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ABSTRACT 

Use of Dedicated Mechanical Subcoolers gives rise to the need of an optimisation process involving gas cooler 

pressure, activation and setpoint temperature values, subcooling degree and subcooler size, with the aim of 

further improving the energy efficiency while considering costs. 

In this paper a thermoeconomic analysis is performed on a commercial refrigeration plant, at four climate 

conditions from warm to hot, with time-dependent refrigerating load depending on the location, resulting in 

some design and control rules for the DMS. 

In terms of energy efficiency, the size of the DMS appears to be more crucial at hot climate conditions 

(difference up to 3.5 % in energy saving), with sizes ranging from 35% to 45% of the total cooling capacity. 

Optimal control rules should be preferentially adopted at mild-warm conditions, suggesting to exploit the 

highest subcooling rate available. The economic analysis shows that energy use is the most important cost 

item. 
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NOMENCLATURE 

General 

A Area  [m2] 

c Specific cost [€/kW] 

C Cost [€]  

COP Coefficient Of Performance [-] 

CRU Commercial Refrigeration Unit 

DMS Dedicated Mechanical Subcooling 

e Cost percentage factor 

f Actualization factor 

GC Gas Cooler 

GWP Global Warming Potential  

i interest rate  

HS High Stage 

LS Low Stage 

LT Low Temperature  

MT Medium Temperature 

m Mass  [kg] 

m Refrigerant flow rate [kg/s] 

p Pressure [bar] 

Q Heat flow [kW] 
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t Temperature [°C] 

w Specific compressor work [kJ/kg] 

W Compressor power [kW] 

Δhsub Subcooling degree, enthalpy [kJ/kg] 

Δtsub Subcooling degree, temperature [K] 

ΔpGC DMS reduction in gas cooler pressure  [bar] 

Subscripts/Superscripts 

act activation 

app approach 

ext external/outdoor 

evap evaporator 

el electricity 

GC Gas Cooler 

HS High Stage 

LS Low Stage 

LT Low Temperature  

MT Medium Temperature 

m maintenance 

max maximum 

opt optimal 

rec receiver 

ref refrigerant 

set setpoint 

sub subcooling, subcooled refrigerant 

tot total 

Greek symbols 

α DMS to main cycle cooling capacity ratio (Eq. 7) 

β Compression ratio 

η Compressors’ efficiency 

 Flow rate ratio parameter (Eq. 4) 

ψ Vapour quality complementary parameter 

1. INTRODUCTION

The employment of natural refrigerants, in particular for commercial refrigeration, has been promoted as a 

long term solution to face global warming. In fact, the Kigali amendment to the Montreal Protocol and, in 

Europe, the EU regulation 517/2014 on fluorinated greenhouse gases force a phase down schedule for the 

hydro-fluorocarbons. 

Carbon dioxide, due to its characteristics such as low Global Warming Potential (GWP = 1) and high safety 

features (A1 ASHRAE classification, non-toxic and non-flammable), is one of the most promising natural 

working fluids in the commercial refrigeration sector. Furthermore, supermarket refrigeration systems employ 

large amounts of refrigerant and have a large direct environmental impact related to refrigerant leakage, thus 

CO2 even more so than ever reveals to be one of the best candidates. 

However, although CO2 systems perform well at subcritical condition, in transcritical regime they suffer 

significant reduction of the efficiency. Transcritical operation occurs for warm and hot outdoor temperature, 

thus it is a characteristic of warm and hot climates. In order to improve the performance in transcritical regime 

and thus extend the convenience of use of CO2 in warm climates, many efforts have been made, especially in 



the last decades. Several technologies and alternative plant schemes have been studied and tested, showing 

that improvements of the performance in CO2 refrigeration plants can be achieved. 

As a result, CO2 direct expansion systems are currently popular solutions for commercial refrigeration and the 

number of stores using CO2 transcritical refrigeration technology has been increasing substantially all over the 

world, especially in Europe, where 29000 installations are reported in May 2020 with a 81 % growth from 

2018 to 2020 [1]. 

One of the most recently investigated and promising solution, among the several ones available, is Dedicated 

Mechanical Subcooling (DMS), that consists in subcooling the refrigerant exiting the gas cooler by means of 

a separated refrigerating unit. This has the effect of increasing the available cooling capacity corresponding to 

a given compression work in standard cycle. When it comes to booster systems, subcooling strategy reduces 

the amount of flash gas produced at the liquid receiver. 

This solution appears to be recommended particularly at high outdoor temperature, and natural fluids like R-

290 are becoming widespread for environmental safety reasons [2, 3]. 

Llopis et al. [4] have collected in their review manuscript a number of papers which witness the effectiveness 

of the DMS solution in various system configurations, concluding that optimum conditions (subcooling degree 

and optimum high pressure) have not been extensively investigated, and that a thermoeconomic approach 

would be needed to reach definite conclusions. Llopis et al. themselves [5] simulated both single and double 

stage CO2 plants with a R-290 DMS, predicting efficiency increase up to 20 % while reducing the gas cooler 

pressure of up to 12 bar when using DMS in a booster cycle at -30 °C evaporating temperature and 35 °C 

outdoor temperature. They performed tests on a small (4 kW) single stage double-throttling CO2 refrigerating 

plant with a 0.7 kW R-1234yf DMS, and found a COP increase of around 23% at 0°C evaporating temperature 

and 30.2 °C gas-cooler exit temperatures [6], and found that the gas cooler pressure could be reduced up to 8 

bar [7]. A similar experimental work has been performed on the same plant with R-152a in the DMS by Nebot-

