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Some applications of Entropy to Geometric Group Theory

W.Xi∗, D. Dikranjan†, D. Freni‡ and D. Toller§

Abstract

We discuss the growth function of a finitely generated cascade and its connection to the growth function of
its related semi-direct product (Conjecture 1.9). The results is applied for simpler proof of well-known results
in the realm of geometric group theory. We show that the finitely generated cascades on nilpotent groups obey
the dichotomy rule (only polynomial and exponential growth are possible).

1 Introduction

Entropy has played an important role in different contexts since its first appearance in the middle of the 19th
century in thermodynamics. During the last century, several notions of entropy were introduced, such as measure,
topological and algebraic entropy. In the sequel we shall only discuss the algebraic entropy of group endomorphisms,
so we adopt in the sequel the abbreviation entropy for algebraic entropy. In the abelian case it was shortly introduced
in [1] and further studied thoroughly in [23, 18, 7, 20, 19] and [5] (see [6] for a complete picture in this case and see
§2 for the definition of entropy). Entropy for endomorphisms of arbitrary groups was introduced in [3] and further
studied in [10, 11]. The idea to combine entropy with the classical notion of growth of a finitely generated group
appeared in [4] and was further developed in [3, 10, 11].

In this article we apply entropy to obtain a more transparent proof of the classical Milnor-Wolf Theorem about
the growth rate of finitely generated soluble groups (Theorem 1.7). This idea of this argument was born during
a semester seminar at Udine University in 2013, dedicated to Geometric Group Theory. We noticed that the
massive use of entropy can give a more transparent proof than the standard proof of Milnor-Wolf Theorem [14, §5].
These results were presented by the second named author at the Conference “Gruppen und topologische Gruppen”
in January 2014, as well as at the Conference “Recent advances in Commutative Ring and Module Theory” at
Bressanone in 2016 (http://rings-modules-bressanone2016.blogspot.com/p/abstracts.html).

In what follows we recall basic facts on growth rate of maps (§1.1), flows in groups (§1.2), the classical notion
of growth of finitely generated groups (§1.3). In §1.4 we announce our main results.

1.1 Growth rate of maps N→ R
In order to measure and classify the growth rate of maps N → R, we need the relation � defined as follows. For
γ, γ′ : N → R let γ � γ′ if there exist n0, C ∈ N+ such that γ(n) ≤ γ′(Cn) for every n ≥ n0. Moreover γ ∼ γ′ if
γ � γ′ and γ′ � γ (then ∼ is an equivalence relation), and γ ≺ γ′ if γ � γ′ but γ 6∼ γ′.

For example, for every α, β ∈ R≥0, nα ∼ nβ if and only if α = β; if p(t) ∈ Z[t] and p(t) has degree d ∈ N,
then p(n) ∼ nd. On the other hand, an ∼ bn for every a, b ∈ R with a, b > 1, so in particular all exponentials are
equivalent with respect to ∼. Finally, a map γ : N→ R is called:

(a) polynomial if γ(n) � nd for some d ∈ N+;

(b) exponential if γ(n) ∼ 2n;

(c) subexponential if γ(n) ≺ 2n;

(d) intermediate if γ(n) � nd for every d ∈ N+ and γ(n) ≺ 2n.

An easy criterion for detecting (and measuring) polynomial growth provides the growth exponent δ(γ) defined

for a function γ : N→ R by δ(γ) := lim supn→∞
log γ(n)
logn . Then one can easily see that γ is polynomial if and only

if δ(γ) <∞. In such a case, γ ∼ nδ(γ). In other words, γ is intermediate if and only if δ(γ) =∞ and γ(n) ≺ 2n.
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1.2 Flows in Grp and their growth rate

In the sequel Grp denotes the category of groups and group homomorphisms.

Definition 1.1. A flow in Grp is a pair (G,φ), where G is a group and φ : G→ G is an endomorphism of G. The
flow (G,φ) is called a cascade, in case φ is an automorphism.

If the group G is abelian (or nilpotent), then we speak of abelian flow (or nilpotent flow) and abelian cascade
(or nilpotent cascade), respectively. Call a flow (G,φ) trivial, if φ = idG.

For a flow (G,φ) a subgroup H of G is said to be φ-invariant, if φ(H) ≤ H; a φ-invariant subgroup is said to
be φ-stable, if φ−1(H) ≤ H. Subflow and subcascades are defined as follows.

Definition 1.2. Let (G,φ) be a flow (cascade) in Grp. A subflow (subcascade) of (G,φ) is a pair (H,φ �H), such
that H is a φ-invariant (φ-stable) subgroup of G.

Let (G,φ) be a flow in Grp, and F be a non-empty finite subset of G. For every n ∈ N+, we call

Tn(φ, F ) := F · φ(F ) · . . . · φn−1(F )

the n-trajectory of φ, and

T+(φ, F ) =
⋃
n∈N+

Tn(φ, F )

the trajectory of φ.
The subgroup Gφ,F of G generated by the trajectory T+(φ, F ) is φ-invariant, as it coincides with the subgroup

generated by the orbit {F, φ(F ), . . . , φn(F ), . . .} of F . Note that the trajectories of F and F1 = {eG} ∪ F ∪ F−1
generate the same subgroup Gφ,F = Gφ,F1

of G.

Definition 1.3. We say that the flow (G,φ) in Grp is finitely generated if G = Gφ,F for some finite subset F of
G; if such an F is a singleton, we call cyclic the flow (Gφ,F , φ).

Consider the function

γφ,F : N+ → N+ defined by γφ,F (n) = |Tn(φ, F )| for every n ∈ N+.

Since
|F | ≤ γφ,F (n) ≤ |F |n for every n ∈ N+,

the growth of γφ,F is always at most exponential. Following [4] and [3], we give the following definition.

Definition 1.4. Let (G,φ) be a finitely generated flow in Grp and let F be a finite subset of G such that
eG ∈ F = F−1 and G = Gφ,F . We say that

• (G,φ) has polynomial growth with respect to F or (G,φ, F ) has polynomial growth, if γφ,F is polynomial.

• (G,φ) has exponential (respectively, subexponential, intermediate) growth with respect to F or (G,φ, F ) has
exponential (respectively, subexponential, intermediate) growth, if γφ,F is exponential (respectively, subexpo-
nential, intermediate).

