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Abstract

In this work we analyse basketball play-by-play data in order to evaluate the efficiency of
different five-man lineups employed by teams. Starting from the adjusted plus-minus framework,
we present a model-based strategy for the analysis of the result of partial match outcomes, extending
the current literature in two main directions. The first extension replaces the classical response
variable (scored points) with a comprehensive score that combines a set of box score statistics. This
allows various aspects of the game to be separated. The second extension focuses on entire lineups
rather than individual players, using a suitable extended model specification. The model fitting
procedure is Bayesian and provides the necessary regularisation. An advantage of this approach
is the use of posterior distributions to rank players and lineups, providing an effective tool for
team managers. For the empirical analysis, we use the 2018/2019 regular season of the Turkish
Airlines Euroleague Championship, with play-by-play and box scores for 240 matches, which are
made available by the league website. The results of the model fitting can be used for several
investigations as, for instance, the comparative analysis of the effects of single players and the
estimation of total and synergic effects of lineups monitoring. Moreover, the behaviour of players
and lineups during the season, updating the estimation results after each gameday, can represent
a rather useful tool. basketball analytics, statistical model, play-by-play data, web-crawling, data-
driven decision process.

1 Introduction

In every system that employs human capital, each participant has an assigned task to complete and the
combination of these tasks contributes to the final result. One of the main goals in this framework is
to obtain the best possible outcome more efficiently. To improve the work process, for example, van de
Water and Bukman (2010) propose a method to obtain a balanced team, that is, a team where each
member performs a specific task which maximises the expected output. Team sports competitions
are clear examples of this situation, and therefore the analysis of players’ efficiency is widely studied
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(see, for example, Carmichael, Thomas, and Ward, 2001; Hollinger, 2005; Hughes and Bartlett, 2002;
Yesilyurt, 2014).

From an external viewpoint, the aim is typically the prediction of team performances and there
is an extensive literature on final ranking or on single match outcome predictions; see Haigh (2009)
for a general introduction to quantitative methods in sports and Karlis and Ntzoufras (2009) for
an application to soccer match results. In this respect, the assumption of Poisson distribution for
each team match scoring is adopted in many sports, with the resulting implications of this modelling
approach. Concerning basketball, Shen (2014) and Ruiz and Perez-Cruz (2015) compute match-
winning probabilities under such a model. Manner (2016) introduces time-varying team strengths in
the model and Kvam and Sokol (2006) consider a logistic regression model in a Markov chain setup.
Machine learning algorithms for classification are also used for predicting match results, as done by
Shi et al. (2013) and Yang and Lu (2012). All these results consider the team as a single entity.
Instead, Deshpande and Jensen (2016) consider individual player’s contributions to match-winning
probability at a given time of the game. From an internal perspective, the aim is to determine the
best management of players in order to succeed. Single player’s performance is described by box
scores data that are regularly provided by media. For example, assists, rebounds, points are used to
measure the contribution of each player to the final match result. Masoumzadeh et al. (2016) model
the outputs of a production system and present an application to basketball players. Sport’s literature
focuses mainly on individual efficiency measures.

The most straightforward efficiency measure for a single player is based on the points scored by
her/his team and by the opponent during the time that specific player is on the pitch. This is the
starting point of the Plus/Minus Rating (PM). In the early 2000s, Rosenbaum (2004) introduces a
regression-based version of the PM metric, called Adjusted PM (APM), with application to National
Basketball Association (NBA) data. His proposal considers the computation of the index based on
play-by-play data aggregated over periods of playing time without any substitution for either team,
called shifts. The APM for each player is defined as the estimated regression coefficient in a linear
model where the point differential during each shift (averaged with respect to the number of possessions
for each team) is the response variable. The predictors are the signed dummy variables for all the
players involved in the shift. The model is defined from the perspective of the home team.

In the same period, several authors (e.g. Kubatko et al., 2007; Ilardi, 2007) propose extensions
to the model specification including also other player’s game statistics in order to obtain a more
comprehensive view of the impact of a player during a match or a whole season. Such APM measures
have a noteworthy impact on the field of professional basketball since they represent player’s efficiency
measures adjusted for the other players on the field. However, these methods are prone to some
technical criticism since they entail sparse design matrices and multicollinearity. Therefore, Sill (2010)
and Engelmann (2011) propose regularised versions of APM based on ridge regression, called RAPM.
The improvement in accuracy and robustness of RAPM led to its use also for the analysis of the
performance of players in Major League Soccer (MLS) (Kharrat et al., 2017) and in National Hockey
League (NHL) (Macdonald, 2012). For a more exhaustive account on the subject of PM-based indexes
see Engelmann (2017) and Hvattum (2019).

Nowadays, play-by-play data are recorded in real-time during the match and made available on
the web to practitioners and supporters. This information is used by team managers to build effective
lineups and hence the necessity for more specific efficiency measures naturally arises. This work tries
to tackle this issue, remaining entirely within the realm of the PM measures, which are defined for
the evaluation of performances and not for the prediction of future results. Starting from the RAPM
setting, the main target of the paper is to extend the analysis of play-by-play data in order to provide
a suitable efficiency measure for the performance of entire lineups, defined as five-player units on the
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field for a given team. Indeed, the choice of the best lineup cannot take into account just the compound
of the single player’s capabilities, but should also be based on balancing different aspects of the game,
as, for example, the offensive and defensive capabilities of the team as a whole. Therefore a central
aspect in evaluating the efficiency of a given lineup is played by the interaction among teammates
and by the counteraction of the opponent’s lineup on the field. The specification of a suitable model,
encompassing contributions of both lineup and player, is used to study these effects. Due to the
high dimensionality of the model, regularisation is essential for the estimation task in our proposal,
which replaces ridge regression with a more structured method. To this end, both an empirical Bayes
approach and a full Bayesian treatment are proposed in what follows; see Gelman et al. (2014); Efron
and Hastie (2016) for an introduction.