Andres et al. [8] to determine optimum operating conditions and give correlations for the gas cooler pressure 

and subcooling degree. Dai et al. [9] too investigated theoretically the optimum conditions for various 

refrigerants for the DMS, finding an increase in COP up to 25% at 0°C evaporating temperature and 30 °C 

outdoor temperature. The best results are achieved with R-717, but with a pretty small advantage with respect 

to other non-toxic however flammable fluids like R-290 or R-E170, or mildly flammable with low GWP like 

R-152a and HFOs R-1234ze and R-1234yf. Instead, the effect of sudden changes in capacity for a CO2 

transcritical booster cycle with mechanical subcooler have been investigated by Bush et al. [10]. Through 

modelling and performing lab tests they identified some interactions between load sheds at the MT and LT 

levels and power reduction, considering the effect of the subcooler, and underlining the importance for further 

investigations. 

Many authors applied economic and exergoeconomic analysis to the energy assessments of systems including 

CO2 refrigerating cycles. Mosaffa et al. [11] carried out exergoeconomic and environmental analyses for two 

different CO2/NH3 cascade refrigeration systems: system 1 with two flash tanks and system 2 with a flash tank 

and a flash intercooler with an indirect subcooler. In their evaluation, the authors included also the cost rate 

due to greenhouse gas emission, considering a number of operating variables. The results of such analyses 

demonstrate the benefits and profitability given by the two systems, and identify the operating conditions at 

which the minimum annual total cost rate is obtained, which are different from those at which the maximum 

COP and exergy efficiency are obtained. In this way they identify the component with dominating investment, 

operating and maintenance cost.  

An energy, exergy and exergoeconomic analysis was performed by Gullo et al. [12] with reference to CO2 

systems, to evaluate the benefits of parallel compression also from an economic point of view, and concluding 

that, in spite of the extra investment cost, the new configuration allows a 6.7 % saving in the total cost on a 15 

years lifetime basis. In this case, energy and economic benefits are in agreement. 

Another energetic, exergetic and exergoeconomic assessment has been proposed by Dai et al. [13], for a 

transcritical CO2 reversible heat pump, integrated with DMS, aimed to residential heating and cooling 

applications, in several climates. The performance of the system has been compared to a baseline CO2 system 

without DMS. They conclude that the COP and seasonal performance can be improved with the DMS by up 

to around 38% and 23% respectively, and the latter generally increases with the reduction in latitude. 

Moreover, exergy efficiency with DMS  



is higher, of around 25%, and declines with latitude. From a thermoeconomic point of view, the introduction 

of the DMS is appeared to be cost effective, with a total cost reduction of about 17%. The exergoeconomic 

factor showed to increase with an improvement of the building thermal insulation and reduces with the 

compressor price reduction. 

Furthermore, in a previous work, still Dai et al. [14] carried out an investigation where DMS is employed to 

improve the operation characteristics of transcritical CO2 heat pump for residential space heating. Energy, 

exergy and economic methodologies are applied to study the performance of the system at five typical Chinese 

climate regions, with different heating terminals. The results showed that when using a DMS, with an optimum 

discharge pressure and subcooling degree, the COP shows an improvement of the order of 25%. In severe cold 

regions, the seasonal integrated energy efficiency can be enhanced by 32%, using floor-coil radiator or normal 

fan-coil units. The optimal subcooling degree is relatively large (21–39 °C), while the power consumption 

ratio between the DMS and the CO2 system is rather small (0.22–0.36). The introduction of DMS also improves 

the exergy efficiency of the system. The total capital investment and electricity cost resulted to be both lower 

than that of traditional CO2 heat pump for residential heating. The levelized annual total cost can be reduced 

by 7.5–15.3%. The cost of the DMS subsystem appeared low compared with the CO2 system (about 4% of the 

total capital cost). 

Regarding the economic analysis of CO2 refrigerating systems, also their application in complex systems for 

cogeneration and trigeneration has been investigated. Mohammadi et al. [15] provided a thorough thermo-

economic evaluation to demonstrate that waste energy recovery from refrigeration cycles would be useful to 

produce several outputs for cogeneration and trigeneration applications. The results showed that a significant 

amount of cooling capacity for air conditioning and refrigeration purposes can be obtained by means of a 

water-lithium bromide absorption or ammonia-water absorption chiller, recovering heat discarded from the 

CO2 main refrigeration cycle. This fact offers the chance to use such cooling capacity for subcooling purposes, 

thus increasing the COP of the main cycle.  

Coupling CO2 refrigeration plants to air conditioning systems has also been investigated widely, mostly from 

an energy point of view. In the view of performing subcooling, Cortella et al. [16, 17] simulated the operation 

of a system where the subcooling demand can be provided by an HVAC system, when this is available. This 

solution has showed lower performance with respect to DMS, but it can give rise to an economic advantage 

thanks to its low investment cost. 

