, sending ∅ to the terminal object {1} of Grp and a non-empty set X to

B′K(X) = K(X).

For a finite-to-one map λ : X → Y let, as recalled in (5.13),

B′K(λ) = σ⊕λ : K(Y ) → K(X)

when X and Y are non-empty, and let B′K(λ) = 1 when either X or Y is empty.
The result from [35] recalled in (5.14) can be stated as follows as a Bridge Theorem, with the convention that log |K| =∞

if K is infinite:

the pair (h∗p, halg) satisfies BTB′
K
,log |K|.

Nevertheless, we cannot find it as a Strong Bridge Theorem, since we can find h∗ as a functorial entropy but not h∗p.
To overcome this problem one could proceed as follows. First, note that every functor

F : X→ Y

induces a functor
F2 : FlowX → FlowY

assigning to each object f : X → X of FlowX the object F (f) of FlowY. A careful analysis of our categorical approach to
entropy shows that we need substantially, rather than the functor

F : X→ S∗,

the functor
F2 : FlowX → FlowS∗ ,

so that a “functorial entropy” of X can be obtained as a composition of F2 with the entropy function

hS∗ : FlowS∗ → R+ ∪ {∞}.

This modified approach applies in cases when one has a convenient functor G : FlowX → FlowS∗ that is not necessarily
of the form G = F2. For example, it perfectly fits the case of the functor

sc : FlowSetfin → FlowSetfin ,

sending the flow (X,λ) to its subflow (sc(λ), λ �sc(λ)) (it cannot be obtained as F2 for any functor F : Setfin → Setfin). Then,
for the functor

cim2 : FlowSetfin → FlowS∗

induced by the functor cim, let
G = cim2 ◦ sc : FlowSetfin → FlowS∗ .

This allows us to obtain, for every (X,λ) ∈ FlowSetfin ,

h∗p(X,λ) = hS∗(G(X,λ)),

and so we can find h∗p as a “functorial entropy” as well, although in a slightly different way compared to the functorial entropy
we studied so far. This alternative approach will not be adopted in the present paper.
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6.5.2 Algebraic entropy and forward generalized shifts

We start proving the relation between the backward generalized shift σλ : KY → KX induced by the map λ : X → Y (see

Definition 4.12 and (5.6)), and the forward generalized shift τλ : K̂(X) → K̂(Y ) (see Definition 4.16 and (5.15)). To this end
we identify

K̂X = K̂(X) (6.5)

as follows. For χ ∈ K̂X there exists a finite subset F of X such that

χ =
∑
x∈F

χ �Kx ,

where we denote by Kx the copy of K in KX corresponding to x ∈ X. Then we identify χ ∈ K̂X with (χ �Kx)x∈X ∈ K̂(X),

noting that χ �Kx= 0 for every x ∈ X \ F . When K is finite, K ∼= K̂.

Proposition 6.35. Let K be a compact abelian group and λ : X → Y be a map. Then the homomorphisms

σλ : KY → KX and τλ : K̂(X) → K̂(Y )

satisfy
σ̂λ = τλ.

Proof. For a character ξ ∈ K̂ and x ∈ X, let ξx ∈ K̂(X) be defined by ξx(y) = 0 if y ∈ X \ {x} and ξx(x) = ξ. In view of the
identification (6.5), for x0 ∈ X and f ∈ KX one has

ξx0(f) = ξ(f(x0)).

Since {ξx : ξ ∈ K̂, x ∈ X} is a set of generators of K̂(X), it suffices to prove that, for every ξ ∈ K̂ and every x ∈ X,

σ̂λ(ξx) = τλ(ξx). (6.6)

So, let ξ ∈ K̂ and x ∈ X. Then, by the definition,
τλ(ξx) = ξλ(x).

Moreover, σ̂λ(ξx) = ξx ◦ σλ, and hence, for every f ∈ KY ,

σ̂λ(ξx)(f) = ξx(σλ(f)) = ξx(f ◦ λ) = ξ((f ◦ λ)(x)) = ξ(f(λ(x))) = ξλ(x)(f);

therefore,
σ̂λ(ξx) = ξλ(x).

This proves the equality in (6.6), and consequently the equality σ̂λ = τλ.

Fix an abelian group K and consider the functor FK : Set→ AG defined in (4.14) by means of the forward generalized
shift. Proposition 6.35 implies directly the following nice connection between the functors BK and FK̂ .

