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Abstract
The timeline-based approach to automated planning was originally developed in the context of space
missions. In this approach, problem domains are expressed as systems consisting of independent
but interacting components whose behaviors over time, the timelines, are governed by a set of
temporal constraints, called synchronization rules. Although timeline-based system descriptions
have been successfully used in practice for decades, the research on the theoretical aspects only
started recently. In the last few years, some interesting results have been shown concerning both its
expressive power and the computational complexity of the related planning problem. In particular,
the general problem has been proved to be EXPSPACE-complete. Given the applicability of the
approach in many practical scenarios, it is thus natural to ask whether computationally simpler but
still expressive fragments can be identified. In this paper, we study the timeline-based planning
problem with the restriction that only qualitative synchronization rules, i.e., rules without explicit
time bounds in the constraints, are allowed. We show that the problem becomes PSPACE-complete.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning

Keywords and phrases Timeline-based planning, qualitative temporal constraints, complexity

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.16

Funding The authors acknowledge the partial support by the Italian INdAM-GNCS project Ra-
gionamento Strategico e Sintesi Automatica di Sistemi Multi-Agente. Nicola Gigante and Angelo
Montanari are partially supported by the PRID project ENCASE - Efforts in the uNderstanding of
Complex interActing SystEms.

1 Introduction

Timeline-based planning is an approach to automated planning and scheduling that arose
in connection to space operations [16]. In this setting, planning domains are modeled as
systems made of independent but interacting components, whose behavior over time, the
timelines, is governed by a set of temporal constraints. Compared to other well-established
action-based planning formalisms such as STRIPS [7] and PDDL [15], timelines conform to
the declarative paradigm, and are very effective in modeling the behavior of complex systems
where multiple components have to interact to obtain a common goal rather than scenarios
where the target of the planning process is a single agent. Moreover, being born in a context
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16:2 Complexity of Qualitative Timeline-Based Planning

where scheduling of operations is often as important as planning, timeline-based languages
are particularly tailored to temporal reasoning, and to the modeling of real-time systems.
These features have proven to be quite useful in practice, as timeline-based planning systems
have being successfully deployed both at NASA [2,3] and ESA [8,9] for short- to long-term
mission planning over the last three decades [4, 6].

From a theoretical perspective, timeline-based modeling languages are interesting for
their rich syntax and powerful semantics. However, the study of their expressiveness and
computational complexity has started only recently. The expressive power of the language has
been compared with action-based counterparts [11] and the general plan-existence problem
for timeline-based planning has been proved to be EXPSPACE-complete [5, 12]. Timeline-
based games [13], where some of the components are under control of the environment
and the controller has to ensure the satisfaction of the constraints independently from the
environment’s choices, have also been studied to formalize and extend the practice of flexible
timelines used in current timeline-based planning systems. Deciding whether there is a
winning strategy for a timeline-based game has been proved to be 2EXPTIME-complete.

Despite the high computational complexity of the related decision problems, timeline-
based models have been routinely and successfully used in complex real-world scenarios for
decades. This apparent paradox indeed suggests the existence of interesting fragments of
the general theory with more tractable complexities that are still suitable for meaningful
real-world applications. Starting from this observation, this paper identifies the qualitative
fragment of the timeline-based planning problems, i.e., problems where the system behavior
is described without referring to explicit time bounds. This restriction is nevertheless suitable
for many practical scenarios as also testified by the plethora of approaches based on qualitative
time models in many application domains including automated planning [10].

We prove that the plan-existence problem for this fragment is PSPACE-complete as
opposed to the EXPSPACE-completeness of the general problem. The proof is given by
means of an automata-theoretic construction that builds on the technique developed by
Della Monica et al. [5] to prove the complexity in the general case. We also discuss some
interesting consequences that this result brings to the table.

The paper is structured as follows. Section 2 recalls the basic syntax and semantics
of timeline-based planning problems, and introduces the qualitative fragment studied here.
Then, Section 3 proves that the problem can be solved in polynomial space, while Section 4
proves that it is also PSPACE-hard. Section 5 discusses the consequences of these results
together with some interesting future developments.

2 Qualitative timeline-based planning

In this section, we introduce the notion of qualitative timeline-based planning. To this end,
we recall the main definitions about timeline-based planning. We start with the definition of
state variable, which is the basic building block of the framework.

I Definition 1 (State variable). A state variable is a tuple x = (Vx, Tx, Dx), where:
Vx is the finite domain of the variable;
Tx : Vx → 2Vx is the value transition function, which maps each value v ∈ Vx to the set
of values that can (immediately) follow it;
Dx : Vx → N+×(N+∪{+∞}) is a function that maps each v ∈ Vx to the pair (dx=v

min, d
x=v
max)

of minimum and maximum durations allowed for intervals where x = v.

The behavior of a state variable x over time is modeled by a timeline, i.e., a finite sequence
of tokens each one denoting a value v and a time interval d meaning that x evaluates to v
within d. Formally:
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I Definition 2 (Timelines). A token for x is a tuple τ = (x, v, d), where x is a state variable,
v ∈ Vx is the value held by the variable, and d ∈ N+ is the duration of the token. A timeline
for a state variable x = (Vx, Tx, Dx) is a finite sequence T = 〈τ1, . . . , τk〉 of tokens for x.

