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Abstract. In this paper we study the pseudospectral approximation of de-
lay differential equations formulated as abstract differential equations in the

�∗-space. This formalism also allows us to define rigorously the abstract

variation-of-constants formula, where the �∗-shift operator plays a fundamen-
tal role. By applying the pseudospectral discretization technique we derive a

system of ordinary differential equations, whose dynamics can be efficiently

analyzed by existing bifurcation tools. To better understand to what extent
the resulting finite-dimensional system “mimics” the dynamics of the original

infinite-dimensional one, we study the pseudospectral approximations of the
�∗-shift operator and of the �∗-generator in the supremum norm, which is

the natural choice for delay differential equations, when the discretization pa-

rameter increases. In this context there are still open questions. We collect
the most relevant results from the literature and we present some conjectures,

supported by various numerical experiments, to illustrate the behavior w.r.t.

the discretization parameter and to indicate the direction of ongoing and future
research.
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1. Introduction. Delay differential equations (DDEs), together with renewal equa-1

tions (REs) and systems which couple REs and DDEs (REs/DDEs), are recognized2

as a fundamental tool for modelling phenomena in many fields, including, for in-3

stance, population dynamics and control theory. For this reason, in the last years4

the interest in the study of the dynamics of delay models has been increasing and5

important challenges, in particular numerical, have been identified. Indeed, delay6

equations describe infinite-dimensional dynamical systems, and theoretical results7

should be complemented with efficient numerical methods to approximate solutions8

of initial value problems [3, 4, 5, 7, 17, 15, 16, 19, 44, 43], boundary value prob-9

lems [48, 49, 50], and to investigate the stability of equilibria and periodic solutions10

[10, 11, 12, 13, 14, 47, 52, 53, 66]. In applications the attention is focused not only11

on the approximation of the dynamical properties for some given parameter values,12

but also on how such properties change when varying some parameters. In particu-13

lar, it is interesting to identify the critical thresholds, called bifurcation points, and14

to draw stability charts in two or more parameters.15

While the theory of DDEs is well developed, see for instance [6, 25, 39, 65],16

the numerical methods are still unsatisfactory: some software packages, like DDE-17

BIFTOOL [27] and Knut [59], are available for the stability and bifurcation analysis18

of equations with discrete delays, but cannot be applied, for instance, in the case19

of distributed delays. To address this problem, the authors of [8, 56] proposed an20

alternative method, which consists in reformulating the original equation as a non-21

linear abstract differential equation (ADE) in the state space, and then applying the22

pseudospectral discretization (PSD) approach. Then, the dynamics of the resulting23

nonlinear systems of ordinary differential equations (ODEs) can be investigated by24

one of the continuation packages for the bifurcation analysis of ODEs, like MatCont25

[22]. In [8] the approach has been applied also to REs and REs/DDEs. Moreover,26

it has been proved that there is a one-to-one correspondence between the equilibria,27

and the stability is accurately described. Numerous experiments give evidence that28

the PSD approach converges for periodic solutions, too [8, 9], but at the moment29

the rigorous proof is not yet completed. In this context, the approximation of the30

so-called shift operator, which translates a function to the right while extending it31

with a constant value, plays a fundamental role. An important question is how32

accurately the shift operator is approximated by the resulting discrete operator,33

w.r.t. the discretization parameter. The action of the shift operator is described by34

the trivial equation y′(t) = 0 considered as a DDE with delay τ > 0, and is related35

to the partial differential equation (PDE)36

{
∂v
∂t (t, θ) = ∂v

∂θ (t, θ), θ ∈ [−τ, 0],
∂v
∂θ (t, 0) = 0,

(1)

[25, pag. 39]. The PSD approach has been widely applied for the numerical approx-37

imation of PDEs [18, 31], and many results are available in the literature. Never-38

theless, the estimates of the approximation of the shift operator regard weighted39

2-norms in suitable Sobolev spaces [26, 29, 30, 35, 33, 34, 45, 40, 58, 62, 64], whereas,40

to our knowledge, no results are available for the supremum norm. The supremum41

norm is largely used when studying DDEs with the Banach space of continuous42

functions as state space [25, 39]. Nevertheless this choice is not unique and, hav-43

ing in mind especially some applications to control theory, Lp-state space has been44

considered in [6, 19, 65].45
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In this paper we apply the PSD approach, originally proposed for DDEs in [8],1

to the reformulation of the DDE in the �∗-space. The �∗-formalism was intro-2

duced by [20, 23, 25] for proving the principle of linearized stability for DDEs, REs3

and REs/DDEs. This formalism allows to define rigorously both the ADE and the4

abstract variation-of-constants formula, where the �∗-shift operator plays a fun-5

damental role. As a further advantage, the �∗-formulation allows to interpret the6

original nonlinear equation as a nonlinear perturbation of a “trivial” linear equation,7

separating clearly the action of translation, which is the same for every equation,8

from the rule for extension, which is problem-specific and described in terms of9

the nonlinear perturbation. From the point of view of the numerical method, the10

variation-of-constants formula makes it easier to compare the solution operators of11

the continuous and discrete dynamical systems in terms of the �∗-shift operator12

and its discretization. Moreover the readers familiar with spectral approximation13

methods as described for instance in [35], will recognize the usual formalism (see14

the definitions of prolongation and restriction operator in Section 3).15

The PSD approach applied to the �∗-formulation returns the same approximat-16

ing ODE as obtained in [8], but the new interpretation allows one to distinguish17

the approximation of the linear part, which relates to the �∗-shift operator, from18

the approximation of the nonlinear perturbation. Then, the comparison of the19

variation-of-constants formulas motivates the importance of studying the accuracy20

of the approximation of the �∗-shift operator w.r.t. the discretization parameter.21

After introducing the PSD and the resulting ODE, we recall the fundamental22

results and we present some conjectures and computational experiments about the23

asymptotic behavior of the PSD of the �∗-shift operator and its generator w.r.t.24

the discretization parameter. Our aim is to survey what is known and to indi-25

cate possible future research directions, to obtain bounds in supremum norm in26

order to better understand to which extent the finite-dimensional ODE “mimics”27

the dynamics of the infinite-dimensional system described by the DDE. For some28

applications of the technique we refer to [2, 8, 9, 32, 37].29

The paper is organized as follows. In Section 2 we recall the �∗-formulation of30

