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Summary 

The increasing interest towards recycling the sewage sludge as fertilizer and soil 

amendment through agricultural use, according to the current policy of the European 

Commission and national authorities, on one hand and increase in the concentration of 

some emerging contaminants in the waste water and as a consequence in sewage sludge 

due to the changes in the lifestyle of the humankind, on the other hand, highlighted the 

need for constant monitoring and characterizing of sewage sludge.  

Therefore, this PhD research has a focus on the new characterization perspectives 

for sewage sludge within the framework of the concept of integrated water cycle 

sustainability to evaluate its suitability for agricultural use. Friuli-Venezia Giulia region 

(north-east of Italy) was selected as sampling area and the sewage sludge samples were 

taken from 10 waste water treatment plants located in this region that vary in their 

treatment capacity, process units and sludge treatment sequences.  

The work started with characterizing of the sewage sludge samples considering 

their nutrients content and the concentration of toxic metals (TM), extractable organic 

halogen (EOX), linear alkylbenzene sulfonate (LAS), polychlorinated biphenyls 

(PCBs), Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) and Polycyclic 

aromatic hydrocarbons (PAHs) to evaluate their agricultural reutilization potential. The 

obtained results showed that the TM content and the concentration of studied organic 

contaminant in sewage sludge were lower than maximum permitted limits from Italian 

and European regulations for agricultural use in all tested samples, but a general 

increase in maximum concentration values with respect to a previous monitoring is 
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highlighted, due to some upgrade in wastewater treatment plants processes. We 

hypothesized that this might be linked to a better degree of stabilization which is 

reflected by production of humic substances.  

Furthermore, humic substances (humic and fulvic acid) as the most important 

fraction of organic matter content of sewage sludge were extracted and analysed 

considering their chemical and spectral properties. In this part of the work we aimed to 

ascertain the integrity of HS use as markers of biological transformations at the storage 

stage of sewage sludge where biological transformation is generally considered to be 

minimal. For this purpose, we tried to create a relation between the organic 

contamination and humification degree of sewage sludge and also the use of UV-vis, 

FTIR and Fluorescence spectra to assess properties of humic substances as a valid and 

cost effective methods was evaluated. As a result, we could show that several 

qualitative and quantitative changes can occur in the humic fraction of sewage sludge 

during the storage stage, both under aerobic and anaerobic conditions and also some 

correlations between LAS and changes in organic matter during storage is confirmed. 

Prior to evaluate the stabilization degree of stabilization of sewage sludge it 

became necessary to assess the integrity of extraction procedures for the isolation of 

HA and FA. In the third chapter of this work, we answered to the question whether 

humic substances are artifacts or not of the extraction procedure. In a recent work, 

Lehmann and Kleber (2015), rejected the humic substances concept and proposed the 

Soil Continuum Model, in which organic matter exists as a continuum of organic 

fragments and humic substances are considered to be artifacts of the alkali extraction 

procedure. The goal of our work was to test assumptions made by Lehmann and Kleber 

(2015) this allowed us to demonstrate that humic substances are real components of 

natural organic matter and sewage sludge.  
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Chapter I 

Introduction 

 

In this chapter, the key concepts for the present research are defined; briefly we will 

speak about sewage sludge and its composition, both considering the potential fertilizer 

properties due to its nutrient and organic components and the potential health risks 

associated with the toxic metals and pharmaceutical residues content. In addition, some 

common treatments that sludge usually undergo in wastewater treatment plants as well 

as its final disposal methods are introduced with particular focus on sewage sludge 

recycling through agricultural use. Moreover, the concept of humic matter as the most 

important fraction of sewage sludge organic matter is explained. And finally the aim of 

the present research, which was monitoring of sewage sludge proposed for agricultural 

use by focusing on its new characterization perspectives, will be stated.   
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1.1 What is sewage sludge 

The process of treatment of waste water results in the production of a residue that must 

be managed properly. This residue which is commonly termed sewage sludge (SS) is a 

semisolid and odiferous material with a two phase system: a water phase with dissolved 

substances and a dispersed phase which is a solid insoluble in water. The quality and 

quantity of sewage sludge is largely dependent on type of sewage and the treatment 

technology (Gawdzik et al., 2015; Sanin et al., 2011). Fresh and untreated sludge may 

contain pathogens, a high ratio of water and high biochemical oxygen demand (BOD) 

due to its large organic matter (OM) content. Nevertheless, sludge also can be 

potentially used as fertilizer since it contains macro and micro-nutrients which are 

essential for plant growth. 

The quantity of sludge will continue to increase as a result of rapidly increasing 

population, urbanization and industrialization. About 9.5 million tons dry matter of SS 

are produced in the Europe in 2015 (Eurostat, SS production and disposal, last update 

19.11.2018). In fact, upgrading of wastewater treatment plants and implementation of 

new Urban Waste Water Treatment Directive necessitate the development of sludge 

management methods and choice of the right treatment, disposal and reuse approach. 

Figure 1.1 shows the operation of a typical sewage treatment plant’s process in 

which the various types of sludge are generated. Primary sludge as a result of primary 

treatment, comprises floating material and heavy solids separated from liquid waste 

which is simply produced through settling at the bottom of the primary clarifier. Since 

this sludge has a high concentration of oxygen-demanding materials and pathogenic 

microorganisms and has high percentage of water, sub sequent treatments (most 

commonly anaerobic digestion) is used to make it less objectionable. 

In the secondary treatment, effluent from primary treatment undergoes further 

treatment to remove the residual organics and suspended solids. This treatment method 

consists of an aeration tank followed by a secondary clarifier. In the treatment process, 

oxidation of wastewater is done through mixing air and liquid in the presence of high 
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concentrations of microorganisms allowing a proper time for biological activity to 

achieve a sufficient degree of transformation. Microorganisms metabolize dissolved 

OM in the wastewater and produce more microorganisms and inorganic end-products 

and, as a result, the oxygen demand of the liquid is reduced. 

In the secondary clarifier, the microorganisms are separated from the mixture by 

sedimentation and the clarified liquid is removed from the surface of the clarifier and 

discharged as secondary effluent. To balance the amount of the microorganisms in the 

system, a part of the microorganisms is recycled to the aeration tank and the remainder 

is removed from the process that is called activated sludge.
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Figure 1. 1 Primary and secondary treatment of wastewater using the activated sludge process 
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1.2 Composition of sewage sludge 

1.2.1 Nutrients 

One of the low cost disposal option of SS is the utilization of this waste material as soil 

fertilizer in agriculture. The recycling of fundamental nutrients and metals required for 

plant growth from treated SS is going to be essential for future sustainable development. 

Treated SS contain useful concentration of nitrogen (N), phosphorus (P), potassium 

(K), sulfur (S), calcium (Ca), magnesium (Mg) and micro nutrients; however, nutrients 

content of the sewage sludge depends on both treatment efficiency and the sources of 

the sewage (Roig et al., 2012).  

Nitrogen and phosphate are the principal nutrients in SS and along with Potassium 

are considered to be macronutrients in agriculture as crops need large amounts of these 

elements, but their concentration in sewage sludge is usually low. Ca, Mg and S are 

also essential for the plants growth as secondary nutrients and moreover they affect the 

availability of nutrients in the soil through regulating the pH (Maathuis, 2009; 

McCauley et al., 2009). 

Some of the metals such as iron (Fe), boron (B), manganese (Mn), zinc (Zn), nickel 

(Ni) and copper (Cu) are classified as micronutrients, which are essential for the 

development of soil microorganisms and plants but in very small amounts (Lobo and 

Grassi Filho, 2009). For instance, zinc as a very important micronutrient, plays an 

important part in soil fertility and it is required in a large number of enzymes in plants 

(Milieu, 2013). 

1.2.2 Organic matter 

SS is a rich source of OM and its use as an amendment can improve significantly the 

physical, chemical and biological properties of soils and greatly contributes to its 

productive capacity. Incorporation of OM into the soil surface positively affect its 
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structure (aggregation, porosity and bulk density), water holding capacity, Cation 

exchange capacity (CEC) and permeability (Clapp et al., 1986); and some chemical 

properties such as electrical conductivity, pH and redox potential are going to be 

changed as well. 

Organic matter in SS promotes microbial activity in the soil and consequently 

increases its fertility. Important organic elements (C, N, P and S) are mineralized during 

OM decomposition and converted into their inorganic forms by soil microorganisms in 

order to be up taken by plants (García-Gil et al., 2000). Due to lack of stabilization of 

OM in SS, the soil bio-system can be altered through the addition of new energy sources 

for organisms, resulting in micro- and macro-biological population changes, which in 

turn affect synthesis and decomposition of microbially-produced humic substances in 

soil, interactions with soil inorganic components, nutrient availability, and other 

exchanges with soil physical and biochemical properties (Clapp et al., 1986). Therefore, 

it is important to determine maturity and stability degree of SS prior to its application 

to the agricultural soil (Hernanez-Apaolaza et al., 2000). 

1.2.3 Pathogens 

Municipal sewage is a complex mixture containing large numbers of pathogenic 

microorganisms excreted by humans or animals: bacteria such as salmonella, 

helminthes such as ascaris, viruses such as poliovirus, and protozoa such as 

cryptosporidium. Wastewater treatment process removes pathogenic organisms from 

wastewaters. The pathogens like cysts of protozoa and ova of parasitic worms 

concentrate into the sludge in primary treatment processes, and several bacterial 

pathogens are absorbed onto the settling particles and flocs. The density of pathogenic 

microorganisms will be reduced in secondary treatment to a certain extent, however the 

concentrations of pathogens in both raw primary sludge and waste activated sludge is 

much higher than in the incoming raw waste water (Yanko, 1988; 2004; Sanin et al., 

2011). 
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Pathogens reduction in sludge largely depends on treatment methods applied to 

stabilize sludge in sewage treatment plants. Among these various sludge treating 

methods, composting is considered as one of the most efficient treatments in reducing 

pathogen concentrations and produces a valuable organic amendment for agricultural 

land (Dumontet et al., 1999; Sahlström et al., 2004). 

Storage after anaerobic digestion for a certain period of time may produce suitable 

sludges for application to agricultural land for food crop production. Drying sludge 

higher than 80% DS was also shown to be very effective to completely destroy parasites 

and pathogens. Also, storage of air-dried sludge for 6 – 12 months further increases the 

level of hygienisation (Pike, 1986; Czerska and Smith, 2008). 

1.2.4 Toxic metals 

Although some of trace elements (e.g., Cu and Zn) are essential to plants and animals, 

they could be toxic depending on their own properties, availability (chemical 

speciation), and concentration levels. In fact, concentrations of toxic metals in sludge 

are among the deciding factors for its use in agriculture. Continuous use of SS with high 

concentration of toxic metals may result in their accumulation in the soil, which has 

phytotoxic potential on various cereals, vegetables, fruits, pastures, and fodder crops. 

Toxic elements also enters the food chain through consumption of these commodities 

by human beings and animals (Hue 1995; Marcovecchio et al., 2007; Usman et al., 

2012). 

The concentration of toxic metals such as zinc (Zn), copper (Cu), nickel (Ni), 

cadmium (Cd), lead (Pb), mercury (Hg), and chromium (Cr) in SS vary from less than 

1 mg to more than 1000 mg/kg dry weight (Chen et al., 2008). Although the total 

concentration of metals indicates the overall level of contamination in SS, sequential 

extraction analysis is essential to determine their mobility, bioavailability and eco-

toxicity to plants through identifying the groups of compounds the metal is bound to 

(Chen et al., 2008; Zhao et al., 2012; Ignatowicz 2017). To reduce the content of these 

elements in SS, some pre-treatment procedures needed to be applied before disposal.  
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1.2.5 Pharmaceuticals and Personal Care Products (PPCPs) residues 

Among the so called ‘new emerging contaminants’, much attention has been given to 

PPCPs due to their pharmacological activity and consumption at rates of tons per year 

(Kasprzyk-Hordern et al., 2008, Daughton and Ternes, 1999) and also the impact of 

these contaminants’ on the environment or risks to human health is relatively unknown. 

In addition, due to improving in health care systems and higher life expectancies in 

industrial countries, it is expected that their worldwide production will increase.  

Pharmaceutical residues are excreted through the human body into sewage either 

as the parent compound or as their metabolites. Many of these residues pass through 

conventional wastewater treatment processes (flocculation, sedimentation, and active 

sludge treatment) almost unaffected (majority of macrolides, sulfonamides, penicillin, 

and imidazole) and reach the environment (Lishman et al., 2006; Santos et al., 2007; 

Lin et al., 2009; Peng et al., 2011). Therefore, WWTPs are considered as the main 

source of PPCPs.  

However, depending on the applied sewage treatment method, a greater or lesser 

portion of pharmaceuticals can be removed from sewage, bonded to suspended solids 

and deposited in SS. Aerobic and anaerobic biodegradation showed diverse influence 

on different types of PPCPs, for instance diclofenac concentration declined mainly 

through anaerobic biodegradation, while higher removal of anti-inflammatory drugs 

(naproxen, indomethacin, ibuprofen) and lipid regulators (clofibric acid, gemfibrozil, 

bezafibrate) occurred through aerobic biodegradation (Huang et al., 2011). Membrane 

bioreactor, revealed better performance for the biodegradable species of PPCPs, e.g. 

caffeine and bezafibrate compare to other two biological treatment processes, i.e. active 

sludge and biological nutrient removal (Sui et al., 2011). Li and Zhang (2011) also 

found that some kinds of antibiotics, such as ampicillin and cefalexin could be 

eliminated through disinfection process. 

Implementation of advanced treatment technologies, in order to improve removal 

efficiency, lead to even further increase in pharmaceutical drug residues concentrations 
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in SS. Therefore, concerns arise over application of such sludge as fertilizer to the 

ground (Daughton and Ternes, 1999; Gómez et al., 2007; Wiechmann et al., 2013). 

1.3 Sludge processing 

Sludge processing includes all treatments that improve its suitability for beneficial use 

and prepare SS for transport, storage or disposal. While the quantity of produced sludge 

in a wastewater treatment plant is approximately 1% of the quantity of treated 

wastewater, due to time-consuming process of sludge treatment and the necessity of 

complex equipment usage, sludge management costs 40 to 50% of the total wastewater 

treatment costs (Turovskiy and Mathai, 2006; Wiechmann et al., 2013). Sludge 

treatment methods include thickening, biological stabilization, dewatering, drying and 

incineration. The latter process will be discussed briefly in Disposal Method section of 

this chapter. 

1.3.1 Sludge thickening 

Sludge thickening is a process of reduction in sludge volume by removing as much 

water as possible and increasing the solids concentration. The purpose of this process 

is to increase the efficiency and decrease the costs of further treatments such as 

digestion and dewatering. The resulting material is still fluid with less than 15 % 

concentration of solids and can be pumped without difficulty with conventional means. 

Some commonly used thickening processes are gravity thickening, dissolved air 

floatation thickening, gravity belt thickening, and rotary drum thickening (Turovskiy 

and Mathai, 2006; Sanin et al., 2011).  

Gravity thickening is the simplest and most commonly used method for sludge 

thickening in wastewater treatment plants and it works best with heavy sludges. Gravity 

thickening mechanisms are similar in design to primary clarifiers where sludge solids 

precipitate and compact as a result of gravity so it has minimum power consumption. 
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Some disadvantages of this method are large space requirement, odor potential and poor 

solids concentration (2 to 3%) for WAS (Waste Activated Sludge).  

Dissolved air floatation thickening provides better solids concentration (3.5 to 5%) 

of WAS than that of gravity thickening, especially for light and fluffy materials such as 

activated sludge, and require less space than a gravity thickening as well. But the 

operational cost and power consumption is relatively high compare to the gravity 

thickening method (Turovskiy and Mathai, 2006; Sanin et al., 2011). 

Gravity belt thickening, a solid-liquid separation process, has high solids capture 

efficiency (4 to 6%) of WAS solid concentrations and it is based on coagulation and 

flocculation of solids through polymer addition in a dilute slurry. While this method is 

relatively low power consumption one but it depends on polymers and odor potential 

exists. 

Rotary drum thickening (RDT) can be used to thicken sludge with initial 

concentration of 0.5% with high solid separation efficiency (4 to 6% WAS solid 

concentrations). Low space requirement, relatively low capital cost and less power 

consumption are some other advantages of this method. Like gravity belt thickening it 

is polymer dependent and also sensitive to polymer type. 

Sludge thickening technologies and equipment are being developed in Europe, Japan, 

and Russia. New materials such as water-absorbing porous materials, elastic capillary 

materials and nonwoven fibrous fabric materials, are being examined (Turovskiy and 

Mathai, 2006; Sanin et al., 2011). 

1.3.2 Sludge dewatering 

The objective of dewatering is to reduce the water content of sludge and biosolids as 

much as possible to achieve a volume reduction greater than that achieved by thickening 

so that subsequent handling of the resulting solid–semisolid material will be much 

easier. Additionally, it can also help to keep disposal costs, including transportation, to 

a minimum. 
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Dewatering is required: prior to composting in order to improve airflow and 

structure, before thermal drying or incineration to decrease consumption of the fuel that 

is going to be used for the evaporation of excess moisture, and also before disposal to 

limit leachate production at the landfill site after disposing of sludge in landfills. The 

conditioning of sludge by biological, chemical, and/or physical treatment is required to 

enhance dewatering efficiency. 

