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Abstract
In this paper, we deal with the lumpability approach to cope with the state space explosion
problem inherent to the computation of the stationary performance indices of large stochastic
models. The lumpability method is based on a state aggregation technique and applies to
Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently
compute the exact values of the stationary performance indices when the model is actually
lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can
be altered by relatively small perturbations of the transition rates in such a way that the
new resulting Markov chain is lumpable. In this case, only upper and lower bounds on the
performance indices can be derived. Here, we introduce a novel notion of quasi-lumpability,
named proportional lumpability, which extends the original definition of lumpability but,
differently from the general definition of quasi-lumpability, it allows one to derive exact
stationary performance indices for the original process. We then introduce the notion of
proportional bisimilarity for the termsof the performance process algebraPEPA.Proportional
bisimilarity induces a proportional lumpability on the underlying continuous-time Markov
chains. Finally, we prove some compositionality results and show the applicability of our
theory through examples.

Keywords CTMCs · Aggregation techniques · Lumpability · Process algebra · Bisimilarity

1 Introduction

In the context of performance evaluation of computer systems, continuous-time Markov
chains (CTMCs) constitute the underlying semanticsmodel of a plethora ofmodelling formal-
ism such as Stochastic Petri nets [30], Stochastic Automata Networks (SAN) [31], queuing
networks [7] and a class of Markovian process algebras (MPAs), e.g. [20,21]. Usually, one
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is interested in computing the stationary performance indices of the model such as through-
put, expected response time, resource utilization and so on. This requires the preliminary
computation of the stationary probability distribution of the CTMC underlying the model.

Although the use of high-level modelling formalism highly simplifies the specification of
quantitativemodels by exploiting the compositional properties and the hierarchical approach,
the stochastic process underlying even a very compact model may have a number of states
that makes its analysis a difficult, even computationally impossible, task. In order to study
models with a large state space without using approximations or resorting to simulation, we
can attempt to reduce the state space of the underlying Markov chain by aggregating states
with equivalent behaviours (according to a notion of equivalence that may vary).

In this paper, we deal with the lumpability approach to cope with the state space explosion
problem inherent to the computation of the stationary performance indices of large stochastic
models. The lumpability method is based on a state aggregation technique and applies to
Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently
compute the exact values of the performance indices when the model is actually lumpable.
In the literature, several notions of lumping have been introduced. Interestingly, it has been
shown that for Markovian process algebras there is a strong connection between the idea
of bisimulation and that of ordinary lumping (see e.g. [21]). However, it is well known that
not all Markov chains are lumpable, if we exclude the trivial aggregation. In fact, only a
small percentage of Markov chains arising in real-life applications is expected to be non-
trivially lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain
can be altered by relatively small perturbations of the transition rates in such a way that
the new resulting Markov chain is lumpable. In this case, only upper and lower bounds
on the performance indices can be derived [18,19]. Here, we face the problem of relaxing
the conditions of ordinary lumpability while allowing one to derive the exact stationary
performance indices for the original process.

Contribution This article is an extended and revised version of the work presented at the
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2019) [26]. We introduce a novel notion of quasi-lumpability, named proportional lumpa-
bility, which extends the original definition of lumpability but, differently from the general
definition of quasi-lumpability, it allows one to derive exact stationary performance indices
for the original process when the stationary probabilities of the perturbed one are known.
Then, we study this notion in the context of a Markovian process algebra. We consider the
Performance Evaluation Process Algebra (PEPA) [21] and introduce the concept of propor-
tional bisimilarity over PEPA components. Proportional bisimilarity induces a proportional
lumpability on the underlying Markov chains. With respect to [26], here we present various
characterizations of both proportional lumpability and proportional bisimilarity that provide
more insights on their definitions. Moreover, we prove some compositionality results and
show the applicability of our theory through examples.

Related work At the stochastic process level of abstraction, several approaches, both exact
and approximated, have been proposed to cope with the state space explosion problem.