Before proceeding further, let us make an important point here. For a finite subset F of G, all properties
considered above concern practically the φ-invariant subgroup Gφ,F of G and the restriction φ �Gφ,F . Hence, all
properties listed above concern finitely generated flows in Grp.

1.3 The growth of a finitely generated group

The notion of growth of a finitely generated flow, applied to trivial flows, generalizes the classical notion of growth of
a finitely generated group given independently by Schwarzc [21] and Milnor [15]. Indeed, if G is a finitely generated
group and X is a finite symmetric set of generators of G containing eG, then γX = γidG,X is the classical growth
function of G with respect to X. For a connection of the terminology coming from the theory of algebraic entropy
and the classical one, note that for n ∈ N+ we have that Tn(idG, X) = {g ∈ G : `X(g) ≤ n}, where `X(g) is the
length of the shortest word w in the alphabet X such that w = g. Since `X is a norm on G, the set Tn(idG, X)
coincides with the ball BSn (eG) of radius n centered at eG and γX(n) is the cardinality of this ball.

Milnor [17] proposed the following problem on the growth of finitely generated groups.

Problem 1.5 (Milnor Problem). [17] Let G be a finitely generated group, and X be a finite symmetric set of
generators of G containing eG.
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(i) Is the growth function γX necessarily equivalent either to a power of n or to the exponential function 2n?

(ii) In particular, is the growth exponent δG = lim supn→∞
log γX(n)

logn either a well defined integer or infinity? For
which groups is δG finite?

Part (i) of Problem 1.5 was solved negatively by Grigorchuk in [12], where he constructed an example of
finitely generated group G with intermediate growth. For part (ii) Milnor conjectured that δG is finite (i.e., G has
polynomial growth) if and only if G is virtually nilpotent (i.e., G contains a nilpotent finite-index subgroup). The
same conjecture was formulated by Wolf [24] (who proved that a nilpotent finitely generated group has polynomial
growth) and Bass [2]. Gromov [13] confirmed Milnor’s conjecture:

Theorem 1.6. [13] A finitely generated group G has polynomial growth if and only if G is virtually nilpotent.

In spite of the negative solution of Grigorchuk, the dichotomy of item (i) of Milnor problem (namely, γF either
polynomial or exponential for a finitely generated group G = 〈F 〉) turned out to hold true for some classes of
groups, e.g., linear groups. This follows from the famous Tits Alternative (every finitely generated linear group
either contains a free non-abelian group or a soluble subgroup of finite index, see [22]) and the following.

Theorem 1.7. [16, 24] There exist no finitely generated soluble groups of intermediate growth.

Our aim is to give a new proof of Theorem 1.7 (i.e., a finitely generated soluble group of subexponential growth
has polynomial growth), by using properties of entropy in abelian groups. More precisely, we use the subtle fact
that every abelian flow (G,φ) of entropy zero and G 6= 0 has non-trivial quasi-periodic elements (see Definition 2.6).
Using this fact (via Lemma 3.10) we deduce in Theorem 4.4 that a finitely generated soluble group of subexponential
growth is virtually nilpotent. Hence, it has polynomial growth by Theorem 1.6.

We split the proof of Milnor-Wolf theorem in several steps, as explained in more detailed below.

1.4 Main results

Let the pair (G,φ) be a cascade, i.e., φ ∈ Aut(G). For a finite subset F of G and n ∈ N we define

T−n(φ, F ) := φ−n(F ) · φ−n+1(F ) · . . . · φ−1(F ) = φ−n(Tn(φ, F )),

and Tn(φ, F ) = T−n(φ, F ) · Tn(φ, F ).

We also define
T−(φ, F ) =

⋃
n∈N

T−n(φ, F ) and T (φ, F ) =
⋃
n∈N

Tn(φ, F ).

We say that the cascade (G,φ) is finitely generated (cyclic, respectively) if there exists a finite subset (a singleton,
respectively) F of G such that G = 〈T (φ, F )〉.

Theorem A. Let (G,φ, F ) be a finitely generated cascade of subexponential growth. Then the group G is finitely
generated.

The proof of Theorem A, which is showed in §3.1, follows from Remark 2.1 and Proposition 3.6.

Theorem B. Let (N,φ) be a cascade and G = N o 〈φ〉. Then G is finitely generated if and only if the cascade
(N,φ) is finitely generated. Moreover,

(a) if F is a finite set of generators of the cascade (N,φ), then γφ,F � γG;

(b) if G has subexponential growth, then (N,φ, F ) has subexponential growth for every F ∈ [N ]<ω, and N is a
finitely generated group.

Theorem B is proved in §3.2. As a growth is either exponential or subexponential, combining this with item (b)
in Theorem B, we obtain the following corollary.

Corollary 1.8. If (N,φ, F ) is a finitely generated cascade of exponential growth, then the group G = N o 〈φ〉 has
exponential growth.

It is not clear whether one can replace here “exponential” by “subexponential” or “polynomial”. The next
theorem shows that this is the case when the flow is nilpotent. Its proof follows by Theorem 3.11.

Theorem C. If (N,φ) is a finitely generated nilpotent cascade, then the group G = N o 〈φ〉 has the same type of
growth as the cascade (N,φ).

By Theorem A, if (N,φ) is a finitely generated cascade of subexponential growth, then the group N is finitely
generated. This suggests the following.
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Conjecture 1.9. If (N,φ, F ) is a finitely generated cascade and G = N o 〈φ〉, then the group G has the same type
of growth as the cascade (N,φ, F ).

The conjecture holds true when φ is periodic (Remark 2.10), or when N is nilpotent (Theorem C), or when the
cascade (N,φ, F ) has exponential growth (Corollary 1.8). In fact, Giordano Bruno and Spiga have recently proved
the following result.

Proposition 1.10. [11, Proposition 5.2] If N is a finitely generated group and φ : N → N is an automorphism,
then the cascade (N,φ) has polynomial growth if and only if the group G = N o 〈φ〉 has polynomial growth.

Then the remaining part of Conjecture 1.9 can be formulated as follows (see also [11, Conjecture 5.4]):

Conjecture 1.11. If N is a finitely generated group and (N,φ, F ) is a cascade of subexponential growth, then the
(finitely generated) group G = N o 〈φ〉 has subexponential growth.