In this work, in the first place, an energy analysis has been carried out aiming to establish which is the best 

combination of parameters that affect the functioning of the CO2 transcritical booster system with DMS, in 

order to maximize the plant overall performance. How the global COP is related to all the system variables has 

already been investigated in a previous work by D’Agaro et al. [18], where a COP correlation has been sought 

for the plant under a fixed domain of the parameters. In this work the domain has been extended in order to 

cover a wider range of some parameters, first of all the subcooling degree, and to include new variables such 

as the subcooler activation temperature and the subcooler set point temperature. The computations have been 

performed by means of a comprehensive model built in the Trnsys environment [19], which includes the 

transcritical CO2 booster refrigeration unit, as well as the display cabinets and cold rooms [20, 21], and a R-

1234yf DMS unit. The model has been calibrated and validated against the field data gathered during a whole 

year from the monitoring of an actual refrigerating system in operation in a small sized supermarket located in 

Northern Italy as described by Cortella et al. [22] and D’Agaro et al. [23]. The optimal operating conditions of 

the system are identified, and the energy saving produced by the control of the gas cooler pressure, as a function 

of the subcooling degree and the outdoor temperature, has been estimated, along with the analysis of the 

influence of the size of the subcooler and the activation and set temperatures of the DMS. In fact, the latter 

determines a wide span of the evaporating levels achieved in the DMS that in turn affects the COP of the DMS 

itself, and of course of the entire system. Simulations are carried out on an annual basis, with hourly time step, 

for four exemplary climatic conditions, from warm to hot. As a further improvement with respect to previous 

works [17, 18], both the LT and MT cooling load profiles are estimated separately at each climate hour by 

hour considering the internal air temperature which on turn results from the dynamic thermal building 

simulation at the different outdoor conditions. This is a peculiarity of this work, and at the best of our 

knowledge no research has been done on this regard. In fact, all comparisons among different plant 

configurations are usually performed at constant cooling load. Finally, a simple cost analysis is applied for the 



first time, at the best of author’s knowledge, to the implementation of DMS, where the investment costs are 

calculated for a lifecycle of 10 years, in order to check if the most energy-effective solutions are also cost-

effective. 

2. SYSTEM AND MODEL

The commercial refrigeration plant considered in this work is a transcritical CO2 booster system, feeding closed 

refrigerated display cabinets, both for chilled and frozen food, that has been monitored for over a year in a 

small supermarket of approximately 1200 m2, located in northern Italy. The peak cooling capacity of display 

cabinets and cold rooms is equal to 39.7 kW for the Medium Temperature (MT) level and to 6.8 kW for the 

Low Temperature (LT). 

Every component of the refrigeration system has been described by in-house mathematical models developed 

in the TRNSYS environment and validated under all the possible operating conditions (mainly divided into 

subcritical, transition and transcritical). The model allows to carry out simulations with time dependent input 

variables and has the capability to store in time the residual cooling energy given by the activation statuses of 

the compressors that may exceed the cooling demand from refrigerated display cabinets. The description of 

the DMS and its interaction with the refrigeration system is also integrated in the model. 

The transcritical CO2 booster cycle has a liquid receiver and flash gas expansion valve. CoolProp libraries [24] 

are linked to our in-house routines in the TRNSYS environment to estimate the refrigerant properties in the 

thermodynamic cycle; the instantaneous mass flow rate is calculated in order to satisfy the cooling capacity 

estimated by the time dependent models of the display cabinets and cold rooms, and it defines the status of the 

compressor racks; the compressors themselves have been described using the manufacturer correlations. 

The detailed description of the refrigerating system, including information on the configuration of the LS and 

HS compressor racks and activation rules, is given in D’Agaro et al. [23], where a thorough calibration and 

validation process of the model and control rules has been carried out against the yearly field data available 

from the real plant. The plant layout with DMS and the thermodynamic cycle in a (p-h) chart are given in Fig. 

1, while the values of the main design parameters and settings are recalled in Table 1. 

Figure 1: CO2 booster refrigeration system with DMS: schematic drawing (left); thermodynamic cycle in a (p-h) diagram without 

(B) and with (BDMS) Dedicated Mechanical Subcooling 

The superheating values reported in Table 1 and considered in the model come from experimental values 

recorded at the supermarket plant. They are due to heat loss in the long suction lines from the cabinets to the 

machine room. We considered such high values in order to perform comparisons at the most realistic operating 

conditions of the plant. No useful superheating in the evaporators has been considered for a conservative 

evaluation of the COP. The plant has the possibility of subcooling the refrigerant at the exit of the gas cooler 

by means of a Dedicated Mechanical Subcooler (DMS), that consists of a single-stage cycle working with R-

1234yf as refrigerant. This fluid has been chosen among other flammable natural refrigerants like R-152a and 
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propane, isobutane, or propylene, thanks to its non-toxicity when compared to ammonia and low flammability 

(A2L) when compared to hydrocarbons (A3) and considering that it offers a remarkably low global warming 

potential (GWP100 < 1) when compared to R-152a, even if this last fluid has slightly better performance and 

lower cost, but might be subject to restrictions in the near future (GWP100 = 138) [25].  

The effects of subcooling on the CO2 cycle are depicted in Fig. 1 compared to the basic cycle, the subcooling 

(∆ℎ𝑠𝑢𝑏) reduces the exit temperature at the high stage pressure and lowers the vapour quality at the receiver, 

with the effect of reducing the amount of flash gas produced. 

