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Ms. Ref. No.:  FOODCHEM-D-19-03433R1 

Title: Effect of oleogelator type on lipolysis kinetics and curcuminoids bioaccessibility upon in 

vitro digestion of sunflower oil-based oleogels 

 

Answers to Reviewers’ comments 

(Please find grouped text pertaining to Reviewer 1, 2, 3 or 4, and to the Editor; Reviewer text is in 

normal, and Answer text is italics, for each numbered item) 

 

Reviewer #1: 

This version of the manuscript has been improved significantly and it is thus more acceptable for 

publication in Food Chemistry. Most of my comments have been addressed, except for the fact tha 

there is no rhyme of reason for the concentrations of the systems chosen. We have no idea if other 

concentrations have the same effect. This is not going to change with any number of revisions here. 

The study is also only an in vitro study. These are early days in this research, so this may be OK. 

The manuscript is well written, clear, and the science is sound. The scope of the work, more limited. 

It is OK to consider publication as is. 

The authors thank the reviewer for his/her appreciation of the general idea of the work. Indeed, 

further research considering also ex vivo and in vivo models is required to shed some light on this 

topic which is still in its infancy. 

 

Reviewer #2: 

The authors did a good work on improving the manuscript, which results from excluding the 

samples of EC. Despite this good work, there are still some major points that should be clarified 

before considering the manuscript for publication. 

Line 228-230. The amount of ingredient or additive depends on the material used and the food 

where is used. Therefore, should not be assumed that this concentration was selected because can be 

used in all food applications. To do so the authors should indicate the food product and explain in 

detail the amount allowed by EU regulations or FDA of each gelator, as example. Is rice bran wax 

approved to use in foods in EU and USA as texturizer? 

We agree with the reviewer that our consideration was too general. Moreover, being early days in 

this research, the reference to the final food application is premature. Only after the comprehension 

of the effect of structure on the digestive fate of oleogels, it would be possible to speculate 

applications in both the food and pharmaceutical fields. We modified the text accordingly (lines 

220-222). 

How did the authors check the size above the 6 um "However, to the aim of the present work, the 

determination of particles up to 5.5 <mu>m was exhaustive. In fact, the determination was applied 

to digested oleogel and oil samples in which, as reported also in the literature, the biggest family 

expected present an average diameter below this value". The way that this was verified should be 

included in the manuscript. This should be taken in account for size and Zeta potential. 

*Response to Reviewers
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In this work, we determined the particle size and zeta potential only on the micellar phase obtained 

after the intestinal digestion phase. This micellar phase was obtained after intense centrifugation 

(30,000 g x 70 min) of the sample as reported in line 156 and as suggested by the literature (Ahmed 

et al., 2012). These centrifugation conditions were selected after preliminary trials based on the 

conditions applied in the literature, being capable to remove big particles from the sample while 

maintaining in dispersion micelles. Only in this way, the sample was suitable for BAC assessment. 

If we understand well the issue raised by the reviewer, he/she is suggesting studying the 

destructurization of the sample during digestion, considering not only the mixed micellar phase, 

that was the topic of the present work but also the digested sample before centrifugation as well as 

the sediment recovered upon digestion and centrifugation. This is a really interesting topic that 

should be properly addressed with appropriate experiments in further studies. 

To improve the clarity of our manuscript, we better explicated in the M&M and R&D sections 

which samples were considered in this study (line 160). 

The justification for the difference between the BAC and lipolysis is still not clear. The degradation 

can one of the justifications but also the extraction procedure and the gel structure. Both MG and 

Wax are organized in strong crystalline lamellar structures and BS in tubular structures. Can this 

have any influence on the CU BAC? 

The reduced BAC in MG and RW containing systems is for sure tricky and not easy to explain. 

Besides oxidation, it cannot be excluded a role of the matrix in entrapping CUs, as suggested by the 

reviewer. Being no literature on this aspect, we can only speculate the reasons for such results and 

more research is needed on this topic. More comments were added in the text (lines 353-362). 

Another of the doubts is how the authors considered the max lipolysis, once by the Figure is not 

clear that the maximum was reached at the same time for all the samples. 

We understand the issue of the reviewer. In the experiments, we considered the FFAmax as the 

maximum value reached the plateau. However, we agree with the fact that it should be better to 

compare samples at a defined length of time. For this reason, we repeated some experiments to 

confirm results and compare data at 30 min of lipolysis, improving in this way also the quality of 

Figure 2. 

 

Reviewer #3: 

The authors have made considerable revision to address the comments raised by all reviewers. The 

paper in its current state, nevertheless, requires some corrections, because after eliminating some of 

the data and revising the text some key issues have remained: 

The authors have deleted the kinetics analysis from the text, but still refer to the effect of oil 

structuring on lipolysis kinetics (title, highlights, discussion (line 322), and conclusions). More 

proper reference would be to the total free fatty acids release.  

Suggested changes were made. 

Lines 235-237: the results are not similar (your statistical analysis showed differences). 

The text was modified accordingly (lines 230-231). 
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In general, the authors did not suggest an explanation why one system showed higher G' compare to 

the other. Please do ... this is necessary. 

Lines 250-251: why would the crystal morphology lead to different gel firmness? Justify. 

Why was the PS sample firmer than the other two? Explain/justify. 

 

The last three reviewer considerations were carefully considered and this part of the manuscript 

was deeply revised (lines 234-241 and 254-258). We hope that in this version the effect of network 

structure on system properties is clearer than in the previous one. 

What is the source of the different surface electrical charge showed in the zeta potential analysis? 

Can you suggest a mechanism? 

Based on literature data we can only speculate an effect of surface-active species present in RW 

and PS. We modified the text accordingly (lines 308-312). 

Lines 323-325: Ashkar et al. (2019) did not show that the final strength of the oleogel is the most 

critical factor affecting lipolysis, they concluded that different structuring agents and gelation 

mechanisms demonstrate different susceptibility to digestive lipolysis. Fix. 

The text was modified as indicated (lines 325-326). 

