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Abstract
The negative capacitance operation of a ferroelectric material is not only an intriguing material science

topic, but also a property with important technological applications in nanoscale electron devices. Despite the
growing interest for possible applications, the very existence of negative capacitance is still actively debated,
even because experimental results for ferroelectric capacitors with or without a metal interlayer led to quite
contradicting indications. Here we present a comprehensive analysis of the NC operation in ferroelectric
capacitors and provide new insights about the discrepancies observed in experiments. Our models duly account
for the three-dimensional nature of the problem and show a good agreement with several aspects of recent
experiments. Our results also demonstrate that traps at the ferroelectric-dielectric interface play an important
role in the feasibility of a stable negative capacitance operation in ferroelectric capacitors.

1 Introduction

The basic idea behind the use of ferroelectric materials in nanoscale transistors stems from the fact that, thanks to
the negative capacitance (NC) operation, the voltage swing necessary to operate the transistors can be reduced,1–3

thus enabling improved energy efficiency for CMOS circuits.4, 5 An industrial level demonstration of the NC
operation in CMOS transistors was recently reported for a 14-nm FinFET technology,6 with an analysis of the
device and circuit level advantages further discussed in.7 Moreover, several papers have started addressing diverse
design aspects related to NC field effect transistors.8–10

Despite some encouraging experimental results, however, the stable NC operation of the ferroelectric is still
quite controversial.11 In fact, recent studies in Metal-Ferroelectric-Insulator-Metal (MFIM) capacitors reported a
hysteresis free, direct measurement of the negative capacitance branch of a thin ferroelectric layer.12, 13 However,
in similarly recent publications focused on Metal-Ferroelectric-Metal-Insulator-Metal (MFMIM) systems or on
ferroelectric capacitors externally connected to a MOSFET authors either negated any evidence of the NC oper-
ation,14 or affirmed that the measured steep slope transistor operation was due to domain switching and, as such,
invariably accompanied by hysteresis.15–17

The discrepancy between experiments in MFIM and MFMIM systems is not entirely unexpected, in fact a
recent theoretical investigation suggests that MFMIM capacitors are inherently more prone than MFIM systems
to domain nucleation.18 The analysis in,18 however, was restricted to a one-dimensional, rigidly periodic system
and, moreover, conclusions were drawn by inspecting the free energy landscapes, instead of examining the actual
ferroelectric dynamic equations of the MFIM and MFMIM systems.

In this paper we present a comprehensive analysis of the dynamics and possible stabilisation of a ferroelectric
layer inserted either in a MFIM or in a MFMIM structure, which is a broadly extended version of the concise
contribution reported in.19 To this purpose we have developed a model for the depolarisation energy that fully
accounts for the three-dimensional nature of the electrostatics in a realistic device. Then we use the multi-domain
Landau–Ginzburg–Devonshire theory (LGD) and derive analytical or quasi-analytical conditions for a stable NC
operation, that explain the different behavior of a MFIM compared to a MFMIM capacitor. Our models are vali-
dated by a good agreement with several aspects of recent experiments.12, 13 Finally we investigate the influence of
possible traps at the ferroelectric-dielectric interface, and argue that traps not only help explain some experimental
features, but also discriminate between a quasi-static and a dynamic NC operation.
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Figure 1: Ferroelectric capacitors and related symbols. a. Metal-Ferroelectric-Insulator-Metal (MFIM) and reference coordinate
system. b. Metal-Ferroelectric-Metal-Insulator-Metal (MFIMIM) system. c. Metal-Ferroelectric-Metal (MFM) structure. The top metal
contact is not shown for clarity. tF and tD denote respectively the ferroelectric and dielectric thickness, d is the domain side of a square
domain of area d2, and VT is the externally applied voltage. VD(r̄) is the electrostatic potential at the oxide interface (i.e. at z=0), that
depends on r̄=(x,y) in a MFIM system, whereas it is independent of r̄ in a MFMIM capacitor. d. Sketch of the ferroelectric domain i and
its nearest neighbors domains n in the x-y plane. The shaded area illustrates the domain-wall region, where w denotes the width, and the
dashed blue line delimits the region used to compute the domain wall energy uW,i in Eq.4.

2 Free energy and dynamic equations

In the analysis of the ferroelectric capacitors sketched in Fig.1 we assume that the spontaneous polarisation P lies
along the z direction, and we write the free energy per unit volume of the ferroelectric by following18

uF = αP2 +βP4 + γP6 + k |gradP|2 + ε0εF

2
E2

F (1)

where α , β and γ are the ferroelectric anisotropy constants, ε0 is the vacuum permittivity, EF , εF are respectively
the electric field and relative background permittivity of the ferroelectric, while k is the coupling constant gov-
erning the domain wall energy and gradP denotes the gradient of P. The total polarisation in the ferroelectric is
thus given by PT = P+(εF −1)ε0EF and the electric displacement is D = P+εFε0EF .20 We will assume that the
ferroelectric has a second-order phase transition with α < 0, β > 0. When we consider the ferroelectric capacitors
of Fig.1 the overall electrostatic energy consists of the three contributions21

UF =
VT

2

∫
A

ε0εFEF,T (r̄)dr̄, UB =−VT

[
d2

nD

∑
j=1

Pj +
∫

A
ε0εFEF,T (r̄)dr̄

]
, UD =

nD

∑
j=1

∫
D j

PjVD(r̄)
2

dr̄ [J] (2)

namely the ferroelectric self-energy, UF , the UB related to the external battery, and the electrostatic energy,
UD, due to the dielectric region, which is zero in a MFM structure. Denoting by tF the ferroelectric thickness,
EF,T (r̄)=EF,z(r̄,−tF) in Eq.2 is the electric field at the top metal interface and nD is the number of domains. When
we sum UF , UB, UD and normalise to the domain area d2 we obtain