The thermodynamic cycle of the subcooler unit has been modelled according to the parameter values reported 

in Table 1 (DMS unit) and taking into account the compressor operating limits. Standalone simulations have 

been carried out in order to infer the COP as a continuous function of the outdoor temperature and evaporating 

level, i.e:  

3 3 2 2

, 1 2 , 3 4 , 5 6 ,

2 2

7 , 8 , 9 , 10

 ( ,         

  

)

  

DMS ext evap DMS ext evap DMS ext evap DMS ext evap DMS

ext evap DMS ext evap DMS ext evap DMS

COP t t a t a t a t a t a t a t

a t t a t t a t t a

   
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 


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a1 = -4.3234·10-5 a2 =  9.2930·10-5 a3 =  3.9065·10-3 a4 =  4.2568·10-3 a5 = -2.2530·10-1 

a6 = 2.0343·10-1 a7 = 1.4998 ·10-4 a8 = -1.9838 ·10-4 a9 = -7.7066·10-3 a10 = 7.6353 

It ranges from 1.4 to 4.4 at the minimum evaporating level tevap, DMS  (0°C) for the outdoor temperature text  from 

20°C to 46°C and from 3.5 to 5.5 for the minimum evaporating level (20°C) in the same outdoor temperature 

[18]. In Eq. (1), temperature values are in °C. 

The coupling between DMS and booster system reflects an ideal condition, where the evaporating temperature 

of the DMS can follow the temperature fluctuations at the exit of the gas cooler, which in turn depend on the 

cooling load, outdoor temperature, gas cooler fans operation. This coupling is implemented as follows: 

 The evaporating temperature of the DMS cycle tevap,DMS is set at: 

 

tevap, DMS = max [(tsub, set – Δtapp, DMS); tevap, DMS, lim,] (2) 

 

 where tsub,set is the set point value for the temperature at the exit of the subcooler, Δtapp,DMS is the minimum 

evaporator approach temperature (values in 1) and tevap,DMS,lim is imposed, for a given condensing 

temperature, by the compressor operating limits. Once the evaporating level has been fixed and the DMS 

size is known, a check is carried out to verify if the outdoor temperature and the available DMS cooling 

capacity allow to reach the set point temperature tsub,set, otherwise the achievable CO2 exit temperature 

tsub is calculated. 

 Finally, when the effective tsub is defined, and thus the subcooling degree, for a certain outdoor condition 

and demand of cooling capacity it is possible to impose the optimal values of the gas cooler pressure in 

transcritical mode. In this way the COP of the overall system (CO2 booster plus subcooler) is maximized.  

 

The procedure followed to optimize the overall system is described in the next section. 

 
Table 1. Main design parameters for the CO2 booster System (B) and for the DMS unit.  

 CO2 booster System  

Symbol Parameter Unit  Value 

 LT evaporating temperature  °C -35 

 MT evaporating temperature °C -10 

 Minimum condensing temperature at subcritical conditions °C 6 

prec Liquid receiver pressure bar 35 

 Subcooling at subcritical conditions K 3 

 Gas Cooler/Condenser approach temperature difference K 4 



 LT superheating (up to experimental suction temperature) K 30 

 MT superheating (up to experimental suction temperature) K 20 

 
LS compressors 

Bitzer 2JSL-2K 

Bitzer 2KSL-1K 

 
HS compressors  

Bitzer 4FTC-20K 

Bitzer 4JTC-15K 

tDMS, act outdoor temperature for subcooler activation  °C (19, 22, 25) 

tsub, set temperature set for CO2 at the subcooler outlet  °C (5, 10, 15, 20) 

   

 DMS unit – Refrigerant R-1234yf 

 Parameter Unit  Value 

Δtapp,DMS Evaporator approach temperature (minimum value) K 5 

 Condenser approach temperature  K 10 

 Superheating K 10 

QDMS Cooling capacity  kW (11.6 – 23.5) 

α DMS to main cycle cooling capacity ratio % 25 – 50, step = 5 

ηDMS Compressor global efficiency (scroll type) 
20,07 0.4796 0.1234DMS       

 

 

3. PARAMETER SETTING AND OPTIMAL CONDITIONS 

It is well known that the heat rejection pressure at the gas cooler, in a transcritical cycle, is a free parameter, 

unlike subcritical cycles, and normally an optimum value is always sought in order to operate the system in an 

efficient way. Nevertheless, when it comes to integrate refrigeration systems with DMS, the quest for a 

function of the optimum gas pressure is not trivial. Many authors have studied the behaviour of the COP of 

subcooled transcritical systems, and analysed how the optimum gas cooler is related to other parameters. In 

particular, for a booster system with two evaporating levels, an analysis of the COP has been carried out in 

D’Agaro et al. [18], where they showed that the global COP of the system has the following expression: 

 

1

evap
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

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 

.       (3) 

 

This equation contains the main parameters such as: Δhevap, that is the evaporating enthalpy, which is pretty 

much the same at the two levels LT and MT (Fig.1); the specific work w of the two compressor stages LS and 

HS, that is an intrinsic behaviour of the compressor model, described by the manufacturer’s polynomials; the 

COP of the DMS, normally a function of the outdoor and evaporating temperatures (Eq. 1); the non-

dimensional parameter ψ, which is the complementary to the vapour quality at the receiver inlet, therefore this 

quantity measures the amount of flash gas produced; the non-dimensional parameter  defined as: 

LT

LT MT

m

m m
 


 .         (4) 

 

When a DMS unit is in use in a booster system, the subcooling has basically the effect of lowering the amount 

of flash gas at the receiver (status 3 shifts to 3’ in Fig. 1) while, keeping the intermediate pressure constant, 

the specific cooling capacities at the two evaporating levels do not change (same status 6 in Fig. 1). Thus, the 

power elaborated by the high stage compressors is reduced as the mass flow rate of flash gas decreases.  