An innovative feature of our model is the adoption as a response variable of a more comprehensive
performance index rating, rather than the simple point differential; in the sequel, such performance
index rating is simply called overall score. This measure is still based on an aggregation of play-by-play
data at the shift level but it combines a wide set of game statistics for each shift. As a side result,
our score measure can also be viewed as the composition of four sources, providing further insight on
the effective strength of a given lineup: the inside scoring skill (lay-ups, dunks and free shots), the
mid-range shooting skill, the three-pointers shooting skill and the set of complementary skills (assists,
rebounds, blocks and steals), hereafter called other skills.

Finally, a further aim of our proposal is giving to team managers an effective tool for choosing
the best lineup depending on opponent’s lineup, time of the game, current score of the match, and
so on (see Lechner and Gudmundsson, 2012). For team owners and general managers, the proposed
approach can be useful to assess the contribution of a head coach to the performance of the team
(see Berri et al., 2009; Berry and Fowler, 2019, and references therein). From the players’ side, the
trust in the coach improves if the management choices are supported by an objective analysis of
past performances (see, for example, Kao et al., 2017; Zhang and Chelladurai, 2013). To this end,
we propose how to rank players or lineups using the model estimated effects, so as to provide some
support to managers.

An empirical application is developed to illustrate the proposed method. In particular, we apply
the model to the Euroleague Championship data (regular season 2018/2019). The dataset is obtained
by aggregating the play-by-play data for the 240 games of the entire regular season. The raw data are
collected for each play of the game, but the final observational unit is the shift.

The paper is organised as follows. In Section 2, we present the data used for the analysis and some
details about the data handling process. The model used for the estimation of the lineup’s efficiency is
introduced in Section 3. In Section 4 we report the results obtained applying our model to Euroleague
Championship data. Particular attention is devoted to the managerial implications of the proposed
methodology, and Section 5 presents some illustrative examples. Finally, Section 6 contains some
concluding remarks.

2 Data wrangling and data exploration

In this section, the data wrangling process is briefly described, and the results of the exploratory
data analysis are reported. The data concern all the matches of the 2018/2019 regular season of the
Euroleague Championship (240 matches). The league website provides play-by-play data integrated
with the box scores and further interesting information.
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2.1 Data wrangling

The methodology for getting the data is rather sophisticated. The raw data have been obtained
through web data extraction from the Game Center pages of the Euroleague website (https://www.
euroleague.net/) using the Apache Selenium web automation tool. The major difficulty of the data
extraction is due to the fact that those web pages are interactive in nature, making extensive use of
modern Asynchronous Communication (i.e., AJAX) to provide the requested information dynamically.
For this reason, a complex page interaction is needed to display (and, consequently, retrieve) all the
needed information. Specifically, the data in the web pages are extracted only after the page content
has been modified and rendered by the browser JavaScript engine. This process is achieved by querying
the page dynamic Document Object Model (DOM), that allows to programmatically access and inspect
the visual objects in the page. On overall, this automated web scraping task is performed in parallel
and all the machinery for this task has been written in Python 3 (Van Rossum and Drake, 2009). The
scraped content is collected in the form of ‘pandas’ dataframes and stored in tabular format.

The R statistical software (R Core Team, 2020) and, in particular the stringi (Gagolewski, 2019)
and stringr packages (Wickham, 2019), have been used for the data reorganisation. Both the box
scores data and the play-by-play information are collected for all the considered matches. A play is
defined as an event during the possession involving a positive or negative value for the attacking team,
and considered as relevant for the result of the game. In particular, as introduced in Grassetti et al.
(2019a,b), we compute a new score measure assigned to the offensive team and to the defensive team
with opposite signs. The more customary outcome given by the points scored in each play is also
gathered. Moreover, other features are collected, such as information concerning the time of the event
and game status. Finally, the box score data have been used to identify the five-man unit involved in
each play. This information is essential to organise the plays in shifts, as required for the analyses.

2.2 The score variable

The score measure is defined as in Grassetti et al. (2019a). In particular, the scores reported in Table
1 are assigned with opposite signs to the offensive team and the defensive team, respectively. The
events considered in the definition of the overall scores are those deemed as important for the outcome
of the play.

Table 1: Scores of the events used in the computation of the outcome measure for each play.

Value Events

-1 missed free-throw, turnover or offensive foul
-0.5 missed shot (two points or three points shots)
0.5 assist

1 steal, offensive or defensive rebound, block, scored free-throw or received foul
2 scored shot
3 scored three-pointer

Some records in the raw data are replicated because some events are reported for both teams.
For instance, steals and personal defensive fouls always correspond to turnovers and received fouls,
respectively. The duplications have been removed. The resulting score measure is more comprehensive,
but it is not too far from the final result of the match.

https://www.euroleague.net/
https://www.euroleague.net/
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A further interesting analysis regards the disentanglement of the overall score into four components.
As introduced in Section 1, these four aspects are related to the close and mid-range shooting capability,
the three-pointers performance and the sum of the other skills entering the overall score computation:
turnovers, fouls, assists, steals, rebounds and blocks. Indeed, these other skills strongly affect both the
offensive and defensive performances of a team and hence the observed score. Figure 1 displays the
relationship between the overall score and its four components. While the linear relationship between
these score contributions and the total measure is apparent, the pairwise relationship among the
components is weak. This suggests that the different kinds of contributions may actually correspond
to different aspects of the player’s and lineup’s performences.

Figure 1: Relationship between the overall score and its four components; pairwise correlations below
the main diagonal. As the sample size is very large all the correlations are significantly different from
zero.

The analysis that follows has been developed considering the overall score, which seems more
comprehensive and informative than the number of points used in the original APM and RAPM
methodology. Figure 2 visualises the relationship between the two variables. There is a strong linear
relationship (correlation 0.83), but the marginal distribution of the overall score is better suited for
the linear regression analyses that follow, as it is smoother and without apparent mass points.
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Figure 2: Observed points and overall scores for the shift data, with marginal distributions.

2.3 Data exploration

The cleansed dataset consists of 7923 shifts and 37683 possessions, from 240 matches played by the
16 teams of Euroleague Championship. The total number of lineups in the dataset is 3894 and the
players involved in the games are 247.