UET =−VT

2
1
d2

∫
A

ε0εFEF,T (r̄)dr̄−VT

nD

∑
j=1

Pj +
1
d2

nD

∑
j=1

∫
D j

Pj VD(r̄)
2

dr̄ [J/m2] (3)
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As for the domain wall energy, the polarisation is assumed to be essentially constant within each domain, so that
gradP in Eq.1 is non null only in the domain wall region of Fig.1(d). The contribution uW,i to the domain wall
energy can thus be written as

uW,i = ∑
n

k
(

Pi−Pn

w

)2

(4)

where w is the domain wall width shown in Fig.1(d), which we assume to be small enough to justify the discretized
form of gradP in Eq.4 and, in particular, much smaller than d. We can now integrate uW,i over the domain wall
region inside the blue line in Fig.1(d) and along tF , and then normalise to the domain area d2, so as to obtain the
domain wall energy per unit area

UW =
nD

∑
j=1

[
tF
2d ∑

n

k
w
(Pj−Pn)

2
]

[J/m2] (5)

The difference between the MFM, MFIM and MFMIM systems is in the UET defined in Eq.3. In the MFM
case the last term in Eq.3 is zero and EF,T=VT/tF , so that UET=−VT ∑

nD
j=1 Pj−(nDCF V 2

T )/2 with CF=ε0εF/tF .
For the MFMIM structure the metal interlayer results in a one-dimensional electrostatics, so that EF,T and VD

are independent of r̄ and given by EF,T=(CDVT−PAV )/(tFC0), VD=(CFVT+PAV )/C0,18 where PAV=(∑
nD
j=1 Pj)/nD

is the average polarisation, CD=ε0εD/tD (where tD denotes the dielectric thickness) and C0=(CD+CF). For the
MFIM system, instead, the calculation of the ferroelectic and dielectric field is a three-dimensional problem that
demands a numerical evaluation. We show in Supplementary Section S1 that for both the MFMIM and the MFIM
system the electrostatic energy reads

UET =Udep−VT
CD

C0

nD

∑
j

Pj−
CS V 2

T

2
nD (6)

where CS=(CFCD)/(CF +CD). Here Udep denotes the depolarisation energy defined as

MFMIM: Udep =
nD P2

AV
2C0

MFIM: Udep =
1
2

nD

∑
j,h=1

Pj Ph

C j,h
(7)

where the capacitances C j,h are defined in Eq.S4 of Supplementary Section S1, they obey the sum rules in Eq.S7,
and all 1/C j,h tend to zero when tD tends to zero. As it can be seen, the depolarisation energy Udep vanishes when
the dielectric thickness tD tends to zero.

For all the systems in Fig.1 the overall free energy is UT=∑
nD
j=1

(
αP2

j +βP4
j + γP6

j

)
+UW+UET and the cor-

responding dynamic equations read

MFM: tFρ
dPi

dt
=−∂UT

∂Pi
=−(2αPi +4βP3

i +6γP5
i )tF −

tF
d ∑

n

k
w
(Pi−Pn)︸ ︷︷ ︸

=∂ULGD

+VT (t) (8a)

MFMIM: tFρ
dPi

dt
= ∂ULGD−

1
nDC0

nD

∑
j=1

Pj +
CD

C0
VT (t) (8b)

MFIM: tFρ
dPi

dt
= ∂ULGD−

1
2

nD

∑
j=1

[
1

Ci, j
+

1
C j,i

]
Pj +

CD

C0
VT (t) (8c)

where ρ is the resistivity governing the ferroelectric domain dynamics. It is straightforward to verify that, when
the dielectric thickness tD tends to zero, 1/C0 and 1/Ci, j tend to zero while [CD/C0] tends to one, so that Eq.8b
and Eq.8c simplify to Eq.8a. Moreover for nD=1 Eq.8b and Eq.8c are identical, in fact the MFMIM and MFIM
systems are equivalent, the domain wall energy is zero and Eq.8b, Eq.8c simplify to the well known single domain
equation.18
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3 Conditions for a stable NC operation

Throughout this paper we employ a definition of the NC operation consisting in the polarization Pi of all domains
being zero at zero external voltage VT , which ensures a hysteresis-free behavior also in the multi-domain picture.
If the ferroelectric is stabilized in a region where Pi is not zero for most domains but ∂ 2G(Pi)/∂ 2Pi is negative
(with G(Pi)=(αiP2

i +βiP4
i + γiP6

i ), an NC operation can still be claimed, albeit in the presence of hysteresis. The
stable NC operation can be evaluated by inspecting the eigenvalues of the Jacobian matrices1, J, of the dynamic
systems in Eqs.8a, 8b and 8c evaluated for Pi=0 in all domains. Here it should be noticed that analysing the
stability of the equilibrium at Pi = 0 and VT=0 is not restrictive. In fact, as we show in the Supplementary Section
S4, stability in this case implies stability of the equilibrium for any other constant value of VT . The Jacobian
matrices read

JMFM =
1

ρtF

[
−2α tF I− tF k

d w
L
]

(9a)

JMFMIM =
1

ρtF

[
−2α tF I− tF k

d w
L−

Odep

nDC0

]
(9b)

JMFIM =
1

ρtF

[
−2α tF I− tF k

d w
L−Cdep

]
(9c)

where I is the nD by nD identity matrix, while L is the Laplacian matrix2. The matrix Odep has all entries equal
to one, whereas Cdep is defined as

Cdep(i, j) =
1
2

[
1

Ci, j
+

1
C j,i

]
(10)

The matrices Odep and Cdep stem from the depolarisation energy Udep in Eq.7, and are very different for a MFMIM
and a MFIM system. The eigenvalues of the symmetric J matrices in Eq.9 are real valued and, for a stable
NC operation, it is required that the largest eigenvalue σmax(J) of the Jacobian matrix evaluated for all Pi=0 be
negative.22 This results in the equivalent stability conditions

MFM:
k

d w
σmin(L)> 2|α| (11a)

MFMIM: σmin

[
tF k
d w

L+
Odep

nDC0

]
> 2|α| tF (11b)

MFIM: σmin

[
tF k
d w

L+Cdep

]
> 2|α| tF (11c)

where σmin(M) denotes the smallest eigenvalue of the matrix M.
We now recall that the eigenvalues of L are known analytically in our case (since we are dealing with a

rectangular grid) and the smallest and second smallest eigenvalue are σ0(L)=0 and σ1(L)=[2sin(π/(2
√

nD))]
2.23

This implies that, as expected, the MFM system is always unstable for all Pi=0.
For the MFMIM system we show in Supplementary Section S2 that, due to the peculiar form of the matrix

Odep, one can derive the analytical (necessary and sufficient) condition for a stable NC operation given by

min
{

1
C0

,
tFk
d w

[2 sin(π/(2
√

nD))]
2
}
> 2|α| tF (12)

Eq.12 shows that in the MFMIM system the effect of the depolarisation energy is very limited, in fact Odep can
only eliminate the influence of σ0(L)=0 but not the influence of σ1(L). Eq.12 also affirms that the condition
(1/C0)>2|α| tF is necessary for the stability of the MFMIM system. Moreover, for a relatively large number of
domains such that sin(π/(2

√
nD)'π/(2

√
nD), Eq.12 suggests that a stable NC operation for the MFMIM system

requires k/w values that increase proportionally to nD, hence to the device area.