Generally, in dewatering process the incoming stream is called feed, the dewatered 

solid is called cake and the outgoing liquid stream, which is most often recirculated into 

the WWTPs, is called filtrate or centrate based on the process used (filter or 

centrifugation, respectively). To determine the efficiency of dewatering there are two 

parameters to consider: the clarity of the filtrate or centrate; and the solid concentration 

of the cake (Sanin et al., 2011).    

Dewatered sludge can be obtained through natural process such as lagoon-based 

air-drying or sand bed, which allow the sludge to dry through evaporation and drainage, 

or mechanical systems such as centrifuges, belt filter presses, and pressure filter presses. 

Historically, the first method for dewatering of sludge was the use of drying beds and 

drying lagoons which are simply based on evaporation and drainage. The sludge solid 

content can be increased to 45-90%. These methods require large areas, and land costs 

are often the limiting factor; but otherwise, they require little investments, low energy 

and low chemical consumption. On the other hand, release of foul smell and stabilized 

sludge requirement are the drawbacks in this sludge dewatering method (Turovskiy and 

Mathai, 2006; Sanin et al., 2011). 

Sludge dewatering can be performed through centrifuges which consist of a central 

pipe set in rotating bowl. Forced by the centrifugal force, the heavier solids sink to the 

bottom while the lighter liquid remains pooled on top. This process results in sludge 

with 25-35 % solids content. Contrary to drying beds, centrifuges require relatively less 

space and allow better control on diffusion of bad odors. However, they require much 

larger initial investments and use more direct power per unit of product produced (US 

EPA, 1999; Czerska and Smith, 2008). 
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Belt filter press is another mechanical system of sludge dewatering in which sludge 

is continuously squeezed between two belts: a press belt and a filter belt. The resulting 

sludge cake has 20-32% solids content. This method has relatively low capital and 

management costs but it is very sensitive to feed sludge characteristics, polymer type 

and dosage rate. 

In a pressure filter press sludge is into a frame set between plates that are covered 

with a filter cloth. Dewatering is achieved by forcing the water through the cloth under 

high pressure. This method is quite expensive but the cake produced by this method is 

drier than those produced by any other dewatering alternative (35-45 % solids content) 

(US EPA, 1999; Turovskiy and Mathai, 2006; Czerska and Smith, 2008; Sanin et al., 

2011). 

1.3.3 Sludge stabilization 

Due to decomponibility of organic matter and hygienic requirements, stabilization of 

SS is necessary to reduce the potential for further anaerobic biodegradation, eliminate 

offensive odors and reduce pathogens, and thus generating a stable product for use or 

disposal. 

There are some useful parameters which allow to evaluate the stability of SS such as:  

- Volatile solid (VS) reduction: VS is generally used as an indicator of the amount 

of OM is sludge. Decomposition of organic matter results in release of carbon 

dioxide, so a reduction of the VS is linked to the effectiveness of the 

stabilization process (Evanylo, 2006). 

- Pathogen reduction: Sludge stabilization treatments can significantly reduce 

pathogens and provide maximum options for sludge disposal so this parameter 

has been used as measure of sludge stability (Sanin et al., 2011). 

- Oxygen uptake rate: Microorganisms use oxygen as they consume organic 

substances in aerobic systems. The rate at which the oxygen is consumed, is 

usually expressed as Specific Oxygen Uptake Rate (SOUR) represents the 
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biological activity in SS. A high oxygen uptake rate would indicate a very viable 

and active sludge. The respiration rate of an activated sludge and the amount of 

the biodegradable OM can be determined by this method. Reduction in oxygen 

uptake rate indicates that a sludge has been either seriously contaminated or that 

its easily degradable part has already been used up by microorganisms and 

therefore the biological activity decreased (Chandra et al., 1987; Sperling, 1994; 

Cokgor et al., 2007; Surerus et al., 2014). 

- Nitrification: The transformation of organic N first to ammonia and then to 

nitrite and nitrate occurs during aerobic stabilization of sludge. Measuring the 

content of NO3¯ and the degree of nitrification can be used as indicator of 

stability under aerobic condition (Turovskiy and Mathai, 2006; Sanin et al., 

2011). 

- Total Organic Carbon (TOC): If the original content of TOC is known, its 

decrease could be a reliable measure of the degradable fractions of OM in 

sludge. Higher microbial activity and hence greater OM mineralization lead to 

a higher loss of TOC (Hernández et al., 2006). The amount of biological or 

chemical oxygen demand (BOD or COD) are also important factors in the 

measurement of degradable OM and so stability of SS. 

Common approaches used to assess sewage sludge stabilization include anaerobic 

digestion, aerobic digestion, lime/alkaline stabilization, composting, long term storage 

in lagoons or beds and thermal processes. The most frequently used stabilization 

methods are biological anaerobic and aerobic digestion (Goldfarb et al., 1999) which 

are discussed here briefly. 

1.3.3.1 Aerobic digestion 

Aerobic digestion is the most commonly used solid waste stabilization process in 

wastewater treatment plants. The aim is to produce stable biosolids that are suitable for 

land application, which have various beneficial features such as, reduced content of 

pathogens, and minimum release of foul odors. It is a biological process in which 
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organic part of the sludge is oxidized and decomposed by microorganisms in the 

presence of oxygen. In activated sludge, bacteria consume organic matter with oxygen 

and convert it into carbon dioxide. When the soluble substrate is completely oxidized 

by the microbial population, the microorganisms must consume a portion of their 

cellular protoplasm in order to obtain energy for cell maintenance. This phenomenon 

that explains the destruction of biomass or volatile solids, is known as endogenous 

respiration. The basic reaction of the aerobic digestion process, can be illustrated by the 

following simplified equation. 

Organic matter/cell mass of microorganisms + O2   
𝑎𝑒𝑟𝑜𝑏𝑖𝑐 𝑚𝑖𝑐𝑟𝑜𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠
→                     CO2 + H2O + NO3¯ + heat 

However, all the cell tissue cannot be oxidized and the remaining material, that is 

about 20-30%, is composed of inert and organic compounds that are not biodegradable. 

The bio oxidation of biomass results in the reduction of the volume and the material 

that remains at the end of the process is biologically stable. 

Aerobic digestion that is typically used in smaller treatment facilities, has no 

recovery of energy and the costs of supplying the oxygen required for continued 

aeration make the process to be expensive. However compared to anaerobic digestion, 

the capital costs are lower, the process is more flexible and safe in operation, and has a 

low odor potential (Bernard and Gray, 2000; Turovskiy and Mathai, 2006; Hani et al., 

2012). 

1.3.3.2 Anaerobic digestion 

Stabilization of sludge through anaerobic digestion represents one of the oldest 

processes which is generally considered to be an economical and environmentally-

friendly technology (Appels et al., 2011). In this process, a large fraction of the organic 

matter in sludge is biologically degraded into carbon dioxide (CO2) and methane 

(CH4), and a number of other gases in small amounts (ammonia, hydrogen sulfide, and 

mercaptans) (Nasir et al., 2012). Anaerobic microorganisms digest organic materials in 

the absence of oxygen, and the remainder product will be stabilized sludge with higher 



 31 

nitrogen content than that produced by aerobic digestion (Madur Electronics 2003; 

Monnet, 2003; Arthurson, 2008). 

Anaerobic digestion involves series of stages of chemical and biochemical 

reactions. The process comprises three main degradation stages: hydrolysis, 

acidogenesis, and methanogenesis as illustrated in Figure 1.2. 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. 2 Basics of anaerobic digestion process of organic waste 

 

In the first stage, hydrolysis, complex insoluble polymeric matter such as 

carbohydrates, proteins, and lipids are hydrolyzed to their soluble monomers form such 

as sugar, amino acids and fatty acids by fermentative bacteria. In the second stage, 

acidogenesis, the products of the first stage are converted into simple organic acids, 

hydrogen and carbon dioxide by acid-forming bacteria. In the last stage, 

methanogenesis, methane is produced by a group of bacteria known as methane 

formers. This can happen in two ways: by conversion of acetic acid molecules to 

methane and carbon dioxide, or through reduction of carbon dioxide with hydrogen 

(Monnet, 2003; Turovskiy and Mathai, 2006; Sanin et al., 2011).  
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Even though the high dependency of this method on microorganisms which are 

sensitive to small changes in the environment (e. g., temperature, pH, toxic metals) 

necessitate continues monitoring of performance and close process control, anaerobic 

digestion provides several advantages over the other sludge stabilization methods, such 

as: methane production as an usable energy source and a high rate of pathogen 

distribution, especially through the thermophilic digestion process. 

1.4 Disposal methods 

Treated sludge can be disposed of or recycled through three main routes: landfilling, 

incineration or recycling to agriculture. Some developing combustion technologies 

such as pyrolysis, wet oxidation and gasification; and less developed disposal methods 

including silviculture and land reclamation are also exist. Each of these disposal routs 

and recycling methods has specific inputs, outputs and impacts. 

1.4.1 Landfilling 

Landfill, as the oldest form of wastewater sludge treatment, is a widely applied practice 

for sludge disposal in the European Union, and would be chosen when no other ways 

to dispose of the sludge exist (Bresters et al., 1997). 

In this approach sludge could be deposited at municipal landfills (codisposal) or in 

dedicated areas alone (monodisposal) and finally covered up with a soil layer. In 

codisposal method sludge is deposited together with municipal solid waste in a landfill, 

while in monofill disposal, sewage sludge are buried alone in the trenches. 

In sludge landfilling there are two important parameters that must be considered: 

biogas production and highly polluting leachate (ÓKelly, 2005). Landfill biogas, which 

mainly composed of methane, are generated as a consequence of slow anaerobic 

decomposition of biodegradable wastes in landfills (Hue, 1995, European Commission, 

2004). This gas only partially captured and the further emissions contributes greatly to 

the greenhouse effect and climate change. 
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Sludge landfilling could also lead to the highly polluting leachate production. The 

excess moisture of sludge and rainwater generate sludge leachate which may contains 

considerable amounts of toxic organics and toxic metals; and could contaminate the 

surface water in downslope or ground water. Proper sludge dewatering prior to its 

landfill disposal could significantly reduce leachate production at the landfill site. 

Moreover, a clay-based or synthetic liner and a leachate collection system installed in 

the sludge landfill site would minimize potential environmental hazards of landfill 

(Luduvice and Fernandes, 2007). 

1.4.2 Incineration 

Incineration of wastewater sludge is a combustion reaction at high temperatures in an 

enclosed device called an incinerator (furnace). Sludge incineration techniques are 

classified into mono-incineration which refers to sludge incineration in dedicated 

plants, and co-incineration in which sludge is used with other municipal solid wastes as 

fuel in energy or material production (Guibelin, 2004; Rulkens, 2008). In this process 

the organic matter combusts and as well as energy production, flue gases, ashes, and 

wastewater are produced as outputs; therefore, to avoid environmental impact of 

emissions, Draft Directive on Incineration of Waste (94/08/20) laid down requirements 

for emissions released by sludge incineration plants (Bresters et al., 1997).  

Mechanical dewatering and thermal drying, to obtain above 30% DS content, are 

essential to have an autothermic incineration (sludge burning without support fuel). In 

Table 1.1 the principal advantages and disadvantages of sludge incineration as a 

disposal method are shown. 
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Table 1. 1 Advantages and disadvantages of sludge incineration 

Advantages Disadvantages 

 Sludge volume and weight reduction, 

thereby reduce in disposal requirements 

 Pathogen elimination 

 Low sensitivity to sludge composition 

 Energy recovery of sludge 

 Low odor potential due to high temperature 

and closed systems  

 High operating and capital costs 

 Requirement of extensive treatment to 

avoid discharge of toxic or noxious 

emissions to the atmosphere 

 Dependence of its efficiency on the ratio 

of sludge mass to solid waste mass 

 

However, according to several authors, incineration is not considered as a complete 

disposal practice but only a means of sludge minimization, since in this process dry 

solid residues (municipal solid waste incineration leaves around 30% of the initial waste 

mass) remain as an ash (European Commission, 2004; Turovskiy and Mathai, 2006; 

Tyagi and Lo, 2013). 

1.4.3 Land application 

Due to population increase and development of wastewater treatment plants (WWTPs), 

such as the construction of new treatment units or the improvement of existing facilities, 

sludge production has been on the rise. And land application is generally considered 

the most economical and beneficial way of biosolids disposal (Haynes et al., 2009). 

Land application of SS is using the biosolids as a soil conditioner for agricultural, 

horticultural or reclamation purposes based on its degree of stabilization provided. Land 

application of wastewater solids differs from surface disposal; that principally uses 

biosolids to enhance the productivity of the soil instead of using the land for final sludge 

disposal (Ontario, 2008).  

Although many beneficial effects can be achieved through land application of SS 

such as: supplying nutrients to the crops, improving soil properties and increasing soil 

organic matter content, there are also concerns of the potential for nitrate or phosphate 

contamination of waters, possible toxic metal and pathogen transfer that must be 
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addressed to insure applying sewage sludge to the soil as a safe and environmentally 

friendly approach (Singh and Agrawal, 2008). 

1.5 Agricultural use of sewage sludge and its regulations 

Recycling to farmlands and land restoration/reclamation as long-term sustainable 

solution to sludge disposal is the current policy of the European Commission and 

national authorities to reduce landfill as a common way of disposal; considering the 

quality of sludge that should be compatible with public health and environmental 

requirements (Schowanek et al., 2004). However, to have an acceptable sludge for 

agricultural use and society, well-regulated controlling and further reducing pollutant 

levels is necessary in order to improve the quality and public image of sludge 

(Andersen, 2001). 

In the European Union the total sewage sludge production is around 10 million 

tons of dry solids per year, of which about 70% is produced in Germany, United 

Kingdom, France, Spain and Italy and about 40% is spread on land for agricultural use. 

However, the interest for sludge recycling to agriculture varies among EU countries; 

for instance, the development of stringent policies in Netherlands has actually lead to 

an effective ban on using sewage sludge for agriculture and some alternative options 

such as land reclamation, horticulture and landscaping, or energy recovery are used 

(Alabaster and Leblanc, 2008; Rovira et al., 2011). The sludge production of 27 

European countries together with the percentage of agricultural disposal is presented in 

table 1.2. (Eurostat, SS production and disposal, last update 06.08.2019). 

 

 

 

 



 36 

Table 1. 2 Sewage sludge production and quantities recycled to agriculture in the EU 

Member State Year 
Sludge production 

(Ths-t) 

Agriculture 

(Ths-t) (%) 

Austria 2016 237.938 48.313 20.3 

Belgium 2010 176.3 30.62 17.4 

Denmark 2008 108 74 68.5 

Finland 2015 146 - - 

France 2017 1174 229 19.5 

Germany 2016 1794.443 423.497 23.6 

Greece 2016 119.768 21.528 18.0 

Ireland 2017 58.773 46.487 79.1 

Italy 2010 1102.7 315.6 28.6 

Luxembourg 2017 8.618 1.138 13.2 

Netherlands 2016 347.6 0 0.0 

Portugal 2016 237.938 13.885 5.8 

Spain 2012 1082.69 754.74 69.7 

Sweden 2016 204.3 69.5 34.0 

United Kingdom 2012 1136.7 844.4 74.3 

Sub-total EU 15  7935.768 2872.708 36.2 

Bulgaria 2017 68.6 22.5 32.8 

Cyprus 2016 7.408 1.613 21.8 

Czech republic 2017 223.27 102.94 46.1 

Estonia 2016 18.34 0.1 0.5 

Hungary 2017 264.71 28.2 10.7 

Latvia 2017 24.94 3.316 13.3 

Lithuania 2017 42.488 20.817 49.0 

Malta 2017 10.3 0 0.0 

Poland 2017 584.454 108.52 18.6 

Romania 2017 283.34 35 12.4 

Slovakia 2017 54.52 0.52 1.0 

Slovenia 2017 36.7 0.5 1.4 

Sub-total EU 12  1619.07 324.026 20.0 

Total  9554.838 3196.734 33.5 

1.5.1 Nutrient recovery 

The recycling of sewage sludge to agricultural land is the best possible environmental 

strategy for the recovery of their organic matter and inorganic elements content. 

Nitrogen and phosphate are the principal nutrients in SS. Since nitrogen is a constituent 

of all proteins and nucleic acids and therefore protoplasm, is an essential nutrient for 

plant growth. Phosphate is part of DNA and cells’ energy pathways and it can never be 

substituted. The availability of nitrogen is more dependent on sludge treatment. 

Anaerobic digestion process increases the total nitrogen concentration of SS in the form 
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of ammonia, which is readily available to plants (Usman et al., 2012; Van der Hoek et 

al., 2018). 