The following preliminary analyses aim at describing the characteristics of the different teams in
terms of lineups’ and players’ usage. Table 2 shows that a few teams present a small variability in the
number of possessions at the lineup level, such as Darussafaka Istanbul and Gran Canaria. For other
teams, such as Anadolu Istanbul and Olimpia Milan, the number of possessions varies substantially
across different lineups. An interesting result is that, in this framework, the differences observed
among teams are less pronounced than in the case of the Italian Lega A Championship (the national
league considered in Grassetti et al., 2019a,b). Moreover, the behaviour of Olimpia Milan team, the
one taking part in both leagues, is rather different in the two championships. This evidence can be
interpreted as the result of a different approach to match management in the two frameworks.

A similar analysis is developed from the point of view of the players. The results of this further
investigation (see Table 3) show that in general there are some differences among teams in the player’s
management approach, and the patterns of this differentiation are similar to the ones observed in the
analysis of lineups.

The plots in Figure 3 visualise the choices of four selected team coaches for the management of
lineups and players. The left panels summarise the distribution of the number of possessions for
lineups. By observing the cumulative probability functions, some different patterns can be found. For
instance, Olimpia Milan main lineups play a quite higher number of possessions than the corresponding
units of Real Madrid. The four teams employ a roughly similar number of players, while the Olimpia
Milan team fields a much smaller number of lineups than the other three teams. The cumulative
frequency distributions regarding the number of possessions is similar across the four teams, with the
values of the Gini concentration coefficient equal to 0.67 for Olimpia Milan, 0.63 for Real Madrid, 0.59
for Buducnost Podgorica and 0.56 for Panathinaikos Athens. More variation is found by extending
the analysis to the full set of 16 teams, with the Gini concentration coefficient varying in the range
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Figure 3: Distribution of the number of possessions for four selected teams. Left panel: cumulative
distribution of the number of possessions per lineup, with % of possessions played by the most often
fielded lineup. Right panel: barplot of number of possessions per player.
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Table 2: Summary statistics for the number of possessions by lineup.
No. of

Team Lineups Mean Median S.D. Max. C.V.

Anadolu Istanbul 140 33.1 9.5 62.9 529 1.9
Barcelona 192 24.2 13.5 38.0 372 1.6
Baskonia Vitoria 183 26.5 14.0 39.9 278 1.5
Bayern Munich 225 20.8 8.0 38.6 292 1.9
Buducnost Podgorica 242 18.9 10.0 30.5 304 1.6
CSKA Moscow 225 21.6 9.0 30.9 198 1.4
Darussafaka Istanbul 375 12.2 7.0 14.2 109 1.2
Fenerbahce Istanbul 214 21.3 11.0 33.5 331 1.6
Gran Canaria 294 15.7 11.0 18.2 148 1.2
Khimki Moscow Region 248 18.9 11.0 25.1 216 1.3
Maccabi Tel Aviv 286 16.5 8.0 35.1 470 2.1
Olimpia Milan 178 27.6 9.0 52.3 371 1.9
Olympiacos Piraeus 289 16.1 8.0 28.5 269 1.8
Panathinaikos Athens 249 19.5 12.0 30.4 283 1.6
Real Madrid 244 19.4 8.0 40.1 516 2.1
Zalgiris Kaunas 310 15.6 7.0 27.2 227 1.7

Table 3: Summary statistics for the number of possessions by player.
No. of

Team Players Mean Median S.D. Max. C.V.

Anadolu Istanbul 13 1783.5 1747.0 1161.4 3284 0.7
Barcelona 13 1786.2 2011.0 800.8 2860 0.4
Baskonia Vitoria 15 1614.7 1674.0 1168.8 3103 0.7
Bayern Munich 14 1675.4 1811.5 1012.1 3019 0.6
Buducnost Podgorica 19 1201.8 1199.0 994.8 3128 0.8
CSKA Moscow 15 1616.7 1955.0 1084.6 3218 0.6
Darussafaka Istanbul 15 1519.3 1365.0 703.6 2698 0.5
Fenerbahce Istanbul 16 1427.5 1296.5 1126.3 2945 0.9
Gran Canaria 20 1154.2 1205.5 794.2 2426 0.7
Khimki Moscow Region 16 1463.8 1432.0 946.9 2746 0.7
Maccabi Tel Aviv 15 1571.7 1806.0 1052.5 2892 0.6
Olimpia Milan 15 1636.0 1491.0 1250.4 4146 0.8
Olympiacos Piraeus 14 1665.4 1487.0 986.9 3082 0.7
Panathinaikos Athens 15 1620.7 1385.0 932.3 3839 0.7
Real Madrid 16 1476.2 1688.5 887.5 2634 0.5
Zalgiris Kaunas 17 1421.8 1078.0 1160.8 3055 1.1

[0.51, 0.70]. For what concerns the coach management of players, visualised by the right panels, the
different choices made by teams are evident. Such variation is quantified by the Gini concentration
index for the distribution of the number of possessions per player, ranging between 0.26 and 0.48.

Figure 4 displays the performance of players and lineups for the four selected teams, measured
as the average score differential between home and away teams. The averages are represented as a
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function of the number of possessions, and they are multiplied by 100. This is customary in the APM
literature since an NBA game is roughly made of 100 possessions. These plots highlight that, for the
lineups, the variability of the average score is inversely related to the number of possessions played.
The number of possessions ranges from 1 to more than 500. The plots on the right panel represent the
average scores for each player in the four selected teams. From these plots, it is clear that the average
outcomes for Olimpia Milan players are in general slightly negative, but for one player presenting a
large average score, though related to a small number of possessions. On the contrary, most of Real
Madrid players present a positive and non-negligible effect. The opposite thing can be observed for
Buducnost Podgorica players. Finally, the plot for Panathinaikos Athens shows a balanced number of
positive and negative average scores.

Figure 4: Average score of each lineup (left panels) and each player (right panel) for four selected
teams as a function of the number of possessions.