Lines 348-350: how does the involvement in gelation/crystallization relate to exposure to oxidation? 

Explain in detail. 

The authors should consider interactions between the MG or RW with the CU affecting the results 

seen in the bioaccessibility. 

Unfortunately, to our knowledge in the literature, there is no clear evidence on the effect of lipid 

physical state on bioactive molecule bioaccessibility. We added some comments in the text on this 

aspect (lines 348-350 and 353-362). 

The sample size (not thickness) is missing in the firmness method section. Add. 

Details were added to the text (line 112). 

The manuscript should be edited by an English editor. 

The manuscript was submitted to English revision. 

 

Reviewer #4: 

Please revise the manuscript in accordance with the comments below. 

1- It must be pointed out in the text, how much time was necessary to structure the <gamma>-

oryzanol and <beta>-sitosterol oleogel. 

Details were added to the text (lines 104-105). 

2- The authors must provide the specifications of the compression probe used in the firmness 

measurements in the materials and methods section. 

Details were added to the text (line 113). 
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Editor's Comments: 

The original four referees have now commented on your revised manuscript. All indicate that great 

strides have been made in revising the R0. One accepted the paper as is. Unfortunately, three others 

still have major issues for you to address. Please consider the comments of all reviewers very 

carefully and either adopt or rebut each and every point made. In your rebuttal please indicate the 

line number in the revised manuscript corresponding to each change that has been made and 

possibly use yellow highlighting or color in the text to indicate the edits. 

More and more these days, manuscripts are being rejected at the R1 and R2 stages for poor English. 

Please don't let this happen to you! Due to dwindling resources, typesetters can no longer edit the 

English, so there's a new category, "Reject Due to Poor Language (regardless of the scientific 

quality)", in the Decision Box of this EES system. At least one of the reviewers notes English 

problems in your submission. I strongly suggest that the paper be scrutinized very carefully by a 

native speaker of the language with a background in food chemistry, or pay for a reputable service 

to do this, before the R2 is submitted via the EES portal. 
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1. Introduction 19 

Oil gelation is a relatively novel strategy in which liquid oils are converted into semi-solid materials 20 

(Co & Marangoni, 2012; Patel & Dewettinck, 2016). Different oil gelators have been proposed in 21 

the literature, including low-molecular weight compounds (e.g. monoglycerides, waxes, sorbitan 22 

tristearate, 12-hydroxystearic acid, phytosterols, fatty alcohols, and fatty acids) and high-molecular 23 

weight polymers, such as ethylcellulose and chitin (Co & Marangoni, 2012; Nikiforidis & Scholten, 24 

2015; Patel & Dewettinck, 2016; Rogers, Wright, & Marangoni, 2009; Singh, Auzanneau, & 25 

Rogers, 2017). These compounds directly gel into liquid oil by forming a self-assembly network 26 

according to different mechanisms. Most low-molecular weight gelators (e.g. monoglycerides, 27 

waxes, fatty acids, and fatty alcohols) are able to organize themselves into crystalline networks that 28 

entrap and retain oil (Co & Marangoni, 2012). The final oleogel structure strictly depends on crystal 29 

shape, number, and size, as well as on physical molecular interactions among building blocks. 30 

Differently, mixtures of phytosterols-sterol esters promote oil gelation through the formation of a 31 

supramolecular network of hollow double-walled tubules (Bot & Agterof, 2006; Calligaris, Mirolo, 32 

Da Pieve, Arrighetti, & Nicoli, 2014; Sawalha et al., 2015). Finally, ethylcellulose is able to form a 33 

network in oil via hydrogen bonding between polymer strands (Davidovich-Pinhas, 2016), whereas 34 

chitin develops a particle filled network by polymer aggregation (Nikiforidis & Scholten, 2015). 35 

The interest in oleogels has increased dramatically in the last decade due to their potential 36 

application as replacers of common hard stock fat (i.e. saturated and trans fatty acids) in different 37 

food products (Patel & Dewettinck, 2016; Singh et al., 2017; Wang, Gravelle, Blake, & Marangoni, 38 

2016). More recently, oleogels have also been proposed as efficient tools to modulate lipid 39 

digestion and deliver nutrients and bioactive molecules (O’Sullivan, Davidovich-Pinhas, Wright, 40 

Barbut, & Marangoni, 2017; Ashkar, Laufer, Rosen-Kligvasser, Lesmes, & Davidovich-Pinhas, 41 

2019; Tan, Peh, Marangoni, & Henry, 2017a; Tan, Peh, Siow, Marangoni, & Henry, 2017b; Tan, 42 

Peh, Lau, Marangoni, & Henry, 2017c). On this topic, O’Sullivan et al. (2017), studying the 43 
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digestion of an ethylcellulose-based oleogel enriched with β-carotene, noted that oil structuring 44 

reduced lipolysis, probably by hindering lipase activity. Consequently, the residence time of β-45 

carotene in the digestive tract increased leading to an evenly arrayed  absorption over time with no 46 

spikes and drops in plasma concentration (O’Sullivan et al., 2017). According to Yu, Shi, Liu, and 47 

Huang (2012), monostearin might increase the stability of curcuminoids loaded into oleogels, by 48 

preventing their recrystallization or precipitation (Yu et al., 2012). However, these authors did not 49 

observe differences between the oleogel and the liquid oil in terms of curcuminoid bioaccessibility. 50 

The latter is expressed as the fraction of molecules enclosed in the micelles that can be potentially 51 

absorbed through the intestinal epithelium, thus becoming available for physiological functions 52 