For any token τi = (x, vi, di) in a timeline T = 〈τ1, . . . , τk〉 we can define the functions
start-time(T, i) =

∑i−1
j=1 dj and end-time(T, i) = start-time(T, i) + di, hence mapping each

token to the corresponding time interval [start-time, end-time) (right endpoint excluded).
The horizon of a timeline T is defined as the end time end-time(T, k) of its last token τk.
When there is no ambiguity, we write start-time(τi) and end-time(τi) to denote, respectively,
start-time(T, i) and end-time(T, i).

The problem domain and the goal are modeled by a set of temporal constraints, called
synchronization rules. A synchronization rule is of the form:

rule := a0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek, with
Ei := ∃a1[x1 = v1]a2[x2 = v2] . . . an[xn = vn] . Ci

where x0, . . . , xn are state variables, v0, . . . , vn are values, with vi ∈ Vxi for all i, a0, . . . , an ∈
N are symbols from a set of token names, and C is a conjunction of atomic clauses as
described below. The semantics of synchronization rules is only informally recalled because
of space concerns (see [13, Definitions 7 and 8] for a formal definition). Each rule consists of
a trigger (a[x0 = v0]) and a disjunction of existential statements. It is satisfied if for each
token satisfying the trigger, at least one of the disjuncts is satisfied. The trigger can also be
empty (>), in which case the rule is said to be triggerless and asks for the satisfaction of the
body without any precondition. Each existential statement requires the existence of some
tokens such that the clause C is satisfied. The clause is in turn a conjunction of atoms, that
is, atomic relations between endpoints of the quantified tokens, of the form:

term := start(a) | end(a) | t atom := term ≤[l,u] term

where a ∈ N , l ∈ N, t ∈ N, and u ∈ N∪{+∞}. As an example, the atom start(a) ≤[l,u] end(b)
relates the two mentioned endpoints of the tokens a and b by stating that the distance between
them must be at least l and at most u. When u = +∞, there is no upper bound on the
distance between endpoints. In this case, the atom is said to be unbounded, and bounded
otherwise. An atom term ≤[l,u] term with l = 0 and u = +∞ is said to be qualitative, and
the subscript is usually omitted in this case. An endpoint of a token can also be related with
an absolute time point (e.g. start(a) ≤[0,3] 4). Such an atom is called a time-point atom.

A timeline-based planning problem consists of a set of state variables and a set of rules
that represent the problem domain and the goal.

I Definition 3 (Timeline-based planning problem). An instance of a timeline-based planning
problem, commonly referred to as a timeline-based planning problem, is a pair P = (SV, S),
where SV is a set of state variables and S is a set of synchronization rules over SV.

A solution plan for a given timeline-based planning problem is a set of timelines, one for
each state variable.

I Definition 4 (Solution plan). A solution plan for a problem P = (SV, S) is a set of timelines
Γ = {Tx | x ∈ SV}, one for each x ∈ SV, all with the same horizon, such that vi+1 ∈ Tx(vi)
and dx=vi

min ≤ di ≤ dx=vi
max for all tokens τi = (x, vi, di) ∈ Tx, and all the rules in S are satisfied.

We know from [12] that the problem of deciding whether there exists a solution plan for
a given timeline-based planning problem is EXPSPACE-complete. In this paper, we focus on
the qualitative version of timeline-based planning problems.

TIME 2020



16:4 Complexity of Qualitative Timeline-Based Planning

a[xcam = on]→ ∃b[xdir = ↓] . a during b

> → ∃a[xcam = on] b[xcam = off] c[xcam = on] . a meets b ∧ end(a) ≤ start(c)

xcam
off on off on off

xdir
↑ ← ↓ → ↑ ← ↓ →

Figure 1 An example of timeline-based planning problem. Two state variables are used to
represent the on/off state of a camera (xcam) and its pointing direction (xdir). The transition function
of xdir forces the camera to only move counterclockwise.

I Definition 5 (Qualitative timeline-based planning problem). A timeline-based planning
problem P = (SV, S) is qualitative if Dx(v) = (1,+∞) for each x ∈ SV and v ∈ Vx, and all
the synchronization rules in S make only use of qualitative atoms, and no time-point atoms.

Qualitative synchronization rules do not allow one to express real-time constraints, but they
are still a quite expressive formalism. Equalities between endpoints and between whole tokens
are definable, i.e., start(a) = start(b) can be written as start(a) ≤ start(b)∧start(b) ≤ start(a)
and a = b as start(a) = start(b) ∧ end(a) = end(b). Moreover, one can express non-strict
versions of all Allen’s interval relations [1]: one can define a meets b as end(a) = start(b),
a during b as start(a) ≤ start(b) ∧ end(b) ≤ end(a), and so on.

Figure 1 shows a possible solution for a problem with two state variables, xcam and xdir,
with Vxcam = {on, off} and Vxdir = {↑,←, ↓,→}, that respectively represent the on/off state of a
camera and its pointing direction. The transition function Txdir of xdir is such that the camera
can only stay still or move counterclockwise, e.g. Txdir (←) = {←, ↓}. The rules are built on
the set N = {a, b, . . .} of token names. The first rule requires the camera to point down every
time it is switched on (e.g., to point towards ground from an airplane). The objective of the
system is to perform two shoots, provided that the camera is switched off between them in
order to cool down. This goal is encoded by the second triggerless synchronization rule.

3 Complexity of qualitative timeline-based planning

In this section, we give a polynomial-space algorithm to decide whether there exists a solution
plan for a given qualitative timeline-based planning problem.