In the subsequent analyses, the data corresponding to the so-called garbage time have been dis-
carded since the information content is very low, if not detrimental. We defined this condition as
the period of the match concentrated in the last 5 minutes with 20 or more points differential. The
total number of excluded shifts is 170, and about 100 lineups are excluded from the model estimation
procedure. All the lineups removed from the analysis have played three shifts at most.
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3 Model-based analysis

The regression models for lineup’s and player’s effects are defined as follows. For the case of lineups,
the starting point inspired from the APM literature is a linear model for the response yt of shift t,
with t = 1, . . . , T ,

yt = β0 + µh[t] − µa[t] + εt , (3.1)

where, yt is the measure of the outcome of each shift and εt is a normal error term. More precisely,
the response in (3.1) is defined as the difference between the mean score of the home and of the away
teams for each shift. Where only one team produces a score in a shift, the mean outcome of the
other team is replaced by the grand mean for the entire sample, as customary in the APM analysis.
Similar considerations would apply in case the number of points, or any other component of the score
measure, is taken as the response variable. As just introduced, we consider all the matches of the
regular season, for which T = 7752 (after excluding the shifts played in garbage time). The vector of
lineup’s effects µ has length N , equal to the total number of lineups (N = 3837 in the data at hand).
The notation h[t] and a[t] defines the lineup for the home and away teams for shift t, respectively, i.e.
h[t] and a[t] take a value in the set {1, . . . , N}.

The model for player’s effects is very similar, with the difference that each shift entails ten different
players, five for each team, rather than just two teams. Equation (3.1) is then replaced by

yt = β0 +
5∑
j=1

γhj [t] −
5∑
j=1

γaj [t] + εt , (3.2)

where γ is the vector of player’s effects, with length M (with M = 247 for the data at hand). Here
the two functions hj [t] and aj [t] identify the j-th player involved in shift t, for home and away team
respectively, so that each of these functions takes value in the set {1, . . . ,M}. This model specification
is very similar to the one adopted by Deshpande and Jensen (2016) in a different framework.

3.1 Model extensions

Models (3.1) and (3.2) can be extended in various directions, and we propose two possibilities. The
first one is the inclusion of some additional covariates, that may be of some interest. A further
modification entails considering the effects of both player and lineup in the same model specification.
The underlying logic is the same driving the inclusion of main and interaction effects in an analysis of
variance model since lineup’s effects could be viewed as a sort of high-order interaction among players.
The resulting model, expressed in matrix form, is given as follows

y = Xβ + Z(l)µ+ Z(p) γ + ε . (3.3)

Here y is the vector collecting all the response variable values, and X is the design matrix for additional
covariates, with an associated vector of coefficients β that includes the intercept. Furthermore Z(l) and
Z(p) are the two design matrices for lineup’s and player’s effects, respectively, as defined in equations
(3.1) and (3.2). Similarly, µ and γ collect all the lineup’s and player’s effects. Notice that the two
design matrices Z(l) and Z(p) are rather sparse since they have only two non-zero elements in each row
in the case of lineups and ten non-zero elements in each row in the case of players. For the Euroleague
data, this results in a sparsity around 99.5% for Z(l) and around 96% for Z(p).

It should be noted that in all the models the response variable for each shift is averaged over
the observed number of possessions, so that suitable weights must be employed in the estimation
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procedure. This is achieved by assuming the following normal distribution for each element of ε

εt ∼ N
(

0,
σ2

nt

)
t = 1, . . . , T , (3.4)

where nt is the number of possessions for shift t. In the data at hand, the number of possessions per
shift varies between 1 and 30, with a median equal to 4.

3.2 Estimation of the effects of lineup and player

The estimation of µ and γ requires a regularisation technique, due to their large dimensions. The
RAPM method of Sill (2010) estimates γ by means of ridge regression, but a more flexible route is
given by empirical or full Bayesian approaches that achieve regularisation by treating the effects of
lineup (or player) as normal random variables.

The estimation based on empirical Bayes and that based on ridge regression are indeed related (e.g.
Ruppert et al., 2003; Efron and Hastie, 2016) and essentially differ only in the approach used to select
the regularisation parameter. Whereas for ridge regression the tuning parameter is usually estimated
by cross-validation, in the empirical Bayes approach the variance of random effects is estimated by
(Restricted) Maximum Likelihood Estimation (MLE). An important advantage of the empirical Bayes
approach lies in the simple treatment of the extended model (3.3), whose estimation via ridge regression
requires instead the tuning of two parameters.

Another possibility is given by a full Bayes approach, which offers some further theoretical and
practical advantages (Gelman et al., 2014). The method supplements the likelihood function with
prior distributions for the variance components and fixed effects. Due to its flexibility and smooth
implementation, this is our main estimation proposal.

To wind up, the full set of distributional assumptions for model (3.3) adopted here is given as
follows. For the lineup’s and player’s effects, independent normal distributions are specified

µh ∼ N
(
0, σ2µ

)
h = 1, . . . , N , γj ∼ N

(
0, σ2γ

)
j = 1, . . . ,M , (3.5)

and these assumptions plus that on the error term (3.4) are shared with the Bayesian approach.
Furthermore, prior distributions are assumed for β and the three standard deviations σµ, σγ , σ. Here
we adopt weakly informative priors (Gelman et al., 2014, §5.7), resulting in independent zero-mean
normal distribution with a (moderately) large standard deviation σ0 for the components of β, and Half-
Cauchy distributions with a (moderately) large scale parameter A for the three standard deviations.
Due to the range of the response values, which have been inflated by multiplication by 100, we set
the values of σ0 and A to 100 and 10, respectively. The former choice implies a very diffuse prior
for the regression coefficients, whereas the latter corresponds to prior distributions that “even in the
tail, they have a gentle slope (unlike, for example, a half-normal distribution) and can let the data
dominate if the likelihood is strong in that region”, as stated by Gelman (2006, §4.4).