1.5 Notation and terminology

We denote by R, Q, Z, and N the sets of real, rational, integer, and natural numbers, and by N+ and P the sets of
positive natural numbers and prime numbers, respectively. We denote by [X]<ω the family of the finite non-empty
subsets of a set X.

For a positive integer k, we denote by Z(k) the finite group with k elements, and by Z[ 1k ] ⊆ Q the subring of Q
generated by 1

k .
Let G be a group with identity eG. For a subset A of G, we denote by 〈A〉 the subgroup generated by A. If

x ∈ G and 〈x〉 is finite, then x is a torsion element of G, and o(x) = |〈x〉| is the order of x. For n ∈ N+, let
G[n] = {g ∈ G : gn = eG}, and t(G) =

⋃
n∈N+ G[n] be the torsion part of G. In particular, G is torsion if t(G) = G,

while G is torsion-free if t(G) = {eG}.
We denote by G′ the derived subgroup of G, namely the subgroup of G generated by all commutators [a, b] =

aba−1b−1, as a, b ∈ G. As usual Z(G) denotes the center of G. The n-th center Zn(G) is defined as follows for
n ∈ N. Let Z0(G) = {e}, Z1(G) = Z(G), and assume that Zn−1(G) is already defined for n > 1. Consider the
canonical projection π : G→ G/Zn−1(G) and let Zn(G) = π−1Z(G/Zn−1(G)). Note that Zn(G) = {x ∈ G : [x, y] ∈
Zn−1(G) for every y ∈ G}.

A group N is called nilpotent, if there exists a finite central series

{eN} = N0 / N1 / . . . / Nl−1 / Nl = N, (1)

i.e., a series of normal subgroups of N such that for each i < l the center of the quotient N/Ni contains Ni+1/Ni,
i.e., the subgroup 〈[y, g] : y ∈ Ni+1, g ∈ N〉 is contained in Ni (or, as one briefly says, N centralizes all the quotients
Ni+1/Ni). In particular, Ni is characteristic in N . The nilpotency class of a nilpotent group N is the smallest
positive l for which a series as in (1) satisfies the above properties.

It is pleasure to thank Anna Giordano Bruno and Kıvanç Ersoy for helpful discussions on the topic of the paper.

2 Background

If (G,φ) is a flow, and F ∈ [G]<ω, the limit

Halg(φ, F ) := lim
n

log γφ,F (n)

n
≤ log |F |

exists, due to a folklore lemma of Fekete [9] (see [3]). Throughout this paper, log x always stands for the natural
logarithm of x, in base the Napier number e.

The (algebraic) entropy halg(φ) of φ is defined by

halg(φ) := sup{Halg(φ, F ) : F ∈ [G]<ω}.

In the next Remark 2.1 we see that Halg(φ, F ) > 0 if and only if γφ,F has exponential growth.

Remark 2.1. Let (G,φ) be a flow. Let us check that halg(φ) > 0 if and only if γφ,F has exponential growth for
some finite subset F of G. Indeed, halg(φ) > 0 exactly when Halg(φ, F ) > 0 for some F . If a = Halg(φ, F ), we have

that in this case
log γφ,F (n)

n > a
2 for all sufficiently large n, so γφ,F (n) > e

a
2n for all sufficiently large n. Similarly, if

b > 1 and γφ,F (n) > bn for all sufficiently large n, then Halg(φ, F ) > log b, so halg(φ) ≥ log b > 0.

This is why, a flow with subexponential growth has zero entropy. In the abelian case, this leads to polynomial
growth by the following theorem.
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Theorem 2.2. [4, Dichotomy Theorem] Every abelian algebraic flow (G,φ) has either exponential or polynomial
growth with respect to any fixed non-empty finite subset F of G.

If a finitely generated abelian flow (cascade) (G,φ) has polynomial (subexponential) growth, then so does every
finitely generated subflow (subcascade) of (G,φ). This will be proved in Lemma 5.2 in §5.

Remark 2.3. Consider a finitely generated group G, having a subgroup G1 which is finitely generated by some
subset F1 ⊆ G1. Then the growth of G1 is subexponential whenever the growth of G is subexponential. Indeed,
if the latter holds, then by definition γidG,F is subexponential for every F ∈ [G]<∞, so γidG1

,F1
= γidG,F1

�G1
is

subexponential.

Lemma 2.4. [4, Lemma 2.8] Let (G,φ) be an abelian flow and F ∈ [G]<ω. If Halg(φ, F ) = 0, then halg(φ �Gφ,F
) = 0.

This lemma shows that, for a finitely generated abelian flow, the property of having entropy zero does not
depend on the (finite) set of generators; in other words, if an abelian flow (G,φ) has subexponential growth with
respect to some F ∈ [G]<ω, then it has subexponential growth with respect to every F ′ ∈ [G]<ω. This is a particular
case of Lemma 5.2.

Next we recall the notion of Pinsker subgroup P(G,φ) of a flow (G,φ).

Theorem 2.5. [4] Let G be an abelian group and φ ∈ End(G). Then G has a maximum φ-invariant subgroup
P(G,φ) such that halg(φ �P(G,φ)) = 0. It satisfies P(G/P(G,φ), φ) = 0.

2.1 Quasi-periodic elements and the QP-subgroup

Definition 2.6. An element x ∈ G is a quasi-periodic point of φ if there exist n > m in N such that φn(x) = φm(x).

The quasi-periodic points of a flow (G,φ) form a φ-invariant subgroup Q1(G,φ). For example, if G is a torsion
abelian group, then P(G,φ) = Q1(G,φ) (see [7]).

If Q1(G,φ) is finitely generated, then there exists n > m in N, such that φn �Q1(G,φ)= φm �Q1(G,φ). Indeed,
if Q1(G,φ) = 〈x1, . . . , xk〉, fix 1 ≤ i ≤ k and let φni(xi) = φmi(xi) for ni > mi in N. If m is the maximum
among m1, . . . ,mk, and d is the least common multiple of the positive numbers n1 − m1, . . . , nk − mk, then
φm(xi) = φm+d(xi), so φm = φm+d on Q1(G,φ).