Phosphate is part of DNA and cells’ energy pathways and it can never be 

substituted. Based on the current extraction rates of phosphate, about 20 million tons 

(Mt) of P from phosphate rock, by the end of this century all today’s mines will be 

exhausted. Therefore, the recovering of phosphorus in SS through reuse of sludge in 

agriculture could represent a renewable source of phosphorus for future demand (Driver 

et al., 1999; Cordell et al., 2009). According to European Commission (2001) around 

25% of phosphorus in municipal wastewater in the European Union is recovered and 

reused mostly as sludge. It is reported that phosphorus concentration in sludge amended 

soils increase from the original 2-4 mg/kg of phosphorous in soil to 29-114 mg/kg of 

phosphorus in sludge amended soil. The availability of phosphorus content is 

independent of prior sludge treatment (Chen et al., 2012; Evans 2016).  

Potassium content of SS is relatively low since most K components are soluble in 

water and remain in the sewage effluent or the aqueous fraction during sludge 

dewatering (Hue, 1995). Therefore, in crop production with SS applications, addition 

of potassium through an inorganic (such as KCl) or organic (such as wood ash or K-

rich crop residues) sources may be critical and could significantly increase yields (Wen 

et al, 1997). 

1.5.2 Contaminants 

The more diffuse contaminants of SS can be divided in three main groups: (i) potentially 

toxic elements including cadmium, chromium, copper, mercury, nickel, lead and zinc; 

(ii) pathogenic microorganisms (bacteria, viruses, protozoa, and helminthes) and (iii) 

organic pollutants including PCBs, PAHs, NPE, DEHP, LAS, dioxins (PCDD) and 

furans (PCDF). The first two groups of pollutants were described in section 1.2 

“Composition of sewage sludge” of the present document.  
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During waste water treatment a wide variety of hydrophobic organic contaminants 

are efficiently removed through binding to the sludge solids. The main categories of 

organic pollutants are: 

Extractable Organic Halogens (EOX) represent the total content of halogens 

(Cl, Br, I) in organochlorine compounds that is used for monitoring of their 

concentrations in sediments. One of its main sources has been the bleaching of 

paper pulp together with manufacture of polyvinyl chloride (PVC) and waste 

incineration (Pöykiö et al., 2008). 

 

Polycyclic Aromatic Hydrocarbons (PAHs) are produced through incomplete 

combustion and suspected to be carcinogens/mutagens. House fires, heat and 

energy power stations, waste incineration, vehicle traffic, and industrial plants 

are its main anthropogenic sources. 

 

Linear alkylbenzene sulphonates (LAS) is the predominant class of anionic 

surfactants which are the main agents in all detergents. Although LAS is readily 

biodegradable in aerobic condition, much of these compounds load into a 

treatment facility is associated with suspended solids and escapes from aerobic 

treatment into sludge management processes (Thornton et al., 2001). 

 

Di-2-(ethyl-hexyl)-phthalate (DEHP) is a phthalate ester and used as softeners 

in plastic (PVCs), as antifoaming agent in paper production and as an emulsifier 

for cosmetics. These compounds are degradable both aerobic and anaerobically 

but being absorbed by the particles, due to their lipophilic properties, decreases 

their degradation rate considerably. These compounds are toxic for soil 

organisms and some of them are suspected to have hormone mimic properties 

(Madsen et al., 1997; Erhardt and Pruess, 2001). 
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Polychlorinated biphenyls (PCBs) are organic chlorine compounds that 

produced by chlorination of biphenyl. Inputs of these persistent pollutants to the 

urban wastewater are basically from atmospheric deposition on the soil and 

runoff and industrial emissions. They absorbed by solids during wastewater 

treatments and accumulate in sewage sludge (Thornton et al., 2001).  

 

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are 

polyhalogenated organic compounds with tricyclic structure that are not 

intentionally produced. They are by-products of organo-chlorine compounds 

production and of incomplete combustion of chlorine-containing substances. 

Household and laundry wastewater are the main sources of these persistent 

compounds in sewage sludge (Erhardt and Pruess, 2001). 

 

As the land application of sewage sludge may result in an increase of the pollutants 

concentration in soil, to avoid the environmental risks associated with direct use of this 

waste in agriculture, some treatment is necessary to minimize and eliminate the 

undesirable effects. 

1.5.3 Legal regulations 

Although the use of sewage sludge in agriculture is the best strategy for its recycling, 

because of the high organic matter content and the presence of other essential elements 

such as nitrogen and phosphorous, providing regulations with the purpose of preventing 

noxious effects in plants, soils, animals and human beings as well as promoting its 

correct use is necessary.  

In this regard, Directive 86/278/EEC was adopted for the use of sewage sludge in 

agriculture which prohibits the use of untreated sludge on agricultural land and required 

concentration limits for certain toxic metals (cadmium, copper, mercury, nickel, lead 

and zinc). The 3r draft of the “Working paper on sludge” suggested limit values for 
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concentrations of organic compounds in sludge. In tables 1.3 and 1.4 all the limit values 

related to toxic metals and organic compounds is presented. 

Table 1. 3 Limit values for the concentration of toxic metals in sewage sludge  

 

 

Table 1. 4 Limit values for the concentrations of organic compounds in sewage sludge 

Organic compound 
EU 2000        

(3rd draft) 

AOX        (mg/kg dm) 500 

LAS         (mg/kg dm) 2600 

DEHP      (mg/kg dm) 100 

NPE         (mg/kg dm) 50 

PAH         (mg/kg dm) 6 

PCB         (mg/kg dm) 0.8 

PCDD/F   (ng TEq/kg dm) 100 

 

Although a health and environment impact due to sludge agricultural use has not 

evidenced, works are in progress on some aspects of the Directive to improve the long-

term protection of Community soils. 

Contaminants 
Directive 86/278/EEC 

(Current) 

Cd    (mg/kg dm) 20 to 40 

Cr    (mg/kg dm) - 

Cu   (mg/kg dm) 1000 to 1750 

Hg   (mg/kg dm) 16 to 25 

Ni    (mg/kg dm) 300 to 400 

Pb   (mg/kg dm) 750 to 1200 

Zn   (mg/kg dm) 2500 to 4000 
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1.6 Humic substances 

1.6.1 Concept of humic matter 

The chemical nature of humic substances, is still largely unknown, they were defined 

by MacCarthy (2001) as “an extraordinarily complex, amorphous mixture of highly 

heterogeneous, chemically reactive yet refractory molecules, produced during early 

diagenesis in the decay of organic matter, and formed ubiquitously in the environment 

via processes involving chemical reaction of species randomly chosen from a pool of 

diverse molecules and through random chemical alteration of precursor molecules”. 

These substances are generated from degradation of organic residues in soil, 

sediment or natural waters and can be operationally subdivided into three major 

fractions, that are Humin, Humic Acids (HA) and Fulvic Acids (FA), based on their 

solubility in water adjusted to different acid alkaline conditions. One of the more 

notable properties of HA and FA is their prominent chemical reactivity. They possess 

an abundance of carboxyl groups and also have weakly acidic phenolic groups which 

can dissociate and contribute to their buffering capacity and also contribute to the 

complexation and ion-exchange properties of humic materials. Humic substances 

present both hydrophobic and hydrophilic properties and can bind to mineral surfaces 

(MacCarthy, 2001).  

Despite all above mentioned chemical reactivity of humic substances, they are 

known to be refractory in terms of microbial degradation (Stott and Martin, 1990). 

According to Malcolm (1990) humic substances from all environments exhibit ''a 

refractory nature to microbial decay”. 

1.6.2 Importance of humic substances 

Maintaining the physical and chemical properties of soil for healthy microbial activity 

and plant growth could be insured by humic substances (HS). Since, as the most 

important fraction of organic matter, HS are directly involved in the slow release of 
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nutrients, pH buffer capacity, high cation exchange capacity, and toxic metals and 

xenobiotic organic molecule retention (Anderson et al., 2001; Réveillé et al., 2003).  

Due to the specific structural properties of HS (e.g. hydrophilic and hydrophobic 

structure, ability to reduce surface tension), they can be considered as washing agents 

for removal of contaminants from soil (Gusiatin et al., 2017). The toxic metal removal 

efficiency of HSs (e.g. Cu, Cd, Zn, and Pb) was demonstrated by several investigations 

(Soleimani et al., 2010; Borggaard et al., 2011; Hartley et al., 1014; Kulikowska et al., 

2015) and it was shown that FA, with lower molecular weight and higher number of 

reactive groups, are able to form more soluble, mobile and bioavailable metal 

complexes than HA; therefore, they could have a higher metal binding capacity 

compare to HA (Donisa et al., 2003; Boruvka and Drábek, 2004; Gusiatin et al., 2017). 

1.6.3 Humic matter in sewage sludge 

In general, sewage sludge can be a rich source of HSs and considering the above-

mentioned properties and importance of these compounds, the use of SS in agriculture 

as fertilizer and as conditioner in intensively-cropped and organic-depleted soils may 

have many beneficial effects; they enhance the metabolism of phosphorus and nitrogen 

in soil, help the absorption of nutrients by plants and microorganisms and improve the 

aggregation and cationic exchange capacity of soil particles (Réveillé et al., 2003; Li et 

al., 2013). 

Composting is usually applied to reduce the degradable organic substances e.g., 

protein, polysaccharide and fat in SS and convert them to more oxidized and stable 

compounds. This process lead to increase the concentration of aromatic humic 

compounds with high molecular weight that indicates humification process takes place 

during composting treatments. Therefore, HSs could be used as an indicator of the 

degree of organic matter humification, and so the degree of SS compost maturity 

(Zucconi et al., 1981; El Fels et al., 2014). 
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1.7 The aim of this study 

The aim of the research carried out during the PhD program and summarized in this 

thesis was to evaluate the suitability of sewage sludge, from wastewater treatment 

plants located in the Friuli-Venezia Giulia region (north-east of Italy), for agricultural 

use in the light of the new characterization perspectives for sewage sludge within the 

framework of the concept of integrated water cycle sustainability. To this purpose, the 

sewage sludge samples were taken from 10 representative waste water treatment plants 

that vary in their treatment capacity, process units and sludge treatment sequences. 

Sewage sludges were characterized considering the concentration of toxic elements and 

two different classes of organic emerging contaminants, Extractable Organic halogen 

(EOX) and Linear Alkylbenzene Sulfonate (LAS). Their degree of stabilization was 

evaluated by investigating the properties and content of humic and fulvic acids. 

The objectives of this work are described in the three following chapters which will be 

separately submitted as manuscripts to appropriate peer reviewed journals: 

Chapter II:  

In this chapter, which is an updated version of a previous study, reported by Goi et al. 

(2006) in Friuli-Venezia Giulia region (north-east of Italy), is evaluated the evolution 

of selected contaminants in about 10 years due to upgrading of wastewater treatment 

processes. In addition, LAS concentration, as one of the emerging contaminants in 

sewage sludge, was studied as well. Since legislation for agricultural reuse of sewage 

sludge is becoming more and more stringent, this study represents a contribution to 

stakeholders to help the choice of which kind of sewage sludge is suitable to agricultural 

reuse and which should undergo additional treatments or different final destination. 

Chapter III: 

Before proceeding with the evaluation of the stabilization degree of stabilization of 

sewage sludge by examining the quality and quantity of humic substances, it became 

necessary to assess the integrity of extraction procedures for the isolation of HA and 
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FA. In this part, we will answer to the question whether HS are artifacts or not of the 

extraction procedure. In a recent work, Lehmann and Kleber (2015), rejected the humic 

substances concept and proposed the Soil Continuum Model, in which organic matter 

exists as a continuum of organic fragments and humic substances are considered to be 

artifacts of the alkali extraction procedure. The goal of our work was to test assumptions 

made by Lehmann and Kleber (2015) this allowed us to demonstrate that humic 

substances are real components of natural organic matter and sewage sludge. 

Chapter IV: 

This chapter describes modifications in the quality of sludge that occur during a stage, 

which is often neglected in the evaluation of the overall performance of a treatment 

plant: namely the period spent by treated sludge in thickening beds and in storage 

facilities. Our aim was also to ascertain the integrity of HSs use as markers of biological 

transformations at this stage of sewage processing where biological transformation is 

generally considered to be minimal.  

To this purpose we will evaluate: i) the effect of sludge storage on degradation EOX, 

as representative of compounds best degraded under anaerobic conditions, and LAS as 

representatives of compounds best degraded under areobic conditions, ii) the use of 

humic substances as an indicator of the efficiency of transformation process in sewage 

sludge treatment and specifically of the storage period iii) application of UV-visible, 

FTIR and fluorescence spectroscopies as valid, simple and cost effective methods to 

examine the quality of HS in sewage sludge. 
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Preface 

This work was an attempt to update information on the concentration of toxic metals 

and Extractable Organic Halogen (EOX) in sewage sludge from waste water treatment 

plants located in Friuli Venezia Giulia region reported by Goi et al. (2006). In addition, 

Linear Alkylbenzene Sulphonate (LAS) was added to the analyzed parameters as the 

most heavily used surfactant in domestic detergents since they can affect the fate and 

behavior of hydrophobic organic compounds in soil. 

For this purpose, the samples were collected from 10 different waste water 

treatment plants that are vary in the treatment capacity (expressed as population 

equivalent, P.E.), process units and sludge treatment sequences. 

Compared to the previous work of Goi et al. (2006), our present results showed 

that improvement in the wastewater treatment route can lead to the increase in the 

concentration of toxic metals in the sewage sludge.  
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Chapter II 

Monitoring of toxic metals, EOX and LAS in 

sewage sludge for agricultural use: a case study 

2.1 Introduction 

According to the sustainable agriculture perspective, the reuse of sewage sludge is of 

great importance, due to the nutritional and organic matter content (Fijalkowski et al., 

2017) and its low cost. However, the presence of some persistent organic contaminants 

and toxic elements in sewage sludge can cause environmental and health problems 

(Anjum et al., 2016). Given the continuous development of wastewater treatment plants 

(WWTPs), involving the construction of new treatment units or the upgrading of 

existing facilities, sludge management has become one of the most critical 

environmental issues in the sector: sludge treatment cost represents nowadays 

approximately 50% of total running costs in WWTPs (Quian et al., 2016). In fact, about 
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9.5 million tons dry matter of sewage sludge were produced in Europe in 2015 

(Eurostat, 2018) that should be properly disposed.  

There are several options for the final disposal of sewage sludge, including energy 

and resource recovery (Gherghel et al., 2019); treated sludge is a source of nutrients for 

the soil, when applied as fertiliser and soil conditioner (Yoshida et al., 2018; 

Ashekuzzaman et al., 2019), even if the risks of soil contamination and pathogen 

transmission have to be considered (Singh and Agrawal, 2008). Council Directive 

91/271/EEC encouraged the land application of sewage sludge (European Commission, 

1991) due to its fertilizing and soil conditioning properties for agricultural soil. 

However, this practice may also lead to environmental and health problems, due to 

accumulation of persistent organic contaminants and toxic elements contained in 

sewage sludge (Valentin et al., 2013). In order to utilize the sludge produced by urban 

WWTPs as a fertilizer in agriculture, precise specification of the properties and quality 

of sludge is required, to prevent the occurrence of health and environmental issues. 

There are many aspects of interest when evaluating the quality of sewage sludge 

as fertilizer (USEPA, 1995; American Society of Civil Engineers and American Water 

Works Association, 1996), but most crucial and hazardous aspect that can prevent 

widespread agricultural use is the concentration of toxic metals (Chen and Hu, 2019). 

A major cause of concern is the toxicity of these toxic metals at trace concentrations 

(order of magnitude of ng/L), in particular Cd, given its high bioavailability (Hu et al., 

2017). Toxic metals in sewage systems originate from household sewage, industrial 

wastewater or urban runoff (Sorme and Lagerkvist, 2002). As a result of heavy 

urbanization and the entry of untreated industrial wastewater into municipal wastewater 

sewerage, toxic metals such as lead, cadmium, mercury, nickel and chromium may be 

present in municipal wastewater (Pires and Mattiazzo, 2003; Singh et al., 2004; 

Hargreaves et al., 2018) and most of these accumulate in the sludge, since only a small 

amount is released with the final treated effluent (Sorme and Lagerkvist, 2002). Once 

sludge from WWTPs is applied to the land, by degradation of organic compounds in 

sewage sludge, toxic metals availability increases in soil and accumulation in plant 
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biomass (which is one of the initial elements of the food chain) is observed (Gondek et 

al., 2014). 

Apart from single harmful inorganic contaminants, recently particular attention has 

been given to organic compounds present in domestic and municipal wastewater which 

are similarly accumulated in sludge. The use of sum parameters, like Extractable 

Organic Halogen (EOX) and Linear Alkylbenzene Sulphonate (LAS), is particularly 

interesting, because it can be a good representation of a general wide-ranging organic 

pollution in the sludge by specific classes of organic compounds. 

The EOX parameter represents the sum of organic chlorine (Cl), iodine (I) and 

bromine (Br) which can be extracted by organic solvents from environmental solids 

(Kannan et al., 1999). These compounds include not only synthetic polychlorinated 

biphenyls, organochlorine pesticides, polychlorinated dibenzo-p-dioxins or 

polychlorinated dibenzofurans and other substances, but also those naturally produced 

by microorganisms, flora and fauna (Niemirycz et al., 2005).  