If specific quantities are considered, as in Eq. (3), the benefit, which is still on the reduction of the high stage 

electrical power, can be explained by the increase of ψ and the reduction of wHS.  Obviously, the better the 

COP of the DMS the higher is the global COP of the system. 



As the parameter  is concerned, higher values of  are given by higher cooling loads at the LT, with the effect 

of penalising the COP. In a previous work [18] the effect of  on the plant performance has been investigated, 

in the present paper the parameter is kept constant and equal to the yearly averaged value 0.176 for the 

considered plant. 

Once the plant operating conditions are defined (i.e. the parameters of Table 1 and the  value), the COP in 

Eq. (3) essentially depends on three variables: 

 

 ( , , ) ( , , )GC sub ext GC sub extCOP f p h t f p t t          (5) 

 

namely the gas cooler pressure pGC, the subcooling degree Δtsub, and the heat rejection temperature (outdoors) 

text which is intended for both the booster and DMS cycle.  

In this work, the validity domain of the subcooling degree Δtsub has been extended reaching values up to almost 

40 K, as low set points of the subcooler exit temperature and higher external temperature are considered. 

Simulations have been carried out in order to obtain the global COP of the overall system for all combinations 

of the parameters in equation (5), each one in their own domain, in particular: the outdoor temperature text 

ranges, in transcritical mode, from 26°C to 40°C with a 1 K step, pGC ranges between 75 bar and 110 bar with 

a 0.5 bar step and Δtsub with a 1 K step, varies between the lowest value of 1 K and the highest value achievable 

that depends on text and tsub,set, the latter equal to the minimum value of 5°C.  

This procedure permits to identify the couple of controllable variables (pGC, Δtsub)opt that maximizes the COP 

in transcritical regime, for every outdoor temperature text considered. 

An example of how the global COP varies with the discharge pressure and the subcooling degree is depicted 

in Fig. 2, where the outdoor temperature is equal to 36°C. Shown values are obtained by assuming  = 0.176, 

as an average representative value of the cooling load ratio.  

 

 

Figure 2: Overall plant COP colour map, against Δtsub and pGC, for outdoor temperature equal to 36°C and  = 0.176.  

 

Interpolation of the results of this last analysis leads to a polynomial expression, in terms of the subcooling 

degree Δtsub and of text, for the optimum gas cooler pressure, in transcritical regime, of the plant considered, 

and has the following form: 

3 3 2 2 2 2

1 2 3 4 5 6 7 8 9,            (  )  opt

GC ext sub ext sub ext sub ext sub ext sub ext sub ext subp t t c t c t c t c t c t c t c t t c t t c t t                (6) 

whose coefficients are: 

 

c1 =  3.4333·10-4 c2 =  -5.7308·10-4 c3 =  - 2.9695·10-2 

c4 =  - 3.83115·10-2 c5 =  3.36129 c6 =  - 2.7487·10-1 

c7 =  -2.24931·10-3 c8 =  2.32526·10-3 c9 =  5.98662·10-2 



 

and where the temperature values are in °C. The reduction of the gas cooler pressure GCp  allowed by the 

DMS, i.e. the difference between the discharge pressure without subcooling and the optimal value 
opt

GCp  (Eq. 

6), is represented as colour map in Fig. 3 for the combination of subcooling degree and outdoor temperature 

values which is physically possible. The upper limit for the subcooling degree, which has been considered in 

the simulations, is imposed by the minimum subcooler outlet set point temperature tsub, set (5 °C) and depends 

on the external temperature through the gas cooler approach temperature difference. In Fig. 3, the contour lines 

of optimal gas cooler pressure
opt

GCp  are also plotted. It can be noticed that the influence of the subcooling degree 

on the optimal value of the gas cooler pressure increases at higher outdoor temperature. 

 
Figure 3: Achievable reduction of the gas cooler pressure colour map and optimal gas cooler pressure contour lines, against 

outdoor temperature and subcooling degree,  = 0.176. 

 

4. ENERGY ANALYSIS 

In this section, the results, in energy performance terms, of yearly based simulations are presented and 

discussed for a set of warm and hot climate conditions. The comprehensive model of the refrigeration system 

with DMS and the optimal control rule for the gas cooler pressure, both described in the previous sections, are 

used, with an hourly time step, to predict the annual electrical energy demand of the overall system. It is 

important to point out that the booster model includes the electrical demand for auxiliaries, which has been 

calibrated against monitored data and accounts on average around 3.2 kW [23]. As a consequence, a reduction 

of the COP with respect to the one of Eq. (3) is expected. 

The outdoor temperature is time dependent as well as the cooling loads, from the display cabinets and cold 

rooms, which depend on the indoor conditions in terms of temperature and relative humidity. 

The simulations are performed for a set of activation temperatures, subcooler set temperatures and α ratios 

(Table 1), in order to seek the best combination of such parameters for each climate condition considered. 

 

4.1 Problem set 

As already anticipated, the aim of the work presented in this section is to study how the annual energy 

performance of the CO2 transcritical booster system combined with a R-1234yf DMS unit varies with the 

following main control parameters: 

- Subcooler activation temperature tact, indicates the temperature threshold, above its value the 

subcooler is activated. The minimum value considered is equal to 19°C, which is the lower limit 

of the transition zone [17]; 



- Subcooler outlet set temperature tset, is the temperature that is aimed to achieve at the outlet of the 

subcooler, provided the cooling capacity of the DMS makes it possible. 