DDEs, whereas the PSD approach is illustrated in Section 3. In Sections 4 and 5 we31

study respectively the discretized version of the infinitesimal generators and of the32

shift operators, by using also some numerical experiments. In Section 6 we draw33

some conclusions and discuss ongoing and future research.34

2. �∗-formulation of delay differential equations. In this section we briefly35

summarize the basic results on the �∗-reformulation of DDEs, with the aim to in-36

troduce the ADE and to emphasize the role of the �∗-shift operator in this abstract37

framework, in view of the introduction of the PSD approach in Section 3. For a38

deeper insight into the theory, we refer to [20, 23, 25].39

Let d be a positive integer, τ > 0, and consider the Banach space40

Y := C([−τ, 0];Rd)

equipped with the norm ‖ψ‖Y := maxθ∈[−τ,0] |ψ(θ)|, for | · | a norm on Rd.41

A nonlinear autonomous DDE is42

y′(t) = G(yt) (2)

where G : Y → Rd is a continuous nonlinear function, and the history yt ∈ Y is43

defined as44

yt(θ) = y(t+ θ), θ ∈ [−τ, 0].
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Definition 2.1. [25, p. 231–232] A solution of (2) is either a continuously differ-1

entiable function y : R → Rd satisfying (2) everywhere, or a continuous function2

y : [−τ, t+) → Rd, 0 < t+ ≤ ∞, which is differentiable on (0, t+) and satisfies (2)3

for 0 < t < t+.4

Given the initial condition5

y(θ) = ψ(θ), θ ∈ [−τ, 0], ψ ∈ Y, (3)

a solution y(·;ψ) of the initial value problem (2) & (3) is a solution y : [−τ, t+)→ Rd6

of (2) which also satisfies (3).7

Hereafter for ease of formulation we assume that G is globally Lipschitz contin-8

uous with Lipschitz constant Lip(G) > 0. So the initial value problem (2) & (3)9

has a unique solution y(·;ψ) with t+ = +∞, which depends continuously on ψ10

(see [25, 39]).11

An example of a solution of the first type in Definition 2.1 is given by a periodic12

solution y of (2), which is differentiable and periodic with period h, i.e. y(t+ h) =13

y(t), t ∈ R, and satisfies (2) everywhere.14

The �∗-formulation of DDEs aims to represent the equation (2) in an abstract15

framework, where the action of the dynamical system can be described in terms of16

two different components: the action of “shift”, which is linear and exactly the same17

for every equation, and an action of “extension”, which captures the effect of the18

nonlinear function G. In the �∗-framework the perturbation theory can be applied,19

and the variation-of-constants formula can be rigorously defined [20, 23, 25].20

The main idea of the �∗-formulation is to embed Y into the larger space Y �∗21

given by22

Y �∗ := Rd × L∞([−τ, 0],Rd),
which is a Banach space equipped with the norm

‖(α,ψ)‖Y �∗ := max{|α|, ‖ψ‖L∞}, (α,ψ) ∈ Y �∗.

The embedding j : Y → Y �∗ is given by j(ψ) = (ψ(0), ψ).23

As for the “shift” component, it is well known that the generator of translation is24

differentiation. So we introduce the operator A�∗0 : D(A�∗0 )(⊆ Y �∗) → Y �∗ given25

by26

A�∗0 (α,ψ) = (0, ψ′), (α,ψ) ∈ D(A�∗0 ),

D(A�∗0 ) := {(α,ψ) ∈ Y �∗ : ψ is Lipschitz continuous and ψ(0) = α},
(4)

where “Lipschitz continuous” is a short-hand way to indicate an equivalence class27

that contains a Lipschitz continuous function.28

The operator A�∗0 is the infinitesimal generator in the weak∗-sense of the �∗-shift29

semigroup {T �∗0 (t)}t≥0, where the �∗-shift operator is defined by30

T �∗0 (t)(α,ψ) = (α,ψαt ), t ≥ 0,

and31

ψαt (θ) :=

{
ψ(t+ θ), t+ θ ≤ 0

α, t+ θ > 0.

But we do not want to lose sight of Y , so we introduce the space

Y �� := D(A�∗0 ) = {(α,ψ) ∈ Y �∗ : ψ is continuous and ψ(0) = α}.
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where, as before, “continuous” indicates an equivalence class that contains a con-1

tinuous function. Since the delay is bounded, the space Y is �-reflexive in the sense2

that j is a bijection between Y and Y ��, with j−1(α,ψ) = ψ, see e.g. [20, 25].3

Finally, by describing the rule for the extension in Y �∗ through the nonlinear4

operator G : Y �� → Y �∗ given by5

G(α,ψ) := (G(ψ), 0) ∈ Y �∗, (α,ψ) ∈ Y ��,
we can construct the operator A�∗ : D(A�∗)(⊆ Y �∗)→ Y �∗ defined by6

A�∗ = A�∗0 + G, D(A�∗) = D(A�∗0 ), (5)

whose action describes both the “shift” and “extension”, through A�∗0 and G re-7

spectively, while its domain does not depend on the particular equation. Notice that8

G inherits from G the Lipschitz continuity. The operator (5) allows to represent the9

DDE (2) as an evolutionary system in the Y �∗ space, namely the semilinear ADE10

in Y �∗11

djv(t)

dt
= A�∗(jv(t)). (6)

For ψ ∈ Y , we define mild solution of the Cauchy problem12 {
djv(t)

dt = A�∗(jv(t)), t > 0,
v(0) = ψ,

(7)

the unique solution of the abstract integral equation (AIE)13

jv(t) = T �∗0 (t)jψ +

∫ t

0

T �∗0 (t− s)G(jv(s)) ds, t ≥ 0, (8)

where the integral is a weak∗-Riemann integral [20, Theorem 3.1]. From [20, Propo-
sition 2.1] we have that the integral at the right-hand side of (8) defines an element
of Y ��, so we can apply j−1 to both sides of (8) and write the following AIE in
the original space Y

v(t) = T0(t)ψ + j−1
∫ t

0

T �∗0 (t− s)G(jv(s)) ds, t ≥ 0,

where T0(t) := j−1T �∗0 (t)j is the shift operator on Y . Following [25, Chapter III],14

we can conclude that v(t) = yt(·;ψ), where y(·;ψ) is a solution of the initial value15

problem (2) & (3).16

The part of A�∗ in Y �� is the operator jAj−1, with A defined by17

Aψ = ψ′, ψ ∈ D(A)

D(A) := {ψ ∈ Y : ψ′ ∈ Y and ψ′(0) = G(ψ)},
(9)

whose action is independent of G, whereas now the information about the particular18

DDE is incorporated in the domain. For ψ ∈ D(A), the solution jv(t) of (7) is a19

classical solution, i.e. a continuously differentiable function jv(t) satisfying (6) for20

t ≥ 0 [20, Theorem 3.6].21

The key role of the �∗-shift operator T �∗0 (t) and of the generator A�∗0 comes to22

light clearly in respectively (8) and (6). This will be also useful in the analysis of23

their discretization in Section 3. Notice that they describe the �∗-formulation of24

the trivial equation25

y′(t) = 0, t ≥ 0, (10)

interpreted as a DDE.26



6 ODO DIEKMANN, FRANCESCA SCARABEL AND ROSSANA VERMIGLIO

We remark that the nonlinearity in the domain of (9) makes it hard to handle1

the perturbations of (2), since they amount to perturbing the domain of an infin-2

itesimal generator. The main advantage of the �∗-formulation is indeed to avoid3

the dependence of the domains on G, thus treating operators defined on the same4

domain. So, although the �∗-framework requires some additional technical effort,5

the result yields a powerful abstract variation-of-constants formula for a larger class6

of perturbations than those bounded from Y into Y . The method also applies to7

other classes of delay equations, namely REs of the form8

x(t) = F (xt),

with xt ∈ X := L1((−τ, 0),Rd) and F : X → Rd a smooth function, and REs/DDEs9 {
x(t) = F (xt, yt)

y′(t) = G(xt, yt)

with (xt, yt) ∈ X × Y and F,G : X × Y → Rd smooth functions [23].10

3. �∗-pseudospectral discretization. In this section we introduce the PSD of11

the operator A�∗ in (5) with the aim to derive a nonlinear system of ODEs that12

“mimics” the dynamics of the original nonlinear DDE (2). The basic idea of the13

PSD approach consists in approximating a function with a polynomial, which is14

represented as the interpolating polynomial on a suitable set of nodes in the domain15

of definition. Then “do to the interpolating polynomial what you would do to the16

function” [2].17

In order to start from pointwise defined functions and to keep in touch with the
original DDE, we will develop the PSD approach in the subspace