The importance and usefulness of this parameter in the evaluation of environmental 

quality have been demonstrated by some studies (Rodziewicz et al., 2004; Contreras 

Lopez, 2003; Goi et al., 2006; Rizzardini and Goi, 2014; Braguglia et al., 2014); 

however, there is still a limited number of investigations on EOX content in sludge.  

LAS is one of the most used anionic surfactants, introduced in 1964 as a readily 

biodegradable replacement of branched alkylbenzene sulfonates (BAS). It is a mixture 

of homologues and isomers characterized by a hydrophilic sulfonate head-group and a 

hydrophobic alkylbenzene tail-group with 10-13 carbon units in its alkyl chain 

(Traverso-Soto et al., 2012). LAS are widely used as cleaners and household detergents, 

given their low cost, excellent detergent properties and general good biodegradability 

under aerobic conditions (Zhou et al., 2019).  

The agricultural application of sewage sludge is the main source of LAS entrance 

to the agricultural soil (Jensen, 1999). Typical LAS concentrations in anaerobically 

digested sludge are in the range of 1,000-30,000 mg/kg, in aerobic sludges <1,000 

mg/kg and in aerobically stabilized sludges <500 mg/kg of sludge (dry weight) 
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(Schowanek et al., 2007). During sludge transportation to the farmland, sludge storage 

and application on agricultural soil, aerobic conditions are restored and rapid 

degradation of LAS resumes (Jensen, 1999).  

The third draft of future sludge directive “Working Document on Sludge” (EU, 

2000) published by European Union in 2000, was the first comprehensive regulation in 

which an enhanced monitoring of sludge was proposed, but little advancing followed 

in the field in the following years. This work gives a contribution in the perspective of 

introducing EOX and LAS parameters in monitoring sludge from WWTP, as suggested 

by the “Working Document on Sludge”, only partially integrated in some national and 

regional legislation (Emilia-Romagna Region, 2005; Italian regulation, 2018). 

In this paper, which is an updated version of a previous study, reported by Goi et 

al. (2006) in Friuli-Venezia Giulia region (north-east of Italy), the evolution of analysed 

parameters in about 10 years was evaluated, due to upgrading of wastewater treatment 

processes. In addition, LAS concentration, as one of the emerging contaminants in 

sewage sludge, was studied as well. Since legislation for agricultural reuse of sewage 

sludge is becoming more and more stringent, this study can be a contribution to suggest 

which kind of sewage sludge is suitable to agricultural reuse and which should undergo 

additional treatments or different final destination. 

2.2 Material and Methods 

2.2.1 WWTPs and sample collection 

Sewage sludge samples were collected from 10 different municipal WWTPs in Friuli-

Venezia Giulia region (North-east of Italy); the chosen plants are listed as WWTP 1-10 

in Table 2.1, together with a brief description of the main characteristics of the plants, 

including treatment capacity (expressed as population equivalent, PE), process units 

and sludge treatment sequences. It can be noted that most of the analyzed plants were 

little scale plants (P.E. in the range of 850-9,000 P.E.) and treated mainly domestic 
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wastewater, while two medium scale plants (identified by n. 1 and 2) were studied as 

well: plant n.1 treated essentially municipal wastewater, while plant n. 2 treated a 

mixture of municipal and industrial wastewater, with the main fraction coming from 

chlorine free pulp and paper industry. 

In the same area samples coming, for most part from of these WWTPs, were 

studied during a similar monitoring in 2006 (Goi et al., 2006), during the time these 

plants were transformed and upgraded in size and processes to lead to the actual layout.  

Sludge samples were collected manually at the end of sludge treatment, by filling 

polyethylene bags with 5 kg of sludge from a wider selection about 50 kg. 

2.2.2 Sample preparation 

The samples were immediately transported to the laboratory and stored at 4 ℃; for the 

subsequent analysis, the samples were freeze-dried and passed through a 1 mm sieve, 

to obtain well homogenized samples.  

The sewage sludge samples were frozen at −20°C, then lyophilized by a Coolsafe 

55-4 Touch lyophilizer with − 50 °C condenser temperature. The ultimate vacuum 

pressure was 0.4 mbar. 

To test potential degradation of LAS throughout time, a fraction of sludge coming 

from the different size WWTPs No. 3, 4, 8, and 10 was put in a pilot-size aerobic drying 

bed, where aerobic condition was maintained by ideal surface venting for 6 months 

after sludge withdrawal (Table 2.1). 
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Table 2. 1 Main characteristics of the plants considered in the present study 

WWTP 
Plant size 

(P.E.) 

Wastewater treatment 

sequence 
Sludge treatment sequence 

No. 1  >100000 Scr. - G.Tr. - O.Rm. - Pr.S.T. - A.S. (N-DN; SBR) - S.Cl. - Disnf. Thk. - An.Dig. - B.Pr. 

No. 2 >100000 Scr. - A.S. - S.Cl. - CoTr - Pr.S.T. Thk. - Aer.Dig. - FP 

No. 3 * 9000 Scr. - G.Tr. - A.S. (N-DN) - S.Cl. - Disnf. Thk. - Aer.Dig. – P.D.Bd. 

No. 4 * 7500 Scr. - G.Tr. - A.S. (N-DN) - S.Cl. Thk. - P.D.Bd. 

No. 5  6000 Scr. - G.Tr. - A.S. (N-DN; IFAS) - S.Cl. Thk. - D.Bd. 

No. 6  5000 Scr. - G.Tr. - A.S. (N-DN) - S.Cl. - Disnf. Thk. - Aer.Dig. - D.Bd. 

No. 7  4000 Scr. - G.Tr. - A.S. (N-DN; MBR)  Thk. - D.Bd. 

No. 8 * 3500 Scr. - G.Tr. - A.S. (N-DN; MBBR) - S.Cl. Thk. - P.D.Bd. 

No. 9  1500 Scr. - G.Tr. - A.S. (N-DN) - S.Cl. - Disnf. Thk. - D.Bd. 

No. 10 * 850 Scr. - G.Tr. - A.S. (N-DN; SBR) P.D.Bd. 

Legend: P.E. = Population equivalent; Scr. = Screening; G.Tr. = Grit Trap; O.Rm. = Oil removal; Pr.S.T. = Primary settling tank; A.S. = Activated 

sludge; N-DN = Nitrification-Denitrification; SBR = Sequencing Batch Reactor; MBBR = Moving Bed Biofilm Reactor; IFAS = Integrated Fixed-film 

Activated Sludge; MBR = Membrane BioReactor; SBR = Sequencing Batch Reactor; S.Cl. = Secondary clarifier; CoTr = Coagulation-flocculation 

treatment; T.F. = Trickling Filter; Disnf. = Disinfection; Thk. = Thickener; B.Pr. = Belting press; FP = Filter Press; Aer.Dig. = Aerobic digestion; An. 

Dig. = Anaerobic digestion; D.Bd. = Drying bed; P.D.Bd. = Pilot Drying bed; (Dom) = Domestic wastewater; (URB-Dom) = Urban wastewater, mainly 

domestic; (URB-Ind) = Urban wastewater, mainly industrial 

 

* = Optimal aeration of the sludge was performed by a pilot drying bed (P.D.Bd.) for 6 months
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2.2.3 Toxic Metal analysis 

Toxic metal content was determined basing on USEPA 3051 method. Briefly, 0.5 g of 

each sample, previously freeze-dried and grinded, were weighed into a Teflon 

microwave vessel and 10 mL of concentrated HNO3 (Merck solution IV) were added. 

The samples were digested in a microwave digester apparatus (CEM Mars Xpress, 

Matthews, NC, USA) at 180 ℃ for 10 min. After cooling, the resulting solution was 

filtered through a PTFE filter of 0.2 μm size, diluted to 20 mL in volumetric flasks by 

ultra-pure water and then stored at 4 ℃ until analyzed. 

Toxic metal concentration in sewage sludge samples was determined by 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Varian Vista 

Pro axial instrument, equipped with a cross-flow nebulizer; an auto-sampler was used. 

The calibration was performed using standard solutions (0.5, 1, 5, 10, 30, 50 ppm) 

prepared from an ICP-standard 23 elements solution in 5% HNO3 (Merck solution IV) 

and yttrium (Y) was used as an internal standard. The method detection limit (MDL) 

was calculated as 3 s/m (where s is the standard deviation of 10 replicate blanks and m 

is the slope of the calibration curve) for each element. 

2.2.4 EOX analysis 

All the samples were freeze-dried, manually sieved through a 1 mm mesh sieve and 

grinded in a ball-grinder. Subsequently, 1.0 g of such pre-treated samples were 

extracted with 5 mL of solvent (ethyl acetate or n-hexane) by shaking for 24h. Most of 

the solvent was separated and then evaporated from the extracts under a nitrogen flow, 

until only 1 mL remained and the resulting sample was stored as refrigerated until 

analysis was executed. 

Analysis were performed with Trace Elemental Instrument, Euroglas ECS 1000 

upgraded with digital coulometer and control software (TEIS). This apparatus consisted 

of an injection system, a thermal extraction, a trapping section and a titration cell. 
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100 µL of residual extract were introduced into the instrument with an injection rate of 

20 µL/min. At 950 °C and in an oxidizing atmosphere, combustion accompanied by 

pyrolysis of organochlorine compounds and hydrogen halides release took place. The 

reaction gases formed by the combustion process were carried by the gas stream to the 

titration cell after passing the absorber and were filled with concentrated sulfuric acid 

to remove the water from the gas flow. In the titration cell, constituted by acid solution 

and silver electrodes, the halogenated acid formed by the organic halogens combustion 

created a current which can be measured. From the integral of the current over time, by 

the halogenated ionic charge the global quantity of organic halogen compounds in the 

extract can be established. 

2.2.5 LAS analysis 

HPLC grade acetonitrile and methanol were purchased from Merck (Darmstadt, 

Germany), analytical grade sodium perchlorate (Aldrich). Sodium dodecyl-

benzenesulfonate was used as standard (Sigma-Aldrich). Standard solutions of LAS 

were prepared in ultrapure water. Ultra-high-quality water was obtained from a Milli-

Q water purification system (Millipore, Bedford, MA). 

All measurements were made with a Shimadzu high performance liquid 

chromatograph LC-20AT (Shimatzu Corporation Kyoto, Japan), fitted with an SIL-

20AHT autosampler with a loop 20 µL, equipped with a diode array detector (DAD), a 

quaternary pump, a vacuum degasser and a thermostatic column compartment. The 

analytical cartridge column was a SUPELCOSIL LC-8 (SUPELCO, Bellefonte, PA, 

USA), 25.0 cm × 4.6 mm ID, 5 µm particle size. The microwave extraction system was 

a Microwave Mars 5 Digestion Oven apparatus (CEM, North Carolina, USA) with 

programmable power and irradiation time. The apparatus was equipped with a carousel, 

able to hold 36 extraction vessels. 

Microwave-assisted extraction (MAE) was performed on 0.5 g of dried sewage 

sludge samples. Methanol was used as a solvent because in literature it was the most 

common adopted solvent (Mortensen et al., 2001; García et al., 2005; Villar et al., 2007; 
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Braguglia et al., 2014). 5 mL of solvent were added to the samples and then the 

extraction vessel was closed and introduced into the microwave cavity. Microwave 

oven power and irradiation time were 340 W and 10 min, respectively. After extraction, 

the vessels were allowed to cool at room temperature before they were opened. The 

extracts were filtered through glass wool and analyzed by HPLC. 

 A commercial mixture of linear alkylbenzene sulfonates with C10–C13 chain 

length was used. Standard solutions at different concentrations were prepared in 

ultrapure water. Different solvents gradient programs were tested, to obtain a good 

resolution of all LAS peaks. Good results were obtained by using as mobile phase 

acetonitrile–water containing 0.1M NaClO4 (55:45) and isocratic elution. Compounds 

were eluted isocratically over 6 min at runtime at a flow rate of 0.8 mL/min after a 20 

µL injection. Since polar interferences were eluted between 0 and 2 min, they did not 

interfere in the analysis. The column was thermostated (35℃). DAD-UV (λex 

=225nm) detector were used for LAS determination.  The instrumental response was 

preliminarily tested through the use of standard LAS solution, highlighting an excellent 

HPLC cleaning and separation process. 

2.3 Results and Discussion 

2.3.1 Nutrient content and agricultural reutilization potential 

Sludge nutrient concentration is an important factor which should be considered, to 

obtain a successful land application. Since P requirement of most crops is four to ten 

times less than N requirement and in a major portion of sludge P is present in 

bioavailable forms (inorganic), sludge application rate would be much lower if P 

requirement of crops was considered instead of N (Hue, 1995). Generally, a wide 

variation was highlighted for plant macronutrient concentration in the analyzed sewage 

sludge (Table 2); the obtained results were coherent with other literature studies. For 

example, data collected from 10 WWTPs in the analyzed area (FVG’s sewage sludge) 
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showed total N ranging from 3.1 to 6.8% dry weight; Sommers (1977), Mumma et al. 

(1988) and Mtshali et al. (2014) reported ranges from 0.5 to 7.6, 1.19 to 4.93 and 0.5 to 

4.5% dry weight, respectively. 

While in the presented results the average P concentration of sludge samples was 

about five times less than the average N content, Sommers (1977), Mumma et al. (1988) 

and Mtshali et al. (2014) found relatively higher P/N ratio (0.56, 0.28 and 0.68, 

respectively).  

As it is shown in Table 2.2, sewage sludge can be considered as an imbalanced 

fertilizer due to loss of soluble nutrients from sludge during wastewater treatment; such 

as K, with typical range of 0.1 – 0.4 % DS (0.27 % d.w. for the actual samples), so 

supplements such as KCl, wood ash and K-rich crop residues could compensate this 

shortage and make it more suitable for agricultural use (Hue, 1995; Czerska and Smith, 

2008; Pakhnenkoa et al., 2009).  

Table 2. 2 Total concentration of selected plant nutrients in sewage sludge 

Variable 
Total Nutrient, % d.w. 

N P K Ca  Mg 

FVG’s sewage sludge (10 samples) 

Range 3.1-6.8 0.37-1.7 0.17-0.38 1.88-17.13 0.22-4.78 

Mean 4.21 0.93 0.27 6.88 1.95 

Median 4.15 0.85 0.29 5.47 1.63 

Sommers, 1977 (250 samples) 

Range 0.5-7.6 1.1-5.5 0.08-1.1 0.6-13.5 0.03-1.1 

Mean 4.9 2.9 0.52 3.3 0.52 

Median 4.8 2.7 0.3 3 0.41 

Mumma et al., 1988 (15 samples) 

Range 1.19-4.93 0.22-3.13 0.03-0.46 0.32-15.9 0.04-0.81 

Mean 2.9 1.2 0.19 3.92 0.35 

Median 2.78 0.78 0.15 2.17 0.34 

Mtshali et al., 2014 (7 samples) 

Range 0.5-4.5 0.7-2.5 0.04-0.49 0.12-1.59 0.04-0.43 

Mean 2.47 1.69 0.15 0.92 0.22 
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2.3.2 Toxic metals 

Toxic metals concentration in sludge is the main concern among the determining factors 

for sludge reutilization on land. In this monitoring, following suggestions of “Working 

Document on Sludge and Biowaste” (European Union, 2004) “toxic metals are meant 

to be cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) 

and zinc (Zn) in metallic form as well as their salts and oxides”. Toxic metal presence 

is essential for plants and animals, but an excessive concentration of these elements can 

damage crops and threaten human health by entering the food chain (Usman et al., 

2012). Therefore, before land application toxic metals concentration should meet the 

limits defined by legislations on sewage sludge management.  

Table 2.3 shows the permissible limits for toxic metals, suggested by some national 

legislations and European Council Directive 86/278/EEC (European Commission, 

2009) on the protection of environment, in particular of soil, when sewage sludge is 

available for agricultural applications. 

Table 2. 3 Some National and EU permissible limits of toxic metals in sludge for 

agricultural use (mg/kg d.w.) (EC 2009; Stylianou et al., 2008; Italian regulation, 2018) 

Element 
Limit 

86/278/EEC 

Limit 

Italy 

Limit 

Netherlands 

Limit 

France 

Cd 20-40 20 1.25 20 

Cr - 200 75 1000 

Cu 1000-1750 1000 75 1000 

Hg 16-25 10 0.75 10 

Ni 300-400 300 30 200 

Pb 750-1200 750 100 800 

Zn 2500-4000 2500 300 3000 

 

The concentration of toxic metals in the actual sludge samples, collected from 

various WWTPs in this study, is depicted in Table 2.4. As shown in Table 4, toxic 

metals concentration in all the tested samples were lower than maximum permitted 

limits (Table 2.3), boosting for agricultural reuse of the analyzed sludge, except for Cr 

and Zn concentration in sample no.10, which were 239.63 and 5,676.4 mg/kg 
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respectively; this could be due to the advance wastewater treatment of plant no. 10, that 

is a small WWTP actually applying nitrification-denitrification in a sequential batch 

reactor (SBR), a technique in which sludge remain a lot of time in the tank leading to 

an important metal adsorption potential. 