Let G be an abelian group and φ ∈ End(G). In the general (non-torsion) case one has a chain

Q0(G,φ) ⊆ Q1(G,φ) ⊆ . . . ⊆ Qn(G,φ) ⊆ . . . , (2)

where Q0(G,φ) = 0, and Qn+1(G,φ)/Qn(G,φ) = Q1(G/Qn(G,φ), φ̄) for every n ∈ N, where φ̄ is the induced
endomorphism G/Qn(G,φ)→ G/Qn(G,φ). Finally, one defines the subgroup Q(G,φ) =

⋃
n∈NQn(G,φ).

Remark 2.7. Recall that a normal subgroup H of a group G is pure if the quotient G/H is torsion-free. Each
Qn(G,φ), and Q(G,φ), is a φ-invariant subgroup of G, and these subgroups are pure whenever G is torsion-free
([4, Lemma 4.5]).

Theorem 2.8. [4] If (G,φ) is an abelian flow, then Q(G,φ) =P(G,φ). Moreover, this subgroup is the maximum
φ-invariant subgroup P of G such that φ�P has polynomial growth.

In analogy with the series (2) one can define

{0} = Fix0(G,φ) ⊆ Fix1(G,φ) ⊆ . . . ⊆ Fixn(G,φ) ⊆ . . . , (3)

where, Fix1(G,φ) := {x ∈ G : x is a fixed point of φ} ≤ G and

Fixn+1(G,φ)/Fixn(G,φ) = Fix1(G/Fixn(G,φ), φ̄)

for every n ∈ N. Since φ acts on the quotient G/Fixn(G,φ) by means of the quotient map φ̄, we say that φ “fixes”
the quotient Fixn+1(G,φ)/Fixn(G,φ). Since G is an abelian group, ψ = φ − idG is an endomorphism of G and
Fixn(G,φ) = kerψn.

In these terms one can characterize of the abelian cascades (G,φ) such that the ascending series (3) reaches G
after finitely many steps as follows:

Lemma 2.9. For an abelian group G and an automorphism φ of G, the extension G∗ = Go 〈φ〉 is nilpotent if and
only if there exists n such that Fixn(G,φ) = G.
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Proof. For every k ∈ N with Fixk(G,φ) 6= G, the k-th center of G∗ is Zk(G∗) = Fixk(G,φ) o 〈1〉. Then the
ascending central series of G∗ is

Fix0(G,φ) o 〈1〉 ⊆ Fix1(G,φ) o 〈1〉 ⊆ . . . ⊆ Fixn(G,φ) o 〈1〉 ⊆ . . . ⊆ G∗.

Since G∗ is nilpotent if and only if there exists k such that Zk(G∗) = G∗, we deduce that for the smallest such k
one has G∗ 6= Zk−1(G∗) = Fixk−1(G,φ) o 〈1〉, and so Fixk(G,φ) = G.

An automorphism φ of a group N is periodic if φ is a torsion element of the group Aut(N), i.e. if φm = idN
for some positive integer m, so the subgroup 〈φ〉 of Aut(N) is isomorphic to some finite cyclic group Z(m). In this
case, the cascade (N,φ) is called periodic. If (N,φ) is a periodic cascade, then its growth coincides with that of the
group N :

Remark 2.10. Let N be a group, finitely generated by a finite symmetric subset F . Let φ be a periodic auto-
morphism of N and let m be the order of φ in Aut(N). Then the semi-direct product G = N o 〈φ〉 ∼= N oZ(m) is
finitely generated and its growth γG is of the same type as that of γN , as N has finite index in G.

3 Cascades

3.1 The growth of cascades – Proof of Theorem A

Example 3.1. A cascade (G,φ) is finitely generated whenever it is a finitely generated flow. Nevertheless, a finitely
generated cascade (G,φ) need not be also a finitely generated flow in general. In particular, the group G need not
be finitely generated, see Proposition 3.6. Take for example

(a) G = Z[1/2] and the automorphism φ : G→ G defined by φ(x) = 2x for any x ∈ G;

(b) the two sided right Bernoulli shift φ : G :=
⊕

Z Z(2)→ G defined by φ((xn)) = (xn−1).

Indeed, in (a) G =
⋃
n∈Z Cn, where the subgroups Cn = 〈 1

2n 〉 form an increasing chain and φ(Cn) = Cn−1. So,
G 6= 〈T+(φ, F )〉 for any finite subset F of G, while G = 〈T−(φ, {1})〉 = 〈T (φ, {1})〉 (so the flow (G,φ−1) is finitely
generated, even cyclic).

Similarly, in (b) we have G 6= 〈T+(φ, F )〉 and G 6= 〈T−(φ, F )〉 for any finite subset F of G (so the flows (G,φ)
and (G,φ−1) are not finitely generated), while G = 〈T (φ, Fm)〉, where Fm = {x = (xn) : xn = 0 for all n 6= m}
and m ∈ Z. So the cascade (G,φ) is finitely generated.

One can define the growth of a finitely generated cascade in a way similar to that of finitely generated flows:

Definition 3.2. A finitely generated cascade (G = 〈T (φ, F )〉, φ) has (sub)exponential (or polynomial) growth, if
the function n 7→ |Tn(φ, F )| has (sub)exponential (or polynomial) growth. We say that (G = 〈T (φ, F )〉, φ) has
exponential growth, if the function n 7→ |Tn(φ, F )| has exponential growth.

Remark 3.3. Note that for functions γ, γ′ : N→ R, with γ′(n) = γ(n)2 for all but finitely many n, one has γ � γ′,
and actually, γ ∼ γ′, if at least one of them is exponential. Anyway, such a pair of functions has always the same
type of growth. On the other hand, always γ 6∼ γ′, when the functions are polynomial and at least one of them is
of positive degree.

Lemma 3.4. Let (G,φ) be a cascade which is finitely generated as a flow. Then (G,φ, F ) has (sub)exponential (or
polynomial) growth as a cascade if and only if it has (sub)exponential (or polynomial) growth as a flow.

Proof. Since T−n(φ, F ) = φ−n(Tn(φ, F )), one has

|Tn(φ, F )| ≤ |T−n(φ, F ) · Tn(φ, F )| = |φ−n(Tn(φ, F )) · Tn(φ, F )| ≤ |φ−n(Tn(φ, F ))||Tn(φ, F )| ≤ |Tn(φ, F )|2.