On the computational side, the log likelihood function plus the log prior have been coded using
the R package TMB (Kristensen et al., 2016), which allows for highly-efficient implementation using
C++ templates of both empirical Bayes and modal estimation (MAP) of model (3.3). The package
employs automatic differentiation to obtain the gradient of the objective function, and it handles
sparse matrices efficiently. The R package tmbstan (Monnahan and Kristensen, 2018) allows to sample
from the posterior distribution of the model parameters given the data using the R interface to the
Stan probabilistic programming language (Stan Development Team, 2020), resulting in a very smooth
and reliable implementation of the full Bayesian approach.
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Figure 5 represents scatterplots of estimates of lineup’s effects µ and player’s effects γ obtained
by the described route for the empirical Bayes approach (MLE label), modal estimation (MAP label)
and posterior means based on MCMC sampling (Full Bayes label). It is apparent that the MLE and
MAP results are nearly the same, yet adding the log prior to the log likelihood function facilitates the
numerical optimisation. Indeed, MAP estimation takes just a few seconds, whereas the log likelihood
maximisation for the empirical Bayes approach may be stuck into local maxima, thus requiring close
monitoring of the maximisation process. A few minutes are instead required for posterior sampling,
but again there is an almost perfect positive correlation between posterior modes and posterior means,
as shown in Figure 5. The shrinkage of posterior means towards zero is more pronounced, and the full
Bayes estimates are actually attenuated compared to the MAP or empirical Bayes estimates. We note
that the inferences resulting from MAP estimation or Bayesian sampling are essentially the same, and
the fact that the former may be obtained almost instantaneously may be appealing for some on-line
applications. On the other hand, the availability of posterior samples offers some advantages, as it
will be illustrated in what follows.

Figure 5: Player’s (lower panels) and lineup’s (upper panels) estimated effects obtained with different
estimation methods. Bisectors added to each plot.

We then present some parameter estimates. In particular, the MAP estimates and the posterior
means for model (3.3) are reported in Table 4. Some different explicative variables were considered,
but the only one that seems to matter is the factor identifying the quarter in which the shifts are
played. Such factor is included in the model specification by using the dummy variables for the
match quarters. It is apparent that the overall advantage for home teams represented by the positive
estimated intercept is compensated by negative values of the estimated coefficients for the dummy
variable indicating the quarters, and the fourth one in particular. Furthermore, MAP estimates, when
the response variable is given by the four components of the overall score, are reported in Table 5.
Remarkably, the estimated coefficients and variance components differ across the various responses,
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supporting the fact that they summarise different aspects of the game.

Table 4: Overall score model estimates: MAP and full Bayes estimated fixed effects coefficients, with
standard errors in brackets and 95% posterior intervals. Last quarter includes overtimes.

MAP Full Bayes
Variable Estimate (S.E.) Estimate 95% Posterior Int.

Intercept (Home) 10.69 (3.89) 10.75 4.10 17.49
Second Quarter -1.53 (5.39) -1.54 -10.97 7.76
Third Quarter -4.35 (5.66) -4.33 -13.95 5.21
Last Quarter -9.84 (5.52) -9.95 -19.79 -0.48

log σµ 2.85 (0.22) 2.64 1.79 3.11
log σγ 1.86 (0.16) 1.85 1.56 2.11
log σ 5.95 (0.01) 5.95 5.94 5.97

Table 5: Estimated fixed effects coefficients (via MAP) for different choice of the response variable
with standard errors in brackets. Last quarter includes overtimes.

Close Mid-Range Three Other
Variable shooting shooting pointers Skills

Intercept (Home ) 7.50 (1.68) 0.05 (1.35) -0.84 (1.69) 4.11 (2.17)
Second Quarter -0.89 (2.24) -0.88 (1.88) -0.72 (2.32) 0.86 (3.00)
Third Quarter -2.50 (2.37) -3.67 (1.93) 4.61 (2.41) -2.68 (3.06)
Last Quarter -3.99 (2.32) -4.35 (1.90) 0.72 (2.57) -2.44 (3.08)

log σµ 1.73 (0.29) 2.06 (0.15) 2.60 (0.09) 1.44 (0.50)
log σγ 1.24 (0.12) 0.27 (0.42) 1.01 (0.21) 1.04 (0.17)
log σ 5.08 (0.01) 4.88 (0.01) 5.14 (0.01) 5.36 (0.01)

The assumptions of model (3.3) can be checked in various way. For a preliminary inspection, we
obtained some plots of the residuals based on the empirical Bayes estimate. The plots do not display
any shortcomings. More incisive evaluations are possible for assessing the quality of the Bayesian
model fit by applying the methodology of posterior predictive checking (Gelman et al., 2014, §6.3),
which is readily applied using the posterior samples. Figure 6 reports some plots obtained by the
bayesplot package (Gabry and Mahr, 2020). The plots compare the observed score standardised
by the number of possessions (i.e. yt

√
nt) with some response vectors simulated from the predictive

distribution. The overall message is that the model provides a good fit, despite a somewhat attenuated
tendency in reproducing scores very close to zero, and some occasional outliers.

In closing this part, we compare the empirical Bayes estimates with ones given by a penalised pro-
cedure based on ridge regression as endorsed by RAPM. The implementation of ridge regression for
model (3.3) requires the writing of some ad-hoc code, for evaluating the Generalised Cross-Validation
(GCV) score (Golub et al., 1979) over a two-dimensional grid of values for the tuning parameters of
lineup’s and player’s effects, respectively. Our code making use of sparse linear algebra requires con-
siderably longer computational time than any other method employed. Furthermore, ridge regression
provides only point estimates rather than a full set of inferential outcomes. At any rate, the ridge
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Figure 6: Bayesian predictive model checking: comparison of the standardised observed score with
some samples simulated from the predictive distribution. Top panel, left: boxplots of observed response
and of six simulated samples. Top panel, right: density plots of observed variable and of 500 simulated
samples. Bottom panel: 50% and 95% intervals computed using the predictive distribution, with actual
values of the observed score superimposed, sorted by the number of possessions.

regression results for lineup’s effects and player’s effects turned out to be very close to the empirical
Bayes estimates, as displayed in Figure 7. Moreover, classic theory on Best Linear Unbiased Pre-
dictor estimation of random effects allows to map the tuning parameters of ridge regression into the
parameter space of model (3.3) (e.g. Robinson, 1991). In the case under study, the ridge regression
estimates correspond to log σ̂µ = 2.92, log σ̂γ = 1.75 and log σ̂ = 5.95, respectively, suggesting that
ridge regression provides less smoothing for lineup’s effects and more for player’s effects compared
to the full Bayes approach. Yet, the three estimated variance components are well inside the 95%
posterior intervals reported in Table 4.