Table 2. 4 Toxic metals in the analyzed sludge (mg/kg d.w.) 

Sample Cd Cr Cu Hg Ni Pb Zn 

SS no.1 2.12 60 340 2.12 37 92 1266 

SS no.2 0.74 18 54 0.54 13 13 110 

SS no.3 1.17 48 584 1.36 31 64 555 

SS no.4 0.51 32 190 0.12 21 25 191 

SS no.5 1.01 35 302 0.47 19 39 436 

SS no.6 1.65 194 593 0.36 79 81 1446 

SS no.7 0.88 39 238 0.20 25 43 309 

SS no.8 0.94 23 146 0.07 12 25 587 

SS no.9 1.44 42 428 0.39 27 87 796 

SS no.10 1.97 240 347 6.40 47 77 5676 

Range 0.51-2.12 18-240 54-593 0.07-6.4 12-79 13-92 110-5676 

Mean 1.243 73.1 322.2 1.203 31.1 54.6 1137.2 

Median 1.09 40.5 321 0.43 26 53.5 571 

 

Generally, the concentration of toxic metals in sludge is affected by the plant 

potentiality and the type of influent wastewater, i.e. whether it is domestic or industrial 

(Spanos et al., 2016; Chanaka Udayanga et al., 2018), but some process upgrading in 

the wastewater treatment route can lead to the increase of the metal content on the 

sludge.  

In practice, a general growth in maximum Toxic metal concentration was observed, 

comparing the actual data with the previous work by Goi et al. (2006) on the same area. 

The maximum concentrations of Cd, Hg, Cr, Pb, Ni, Cu, and Zn reported by Goi et al. 

(2006) were 3.6, 1.4, 51.5, 58.7, 35.9, 105.8, and 410.1 mg/kg, respectively, while the 

highest concentrations of these elements obtained in the present study were 2.12, 2.12, 

239.63, 92.19, 78.81, 593.48 and 5676.4 mg/kg, respectively (Figure 2.1). 
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This interesting outcome could be explained because of last ten years’ process 

improvements in wastewater treatment lines of the WWTPs, which maximized the 

removal efficiency of contaminants from wastewater, allowing to a larger transport of 

metals to the residual solid fraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 Toxic metal concentration in sludge samples and maximum values 

monitored in 2006 

2.3.3 EOX 

In last two decades a great interest in data about occurrence, behaviour and fate of 

organohalogen compounds in water, sludge and environment was arisen. The presence 

of organic halogen compounds in the sludge was a key point in the EU new proposed 

monitoring (European Union, 2004). These compounds, in fact, are very persistent and 

do not degrade over the passage of time; moreover, they are not absorbable by the soil 

(especially the polar halogenated organics) and directly reach the groundwater, 

contaminating it. Therefore, a sludge which has higher concentration of these harmful 
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compounds is generally deemed as unsuitable for agricultural reuse (Rizzardini and 

Goi, 2014). As well as monitoring of single compounds with particular toxicity, a very 

interesting perspective in monitoring organic halogen content in soils and terrains by 

the agricultural utilization of sewage sludge, is the utilization of EOX as sum 

parameters for a global information. Moreover, EOX parameter can be important in 

quality control prior to the sludge management choice as already observed in previous 

case study (Goi et al. 2006).  

EOX concentration in the analysed sewage sludge samples, obtained both by 

hexane and ethyl acetate extraction was presented in Figure 2.2 and Table 2.5. The 

maximum concentration of EOX found in the present work was 26.86 mg/kg (related 

to sample no. 1), extracted by ethyl acetate. This EOX content was associated to the 

largest WWTP, with combined municipal and urban sewage sources; EOX 

concentrations in small municipal WWTPs have usually low values in this monitoring, 

except for sample 6 and 8. Differently from the toxic metal assay, the maximum EOX 

values measured in the samples are comparable to those of previous monitoring.  

The EOX content in ethyl acetate extractions was 2-6 times higher, if compared 

with hexane extractions and it conformed to the primary results reported by Reemtsma 

and Jekel (1996). It indicated that the polar halogenated organics were in larger quantity 

than non-polar compounds, and these compounds could only be extracted by              

ethyl acetate. 

 

 

 

 

 

Figure 2. 2 EOX concentration measures (A- Hexane extraction; B- ethyl acetate 

extraction) in sludge samples and average values comparison 
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Table 2. 5 EOX and LAS concentration in sludge samples from analysed WWTPs 

(mg/kg d.w.) 

Sample LAS CV% 
EOX 

By hexane CV% By ethyl acetate CV% 

SS no.1 574 9.6 7.03 5.3 26.86 1.3 

SS no.2 136 14.8 0.25 45.0 3.26 38.8 

SS no.3 181 14.1 1.11 20.6 6.95 4.3 

SS no.4 54 26.3 1.17 28.6 4.98 5.9 

SS no.5 523 23.6 0.69 55.2 1.74 11.9 

SS no.6 220 22.7 7.89 16.0 19.81 7.7 

SS no.7 302 12.4 1.46 15.1 4.56 5.1 

SS no.8 56 17.3 5.22 7.8 11.7 14.4 

SS no.9 428 9.2 0.24 31.7 1.24 24.2 

SS no.10 138 16.3 0.93 11.8 3.38 3.8 

  

2.3.4 LAS 

Since surfactants are extensively used for domestic and industrial applications and most 

of these surfactants are LAS, their presence in sludge samples is assured (Granatto et 

al., 2019). Moreover, these compounds can only be partly degraded by WWTPs and the 

extent of degradation largely depends on LAS content in raw sewage, sludge age after 

storage and process nature, i.e. whether the process is aerobic or anaerobic. Therefore, 

a measurable portion of LAS always accumulates in solids and that is why it is 

important to monitor LAS in sludge (Villar et al, 2007).  

In Europe LAS concentration in sewage sludge lies between <1 g/kg d.w. and 30 

g/kg d.w. (Gawlik and Bidoglio, 2006). Table 2.5 shows the measured concentration of 

LAS in the analysed sludge samples. The lowest concentrations were found in samples 

4 and 8 (55.88 and 53.75 mg/kg, respectively), while the highest amount was 

highlighted in sample no. 1 (574.41 mg/kg). Stock et al. (2002) analysed more than 150 

sludge samples from different WWTPs in a comprehensive study in Westphalia. They 

found a correlation between WWTPs size and LAS concentration; it should be 
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reminded that extended aerobic sludge treatment is common in smaller treatment plants, 

reducing LAS concentration. 

In accordance with the above explanation, the LAS concentration in sample 2 was three 

times lower than sample 1, considering the same size of WWTPs and the sludge sample 

2 was treated using aerobic digestion, while sample 1 by anaerobic one. Considering 

LAS amount in the investigated sludge, it could be observed that this parameter was 

lower (between 53, 75 and 180, 95 mg /kg d.w.) in those plants in which the sludge was 

treated in the pilot drying beds, with optimal aeration, or by aerobic digestion. It is 

worth noting that LAS mean was significantly lower than the limit values proposed in 

the “Working Document on Sludge” (EU, 2000). 

 

 

 

 

 

Figure 2. 3 LAS concentration in sludge samples from analysed WWTPs 

 

Indeed, quality of the investigated sludge (in terms of HM, EOX and LAS), 

depended on multiple factors, including plant size (PE), type of treated water (Dom., 

Ind., or Urb.), wastewater treatment process and sludge treatment sequence. It was not 

possible to directly correlate each parameter to the pollutant quantity in the sludge, 

because all these variables were strictly interconnected and strongly matrix-dependent. 

Despite the differences and the variability of the analysed parameters, all the 

investigated sludge respected the Italian limits suggested by the regulations for 

agricultural reuse. 
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The comparison with a previous study (Goi et al., 2006) highlighted a crucial 

factor: the progressive wastewater treatment improvement seems to produce a higher 

concentration of some harmful pollutants in the sludge. When we monitor together HM, 

EOX and LAS, we introduce a first basic way to manage how much a more efficient 

treatment in water line increases inorganic/organic substances transferred into the 

sludge. This means to accept a critical evaluation of further process development in 

wastewater treatment, considering future perspectives in sludge agricultural use. 

2.3.5 Other organic contaminants 

polychlorinated biphenyls (PCBs), Polychlorinated dibenzo-p-dioxins and -furans 

(PCDD/Fs) and Polycyclic aromatic hydrocarbons (PAH) are the main organic 

pollutants of concern; they are very persistent due to the complexity and stability of 

their molecular structures and they show affinity for sediment and bind to the sludge 

during treatments in WWTPs because of being strongly hydrophobic. 

Table 2.6 presents the concentration of these contaminants in sewage sludge 

samples followed by their limit value concentrations in sludge of Italy and as suggested 

in the 3rd draft of the “Working paper on sludge” for EU. The maximum concentration 

of PCDD/F and PAH found in the present work was 4.39 and 4.79 mg/kg (related to 

sample no. 1) which was associated to the largest WWTP, with combined municipal 

and urban sewage sources. Considering PCBs, the highest concentration found was 

0.070 mg/kg obtained from sample no. 10.  

Except PAH in sample no. 1 that was almost close to the suggested limitations, the 

concentration of contaminants in all samples were much lower than both Italian 

legislation and the one suggested in the 3rd draft of the “Working paper on sludge” for 

EU.  

 

 

 

 



 64 

Table 2. 6 Concentration of PCB, PCDD/F and PAH in studied SS samples and their 

limit values in sludge of Italy and as suggested in the 3rd draft of the “Working paper 

on sludge” for EU 

Sample 
PCB 

(mg/kg) 
PAH 

(mg/kg) 
PCDD/F                

(ng TEq3/kg dm) 

SS no.1 0.037 4.39 4.79 

SS no.2 0.003 0.04 0.04 

SS no.3 0.017 0 .40 2.08 

SS no.4 0.007 0.10 1.28 

SS no.5 0.015 0.40 2.24 

SS no.6 0.014 0.44 2.7 

SS no.7 0.021 0.96 3.25 

SS no.8 0.023 0.45 2.70 

SS no.9 0.008 0.37 4.68 

SS no.10 0.070 0.41 4.12 

Range 0.007-0.037 0.04-4.39 0.04-4.79 

Mean 0.0215 0.84 2.788 

Median 0.016 0.41 2.7 

EU 2000 (3rd draft) 0.81 62 100 

Italy (D.Lgs. 152/2006) 0.8 6 50 

1Sum of 6 congeners PCB 28, 52, 101, 138, 153, 180 
2Sum of acenapthene, phenanthrene, fluorine, fluoranthene, pyrene, benzo(b+j+k) fluoranthne, 
3benzo(a)pyrene, benzo(ghi)perylene, indeno(1,2,3- c,d)pyrene 

TEq: Toxicity equivalents 

2.4 Conclusion 

With increasing wastewater treatment coverage, especially in high- and middle-

income countries, the produced sewage sludge should be treated and valorised in an 

ecological and economic way, contributing to the circular economy perspective. While 

wastewater treatment plants efficiently remove pollution from water, they accumulate 

toxic metals and other persistent toxic compounds in sludge, restricting its reuse 

potential. In this study HM, EOX and LAS, as well as PCB, PCDD/F and PAH, as the 

main limiting factors for sewage sludge land application, were monitored in sewage 

sludge samples from 10 different low-middle potentiality wastewater treatment plants 

in Friuli-Venezia Giulia region (north-east of Italy). The results showed that the 

concentration of these compounds was much lower than permissible limits suggested 
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by Council Directive 86/278/EEC for sewage sludge agricultural reuse, in particular for 

sludge coming from small municipal wastewater treatment plants. Sewage sludge from 

the studied wastewater treatment plants could be used for sustainable agriculture, to 

exploit its macro and micronutrients content, without being a threat for the environment 

and human health. On the other side, the present study pointed out a future scenario in 

which the constant progress in wastewater treatment, by decreasing pollutant levels 

released to the receptor body, therefore improving water quality, transfers higher 

quantities of potentially harmful compounds in sewage sludge, making it unsafe for 

agricultural use. This study, considering also a similar monitoring performed in 2006, 

questioned the future possibility sewage sludge agricultural use and raised the need for 

further constant and regular sludge checking, to prevent the agricultural use of sludge 

contaminated with excessive quantities of organic and inorganic substances (HM, EOX, 

LAS, PCB, PCDD/F and PAH), with the risk of soil and groundwater contamination, 

as well as potential entrance into the food chain. 
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Preface 

This chapter is an attempt to answer the question that are humic substances artifacts of 

the extraction procedure or not? In a recent work, Lehmann and Kleber, rejected the 

humic substances concept and proposed the Soil continuum model, in which organic 

matter exists as a continuum of organic fragments and humic substances are considered 

to be artifacts of the alkail extraction procedure. 

Since in chapter IV of the present document, humic substances are suggested as 

tracers for biological transformation of some organic contaminants and to understand 

the efficiency of treatments in WWTPs, in this chapter the integrity of extraction 

procedures for the isolation of HA and FA was assessed. In fact, the main goal of this 

work was to refuse the Soil continuum model and demonstrate that humic substances 

are real components of natural organic matter.  
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Chapter III 

Integrity of extractions of humic substances by 

alkaline extractants 

3.1 Introduction 

Humic substances (HS) are defined as “naturally occurring materials found in or 

extracted from soils, sediments, and natural waters. They result from the decomposition 

of plant and animal residues (McCarthy, 2001).The reliability of the extraction of humic 

substances (HS) by alkaline extractants had been frequently questioned in the past 

decades and has been once again challenged recently. Lehman and Kleber (2015) and 

Kleber and Lehman (2019) rejected the classical humification model proposing the soil 

continuum model, in which soil organic matter exists as a continuum that spans from 

intact plant material to highly oxidized carbon, excluding any secondary synthesis 

during the decomposition process. The main argument put forward against what the 
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authors call the humic paradigm (i.e. the existence of HS) is the alkaline extraction used 

to isolate these compounds. The alkaline extraction is considered “incomplete, selective 

and prone to create artefacts” (Lehman and Kleber, 2015).  

It is reported that “alkaline extraction cannot distinguish between humic substances 

and non-humic substances” and that “alkaline extraction cannot discriminate for 

products of secondary synthesis” (Kleber and Lehman, 2019). In other words, according 

to these authors, HS are not real compounds that form in natural environments (soil, 

compost, water, etc.) from decomposition of plant and animal residues, but merely 

artifacts from the alkaline extraction procedure. However, the fact that HS can be 

extracted by neutral solvents (Hayes, 2006) was never considered in their criticism. 

As shown by Olk et al. (2019), studies on HS have helped to understand 

biochemical processes underlying several important environmental and agronomical 

issues and have been used for the characterization of NOM in water systems. It is 

therefore important to re-examine the possibility of artifacts formation during the 

alkaline extraction of HS. 

In the years from 1940 to 1980, extraction of HS from soil had been often carried out 

with different extractants, including solutions of neutral salts (Choudri and Stevenson, 

1957) diluted acids (Evans, 1959) and chelating substances (Posner, 1966). By 

employing extractants different from sodium hydroxide, HS are extracted from soil 

with different yields and ash content and sometimes with different chemical 

characteristics. Anyway, the suspect that these substances might be of a different nature 

compared to those extracted under harsh alkaline conditions was never raised (Yuant, 

1964; Bremner, 1946). All these works agreed on that structural differences among HA 

extracted from different soils are indeed more pronounced than differences observed in 

isolates obtained from the same soil by milder extraction procedures (Martin and Reeve, 

1957; Azuma and Shiro, 1956; Hayes et al., 1975; Zaccone et al., 2007). 

In this work, sphagnum moss and two sphagnum peat samples at different stages 

of decomposition were extracted using extraction conditions spanning from acid to 

strongly alkaline. Our aim was to verify whether harsh alkaline conditions are 
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responsible for the formation of artifacts or if HS are indeed pre-existing entities which 

are progressively solubilized by increasing the extractant pH because of their 

polyphenolic, polycarboxylic nature. 

3.2 Materials and Methods 

3.2.1 Part I: Extractions and characterization of extracts 

Sphagnum moss and two sphagnum peat samples at two different stages of 

decomposition (Table 3.1) were air dried, sieved at 2 mm and extracted with four 

different extractants: a) 0.5 M NaOH, pH 13.7; b) 0.1 M Na4P2O7, pH 10.0 (A-NaPP); 

c) 0.1 M Na4P2O7, pH 7.0 (N-NaPP); d) Milli-Q water, pH 5.8. All extractants had been 

degassed and saturated with N2 before use to remove dissolved O2. Extractions (40:1 

extractant/sample ratio) were carried out for 4 hours in a reciprocating shaker after 

closing containers under bubbling nitrogen. 

Extracts were centrifuged (14000 rpm, 1 h), filtered under vacuum at 0.45 µm and 

the final extraction pH measured in the supernatants immediately at the end of the 

extraction. To precipitate humic acids (HA), extracts were acidified to pH 1 with 6 M 

HCl. After overnight precipitation, HA were separated by centrifugation (5000 rpm, 45 

min). Supernatants (fulvic acid fractions) were passed through a DAX-8 resin column 

(previously washed and equilibrated with 0.1 M HCl). The eluate, which represents the 

non-humic fraction (NHU, hydrophilic acids and hydrophilic neutrals), was collected 

and stored. The retained fulvic acids (FA) were eluted with 0.1 M NaOH and 

immediately neutralized to pH 7 with 6 M HCl before storage at 4°C. 