(Ferruzzi, 2010). 53 

Besides these studies, recently Ashkar et al. (2019) confirmed that oleogelation of canola oil with 54 

ethylcellulose, a β-sitosterol+γ-oryzanol mixture, or mono- and di-glycerides reduced the extent of 55 

oil lipolysis during in vitro digestion. As reported by these authors, such effect can be modulated by 56 

selecting the gelator type and concentration. Interestingly, also some in vivo studies highlighted the 57 

significant impact of lipid physical state on post-prandial plasma triglycerides, glycemia, and 58 

appetite when comparing the co-ingestion of a carbohydrate-rich meal with EC-oleogel instead of 59 

liquid oil (Tan et al., 2017a, 2017b, 2017c). 60 

Based on this evidence and with the final aim of designing food with tailor-made functionalities, it 61 

appears fundamental to improve the knowledge on the fate of oleogels and loaded bioactive 62 

molecules upon digestion. Therefore, the aim of the present study was to investigate the effect of 63 

gelator type and derived oleogel structure on oil lipolysis and on the bioaccessibility of 64 

curcuminoids (CUs) during in vitro digestion. Curcuminoids were chosen as model lipophilic 65 

bioactive molecules due to their weel-known health-promoting capacity (Aggarwal, Kumar, & 66 

Bharti, 2003; Aziz et al., 2013; Su, Wang, & Chi, 2017; Zheng et al., 2014). CUs are extracted from 67 

turmeric and include three major compounds: bisdemethoxycurcumin, demethoxycurcumin and 68 

curcumin (Shishu & Maheshwari, 2010). Although the latter is the most abundant, representing 69 
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nearly 80% of total CUs, the health-promoting capacity of the mixture of the three CUs in turmeric 70 

extract is higher than that generated by the sole curcumin (Chakravarty, Chatterjee, Yasmin, & 71 

Mazumder, 2009; Račková et al., 2009). In this study, sunflower-oil and oleogels containing 5% 72 

(w/w) of gelator (saturated monoglycerides, rice-bran waxes, and β-sitosterol+γ-oryzanol mixture) 73 

were enriched with CUs and characterized for mechanical and rheological properties as well as for 74 

the CUs stability during storage. Afterward, CUs-enriched oil and oleogels were in vitro digested to 75 

assess lipolysis and CUs bioaccessibility. 76 

2. Materials and methods 77 

2.1. Materials 78 

High oleic sunflower oil (fatty acid profile reported in Table S1) was kindly provided by Olitalia srl 79 

(Forlì, Italy) and turmeric extract (NNCL2065, ext. dry conc. std 20:1) was purchased from 80 

Network Nutrition – IMCD spa (Milan, Italy). Bisdemethoxycurcumin (BDMC), 81 

demethoxycurcumin (DMC) and curcumin (C) analytical standards, α-amylase from Bacillus sp., 82 

porcine pepsin, porcine lipase, porcine bile extract, amyloglucosidase from Aspergillus niger, HCl, 83 

NaOH, CaCl2(H2O)2, Na2CO3, NaHCO3, NaCl, KCl, KH2PO4, MgCl2(H2O)6, (NH4)2CO3, and 84 

MgSO4 were purchased from Sigma Aldrich (Milan, Italy). Myverol™ saturated monoglycerides 85 

(fatty acid composition: 1.4% C14:0, 59.8% C16:0, 38.8% C18:0; melting point 68.05 ± 0.5 °C) 86 

were purchased from Kerry Bioscience (Bristol, UK); β-sitosterol (75.5% β-sitosterol, 12.0% β-87 

sitostanol, 8.4% campesterol, 3.0% other) and γ-oryzanol (99% purity) were purchased from 88 

Nutraceutica srl (Monterenzio, Italy); rice wax was purchased from Kahl GmbH & Co. KG 89 

(Reinbek, Germany). All solvents were purchased from Sigma–Aldrich (Milan, Italy). Acetonitrile 90 

and 2-isopropanol were of HPLC grade. Deionized water (System advantage A10®, Millipore 91 

S.A.S, Molsheim, France) was used for all the analyses.  92 
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2.2. Methods 93 

2.1.1. Oil enrichment 94 

The turmeric extract was added to sunflower oil (5 mg/g, w/w) and the mixture was stirred for 2 h at 95 

80 °C in the dark under nitrogen atmosphere, to avoid CUs and oil oxidation. The mixture was 96 

cooled to room temperature and filtered (Chromafil PET-20/25, 0.20 µm, 25 mm Düren, Germany) 97 

to remove insoluble particles. 98 

2.1.2. Oleogel preparation 99 

Oleogels were prepared by mixing CUs-enriched sunflower oil with 5% (w/w) of saturated 100 

monoglycerides (MG) (Da Pieve, Calligaris, Co, Nicoli, & Marangoni, 2010), rice waxes (RW) 101 

(Doan, Van De Walle, Dewettinck, & Patel, 2015), or a mixture of β-sitosterol and γ-oryzanol (PS) 102 

(2:3 w/w) (Calligaris et al., 2014). The mixtures were heated under stirring in dark conditions for 30 103 

min at 80 °C for MG and RW, and for 45 min at 90 °C for PS, until melting was reached. MG and 104 

BW samples were quiescently cooled to 20 °C and stored at this temperature. PS oloege was cooled 105 

to 4 °C and kept at this temperature for 12 hours before being stored at 20 °C. All samples were 106 

then analysed after 2 days of storage at 20 °C. 107 

2.1.3. Oleogel storage 108 

Aliquots of 5 g of CUs-enriched oil and oleogels were placed into 10 mL vials and stored at 20 °C 109 

under dark for increasing time. Samples were collected after 60 and 100 days and analyzed for CUs 110 

content. 111 

2.1.4. Firmness 112 

Oleogel firmness was determined using a texture analyzer (TA.XT Plus, Stable Micro Systems Ltd, 113 

Godalming, UK) equipped with a 5 kg load cell. Forty grams of 25-mm-thick sample were 114 

compressed with a 35-mm-diameter compression platen at a crosshead speed of 1.5 mm/s 115 
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(Giacintucci et al., 2018) and firmness was expressed as the maximum force (N) applied to the 116 

samples. 117 

2.1.5. Rheological measurement 118 

Rheological properties of oleogels were determined with a Haake Rheostress 6000 (Thermo 119 