Given a qualitative timeline-based planning problem P , we show how to build a non-
deterministic finite automaton (NFA) A whose accepted words correspond to the solution
plans of P . The approach, inspired by the one adopted by Della Monica et al. [5] for the
general case, has been not only tailored to the qualitative setting but also refined to obtain
the desired complexity result.

3.1 Plans as words
Let P = (SV, S) be a qualitative timeline-based planning problem and let V =

⋃
x∈SV Vx.

Without loss of generality, we consider only qualitative timeline-based planning problems
whose state variables have trivial transition functions, i.e., for each x ∈ SV and v ∈ Vx, either
Tx(v) = Vx or Tx(v) = ∅. The first step is to encode timelines and plans as words that can
be fed to an automaton. Let the alphabet associated with P be ΣP = {σ : SV→ V ∪ {	} |
σ(x) ∈ Vx ∪ {	}}, i.e., symbols map each state variable x to a value within its domain Vx
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or to a special symbol 	. By fixing an ordering among the variables, we will also denote
such maps as tuples in the standard way. Observe that the size of the alphabet is at most
exponential in the size of P , precisely |ΣP | ≤ (|V |+ 1)|SV|.

Let the set of initial symbols be defined as ΣI
P = {σ ∈ ΣP | ∀x ∈ SV . σ(x) 6= 	}. Each

plan can be encoded with a word in ΣIPΣ∗P , and vice versa, where each occurrence of v ∈ Vx
denotes a time point where x is updated to v and each occurrence of 	 a time point where
the value of x stays unchanged. Formally, let σ = 〈σ0, . . . , σ|σ|−1〉 be a word in ΣIPΣ∗P . Given
a state variable x ∈ SV, let {i0, i1, . . . , ik−1} = {i | σi(x) 6= 	}, with ij−1 < ij for all j ∈
{1, . . . , k−1}, i.e., the ordered set of positions where the value of x changes. Then, the word σ
induces a timeline Tx defined as Tx = 〈(x, vi0 , i1−i0), (x, vi1 , i2−i1), . . . , (x, vik−1 , ik−ik−1)〉,
where vi = σi(x) and ik = |σ|, as the timeline for x induced by σ, while the plan induced by
σ is the set of all timelines, one for each x ∈ SV, induced by σ. A converse correspondence
of plans to words can be defined accordingly.

3.2 Blueprints and viewpoints
A key concept in our construction is the blueprint: a description of a possible way to satisfy a
synchronization rule. Here, we use a significantly revised notion of blueprint with the respect
to the one introduced in [5]. This new notion allows us to gain in succinctness and plays a
crucial role in achieving the wished complexity bound.

We begin with some notation and terminology. Let P be a preorder over its domain
dom(P). For every x ∈ dom(P), we define pred(P, x) as the set of immediate predecessors of
x in P and succ(P, x) as the set of immediate successors of x in P. We define maximals(P)
as the set of elements of dom(P) with no successors in P and minimals(P) as the set of
elements of dom(P) with no predecessors in P . Finally, given K ⊆ dom(P), we say that K is
P-complete if for every x ∈ dom(P) there is y ∈ K such that x �P y or y �P x and that K
is minimally P-complete if it is P-complete and its elements are pairwise incomparable in P .

We assume, w.l.o.g., that at least one rule with a[x = v] as trigger belongs to S for each
x ∈ SV and v ∈ Vx. Now, fix a synchronization rule R ≡ a0[x0 = v0] → E1 ∨ . . . ∨ Em,
and one of its existential statements E ≡ ∃a1[x1 = v1] · · · an[xn = vn] . C, i.e., E = Ej for
some j ∈ {1, . . . ,m}. We assume, w.l.o.g., that the atom start(ai) ≤ end(ai) occurs in C
for all i ∈ {0, . . . , n}; we also assume that, for every i, j with xi = xj and i 6= j, if one
among start(ai) ≤ start(aj), end(ai) ≤ end(aj), and start(ai) ≤ end(aj) occurs in C, then
end(ai) ≤ start(aj) occurs in C as well. Recall that vi ∈ Vxi for all i ∈ {0, . . . , n}. Then, E
defines a preorder PE over the domain dom(PE) = {start(ai), end(ai) | i ∈ {0, . . . , n}}, i.e.,
over the set of endpoints of all the tokens quantified by E . Intuitively, a blueprint for E ,
denoted by BE , is an extension of the preorder defined by E where an additional element
is inserted between any pair of comparable elements, and before and after minimal and
maximal elements, respectively. Such additional elements, denoted pumps(BE), are called
the pumping points of BE . Formally, blueprints are defined as follows.

I Definition 6 (Blueprint). Let E be an existential statement. A blueprint for E is a preorder
BE defined as:
1. dom(BE) = dom(PE) ∪ pumps(BE) where

pumps(BE) = {〈y|x〉 | x ∈ dom(PE) \minimals(PE), y ∈ pred(PE , x)}
∪ {〈−|x〉 | x ∈ minimals(PE)} ∪ {〈x|−〉 | x ∈ maximals(PE)};

2. for all x, y ∈ dom(PE), x �BE y if and only if x �PE y, i.e., the ordering relation is
unchanged over elements of dom(PE);

TIME 2020



16:6 Complexity of Qualitative Timeline-Based Planning

3. for every x ∈ dom(PE) \ minimals(PE) and y ∈ pred(PE , x), we have y �BE 〈y|x〉 and
〈y|x〉 �BE x;

4. for every x ∈ minimals(PE), we have 〈−|x〉 �BE x; and
5. for every x ∈ maximals(PE), we have x �BE 〈x|−〉.