Organic carbon (OC), carbon stable isotope composition (δ13C) and total nitrogen 

(TN) of peat samples before and after extractions were determined by an Elemental 

Analyzer (Costech Instruments Elemental Combustion System). 

The OC of whole extracts and of their fractions was determined, after appropriate 

dilution and pH adjustment to neutral values, by high temperature catalytic oxidation 
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and subsequent non-dispersive infrared spectroscopy and chemo luminescence 

detection (TOC-VCPN, Shimadzu). 

All UV-vis spectra of extracts were recorded at pH 7 on a Cary Varian 

Spectrophometer using 1 cm quartz cuvettes over an interval from 220 to 700 nm (scan 

rate 60 nm min-1). Specific absorbance (SA) was calculated by normalizing absorbance 

by the optical path length (cm) and C concentration (mg L-1). 

FTIR spectra of HA were recorded with a FTIR spectrum (100 PerkinElmer 

Spectrometer) equipped with an ATR device, over an interval from 4000 to 800 cm-1, 

with a 4 cm-1 resolution. A linear baseline correction was applied to compare spectra; 

intensity ratios were calculated for specific pairs of bands (Inbar et al., 1989). 

Fluorescence EEM measurements of extracts were conducted at pH 7 using a Cary 

Eclipse Fluorescence Spectrophotometer (Agilent). Excitation and emission 

wavelength ranges were set to 240 – 400 nm (10 nm intervals) and 280 - 550 nm (2 nm 

intervals), respectively. Fluorescence intensities were normalized by the C 

concentration in the cuvette. 

The 1H NMR spectra of HA were recorded on a Bruker spectrometer. Spectra were 

divided into the following diagnostic regions: 0–1.7 ppm (methyl and methylene groups 

of methylene chains, methylene of alicyclic groups and CH2 and CH groups at least two 

carbons away from aromatic rings or polar functional groups); 1.7–3.0 ppm (protons of 

methyl and methylene groups α to aromatic or carboxylic acid groups); 3.0–5.0 ppm 

(protons α to carbon attached to oxygen groups in polysaccharides or carbohydrates); 

5.0–6.5 ppm, (olefins); and 6.5–9.0 ppm, (aromatic protons). Areas of the chemical 

shift regions were integrated and expressed as percentages of total area (relative 

intensity). 

3.2.2 Part II: Strong alkaline conditions- effect of time 

Samples of well-humified peat were extracted by 0.5 M NaOH, 0.1 M A-NaPP and 0.1 

M N-NaPP following the procedure described above, reducing the extraction time to 5 

min. After filtration, the extract was divided in two equal parts: one was immediately 
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(T0) processed and the other was stored in the dark for 24 h (T1) under N2 atmosphere. 

Quantification and characterization of extracted fractions were performed at T0 and T1. 

Moreover, an aliquot sample of the whole extract was taken at t =T0 and put in a quartz 

cuvette, purged with N2 and closed (to avoid contact with air). The absorbance at 465 

nm was monitored for 4 h and the Vis spectrum (450 and 700 nm) was recorded at 

beginning and at the end of this period. 

3.2.3 Statistical analysis 

All measurements were analytically replicated three times, and reported in tables and 

figures as mean ± standard error of the mean. Kruskal-Wallis one-way analyses of 

variance and Mann-Whitney test were applied to compare the parameters of extracts 

obtained from the different extractants. Difference between treatments was considered 

significant at p < 0.05. Regression analysis and test of significance were carried out by 

R software (Miller and Miller 2010; Development Core Team 2018). 

3.3 Results 

3.3.1 Quantification and composition of extracts 

The amount of C extracted per unit of organic C (total extractable carbon, TEC) 

increased linearly with pH up to 10 (Figure 3.1a). A sharp increase of both TEC and 

NHU-C (Figure 3.1b) was conversely observed when the pH was raised from 10 to 13. 

However, this trend was not mirrored by a corresponding increase of HA-C/TEC ratios 

(Figure 3.1c). If strong alkaline extraction had induced the artifactual production of HA 

or FA, then HU-C/TEC ratios should have followed and even magnified the sharp 

increase displayed by TEC at the highest pH. On the contrary, the proportion of HU-C 

is even lower than would be expected from a linearized model (Figure 3.1d). This result 

is coherent with an enhanced extraction of NHU-C (due to hydrolysis of hemicellulose 

and proteins), but not with the artefactual formation of HS.  
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As expected, the HU fraction in the two peats extracts was significantly higher than 

in the sphagnum moss extracts for all the extractants used. 

Strong alkaline extracts (NaOH and A-NaPP) of sphagnum moss contain 

substances that, similarly to HA, precipitate at low pH. However, these substances 

could not be directly re-solubilized in phosphate buffer, like all other HA, but only by 

addition of 0.1 M NaOH. So, these substances are likely artifacts of the procedure, 

which differ from HA in their solubility behaviour. No visible trace of such irreversibly 

precipitated components was observed when HA from the two peats were dissolved in 

phosphate buffer. 

Table 3.1 reports the OC, TN and 13C content of raw materials and of the extracted 

HA. The elemental and carbon isotopic composition of artefactual HA extracted from 

sphagnum moss was significantly different from that extracted the two peats. Moreover, 

C/N ratios were much different and closer to the C/N ratios of proteins than to those of 

HA. 

 

  

 

  

 

 

 

Figure 3. 1 Trends of a) extraction yields (total extractable carbon -TEC- per unit of 

organic carbon), b) not-humic carbon (NHU), c) ratio of humic acid carbon (HA) to 

TEC, d) ratio of humic carbon (HU) to TEC as a function of the final pH at the end of 

the extraction. 

a b 

c d 
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Table 3. 1 Elemental composition and 13C content of raw materials and of the extracted 

HA. Numbers in parenthesis represent standard deviations from the mean 

  Extractant C (%) N (%) C/N δ13C (‰ vs VPDB) 

Sphagnum 

raw 42.75 (0.20) 1.03 (0.01) 41.64 -27.39 (0.10) 

NaOH 50.77 (0.80) 5.86 (0.02) 8.67 -29.54 (0.02) 

A-NaPP 45.20 (0.71) 6.06 (0.01) 7.46 -29.11 (0.03) 

N-NaPP 42.07 (0.67) 5.87 (0.01) 7.17 -28.77 (0.02) 

Water n.d. n.d. n.d. n.d. 

      

Poorly-

humified 

peat 

raw 45.24 (0.33) 0.81 (0.01) 56.09 -25.58 (0.17) 

NaOH 48.94 (0.79) 2.15 (0.01) 22.82 -26.60 (0.17) 

A-NaPP 48.78 (0.08) 2.48 (0.01) 19.71 -26.35 (0.09) 

N-NaPP 47.02 (0.81) 2.51 (0.04) 18.93 -25.65 (0.07) 

Water 46.73 (0.56) 2.96 (0.03) 15.79 -25.85 (0.10) 

      

Well-

humified 

peat 

raw 45.86 (1.00) 1.10 (0.06) 41.69 -26.78 (0.12) 

NaOH 48.80 (0.51) 2.22 (0.01) 21.98 -27.08 (0.01) 

A-NaPP 49.01 (0.59) 2.00 (0.04) 24.50 -27.27 (0.03) 

N-NaPP 48.35 (0.42) 2.58 (0.02) 18.74 -27.07 (0.05) 

Water 48.93 (0.35) 2.81 (0.03) 17.41 -27.21 (0.04) 

 

3.3.2 UV-Vis 

Although NaOH extracts are visibly darker than extracts obtained under milder pH 

conditions (Figure 3.2), the color of HS is not an artifact produced by alkalinity, but the 

combined effect of the increased concentration of organic C (particularly HU-C) and 

the bathochromic shift caused by dissociation of weak acid groups at increasing pH. 

Once spectra are normalized with respect to concentration of organic C (specific 

absorbance, SA) and recorded at the same pH (Figure 3.3), differences among spectra 

of extracts obtained from the same material, virtually disappear in the visible region. 

On the contrary differences related to the degree of humification of the extracted 

material remain. 
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a b c d 

 

 

 

 

 

 

 

Figure 3. 2 Total extracts from well-humified peat using a) 0.5 M NaOH, b) 0.1 M A-

NaPP, c) 0.1 M N-NaPP and d) water 

 

In the UV region from 220 to 240 nm, the SA of sphagnum HA extracted by NaOH 

is about 25% higher than that of HA extracted by milder solutions. The SA of all HA 

strongly increase at all wavelengths with the degree of humification of peat, whereas 

the shoulder at about 270-280 nm, more pronounced in the spectra of sphagnum HA 

(generally attributed to tryptophan residues), becomes less visible. 

 

 

 

 

 

Figure 3. 3 Organic C normalized UV-Vis spectra from 220 to 700 nm of HA (a) and 

FA (b) from Sphagnum (green), partly-humified (yellow) and well-humified (brown) 

peat. HA and FA were extracted with 0.5 NaOH (continuous line), A-NaPP (dashed 

line) and N-NaPP (dash dot line). All solutions were adjusted to pH 7 before recording 

spectra 

 

a b 
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Specific absorbance at 254 nm (SUVA254) makes possible to statistically evaluate 

compositional differences from UV spectra (Figure 3.4). This evaluation confirmed that 

no significant difference existed among materials extracted from the same material by 

extractants of increasing alkalinity, but aromaticity of HA and FA extracted from 

different substrates were indeed significantly different. At the same time there was no 

significant difference in aromaticity among hydrophilic fractions (NHU) isolated from 

all extracts: this means that the NHU fraction, contrary to the HU one, is conserved not 

only among extracts of different pH but also among different materials. This again is 

coherent with the conservation of chemical nature and absence of artefactual 

modifications even under strongly alkaline conditions. 

 

  

  

 

Figure 3. 4 SUVA254 values for a) HA, b) FA (hydrophobic acids) c) hydrophilic (not-

humic) fraction extracted with neutral pyrophosphate (N-PP), alkaline pyrophosphate 

(A-PP) and sodium hydroxide (NaOH) from sphagnum (Green), poorly humified peat 

(Yellow) and well humified peat (Brown)  

3.3.3 FT-IR 

FT-IR spectra of the extracted HA are reported in Figure 3.5. All spectra are 

characterized by HA typical absorption bands: a broad band at about 3280 (O-H 

stretching vibrations); twin peaks at 2920 and 2850 cm-1 (asymmetric and symmetric 

C-H stretching of CH2 and CH3 groups; a shoulder at 1710 cm−1 (C-O stretching of 

carboxyl and ketonic carbonyl) merged with the more intense band at 1610 cm-1 

(conjugated carbonyl C=O and aromatic C=C); a discrete peak at about 1515 cm−1 

(uncondensed aromatic compounds bound to N and O atoms); two small peaks at 1450 

and 1420 cm−1 (C-H bending of CH2 and CH3 groups); a band at 1215 cm-1 (stretching 
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C-O and bending O-H vibrations) and stretching of carbohydrate or alcoholic C–O at 

1040 cm−1. 

Regardless the used extractants, several spectral differences are evident between 

the three materials, from sphagnum to well-humified peat: a) the band at 3280 cm-1 

became broader; b) the twin peaks at 2920 and 2850 cm-1 are less intense and resolute; 

c) the peak absorbance at 1710 cm-1 increased, while the ones at 1215 and 1040 cm-1 

decreased. Considering the same material, the spectra of HA extracted by NaOH,          

A-NaPP and N-NaPP do not present clear differences among them. However, the HA 

extracted by water present the lowest 1710/1040 and 1215/2920 intensity ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5 FT-IR spectra of HA extracted from sphagnum, partly-humified and well-

humified peat using different extractants 
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3.3.4 1H NMR 

1H NMR spectra of HA are reported in Figure 3.6 and their proton distribution is 

summarized in Table 3.2. These results confirmed evidence derived from FT-IR: in 

fact, well-humified peat presented the highest aromatic and lowest alkyl percentage. 

Moreover, the differences using different extractants are within the instrumental 

deviation (± 5%). 

Table 3. 2 Proton distribution percentage calculated from 1H NMR spectra 

    Alkyl-H Alkyl-H Carbohydrate-H Olefins Aromatic-H 

  0-1.7 ppm 1.7-3.0 ppm 3.0 -5.0 ppm 5.0-6.5 ppm 6.5-9.0 ppm 

Sphagnum 
NaOH 41.1 20.5 24.9 6.4 7.0 

A-NaPP 45.1 20.3 23.6 4.1 6.9 

Poorly-HP 

NaOH 34.0 19.2 28.8 6.3 11.6 

A-NaPP 33.0 21.6 26.4 6.5 12.5 

N-NaPP 30.1 21.8 28.1 6.7 13.4 

Well-HP 

NaOH 25.8 21.6 26.9 8.9 16.8 

A-NaPP 27.3 24.2 23.7 8.2 16.6 

N-NaPP 29.3 23.9 25.7 7.9 13.2 

 

 

Figure 3. 6 1H NMR spectra of HA extracted from sphagnum, partly-humified and well-

humified peat using different extractants 
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3.3.5. Fluorescence spectroscopy 

EEM spectra of total extracts (Figure 3.7), fulvic acids (Figure 3.8) and the not-humic 

fraction (Figure 3.9) reflect much more the effects of different humification degree of 

the original material than the pH of extractant solutions. 

These results support the hypothesis that the alkalinity of extractants is not responsible 

of artefacts as claimed by Lehman and Kleber. 

 

 

Figure 3. 7 Fluorescence excitation-emission matrix spectra of total extracts. 
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Figure 3. 8 Fluorescence excitation-emission matrix spectra of fulvic acids. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 9 Fluorescence excitation-emission matrix spectra of the not-humic fraction. 
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3.3.6 Strong alkaline conditions- effect of time 

Results are summarized in Table 3.3. TEC extraction yields after 5 min of extraction 

were significantly lower than after 4 h of extraction (39, 26 and 22 % respectively for 

NaOH, alkaline and neutral Na4P2O7). After 24 h of storage the TEC did not vary, 

excluding any spontaneous precipitation. The pH of the extracts did not change, 

confirming that no decarboxylation (as also confirmed by the elemental and isotopic 

composition of HA) nor H+ consuming hydrolysis reactions occurred between T0 and 

T1. Moreover, also the amount of the HU fraction did not change, indicating that even 

at very alkaline conditions there is not creation of “artifactual” HS. In fact, if HS were 

merely created by alkaline conditions, keeping extracts at high pH for longer times 

should cause an increase of the HU fraction with respect to NH/HU. Regarding the 

optical properties, the UV-Vis spectra of HA and FA did not change between T0 and 

T1. This indicates that the color of HS is not created by the alkaline conditions and even 

storing the solutions at pH > 12 for 1 day did not result in any modification in the optical 

properties of extracts. EEM fluorescent data confirms UV-Vis results (no changes in 

peaks position and intensities). FT-IR spectra of HA overlapped between T0 and T1 

and consequently the ratio 1605/1030 did not change. 

Considering the NaOH extract, after 4 h the Abs (465 nm) decreased of 2.4%. This 

led an increase of the E4/E6 ratio from 6.80 to 7.34 (Figure 3.10). On the other side, 

the changes in the E4/E6 ratio for the alkaline and neutral pyrophosphate are lower and 

not significative (from 6.65 to 6.69 and from 4.45 to 4.42, respectively). The change of 

the E4/E6 ratio for the NaOH could be explained with a not completely remove of O2 

from the cuvettes. In fact, letting the extract in contact with the atmospheric air, the 

decrease in Abs (465 nm) is 8.45 %, and consequently the E4/E6 ratio increase to 8.53. 

In fact, in alkaline solutions the presence of O2 could lead to decarboxylation. For these 

reasons it is important to de-aerate extractants before extraction. 
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Table 3. 3 Variation in the considered parameters of HA between T0 and T1, for the 3 

different extractants 

  N-NaPP A-NaPP NaOH 

  T0 T1 T0 T1 T0 T1 

pH 6.70 6.72 9.04 9.02 12.81 12.83 

TEC (mg-C/g-C) 8.03 7.94 14.69 14.85 97.36 99.21 

HU (mg-C/g-C) 7.36 7.48 14.12 13.68 89.31 89.34 

NHU/HU 0.11 0.10 0.08 0.09 0.12 0.12 

%C 48.30 47.55 47.64 47.13 48.84 48.92 

%N 2.14 2.08 1.69 1.67 1.96 1.93 

C/N 22.57 22.86 28.19 28.22 24.98 25.34 

δ13C -27.02 -26.95 -27.00 -27.32 -26.88 -26.87 

SUVA254 5.15 5.27 5.42 5.33 5.38 5.30 

% Arom     34.01 34.60 

1605/1030 cm-1 1.40  1.39  1.35  1.35 1.36 1.36  

  

 

 

Figure 3. 10 Vis spectrum of NaOH extract at t=0 (continuous line) and at t=4h (dotted 

line). The insert represents the variation of the absorbance at 465 nm for 4 h. The red 

curve represents the UV spectrum of the extract stored 4 h in contact with the 

atmospheric air 
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3.4 Conclusion 

All the obtained results are coherent with the classical humification theory, 

demonstrating that humic substances are not artifacts of the extraction process. In fact, 

humification consists in demolition and loss of labile substrates and in structural 

changes of the hydrophobic acid fraction. Moreover, not only spectroscopic properties 

are conserved when different extractant are used, but also extraction of substrates at 

different stages of humification allows to observe structural differences among 

corresponding fractions. 
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Preface 

This work answered to the need for some valid and cost effective methods to evaluate 

the suitability of sludge for agricultural use through the application of humic substances 

as tracers for degradation of organic contaminants during storage. Humic substances 

are the most important fraction of sludge organic matter, and as demonstrated in the 

previous chapter are resulted from humification that could occur during storage. 