1The Jacobian matrix of the system of dynamic equations d Pi/d t= fi(P1, · · ·PnD) is defined component-wise as J(i, j)=∂ fi/∂Pj.
2L is defined component-wise as L(i, j)=−1 if domain j is a neighbour of domain i and L(i, j)=0 otherwise (see Fig.1(d)), and

L(i, i)=−∑ j 6=i L(i, j).
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For the MFIM structure it is not possible to derive analytical eigenvalues and stability conditions from Eq.11c,
but a numerical analysis shows that Cdep has a much larger influence on NC stabilisation than Odep has for the
MFMIM system. Moreover we show in Supplementary Section S3 that even for the MFIM system the inequality
(1/C0)>2|α|tF is still a necessary condition for a stable NC operation. It is interesting to notice that this is the
stability condition previously derived for a single domain system.18

Ferroelectric materials may have domain to domain statistical variations of the ferroelectric anisotropy con-
stants, whose influence on the stable NC operation is addressed in Supplementary Section S5.

a b

c d

Figure 2: Eigenvalues of the Jacobian matrix and design space for stable NC operation: a. Largest eigenvalue σmax of the Jacobian
matrix for all Pi=0 versus the domain wall coupling factor k for either a MFIM (numerically calculated) or a MFMIM structure. Capacitor
area is A=2500nm2 and results are shown for different combinations of d and nD. Stable NC operation corresponds to σmax <0. b.
Minimum coupling factor k necessary for a stable NC operation versus the capacitor area for either a MFMIM or a MFIM structure.
For the MFIM structure results have been calculated numerically from the condition σmax <0, while for the MFMIM structure results
stem from Eq.12. Domain size is d=5nm, thus Area=d2 nD. Please notice the large areas corresponding to recent experiments in.13–16

c. Maximum eigenvalue σ versus coupling factor k obtained from numerical simulations for a MFIM structure having different Ta2O5
thicknesses tD. Ferroelectric thickness, domain number nD and domain area d2 area set to tF =11.6nm, nD=100 and d2=25nm2. d. Regions
for stable NC operation for a MFIM structure in the tD versus k plane and for different tF values. Filled circles correspond to tF =11.6nm.
For larger tF values the minimum tD required for stability increases, as predicted by the necessary condition (1/C0)>2|α| tF . Area is
A=2500nm2 and nD=100. The star, square and triangle symbols identify the tD and k values corresponding to some of the simulations in
Fig.3, and are discussed discussed in the text.

4 Physical insight and design space

All the simulation results reported in this work were obtained for εF=33, εD=23.5, tF=11.6 nm, tD=13.5 nm,
α=−4.6·108 m/F, β=9.8·109 m5/C2/F and γ = 0, if not otherwise stated, namely the material parameters that
have been reported for the Hf0.5Zr0.5O2−Ta2O5 MFIM system in.13

Fig.2(a) reports the maximum eigenvalue σmax of the Jacobian for all Pi=0 versus the coupling factor k for
either MFMIM or MFIM structures with an area A=2500nm2, and for different combinations of nD and d. As it can
be seen the MFIM capacitor can achieve NC stabilisation for smaller k values compared to the MFMIM system,
and it has a much weaker sensitivity to the increase of nD. The substantial difference in the NC stabilisation of
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Figure 3: Ferroelectric domain patterns for MFIM and MFMIM capacitors. Steady-state domain configuration at VT =0V. a. MFIM
system: small tD and high k value that do not correspond to a stable NC operation, see triangle in Fig.2(b). b. MFIM system: large tD
and small k value that do not correspond to a stable NC operation, see star in Fig.2(b). c. MFIM system with tD=13.5nm, tF =11.6nm and
k=2×10−9 m3/F, which correspond to a stable NC operation, see square in Fig.2(b). d. MFMIM capacitor having the same material and
device parameters as the MFIM in c.

MFMIM and MFIM systems for large nD is better illustrated by Fig.2(b), showing that for the MFMIM system the
k value required for NC stabilisation increases proportionally to nD and thus to the device areas. This makes NC
stabilisation practically impossible for MFMIM systems having areas as those used in recent experiments.14–16

Fig.2(c)(d) focus on the MFIM system and report respectively the numerically calculated σmax of the Jacobian
matrix (for all Pi=0) for different tD and at fixed tF , and the design regions for a stable NC operation of a MFIM
structure in the tD−k plane and for nD=100. As it can be seen the NC operation is not possible for too thin oxides,
because the necessary condition (1/C0)>2|α| tF is not fulfilled and, for any tD satisfying the above condition, we
have a minimum k value necessary for stabilisation. For tD larger than about 10 nm the k for NC stabilisation
becomes independent of tD. This occurs because, while at small tD the potential VD at the ferroelectric-dielectric
interface and the depolarisation energy Udep decrease by scaling tD, at large tD the Udep becomes insensitive to tD.

According to the empirical formula for the NC stable operation of a one-dimensional and periodic MFIM
system proposed in Eq.15 of,18 the tD independent k value necessary for NC operation is k = 1.2 ·109 [m3/F] for
tF=11.6 nm, and k = 2.1 ·109 [m3/F] for tF=20 nm. These k values are about two times larger than the values in
Fig.2(d) obtained for the two-dimensional ferroelectric domain arrangement studied in this work. In more general
terms we found that, while the qualitative trends obtained from our 3D analysis are similar to those predicted by
the Eq.15 of,18 the regions for NC stabilization identified by our results are larger. For example our 3D results
suggest that, for a given couple (tD, tF ), a smaller k is sufficient for stabilization and, for a given (tD, k), the system
is NC stable up to larger tF values.