Blueprints statically describe the syntactic structure of the rules. A viewpoint pairs a
blueprint with a set of pointers to its pumping points. It is the dynamic structure that keeps
track of how the rules are matching on the specific word being read.

I Definition 7 (Viewpoint). A viewpoint is a pair V = 〈BE ,K〉, where BE is a blueprint
for an existential statement E and K ⊆ pumps(BE) is a subset of its pumping points that is
minimally BE -complete.

Given V = 〈BE ,K〉, K is the frontier of V, and its elements are its frontier points. Moreover,
V is said to be minimal or maximal if K = minimals(BE) or K = maximals(BE), respectively.

A viewpoint keeps track of how a blueprint is being matched over a plan encoding; in
particular, its frontier separates the already matched part from the rest of the blueprint
that still needs to be matched. When a symbol is read, each frontier point can either pump
(i.e., stay unchanged) or step (i.e., advance to point to other pumping points). Formally, a
viewpoint V = 〈BE ,K〉 can evolve into another viewpoint V′ = 〈BE ,K ′〉, written V → V′,
if and only if for all k ∈ K either k ∈ K ′ (i.e., k pumps) or k′ 6∈ K ′ for all k′ such that
k′ �BE k (i.e., k steps). If V = 〈BE ,K〉 evolves into V′ = 〈BE ,K ′〉, the points of PE that
move into the matched part define the set of points that are consumed over V→ V′, namely:

consumed(V,V′) = {x ∈ dom(PE) | y �BE x �BE y′ for some y ∈ K, y′ ∈ K ′}.
We say that a state variable x ∈ SV is open in V if there is some i ∈ {0, . . . , n} and some

k ∈ K such that xi = x and start(ai) �BE k �BE end(ai), i.e., the frontier says that the
start of a token for x has matched but its end has not.

Depending on which symbol is currently being read, only some of the possible evolutions
of a viewpoint are admissible.

I Definition 8 (Evolution of a viewpoint). Let V = 〈BE ,K〉 and V′ = 〈BE ,K ′〉 be two
viewpoints over the blueprint BE of some existential statement E and let σ ∈ ΣP . We say
that V can evolve into V′ when reading σ, written V σ→ V′, if the following conditions hold:
1. if σ(x) 6= 	 and x is open in V, then end(ai) ∈ consumed(V,V′) for some i with xi = x,
2. if Txi(vi) = ∅, then end(ai) 6∈ consumed(V,V′),
3. consumed(V,V′) is compatible with σ, that is:

a. σ(xi) = vi for every start(ai) ∈ consumed(V,V′),
b. σ(xi) 6= 	 for every end(ai) ∈ consumed(V,V′), and
c. if start(ai) ∈ consumed(V,V′), then end(ai) 6∈ consumed(V,V′).

3.3 Automaton construction
The above notions allow us to build the automaton AP for a given qualitative timeline-based
planning problem P = (SV, S). The states of the automaton consist of sets of viewpoints
over the rules of P . However, in order to keep the size of the states small, some combinations
of viewpoints are excluded a priori by forcing a total order on the viewpoints of a state that
are built on the same blueprint.

Formally, let V = 〈BE ,K〉 and V′ = 〈BE ,K ′〉 be two viewpoints over the same blueprint.
We define V � V′ if and only if for every k ∈ K there is a k′ ∈ K ′ such that k �BE k′.
Let Vmax

E = 〈BE ,maximals(BE)〉. Then, V is said to be final for BEi if consumed(V,Vmax
E )

contains only elements of the form end(a) for some a ∈ N .
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b[xb = vb]→ ∃a[xa = va] c[xc = vc] . b during a ∧ c during a

start(a)

start(b) end(b)

start(c) end(c)

end(a) start(a)

start(b) end(b)

start(c) end(c)

end(a)

∈ dom(PE)
∈ pumps(BE)
∈ K
∈ SV

6∈ K
6∈ SV

xa
va

xb
vb vb

xc
vc vc

Figure 2 Two incomparable viewpoints for the same rule (on the top) and a plan where the rule
is triggered twice. The current time-point in the plan is represented by the dotted line. The left
(resp., right) viewpoint takes care of the satisfaction of the rule when triggered by the first (resp.,
second) occurrence of vb. The incomparability is due to the left viewpoint trying to satisfy a rule
triggered by an earlier occurrence of vb by using a latter occurrence of vc and, vice versa, the right
viewpoint trying to satisfy a rule triggered by a latter occurrence of vb by using an earlier occurrence
of vc. We will show that these situations can be avoided.

Now, let ΥP be the set of all the viewpoints of the existential statements of the rules of
P . The automaton AP is defined as follows.