- DMS cooling capacity Qsub, expressed by the non-dimensional parameter α, defined as: 

 

max max

sub

LT MT

Q

Q Q
 


        (7) 

 

which measures the ratio of the DMS cooling capacity itself to the maximum value of the 

refrigeration load elaborated by the main cycle. 

 

An annual simulation has been run for all the possible combinations of the parameter sets reported in Table 1, 

which are: 

- tact = 19, 22, 25 °C; 

- tset = 5, 10, 15, 20 °C 

- α = 25, 30, 35, 40, 45, 50 % 

 

The optimum gas cooler pressure is given by Eq. (6) both with and without subcooler. Eq. (6) has been obtained 

with   = 0.176, which is a value very close to the average annual values at each operating condition considered; 

anyway it has been checked that the optimum gas cooler pressure changes less than 2.5 % in the whole range 

of  values encountered in the simulations. 

The minimum value for the subcooler outlet set point temperature tsub,min has been imposed equal to 5 °C, for 

the sake of guaranteeing a minimum vapour quality at the liquid receiver, so as to allow the operation of the 

flash gas valve and control the pressure at the intermediate value. 

Regarding the climates considered in this study, four different weather locations, each corresponding to  the 

Köppen-Geiger climate classification shown in Table 2, have been selected: 

 
Table 2. Classification of the climate in the locations considered  

Location Country Classification 

Modena Italy Cfa Humid, subtropical (Temperate, without dry season, hot summer) 

Cairo Egypt BWh Hot desert (Arid, desert, hot) 

Bangalore India Aw Tropical Savannah  (Tropical, wet and dry) 

Bangkok Thailand Aw Tropical Savannah (Tropical, wet and dry) 

The distributions of the outdoor air temperature at these locations, are represented in Fig. 4. It can be observed 

that, especially for Bangalore and Bangkok, most of the year is characterized by high outdoor temperature, 

with small variation among the seasons. In this kind of climate condition, DMS is exploited for most of the 

working hours. For instance, setting the activation temperature equal to 19°C, the DMS unit is active for 61.7% 

of the working hours in Cairo, 90.3% in Bangalore and 99.6% in Bangkok, while only for 35.9% in Modena. 

It must be underlined that Modena shows the widest temperature range, a peak temperature equal to 37°C, 

higher than Bangkok’s maximum and a number of hours at 36 °C which is very similar to that of Bangkok 

climate.  

As an improvement with respect to previous works [17, 18], both the LT and MT cooling loads are estimated 

separately at each climate considering the internal air temperature which on turn results from the dynamic 

thermal building simulation at the different outdoor conditions.  The distribution of the total cooling load 

(QLT+QMT) of refrigerated display cabinets and cold rooms is reported in Fig. 5. During the opening hours the 

indoor temperature in the zone of refrigerated display cabinets is set to 20°C (with a minimum 15°C during 

the closing hours) when the outdoor temperature is lower than 15°C and it is set to not exceed 24°C. Thus the 

peak value of the cooling capacity is between 46 and 47 kW for all climates, whereas the distribution is 

obviously different. Bangkok climate presents the maximum frequency close to the peak value (more than 700 

hours at 46 kW); the other climates present a maximum frequency around 60% of the peak value (27-29 kW); 



the Bangalore climate presents another relative maximum around 80% of the peak value; Cairo and Modena 

have a larger range of operating conditions.  

As a consequence, in the annual simulation the total cooling load and the cooling load ratio   are changing 

independently hour by hour. Fluctuations in the cooling loads due to ambient conditions and operating 

conditions of the cabinets lead to some variability in the value of   which can be estimated in Fig.  6. 

 

Figure 4:  Temperature bins for the selected locations.

Figure 5:  Cooling load bins for the selected locations. 

 
Figure 6:  Cooling load ratio bins for the selected locations.   

 

4.2 Results 

The results are presented by comparing the total energy demand of a whole year for each case and climate. In 

particular, each calculation set contains every Qsub in the α range for every couple (tDMS, act, tsub, set). 

Given that the total peak cooling capacity of the considered system is almost the same for each climate, the 

value of Qsub ranges for all locations in the same interval, from approximately 11.5 kW to 23.3 kW. 



Simulations are carried out for a whole year with an hourly time step. The electrical energy utilization of the 

commercial refrigeration unit takes also into account the fraction needed for the plant auxiliaries. The final 

results are reported in terms of total energy use and of energy saving with respect to the basic booster system 

scheme B, which has a reference annual energy demand reported in Table 3.  

 
Table 3. Annual energy demand for the booster system without DMS in the four selected climates.  

Annual energy demand [MWh] 

Climate zone Total 

Modena 126.3 

Cairo 158.6 

Bangalore 181.4 

Bangkok 229.9 

 

As a start, Fig. 7 shows an example, for the climate conditions of Cairo, of how the set parameters affect the 

yearly energy demand of the CRU (Commercial Refrigeration Unit, i.e. the transcritical CO2 booster system) 

on its own and of DMS separately. 

As expected, the main tendency is that the power demand of the DMS grows with the size of the DMS itself, 

while the energy utilization of the CRU alone decreases. By lowering the activation temperature, the DMS 

demand increases and the CRU energy demand drops. As regards the influence of the outlet set temperature, 

there is the same tendency.  