The need was felt more especially when the use of sewage sludge in agriculture 

was taken into consideration, and expanded as an alternative method for landfill. 

Moreover, by the increase in the concentration of emerging contaminants in waste 

waters as well as constant progress in wastewater treatment in WWTPs, it is expected 

that the concentration of contaminants in sewage sludge is increased and limits their 

agricultural use. Previous studies (Thornton et al., 2001) highlighted the possibility that 

contaminants, such as LAS could not only become sorbed on organic materials during 

flocculation, but their content in sludge might increase as a consequence of improved 
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stabilization treatments that result in formation of humic substances. Therefore, 

monitoring of sewage sludge before land application is essential; and since the regular 

evaluation methods for the content of organic pollutants are expensive and time 

consuming, this part will be a try to create a relation between the organic contamination 

and humification degree of sewage sludge and also the use of UV-vis, FTIR and 

Fluorescence spectra to assess properties of humic substances as a valid and cost 

effective methods.   
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Chapter IV 

Biological transformation of humic substances 

and contaminants during thickening and 

storage of treated sludge 

4.1 Introduction 

Increasing sludge production, high cost of disposal and enforcement of more stringent 

environmental quality standards have led to the current pressing need for a cost 

effective and environmentally safe alternative disposal method. 

In Europe, the Council Directive 91/271/EEC encouraged land application of 

sewage sludge (European Commission, 1991) as a suitable recycling strategy, 

considering its large content of organic matter (OM) and plant nutrients, which permit 

its potential use in agriculture as soil conditioner and fertilizer. However, this practice 

has sometimes lead to soil contamination (European Commission, 2016) and health 
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problems (Anjum et al., 2016) due to the accumulation of persistent organic 

contaminants and toxic metals and presence of pathogenic microorganisms (Singh and 

Agrawal, 2008). Therefore, a sustainable use of sludge derived from urban wastewater 

treatment plants as a fertilizer in agriculture, requires precise specification of its 

properties and quality and if necessary, sludge need to be processed properly. 

Suitable treatments and regulation of industrial waste disposal have greatly reduced 

risks from toxic metals and pathogens, but other types of contaminants are now 

becoming increasingly diffuse in sewage and are not satisfactorily eliminated by 

treatments. Emerging contaminants, among which plasticizers, antibiotics, chlorinated 

compounds, Linear Alkylbenzene Sulfonates (LAS) are nowadays a major reason of 

concern for the application of treated sewage sludge to agricultural soils. 

Linear Alkylbenzene Sulphonates (LAS) are the most used anionic surfactant, 

introduced in 1964 as the readily biodegradable replacement for Branched 

Alkylbenzene Sulfonates (BAS). They are a mixture of homologues and isomers which 

is characterized by having a hydrophilic negatively charged sulfonate head-group 

attached to a benzene ring and a long hydrophobic alkyl tail of 10-13 (Figure 3.1). 

In the year 2000, the third draft of the future sludge directive “Working Document 

on Sludge” (EU 2000) where more restricted concentration limit values of LAS is 

included for the first time, was published by European Union and was adopted among 

others, by some Italian regional regulations (Emilia-Romagna Region, 2005; Italian 

regulation, 2018). 

Apart from LAS, recently particular attention has been given to presence of organic 

halogen compounds in domestic and municipal waste waters. Extractable Organic 

Halogens (EOX) represent the sum of organic Chlorine (Cl), Iodine (I) and Bromine 

(Br) which can be extracted by organic solvents from environmental solids. These 

compounds include not only synthetic polychlorinated biphenyls, organochlorine 

pesticides, polychlorinated dibenzo-p-dioxins or polychlorinated dibenzofurans and 

other substances, but also those produced naturally by microorganisms, flora and fauna 

(Asplund and Grimvall, 1991). In municipal waste water treatment plants organic 
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halogens adsorbed and concentrated on biomass (Bornhardt et al., 1997; Goi et al., 

2006) therefore monitoring and control of sewage sludge is essential prior to application 

onto agricultural soil due to the toxicity and durability of these compounds. The 

importance and usefulness of the EOX parameter in the evaluation of environmental 

quality have been demonstrated by some investigations (Rodziewicz et al., 2004; 

Contreras Lopez, 2003; Goi et al., 2006), however, there are still limited number of 

investigations on sludge EOX content. 

The concentration of these substances (LAS and EOX), which can undergo 

decomposition under anoxic conditions, may decrease during sludge storage in 

thickening beds. 

Monitoring of these contaminants is time consuming and expensive. A more 

convenient approach could be to monitor changes in quantity and or quality of humic 

substances in order to evaluate the efficacy of the single stages of the treatment. 

Humic Substances (HS), namely Humic (HA) and Fulvic (FA) Acids, are 

refractory natural compounds produced during decomposition of organic matter in soil 

and natural waters. Their quantification has been widely used in the evaluation of the 

quality of sewage sludge for their use in agriculture. Changes in their easily measured 

spectral properties (UV and fluorescence) could represent a convenient way to assess 

the degree of biological transformation that occurs in sewage sludge. In this work we 

considered a stage, which is often neglected in the evaluation of the overall performance 

of a treatment plant: namely the period spent by treated sludge in thickening beds and 

in storage facilities. Our aim was to ascertain the integrity of HS use as markers of 

biological transformations at this stage of sewage processing where biological 

transformation is generally considered to be minimal.  

To this purpose we evaluated: i) the effect of sludge storage on degradation EOX, 

as representative of compounds best degraded under anaerobic conditions, and LAS as 

representatives of compounds best degraded under aerobic conditions, ii) the use of 

humic substances as an indicator of the efficiency of transformation process in sewage 

sludge treatment and specifically of the storage period iii) application of UV-visible, 
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FTIR and fluorescence spectroscopies as  valid, simple and cost effective methods to 

pre-examine the quality of HS in sewage sludge. 

4.2 Materials and Methods 

4.2.1 Sewage sludge samples and treatments 

Sewage sludge samples were obtained from four different small scale waste water 

treatment plants in Friuli Venezia Giulia (FVG), Italy. Freshly treated sludge samples 

were collected after primary sludges underwent a complete aerobic treatment. After this 

stage, before land application or disposal, the sludge from plant n.1 is first dewatered 

by a belt system and then stored under cover in a heap. The sludge from plant n.2, after 

dewatering in a thickening bed, is stored in the open air on the ground. Samples from 

plants 3 and 4 were sampled right after treatment and stored anaerobically under 

controlled conditions at about 25 °C. All stored sludges had been stored for 

approximately three months.  

Other 10 fresh sludge samples collected from different WWTPs in FVG (detailed in 

chapter II) were used for following analyses as well.  

4.2.2 HA and FA analysis  

4.2.2.1 Extraction and purification of Humic Substances  

Sewage sludge samples of freshly treated (FT) sludge were dried at 45 ℃ and ground 

to pass through a 2.0-mm sieve. Isolation of HS from all samples was performed 

according to the procedure recommended by the IHSS (Swift, 1996).  

Briefly, 40g of dried sample was extracted by adding 400 mL fully deaerated 0.1M 

NaOH and shaking for 4 h under N2. The alkaline suspension was left to settle overnight 

and after filtration, the solution was acidified with 6M HCl to about pH 1 and then 
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allowed to stand for 16 h. Centrifugation for 20 min at 5,000 rpm allowed the separation 

of humic acids (HA) in the precipitate and of the fulvic acid fraction (supernatant).  

The HA were redissolved by adding a minimum volume of 0.1 M KOH under 

nitrogen atmosphere with constant stirring. Solid KCl was added to attain a 

concentration of 0.3 M [K+] and then centrifuged at high speed to remove the suspended 

solids. The HA was reprecipitated by adding 6 M HCl with constant stirring to pH = 

1.0 and the suspension was allowed to stand for 16 h. The separation was carried out 

by centrifugation and the supernatant was discarded. For purification, the HA was 

suspended in 0.1 M HCl/0.3 M HF solution in a plastic container and shacked overnight 

at room temperature. After centrifugation, the precipitate was transferred to a Visking 

dialysis tube after being suspended in Milli-Q water and dialyzed against distilled water 

until the dialysis water gives a negative Cl- test with silver nitrate (AgNO3). At the end 

the purified humic acid was freeze dried. 

In order to purify FA, the FA fraction extract was loaded on a XAD-8 resin column. 

The effluent was discarded and the XAD-8 column, containing the retained fulvic acids, 

was rinsed with 0.65 column volumes of distilled H2O. The adsorbed FA were desorbed 

from the resin with one column volume of 0.1 M NaOH, followed by two column 

volumes of Milli-Q water. The solution was immediately acidified with 6 M HCl to pH 

equal to 1 and concentrated HF was added to a final concentration of 0.3 M HF. The 

acidified solution was passed again through XAD-8 resin and the FA recovered by the 

same process described above. The eluate was passed through H+-saturated cation-

exchange resin and finally freeze-dried. 

4.2.2.2 UV-vis  

UV-vis spectra were recorded at pH 7 on a Cary spectrophotometer (Varian) in 1 cm 

quartz cuvettes and scanned from 200 to 600 nm. Specific Absorbance (SA) was 

calculated through normalizing absorbance by the optical path length (cm) and the C 

concentration (mg L-1). 
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4.2.2.3 FT-IR  

Attenuated reflectance Fourier-transform infrared (ATR-FTIR) spectra were recorded 

with a FTIR spectrum (100 PerkinElmer Spectrometer) equipped with an ATR device, 

over an interval from 4000 to 500 cm-1, with a 4 cm-1 resolution. A linear baseline 

correction was applied to compare spectra; the attribution of the main absorption bands 

was done according to Giovanela et al. (2004) and Filip et al. (1988). Intensity ratios 

were calculated for specific pairs of bands (Inbar et al. 1989). 

4.2.2.4 EEM Fluorescence and Humification index (HIX) 

The EEM fluorescence spectra of the FA and HA were recorded in 0.1 M phosphate 

buffer solution at pH=7 (50 mgl-1 of HS) with an Agilent Technologies Cary Eclipse 

Fluorescence Spectrophotometer. Solutions were irradiated in a 1 cm quartz cells 

(Agilent Technologies), thermostated at 20 °C. Scanning and recording of emission 

spectra (300– 600 nm) was carried out at sequential 5 nm increments of excitation 

wavelength (ex) between 220 and 550 nm. Bandwidths for both excitation and 

emission were 4 nm, with emission wavelength (em) increments of 1 nm and 

integration time of 0.1 s. The spectra were obtained by subtracting phosphate buffer 

blank spectra, recorded under the same conditions, to eliminate the phosphate solution 

Raman scatter peaks. The scans were used to generate three-dimensional contour plots 

of fluorescence intensity as a function of excitation and emission wavelengths. All 

fluorescence intensities were normalized to Raman units (R.U.), and divided by the 

sample’s dissolved organic carbon concentration. 

In this work the calculation of HIX values proposed by Zsolnay et al. (1999) was 

selected. HIX is calculated dividing the area of the emission at 435–480 nm by that at 

300–345 nm at an excitation wavelength of 254 nm, as shown in the following equation: 

 

HIX = (∑𝐼435⟶480)/(∑𝐼300⟶345) 

Where I is the fluorescence intensity at each wavelength 
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4.2.3 EOX analysis  

4.2.3.1 Extraction procedure  

All sludge samples were freeze-dried, sieved manually through a 1 mm mesh sieve and 

ground in a ball-grinder. Subsequently, 1 g of freeze-dried samples were extracted with 

5 ml of ethyl acetate or n-hexane solvent by shaking for 24 h. Most of the solvent was 

then stripped from the extracts under nitrogen flow till the volume was reduced to 1 ml 

and was stored refrigerated until analysis. 

4.2.3.2 Coulometric measuring procedure  

Analyses were made with Trace Elemental Instrument, Euroglas ECS 1000 upgraded 

with digital coulometer and control software (TEIS). This apparatus consists of: 

injection part, thermal extraction, trapping section and titration cell. 

A hundred microliters of residual extract were introduced into the instrument with 

injection rate of 20 µl/min. At 950 °C and in an oxygen atmosphere combustion 

accompanied by the pyrolysis of organochlorine compounds and the release of 

hydrogen halides takes place. The reaction gases formed are carried by the gas stream 

to the titration cell after passing the absorber. The absorber is filled with concentrated 

sulfuric acid and its function is to remove the water from the gas flow. In the titration 

cell there is a solution (acetic acid 70%) in which the silver ion concentration is 

maintained constant (approximately 10-7 M) by measuring the silver ion concentration 

continuously. As soon as the acid formed from the organic halogens reaches the cell, 

the halogen reacts with the silver ions present and precipitate as silver chloride (AgCl), 

silver bromide (AgBr) or silver iodide (AgI). From the integral of the current over the 

time, the quantity of silver generated and thus the quantity of halogen introduced can 

be calculated as chloride or as halogen molecules. 
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4.2.4 LAS analysis  

4.2.4.1 Chemicals and reagents  

HPLC grade acetonitrile and methanol were purchased from Merck (Darmstadt, 

Germany), analytical grade sodium perchlorate (Aldrich). Sodium dodecyl-

benzenesulfonate was used as standard (Sigma-Aldrich). Standard solutions of LAS 

were prepared in ultrapure water. Ultra-high-quality water was obtained from a Milli-

Q water purification system (Millipore, Bedford, MA). 

4.2.4.3 Microwave-Assisted Extraction method  

Microwave-Assisted Extraction (MAE) was performed on 0.5 g of dried sewage sludge 

samples. Methanol was used as a solvent because in the literature it is the most common 

solvent used. 5 ml of solvent was added to the samples and the extraction vessel closed 

and introduced into the microwave cavity. The level of microwave oven power and the 

irradiation time were 340 W and 10 min, respectively. After extraction, the vessels were 

allowed to cool at room temperature before they were opened. The extracts were filtered 

through glass wool. The extract was analyzed by HPLC. 

4.2.4.4 HPLC analysis  

All measurements were made with a Shimadzu high performance liquid chromatograph 

LC-20AT (Shimatzu Corporation Kyoto, Japan), fitted with an SIL-20AHT 

autosampler with a loop 20 µL, equipped with a diode array detector (DAD), a 

quaternary pump, a vacuum degasser and a thermostated column compartment. The 

analytical cartridge column was a SUPELCOSIL LC-8 (SUPELCO, Bellefonte, PA, 

USA), 25.0 cm × 4.6 mm ID, 5 µm particle size. The microwave extraction system was 

a Microwave Mars 5 Digestion Oven apparatus (CEM, North Carolina, USA) with a 

programmable power and irradiation time. The apparatus is equipped with a carousel 

that is able to hold 36 extraction vessels. 
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A commercial mixture of linear alkylbenzene sulfonates with C10–C13 chain 

length was used. Standard solutions at different concentrations were prepared in 

ultrapure water. Different solvents gradient programs were tried to obtain a good 

resolution of all LAS peaks. Good results were obtained by using as mobile phase 

acetonitrile–water containing 0.1 M NaClO4 (55:45) and isocratic elution. Compounds 

were eluted isocratically over 6 min run time at a flow rate of 0.8 mL min−1 after 

injection of 20 µL. Since polar interferences are eluted between 0 and 2min, they do 

not interfere in the analysis. The column was thermostated (35℃). DAD-UV (λex 

=225nm) detector were used for the determination of LAS. 

4.3 Results and Discussion  

4.3.1 Characterization of organic fraction 

Chemical characterization of sludge samples, including organic C (Corg), total N (N) 

and content of HA-C and FA-C before and after sludge thickening and storage are 

reported in Table 4.1. The four sludges displayed different degrees of loss of organic C 

(∆C loss, Table 4.1) at the end of storage. The sludge sampled from plant 1 does not 

appear to have undergone much biological transformation after three months; on the 

contrary, sludge from plant 4 lost about 30% of its original organic C content and must 

have therefore undergone strong mineralization. Samples from plants 2 and 3 

represented intermediate situations, so the chosen plants and treatments provide a well 

sorted representation of storage situations which, for different reasons, have different 

impacts on post treatment modifications of sludge quality. 

Very slight variations in total nitrogen contents were found in all sludge samples 

before and after storage. This indicates that little ammonia volatilization occurred 

during this period in the examined samples.  