4 Analysis of estimated effects of lineup and player

The results of the model fitting allow for several investigations and, to this end, some observations are
in order. Considering the model specification (3.3), the outcome of the estimation procedure can be
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Figure 7: The comparison between empirical Bayes and ridge regression results: estimated lineup’s
effects (left panel) and player’s effects (right panel). Bisectors added to each plot.

used to define different measures for each lineup. The first one is given by the sum of the estimated
effects γ̂ (which can be positive or negative) of the players entering the lineup, that is defined without
considering any interaction among the five components. The interaction effect is caught instead by
the estimated µ̂, which could be labelled as a pure lineup effect. Note that we can also define the
total lineup effect as the sum of the two aforementioned effects. The latter is employed in Figure 8,
which is the estimated counterpart of Figure 4 since it reports the estimated effects for lineup and
players for the same four teams. Comparing the two figures, some adjustments are apparent since
the estimates take into account the different lineups and players which are simultaneously present
on the field. The shrinkage provided by regularisation is also noteworthy. The most relevant finding
concerns the location of the estimated total lineup effects, which depends on the quality of the overall
performance. For example, the majority of the Real Madrid lineups have a positive estimated effect,
whereas the opposite holds for the Buducnost Podgorica team.

Furthermore, it is of interest to investigate the connection between the two sets of estimates, µ̂
and γ̂. To this end, Figure 9 displays the relationship between the pure lineup effects and the sum of
player’s effects, for the model estimated using the overall score as a response variable. The observed
correlation is positive, as suggested by the smoother, yet the kind of information captured by the pure
lineup effect is only partially observed in the sum of the player’s effects. In other words, the effect of
interaction among players of the same lineup is real, and it is far from being captured by the simple
sum of individual player’s effects. Similar plots, not shown, are obtained when the four components of
the overall score are considered as the response variable, extending the same conclusion to the various
aspects of the game.

To enhance the preliminary analysis on the overall score reported in Section 2.3, further consider-
ations could be made on the separate estimated lineup’s effects associated with the four components
of the score shown in Figure 1. Here we are referring to the total lineup effect, as defined above. The
relationship between the lineup’s effects estimated when the response variable equals the overall score



4 ANALYSIS OF ESTIMATED EFFECTS OF LINEUP AND PLAYER 16

Figure 8: Estimated total effects of each lineup (left panels) and of each player (right panel) for four
selected teams as a function of the number of possessions.

and the corresponding measures obtained, when the response variable is replaced in turn by the four
components, lead to some plots very similar to those in Figure 1. Again, the observed relationships
among different components are rather diverse, testifying the intrinsic multi-dimensionality of the shift
outcomes.

The estimation of total lineup effects for the different responses is summarised at the team level in
Table 6. Notice that the sum of the disentangled estimated components is close but not equal to the
results based on the overall score since the models related to the single components are independently
estimated. The table reports the averages of the different estimated total lineup effects, weighted by
the number of possessions, along with the corresponding team ranking obtained from the averages.
For instance, the Real Madrid team presents a positive global effect which is split into the four
components, suggesting that all but the mid-range shooting contribute to the positive score. Instead,
Khimki Moscow Region presents a negative global evaluation, but it has the fifth score across all teams
for what concerns three-pointer efficiency. This is rather abridged, and it mirrors the team statistics
about the different aspects, but it hints at the possibility for a single team to evaluate its different
lineups in terms of different efficiency measures. This has some potential for team management, as
further illustrated in the following section.
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Figure 9: Estimated lineup’s effects and sum of the player’s effects for the overall score, with a robust
smoother added.

Table 6: Averages of estimated total lineup effects for the overall score and its four components and
the corresponding team rankings (in brackets). Teams are ordered according to the official standings
at the end of the regular season.

Overall Close Mid-Range Three Other
Teams score shooting shooting pointers skills

Fenerbahce Istanbul 16.17 (1) 3.18 (6) 0.88 (4) 7.17 (1) 4.19 (3)
CSKA Moscow 12.62 (3) 4.65 (4) -0.10 (8) 3.83 (4) 4.38 (2)
Real Madrid 14.51 (2) 5.25 (3) -0.88 (14) 5.32 (3) 4.81 (1)
Anadolu Istanbul 8.85 (5) 1.96 (8) 1.40 (3) 6.24 (2) -0.60 (11)
Barcelona Lassa 5.06 (7) 5.67 (2) -0.147 (9) -3.85 (16) 3.24 (7)
Panathinaikos Athens 3.96 (9) 2.18 (7) 2.60 (1) -2.76 (13) 1.20 (8)
Baskonia Vitoria 7.22 (6) 3.44 (5) -0.17 (11) -0.03 (9) 3.86 (4)
Zalgiris Kaunas 9.68 (4) 9.25 (1) 0.60 (6) -3.60 (15) 3.60 (5)
Olympiacos Piraeus 4.43 (8) -0.51 (10) 1.73 (2) -1.37 (11) 3.53 (6)
Maccabi Tel Aviv 1.24 (11) -1.28 (11) 0.83 (5) 0.98 (7) 0.61 (9)
Bayern Munich 1.34 (10) 0.36 (9) -0.16 (10) 0.88 (8) 0.44 (10)
Olimpia Milan -0.77 (12) -1.54 (12) -0.80 (13) 2.82 (6) -0.92 (12)
Khimki Moscow Region -5.77 (13) -5.67 (15) -0.04 (7) 2.95 (5) -2.99 (14)
Gran Canaria -8.38 (14) -4.06 (14) -2.03 (16) -0.14 (10) -1.32 (13)
Buducnost Podgorica -17.04 (16) -6.54 (16) -0.35 (12) -1.70 (12) -7.53 (16)
Darussafaka Istanbul -15.33 (15) -1.65 (13) -1.75 (15) -2.86 (14) -7.30 (15)



5 TEAM MANAGEMENT AND RANKING ISSUES 18

5 Team management and ranking issues

The management of a sports team can be viewed as a subjective decision process which can be
supported by advanced statistical analyses based on the available data on past matches. In this
section, we discuss the possibility of using the estimated random effects defined in Section 3 in order
to compare players and lineups by means of standardised measures.