Ŷ := Rd × Y
of Y �∗. Note that Y �� ⊂ Ŷ .18

Let M be a positive discretization integer and denote by ΠM the space of all19

the Rd-valued polynomials of degree at most M defined on [−τ, 0]. Consider the20

extremal Chebyshev points relative to the delay interval [−τ, 0], i.e.21

θi,M =
τ

2

(
cos(

iπ

M
)− 1

)
, i = 0, ...,M, (11)

and define22

ΘM = {θi,M : i = 1, . . . ,M}. (12)

We first introduce the space

YM := RdM ,
with the norm ‖Ψ‖YM := maxi=1,...,M |Ψi|, where Ψ ∈ YM is a column vector
of length dM that consists of M d-dimensional column vectors Ψi, i = 1, . . . ,M
stacked on the top of each other. The space

ŶM := Rd × YM ,
endowed with the norm23

‖(α,Ψ)‖ŶM := max{|α|, ‖Ψ‖YM }, (13)

represents the discretization of index M of Ŷ , in the sense that every (α,ψ) is dis-24

cretized by the element (α,ψ(ΘM )) ∈ ŶM . The choice of the norm (13) is motivated25

by the norm of the state space Y �∗.26
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As further ingredients we introduce the restriction operator R̂M : Ŷ → ŶM as1

R̂M (α,ψ) = (α,RMψ), (α,ψ) ∈ Ŷ , (14)

where RM : Y → YM is2

RMψ = (ψ(ΘM )), ψ ∈ Y,

and the prolongation operator P̂M : ŶM → D(A�∗0 ) ⊂ Y ��, which associates to3

(α,Ψ) ∈ ŶM the pair (α,ψM ), where ψM is the M -degree polynomial interpolat-4

ing (α,Ψ) at the nodes (11). It is important to underline that the construction of5

ψM takes into account the domain condition in (4). By introducing the Lagrange6

polynomials `j(θ) :=
M∏

k=0,k 6=j

θ−θk
θj−θk , j = 0, . . . ,M, and by recalling that they parti-7

tion unity, i.e.
M∑
j=0

`j = 1, we obtain the following Lagrange representation of the8

interpolating polynomial ψM9

ψM (θ) = `0(θ)α+
M∑
j=1

`j(θ)Ψj ,

= α+
M∑
j=1

`j(θ)(Ψj − α), θ ∈ [−τ, 0],

(15)

(see e.g. [60, p. 34]). Hereafter, when it will be necessary to emphasize the depen-
dence on (α,Ψ), we also use the notation

ψM = PM (α,Ψ),

where PM := j−1P̂M . Note that R̂M P̂M is the identity operator on ŶM , while10

PM R̂M j is the interpolation operator on Y relative to the Chebyshev nodes (11).11

Now we are ready to define both the PSD of A�∗0 as the bounded operator12

A0,M : ŶM → ŶM given by13

A0,M := R̂MA�∗0 P̂M , (16)

and the nonlinear map GM : ŶM → ŶM as14

GM := R̂MG ◦ P̂M (17)

where ◦ denotes the composition of (nonlinear) operators. Their sum furnishes the
discretization AM of A�∗, i.e.

AM = A0,M +GM .

So the PSD approach leads to the following nonlinear ODE in ŶM15

d
dtvM (t) = AM (vM (t)). (18)

To write (18) explicitly, we need to find a matrix representation of the operator16

(16). Let us define the elements dij := `′j(θi), for i, j = 0, . . . ,M and the matrix17

DM = (dij)i,j=1,...,M ∈ RM×M , (19)

which will play a fundamental role in the definition and analysis of the discretized18

equation (18).19
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Since `′0(θi) = −
M∑
j=1

`′j(θi), i = 0, . . . ,M , by denoting 1 the vector with all entries1

equal to 1 (we do not specify the dimension, since it is clear from the context), from2

(15) we get3

A0,M =

(
0 0

−DM1⊗ Id DM ⊗ Id

)
(20)

where ⊗ is the tensor product and Id denotes the identity matrix of dimension d.
By posing vM (t) := (yM (t), VM (t)) , and by using (17) and (20), the equation (18)
can be expressed as{

y′M (t) = G (PM (yM (t), VM (t))) ,

V ′M (t) = DM ⊗ Id (VM (t)− 1⊗ yM (t)).

Remark 1. Since we have to handle ψ such that jψ ∈ D(A�∗0 ), the Chebyshev4

points (11) are a good choice as interpolation nodes. Let us define the Lebesgue5

function6

λM (θ) =

M∑
j=0

|`j(θ)|, θ ∈ [−τ, 0],

and the Lebesgue constant7

ΛM = max
θ∈[−τ,0]

M∑
j=0

|`j(θ)|.

For the choice of nodes (11) the Lebesgue constants satisfy8

ΛM ≤
2

π
log(M + 1) + 1 and ΛM ≈

2

π
log(M), M →∞,

(see e.g. [60, pag.109]). So for the M -degree polynomial ψM interpolating a Lips-
chitz continuous function ψ at the nodes (11), we get the following error bound

‖ψ − ψM‖Y ≤ (1 +
π2

2
)(1 + ΛM )

τLip(ψ)

2M
,

which guarantees the uniform convergence of {ψM}M to ψ as M →∞ (see e.g. [60,
pag. 108] and [21, pag. 338]). Moreover, under the same assumptions on ψ, we also
have

|G(ψ)−G(ψM )| ≤ Lip(G)‖ψ − ψM‖Y → 0 as M →∞,

and, when also ψ′ is a Lipschitz continuous function we have

‖ψ′ − ψ′M‖Y ≤ C log(M + 1)
Lip(ψ′)

M

with C a positive constant independent of M and ψ [51, pag. 269], and ‖ψ′ −9

ψ′M‖Y → 0 as M →∞. Notice that the convergence results mentioned above apply10

also to ψ = ȳt, where ȳ is a periodic solution of (2).11

Finally, similarly to the abstract framework in Section 2, we complete the path12

by deriving also the integral equation associated to (18). Given the initial condition13

vM (0) = (α,Ψ), (α,Ψ) ∈ ŶM , (21)
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the initial value problem (18) & (21) is equivalent to the following integral equation1

in ŶM2

vM (t) = T0,M (t)(α,Ψ) +
t∫
0

T0,M (t− s)GM (vM (s)) ds, t ≥ 0, (22)

where T0,M (t) : ŶM → ŶM is given by T0,M (t) = eA0,M t and admits the following3

representation4

T0,M (t) =

(
Id 0

(1− eDM t1)⊗ Id eDM t ⊗ Id

)
, t ≥ 0. (23)