While Fig.2 illustrates the design space for a stable NC operation, it is also insightful to inspect the steady-state
configuration of domains obtained by solving the LGD dynamic equations. In this respect, Fig.3(a) reports the
steady-state domain configuration at VT=0 for a MFIM system corresponding to the triangle symbol in Fig.2(d),
namely to a system where the condition (1/C0)>2|α| tF necessary for NC stabilisation is not fulfilled. As it
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can be seen the MFIM evolves so as to minimise the domain wall energy, whose minimum value is achieved by
having all the domains with a positive polarisation. This steady-state polarisation pattern resembles the pattern of
a MFM system, which the MFIM capacitor in fact approximates when tD and Udep become very small. Fig.3(b),
instead, illustrates the case corresponding to the star symbol in Fig.2(d), namely to a system where the condition
(1/C0)>2|α| tF is fulfilled, but the domain wall constant k is too small for the NC stabilisation. In this case
the system tends to minimise the depolarisation energy by having domains with different polarisations, even if
this implies a larger domain wall energy compared to the pattern in Fig.3(a). Fig.3(c),(d) illustrate the steady-
state domain configuration at VT=0 for a MFIM with k=2 · 10−9 m3/F (square symbol in Fig.2(d)), and for the
counterpart MFMIM. Consistently with Fig.2(d), the steady-state condition for the MFIM system corresponds to
all Pi=0. The MFMIM, instead, is not stable for all Pi=0, and therefore it evolves to a configuration corresponding
to PAV=(∑

nD
i=1 Pi)/nD'0.

Fig.3(c) and (d) demonstrate that the crucial difference between MFMIM and MFIM systems is that the
depolarisation energy of the MFMIM system at VT=0 is zero if PAV is zero (see Eq.7). Hence if the MFMIM is
initialised with all Pi=0, it gets destabilised along trajectories having PAV'0 and thus Udep'0, which is confirmed
by the steady-state configuration in Fig.3(d). The same trajectories are precluded in the MFIM system because
the corresponding Udep in Eq.7 is not at all zero, hence it is the form of the Udep which makes the NC stabilisation
possible in MFIM capacitors.

The analysis developed in this paper and the results presented in this section assumed that the leakage current
through the oxides is small enough to not influence the NC stabilization. As already recognized in,24, 25 in a
MFMIM structure the presence of a non negligible leakage essentially precludes the NC stabilization.

5 Comparison with experimental results

As a validation of our modelling approach we now illustrate a systematic comparison with recent experiments re-
ported for an Hf0.5Zr0.5O2 based MFIM structure.12, 13 The simulations account for the presence of a fixed charge
QDF=0.15 C/cm2 at the interface between Hf0.5Zr0.5O2 and Ta2O5, which results in the fact that the ferroelectric
is biased in the negative polarisation branch for VT =0 V.12 Simulations correspond to a domain size of d=5nm and
a domain number nD=100, and we verified that results are insensitive to any further nD increase. The pulse width
of the trapezoidal input waveform VT (t) is set to 1µs (if not otherwise stated), which is small enough to make the
ferroelectric time constants practically negligible for the small resistivity value ρ=0.5 mΩ·m employed in these
simulations.

Fig.4(a) reports the charge Q=P+εFε0EF+QDF versus the top value Vmax of the trapezoidal voltage wave-
form applied across the Hf0.5Zr0.5O2−Ta2O5 capacitor, and shows a good agreement between simulations and
experiments. Fig.4(b) illustrates the simulated waveforms for the ferroelectric field, EF , and the total ferroelectric
polarizarion, PT =P+εFε0 EF , produced by trapezoidal input VT and for three VT amplitudes. By using the EF and
PT values observed in Fig.4(b), we obtained the charge versus ferroelectric field curves reported in Fig.4(c)(d)
respectively for the Hf0.5Zr0.5O2−Ta2O5 and Hf0.5Zr0.5O2−Al2O3 capacitor. As it can be seen simulations nicely
reproduce the fact that, for the experimental conditions at study, the ferroelectric layer can be operated in the NC
operation region, which is the physical origin of the change of slope in the Q versus Vmax plot of Fig.4(b). We also
verified that, as long as the NC stabilization is guaranteed, different tD values still result in the same PT versus EF

curves for the quasi-static NC operation explored in this work.
From the charge versus VT plots as in Fig.4(a) we numerically calculated the capacitance CT=(∂Q/∂VT ) in

the NC stabilized region and compared to results the simple analytical expression CT=CD · [|CF,0|/(|CF,0|−CD)],
with CF,0=[1/(2α tF)+εF/tF ] being the zero field ferroelectric capacitance. This analysis showed that, while the
numerically calculated CT is quite bias dependent even inside the NC region, the analytical expression is in very
close agreement with the maximum CT . Because the term [|CF,0|/(|CF,0|−CD)] can be seen as an enhancement
factor of CT with respect to CD, the analytical expression allows one to easily estimate the capacitance enhance-
ment from the dielectric and ferroelectric parameters εD, tD, α , εF , tF .

We also developed a model to study the influence of traps at the ferroelectric-dielectric interface, according
to a simple kinetic equation for the trap occupation that we solved self-consistently with the LGD equations,
as discussed in detail in the Supplementary Section S6. Fig.4(e) illustrates that traps are assumed to exchange
electrons via tunneling with the bottom metal contact. While the bias independent rate en0 could be described
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by models similar to those used for border traps in MOS transistors,26, 27 such a quantitative description of the
emission rates goes beyond the scope of the present work, where we investigate only the qualitative features
induced by traps and, to this purpose, we consider en0 as a free parameter in the comparison to experiments.
In this respect, Fig.4(f) illustrates experiments and simulations for the charge versus ferroelectric field obtained
for different pulse widths of the trapezoidal input waveform, where simulations correspond to a uniform density
NT=7.5×1012 eV−1cm−2 of acceptor type traps. As it can be seen, by using en0=5.0·104 s−1 the simulations can
reproduce quite well the influence of the pulse width on the Q versus EF curves observed in experiments. The
influence of traps on the stability conditions of a MFIM system is further addressed in the Supplementary Section
S6.