Scientific, Rheostress, Haake, Germany). Aliquots of about 5 g of sample were transferred on a 40-120 

mm parallel-plate geometry system thermostated at 20 °C and the measuring gap was set at 2 mm. 121 

Samples were equilibrated for 5 min before testing to allow relaxation. Stress sweep measurement 122 

in the range of 0.1 to 1000 Pa was carried out at 1 Hz frequency to determine the linear viscoelastic 123 

region. Frequency sweep was carried out by applying a fixed stress value chosen in the linear 124 

viscoelastic region with a frequency scan of 0.1 to 10 Hz. Data were acquired and managed by 125 

applying the software Haake Rheowin v.4.60.0001 (Thermo Fisher Scientific). The critical stress 126 

was computed as the stress leading to a 10% G′ decrease during the stress sweep. G′ and G′′ were 127 

compared at 1 Hz. The tangent of the phase angle (Tanδ) was computed as the ratio between the 128 

two moduli (G′′/G′) during the frequency sweep. 129 

2.1.6. Macroscopic appearance 130 

Gel images were acquired by using an image acquisition cabinet (Immagini and Computer, 131 

Bareggio, Italy) equipped with a digital camera (EOS 550D, Canon, Milan, Italy). The digital 132 

camera was placed on an adjustable stand positioned 40 cm in front of a black cardboard base 133 

where the sample was placed. Light was provided by four 23 W frosted photographic floodlights, in 134 

a position allowing minimum shadow and glare. Other camera settings were: shutter time 1/250 s, 135 

F-Number F/2,8 and focal length 60 mm. Images were saved in jpeg format resulting in pictures of 136 

5184 × 3456 pixels, 72 × 72 dpi. 137 
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2.1.7. Polarized light microscopy 138 

Polarized light microscopy was carried out by using a Leica DM 2000 optical microscope under 139 

polarized light conditions (Leica Microsystems, Heerbrugg, Switzerland). A small portion of gel 140 

was placed on a glass slide, covered with a cover slide and observed at 20 °C. Images were taken at 141 

200× magnification using a Leica EC3 digital camera and elaborated by the Leica Suite Las EZ 142 

software (Leica Microsystems, Heerbrugg, Switzerland). 143 

2.1.8. In vitro digestion 144 

In vitro digestion was carried out according to the protocol proposed by Minekus et al. (2014). 145 

Briefly, the simulated salivary (SSF), gastric (SGF) and intestinal (SIF) fluids were prepared and 146 

stored at 4 °C. The fluids were preheated to 37 °C just before in vitro digestion. The oral phase was 147 

started by adding to 0.25 g sample (oil or oleogel), 6 µL of CaCl2(H2O)2 (0.3 M), 194 µL of water 148 

and 800 µL of a 6.4 mg/mL α-amylase solution, prepared in SSF and providing 75 U/mL activity in 149 

the final mixture. The sample was maintained at 37 °C under stirring for 2 min. At the end of the 150 

oral phase, the pH was adjusted to 3.0 with 40 µL HCl (1 M). Subsequently, 140 µL water and 1.82 151 

mL of a 0.31 mg/mL pepsin solution, prepared in SGF and providing 2,000 U/mL activity in the 152 

final mixture, were added to start the gastric phase. The mix was stirred at 37 °C for up to 2 h. At 153 

the end of the gastric phase, the pH was adjusted to 7.0 with 30 µL NaOH (1 M). The intestinal 154 

phase was initiated by adding 8 µL CaCl2(H2O)2 (0.3 M), 262 µL of water, 3.2 mL of 22.15 mg/mL 155 

lipase solution, prepared in SIF and providing 100 U/mL activity in the final mixture, and 0.5 mL of 156 

160 mM bile extract prepared in SIF. The mix was stirred at 37 °C for up to 2 h. At the end of the 157 

intestinal phase, samples were centrifuged at 30,000 g for 70 min at 4 °C (Beckman Avanti tm J-25, 158 

Beckman Instruments Inc., Palo Alto, CA, USA) and the supernatant, i.e. the mixed micellar phase, 159 

was collected. 160 
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2.1.9. Particle size and zeta potential of digested samples 161 

The particle size distribution of the mixed micellar phase of digested oil and oleogels was measured 162 

by dynamic laser light scattering (Zetasizer NanoZS, Malvern Instruments, Worcestershire, UK). 163 

Samples were diluted 1:100 (v/v) with deionized water and placed in a cell where the laser light, set 164 

at 173 ° angle, was scattered by the particles. Particle size was reported as volume-weighed mean 165 

diameter in nm. The ζ-potential was also measured by placing the diluted sample in a capillary cell 166 

equipped with two electrodes to assess particle electrophoretic mobility. 167 

2.1.10. Free fatty acid release 168 

The amount of free fatty acids (FFA) released from the sample during the intestinal phase of in vitro 169 

digestion was measured by using a titration method (Ahmed, Li, McClements, & Xiao, 2012). 170 

Immediately after the addition of lipase, the pH of the digestion mixture was monitored and 171 

maintained at 7.00 by adding 0.25 M NaOH. The volume of NaOH added to the sample was 172 

recorded and used to calculate the percentage of FFA released during lipolysis (Equations 1 and 2): 173 

      
    

     
 

    

     
          Equation 1 174 

        
  

  
              Equation 2 175 

where    was the experimental volume of NaOH used for the titration,    was the theoretical 176 

volume required to titrate the fatty acids released by complete hydrolysis of triglycerides in the 177 

reaction vessel, assuming 2 FFA are produced for each triacylglycerol molecule (L) (Li, Hu, Du, 178 

Xiao, & McClements, 2011),      was the mass of oil in the reaction vessel (g),       was the 179 

average molecular weight of sunflower oil (g mol
-1

) and       was the concentration of the sodium 180 

hydroxide (mol L
-1

). The maximum value of free fatty acids released during digestion was 181 

determined after the plateau was reached, i.e. after 30 min from the beginning of intestinal phase. 182 

This value was considered as an indication of the maximum lipolysis and was reported as FFAmax. 183 
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2.1.11. Curcuminoid quantification and bioaccessibility computation 184 