We underline the close analogy in structure between the integral formulations5

(22) and (8). We will return to this in Section 5.6

In the paper [8] the PSD approach has been applied to the operator (9) obtaining7

the same ODE (18). So what did we gain by working in the �∗ framework? It has8

furnished a deep insight into the connection between the infinite-dimensional and9

the finite-dimensional equations, including not only the differential equations (6)10

and (18), but also the integral equations (8) and (22). Moreover, the regularity11

condition of the functions in the domain has been relaxed w.r.t. those in D(A) in12

(9), and so we can handle Lipschitz continuous functions.13

In order to use the ODE (18) to gain insight into the dynamics of the original14

DDE (2), we need to understand how the dynamical properties of the two equations15

are related. In the paper [8] it has been proved that the equilibria of (2) and16

(18) are in one-to-one correspondence, and the stability is the same for M large17

enough. In order to understand the behavior of more complicated solutions, like18

periodic solutions, it is fundamental to study the solution operators generated by19

the nonlinear equations, which are described by the integral equations (8) and (22).20

The integral formulation is indeed one of the advantages of the �∗-formalism and21

it is particularly useful for the convergence analysis of solution operators and, in22

turn, of periodic solutions. Indeed, thanks to the integral equations, we can relate23

the convergence of the nonlinear semigroups to the convergence of the trivial linear24

semigroups T0,M (t) to T �∗0 (t). Moreover (4) and (20) suggest that the matrix (16)25

”mimics” the infinitesimal generator A�∗0 of the semigroup {T �∗0 (t)}t≥0 associated26

to the trivial DDE (10). Therefore, to understand the dynamical behavior of (18), it27

is crucial to investigate the properties of the matrix A0,M and of the corresponding28

semigroup {T0,M (t)}t≥0 as M →∞.29

4. The generators A�∗0 and A0,M : results. In this section we focus on the PSD30

A0,M of the infinitesimal generator A�∗0 and on their connection. From (20) it is31

clear that the matrix DM plays a major role. We remark that DM can be viewed32

as the Lagrange representation of the PSD w.r.t. the nodes (12) of the derivative33

operator D : D(D) ⊂ L∞ → L∞34

Dψ = ψ′, (24)

with domain D(D) the set of equivalence classes containing a Lipschitz continuous35

function ψ such that ψ(0) = 0 [25, pag. 124]. In the following we collect some of the36

results about the matrix DM available in the literature, which are mainly obtained37

in the context of the approximations of PDEs of the form (1).38

For the sake of presentation hereafter we assume d = 1, and we use ‖ · ‖ for all39

the norms, omitting the subscripts, since the space we are working with will be40

clear from the context. Moreover in the numerical experiments we consider τ = 1.41
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Indeed the results for general τ > 0 can be easily obtained by a suitable scaling of1

the time variable.2

All the experiments are made with Matlab 2018b, whose machine precision is3

u = ε/2 with ε = 2−52 ≈ 2.2204× 10−16.4

Finally, hereafter we consider complex-valued functions and complex Banach5

spaces. For a detailed presentation of the complexification procedure, the interested6

reader is referred to [25, Sections III.7 and IV.2].7

Since the derivative operator (24) is unbounded, we expect ‖DM‖ to diverge8

as M → ∞. The following proposition confirms this claim and defines the order9

of divergence w.r.t. M , which is determined by the asymptotic behavior of the10

Chebyshev polynomials.11

Proposition 1. [55, section 2.7.4] ‖DM‖ = O(M2).12

Indeed the numerical results in Table 1 give evidence that ‖DM‖ = 2M2 − 1 for13

τ = 1.

M ‖DM‖ order ‖DM‖/M2

4 31 1.9375
8 127 2.0345 1.9844
16 511 2.0085 1.9961
32 2047 2.0021 1.9990
64 8191 2.0005 1.9998
128 32767 2.0001 1.9999
256 131071 2.0000 2.0000

Table 1. ‖DM‖ and estimation of the order log2
‖D2M‖
‖DM‖ varying M.

14

We now study whether the discrete operator preserves the spectral properties15

of the continuous operator. The spectrum of the operator A�∗0 contains only the16

eigenvalue λ = 0, and every non-null constant function is an eigenfunction. The17

spectrum of A0,M contains, in addition to the eigenvalue λ = 0, also the eigenvalues18

of the matrix DM : the pseudospectral approximation introduces M eigenvalues19

which are “spurious”, i.e., due only to the discretization procedure. Therefore it is20

important to study the behavior of the spectrum of DM when M →∞.21

The eigenvalues of DM are not explicitly known, but many theoretical and em-22

pirical results have been derived by various authors. In fact their spectral properties23

are relevant in the convergence analysis of the pseudospectral methods, otherwise24

known as spectral collocation, for first order hyperbolic PDEs.25

So the first fundamental results have been established within this context [26,26

35, 33, 34, 40, 58]. Various further properties can be found also in [30, 29, 31,27

18, 45, 54, 63, 64]. Both the derivative operator in Hilbert space and the matrix28

DM are non-normal, and we recall the illuminating book [62], where the fundamen-29

tal properties of non-normal operators in Hilbert spaces and matrices have been30

investigated through the analysis of their pseudospectra.31

The following proposition allows us to analyze the position in the complex plane32

of the eigenvalues of DM .33

Proposition 2. [58, Appendix B] For every M ≥ 1, the eigenvalues of the matrix34

DM have negative real part.35
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Concerning the asymptotic behavior of the spectral abscissa α(DM ), which is
defined as

α(DM ) := max{Re(λ) | λ ∈ σ(DM )},
where σ(DM ) denotes the spectrum of DM , the first result goes back to Dubiner1

[26], and was revised recently by Wang & Waleffe [64].2

Proposition 3. [26, 64] lim
M→∞

α(DM ) = −∞. Moreover α(DM ) = O(log(M)), for3

sufficiently large M .4

Therefore, the eigenvalues of DM “disappear” as M → ∞, consistent with the5

fact that the operator A�∗0 contains the eigenvalue λ = 0 only. Indeed, for un-6

bounded operators the concept of extended spectrum can be defined [25, pag. 479].7

It consists of the spectrum of the operator and the point∞. So, to some extent, we8

can say that the spectrum of A0,M “converges” to the extended spectrum of A�∗09

as M →∞.10

We refer to Figure 1 for a representation of the spectrum of DM for different val-11

ues of M (left) and for a plot of −α(DM )/ log(M) versus M (right). As remarked in12

[62, 63], the computation of the spectrum of pseudospectral differentiation matrices13

is extremely sensitive to rounding errors. In particular, the authors observed that14

eigenvalues λ ∈ C with Reλ < log ε are affected by rounding errors because the15

precision in the corresponding eigenvectors is lost. This phenomenon is observable16

in Figure 1 (left): for M = 64, a part of the computed spectrum falls to the left of17

the line Reλ = log ε and we expect such results to be affected by rounding errors.18

We note that the rounding errors affect mostly the eigenvalues which are large in19

modulus, while the computation of the α(DM ) seems to be more stable, (see Figure20

1). The right panel of Figure 1 shows the oscillatory convergence of −α(DM )
log(M) .21

−50 −40 −30 −20 −10 0
−200

−100

0

100

200

real

M = 16

M = 32

M = 64

0 50 100 150 200
1

1.2

1.4

1.6

1.8

2

M

Figure 1. Left: plot of σ(DM ) for different M , together with
the line Reλ = log ε ≈ −36.0437 connected with the instability

phenomenon studied in [63]. Right: plot of −α(DM )
log(M) , versus M .