According to Remark 3.3, |Tn(φ, F )| and |Tn(φ, F )|2 have the same type of growth. Hence, G = 〈T (φ, F )〉 has
(sub)exponential growth if and only if n 7→ |Tn(φ, F )| has a (sub)exponential growth, if and only if n 7→ |Tn(φ, F )|
has a (sub)exponential growth.

Example 3.1 shows that the underlying group of a finitely generated cascade need not be a finitely generated
group in general. In the following results, we show some additional assumptions under which if (G,φ) is a finitely
generated flow, then G is finitely generated.

Fact 3.5. [8, Corollary 2.4(b)] If (G,φ) is a finitely generated abelian flow with halg(φ) < log 2, then the group G
is finitely generated.
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The next proposition shows that the abelian assumption in the fact above is not necessary, thus proving Theorem
A.

It is proved in [10, Lemma 4.2] that if a cyclic flow (G,φ, {g}) is not a finitely generated group, thenHalg(φ, {eG, g}) >
0.

Proposition 3.6. Let (G,φ) be a flow with halg(φ) < log 2. Then the group G is finitely generated in the following
two cases:

(a) if the flow (G,φ) is finitely generated,

(b) if φ is an automorphism, and the cascade (G,φ) is finitely generated as a cascade.

Proof. (a) We show first that one can assume without loss of generality that (G,φ) is cyclic. Indeed, assume that
F = {y1, . . . , yd} is the finite set of generators of the flow (G,φ). Let (Gi, φ �Gi) by the cyclic subflow generated
by the singleton {yi}. The subgroup H generated by the subgroups G1, . . . , Gd is φ-invariant and contains F , so
H = G. Hence, it suffices to check that each subgroup Gi is finitely generated.

From now on we assume that (G,φ) is cyclic, and generated as a flow by F := {e, y}. As

lim
n

log |Tn(φ, F )|
n

= Halg(φ, F ) ≤ halg(φ) < log 2,

we obtain |Tn(φ, F )| < 2n for all sufficiently large n, and this means the following. If α = (k0, . . . , kn−1) ∈ {0, 1}n
and

wα = yk0φ(yk1) . . . φn−1(ykn−1)

is a generic element of Tn(φ, F ), then there exists a pair α, β ∈ {0, 1}n, β = (l0, . . . , ln−1) 6= α, such that wα = wβ .
Choosing the minimum n with this property, we can assume kn−1 = 1 6= 0 = ln−1. From wα = wβ we deduce
that φn−1(y) ∈ L+ := 〈Tn−1(φ, F )〉, so Tn(φ, F ) ⊆ 〈Tn−1(φ, F )〉. Then L+ = 〈Tn(φ, F )〉, and L+ is a φ-invariant
subgroup containing F . Hence, G = L+ is finitely generated.

(b) Assume now that (G,φ) is a finitely generated cascade. By arguing as above, one can assume again that
(G,φ) is cyclic and find n such that the finitely generated subgroup L+ := 〈Tn−1(φ, F )〉 is φ-invariant. Analogously
one can find n′ such that L− := 〈Tn′(φ−1, F )〉 is φ−1-invariant. Then the subgroup L generated by L−L+ is finitely
generated. Moreover, as φ−1(L+) ≤ L and φ(L−) ≤ L, we deduce that L is φ-stable. Since it contains F , we have
L = G, hence G is finitely generated.

As an application of the above result, we immediately obtain Theorem A.

Proof of Theorem A. Let (G,φ, F ) be a finitely generated cascade of subexponential growth, and we have to
prove that the group G is finitely generated.

By Remark 2.1, we have that halg(φ) = 0, so Proposition 3.6 applies.

Theorem A yields that both cascades in Example 3.1 have exponential growth.

3.2 The semi-direct product associated to a cascade – Proof of Theorem B

Every cascade (N,φ) gives rise to a semi-direct product G = N o 〈φ〉. Clearly, the group G is finitely generated
whenever the cascade (N,φ) is finitely generated. The inverse implication holds as well by the following Theorem
B, that also provides a condition that ensures the stronger conclusion that N itself is a finitely generated group.

Now we are in the position to prove Theorem B, so let (N,φ) be a cascade and G = N o 〈φ〉. Recall that we
have to prove that G is finitely generated if and only if the cascade (N,φ) is finitely generated. Moreover,

(a) If F is a finite set of generators of the cascade (N,φ), then γφ,F � γG;

(b) If G has subexponential growth, then the cascade (N,φ) has subexponential growth for every F ∈ [N ]<ω,
and N is a finitely generated group.

Proof of Theorem B. Obviously, the group G will be finitely generated if the cascade (N,φ) is finitely generated.
Now, suppose that the group G is finitely generated and fix a finite set F0 of generators of G. For simplicity, denote
by x the element (eN , φ) of G. Then the restriction on N of the conjugation by x is simply φ.

Adding x to the set of generators F0, we can arrange so that this finite set of generators has the form F0 = {x}∪F ,
where F = {y1, . . . , yd} is a finite subset of N (from now on we identify N with the subgroup N × {1} of G, so we
consider F as a subset of G as well). The subset F of N need not generate the cascade (N,φ). Our aim here is to see
that enlarging it appropriately we can find a finite set that generates the cascade (N,φ). Obviously, K = 〈T (φ, F )〉
is a φ-stable subgroup of N that determines a subcascade (K,φ �K) of (N,φ). Since 〈x,K〉 = 〈x, F 〉 = G, this
means that K is a normal subgroup of G and G/K is generated by the coset xK ∈ G/K. Therefore, the subgroup
N/K of G/K is cyclic as well. Let yK be a generator of N/K, where y ∈ N . Then F1 = F ∪ {y} is a finite subset
of N , such that N = 〈K ∪ {y}〉 = 〈T (F1, φ)〉. Hence, the cascade (N,φ) is finitely generated.
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(a) First we prove the following inclusion
Tn(φ, F ) ⊆ BS3n−2(eG), (1)

where S is any symmetric finite set of generators of G containing {x} ∪ F . Indeed, a generic element of
Tn(φ, F ) has the form

zα =

n−1∏
k=0

φk(yk), where α = (y0, . . . , yn−1) ∈ Fn.