We begin our survey by first considering exact aggregation methods and then we consider
approximate approaches.

In [22, Ch. 6], the authors introduce the notion of ordinary lumping of states in a discrete-
time Markov chain (DTMC), but the concept can be straightforwardly extended to CTMCs.
In ordinary lumping, the states of theMarkov chain are clustered according to some structural
properties of the transition rate matrix so that a CTMC with a smaller number of states can
be defined. Since the computational efforts of the analysis of this latter chain are lower than
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those required by the original one, lumping can be an effective way for studying largeMarkov
chains both for transient and stationary properties.

The results on lumping can be extended to cope with higher-level Markovian formalisms
including Stochastic Petri Nets (SPNs) and Markovian process algebras. For example, a
structural-based approach to lumping for SPNs is studied in [3,5], where structural symme-
tries of the net are exploited to derive a lumped underlying CTMC in an efficient way. These
works share with our results the consequence of reducing the computational complexity of
the stationary performance indices of the model. However, in our case, we propose the idea
of lumping a perturbed Markov chain from which we can derive the stationary properties of
the original chian.

In the context of Markovian process algebras, structural process properties are studied in
[6,9–11,21,27] for state space reduction purposes by means of equivalence relations inspired
by bisimulation. In [12], the spectrum of bisimilarities for DTMCs and CTMCs without
actions is presented. In [9–11,21], action-labeled CTMCs are considered, i.e. CTMCs where
transitions are labeled with both actions and rates. In particular, in [21] the notion of strong
bisimilarity is considered, while in [9–11] a weak variant is studied aiming at reducing
sequences of internal τ -actions to a single internal τ -action that preserves the average duration
of the sequence. If two components are equivalent, it is possible to replace one of them (that
with more states) with the other without affecting the behaviour of the remaining parts of the
system. The notion of strong equivalence introduced in [21] for processes expressed as terms
of the Performance Evaluation Process Algebra (PEPA) always induces a lumping of the
CTMC underlying a PEPA process, although in general the opposite is not true. With respect
to these works, our results on PEPA models generalize the notion of strong equivalence
and allow us to deal with underlying Markov chains that are not directly lumpable. On the
other hand, the conditions on the cooperation between components that preserve proportional
lumpability are stricter then those required by strong equivalence.

We now analize approximate aggregation methods. In [18], the notion of quasi-lumpable
Markov chain is introduced. The idea is that a quasi-lumpable Markov chain is one that
can be made lumpable by a relatively small perturbation of the transition rates. In [18,
19], a technique for the computation of bounds based on the Courtois and Semal’s method
is presented. Another approach based on approximated aggregation of states is presented
in [1]. Although the authors consider transient analysis of DTMCs, their results can be
extended to the stationary analysis of CTMCs. Interestingly, they provide explicit bounds on
the errors introduced when computing the state probabilities. With respect to our work, we
can retrieve the exact stationary distribution, but, differently from [1], we do not consider
transient analysis.

The notion of quasi-lumpability in the context of a Markovian process algebra has been
studied in [29], where the authors introduce the concept of approximate strong equivalence
for PEPA components and propose a partitioning strategy that involves the use of a clustering
algorithm that minimizes an upper bound for approximate strong equivalence. Differently
from approximate strong equivalence, which is not preserved under union, we define pro-
portional bisimilarity as the union of all proportional bisimulations and provide an efficient
algorithm, based on classical lumpability ones, to compute it. We then exploit the results on
proportional lumpability to derive the exact stationary distribution of the underlyng Markov
chain.