Corollary 6.36. For a compact abelian group K and the functor ̂ : CAG→ AG one has

FK̂ = ̂ ◦ BK .
The following is the counterpart of Theorem 6.31 for the algebraic entropy and the covariant set-theoretic entropy.

Theorem 6.37. Let γ : Set→ AG be a covariant functor sending coproducts to coproducts, and let K = γ(∗). Then:

(a) the pair (h, halg) satisfies BTγ,∞, if K is infinite;

(b) the pair (him,hpet) satisfies SBTwγ,log |K|, if K is finite.

In particular, the pair (h, halg) satisfies BTγ,log |K| (with the convention that log |K| =∞ if K is infinite).

Theorem 6.37 follows directly from Lemma 6.38, Theorem 4.17, Lemma 6.15(a), and Remark 6.7. We deduce Lemma 6.38
from Lemma 6.32 using the nice properties of the Pontryagin duality functor.

Lemma 6.38. Theorem 6.37 holds with γ = FK , for an abelian group K.

Proof. If K is finite, then the pair (h, htop) satisfies SBTwBK ,log |K| by Lemma 6.32, while (htop, halg) satisfies SBTŵ (wherê : CAG → AG is the Pontryagin duality functor), by Theorem 6.25. Then the pair (h, halg) satisfies SBTwBK ,log |K| by
Corollary 6.36. Analogously, the case when K is infinite follows from Lemma 6.32, Theorem 6.28 and Corollary 6.36.
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7 Topological and algebraic entropy in locally compact groups

In this section, in order to find the topological entropy and the algebraic entropy for locally compact groups as functorial
entropies, we need to use the larger category S∗ instead of S. In fact, as noted in the Introduction, these entropies are not
invariant under inversion: if G is a totally disconnected locally compact group and φ : G→ G is a topological automorphism,
then htop(φ

−1) = htop(φ)− log ∆(φ), where ∆(φ) is the modulus of φ (see [59]), and the same formula holds for the algebraic
entropy halg when G is strongly compactly covered (see [61]).

Let G be a locally compact group, let N (G) be the family of all compact neighborhoods of 1 and µ be a right Haar
measure on G. For a continuous endomorphism φ : G → G, U ∈ N (G) and n ∈ N+, the n-th φ-cotrajectory Cn(φ,U) =
U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) is still in N (G). It can be shown that the value

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n
,

is independent of the choice of the Haar measure µ. The topological entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ N (G)}.

We are using here the same notation Htop and htop that we have already used in §5.2 for the topological entropy of continuous
selfmaps of compact spaces. This is safe since there is no possibility of confusion, moreover the two topological entropies
coincide for continuous endomorphisms of compact groups.

If G is discrete, then N (G) is the family of all finite subsets of G containing 1, and µ(A) = |A| for subsets A of G. So
Htop(φ,U) = 0 for every U ∈ N (G), hence htop(φ) = 0.

To obtain the topological entropy htop(φ) of a continuous endomorphism φ : G → G of a locally compact group via the
semigroup entropy, let V(G) be the family of all closed neighborhoods of 1 in G. Then

N (G) ⊆ V(G).

For U ∈ V(G), let

vT (U) =

{
− logµ(U) if µ(U) ≤ 1

0 otherwise;

note that the second case includes also the possibility µ(U) = ∞. Then (V(G),∩, vT ) is a normed semilattice. We order
V(G) by the containment, that is, (V(G),⊇). Then the norm vT is monotone with respect to this order and N (G) is cofinal
in (V(G),⊇).

Moreover, we associate to a continuous endomorphism φ : G → G the semigroup endomorphism φT : V(G) → V(G)
defined by φT (U) = φ−1(U) for every U ∈ V(G). The assignments G 7→ V(G) and φ 7→ φT define a contravariant functor

lctop : LCG→ S∗.

Theorem 7.1. Let G be a locally compact group and φ : G→ G a continuous endomorphism. Then Htop(φ,U) = Hlctop(φ,U)
for every U ∈ N (G), and so

htop(φ) = hlctop(φ).

Proof. Let U ∈ N (G). For every n ∈ N+ we have that

Tn(φT , U) = Cn(φ,U);

applying the definitions we can conclude that − logµ(Cn(φ,U)) = cn(φT , U). So,

Htop(φ,U) = hS∗(φT , U) = Hlctop(φ,U). (7.1)

As N (G) is cofinal in (V(G),⊇), now (7.1) implies that htop(φ) = hlctop(φ).