There is a substantial agreement in stating that the quality of a sports team is not simply the sum
of the individual abilities of the players since a team is a collection of interdependent individuals who
share responsibilities for match outcomes (Lechner and Gudmundsson, 2012). Thus, for every coach
or manager of professional basketball teams, it is important to assess both the quality of the lineup’s
interplay and the performance of the individual players on the court, accounting for the value of the
opponent’s lineups and players and for further concomitant conditions, as the time of the match and
the home-field advantage. The data-driven evaluation of the effects µ and γ, specified in the model
(3.3), makes it possible to analyse the net performances of lineups and players. The combination of
these two effects produces a realistic assessment of the team performance, given as the composition of
the individual skills and of the effectiveness of interaction among players. These conclusions may foster
better management of the available human resources and they can provide additional information also
to experienced coaches for selecting the best lineups and improving the interaction among the players
(Berri, 1999).

In the present section, we select one particular team, and we show how it is possible to use
the inferential results presented in Section 3.1 in order to describe and, possibly, improve the team
performance. We focus on the Olimpia Milan team and analyse the corresponding lineup’s and player’s
effects, by considering the posterior means obtained in the full Bayes approach by posterior sampling.
In Table 7, we consider nine lineups with at least fifty possessions and report the estimated total
lineup effects related to both the overall score and the associated four components. According to the
overall score, the chosen lineups correspond to the three best and the three worst lineups, and to three
average ones. Note that the summarised measures are the total lineup effects, as defined above. As
in Table 6, the sum of the effects estimated on the disentangled components is not equal to the effect
estimated on the overall score. As noted before, the models are estimated separately.

In addition, Table 8 summarises the estimated player’s effects, related to the overall score and the
associated four components, for all the players of the Olimpia Milan team. By comparing Tables 7
and 8, we note that the best and the worst-performing lineups do not always involve the best and the
worst-performing players, respectively. This is clearly related to the fact that the lineup’s composition
depends on several different aspects, such as the tactics, the role of the players, the composition of the
opposing lineup, the time of the match. However, the possibility of measuring the net contribution
of every single player is an important piece of information for effective team management. Some care
is needed in reading the results of Table 8: for example, the positive three-pointer effects estimated
for players such as Tarczewski and Gudaitis are likely to derive from being part of good-performing
lineups in three-pointers, rather than to their own good performance in three-point shooting.

Since an effective lineup should have a good interaction among the individuals, as measured by
the pure lineup effect, and should involve players with high performance, we represent in Figure 10
the lineups of the Olimpia Milan team according to these two key aspects. Additional information
concerns the number of possessions of each lineup. This results in a clear graphical representation
of the overall quality of a lineup, emphasising that the best five-man units are in the upper right
corner. These findings may be useful for comparing the performance of all the observed lineups and
for identifying the best ones.

A further application concerns the possibility of using the estimates of the effects µ and γ for
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Figure 10: Lineups of the Olimpia Milan team classified according to the pure lineup effect and the
sum of player’s effects, related to the score response. The size of the circles is proportional to the
number of possessions.
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Table 7: Estimated total lineup effects for 9 selected lineups of the Olimpia Milan team with at least
50 possessions; both the overall score and the four components are considered.

No. Overall Close Mid-Range Three Other
Lineup poss. score shoot. shoot. pointers skills

Bertans, Brooks,
James, Micov, Tar-
czewski

166 21.13 6.31 -1.04 6.09 2.29

James, Kuzminskas,
Micov, Nedovic, Tar-
czewski

106 11.81 0.97 9.29 4.62 -1.56

Bertans, Brooks, Gu-
daitis, James, Micov

371 10.71 -2.17 -0.43 9.10 3.34

Cinciarini, Gudaitis,
James, Kuzminskas,
Micov

87 -1.11 2.16 -5.81 9.68 -1.07

Brooks, Cinciarini,
James, Micov, Tar-
czewski

74 -1.65 -1.88 -1.60 11.91 -1.70

Brooks, Cinciarini, Gu-
daitis, James, Micov

141 -3.77 -3.14 -2.57 0.61 0.40

Brooks, James, Jerrells,
Micov, Tarczewski

104 -12.82 -6.14 -0.22 8.17 -4.67

Bertans, Gudaitis,
James, Jerrells,
Kuzminskas

148 -12.86 -4.14 -8.52 -1.66 -0.61

Gudaitis, James, Jer-
rels, Kuzminskas, Mi-
cov,

145 -15.04 -5.84 -4.56 -0.15 -2.80

ranking the lineups or the players according to their specific net contribution to the overall score.
Ranking methods have a long and important tradition. A natural application is to sport data, where
they can be used to compare the value of teams or players, and also for predicting the results of future
matches; see, for example, Govan et al. (2009), and Langville and Meyer (2012).

A ranking procedure is a method for assigning a rank, that is an integer from the set {1, . . . ,K},
to the K > 1 objects of a given set. The rank specifies the relative importance of an object and
the assignment is ideally one-to-one. Usually, the objects are ranked according to the (estimated)
value of an unknown parameter θk, k = 1, . . . ,K, typically a (numerical) rating which measures a
performance value or an ability level. In our framework, the parameter θk corresponds to a specific
lineup’s or player’s effect, namely, a single component of the vectors µ and γ, respectively, or also their
composition which defines the total lineup effect. Since we apply a full Bayes approach, the ranking
procedure (Laird and Louis, 1989) is based on the joint posterior distribution of the effects θ1, . . . , θK ,
where the components are supposed to be marginally independent and normally distributed, at least
approximatively. Then, a first possibility is to rank the units according to the posterior distribution
of the effects, i.e. by employing their posterior mean or median values.
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Table 8: Players of the Olimpia Milan team: estimated player’s effects related to the overall score and
the associated four components.