We now focus our attention on the resolvent operators and their approximations.22

For any λ ∈ C \ {0}, the resolvent of A�∗0 exists and it is the bounded operator23
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given by1

(λI −A�∗0 )−1(β, ϕ) = (βλ ,
β
λ eλ· −

·∫
0

eλ(·−s)ϕ(s) ds),

= β
λ (1, eλ·) + (0,−

∫ ·
0

eλ(·−s)ϕ(s) ds),
(25)

for (β, ϕ) ∈ Y �∗.2

Let (α,ψ) = (λI −A�∗0 )−1(β, ϕ). From (25) we obtain that

|ψ(θ)| ≤ |β|e
θReλ

|λ|
+ ‖ϕ‖1− eθReλ

Reλ

≤ |β|e
θReλ

|Reλ|
+ ‖ϕ‖1− eθReλ

Reλ

≤


1

Reλ‖(β, ϕ)‖, Reλ > 0

e−τReλ

|Reλ| ‖(β, ϕ)‖, Reλ < 0,

for all θ ∈ [−τ, 0], which leads to the following bound of the resolvent norm

‖(λI −A�∗0 )−1‖ ≤


1

Reλ , Reλ > 0

e−τReλ

|Reλ| , Reλ < 0
.

Note that the upper bound depends on Reλ only, and, though it is finite for every
λ ∈ C \ {0}, it increases exponentially when Reλ → −∞. This phenomenon has
been already documented w.r.t. L2-norm in [62]. When β = 0, we get

(λI −A�∗0 )−1(0, ϕ) = (0,

0∫
·

eλ(·−s)ϕ(s) ds), ϕ ∈ L∞,

and the second component is also defined for λ = 0 through the integral operator3

V : L∞ → L∞ given by4

(Vϕ)(θ) :=

θ∫
0

ϕ(s) ds, θ ∈ [−τ, 0], ϕ ∈ L∞. (26)

What can we say about the resolvent operator of the discrete operator A0,M?5

Given λ 6= 0, Proposition 3 states that there exists M0 := M0(λ) such that λ /∈6

σ(DM ) for all M ≥ M0. Therefore for all M ≥ M0 the resolvent operator of A0,M7

is defined by the matrix8

(λI −A0,M )−1 =

(
1
λ 0

− 1
λ (λI −DM )−1DM1 (λI −DM )−1

)
. (27)

Let λ ∈ C \ {0} and (β, ϕ) ∈ Ŷ . The function9

ψ(θ) := ψ(θ;λ, β, ϕ) = j−1(λI −A�∗0 )−1(β, ϕ), θ ∈ [−τ, 0], (28)

is the solution of the following problem10 {
ψ′(θ) = λψ(θ)− ϕ(θ), θ ∈ [−τ, 0],

ψ(0) = β
λ .

(29)
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We denote by ψM (θ) := ψM (θ;λ, β, ϕ), θ ∈ [−τ, 0], the M -degree collocation poly-1

nomial for the problem (29) such that2 {
ψ′M (θ) = λψM (θ)− ϕ(θ), θ ∈ ΘM ,

ψM (0) = β
λ .

(30)

We state the following theorem.3

Theorem 4.1. Let λ ∈ C \ {0} and (β, ϕ) ∈ Ŷ . There exists M0 := M0(λ) such4

that, for all M ≥ M0, the collocation equations (30) for the problem (29) uniquely5

define the collocation polynomial ψM and6

‖ψM − ψ‖ ≤ 2

(
1− e−Reλτ

Reλ

)
‖rM‖, (31)

where7

rM := λ(LM−1ψ − ψ) + (ϕ− LM−1ϕ). (32)

and LM−1 is the interpolation operator relative to the nodes ΘM in (12). Moreover,8

for all M ≥M0, ψM admits the following representation9

ψM = PM (λI −A0,M )−1R̂M (β, ϕ), (33)

which is the discrete counterpart of (28).10

Proof. The proof is based on the approach of [14, Proposition 5.1]. By using the11

integral operator (26), we can rewrite both (29) and (30) as integral equations in12

the space Y to obtain respectively13

ψ =
β

λ
+ λVψ − Vϕ,

and14

ψM =
β

λ
+ λVLM−1ψM − VLM−1ϕ.

By introducing the error eM := ψM − ψ, we obtain the following equation for eM :15

(I − λVLM−1) eM = VrM , (34)

where rM is defined in (32). We have that eM is a solution of (34) if and only if16

eM = VzM with zM ∈ Y solution of the equation17

(I − λLM−1V) zM = rM . (35)

By observing that the operator I − λV is invertible with inverse18

[
(I − λV)

−1
f
]

(θ) = f(θ) + λ

θ∫
0

eλ(θ−s)f(s) ds, f ∈ Y, θ ∈ [−τ, 0], (36)

and that ||λ(LM−1 − I)V|| → 0, as M → +∞ (see e.g. [51, pag. 269]), we can19

apply the Banach Perturbation Lemma (see e.g. [46, Theorem 10.1]) to conclude20

that there exists M0 := M0(λ) such that for all M ≥M0,21

||λ(LM−1 − I)V|| · || (I − λV)
−1 || ≤ 1

2
, (37)

and the operator I−λLM−1V is invertible. Therefore, for all M ≥M0, the equation22

(35) has a unique solution zM and, as a consequence, eM = V (I − λLM−1V)
−1
rM23
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is the unique solution of (34). Moreover, for all M ≥ M0, from (36) and (37) we1

easily get the bound2

‖V (I − λLM−1V)
−1 ‖ ≤ 2‖V (I − λV)

−1 ‖ ≤ 2

(
1− e−Reλτ

Reλ

)
,

and (31) follows.3

Finally, by using the Lagrange representation (15) of ψM and the matrix (19), we4

can easily obtain from the collocation equation (30) that ψM is given by (33).5

The bound (31) states that the error depends on the interpolation error of both,6

ψ and ϕ, and so we need to assume more regularity on ϕ to obtain convergence. It7

is sufficient to consider jϕ ∈ D(A�∗0 ). Moreover when ϕ is an analytic function, we8

get the so-called spectral accuracy, i.e. the error ‖ψM − ψ‖ decays as O(ρ−M ) for9

some ρ > 1 [60, Chapter 8]. In Figure 2 we plot the error ‖ψM − ψ‖ when β = 010

and ϕ = 1. In this case ψ = 1−eλ·
λ is analytic and LM−11 = 1. Notice the spectral11

accuracy and that the convergence is slower when λ has larger modulus.12

100 101
10−16

10−12

10−8

10−4

100

M

100 101
10−16

10−12

10−8

10−4

100

M

Figure 2. Error ‖ψM − ψ‖ for the resolvent operators applied to
β = 0, ϕ = 1, versus M . Left: λ = 1; right: λ = 10. Note the
spectral accuracy and that the convergence is slower when λ has
larger modulus.