Since φk(yk) = xkykx
−k, we obtain

zα =

n−1∏
k=0

xkykx
−k = y0xy1x

−1x2y2x
−2 . . . xn−1yn−1x

−n+1 = y0xy1xy2x . . . xyn−1x
−n+1.

Hence, lS(zα) ≤ 3n− 2. This proves (1).

From (1) we deduce
|Tn(φ, F )| ≤ γS(3n− 2) ≤ γS(3n).

Since γS(3n) ∼ γS(n), we deduce the required relation.

(b) In case G has subexponential growth, and F generates the cascade (N,φ), then γφ,F ≺ γG implies that
(N,φ, F ) has subexponential growth as well. Now Theorem A applies to conclude that N is finitely generated.

Remark 3.7. Note that if every cyclic subcascade 〈φn(y) : n ∈ Z〉 of a finitely generated cascade (N,φ) has
subexponential growth, one can not deduce that the whole cascade (N,φ) has subexponential growth as well.

This is clearly the case when N is abelian, but this property fails to be true for example in non-abelian free
groups.

Corollary 3.8. If (N,φ) is a finitely generated cascade and the group G = N o 〈φ〉 has subexponential growth,
then the cascade (N,φ) has subexponential growth. In particular, N is finitely generated.

It is not clear whether one can replace here “subexponential growth” either by “polynomial growth”, or “inter-
mediate growth”, or “exponential growth” (see Conjecture 1.9).

The following examples shows that the stronger assertion γφ,F ∼ γG is false.

To this end, consider the Heisenberg group H =

1 Z Z
0 1 Z
0 0 1

 ∼=
1 0 Z

0 1 Z
0 0 1

 o

1 Z 0
0 1 0
0 0 1

 where the action of1 1 0
0 1 0
0 0 1

 on

1 0 x
0 1 y
0 0 1

 is given by the usual matrix conjugation in GL3(Z)

1 1 0
0 1 0
0 0 1

 ·
1 0 x

0 1 y
0 0 1

 ·
1 −1 0

0 1 0
0 0 1

 =

1 1 0
0 1 0
0 0 1

 ·
1 −1 x

0 1 y
0 0 1

 =

1 0 x+ y
0 1 y
0 0 1

 .
Example 3.9. Let N = Z2, with generators e1 = (1, 0) and e2 = (0, 1).

(a) Consider the automorphism φ : N → N of N defined by φ(e1) = e1, φ(e2) = e1 + e2, so φ(x, y) = (x+ y, y).
Then G = N o 〈φ〉 is isomorphic to the Heisenberg group H recalled above, hence γG ∼ n4 (this follows from
the isomorphism G ∼= H and Bass-Guivarch Formula [2]).

On the other hand, F = {±e1,±e2} is a symmetric set of generators of the cascade (N,φ) for which one can
inductively check that both T−n and Tn are contained in [−n2, n2]× [−n, n], so that Tn(φ, F ) = T−n + Tn ⊆
[−2n2, 2n2]× [−2n, 2n] and |Tn(φ, F )| ≤ cn3 for a positive constant number c. Hence, γφ,F � n3.

(b) Let now be ψ : N → N the automorphism of N given by ψ(e1) = e2 and ψ(e2) = e1 + e2. To compute
halg(ψ) extend ψ to the automorphism ψ : Q2 → Q2 defined in the same way. Then by Yuzvinski formula,
halg(ψ) = logα > 0, where α is the Golden Ratio, i.e., the positive root of the characteristic polynomial
x2 − x − 1 of ψ. By Remark 2.1, halg(ψ) > 0 yields the existence of a finite subset F of N such that
n 7→ |Tn(ψ, F )| has exponential growth. Then G = N o 〈ψ〉 has exponential growth by Corollary 1.8.
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3.3 Nilpotent cascades – Proof of Theorem C

Let us see first that Conjecture 1.9 holds true for an abelian cascade (N,φ) of subexponential growth, for which
Theorem 2.2 implies that (N,φ) has indeed polynomial growth. Here G = N o 〈φ〉 is necessarily solvable, so that
if the conjecture is true, then G must be of polynomial growth, hence virtually nilpotent.

Lemma 3.10. If (A,ψ, F ) is a finitely generated abelian cascade of subexponential growth, then there exist a chain
of ψ-stable subgroups A1 < A2 < . . . < Am = A of A and k ∈ N+ such that ψk fixes all the quotients Ai+1/Ai.

Proof. As (A,ψ, F ) has subexponential growth, we have halg(ψ) = 0 by Remark 2.1. Then the group A is finitely
generated by Proposition 3.6, hence its torsion subgroup t(A) is finite. Since t(A) is finite and ψ-stable, we deduce
that ψ �t(A) is periodic, so t(A) is contained in Q1(A,ψ). The group A/t(A) is torsion-free, hence all its subgroups
Qn(A/t(A)) are pure by Remark 2.7. Therefore, there exists a finite m such that

Q1(A,ψ) ≤ Q2(A,ψ) < . . . < Qm(A,ψ) = Q(A,ψ).

As halg(ψ) = 0, Theorem 2.8 implies that A = P(A,ψ) = Q(A,ψ), and in particular Qm(A,ψ) = A.
Each Ai := Qi(A,ψ) is a ψ-stable subgroup of A and each quotient Ai+1/Ai consists entirely of quasi-periodic

elements. As the induced endomorphism ψ̄i of Ai+1/Ai is an automorphism, these quasi-periodic elements are
actually periodic. Moreover, as Ai+1/Ai is finitely generated, the automorphism ψ̄i is periodic, say of period ki.
Now k = k1 . . . km works.

Note that, in the notation of Lemma 3.10, the subgroup Ao 〈ψk〉 of G = Ao 〈ψ〉 is nilpotent by Lemma 2.9,
so G is virtually nilpotent. Now we generalize this result to the case when a finitely generated cascade is nilpotent.

Theorem 3.11. If (N,φ, F ) is a finitely generated nilpotent cascade, then the following conditions are equivalent:

(a) there exists k ∈ N such that G1 = N o 〈φk〉 is nilpotent;

(b) the group G = N o 〈φ〉 is virtually nilpotent;

(c) G has polynomial growth;

(d) G has subexponential growth;

(e) the cascade (N,φ, F ) has subexponential growth.

In particular, the group G = N o 〈φ〉 has the same type of growth as the cascade (N,φ, F ).