In summary, we presented a methodology to investigate a possible stable NC operation in ferroelectric capac-
itors based on the LGD dynamic equations and duly accounting for the three-dimensional nature of the problem.
From the Jacobian matrix of the LGD equations we derived analytical or semi-analytical stability conditions,
that clarified important differences between a MFIM and a MFMIM system. Our analysis is consistent with the
fact that a stable NC operation has been observed in MFIM systems but not in MFMIM systems, and suggests
MFMIM capacitors or capacitors externally connected to a MOSFET are inherently unsuitable to study the stable
NC operation.

A systematic comparison with recent experiments in MFIM capacitors provides convincing evidence that the
NC operation of the ferroelectric Hf0.5Zr0.5O2 can nicely explain experimental data. The critical role of interface
traps emphasizes the importance of the quality of the ferroelectric-dielectric interface in the NC operation of
ferroelectric capacitors and transistors.

We conclude by remarking that, while in a robustly NC stabilized system domains tend to move together
thus resulting in a fairly 1D electrostatics, we verified that the electrostatics becomes strongly 3D when domain
nucleation occurs and the system becomes hysteretic. The methodology for the dynamics of ferroelectric domain
developed in this paper is thus expected to be important also for the analysis of a transient and possibly hysteretic
NC operation, as well as for the investigation of Ferroelectric Tunnelling Junctions to be used either as non volatile
memories or as memristors for neuromorphic computing applications.28
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Figure 4: Comparison between simulations and experiments. Measurements (symbols) and simulations (lines) for the MFIM
structures in.12, 13 For the Hf0.5Zr0.5O2−Ta2O5 capacitor the simulation parameters are εF =33, εD=23.48, tF =11.6nm, tD=13.5nm,
α=−4.6 · 108m/F, β=9.8 · 109m5/C2/F, while for the Hf0.5Zr0.5O2−Al2O3 system the parameters are εD=8, tF =7.7nm, tD=4nm,
α=−9.45 · 108m/F and β=2.25 · 1010m5/C2/F;12, 13 for both capacitors we used ρ=0.5 mΩ·m and k=2 · 10−9 m3/F m. a. Reversibly
stored and released charge, Q, versus the top value VMAX of the trapezoidal voltage waveform across the capacitor. b. Simulated ferro-
electric field and charge versus time produced by a trapezoidal input VT with a pulse width of 1µs and for different VT amplitudes. c.
Polarisation versus ferroelectric electric field for the Hf0.5Zr0.5O2−Ta2O5 MFIM capacitor. d. Polarisation versus ferroelectric electric
field for the Hf0.5Zr0.5O2−Al2O3 capacitor. e. Sketch of the band structure of the MFIM device with representation of the emission
and capture mechanisms. f. Simulated charge versus ferroelectric EF curves for different pulse widths of the input signal and fixed den-
sity NT =7.512 eV−1cm−2 of acceptor type interface traps with a uniform energy distribution. In these simulations the emission rate is
en0=5×104 s−1, the metal gate work-function is ΦM=4.05eV, and the electron affinity is χF =2.2eV for Hf0.5Zr0.5O2 and χD=3.2eV for
Ta2O5.29
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Supplemental Information

S1 Electrostatic energy

We here further discuss the expressions for UET reported in Sec.2 for either a MFMIM or a MFIM capacitor. For
both systems the starting point is the UET definition in Eq.3.

As already mentioned in the main text, in the MFMIM capacitor the ferroelectric and dielectric fields are in-
dependent of r̄=(x,y) and we have EF,T=(CDVT−PAV )/(tFC0), VD=(CFVT+PAV )/C0,1 where PAV=(∑

nD
j=1 Pj)/nD

is the average polarisation. By substituting the EF,T and VD expressions in Eq.3 we obtain

UET =−VT

2
A
d2

CF

C0
(CDVT −PAV )−VT

nD

∑
j=1

Pj +
nDPAV

2C0
(CFVT +PAV )

=
nDP2

AV
2C0

−CsV 2
T

2
nD−nD

CD

C0
VT PAV

(S1)

where the total device area is A=nD d2 and we grouped terms proportional to P2
AV , V 2

T and VT PAV . Eq.S1 coincides
with Eq.6, with the depolarisation energy Udep for the MFMIM system defined in Eq.7.

In the MFIM structure the calculation of the ferroelectic and dielectric field is a three-dimensional problem,
that we can approach by recalling that VT and each spontaneous polarisation Ph are the sources of the electric
fields. Because the system is linear, the superposition of effects allows us to write

EF,T (r̄) =
nD

∑
h=1

Ph GFT,h(r̄)+
CDVT

tF C0
(S2)

where GFT,h(r̄) is the Green’s function for the field EF,T (r̄)=EF,z(r̄,−tF) of a unitary charge per unit area in
domain h, while the effect of VT is simply described by a capacitor divider. We can similarly write the potential
VD(r̄) as

VD(r̄) =
nD

∑
h=1

Ph GD,h(r̄)+
CF

C0
VT (S3)

where GD,h(r̄) is the Green’s function for VD(r̄) of a unitary charge in domain h. By substituting Eqs.S2, S3 in
Eq.3 we recognise that the calculation of UET entails the evaluation of the integral of any GD,h over any domain
area D j, and of any GFT,h(r̄) over the device area A. Consequently we introduce the capacitances

1
C j,h

=
1
d2

∫
D j

GD,h(r̄)dr̄ (S4)

as well as the adimensional coefficients

Bh =
ε0εF

d2

∫
A

GFT,h(r̄)dr̄ (S5)

which allow us to write the UET of the MFIM system as

UET =
1
2

nD

∑
j,h=1

Ph Pj

C j,h
− VT

2

nD

∑
h

Ph (Bh +1+CD/C0)−
CS V 2

T

2
nD . (S6)

By the definition of C j,h we see that by summing over h we obtain the Green’s function for VD(r̄) in domain j of
a uniform charge in the entire device area, so that we have

nD

∑
h=1

1
C j,h

=
1

C0
,

nD

∑
j,h=1

1
C j,h

=
nD

C0
(S7)

where the second equality is due to the fact that the first sum is independent of the domain j.
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In consideration of the Neumann boundary conditions used for the electric field at the edges of the MFIM
structure (see Supplementary Section S7), analytical derivations suggest and numerical calculations confirm
that the Bh defined in Eq.S5 evaluates to Bh'−CF/C0 and it is independent of h (not shown). By substituting
Bh'−CF/C0 in Eq.S6, we obtain the UET expression for the MFIM capacitor given by Eq.6, with the depolarisa-
tion energy Udep defined in Eq.7.