Finally for β = 0 and λ = 0, we get that

‖Vϕ− PM (0, D−1M ϕ(ΘM ))‖ ≤ τ‖LM−1ϕ− ϕ‖, ϕ ∈ Y.

The integral operator V has norm equal to τ, and consistently with this result, we13

have the analogous property for the matrix D−1M .14

Proposition 4. [57] For any M ≥ 1, DM is non-singular and ‖D−1M ‖ = τ .15

5. The solution operators T �∗0 (t) and T0,M (t): results and conjectures.16

In this section, we focus our attention on the connection between T �∗0 and T0,M ,17

when M → ∞, which is a crucial question for the convergence analysis. Indeed18
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this is motivated by the integral equations (8) and (22), which can be reformulated1

respectively as2

jv(t) = T �∗0 (t)jψ +

∫ t

0

T �∗0 (t− s)(z(s), 0) ds, t ≥ 0, (38)

and3

vM (t) = T0,M (t)(α,Ψ) +
t∫
0

T0,M (t− s)(z(s), 0) ds, t ≥ 0, (39)

where z(t) is G(v(t)) in (38) and G(PMvM (t)) in (39).4

We first introduce the operator H0(t) : L∞ → L∞ defined as5

H0(t)ψ = ψ0
t , t ≥ 0, (40)

and we reformulate the action of the �∗−shift operator as follows

T �∗0 (t)(α,ψ) = (α, (I −H0(t))α) + (0,H0(t)ψ)

= (α, α) + (0,H0(t)(ψ − α))
, t ≥ 0, (α,ψ) ∈ Y �∗.

As usual α denotes either a scalar or the constant function. Similarly, by using (23)
we can rewrite the discrete counterpart as

T0,M (t)(α,Ψ) = (α, (I − eDM t)1α) + (0, eDM tΨ)

= (α,1α) + (0, eDM t(Ψ− 1α))
, t ≥ 0, (α,Ψ) ∈ ŶM ,

which hightlighs that eDM t plays the role of H0(t) for all t ≥ 0. According to these6

reformulations and without loss of generality, we can assume that α = 0 and focus7

on the behavior of eDM t w.r.t. M for t ≥ 0.8

As already pointed out in Section 4, many results about DM and eDM t have been9

derived in the applications of the spectral collocation methods to hyperbolic PDEs.10

In fact, within this context, the space stability, i.e. the norm boundedness of eDM t11

w.r.t. M, plays a key role in the convergence analysis [18, 28, 40]. PDEs are usually12

studied in suitable Hilbert spaces and so the results mainly regard weighted 2-norms13

in YM , which correspond to the discretization of L2 norms (see [31, 33, 36, 45, 58]).14

Hyperbolic PDEs are strongly related to DDEs, but the latter ones require to work15

in infinite-dimensional Banach spaces endowed with supremum norm and, to our16

knowledge, no bounds are available in this case.17

To address the question and have a first insight, we have performed some nu-18

merical simulations. The computation of the exponential matrices, especially non-19

normal, can be difficult and strongly affected by rounding errors, and the research20

on this subject is still in progress (see for instance [42] and the references therein).21

Here we use the built-in Matlab function expm, which is is based on the algorithms22

in [1, 41].23

The semigroupH0 in (40) is contractive, i.e. ‖H0(t)‖ ≤ 1, t ∈ [0, τ) and nilpotent,24

i.e. H0(t) = 0, t ≥ τ. What can we say about the discrete counterpart eDM t?25

Propositions 2 and 3 allow us to derive the time stability of eDM t, i.e.

‖ eDM t‖ → 0, as t→∞,

uniformly in M. But since the matrix DM is non-normal, the eigenvalues do not
tell us the whole story. In fact the behavior of ‖ eDM t‖ w.r.t. t is different in the
initial, transient and asymptotic phases. The spectral abscissa α(DM ) allows one



16 ODO DIEKMANN, FRANCESCA SCARABEL AND ROSSANA VERMIGLIO

to describe the asymptotic behavior of ‖ eDM t‖, whereas the initial growth rate is
determined by the logarithmic norm of DM , defined by

µ(DM ) = lim
t→0+

‖I + tDM‖ − 1

t

(see [38, 62]). The logarithmic norm admits the useful reformulation

µ(DM ) = lim
t→0+

log ‖ eDM t‖
t

,

and the explicit expression µ(DM ) = sup
i

(Re(dii) +
∑
j,j 6=i

|dij |). In Table 2 we com-1

pute µ(DM ) varying M to experimentally investigate the order of convergence w.r.t.2

M . The results show that µ(DM ) ≈ µM2, as M →∞, with µ ≈ 0.6.3

M µ(DM ) order µ(DM )/M2

4 6.6569e+00 4.1605e-01
8 3.8921e+01 2.5476 6.0814e-01
16 1.6698e+02 2.1011 6.5227e-01
32 6.7900e+02 2.0237 6.6308e-01
64 2.7270e+03 2.0058 6.6577e-01
128 1.0919e+04 2.0015 6.6644e-01
256 4.3687e+04 2.0004 6.6661e-01

Table 2. µ(DM ) and estimation of the order log2
µ(D2M )
µ(DM ) varying M.

Here our main interest is in the behavior of ‖ eDM t‖ w.r.t. M in the transient4

phase, which has no connection with the eigenvalues and looks quite different from5

the asymptotic behavior. Indeed the left panel of Figure 3 shows that, in the first6

interval [0, 1], ‖ eDM t‖ increases as M increases.7

The results in Figure 3 give also evidence that there exists t̂M where ‖ eDM t‖8

changes its behavior from not convergent to convergent, and that the convergence9

is attained for t ≥ t̂M . The relevant fact emerging from the simulations is that10

t̂M ∈ (τ, 1.5τ) for sufficiently large M. In truth the upper bound is quite safe.11

Since the norm of the interpolation operator for Chebyshev nodes gives ΛM =12

O(log(M)), the divergence behavior of ‖ eDM t‖ w.r.t. M in the first interval [0, τ ]13

is not totally surprising and it is quite natural to wonder if there is a connection14

between the two phenomena. Indeed, even if Faber’s Theorem states that Cheby-15

shev interpolation points could not ensure the convergence for all functions, quoting16

Trefethen [61], the ”polynomial interpolation in Chebyshev points is a powerful and17

reliable method for approximation of functions”, since ”for Lipschitz continuous18

functions or better, as is easily done in almost any application, Faber’s Theorem19

ceases to be applicable”. By extending this remark to ‖ eDM t‖, we conjecture that its20

divergence w.r.t. M in the transient phase is due to a ”non-generic” set of vectors21

Ψ, which are constructed in a particularly nasty way. The left panel of Figure 422

makes evident that also random data do not capture the ”bad” data, whereas the23

right panel of Figure 4 suggests that ‖ eDM t‖ diverges as log(M).24

Having in mind Proposition 3 and the simulations in Figure 3 & Figure 4, we25

come to the following conjecture: there exist τ̂ ∈ (τ, 1.5τ) and positive constants26
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Figure 3. Left: plot of log ‖ eDM t‖ for t ∈ [0, 2] with different
values of M . Notice divergence in [0, 1] for increasing M . Right:

plot of maxt∈I
log ‖ eDMt‖

log(M) versus M, for I specified in the legend.