The C/N ratio therefore simply reflects C losses through mineralization (evolution 

of carbon dioxide). This loss was very small for the dewatered sewage sludge from 
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plant n.1 after 90 days of storage, while larger changes were recorded in samples from 

other plants. However, changes in C/N ratios appear to be small: the highest recorded 

decrement (from 8.9 to 7) was related to sample no. 4. So this parameter, which 

decreases during decomposition as a result of C loss as CO2 and which is often used to 

characterize the degree of stabilization of sludges and composts is not sufficiently 

sensitive to monitor changes that may occur during storage of treated sewage. 

Table 4. 1 Elemental composition and content of HA and FA in sewage sludge samples 

and percent changes in organic C and HA following storage 

Samples 
N 

(g/kg d.w.) 
Corg 

(g/kg d.w.) 
C/N 

∆Corg 

% 

FA-C 

(g/kg d.w.) 
HA-C 

(g/kg d.w.) 
HA 

(g/kg d.w.) 
         

P1 Fresh 32 a 224 a 8.2 
-6.3 

2.92 a 11.18 a 24.49 a 

Stored 31 a 210 a 7.9 2.82 a 11.40 a 24.25 a 

         

P2 Fresh 35 a 223 a 7.5 
-12.0 

3.34 b 11.68 a 26.33 a 

Stored 34 a 197 ab 6.8 3.12 b 12.99 b 27.42 a 

         

P3 Fresh 33 a 259 c 9.2 
-15.6 

1.75 c 6.13 c 13.36 c 

Stored 33 a 219 ab 7.7 1.45 c 7.19 c 15.21 c 

         

P4 Fresh 42 b 319 d 8.9 
-30.6 

0.48 d 10.44 d 22.36 a 

Stored 37 b 221 b 7.0 0.46 d 13.81 e 28.78 b 
         

Data were statistically analyzed by ANOVA. Numbers marked with different letters are statistically 

different (P<0.05). 

 

A small decrease of FA-C (Table 4.1) was registered in all stored samples. The 

decrement, however, is only apparent as an increase was actually observed, after 

storage, in all samples if we consider the percentage of CFA with respect to the total 

organic C content of the sludge (Figure 4.1). At the same time, the percent content of 

HA-C with respect to Corg (Figure 4.1) increased significantly during the months that 

followed the end of the treatment in all stored sludges, except in sample from plant 1. 

This was caused by biological transformations and the amount of HA produced during 

storage was strongly related to the loss of organic C occurred during this period (Figure 

4.2). 
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Figure 4. 1 Concentration of FA and HA as percentage of organic C in fresh and stored 

sewage sludge samples 

 

 

 

 

 

 

 

Figure 4. 2 Amount of HA-C produced during storage as a function of % organic C loss 

during storage 

4.3.2 UV-vis parameters of HA and FA 

UV-vis spectra of HA and FA extracted from the sludge samples before and after 

storage are shown in figure 4.3. In all spectra, except for fresh sludge FA from plant 1, 

which display a peak at about 210 nm, absorbance decrease monotonically with 

increasing wavelength. 

Presence of a shoulder between 240 and 290 nm is related to aromatic or 

unsaturated compounds (tryptophan, conjugation of quinone and ketones) (Chin et al., 
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1994). Higher absorption intensity in this region by HA and FA from stored samples 

compared to fresh ones indicates increasing aromaticity. Again aromaticity increased 

in both FA and HA in all cases, except for HS from plant 1, as also shown by both 

SUVA254 and calculated % aromaticity from slope absorbance data (Table 4.2). These 

changes that occur during storage could be due to the degradation of aliphatic structures 

like carbohydrates, polysaccharides or fatty acids which causes a relative increment of 

aromatic and more stable compounds in humic substances (Li et al., 2011; Awasthi et 

al., 2015). 

E465/665 ratios of HA and FA varied after storage and thickening in all samples 

except plant 1: apparently the more oxic (Plant 2) conditions observed during the 

thickening stage cause break down of humic molecules (corresponding to an increase 

in E465/665 ratios), whereas anaerobic conditions during storage (Plants 3 and 4) result in 

an apparent increase in molecular sizes in both FA and HA. 

Table 4. 2 E4/E6 ratios, SUVA254 and % aromaticity of HA and FA extracted from 

fresh and stored sludge samples 

Samples E4/E6  SUVA254  Arom % 

 HA FA  HA FA  HA FA 

P1 Fresh 7.20 5.26  1.94 2.05  13.0 13.6 

Stored 7.06 7.33  1.87 1.96  12.6 13.1 
          

P2 
Fresh 6.57 4.43  2.81 1.72  17.6 11.8 

Stored 7.48 7.09  4.03 2.64  24.0 16.7 
          

P3 
Fresh 6.62 9.81  1.98 2.58  13.3 16.4 

Stored 5.35 6.26  2.61 3.16  16.5 19.4 
          

P4 
Fresh 5.11 6.85  1.31 2.03  9.7 13.5 

Stored 4.51 5.51  2.23 2.63  14.5 16.7 
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Figure 4. 3 UV-vis spectra of HA and FA extracted from four samples before and after 

storage  
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4.3.3 Fourier-transform Infrared Spectroscopy 

ATR FTIR spectra of HA and FA extracted from sewage sludge samples before and 

after storage did not display any meaningful change and therefore are not reported.  

Coherently with results from other techniques and parameters, small changes were 

observed in HA from all plants and were mostly limited to a decrease in intensity of 

absorbance in regions related to stretching and bending vibrations of carbohydrates and 

to a slight relative increase of carboxyls (1720 cm-1). 

4.3.4 Fluorescence spectra of HS 

Fluorescence and even UV spectra appear to be much more sensitive ways to detect 

modifications of humic substance during thickening or storage. 

Fluorescence is considered as a very sensitive tool to detect variations in the 

composition of dissolved organic substances in sewage sludge, however the displayed 

trends are complex and not always coherent with other data, particularly if we compare 

spectra from different sources. EEM spectra, normalized to the concentration of organic 

C, of FA and HA extracted from fresh and stored sewage sludge samples are displayed 

in Figure 4.4 and 4.5.  

As shown in Figure 4.4, three peaks were detected in the normalized EEM spectra 

of FA extracted from freshly treated sludge from plant 1 before storage. Peak 1 is 

characterized by Ex/Em wavelength range of 260-280/330-350 that might be associated 

with soluble microbial byproducts (Chen et al., 2003) was already very little expressed 

in this sample after treatment compared to other fresh samples. As reported by 

Zbytniewski and Buszewski (2005), the level of non-humic substances is relatively high 

in sludge at the beginning of the treatment, but fluorescence emitted by these 

components is expected to progressively decrease with the stabilization degree 

achieved by the organic materials in the sludge. This indeed occurs in FA from plant 2 

and 4, but is not even detectable in sample from plant 3, which already displays peaks 

typical of well humified FA in the fresh sample. 
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Peaks 2 and 3 are characterized by an Ex/Em wavelength range of 300-340/400-

430 and 250-260/450-470, respectively, which are related to typical FA components. 

Comparing the EEM spectra of FA before and after storage, in all samples, storage 

caused increments in the intensity of peaks 2 and 3, with the only exception of fresh 

sludge of plant 1 where no significant changes were observed. 

In the EEM spectra of HA (Figure 4.5), peak A was observe which is characterized, 

the same as peak 1 in EEM spectra of FA, by Ex/Em wavelength range of 260-280/330-

350 that might associate with soluble microbial byproduct-like materials (Chen et al., 

2003). As reported by Zbytniewski and Buszewski (2005), the level of non-humic 

substances is relatively high at the beginning of the process. Peak B was centered at 

Ex/Em wavelength range of 330-360/420-460 and could be defined as HA component. 

Considering HA 1 Stored, the F.I. of peak A and B presented very slight decreasing and 

increasing trends, respectively. 

Much stronger changes were observed in the other three samples. In sample 2, the 

EEM spectrum of HA fresh differentiated significantly from that of stored. Before 

storage, the EEM spectrum of HA from plant 2 displayed a clear peak, peak A, which 

almost disappeared after storage and peak B with low intensity in HA 2 Fresh that 

became more intense in HA 2 Stored. Moreover, peak C as a new fluorescence peak 

appeared in HA 2 Stored, with an Ex/Em wavelength range of 250-275/450-480, which 

could be referred to FA substances (chen et al., 2003). These changes indicate that a 

good humification occurred during storage in this sludge sample. In HA 3 while no 

changes observed in peak A, the intensity of peak B and C increased almost twice. 

Table 4. 3 Zsolnay humification index of HA and FA extracted from fresh and stored 

samples 

 
Plant 1  Plant 2  Plant 3  Plant 4 

Fresh Stored  Fresh Stored  Fresh Stored  Fresh Stored 

HA 1.77 1.46  1.09 10.98  3.54 4.43  1.07 1.35 

FA 2.72 4.25  2.46 15.82  8.04 9.54  3.82 4.74 
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EEM features can be summarized and evaluated by calculating the Zsolnay 

humification index. HIX values increase as a consequence of shifting of the emission 

spectra toward longer wavelengths (red-shifting of fluorescence emission) that occurs 

with humification and aromaticity degree (Cox et al., 2000; Ohno 2002; Ohno and Bro, 

2006). This trend is visible in FA, but may be masked in HA. 

Changes in HIX values are reported in Table 4.3 and clearly show that HA and FA 

from plant 1 and plant 4 did not undergo strong modifications during storage, whereas 

these occurred in HA and FA from plant 2. 

In HA from plant 4, Peak B which was barely detectable before storage doubled 

its intensity after anaerobic storage, still most of the EEM fluorescence spectra of stored 

HA from plant 4 display a very strong intensity of emission for peak A typical of poorly 

humified materials. Probably the increase of this peak is linked to the strong biological 

activity that occurred in this sludge during the 3 months of anaerobic storage, which is 

testified by the strong decrease in organic C registered and which may have caused a 

massive release of microbial byproducts. 
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Figure 4. 4 EEM contour plots for FA extracted from fresh and stored sewage sludge 

samples collected from 4 different waste water treatment plants 
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Figure 4. 5 EEM contour plots for HA extracted from fresh and stored sewage sludge 

samples collected from 4 different waste water treatment plants 
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4.3.5 EOX and LAS 

The concentrations of EOX (mg/kg d.w.) in sewage sludge samples from the four 

different wastewater treatment plants before and after storage is shown in Figure 4.6. 

Results indicate that storage, in general, caused a decrease of the EOX concentration in 

sludge samples from all plants, showing that reductive biological activity went on 

during storage. The reduction of EOX concentration was 14, 81, 29 and 30% in plant 

1, 2, 3 and 4, respectively. 

 

 

Figure 4. 6 The concentration of EOX (mg/kg d.w.) in sewage sludge samples (Fresh 

and Stored) from four different wastewater treatment plants 

 

During storage, oxygen availability within the sludge is limited. Some oxygen may 

be taken in because of the progressive emptying of pores during drying. These 

conditions favor reductive dechlorination of chlorinated compounds which can be used 

as electron acceptors by anaerobic microorganisms. 

For LAS, which are preferentially decomposed under aerobic conditions no 

significant changes were observed in plants 1 and 2, while, surprisingly LAS 

concentration decreased 30 and 20% in sludge samples from Plants 3 and 4, 

respectively (Figure 4.7) even if storage occurred under anaerobic conditions. 
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Figure 4. 7 The concentration of LAS (mg/kg d.w.) in sewage sludge samples (Fresh 

and Stored) from four different wastewater treatment plant 

4.3.6 Relationship between humic substances in sludge and 

contamination by LAS 

Both EOX and LAS are hydrophobic contaminants: they therefore have a tendency to 

become sorbed on to hydrophobic surfaces (Erhardt and Pruess, 2001; Villar et al, 

2007). While EOX are sparingly soluble, LAS are on the contrary highly soluble 

because of the hydrophilic sulphonate groups in their structure (Erhardt and Pruess, 

2001). 

Contamination by EOX and LAS of sewage sludge may be therefore driven in one 

case by low solubility and sorption on hydrophobic parts in the structure of humic and 

fulvic molecules which constitute the hydrophobic acids fraction of dissolved and non-

dissolved organic matter and in the other by trapping of these contaminants during 

flocculation by humic substances. 

In the four samples examined a significative correlation was found between the 

percent content of HS in the dry matter of fresh and stored sludge and its contamination 

by LAS (Figure 4.8a). A similar, but less significative relationship of this kind was 

observed for EOX (Figure 4.8b). 

 

 

0

100

200

300

400

500

600

700

Plant 1 Plant 2 Plant 3 Plant 4

m
g

/k
g

 d
.w

. 
S

S

LAS
Fresh Stored



 107 

y = 0.16 x + 1.38

R² = 0.53

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10

lo
g

 L
A

S

%HA+FA

(a)

y = 0.175x

R² = 0.49

-0.1

0.4

0.9

1.4

1.9

0 2 4 6 8 10

lo
g

 E
O

X
 

%HA+FA

(b)

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 8 Relationship between contamination of sludge by LAS (a) and EOX (b) and 

% content of HA+FA 

 

To verify if this could be a generalizable behaviour, several sludges from other 

similar depuration plants were sampled and analyzed for their LAS, EOX and humic 

substances content (The comprehensive information about these samples: source of the 

waste water and treatment processes reported as Table 2.1 and the concentration of LAS 

and EOX is reported as Table 2.5 in chapter II of the present document). The trend 

observed for LAS was confirmed by a even more significant correlation with % of HA, 

whereas that for EOX was not confirmed. 
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Figure 4. 9 Logarithm of the concentration of LAS in sewage as a function of the 

percentage of HA in the sludge 

4.4 Conclusions 

This work shows that several qualitative and quantitative changes can occur in the 

humic fraction of sewage sludge during the storage stage, both under aerobic and 

anaerobic conditions. In the absence of the possibility to monitor biological activity, 

the consequences of adopting different management practices, during thickening and 

storage of sludge can be inferred by examining modifications in the amount and 

structure of humic substances.  

The objectives of this work were also to measure, quantify and eventually correlate 

these changes with the presence and behavior, during storage, of common organic 

contaminants such as EOX and LAS. This possibility was confirmed for LAS, whereas 

for EOX which, as a class may include compounds of much widely different nature, the 

trend was not confirmed. 

This result has a practical bearing in that it suggests that amelioration of the 

efficiency of aerobic digestion treatment, might, by increasing the fraction of organic 

C transformed into humic acids, enhance sequestration of larger amounts of LAS in the 

sludge fraction. 
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General conclusion 

Within the framework of the new concept of integrated water cycle, that encourages to 

implement a system with less pollutant loads to the environment, management of 

sewage sludge plays an important role. Due to sewage sludge fertilizing and soil 

conditioning properties, its agricultural use could be considered as an economically 

viable and environmentally sustainable disposal method compared to other disposal 

strategies. 

In this PhD research the suitability of sewage sludge, from WWTPs in FVG, was 

evaluated based on permissible limits suggested by European regulations for its 

agricultural use (chapter II). Obtained results show that although the toxic metal content 

and the concentration of studied organic contaminants in sewage sludge were lower 

than maximum permitted limits in all tested samples, a general increase in maximum 

toxic metal concentration was observed, comparing the present data with the previous 

work on the same area, due to improvements in wastewater treatment lines of the 

WWTPs, which maximized the removal efficiency of contaminants from wastewater. 

Therefore we questioned the future possibility to use sewage sludge in agriculture and 

raised the need for further constant and regular sludge monitoring.  

The novelty of my thesis was to introduce a new characterization perspectives for 

sewage sludge which I reported in chapter IV. In fact, in accordance with the need for 

constant monitoring of sewage sludge that was suggested in the second chapter, there 

should be some valid and cost effective methods to evaluate the suitability of sludge for 

agricultural use.  

For this purpose, UV-vis, FTIR and Fluorescence spectra were used to characterize 

the humic substances extracted from sewage sludge in different stages of decomposition 

to assess their properties and behavior during storage. Also the correlation of qualitative 

and quantitative changes of humic substances with the degradation of common organic 

contaminants such as EOX and LAS during storage was studied. And this possibility 
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was confirmed for LAS, whereas for EOX which, as a class of contaminants may 

include compounds of much widely different nature, the trend was not fully confirmed. 

Since humic substances that used in chapter IV as tracers for transformation of 

organic matter in sewage sludge recently has been challenged by Lehmann and Kleber 

(2015), in chapter III, we tried to answer the question that “are humic substances 

artifacts of the extraction procedure or not”. The obtained results were coherent with 

the classical humification theory.  

In this work three samples at different stage of decomposition were extracted at 

different pH (from alkaline to neutral). Then fractions and whole extracts were 

quantified and characterized by UV-Vis, FT-IR, EEM fluorescence spectroscopy and 

1H NMR. It was observed that even though the extraction yield increased by using 

alkaline extractants but spectroscopic properties were conserved for different 

extractants, demonstrating that humic substances are not artefacts of the extraction 

process. 

To sum up, due to EU perspective of sewage sludge disposal and developing 

alternative strategies to reduce the application of conventional methods for 

environmental sustainability, this work was a contribution towards improving the safety 

of sewage sludge agricultural use through facilitating its monitoring and 

characterization. 
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