 

  
Figure 7: Yearly CRU energy demand and yearly DMS energy demand (right) in Cairo. Plots are shown for every combination of 

tact, tset and α. 
 

In Fig. 8 the comprehensive results, in terms of energy saving, are shown for all the climates considered. It can 

be noticed that, for each solution set, an optimal size of the DMS exists with a corresponding value of α, that 

on average is between 35% and 45%. The choice of the correct DMS size is an important aspect, and the most 

suitable size should be evaluated also by economic considerations, as it will be done in the next section. 

As regards the control rules we can infer that a tset around 5°C or 10°C yields the best benefits for all climates 

with the exception of the hottest one where a tset between 10°C and 15°C is recommended. High values of tset, 

such as 20°C, have been explored but revealed to be much less effective. Furthermore, the lowest activation 

temperature tact, equal to 19°C, is the best choice as it could have been expected. The hotter the weather, as the 

one of Bangkok for instance, the less the choice of tact is significant, given that outdoor temperature is higher 

than tact for the large part of the year (see Fig. 4). When we go to the DMS size, at mild climate conditions its 

choice is quite neutral, while when the climate of Bangkok is considered, a best choice appears. 

In general terms, using the DMS at hotter climate conditions larger energy saving can be achieved, and the 

difference in saving between the most favourable choice and the least becomes more significant. A maximum 

value is present in almost every curve, proving that an optimal energy effective condition exists.  



 

  
8a - Climate 1: Modena (Italy) 8b - Climate 2: Cairo (Egypt) 

  
8c - Climate 3: Bangalore (India) 8d - Climate 4: Bangkok (Thailand) 

Figure 8: Yearly energy saving due to the use of DMS for each climate considered. Plots are shown for every combination of tact, tset 

and α. 

 

An interesting result is, for each set of parameters, the percentage of operating hours of the DMS at which the 

subcooler set temperature tset can be achieved, in order to give an idea of how close the system operates to the 

desired conditions. The subcooling degree is tightly related to the mass flow rate of refrigerant in the gas cooler 

line, and the higher it is the more difficult becomes to yield significant subcooling degrees, since the subcooling 

capacity of the DMS is constrained. As the load varies in time, many different subcooling degrees are obtained 

in the year, and the tset value is not always achieved. Figure 9 shows an example, for mild and hot climate, of 

how frequently the subcooler outlet temperature meets the value imposed, at all the α values considered. 

Obviously for a given set (tact, tset), the higher the DMS size  the higher the number of hours the tset can be 

achieved. For a given DMS size , the percentage at which a certain tset is achieved decreases at the increase 

of the activation temperature tact: This reduction is more evident in the mild climate where the fraction of 

working hours at critical outdoor conditions is larger as tact moves from 19° to 22°C and to 25°C, whereas in 

Bangkok climate (see Fig. 4) the number of hours with outdoor temperature in the range 19-22°C is a negligible 

fraction; thus the performance for cases (19, tset) are much more similar to cases (22, tset). Furthermore, in hotter 

climate the lowest tset values are achieved with a lower frequency, whereas the highest tset equal to 20 °C is 

approached nearly 100% hours by the largest DMS. This happens for all high tset and  values when comparing 

Bangkok to Modena, and the reason is that the number of hours at very high outdoor temperature (> 35°C) is 

similar for the two climates (see Fig. 4), thus the number of hours at which the tset is not achieved is also similar 

but less significant when compared to the total DMS working hours for Bangkok. 

 



 
9a - Climate 1: Modena (Italy) 

 
9b - Climate 4: Bangkok (Thailand) 

Figure 9: Number of hours, in percentage with respect to the DMS operating ones, when the tset is achieved. 

 

5. COST ANALYSIS 

 

An energy analysis approach is useful when it comes to evaluate how to run a plant, in this case of study, in 

the most efficient way by finding the control rules, and schemes, that minimize the energy expense. However, 

such analysis is not adequate, on its own, at a design stage. Economic, or better cost considerations are indeed 

the most appropriate for this kind of task. 

In this section, plant investment and running costs are applied to the results obtained in the previous chapter. 

 

5.1 Plant costs 

In this analysis, we focus only on the costs of the CRU and the DMS, while the refrigerated display cabinets 

and cold rooms, and their own piping, are not considered.  

The CRU under exam, is composed by two compression stages, high stage and low stage, each consisting of 

two compressors, a master, driven by an inverter, and a slave. As already mentioned, the total maximum 

cooling load elaborated is 46.6 kW. 

The heat exchange area of the gas cooler has been estimated to be around 23 m2, and its cost is given by: 

 

 
0.89794GCC A   [€]         (8) 

 

where the exponent is taken from [26] and the constant is tuned on average actual costs in the Italian market. 

The cost of the other components plus all the sensors, valves and other equipment needed to make the CRU 

operative are summarized in Table 4. 

 



Table 4. Cost of the plant components.  

CO2 booster system  

Component Quantity Single cost [€] Cost [€] 

LT compressors 2 1580 3160 

MT compressors 2 6190 12380 

Liquid receiver 1 4580 4580 

Gas Cooler 1 12940 12940 

Oil management 1 3245 3245 

Safety system 1 4070 4070 

Control valves 1 1140 1140 

Sensors 1 495 495 

    

Total plant components cost tot
plantC    42010 

 

The total amount of refrigerant required is approximately mref = 140 kg, with a leakage rate of 15% per year. 