Notice that the convergence gains one order at every time interval.
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Figure 4. ‖ eDM t‖ computed with different routines: built-in Mat-
lab function expm and norm(.,inf) versus maximum over n = 100
random initial vectors of the solution of the ODE system. Left:
‖ eDM t‖ versus time. Right: maxt∈[0,2] ‖ eDM t‖ versus M . The
dotted line is the reference line log(M). The fact that the effective
norm of the exponential matrix diverges, while the norm computed
by selecting a random set of vectors is uniformly bounded, suggests
that the “bad” behavior of the norm is due to a small set of vectors.

a,K independent of M such that1

‖ eDM t‖ = O(log(M)), t ∈ [0, τ̂ ],

‖ eDM t‖ ≤ KM−at, t > τ̂ .
(41)

for M →∞.2
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But in the first term of the right-hand side of (39), the vector Ψ derives from1

the discretization of a function ψ, namely Ψ = ψ(ΘM ), and ψ is at least Lipschitz2

continuous with ψ(0) = 0. May we expect to attain the space stability or, even3

better, its convergence w.r.t. M in the transient phase? In case of a positive answer,4

is the asymptotic convergence rate w.r.t. M faster for smoother functions? In other5

words, we wonder if ‖ eDM tRMψ‖ retains memory of the interpolants. Indeed we6

have that7

eDM tRMψ =
∑
k≥0

RM (DP 0
MRM t)

kψ

k!
, t ≥ 0, (42)

where D is defined in (24) and

P 0
MΨ := PM (0,Ψ),Ψ ∈ YM .

The formula above makes clear the role of interpolation through P 0
MRM , and that8

the action of every term corresponds to interpolation with null value at θ = 0 and9

derivation, imposing, to some extent, that the value at θ = 0 of next derivatives is10

zero.11

So let us get another actor on stage to give us some suggestions, namely the12

operator H0,M (t) : YM → YM defined as13

H0,M (t)Ψ = RMH0(t)P 0
MΨ, Ψ ∈ YM , t ≥ 0. (43)

From (15), (43) admits the following representation14

H0,M (t)Ψ = RM

M∑
i=1

H0(t)`iΨi, t ≥ 0. (44)

Notice that, contrary to {eDM t}t≥0, the family {H0,M (t)}t≥0 does not define a15

semigroup on YM . Moreover H0,M (t) = 0 for t ≥ τ, while eDM t is not. From (44)16

we easily get the following bound17

‖H0,M (t)‖ ≤ CM (t), t ∈ [0, τ ],

where18

CM (t) := max
j : t+θj≤0

M∑
i=1

|`i(t+ θj)|, t ∈ [0, τ ]. (45)

and supt≥0 CM (t) ≤ (1 + 2
π log(M + 1)).19

In the right panel of Figure 5, we notice that the behavior of ‖ eDM t‖ resem-20

bles the behavior of the function CM (t), and that, moreover, supt≥0 CM (t) ”domi-21

nates” supt≥0 ‖ eDM t‖. So, encouraged by this experiment, we also conjecture that22

H0,M (t)Ψ can predict, to some extent, the behavior of ‖ eDM tΨ‖ in the transient23

phase. To support this we first analyze H0,M (t)Ψ for Ψ = ψ(ΘM ) by using well-24

known interpolation results. Second we experimentally explore the behavior of25

‖ eDM tψ(ΘM )‖ by selecting some test functions ψ with different regularity proper-26

ties.27

Suppose that ψ and its derivatives through ψ(k−1) are absolutely continuous on
[−τ, 0] and that ψ(k) has bounded variation V (ψ(k)), for k ≥ 1. Then for any M > k
we have

‖H0,M (t)RMψ −RMH0(t)ψ‖ ≤ ‖RMH0(t)(ψ − P 0
MRMψ)‖

≤ 4(τ−t)V (ψ(k))
πk(M−k)k

, t ∈ [0, τ ],
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Figure 5. Left: plot of the function
M∑
i=1

|`i(θ)| for M = 8. Right:

plot of ‖ eDM t‖ (blue) and CM (t) in (45) (red) versus time for
M = 8.

which implies the convergence at algebraic rate O(M−k) [60, Chapter 7]. A similar1

result holds under the condition that ψ(k) is continuous. When ψ is an analytic2

function, the interpolants converge spectrally [60, Chapter 8]. Finally, regarding3

the following function4

H(θ) =

{
1, −τ ≤ θ < 0,

0, θ = 0.
(46)

the interpolation process does not converge, but the interpolation error is uniformly
bounded in supremum norm, i.e.,

lim
M→∞

‖P 0
M1‖ = c1,

for a suitable constant c1 [60, Chapter 9], and therefore we can conclude that

‖P 0
MH0,M (t)1−H0(t)H‖ = O(1), M →∞, t ∈ [0, τ ].

This effect is due to the well-known Gibbs phenomenon for step functions: the in-5

terpolants always “overshoot” their target and, as M increases, the overshooting6

does not get lower, although the region of overshooting gets narrower. This phe-7

nomenon prevents the norm-convergence of the interpolants and is responsible for8

the uniform bound. Although we will not go further into details here, we note that9

the Gibbs phenomenon still ensures the pointwise convergence of the interpolants10

of H for all θ ∈ [−τ, 0].11

For our simulations we choose some functions ψ with different regularity prop-12

erties and we estimate the behavior of the error ‖ eDM tΨ − RMH0(t)Ψ‖ with Ψ =13

ψ(ΘM ) at some selected points t. All the results in the right panels of Figures 7,14

8, 9 & 10 indicate that the convergence occurs in the first interval (t = 0.5) with15

the rate predicted by the interpolation results for the respective functions (see their16

plots in the left panels), whereas the order increases in the next intervals (t > 1).17

Moreover Figure 10 presents the spectral convergence behavior. Finally Figure 6,18
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Figure 11 & Figure 12 show there is no convergence in first interval, in accordance1

with the interpolation results, but the uniform boundedness holds in all cases.
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t = 1.5

t = 2.5

Figure 6. Left: plot of ψ(θ) = H(θ) (black) and its interpolat-
ing polynomial for M = 8 (red). Right: log log plot of the error
‖ eDM tψ(ΘM ) − RMH0(t)ψ‖ for t = 0.5, 1.5, 2.5 versus M . Note
the uniform bound for t = 0.5 and the convergence for t > 1. The
dotted lines are the reference lines M−k, k = 1, . . . , 4.

2
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Figure 7. Same as Figure 6 for ψ(θ) = 0.5− |θ + 0.5|. Note that
ψ ∈ Y and ψ(1) has bounded variation. The convergence rate for
t = 0.25, 0.5 is O(M−1) (right).