Proof. First, note that the group G is finitely generated by Theorem B.
If (N,φ, F ) has exponential growth, then so does G according to Corollary 1.8.
Obviously (a) → (b), while (b) → (c) by Theorem 1.6. The implication (c) → (d) is trivial, and (d) → (e)

follows by item (b) of Theorem B.
It remains to prove that (e) → (a). Assume that (N,φ, F ) has subexponential growth. By Theorem B, N is

finitely generated. As N is nilpotent, we can find a central series (1), i.e., a normal series such that N centralizes
all the quotients Ai := Ni+1/Ni, and φ stabilizes each subgroup Ni. For the finitely generated abelian group Ai we
find a power ki, such that φki centralizes Ai by applying Lemma 3.10. Take k = k0k1 · · · kl−1, so the automorphism
φk centralizes all the quotients Ni+1/Ni. As G1 centralizes all the quotients Ni+1/Ni with i < l and the quotient
G1/Nl−1 is abelian as φk (so G1 as well) stabilizes Nl/Nl−1, we deduce that the subgroup G1 = N o 〈φk〉 is
nilpotent.

The conclusion of Theorem 3.11 above covers the proof of Theorem C.
Now we show that there exists no nilpotent cascade of intermediate growth. This generalizes Theorem 2.2 in

the case of cascades.

Corollary 3.12. A finitely generated nilpotent cascade of subexponential growth is of polynomial growth.

By Theorem 3.11, Conjecture 1.9 has positive answer for nilpotent groups. In the next proposition we prove
that it also has positive answer for solvable cascades of polynomial growth.

Proposition 3.13. Let (N,φ, F ) be a finitely generated solvable cascade. If the group G = N o 〈φ〉 has subexpo-
nential growth, then the group N is finitely generated, and the cascade (N,φ, F1) has polynomial growth for some
finite subset F1 ⊇ F of N .
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Proof. The finitely generated solvable group G has polynomial growth by Theorem 1.7, so it is virtually nilpotent by
Theorem 1.6. Let G∗ be a finite index nilpotent subgroup of G. Inside G∗, we can find a finite index characteristic
subgroup of G, so we can just assume G∗ to be a finite index nilpotent characteristic subgroup of G.

Theorem B implies that the cascade (N,φ, F ) has subexponential growth, and that the group N is finitely
generated. Consider the subgroup N∗ = G∗ ∩N of G∗. Then N∗ is nilpotent, and it has finite index in N , so N∗

is a finitely generated nilpotent group.
Moreover, N∗ is φ-stable, being the intersection of two φ-stable groups, so we can consider the group G0 =

N∗ o 〈φ〉, and note that G0 has finite index in G, so also G0 has polynomial growth.
Now Theorem 3.11 ensures that the finitely generated cascade (N∗, φ) has polynomial growth, say with respect

to some finite F0 ⊆ N∗. Finally, let F1 = F ∪ F0.

4 Applications towards Milnor-Wolf Theorem

A group is called polycyclic, if there exists a normal series

{eG} = G0 / G1 / . . . / Gl−1 / Gl = G, (4)

with cyclic quotients Gi+1/Gi. The number h(G) of infinite quotients, called Hirsch length, does not depend on
the choice of the series (4).

Lemma 4.1 (Milnor). Let G be a finitely generated group of subexponential growth. Then the derived subgroup G′

of G is also finitely generated.

Proof. The quotient G/G′ is a finitely generated abelian group. So G/G′ ∼= Zd × F , where d ∈ N and F is a finite
group. Hence one can build a series G′ = N0 ≤ N1 ≤ N2 ≤ . . . ≤ Nd ≤ G, such that Ni+1/Ni ∼= Z for all 0 ≤ i < d
and G/Nd ∼= F is finite. Then Nd is a finitely generated group of subexponential growth and all Ni are normal
subgroups of G. We prove that each Ni is finitely generated by induction on d. The case d = 0 follows from the
fact that a finite index subgroup of a finitely generated group is itself finitely generated. Clearly, it suffices to check
the assertion for d = 1. Now N1/N0

∼= Z, so there exists x ∈ N1 such that N1 = 〈x〉N0 and 〈x〉 ∩ N0 is trivial.
Then N1

∼= N0 o 〈x〉. Let φ be the internal automorphism of N1 induced by the conjugation by x. According to
Theorem B, the cascade (N0, φ �N0) is finitely generated. Hence, Proposition 3.6 applies to conclude that N0 = G′

is finitely generated.

Corollary 4.2 (Milnor). A finitely generated soluble group of subexponential growth is polycyclic.

Proof. Applying Lemma 4.1, we can prove that all members of the derived series of G are finitely generated. Since
this is an abelian series, this implies that one can find a refinement that has cyclic factors, i.e., G is polycyclic.

Now we show that the conclusion of Lemma 4.1 does not hold for finitely generated groups of exponential
growth.

Example 4.3. Let N = Z[ 12 ] and let ψ : N → N be the automorphism given by ψ(x) = 2x for all x ∈ N . Then
G = N o 〈ψ〉 is a finitely generated metaabelian group that is not polycyclic, as G′ = N is not finitely generated.
By Lemma 4.1, G has exponential growth. This follows also from Corollary 1.8 as one can verify that halg(ψ) > 0.

Taking G as in Example 4.3, and φ = idG, we see that one may have a cascade (G,φ) of exponential growth
and a subcascade (N,φN ) of polynomial growth such that the quotient (G/N, φ̄) has polynomial growth as well.

As the Example 3.9(2) shows, a polycyclic group may have exponential growth.
From Theorem 3.11 and Corollary 4.2 we deduce the next theorem providing a proof of Gromov’s theorem in

the case of soluble groups.

Theorem 4.4. A finitely generated soluble group of subexponential growth is virtually nilpotent.

Proof. According to Corollary 4.2, a finitely generated soluble group G of subexponential growth is polycyclic. We
can carry out an inductive argument on h(G). In case h(G) = 0 the groups in question are finite so there is nothing
to prove.