CUs-enriched oil and oleogels were diluted in isopropanol (100 µg/mL) and transferred to glass 185 

vials for UHPLC analysis, while the mixed micellar phase recovered after in vitro digestion, was 186 

submitted to extraction. Briefly, 2 mL of water was added to the digested samples followed by 2 187 

mL of isopropanol. The sample was vigorously hand‐ shaken for 1 min and vortexed for 15 s. A 188 

mixture of salts (MgSO4/NaCl 2.0:1.5, w/w) was then added and shaking was repeated under the 189 

same conditions. The resulting mixture was centrifuged at 5000 g for 15 min and the supernatant 190 

was recovered for UHPLC analysis. 191 

To validate the extraction procedure for CUs analysis in digested samples, accuracy was evaluated 192 

by means of recovery experiments, analyzing digested samples fortified with three different 193 

amounts of CUs (5, 10 and 20 µg for each CUs), whereas precision, expressed as the repeatability 194 

of the method, was determined in terms of relative standard deviation (RSD) from recovery 195 

experiments at each fortification level. In all cases, the average recovery ranged from 92 to 100% 196 

with repeatability (CV%) lower than 2%, revealing the suitability of the procedure for the 197 

quantitative extraction of CUs from digested samples. 198 

Different chromatographic conditions were employed to obtain a baseline separation of BDMC, 199 

DMC, and C. Fig. S1 shows the chromatogram of CUs in enriched oil samples obtained by applying 200 

the optimized chromatographic conditions. The UHPLC system used was a Shimadzu Prominence 201 

LC-20A coupled with a RF-20A fluorescence detector (Shimadzu, Milan, Italy). The column was 202 

an Agilent Poroshell C18 column (150 mm x 4.6 mm x 2.7 µm) thermostated at 30 °C. The mobile 203 

phase was a mixture of 0.2% aqueous phosphoric acid water and acetonitrile (85:15, v/v) at 0.45 204 

mL/min flow rate. The excitation wavelength (λex) and emission wavelength (λem) were set a 430 205 

and 524 nm, respectively. Standard stock solutions of BDMC (0.25 mg/mL), DMC (0.25 mg/mL) 206 

and C (0.5 mg/mL) were prepared in acetonitrile and intermediate working CUs solutions were 207 

prepared weekly from the stock standard solution by appropriate dilution with acetonitrile and 208 
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stored in the dark at 4 °C. Calibration curves were obtained for each curcuminoid (0.1 - 500 ng on 209 

column) and presented R
2
 > 0.998 in all cases. 210 

CUs bioaccessibility was calculated as the percentage ratio between the concentration of compound 211 

incorporated in the micelles after in vitro digestion and its concentration in the undigested sample. 212 

2.1.12. Statistical analysis 213 

Results are averages of three measurements carried out on two replicated experiments and are 214 

reported as means ± standard deviation. Analysis of variance (ANOVA) was performed using R 215 

(version 3.2.3, The R Foundation for Statistical Computing, Vienna, Austria). Bartlett's test was 216 

used to check the homogeneity of variance and the Tukey test was used to test for differences 217 

between means (p < 0.05). 218 

3. Results and discussion 219 

3.1. Oleogel physical and chemical properties  220 

Oleogels containing sunflower oil enriched with CUs were prepared by using 5% (w/w) of saturated 221 

monoglycerides (MG), rice waxes (RW) and a mixture of β-sitosterol and γ-oryzanol (PS). This 222 

concentration was selected being effective in gelling vegetable oils as previously reported by 223 

different authors (Da Pieve et al., 2010; Calligaris et al., 2014; Doan et al., 2015). 224 

Table 1 shows firmness, rheological parameters (critical stress, G′, G′′ and Tanδ), and micro- and 225 

macroscopic images of oleogels prepared by using MG, RW, and PS as oil gelators. The original 226 

stress sweep and frequency sweep curves are reported in Fig. S2. From the macroscopic images it 227 

can be noted that all samples were self-standing materials, even if with different structures. In 228 

particular, MG and RW oleogels were opaque sytems with cream-like structure, whereas the PS  229 

oleogel appeared as a transparent solid. From a rheological point of view, the gel behavior was 230 

confirmed for all samples, being the storage modulus (G′) higher than the loss modulus (G′′) and 231 

Tanδ < 1 (Zetzl et al., 2014). Considering G′ and G′′ at 1 Hz, the MG-based sample showed the 232 

lowest values, followed by PS and RW. On the other hand, PS demonstrated the highest critical 233 
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stress value, which represents the beginning of the non-linear region and accounts for the structure 234 

breakdown required to onset flowing (Doan et al., 2015). 235 

As well known, G′ and G′′ are indexes of the elastic and viscous behavior of the matrix, 236 

respectively; whereas the critical stress is an indicator of the stress needed to break the gel network. 237 

Thus, from the rheological parameters it can be concluded that, in spite of the reduced elastic 238 

behavior, PS presented the highest stress resistance. This is also consistent with firmness values that 239 

followed the order PS>RW>MG (Table 1). 240 

These results are in agreement with those reported by Fayaz, Calligaris & Nicoli (2019). These 241 

authors compared the ability of different molecules to gel sunflower oil, and attributed the different 242 

gel properties to the peculiarities of the network structure formed by each oil gelator. As well 243 

reported by Sawalha et al. (2013, 2015), β-sitosterol+-oryzanol self-assemble into a network by 244 

alignment of cross-linked tubules into helical ribbons strongly stabilized by hydrogen bonds. The 245 

dimension of these tubules is around 10 nm, which is smaller than the wavelength of visible light 246 

accounting for system transparency (Bot & Agterof, 2006; Bot, Den Adel, & Roijers, 2008; Bot et 247 

al., 2011). or this reason, tubules are not detectable by using polarised light microscopy and they 248 

can be imaged by SEM solely (Sawalha et al., 2013). The peculiar network arrangement of β-249 

sitosterol+-oryzanol conferred to the system a higher stress resistance in comparison to the 250 

crystalline networks formed by MG and RW. It should be remembered that the ability of these 251 

molecules to gel into oil is associated to their self-assembly into crystals (Da Pieve et al., 2010, 252 