For all the MIFM systems analysed in this work the capacitances C j,h were evaluated numerically and then
used in all analyses. More details about the three-dimensional calculations of the capacitances are given in Sup-
plementary Section S7.

S2 Conditions for a stable NC operation in a MFMIM system

For convenience of notation we here introduce θ = (tFk)/(dw) and η = 1/C0. Given the Laplacian matrix L and
the all-one matrix Odep, both having size nD, we prove that

σmin

[
θL+η

Odep

nD

]
= min{η ,θσ1(L)} (S8)

where σmin[M] denotes the smallest eigenvalue of matrix M and σ1(L) denotes the second smallest eigenvalue of
the Laplacian L.

The eigenvalues of matrix Odep
nD

are 1, and 0 with multiplicity nD−1. Since the graph is connected, L has an
eigenvalue 0 with multiplicity 1, while all the other eigenvalues σ1(L) ≤ σ2(L) ≤ ·· · ≤ σnD−1(L) are real and
positive. Matrix L and matrix Odep

nD
share the normalised eigenvector v = 1nD√

nD
(where 1nD denotes an all-one vector

of size nD), which is associated with the 0 eigenvalue of L (i.e. Lv = 0) and with the 1 eigenvalue of Odep
nD

(i.e.
Odep
nD

v = v).
Let us complement vector v with matrix V ∈RnD×nD−1 to obtain an orthonormal matrix T =

[
v V

]
(such that

T−1 = T>). We can then apply this transformation to simultaneously diagonalise both matrices:

T−1(θL+η
Odep

nD
)T =

[
v>

V>

]
(θL+η

Odep

nD
)
[
v V

]
(S9)

=

[
0 0>nD−1

0nD−1 θΛ

]
+

[
η 0>nD−1

0nD−1 0̄nD−1

]
, (S10)

where 0nD−1 denotes an all-zero vector of size nD−1, 0̄nD−1 an all-zero matrix of size nD−1, and
Λ = diag{σ1(L), . . . ,σnD−1(L)} is the diagonal matrix carrying on the diagonal the nonzero eigenvalues of L. It
is then clear that the spectrum of θL+η

Odep
nD

is the union of η and of the nonzero scaled Laplacian eigenvalues
θσ1(L), . . . ,θσnD−1(L). Therefore, the smallest eigenvalue is the minimum between η and θσ1(L). By recalling
that, for the Laplacian matrix corresponding to a rectangular grid, σ1(L)=[2sin(π/(2

√
nD))]

2, we obtain

σmin

[
tF k
d w

L+
Odep

nDC0

]
= min

{
1

C0
,

tF k
d w

[2sin(π/(2
√

nD))]
2
}

(S11)

that proves the stability condition in Eq.12.

S3 Conditions for a stable NC operation in a MFIM system

In the MFIM case the condition for a stable NC operation is given by Eq.11c, where Cdep is defined in Eq.10. We
argue that Cdep has a large influence on the spectrum of the Jacobian matrix for the MFIM system, in fact Cdep can

modify all the eigenvalues of Cdep +µL, where µ =
tF k
d w

. We have a necessary condition for stability in terms of

the entries of Cdep. In fact, we notice that Eq.11c requires that the inequality P>[Cdep +µL]P > 2|α| tF‖P‖2 > 0
be fulfilled for all nonzero P vectors. We now take P = 1̄> = [1 1 1 . . .1]>, such that ‖P‖2 = nD. Exploiting the
fact that 1̄>L1̄ = 0, we obtain

1̄>[Cdep +µL]1̄
nD

=
1̄>Cdep1̄

nD
=

∑
nD
i, j=1 Cdep(i, j)

nD
> 2|α| tF . (S12)
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In view of the sum rule in Eq.S7, ∑
nD
i, j=1 Cdep(i, j) = nD/C0, the above inequality becomes

1
C0

> 2|α| tF . (S13)

Eq.S13 provides a necessary condition for a stable NC operation of the MFIM system.

S4 Stability of the equilibrium for VT 6= 0

Here we discuss how the stability conditions discussed in Sec.3 for the condition all Pi=0 and VT=0, in fact ensure
stability for any VT and corresponding Pi configurations. All the dynamic systems in Eqs.8a, 8b and 8c can be
recast into the common form

dP
dt

= AP+ f(P)+1u, (S14)

where A is a symmetric matrix, the vector function f(P) has polynomial components

fi(Pi) =−
(
2αPi +4βP3

i +6γP5
i
)
/ρ,

1 is a vector of all ones, and the constant u can be either u = 1
tF ρ

VT (in the MFM case) or u = 1
tF ρ

(CD/C0)VT (in
the MFMIM and MFIM cases). The Jacobian of the system in Eq.S14, computed at the generic equilibrium point
P̄, is

J(P) = A−2α/ρI−diag{12β P̄2
i +30P̄4

i }/ρ = J(0)−D,

where the symmetric matrix J(0) = A− 2α/ρI is the Jacobian computed at the equilibrium P̄i = 0 (shown in
Eqs.9a, 9b and 9c for the three different cases), while the diagonal matrix D = diag{12β P̄2

i +30P̄4
i } has nonneg-

ative diagonal entries because β > 0 and γ ≥ 0.
Now, assume that the symmetric Jacobian J(0) has negative eigenvalues or, equivalently, that it is negative

definite: x>J(0)x < 0 for any vector x 6= 0. Then, also matrix J(P) is negative definite, because x>Jx = x>J(0)x−
x>Dx≤ x>J(0)x < 0 for x 6= 0. Therefore, J(P) has negative eigenvalues.

Hence, to ensure the stability of all possible equilibria with a generic VT , it is enough to guarantee the stability
of the equilibrium Pi = 0 corresponding to VT = 0, which is discussed in the main paper.