I Definition 9 (Automaton construction). Let P = (SV, S) be a qualitative timeline-based
planning problem. The NFA AP = (QP ,ΣP , qIP , QFP ,∆P ) associated with P is such that:
1. the set of states consists of the initial state qIP 6⊆ ΥP and a selection of the subsets of ΥP :

QP = {qIP } ∪ {Υ ⊆ ΥP | V � V′ or V′ � V for all V = 〈BE ,K〉,V′ = 〈BE ,K ′〉 ∈ Υ};

2. the final states QFP are defined as follows:
a. Υ ∈ QFP if and only if Υ is made of final viewpoints and for every triggerless rule > →
E1∨ . . .∨Ek in S, there is i ∈ {1, . . . , k} such that Υ contains a final viewpoint for BEi ;

b. if there are no triggerless rules, then qIP ∈ QFP ;
3. for all Υ,Υ′ ⊆ QP \ {qIP } and σ ∈ ΣP , (Υ, σ,Υ′) ∈ ∆P iff:

a. for every V ∈ Υ, there is a V′ ∈ Υ′ such that V σ→ V′;
b. for every V′ ∈ Υ′, there is a V ∈ Υ such that V σ→ V′; and
c. if there is a synchronization rule a0[x0 = v0]→ E1 ∨ E2 ∨ . . .∨ Ek in S and σ(x0) = v0,

then there are V ∈ Υ and V′ ∈ Υ′ such that:
V = 〈BEi ,K〉 for some i ∈ {1, . . . , k};
V σ→ V′;
start(a0) ∈ consumed(V,V′);

4. for all Υ′ ⊆ QP \ {qIP } and σ ∈ ΣP , (qIP , σ,Υ′) ∈ ∆P iff σ ∈ ΣI
P and (ΥI , σ,Υ′) ∈ ∆P

for some set ΥI of minimal viewpoints.

Note that if any possible set of viewpoints were a valid state, the size of the automaton
would be doubly exponential. Instead, the symmetry-breaking condition imposed by Item 1
of Definition 9, i.e., for every Υ ∈ QP and every V = 〈BE ,K〉,V = 〈BE ,K ′〉 ∈ Υ, we have
V � V′ or V′ � V, allows us to shrink the size of AP to be only exponential in the size of P .
Figure 2 shows an example of incomparable viewpoints. We will show that these situations
can be avoided, thus obtaining an automaton of at most exponential size.

TIME 2020



16:8 Complexity of Qualitative Timeline-Based Planning

I Lemma 10 (Automaton size). Let P be a qualitative timeline-based planning problem. The
size of its associated automaton AP is at most exponential in the size of P .

Proof. Let P = (SV, S) be a qualitative timeline-based planning problem and consider
the set QP of states of its associated automaton AP as defined in Definition 9. For each
viewpoint V = 〈BE ,K〉, let SV = {x ∈ dom(PE) | ∃k ∈ K . x �BE k} be the set of elements
covered by V, i.e., those elements of the blueprint BE that have already been matched over
the word, as witnessed by V. Notice that V � V′ implies SV ⊆ SV′ . Moreover, the sets of
covered elements for all the viewpoints V for a blueprint BE form a lattice with regard to
set inclusion, where ⊥ = ∅ (which is the set of elements covered by the minimal viewpoint
V⊥ = 〈BE ,minimals(BE)〉), and > = dom(PE) (which is the set of elements covered by the
maximal viewpoint V> = 〈BE ,maximals(BE)〉). According to the definition of the automaton
states (Item 1 of Definition 9), the viewpoints for a blueprint BE included in any state Υ ∈ QP
form a total order. Since the number of disjuncts occurring in P as well as the distance from
⊥ to > in the aforementioned lattice is polynomial in the size of P (in fact, it is linear), the
size of Υ is polynomial, and the size of QP is thus at most exponential in the size of P . J

3.4 Soundness and completeness
Here we prove that the automaton construction of Definition 9 correctly captures qualitative
timeline-based planning problems.

Let P = (SV, S) be a qualitative timeline-based planning problem that admits a solution
plan Γ = {Tx | x ∈ SV}. For each R ∈ S, if R is not triggerless, then we denote by T RΓ
the set of tokens in Γ triggering R; if R is triggerless, we let T RΓ = {>R} (this notation
is useful to handle triggerless rules uniformly). Moreover, we denote TΓ =

⋃
R∈S T RΓ the

set of all the triggers occurring in Γ, plus one fictitious token >R for each triggerless rule
R ∈ S, which is said to be triggered by >R. Now, let R ≡ a0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek
be a rule in S. Since Γ is a solution plan, for each token τ ∈ T RΓ , we can identify a disjunct
R(τ) ∈ {E1, . . . , Ek} such that R(τ) is satisfied for τ in Γ.

In order to link the words accepted by an automaton to the solution plans for P , we need
to specify how blueprints are connected to timelines and plans.

I Definition 11 (Blueprint instantiation). Let P = (SV, S) be a qualitative timeline-based
planning problem and let Γ = {Tx | x ∈ SV} be a solution plan for P .

For every R ∈ S and τ ∈ T RΓ , a blueprint instantiation for τ in R is a labeling function
LR(τ)
τ : dom(PR(τ))→ N that maps every element x in the domain of the preorder PR(τ) to

a time point LR(τ)
τ (x) such that:

1. x �PR(τ) y implies LR(τ)
τ (x) ≤ LR(τ)

τ (y) for every x, y ∈ dom(PR(τ));
2. for every start(ai), end(ai) ∈ dom(PR(τ)), there is a (unique) token τ ′ = (xi, vi, d) ∈ Txi

such that start-time(τ ′) = LR(τ)
τ (start(ai)) and end-time(τ ′) = LR(τ)

τ (end(ai)).

When clear from the context, we omit the superscript when referring to blueprint
instantiations. Intuitively, Lτ is a witness of the satisfaction of R when triggered by some
τ ∈ T RΓ . We define a partial order over blueprint instantiations such that L1 ≤ L2 if and only
if dom(L1 ) = dom(L2 ) and L1(x) ≤ L2(x) for each x ∈ dom(L1 ). The following statement
is fundamental in proving that the symmetry-breaking condition given for the automaton
states in Definition 9 does not affect the completeness of the construction.