No. Overall Close Mid-Range Three Other
Player poss. score shoot. shoot. pointers skills

Bertans 1491 2.86 1.25 -0.34 0.56 1.63
Brooks 2899 1.64 -0.79 0.36 0.70 0.64
Nedovic 1428 1.62 -1.53 0.09 2.07 -0.19
Nunnally 1093 1.47 2.03 0.14 -0.87 0.47
Micov 3820 1.15 0.96 0.18 0.16 -0.16
Fontecchio 17 0.35 0.29 0.02 -0.05 0.10
Tarczewski 1693 0.10 0.39 -0.05 0.94 -0.90
Gudaitis 2091 0.02 -0.40 -0.87 1.56 0.32
Cinciarini 644 -0.40 -0.02 -0.77 0.91 0.30
Della Valle 291 -0.74 -1.02 0.09 0.17 -0.38
Kuzminskas 2147 -0.97 1.20 -1.01 0.17 -0.09
James 4146 -1.83 -0.79 -0.03 -0.14 -0.93
Burns 199 -2.84 -2.03 0.24 -0.66 -1.02
Omic 709 -3.49 -2.90 0.68 -1.58 -1.01
Jerrells 1872 -5.28 -4.15 -0.79 1.20 -1.50

An alternative approach is based on ranks defined as

Rk =
K∑
j=1

I(θk ≤ θj) k = 1, . . . ,K, (5.1)

with I(·) the indicator function. In this case, the units are ranked by considering the joint posterior
distribution of R1, . . . , RK , employing their posterior mean or median values. As noted by Laird and
Louis (1989), when the marginal posterior variances of the θks are equal, the two approaches will
tend to produce the same final ranking. In our setting, this is not always the case. In particular, the
estimated effects exhibit some heterogeneity in their variance since the variance will be smaller with
a higher number of possessions, and this is coupled by possible asymmetric distribution for some of
the ranks.

The use of the posterior ranks also permits the specification of more effective confidence statements,
useful for possible evaluation of the significance in rank differences. Starting from the MCMC simulated
values for the posterior distribution of the effects of the lineup and of the player, it is quite immediate to
obtain suitable probability intervals based on posterior quantiles of the effects and their corresponding
ranks, as defined in equation (5.1).

As an application, we consider the subset of the 24 lineups presenting more than 200 possessions
and we compute 50% and 80% posterior intervals for the total lineup effect and the associated ranks.
These results, reported in Figure 11, are obtained by considering the overall score response in model
(3.3). The plots confirm that the final outcome depends on the approach followed. In particular, the
rank-based probability intervals are usually smaller and, consequently, they represent a more effective
route for judging the significance of the observed mean rank differences. The lineups of Olimpia Milan
team are highlighted in the plots. The comparative analysis of their rankings may guide the choice of
the best lineup for each opponent, thus supplying a further tool for the team management.



5 TEAM MANAGEMENT AND RANKING ISSUES 22

Figure 11: Lineups with more than 200 possession: posterior probability intervals with 80% level (thin
line) and 50% level (bold line) for the total lineup effect (left panel) and the related rank (right panel),
using results for the overall score model. Dark grey squares highlight the lineups of the Olimpia Milan
team.

We have described two alternative approaches for ranking lineups and players: the first one based
on the posterior distribution of the effects and the second one on the posterior distribution of their
ranks. The two approaches may lead to different conclusions. In case of disagreement, we tend
to prefer the rank-based approach, which usually provides straightforward comparative evaluations
and more effective final rankings. Moreover, rankings can also be determined by considering the
results obtained from the analysis of the four different components of the overall score, leading to a
more comprehensive evaluation. Starting from the rankings built on the overall score we can better
describe the characteristics of a player or a lineup by means of the analysis of the component-specific
performances.

All the results reported in the present section are based on the analysis of the data about the
complete regular season. From the team management point of view, the possibility to study the
behaviour of players and lineups during the season can represent a great advantage. To this aim,
the model can be applied recursively starting approximately after the first half of the season. This
threshold is set up in order to collect a sufficient amount of information. In this framework, the
estimated effects can be adopted in the decision-making process in order to select the best lineups and
to plan the substitutions. The results of this kind of dynamic analysis can also be considered in the
analysis of the trends of the efficiency of the lineups and players. A first glimpse of this kind of analysis
is given in Figure 12, which represents the time trend of the estimated effects for the top five players of
the entire league, namely the five players with the highest value of γ̂. Observing the time trends, it is
clear that during the period of observation, some players improve their performances regularly, while
some other display a less regular pattern. The on-line identification of these changes may help the
management of the team. For instance, a decreasing trend can be a signal of bad physical condition
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Figure 12: The trend of the estimated effects of the five best players.

and this information can be very useful in preventing injuries.

6 Conclusions

The literature on basketball analytics considers the RAPM measures as an important tool for the
evaluation of single players. This article extends the RAPM methodology by considering in the model
specification a response variable which is more comprehensive than the points scored, and includes
further important features. Moreover, the estimation of lineup’s effects is developed in addition to
that of player’s effects. The proposed model has been estimated following a Bayesian approach, which
offers several advantages compared to the ridge regression approach adopted in the literature.

The novelties introduced in this paper allow for further exploitation of the information carried in
the play-by-play data, defining new analyses potentially useful for team management. Most of the
reported results are based on the model for the overall score, but similar analyses could be extended
to the four components of the overall score, thus identifying various complementary aspects of the
game. Despite the fact that the analyses are built on solid statistical methodology, the emphasis on
the presentation of the results is on graphical tools, targeting the needs of the team managers.
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