The running costs are considered for a lifecycle of 10 years and are actualized by the following factor: 

(1 ) 1

(1 )

n

n

i
f

i i

 



         (9) 

with an interest rate of 5% that yields an actualization factor f of 7.72. In Table 5 the running cost expressions 

are reported based on average costs for the refrigerant and for the electricity for Euro Area users in the band 

20-500 MWh/y [27]. 

Table 5. Plant running specific costs and equations.  

Description Equation Coefficient Cost [€] 

Maintenance 
tot

m m plantC e C f  em = 0.05 16215 

Refrigerant  (1 0.15 )ref ref refC m c f   cref = 5.5 [€/kg]  1662 

Electricity [€/kWh] ,el el el yearC c W f  cel = 0.19 [€/kWh]  variable 

 

Basically, the maintenance costs account for 5% of the total plant cost, the refrigerant cost is given by the 

initial cost plus the cost of the recharge and the electrical energy cost is a function of the total annual demand. 

As afore mentioned, each of the yearly costs is actualized by the factor f. 
Up to this point, the only variable cost is the one of the electrical energy, as the plant scheme is always the 

same with different control rules. 

As regards the DMS, a set of sizes have been taken into account, and the cost is considered a function of the 

cooling capacity of the compressor as by Eq. (10), [11, 25]: 

0.46852DMSC Q   [€]        (10) 

5.2 Results 

 

Figure 10 shows the total cost to install and run the plant for its whole service life (10 years). Each curve is a 

function of the size of the DMS for a certain combination of tset and tact. The hotter the climate the more 

significant are the differences between the most favourable choice and the least. A minimum value is present 

in almost every curve, proving that an optimal cost effective condition exists.  

Since the aim is to provide the guidelines to be followed at the design phase, as well as revealing the most 

favourable solution from an economic point of view, such optimal cost effective condition indicates the size 



of the DMS and the control rules typical of a given climate. The results in terms of cost analysis retrace those 

in terms of energy saving: optimal condition set (DMS size and control rules) is the same for both the energy 

and the cost analysis at all the climates considered. Thus the electrical energy cost has a higher impact on the 

definition of the optimal solution than the plant cost and ultimately than the DMS cost. 

However, the total cost is not affected by large differences in the cases analysed. The saving given by the 

optimal solution compared to the worst one is around 1.1% in Modena, 1.9% in Cairo, 2.5% in Bangalore and 

3.4 % in Bangkok. Furthermore, if we focus only on the size of the DMS unit, which is meant to be used by 

setting the optimal control rules, such difference is even smaller and becomes evident only at the hottest climate 

of Bangkok. 

 

 

  
10a - Climate 1: Modena (Italy) 10b - Climate 2: Cairo (Egypt) 

  
10c - Climate 3: Bangalore (India) 10d - Climate 4: Bangkok (Thailand) 

Figure 10: Total plant costs for a lifespan of 10 years, for each climate considered. Plots are shown for every combination of tact, tset 

and α. 

 

Nevertheless, it is important to point out that the employment of the DMS itself leads to a significant cost 

saving if compared to the basic booster scheme without DMS. Table 6 shows the total cost comparison between 

the two solutions.  

 
Table 6. Total cost of a plant without DMS and savings obtained using DMS at the optimal condition, for a 10-year life cycle.  

Climate zone 
Total cost without DMS 

[k€] 

Saving with DMS 

[%] 

Modena 250.6 4.9 

Cairo 298.1 7.3 

Bangalore 331.5 8.15 

Bangkok 400.7 12.6 

 

The employment of DMS leads to significant cost saving, especially when used in hot climates, if compared 

to the traditional booster system. 



The analysis reveals that the size of the DMS does not affect much the investment that has to be made, even 

though the size indicated should be the correct choice. This is particularly true at the hottest climate conditions, 

where the size of the DMS plays an important role on the saving achievable. On the other climate conditions, 

the designer has to focus more on the optimal control rules which have been identified rather than on the DMS 

size, in order to operate the system in the most efficient way.  

 

5. CONCLUSIONS 

 

The use of Dedicated Mechanical Subcooling gives rise to the need of an optimisation process involving the 

gas cooler pressure, the subcooler activation and setpoint temperature values, the subcooling degree and the 

subcooler size, with the aim of improving the energy efficiency of the plant while considering costs. 

A thermoeconomic analysis has been thus performed on the system considered, at four climate conditions from 

warm to hot, where subcooling is required. A variable refrigerating load annual profile has been estimated at 

each location depending on the operating conditions of display cabinets. 

The results show that in terms of energy efficiency both an optimal size of the DMS and optimal control rules 

exist, whose effect changes with the climate. The best DMS size ranges from 35 to 45 % of the total cooling 

capacity; at mild – warm climates the influence of the DMS size is less significant and the energy saving 

changes in a 1 % range, while when hot climates are considered there can be a difference up to 3.5 % in the 

energy saving due to the DMS size. On the contrary, at mild-warm climates the control rules and particularly 

the activation temperature of the subcooler play a significant role, suggesting to activate the DMS at the lowest 

outdoor temperature here considered (19 °C) performing subcooling down to the lowest temperature suitable 

for the plant (5°C in this case). When varying the control rules, savings can change in a range of 2 % at mild-

warm climates, 1 % in the hot one. 

Finally, an economic analysis showed that the investment cost ranges from 13 to 20 % of the total cost in a 10 

years life span, revealing that energy use is the most important cost item, and confirming the design and control 

rules previously identified. 
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