I Lemma 12. Let P = (SV, S) be a timeline-based planning problem that admits a solution
plan Γ. Moreover, given R ∈ S, let τ1, τ2 ∈ T RΓ be two tokens that trigger R, such that
end-time(τ1) ≤ start-time(τ2) and R(τ1) = R(τ2).

There exist two blueprint instantiations, Lτ1 for τ1 and Lτ2 for τ2, such that Lτ1 ≤ Lτ2 .
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Proof. Since Γ is a solution plan for P , there are two blueprint instantiations, Lτ1 for τ1 and
Lτ2 for τ2. If Lτ1 6≤ Lτ2 , then we define blueprint instantiation L′τ1

for τ1 such that L′τ1
≤ Lτ2 .

Note that, since R(τ1) = R(τ2), dom(Lτ1 ) = dom(Lτ2 ). We define L′τ1
: dom(Lτ1 )→ N as

follows. For every x ∈ dom(Lτ1 ):

L′τ1
(x) =

{
Lτ1(x) if Lτ1(x) ≤ Lτ2(x)
Lτ2(x) if Lτ2(x) < Lτ1(x)

It is clear that L′τ1
≤ Lτ2 . We have to show that L′τ1

is a blueprint instantiation for τ1. To
see that Item 1 of Definition 11 holds, let x �PR(τ1) y. We distinguish three cases:
1. if both L′τ1

(x) = Lτ1(x) and L′τ1
(y) = Lτ1(y) or both L′τ1

(x) = Lτ2(x) and L′τ1
(y) =

Lτ2(y), then L′τ1
(x) ≤ L′τ1

(y) holds due to Lτ1 and Lτ2 being blueprint instantiations;
2. if L′τ1

(x) = Lτ1(x) and L′τ1
(y) = Lτ2(y), then Lτ1(x) ≤ Lτ2(x) holds by definition. By

x �PR(τ) y, we know that Lτ2(x) ≤ Lτ2(y), hence Lτ1(x) ≤ Lτ2(y), thus L′τ1
(x) ≤ L′τ1

(y);
3. if L′τ1

(x) = Lτ2(x) and L′τ1
(y) = Lτ1(y), then Lτ2(x) < Lτ1(x) holds by definition. By

x �PR(τ) y, we know that Lτ1(x) ≤ Lτ1(y), hence Lτ2(x) < Lτ1(y), thus L′τ1
(x) ≤ L′τ1

(y).
To see that Item 2 holds, consider start(ai), end(ai) ∈ dom(PR(τ1 )). Note that it cannot
be the case that L′τ1

(start(ai)) = Lτ1(start(ai)) but L′τ1
(end(ai)) = Lτ2(end(ai)) (or vice

versa), because that would imply that Lτ1(start(ai)) ≤ Lτ2(start(ai)) ≤ Lτ2(end(ai)) <
Lτ1(end(ai)), which is impossible because, by hypothesis, Lτ1 maps start(ai) and end(ai)
into the endpoints of a single token τ , that cannot contain another token for the same variable.
Thus, we have either L′τ1

(start(ai)) = Lτ1(start(ai)) and L′τ1
(end(ai)) = Lτ1(end(ai)) or

L′τ1
(start(ai)) = Lτ2(start(ai)) and L′τ1

(end(ai)) = Lτ2(end(ai)), and the thesis follows since
Lτ1 and Lτ2 are blueprint instantiations themselves. J

We can now prove the direct correspondence between solution plans and accepted words.

I Lemma 13. Given a qualitative timeline-based planning problem P and its associated
automaton AP , there is a solution plan for P if and only if L(AP ) 6= ∅.

Proof. Let P = (SV, S) be a qualitative timeline-based planning problem, and let AP =
(QP ,ΣP , qIP , qFP ,∆P ) be the automaton associated with P by Definition 9. It is easy to see
that, given a word σ accepted by AP , the plan encoded by σ is a solution plan for P . We
thus focus only on the proof of the other direction.

Fix a solution plan Γ = {Tx | x ∈ SV} for P , and denote σ = 〈σ0, . . . , σm〉 the
corresponding word. We wish to prove that σ is accepted by AP . This direction of the proof
needs some care because of the symmetry-breaking condition of Item 1 of Definition 9: we
have to prove that it does not make AP lose some essential solutions.

We proceed by inductively defining a particular sequence Υ = 〈Υ0, . . . ,Υm+1〉 of sets
of viewpoints. Then, we prove that each Υi is a state of AP , and that Υ is an accepting
run of AP . We also define (again, inductively) a sequence of covers of TΓ, which will be
used for the inductive construction of Υ: for i ∈ {0, . . . ,m}, we define the cover {T iV}V∈Υi of
TΓ, where, intuitively, T iV is the set of tokens in TΓ whose satisfaction is being taken care
of by V in Υi. At first, we define Υ0 = {(BR(τ),minimals(BR(τ))) | R ∈ S, τ ∈ T RΓ } i.e.,
the set of minimal viewpoints over the blueprints of the existential statements involved in
the satisfaction of P by Γ, and we define the cover {T 0