Let G be a locally compact group, µ a right Haar measure on G and φ : G → G a continuous endomorphism. To define
the algebraic entropy of φ with respect to U ∈ N (G) one uses the n-th φ-trajectory Tn(φ,U) = U · φ(U) · . . . · φn−1(U) of
U , that still belongs to N (G); the term “algebraic” is motivated by the fact that the definition of Tn(φ,U) (unlike Cn(φ,U))
makes use of the group operation.

It turns out that the value

Halg(φ,U) = lim sup
n→∞

logµ(Tn(φ,U))

n
(7.2)

does not depend on the choice of µ. It can be shown that Halg(φ,U) <∞. The algebraic entropy of φ is

halg(φ) = sup{Halg(φ,U) : U ∈ N (G)}.

(What Peters defined actually was, in our notation, halg(φ
−1) for a topological automorphism φ; it is denoted by h∞(φ) in

[93].)
As we saw above (7.2) is a limit when G is discrete. Moreover, if G is compact, then halg(φ) = Halg(φ,G) = 0.

Let K(G) be the family of all compact subsets of G containing 1. Then

N (G) = K(G) ∩ V(G).
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For U ∈ K(G), let

vA(U) =

{
logµ(U) if µ(U) ≥ 1

0 otherwise.

Then (K(G), ·, vA) is a normed semigroup containing N (G) as a subsemigroup. We consider on K(G) the order given by the
containment, that is, (K(G),⊆). Then the norm vA is monotone with respect this order and N (G) is cofinal in (K(G),⊆).

Moreover, we associate to a continuous endomorphism φ : G → G the semigroup endomorphism φA : K(G) → K(G)
defined by φA(U) = φ(U) for every U ∈ K(G). The assignments G 7→ K(G) and φ 7→ φA define a contravariant functor

lcalg : LCG→ S∗.

Theorem 7.2. Let G be a locally compact group and φ : G→ G a continuous endomorphism. Then Halg(φ,U) = Hlcalg(φ,U)
for every U ∈ N (G), and so

htop(φ) = hlcalg(φ).

Proof. Let U ∈ N (G). For every n ∈ N+ we have that

Tn(φA, U) = Tn(φ,U),

so applying the definitions we can conclude that logµ(Tn(φ,U)) = cn(φA, U). Therefore,

Halg(φ,U) = hS∗(φA, U) = Hlcalg(φ,U). (7.3)

As N (G) is cofinal in (K(G),⊆), now (7.3) implies that halg(φ) = hlcalg(φ).

Hereinafter we speak about the (Strong) Bridge Theorem, even if the functors considered in this section have S∗, and no
more S, as a target. The above definitions can be generalized in the obvious way, so we are not going to do that, although
we shall use SBT̂ in the obvious sense.

Considering the restriction ̂: TdLCA→ CcLCA (7.4)

of the Pontryagin duality functor, where the objects of TdLCA are all totally disconnected locally compact abelian groups
and the objects of CcLCA are all compactly covered locally compact abelian groups, Theorem 1.4 reads as follows:

Theorem 7.3. For the functor (7.4) the pair (htop, halg) satisfies BT̂. Similarly, the pair (halg, htop) satisfies BT̂ for the
inverse functor ̂: CcLCA→ TdLCA.

We leave open the following problem.

Question 7.4. Does the pair (hlctop,hlcalg) satisfy SBT̂ for the functor (7.4)? Does the pair (hlctop,hlcalg) satisfy SBT̂?

The validity of the Bridge Theorem for locally compact abelian group is open in general:

Question 7.5. Consider ̂: LCA→ LCA. Does the pair (htop, halg) satisfy BT̂?

We leave open also the following more general question.

Question 7.6. Consider ̂: LCA→ LCA. Does the pair (hlctop,hlcalg) satisfy SBT̂? Does the pair (hlctop,hlcalg) satisfy
SBT̂?

Indeed, we hope that considering halg and htop as functorial entropies may help in proving the most general version of
the Bridge Theorem between these two entropies.
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fractal dimensions of semigroup actions, submitted.
[10] A. Bís, D. Dikranjan, A. Giordano Bruno, L. Stoyanov: Receptive metric entropy for group and semigroup

actions, work in progress.
[11] F. Blanchard, Y. Lacroix: Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993) 985–992.
[12] N. N. Bogolyubov, N. M. Krylov: La théorie générale de la mesure dans son application à l’étude de systémes
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