Doan et al., 2015). As can be observed in the polarized light microscopy images (Table 1), the 253 

morphology of crystals (bright areas) was different in MG and RW-based oleogels: small needle-254 

like crystals were formed in MG containing system, whereas large dendritic crystals were observed 255 

in RW oleogel, in well agreement with the literature (Da Pieve et al., 2010; Doan et al., 2015; 256 

Fayaz et al., 2019). Both MG and RW crystals further aggregated mainly by hydrogen bonds, van 257 

der Waals and hydrophobic forces to finally develop into three-dimensional gel network. As 258 
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demonstrated by Fayaz et al. (2019), the physical molecular interactions among crystal aggregates 259 

are expected to be stronger in rice wax-containing sample than in MG-based oleogel. 260 

3.2.  Curcuminoid stability 261 

After the characterization of oleogels, further research was carried out to investigate the impact of 262 

oleogel preparation conditions on CUs content. As already mentioned, oleogels were prepared by 263 

heating oil at temperatures higher than the melting temperatures of the gelators. Being CUs 264 

sensitive to heat, their degradation could occur during oleogel preparation. The concentration of 265 

BDMC, DMC, and C in turmeric extract, enriched oil and oleogels was thus determined by 266 

UHPLC. BDMC, DMC, and C concentration in turmeric extract accounted for 10,142 ± 10 µg/g, 267 

53,277 ± 79 µg/g and 147,761 ± 249 µg/g, respectively. As expected, C was the most abundant 268 

compound, followed by DMC and BDMC (Yu & Huang, 2012). Based on CUs concentration in the 269 

turmeric extract and in freshly prepared oil (Table 2), it can be observed that these compounds were 270 

completely solubilized during oil enrichment. BDMC, DMC and C concentration in oleogels did 271 

not differ significantly from those found in freshly prepared oil and ranged between 39 and 41; 264 272 

and 274; 1,049 and 1,112 µg/goil, respectively. These results suggest that the preparation 273 

methodology applied to produce oleogels did not induce CUs degradation. It can be noted that 274 

BDMC, DMC, and C accounted for nearly 2%, 14% and 84% of CUs, respectively, in oil and 275 

oleogels. 276 

Samples were further analyzed for CUs content during storage at 20 °C. As shown in Table 2, CUs 277 

concentration did not change up to 60 days of storage, whereas a significant decrease was recorded 278 

at 100 days of storage in all samples. In any case, the measured differences did not allow 279 

highlighting a clear effect of oleogel structure on CUs stability. 280 

3.3. Physical properties, lipolysis and bioaccessibility of in vitro digested oleogels 281 

The aim of the second part of the research was to study the effect of oil gelator type, and thus 282 

oleogel structure, on the digestive fate of oil and CUs. The particle size distribution of the micellar 283 
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phases obtained after in vitro digestion of oil and oleogels was firstly investigated (Fig. 1a). A 284 

multimodal particle size distribution was observed for all samples, revealing the presence of small 285 

and large particles. The smallest particle family detected in oil, PS and RW showed an average 286 

diameter ranging from 90 to 190 nm, attributable to the presence of mixed micelles formed upon 287 

digestion (Salvia-Trujillo et al., 2017). By observing particle size distributions, it is evident that 288 

RW and PS produced broader distributions than that observed in oil. This result suggests the 289 

formation of micelles with unhomogeneous size probably due to the fact that  gel structure interfers 290 

with the digestion process (O’Sullivan et al., 2017). In particular, the gel network might represent a 291 

physical barrier to the access of lipase to its substrate or could directly interfere with lipid digestive 292 

components (McClements, Decker, & Park, 2009), resulting in a less efficient micelle formation. In 293 

this regard, it is important to highlight that micellarization plays a pivotal role in determining the 294 

absorption of loaded lipophilic bioactive compounds, but no correlation has been demonstrated 295 

between size and bioaccessibility (Salvia-Trujillo et al., 2017). 296 

Differently, the major particle family in MG presented an average diameter of 28 nm. Such 297 

difference could be attributed to the ability of MG to act as surfactants during in vitro digestion, 298 

thus promoting the formation of smaller micelles (Reis et al., 2008). 299 

Beside the presence of particles smaller than 200 nm, as shown in Fig. 1a, all analyzed samples also 300 

presented a particle family with an average diameter of 4,800-5,500 nm. This family is attributable 301 

to the presence of undigested lipid dropletssurrounded by anionic species, such as free fatty acids 302 

and bile salts (Salvia-Trujillo, Qian, Martín-Belloso, & McClements, 2013; Singh, Ye, & Horne, 303 

2009; Zou et al., 2016),and resulting in complex colloidal structures with negative charge (Zhang et 304 

al., 2016). 305 

The negative charge of particles in the micellar phase was confirmed by ζ-potential measurements 306 

(Fig. 1b). As well known, this parameter provides information about the surface electrical charge of 307 

particles and depends on the adsorbed species at the oil-water interfaces (Salvia-Trujillo et al., 308 

2017). All digested oleogels presented negatively charged particles, with a ζ-potential ranging from 309 



14 

 

-50 to -62 mV. Unstructured oil and MG-containing oleogel were characterized by the most 310 

negatively charged micelles upon digestion, whereas RW- and PS-containing samples presented a 311 

higher ζ-potential, confirming the ability of different structuring agents to affect not only micelle 312 

size but also their surface charge (Fig. 1). To explain these results it can be speculated that some 313 

surface active species contained in RW and PS might play a role in modifying the total surface 314 

charge of the micelles. Moreover, some authors observed a relationship between the electrical 315 

charge upon digestion and the lipolysis degree (Qian, Decker, Xiao, & McClements, 2012). Lipid 316 

digestion was thus monitored by measuring free fatty acid (FFA) release during the intestinal phase 317 

of in vitro digestion (Fig. 2). In can be observed that the FFA release increased during digestion for 318 

all analyzed samples and reached  a plateau within 30 min of intestinal digestion. This behavior is 319 

in agreement with literature data (McClements & Li, 2010; O’Sullivan, Barbut, & Marangoni, 320 