V }V∈Υ0 of TΓ as follows: for every
R ∈ S and τ ∈ T RΓ , τ ∈ T(BR(τ),minimals(BR(τ))). Then, for all i ∈ {0, . . . ,m}, we choose the
following elements of the sequence as follows. For each V = 〈BE ,K〉 ∈ Υi and τ ∈ T iV let
us define the set F τ,Vi = {x ∈ dom(BE) | LEτ (x) = i}. It is possible to show that for each
V ∈ Υi and τ ∈ T iV there is a unique viewpoint, denoted by next(V, τ), such that V σi→ V′
and consumed(V,V′) = F τ,Vi . Then, we take Υi+1 = {next(V, τ) | V ∈ Υi, τ ∈ T iV}, and we
define the cover {T i+1

V }V∈Υi+1 of TΓ as follows: for each V ∈ Υi and τ ∈ T iV, τ ∈ next(V, τ).
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Now, we argue that each Υi satisfies the symmetry-breaking condition (Item 1 of Defini-
tion 9). Let V = 〈BE ,K〉,V′ = 〈BE ,K ′〉 ∈ Υi, with K 6= K ′, and let τ ∈ T iV and τ ′ ∈ T iV′ .
We can suppose w.l.o.g. that end-time(τ) ≤ start-time(τ ′). By Lemma 12, we can suppose
as well that Lτ ≤ Lτ ′ . Now, let SV and SV′ be the set of elements covered by K and K ′,
respectively, i.e., SV = {x ∈ dom(PE) | ∃k ∈ K . x �BE k}. For any x ∈ dom(PE), Lτ (x) ≤ i
iff x ∈ SV and Lτ ′(x) ≤ i iff x ∈ S′V, thanks to the way in which we defined Υi. Then, it
follows that SV′ ⊆ SV, which implies that K dominates K ′, hence V′ � V.

As a consequence, Υ is a sequence of AP states and we can check that (Υi, σi,Υi+1) ∈ ∆P

for all i ∈ {0, . . . ,m}. Thus, Υ identifies a run of AP if we replace Υ0 with qIP .
To conclude the proof, we only need to show that the above run is accepting, i.e., that

Υm+1 contains only final viewpoints. This is indeed ensured by construction, since Lτ (x) ≤ m
for every token τ ∈ T RΓ , every R ∈ S, and every x ∈ dom(PR(τ)). Therefore, the word σ is
accepted by AP . J

We can now finally state our main result.

I Theorem 14 (Complexity of qualitative timeline-based planning). Whether a qualitative
timeline-based planning problem P admits a solution plan can be decided in polynomial space.

Proof. Given P = (SV, S), let AP be its associated automaton as specified by Definition 9.
By Lemma 13, we know that L(AP ) 6= ∅ if and only if P admits a solution plan. Then,
we can build AP and check for the emptiness of its language, which in turn consists of
checking for the reachability of the final states. By Lemma 10, the size of AP is at most
exponential in the size of P . Since this automaton can be constructed on-the-fly and solving
reachability requires logarithmic space in the size of the automaton, we get that the qualitative
timeline-based planning can be decided in polynomial space. J

4 Hardness

In this section, we show that qualitative timeline-based planning is PSPACE-hard. The proof
is by a reduction from the emptiness problem for the intersection of n finite automata that
is known to be PSPACE-complete (see [14]).

I Theorem 15 (Qualitative timeline-based planning is PSPACE-hard). Let P = (SV, S) be a
qualitative timeline-based planning problem. Deciding whether P admits any solution plan is
PSPACE-hard.

Proof. We provide a reduction from the emptiness problem for the intersection of n finite
automata. For the main definitions on finite automata, we refer the reader to [14].

For i ∈ {1, . . . , n}, let Ai = (Σ, Qi, q0
i , δi, q

∗
i ) be a deterministic finite automaton, where

Σ is a finite alphabet, Qi is a finite set of states, q0
i is the initial state, δi: Qi × Σ→ Qi is

the transition function, and q∗i is the final state.
Denote by A = A1× . . .×An the finite automaton obtained by the standard construction

to capture the intersection of the languages L(A1), . . . ,L(An), where, for i ∈ {1, . . . , n},
L(Ai) denotes the language accepted by Ai. Thus, L(A) = L(A1) ∩ . . . ∩ L(An).

We build a qualitative timeline-based planning problem P such that P admits a solution
plan if and only if L(A) 6= ∅. The overall idea is to model each finite automaton as a different
state variable and then express intersection and acceptance by synchronization rules. More
specifically, P = (SV, S) is defined as follows.
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The set of state variables is SV = {xi | i ∈ {1, . . . , n}}, i.e., we take a variable xi for each
finite automaton Ai, with i ∈ {1, . . . , n}. Each variable xi is equal to (Vi, Ti, Di), where:
1. Vi = Qi × Σ;
2. Di(v) = (1,+∞), for all v ∈ Vi;
3. Ti((q, σ)) = {δi(q, σ)} × Σ, for all (q, σ) ∈ Vi.
The transition function of each state variable mirrors the transition function of the corres-
ponding automaton, while handling the fact that automata are meant to read words over Σ
while state variables only represent state machines, with no language recognition semantics.

The set S contains the following synchronization rules, which are designed in such a way
that state variables change their values synchronously.