The numerical experiments indicate that, in the transient phase, ‖ eDM tΨ‖/‖ψ‖3

is uniformly bounded w.r.t. M when applied to vectors Ψ = ψ(ΘM ) deriving from4

the discretization of functions ψ, for which the interpolation error is O(M−k) with5

k ≥ 0, and it is converging for sufficiently smooth ψ. This supports the effectiveness6

of the PSD in our context and in particular for the analysis of periodic solutions.7
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Figure 8. Same as Figure 6 for ψ(θ) = eθ
2 − 1. Note that the in-

terpolating polynomial is indistinguishable from the function (left)
and that ψ(2) has bounded variation. The convergence rate for
t = 0.5 is O(M−2) (right).
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Figure 9. Same as Figure 6 for ψ(θ) = −θ3. Note that the in-
terpolating polynomial is indistinguishable from the function (left)
and that ψ(3) has bounded variation. The convergence rate for
t = 0.5 is O(M−3) (right).

Now we consider the second term of both (38) and (39). Let z : R+ → R be a1

continuous function. Then the function w : R+ → Y ��, defined as2

w(t) = j−1
∫ t

0

T �∗0 (t− s)(z(s), 0) ds, t ≥ 0, (47)
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Figure 10. Same as Figure 6 for ψ(θ) = e−1/θ
2

. Note that the in-
terpolating polynomial is indistinguishable from the function (left)
and the spectral convergence for t = 0.5, 1.5, 2.5 (right).
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Figure 11. Same as Figure 6 for ψ(θ) = sin 1
θ , if θ < 0, ψ(0) = 0.

Note there is no convergence for t = 0.5.

is continuous [25, Lemmas III.2.3] and
w(t)(0) =

∫ t
0
z(s) ds

w(t)(θ) =

{ ∫ t+θ
0

z(s) ds, t+ θ ≥ 0
0, t+ θ < 0

for all t ≥ 0 [25, III.4.3]. By applying the convergence results to the function (47)1

[60, Thorem 7.2], we have that2

‖w(t)− PM (w(t)(0), w(t)(ΘM ))‖ ≤
4 maxs∈[0,t] |z(s)|

π(M − 1)
, t ∈ [0, τ ].
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Figure 12. Same as Figure 6 for ψ(θ) = sin(6θ)+sign(sin(θ+e2θ))
[60, pag.10]. Note there is no convergence for t = 0.5.

So, to guarantee the convergence of1

‖w(t)− PM
(∫ t

0

T0,M (t− s)(z(s), 0)

)
‖, t ∈ [0, τ ],

we conjecture that ‖
∫ t
0
e(t−s)DM1z(s) ds‖ inherits the convergence behavior in [0, τ ].2

To this aim we experimentally estimate the error ‖
∫ t
0

eDM (t−s)1z(s) ds−w(t)(ΘM )‖3

at some selected values of t for two test continuous functions z varying M. Figures4

13 & 14 illustrate that the behavior of the errors is as expected.5
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t = 0.5

t = 1

t = 1.5

Figure 13. Left: plot of the function z (saw function) Right: error

‖
∫ t
0
e(t−s)DM z(s) ds−w(t)(ΘM )‖ for t = 0.5, 1, 1.5 versus M . The

dotted line is the reference line log(M)/M .

6. Conclusions, ongoing and future research. In this paper we have focused6

on the shift semigroup in the �∗-formulation of the DDE (2), and its PSD of index7
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Figure 14. Same as Figure 13 for the function z built so that it
is continuously differentiable with jumps in the second derivative
at t = 0.5, 1, 1.5.

M . The generator of the discrete semigroup is a finite dimensional operator that1

can be described in terms of a matrix DM , which has been widely studied in the2

context of PDEs.3

In Section 4 we have collected the most relevant results, especially about the4

spectrum of the matrix DM , of the generator A0,M , and about their relation with5

the continuous counterpart A�∗0 . We also specified the convergence of the resolvent6

operators by adapting the proof in [11, 14].7

About the convergence of the discrete semigroup T0,M (t) to the continuous semi-8

group T �∗0 (t), very few results are available in the supremum norm, which is the9

norm of the natural state space of DDEs. In the absence of theoretical results, we10

have presented a series of numerical tests and compiled some conjectures about the11

behavior of the semigroup, both in time and as M →∞.12

To arrive to a rigorous proof, we could start from the representation (42) and13

consider the properties of the Chebyshev polynomials [55]. Another possibility for14

proving convergence of the discrete semigroup T0,M (t) to the continuous semigroup15

T0(t) is to use the convergence results of Theorem 4.1 and to recall that the resolvent16

operator can be expressed, for Reλ > 0, in terms of the solution operator via Laplace17

transform as18

(λI −A�∗0 )−1(α,ψ) =

∫ ∞
0

e−λsT �∗0 (s)(α,ψ) ds, λ /∈ σ(A�∗0 ),

We are currently working in this direction.19

The study of the discrete and continuous shift semigroups is motivated by the20

PSD of DDEs in �∗-formulation, which is introduced in this manuscript for the21

first time. The �∗-formalism, despite introducing some “complications” due to22

the embedding into larger spaces, appears to be useful in the context of numer-23

ical methods for several reasons. The main advantage is to provide us with the24

variation-of-constants formula (8), which is particularly useful to relate the nonlin-25

ear solution semigroup to the trivial linear semigroup T �∗0 (t). This is particularly26

useful in the prospect of comparing the discrete and continuous nonlinear semi-27

groups. The convergence of the nonlinear semigroups is the next step for the final28
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goal of understanding in which sense the PSD approximates the periodic solutions1

of (2) and their stability. This is ongoing research of the authors and collaborators2

announced in the paper [8].3

The �∗ framework exploits naturally the pairing between dual spaces and there-4

fore comes with two topologies, the norm topology and the weak* topology. So even5

if approximations do not necessarily converge with respect to the norm, they still6

may converge in a weaker sense which, probably, is sufficient for our purposes. We7

intend to investigate this idea in the near future.8

In the case of DDEs, the �∗-formulation allowed us to give a direct description9

of the PSD of the operators by means of projections into the discretization space10

and injections into the bigger space. Moreover, it provides us with a variation-of-11

constants formula, which is helpful to relate the nonlinear semigroup to the trivial12

shift semigroup. We mention also that the �∗-framework is particularly important13

also in the PSD of REs and REs/DDEs, where the domain of the infinitesimal14

generator is described by means of an algebraic, rather than differential, equation.15

In this context, the �∗-formulation may allow to overcome the inversion of the16

nonlinear algebraic equation proposed in [8], treating the condition more efficiently.17

This is currently under investigation by the authors.18

Finally, the PSD approach has been proposed also for DDEs, REs, and REs/DDEs19

with infinite delay in [37]. Moreover, the analogous theory of �∗-calculus for infinite20

delay has been developed in [24]. Similarly to the case with finite delay, the PSD21

of the shift operator in this context is described by a matrix derived by Laguerre22

differentiation matrices. Therefore, similar questions to the case of finite delay arise:23

does the discrete shift operator converge as M →∞? Is it possible to describe the24

spectral values, and do they converge to the exact ones? How does the choice of25

the nodes influence the convergence of the operators and their spectra?26

The theoretical aspects are still work-in-progress, and there are still many ques-27

tions to address. The results and the numerical experiments are encouraging.28
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