S5 Statistical dispersion of the ferroelectric anisotropy constants

In actual ferroelectric materials the anisotropy constants α , β and γ may have domain to domain variations, and it
has been argued also that, by accounting for such a statistical dispersion, simulations can improve the agreement
with experiments in the analysis of metal-ferroelectric-metal systems.9

A straightforward extension of the stability analysis in Sec.3 shows that, in the presence of a statistical dis-
persion of α , stability conditions can still be expressed as in Eqs.11 if we substitute |α| in right hand side of the
equations with αmax, here defined as the maximum |αi|, with i = 1,2 . . . ,nD being an index identifying domains.
If we consider a system consisting of many domains with an average value, |α|av, of the |αi| constants, the in-
troduction of αmax in the inequalities of Eqs.11 inherently implies a more stringent requirement for a stable NC
operation compared to the same system with a negligible dispersion.

We introduced in our analysis a randomness of αi, βi constants (still keeping γ=0) and revisited some of the
results in Fig.2 for a MFIM system. In order to have a clear physical interpretation of the statistical dispersion in
the system, our starting point is a statistical dispersion of the ferroelectric coercive field EC. More precisely, we
used a random generation of the coercive field EC,i in each domain by using a gaussian distribution of EC with a
mean value EC,av=0.54 MV/cm (corresponding to α=−4.6·108 m/F and β=9.8·109 m5/C2/F, see the beginning
of Sec.3), and for different standard deviations EC,dev. Then for each EC,i we calculated the corresponding αi, βi

by using the analytical expressions αi=−3
√

3Ec/(2Pr), βi=3
√

3Ec/(2P3
r ), which hold for γ=0;2 no dispersion

of the remnant polarisation Pr was considered in the calculations. The eigenvalues of the Jacobian matrices were
calculated numerically in the condition of all Pi=0.

Fig.S1(a) shows an analysis similar to Fig.2(b) but for a fixed Ta2O5 thickness tD=13.5 nm and accounting
for a statistical dispersion of αi, βi. In the presence of such a statistical dispersion, each MFIM capacitor is a
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a b

Figure S1: Eigenvalues of the Jacobian matrix and design space for stable NC operation in the presence of statistical dispersion
of the anisotropy constants: a. Maximum eigenvalue σmax of the Jacobian matrix for a Hf0.5Zr0.5O2−Ta2O5 MFIM structure (in the
condition of all Pi=0) versus the domain wall coupling factor k. Calculations account for a statistical dispersion of α , β stemming from
a standard deviation EC,dev=0.2 MV/cm of the coercive field and correspond to 100 realizations of the MFIM structure. Lines show the
σmax averaged between the realizations, while the error bar symbols indicate the range between minimum and maximum σmax among the
different realizations at some k values. Results are shown for different values of the domain number nD, and all parameters other than nD,
α , β are the same as in calculations for tD=13.5 nm in Fig.2(c). b. Regions for stable NC operation for a MFIM structure in the tD versus
k plane and for different standard deviation EC,dev of the coercive field. All parameters other than nD, α , β are the same as in Fig.2 for the
case tD=13.5 nm, tF =11.6 nm. Area A=2500nm2 and nD=100.

statistical realization of a stochastic process and has a distinct set of eigenvalues of the Jacobian matrix, whose
values depend also on the number nD of domains. Fig.S1(a) illustrates σmax for a standard deviation EC,dev=0.2
MV/cm of the coercive field, for 100 realizations and for different nD values. For each domain wall coupling
factor k the figure reports the σmax averaged between the realizations (lines), and for some k values the figure also
shows the range between minimum and maximum σmax among the different realizations. As it can be seen the
average σmax converges quite quickly by increasing nD. Fig.S1(a) also shows that larger k values are required for
a stable NC operation for increasing EC,dev. This latter aspect is better illustrated in Fig.S1(b), that revisits the
analysis in Fig.2(d) for tF=11.6nm and for different standard deviation EC,dev of the coercive field.

The results in Fig.S1(b) show a qualitative trend indicating that a statistical dispersion of the anisotropy con-
stants results in more stringent requirements for the k values necessary for a stable NC operation. In the presence
of such a statistical dispersion, one should more appropriately discuss the probability of a stable NC operation in
a given MFIM system, however such a statistical analysis of the stability properties goes beyond the scope of the
present work.

S6 Influence of interface traps on the stability conditions of a MFIM system

The possible presence of traps at the ferroelectric-dielectric interface has an influence on NC stabilization be-
cause traps can partly screen the ferroelectric polarisation, which has an inherently destabilizing effect. Let us
consider a number, NE , of discrete trap levels in each domain, denote with ETr,i a trap energy in the domain i
(with Tr=1,2, . . . ,NE and i=1,2, . . . ,nD), and indicate with QT the charge density per unit area due to traps. The
present analysis is developed for a MFIM system, so that we can use a straightforward modification of Eq.8c and
write the overall dynamic system as

tFρ
dPi

dt
= ∂ULGD−

1
2

nD

∑
j=1

[
1

Ci, j
+

1
C j,i

]
(Pj +QT, j)+

CD

C0
VT (t) (S15a)

∂nTr,i

∂ t
= cn (Nt −nTr,i)− en nTr,i (S15b)

where nTr,i is the density of electrons trapped at energy ETr in domain i, while Nt is the corresponding trap density.
Here the emission rate is en=en0 F0[(E f ,B−ETr)/KBT ], where en0 is a bias independent rate and F0(η) is the Fermi-
Dirac equilibrium occupation function3. Hence en depends on the external bias VT via the position of ETr with

3The Fermi-Dirac occupation function F0(η) is defined as F0(η)=1/[1+ exp(η)].
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respect to E f ,B and, in particular, it is equal to en0 when ETr is at least a few KBT above E f ,B, whereas it decays
exponentially for decreasing ETr when ETr is below E f ,B. The capture rate cn is expressed as cn=en exp[(E f B−
ETr)/KBT ] so that, according to Eq.S15b, the steady-state occupation of traps is in thermodynamic equilibrium
with E f ,B. The system in Eqs.S15 consists of nD+nD ·NE equations, hence the inclusion of traps substantially
increases the size of the problem.