2016). However, the extent of lipid digestion was significantly affected by oil structure. The 321 

unstructured oil presented the highest value of lipid digestion (FFAmax= 54%) in comparison with 322 

oleogels. This value agreed with literature findings, reporting a maximum lipolysis for unstructured 323 

sunflower oil around 57% (Ye et al., 2019). Among oleogels, MG and RW presented similar 324 

lipolysis extents (nearly 45%), whereas PS-based oleogel showed the lowest lipolysis upon in vitro 325 

digestion, being 20% lower than that of oil. 326 

These results suggest that the presence of differently structured supramolecular networks in oil 327 

affected the free fatty acid release, probably by hindering lipase access to triacylglycerol digestion 328 

sites. Thus, different oil gelators and gelation mechanisms seem to critically affect lipolysis, in 329 

agreement with results reported byAshkar et al. (2019) with reference to canola oil-based oleogels 330 

containing MG and PS. It should be noted that no universal conclusion on the relation between the 331 

gel strength and lipolysis can be gathered, as both gel strength (Yang et al., 2018; Sawalha et al., 332 

2015) and lipolysis extent (Ye et al., 2019) may be differently affected by fat composition. Still, it 333 

can be inferred that it may be possible to modulate fat digestibility and availability by selecting a 334 

proper oleogel structure. Several authors observed an interdependence between lipolysis efficiency 335 
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and micelle characteristics (Qian et al., 2012; Salvia-Trujillo et al., 2017). In fact, besides resulting 336 

in the highest lipolysis extent (Fig. 2), MG-containing oleogel also presented the smallest and most 337 

negatively charged mixed micelles (Fig. 1), comparable with those observed in the unstructured oil. 338 

Since these differences could affect the bioaccessibility of loaded lipophilic bioactive compounds, 339 

to get an insight into the effect of different structuring agents on this feature, CUs concentration and 340 

bioaccessibility in the in vitro digested oil and oleogels were assessed (Table 3). As well known, 341 

bioaccessibility measures the percent transfer of the bioactive molecules from the lipid phase to the 342 

aqueous one, in which CUs are incorporated into mixed micelles (Ferruzzi, 2010). Only CUs 343 

enclosed in the micellas are then available to be absorbed by the intestinal epithelium cells. A 344 

significant decrease (p < 0.05) in the concentration of CUs was observed for both oil and oleogels 345 

in the micellar phase after in vitro digestion, as compared to undigested samples (Table 2). 346 

Regarding the susceptibility of different CUs upon digestion, curcumin presented the lowest BAC, 347 

being more susceptible to oxidation as compared to BDMC and DMC (Gordon Luis, Ashley, 348 

Osheroff, & Schneider, 2015), in agreement with the results reported by Yu et al. (2011, 2012). In 349 

addition, the gelator significantly affected CUs concentration and bioaccessibility in digested 350 

samples, in contrast with the results found for the undigested oleogels (Tables 2 and 3). The 351 

bioaccessibility of CUs included into PS oleogel was comparable to that of oil (p > 0.05), 352 

suggesting that the tubular network did not compromise the release of CUs into digestive fluids 353 

impairing their bioaccessibility. On the other hand, oleogels structured through crystalline networks 354 

(MG- and RW-based oleogels) presented the lowest CUs content and bioaccessibility upon in vitro 355 

digestion. It can be speculated an effect of the presence of crystalline particles on CUs BAC. In 356 

particular, CUs could be involved in the gelation/crystallization process, being more exposed to 357 

oxygen and/or other oxidants present in the digestive mixture. To our knowledge, in the literature 358 

there are no indications on this aspect. However, some evidences show an effect of the lipid 359 

crystalline network structure on -carotene oxidative degradation. On this regards, some authors 360 

(Calligaris, Valoppi, Barba, Anese, & Nicoli, 2018; Martins, Cerqueira, Cunha, & Vicente, 2017) 361 
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demonstrated the critical role of biomolecule location inside the lipid crystal network. Even if more 362 

research is needed on this aspect, it can be inferred that also during digestion the presence of fat 363 

crystals could impact not only the chemical stability of bioactive molecules, but also their release 364 

into the digestive fluids and thus their bioaccessibility. 365 

4. Conclusions 366 

Results reported in the present study confirm that oleogelation could be a profitable strategy to 367 

modulate lipid digestion while delivering bioactive molecules. Oleogel structure seems to affect the 368 

lipolysis extent and the bioaccessibility of loaded lipophilic bioactive compounds. Regarding lipid 369 

digestion, gel strength resulted critical in affecting the rate and extent of lipolysis. On the contrary, 370 

the choice of the gelling agent had an impact on CUs bioaccessibility. 371 

Based on this knowledge, it can be suggested that oleogel development would not only offer the 372 

food industry a plastic fat replacer but could represent a strategy to modulate lipid digestion and 373 

deliver health benefits. Matching the reduction of fat uptake and the improved bioaccessibility of 374 

bioactive molecules might provide the consumers with functional foods potentially able to tackle 375 

the risk of obesity and cardiovascular diseases, currently representing major issues for public health. 376 

Abbreviations 377 
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Captions for figures 551 

Fig. 1. Particle size distribution (a) and ζ-potential (b) of oil and oleogels obtained by using 5% 552 

(w/w) of monoglycerides (MG), rice wax (RW) and phytosterols (PS), after in vitro digestion. 553 

Different letters (a-c) mean significant differences (p < 0.05) among samples. 554 

Fig. 2. Concentration of free fatty acids (FFA) during in vitro digestion of oil and oleogels 555 

containing 5% (w/w) of monoglycerides (MG), rice wax (RW) or phytosterols (PS). Different 556 

letters (a-c) mean significant differences (p < 0.05) among samples. 557 

Fig. S1. UHPLC trace of CUs enriched oil. 1: bisdemethoxycurcumin; 2: demethoxycurcumin; 3: 558 

curcumin. 559 

Fig. S2. Stress and frequency sweep curves of monoglyceride- (MG), rice wax- (RW) and 560 

phytosterol- (PS) based oleogels. 561 



*Declaration of Interest Statement



Author contribution 

Sonia Calligaris: Conceptualization, Writing - Review & Editing, Supervision; Marilisa Alongi: 

Investigation, Formal analysis, Writing - Original Draft; Paolo Lucci: Methodology, Validation, 

Writing - Review & Editing; Monica Anese: Writing - Review & Editing, Supervision. 