Assume that h(G) > 0 and the statement holds true for all groups of Hirsch length < h(G). Let (4) be a normal
series with cyclic quotients witnessing that. By choosing the greatest k such that G/Gk is infinite, we can replace
G by Gk+1 and prove that Gk+1 is virtually nilpotent (this will imply that G is virtually nilpotent as well, as Gk+1

is a finite-index subgroup of G). So we can assume without loss of generality that k+ 1 = l, i.e. that G/Gl−1 ∼= Z.
Let x ∈ G be such that G/Gl−1 = 〈x,Gl−1〉/Gl−1. As 〈x〉 ∩Gl−1 is trivial, if φ be the automorphism of Gl−1

induced by the conjugation by x in G, then G ∼= Gl−1 o 〈φ〉.
As h(G) = h(Gl−1) + 1, we have h(Gl−1) < h(G). Since the group Gl−1 is a finitely generated soluble group

of subexponential growth (by Remark 2.3) and h(Gl−1) < h(G), we deduce that the subgroup Gl−1 is virtually
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nilpotent. Let N∗ be a finite index nilpotent subgroup of Gl−1. One can prove that N∗ contains a finite index
subgroup N that is a characteristic subgroup of Gl−1. In particular, N will be a φ-stable nilpotent subgroup of
Gl−1 of finite index. Therefore, G∗ = N o 〈φ〉 is a finite index subgroup of G. As the subgroup G∗ of G has
subexponential growth by Remark 2.3, we can apply Theorem 3.11 to deduce that G∗ is virtually nilpotent.

5 Final remarks and open questions

The next example shows that in general γφ,F and γφ,F ′ can be quite different for a flow (G,φ), in particular
Halg(φ, F ) 6= Halg(φ, F

′) (recall, that when Halg(φ, F ) = log b > 0, then γφ,F (n) has the same asymptotic behavior
as bn by Remark 2.1).

Example 5.1. (a) Let k > 2 be an integer. Consider the group G = Z[ 1k ], and its automorphism φ : G → G
defined by φ(x) = 1

kx. Finally, let F = {0, 1} and F ′ = {0, 1, . . . , k− 1} and note that both F and F ′ generate the
flow (G,φ). Nevertheless, γφ,F (n) = 2n, while γφ,F ′ = kn. So log 2 = Halg(φ, F ) < Halg(φ, F

′) = log k.
(b) Take a cyclic flow or cascade (N,φ), generated by the singleton F = {y} ⊆ N , for example the one in

Example 3.9(2), with F = {e1}. One can see that γφ,{y}(n) = 1 for all n, yet N = Nφ,F contains a finite subset
F ′ = {0, e1} such that γφ,F ′(n) has exponential growth.

Lemma 5.2. Let (G,φ) be a finitely generated abelian flow. If (G,φ, F ) has polynomial (resp., subexponential)
growth for some F ∈ [G]<∞ generating (G,φ), then (G,φ, F0) has polynomial (resp., subexponential) growth for
every F0 ∈ [G]<∞ generating (G,φ).

Proof. We use additive notation for the abelian group G, and let F ∈ [G]<∞ be a finite symmetric set containing
the identity element of G and generating (G,φ). By assumption, the function n 7→ |Tn(φ, F )| has polynomial (resp.,
subexponential) growth.

Let us introduce the notation
(m)A := A+A+ ...+A

for m copies of a finite subset A of G.
Let F0 be any finite subset of G. We have to prove that the growth of the function

n 7→ |Tn(φ, F0)| (5)

is polynomial (resp., subexponential). Since G =
⋃
k〈Tk(φ, F )〉, there exists k such that F0 ⊆ 〈Tk(φ, F )〉. Then

there is also m such that F0 ⊆ (m)Tk(φ, F ), so that

Tn(φ, F0) ⊆ Tn(φ, (m)Tk(φ, F )) = (m)Tn(φ, Tk(φ, F )). (6)

Now we check that
Tn(φ, Tk(φ, F )) ⊆ (k)Tn+k(φ, F ). (7)

As

Tn(φ, Tk(φ, F )) =

n−1∑
i=0

φi

k−1∑
j=0

φj(F )

 =

n−1∑
i=0

k−1∑
j=0

φi+j(F ),

looking at the range of i and j it is not hard to realize that for all possible values of s, between 0 and n + k − 2,
there are at most k pairs i, j such that i + j = s (assuming that, asymptotically, k is smaller than n). Therefore,

the above sum is contained in the sum
∑n+k−1
s=0 (k)φs(F ) = (k)

∑n+k−1
s=0 φs(F ) = (k)Tn+k(φ, F ). This proves (7).

From (6) and (7) we obtain

Tn(φ, F0) ⊆ (m)(k)Tn+k(φ, F ) = (mk)Tn+k(φ, F ),

so the map (5) is polynomial (resp., subexponential) whenever the map n 7→ |(mk)Tn+k(φ, F )| is polynomial (resp.,
subexponential). Finally, the latter holds true as by assumption there exists a polynomial (resp., subexponential)
function P (t) such that |Tn+k(φ, F )| ≤ P (n+ k), therefore

|(mk)Tn+k(φ, F )| ≤ |Tn+k(φ, F )|mk ≤ P (n+ k)mk.

Since P (n + k)mk is a polynomial function of n of degree mkd, if d is the degree of P (resp., subexponential
function), we are done.

Another important issue is pointed out in the next question, but no answer is available so far.

Question 5.3. If (G,φ) is a finitely generated cascade, and if G = Gφ,F and G = Gφ,F ′ for some finite subsets F
and F ′ of G both containing eG, are then γφ,F and γφ,F ′ of the same type (polynomial, exponential or intermediate)?
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A positive answer to Question 5.3 will guarantee that the type of growth of a finitely generated flow Gφ,F does
not depend on the specific finite set of generators F (so, for example, F can always be taken symmetric, etc.). In
particular, one may speak of growth of a finitely generated flow without any reference to a specific finite set of
generators.

Without the limitation eG ∈ F on the finite set F in Question 5.3 one has an immediate negative answer to it
as we saw in Example 5.1(b) (note that both finite sets in (a) of that example give equivalent growth functions).

One more comment on Question 5.3:

Remark 5.4. Let (G,φ) be a finitely generated abelian flow in Grp and let F be a finite subset of G such that
G = Gφ,F . According to Lemma 5.2 (see also [4]), if Gφ,F has a polynomial (respectively, exponential, intermediate)
growth, this is independent on the finite set of generators F (i.e., Question 5.3 has positive answer in the abelian
case).
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