The en, cn expressions couple Eq.S15b to Eq.S15a because ETr,i depends on the average voltage VD,i at the
ferroelectric-dielectric interface in the domain i. An explicit expression of the coupling between Eq.S15a and
Eq.S15b is given by

QT,i = ∆E
NE

∑
Tr=1

(−q)nTr,i (S16a)

ETr,i = ΦM− (χD +E0− i∆E)−qVD,i (S16b)

VD,i =
nD

∑
j=1

(Pj +QT, j)

Ci, j
+

CF

C0
VT (t) (S16c)

where ETr,i is the trap energy referred to E f B (see Fig.4(e)). Here ΦM and χD are respectively the metal gate
work-function and dielectric electron affinity, E0 is the depth into the dielectric bandgap of the deepest trap, ∆E
is the energy step between the discrete trap levels, and Eq.S16a assumes traps are acceptor type.

Eqs.S15 and S16 summarize the model that we used for the simulations in Fig.4(f), and in this section we more
formally study the stable NC operation by inspecting the sign of the Jacobian matrix of Eqs.S15. In this respect,
Fig.S2(a) shows an analysis similar to Fig.2(c) but for a fixed Ta2O5 thickness tD=5nm and different uniform trap
densities NT at the Hf0.5Zr0.5O2−Ta2O5 interface. As it can be seen, by increasing NT the σmax at large k values
progressively increase and the system is eventually driven to instability for a large enough NT . It is worth noting
that the impact on σmax of an increase of NT in Fig.S2(a) is qualitatively similar to the impact of a tD reduction
in Fig.2(c). This can be intuitively explained by arguing that the trap capacitance Cit=q2NT goes in parallel to
CD, thus increasing the effective dielectric capacitance and eventually precluding the NC stabilization. This is
confirmed by Fig.S2(b), showing that the charge versus ferroelectric field curves of the MFIM capacitor tend to
deviate from the NC region when NT increases, with a behavior qualitatively similar to the results in Fig.4(f)
where the pulse width of the trapezoidal input waveform was varied at fixed NT .

a b

Figure S2: Eigenvalues of the Jacobian matrix and stable NC operation in the presence of interface traps: a. Maximum eigenvalue
σmax of the Jacobian matrix (for all Pi=0) of a Hf0.5Zr0.5O2−Ta2O5 MFIM system versus the domain wall coupling factor k for a uniform
distribution acceptor type traps (extending for 3.2eV below the Ta2O5 conduction band minimum) and for an energy spacing ∆E=7.5
meV. The bias independent emission rate is en0=5.0·107 s−1. All other parameters are as in Fig.2(c), except for the Ta2O5 thicknesses that
is set to tD=5nm. Area A=2500nm2 and nD=100. b. Charge versus ferroelectric field of the Hf0.5Zr0.5O2−Ta2O5 MFIM system for two
different oxide thicknesses, tD, and different trap densities NT .

S7 Numerical methods

Numerical integration of Landau–Ginzburg–Devonshire dynamic equations. In this work the integration
of the LGD equations is obtained with a specifically tailored implicit integrator with an adaptive error control.
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The implicit method has been chosen for two main reasons: a) the inherent numerical stability that allows us
to use larger time steps compared to an explicit method; b) the robustness and effectiveness for the solution of
numerically stiff problems having largely different time constants.3 The problem at study is in fact numerically
stiff for simulations including interface traps, whose time constants vary in a large range depending on the trap
energy and applied bias, and can be very different compared to the ferroelectric time constants.4

More specifically, we employed a second-order algorithm, namely the trapezoidal numerical integration

method (also known as Crank–Nicolson method), that solves a differential equation
dx
dt

= f (t,x) in time domain by

using xn+1 = xn +
h
2 [ f (tn,xn)+ f (tn+1,xn+1)],5 where f is a generic function of time and of a state variable x, and

h = tn+1−tn is the time step. Because the above expression for xn+1 involves variables evaluated at the instant tn+1
both at the right- and at the left-hand side, at each integration step it is also required to solve a non-linear system
of equations with a Newton–Raphson method, which involves itself the computation of the Jacobian matrix.

The error control, based on the number of the iterations of the Newton–Raphson algorithm, efficiently and
automatically adapts the time-step h to achieve a given accuracy for the results, thus allowing very fast simulations
and overcoming the computational burden introduced by the resolution of the non-linear system.

Three-dimensional electrostatics simulations. For the MFIM capacitor sketched in Fig.1(a) the polarisation in
each domain and the external voltage VT are the electric field sources of a three-dimensional (3D) electrostatic
problem. In order to tackle such a 3D problem and eventually calculate the capacitances defined in Eq.S4, we
used an on purpose developed simulation tool.

More precisely, we solve the following electrostatic problem in a connected region Ω of the 3-D Euclidean
space 

curl Ē = 0̄
div D̄ = ρ

D̄ = ε Ē,
(S17)

where ε is the electric permittivity, Ē and D̄ are the electric field and the electric displacement vectors, respectively.
The material parameter ε is assumed to be a positive scalar value which is piecewise uniform in each material
region. The region boundary ∂Ω is partitioned into a set of Nc +1 disjoint equipotential surfaces (electrodes) of
perfect metals ∂Ωc

k and a set of Ni surfaces where the normal component of the electric field vanishes:

∂Ω =
Nc

∑
k=0

∂Ω
c
k +

Ni

∑
k=1

∂Ω
i
k. (S18)

Electrode ∂Ωc
0 is considered as reference for all the voltages of the remaining electrodes, that are supposed to be

assigned. D̄ · n̄ = 0 is set as boundary conditions on each ∂Ωi
k, where n̄ is the outwards oriented normal unit vector

of ∂Ω.
The solver implements an electrostatic formulation based on the electric scalar potential,6 that expresses phys-

ical laws directly in an algebraic form by using tools from algebraic topology. Physical variables are defined as
fluxes or circulations on oriented geometric elements of a pair of dual interlocked computational grids, while
physical conservation laws are enforced strongly in a metric-free fashion by means of incidence matrices between
grid elements. The metric and the material information are encoded in the discrete counterpart of the constitutive
laws of materials, also referred to as material matrices. The stability and consistency of the method are guaran-
teed by precise properties (symmetry, positive definiteness, geometric consistency) that material matrices have to
fulfill.

The main advantage of this approach with respect to the conventional Finite Element Method is that the mate-
rial matrices for arbitrary polyhedral elements can be geometrically defined, by simple closed-form expressions,
in terms of the geometric elements of the primal and dual grids.
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