*Author Contributions Section



Table 1 

Firmness, G’, G’’, Tanδ, critical stress, and microscopic and macroscopic images of oleogels obtained by using 5% (w/w) of monoglycerides (MG), 

rice wax (RW) and phytosterols (PS). 

Gelling agent Firmness (N) G’ (Pa) G’’ (Pa) Tanδ Critical stress (Pa) 
Microscopic 

appearance 

Macroscopic 

appearance 

MG 0.91 ± 0.08 c 25090 ± 4044 b 3075 ± 513 b 0.15 ± 0.01 b 6.6 ± 0.1 b 

  

RW 3.49 ± 0.24 b 37413 ± 2591 a 4384 ± 539 ab 0.15 ± 0.01 b 16.7 ± 3.1 b 

  

PS 5.65 ± 0.42 a 29410 ± 4646 ab 6026 ± 808 a 0.21 ± 0.01 a 128.5 ± 28.6 a n.a. 

 
Different letters (a-c) mean significant differences (p < 0.05) of structural properties among oleogels. 

n.a. Images not acquired. 
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Table 2 

Bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin (C) contents in oil and oleogels obtained by using 5% (w/w) of 

monoglycerides (MG), rice wax (RW) and phytosterols (PS), during storage at 20 °C under dark. 

 
BDMC (µg/goil) DMC (µg/goil) C (µg/goil) 

Sample 0 days 60 days 100 days 0 days 60 days 100 days 0 days 60 days 100 days 

Oil 41.2 ± 1.8 
A,a

 38.5 ± 0.2 
A,a

 31.6 ± 0.1 
B,a

 274 ± 12 
A,a

 251 ± 1 
A,a

 193 ± 3 
B,b

 1112 ± 48 
A,a

 974 ± 5 
B,a

 820 ± 5 
C,b

 

MG 39 ± 1.5 
A,a

 38.9 ± 1.8 
A,a

 32.1 ± 0.3 
A,a

 268 ± 10 
A,a

 250 ± 12 
A,a

 192 ± 2 
A,b

 1049 ± 38 
A,a

 974 ± 49 
A,a

 812 ± 6 
B,bc

 

RW 41.0 ± 2. 8 
A,a

 37.3 ± 0.3 
A,a

 29.8 ± 0.2 
B,b

 272 ± 15 
A,a

 246 ± 1 
A,a

 200 ± 2 
B,ab

 1104 ± 57 
A,a

 968 ± 2 
A,a

 794 ± 3 
B,c

 

PS 39.7 ± 2.3 
A,a

 38.2 ± 0.3 
A,a

 31.3 ± 0.2 
B,a

 265 ± 15 
A,a

 247 ± 2 
A,a

 207 ± 1 
B,a

 1079 ± 58 
A,a

 1007 ± 8 
A,a

 853 ± 3 
B,a

 

Different capital letters (A-C) mean significant differences of curcuminoid concentration during storage. Different lowercase letters (a-c) mean significant 

differences (p < 0.05) of curcuminoid concentration between oil and oleogels. 
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Table 3 

Bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin (C) content and bioaccessibility (BAC) in oil and oleogels obtained by 

using 5% (w/w) of monoglycerides (MG), rice wax (RW) and phytosterols (PS) after in vitro digestion. 

Sample BDMC DMC C 

 Concentration (µg/goil) BAC (%) Concentration (µg/goil) BAC (%) Concentration (µg/goil) BAC (%) 

Oil 22.9 ± 3.8 
a
 55.6 ± 9.1 

a
 141.9 ± 22.8 

a
 51.7 ± 8.3 

a
 520.4 ± 85.9 

a
 50.4 ± 7.7 

a
 

MG 13.1 ± 0.5 
c
 33.6 ± 1.4 

b
 87.3 ± 5.5 

b
 32.5 ± 2.1 

c
 333.9 ± 31.5 

b
 31.8 ± 3.0 

b
 

RW 13.7 ± 3.4 
bc

 33.3 ± 8.4 
b
 94.0 ± 22.6 

b
 34.5 ± 8.3 

bc
 376.5 ± 93.0 

ab
 29.2 ± 8.4 

b
 

PS 20.5 ± 2.0 
ab

 51.4 ± 5.0 
a
 130.5 ± 11.1 

ab
 49.1 ± 4.2 

ab
 489.3 ± 39.7 

ab
 45.2 ± 3.7 

a
 

Different letters (a-c) mean significant differences (p < 0.05) of curcuminoid concentration or bioaccessibility among samples. 
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Table S1 

Total fatty acid profile of high-oleic sunflower oil 

Fatty acid  Relative abundance (%) 

C16:0 5.1 ± 1.0 

C16:1 
Δ9c

 0.2 ± 0.0 

C18:0 3.0 ± 0.1 

C18:1
Δ9c

 81.6 ± 1.5 

C18:2 
Δ9c,12c

 8.3 ± 0.8 

C18:3 
Δ9c,12c,15c

 0.2 ± 0.0 

C20:0 0,3 ± 0.0 

C20:1 
Δ11

 0.3 ± 0.1 

C22:0 1.1 ± 0.2 

Legend for fatty acids – m:n Δx, m=number of carbon atoms, n= number of double bonds, x= 

position of double bonds. 
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