The first rule requires the existence of two sets of tokens, each containing exactly a
token from each state variable and such that (i) the first set maps an initial state for each
automaton, (ii) the second set maps a final state for each automaton, (iii) the tokens from
the first set precede those from the second set, and (iv) the tokens in each set start and end
at the same time. Formally:

> →
∨

σ,σ′∈Σ
∃a0

1[x1 = (q0
1 , σ)] · · · a0

n[xn = (q0
n, σ)]a∗1[x1 = (q∗1 , σ′)] · · · a∗n[xn = (q∗n, σ′)] .

end(a0
1) ≤ start(a∗1) ∧

n−1∧
i=1

a0
i = a0

i+1 ∧
n−1∧
i=1

a∗i = a∗i+1. (1)

The remaining rules just synchronize the different state variables so that they are aligned
over tokens that refer to the same input symbol for the corresponding automaton:

ai[xi = (qi, σ)]→
∨

qi+1∈Qi+1

∃ai+1[xi+1 = (qi+1, σ)] . ai = ai+1 (2)

for each qi ∈ Qi, σ ∈ Σ and i ∈ {1, . . . , n− 1}.
To complete the proof, it suffices to show that the above construction is correct, that is,

P admits a solution plan if and only if L(A) 6= ∅
We first show that if L(A) 6= ∅, then P admits a solution plan. To this end, consider

a word σ = σ1 . . . σm accepted by A. By definition, for i ∈ {1, . . . , n}, we know that σ is
accepted by Ai. Let qi = 〈q0

i , . . . , q
m
i 〉 be the sequence of states visited along the run of Ai

over σ. Since σ is accepted by Ai, qmi must be the final state q∗i .
Now, for all i ∈ {1, . . . , n}, let:

Ti = 〈(xi, (q0
i , σ

1), 1), (xi, (q1
i , σ

2), 1), . . . , (xi, (qm−1
i , σm), 1), (xi, (qmi , σ∗), 1)〉

be the timeline corresponding to σ. It can be observed that, by construction, Ti satisfies the
transition function of xi. Moreover, the synchronization rule (1) defined above is satisfied,
since each timeline Ti starts with a token where xi = (q0

i , σ
1) and ends with a token where

xi = (q∗i , σ∗). Moreover, by construction, the tokens are all of the same duration, and
overlapping tokens have the same σ component; thus, the second set of synchronization rules
(2) is satisfied as well. Hence, the plan consisting of the Ti timelines is a solution plan for P .

In order to show that if P admits a solution plan, then L(A) 6= ∅, consider a solution plan
for P consisting of a set of timelines Ti = 〈τ1

i , . . . , τ
mi
i 〉, one for each xi ∈ SV. By the rules

(2), all the tokens of these timelines can be seen as being aligned one over the other forming
a grid, where each column shares a common symbol σ. Moreover, by the triggerless rule (1),
there are two columns of such a grid, say them h and k, with h < k, containing, respectively,
the initial states and the final states for the respective automata Ai. Let σ = σh . . . σk−1

be the sequence of symbols occurring in columns h to k − 1 and let qji be the state of Ai

TIME 2020



16:12 Complexity of Qualitative Timeline-Based Planning

associated with token τ ji , for i ∈ {1, . . . , n} and j ∈ {h, . . . , k}. Finally, by construction,
at each step the transition function of each state variable enforces the token following any
token of the form (q, σ) to be of the form (q′, σ′), where q′ = δ(q, σ), i.e., the evolution of
the timeline mirrors the transition function of the automaton. Thus, for all i ∈ {1, . . . , n},
qi = 〈qhi , . . . , qki 〉 is an accepting run of Ai over σ. Thus, we conclude that σ ∈ L(A). J

5 Concluding remarks

In this paper, we show that the problem of checking the existence of a plan for the qualitative
fragment of timeline-based planning is PSPACE-complete.

The key step in the decision procedure builds a finite automaton that accepts a word
encoding a plan if and only if the plan is a solution of the given instance of the planning
problem. The construction is inspired by the one used by Della Monica et al. [5] to prove
the EXPSPACE-completeness of the general quantitative problem, but adapted to exploit the
distinctive features of the qualitative setting. In particular, blueprints were linear orders
in the general case, accounting for all possible combinations of distances between pairs
of endpoints satisfying the quantitative constraints of the problem. Here, blueprints are
preorders, which compactly represent all the possible ways of matching a particular disjunct
of a rule, leading to a smaller automaton.

The automata-theoretic construction of our solution has some interesting consequences. It
provides a direct algorithm to generate a solution plan by exploiting the standard machinery to
decide the emptiness of finite automata and, moreover, it can be used as a basis for interesting
future research directions. For example, one may show how to perform model checking of
timeline-based systems against Linear Temporal Logic (LTL), still in polynomial space.

The achieved result sheds some light on how a problem of such a high complexity could
form the basis of planning systems that have been deployed in real-world scenarios for the
last three-decades. The quantitative aspect of the problem accounts for a great part of the
complexity, and while temporal reasoning is predominant in these applications, the magnitude
of the involved timestamps does not need to be significantly high. A proper parameterized
complexity analysis of the problem would complete the picture in this regard.

Last but not least, the qualitative fragment appears to be a quite expressive language on
its own, powerful enough to express an interesting class of linear-time temporal properties
including those captured by LTL. It would be interesting to establish the exact relationship
with LTL and possibly characterize this logic in terms of a proper fragment of timeline-based
planning. From a logical standpoint, the synchronization rules can be seen as a fragment of
first-order logic with one successor relation and one quantifier alternation (specifically, with
∀∃ alternation). A key aspect that can be observed is that disjunctions are only allowed
between existentially quantified formulas and, by relaxing this limitation, the complexity
lower bound seems to rise to EXPSPACE again even in the qualitative setting.
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