Structure of the paper The paper is structured as follows: In Sect. 2, we review the theoret-
ical background on continuous-time Markov chains and recall the concept of lumpability.
The notions of quasi-lumpability and proportional lumpability are introduced and illustrated
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through an example. In Sect. 3,we recall the PerformanceEvaluation ProcessAlgebra (PEPA)
[21] that is an algebraic calculus enhanced with stochastic timing information that may be
used to calculate performance measures as well as prove functional system properties. The
notions of quasi-lumpable bisimulation and proportional bisimilarity are defined following
the lines of [26]. Moreover, some compositionality results for proportional bisimilarity are
proved and two examples are discussed. In Sect. 4, we compare the notion of proportional
lumpability with others forms of lumpability. Section 5 concludes the paper.

2 CTMCs and proportional lumpability

In this section, we review the theoretical background on continuous-time Markov chains and
the concept of lumpability. Then, we introduce and characterize proportional lumpability.

2.1 Continuous-timeMarkov chains

A continuous-time Markov chain (CTMC) is a stochastic process X(t) for t ∈ R
+ taking

values into a discrete state space S such that the Markov property holds, i.e. the conditional
(on both past and present states) probability distribution of its future behaviour is independent
of its past evolution until the present state:

Prob(X(tn+1) = sn+1 | X(t1) = s1, X(t2) = s2, . . . , X(tn) = sn) =
Prob(X(tn+1) = sn+1 | X(tn) = sn).

X(t) is stationary if the collection of random variables (X(t1), X(t2), . . . , X(tn)) is dis-
tributed as (X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ R

+.
A CTMC X(t) is said to be time-homogeneous if the conditional probability Prob(X(t +

τ) = s | X(t) = s′) does not depend upon t , and is irreducible if every state in S can be
reached from every other state. A state in aMarkov chain is called recurrent if the probability
that the process will eventually return to the same state is one. A recurrent state is called
positive-recurrent if the expected number of steps until the process returns to it is finite. A
CTMC is ergodic if it is irreducible and all its states are positive-recurrent. In the case of
finite Markov chains, irreducibility is sufficient for ergodicity. Henceforth, we assume the
ergodicity of the CTMCs that we study.

An ergodic CTMC possesses an equilibrium (or steady-state) distribution, which is the
unique collection of positive real numbers π(s) with s ∈ S such that

lim
t→∞Prob(X(t) = s | X(0) = s′) = π(s) .

Notice that the above equation for π(s) is independent of s′. We denote by q(s, s′) the
transition rate out of state s to state s′, with s �= s′, and by q(s) the sum of all transition
rates out of state s to any other state in the chain. A state s for which q(s) = ∞ is called
an instantaneous state since when entered it is instantaneously left. Whereas such states are
theoretically possible, we shall assume throughout that 0 < q(s) < ∞ for all state s. The
infinitesimal generator matrix Q of a CTMC X(t) with state space S is the |S| × |S| matrix
whose off-diagonal elements are the q(s, s′)’s and whose diagonal elements are the negative
sum of the extra diagonal elements of each row, i.e. q(s, s) = − ∑

s′∈S, s′ �=s q(s, s′). For the
sake of simplicity, we use q(s, s′) to denote the components of matrix Q.
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Any non-trivial vector of positive real numbers μ satisfying the system of global balance
equations (GBEs)

μQ = 0

is called invariant measure of the CTMC. For an irreducible CTMC X(t), if μ1 and μ2 are
two invariant measures of X(t), then there exists a constant k > 0 such that μ1 = kμ2. If the
CTMC is ergodic, then there exists a unique invariant measure π whose components sum to
unity, i.e.

∑
s∈S π(s) = 1 . In this case π is the equilibrium or steady-state distribution of

the CTMC.

2.2 Lumpability

In the context of performance and reliability analysis, the notion of lumpability provides a
model simplification technique that can be used for generating an aggregated Markov chain
that is smaller than the original one but allows one to determine exact results for the original
process.

The concept of lumpability can be formalized in terms of equivalence relations over the
state space of the Markov chain. Any such equivalence induces a partition on the state
space of the Markov chain and aggregation is achieved by clustering equivalent states into
macro-states, thus reducing the overall state space. If the partition can be shown to satisfy
the so-called ordinary lumpability condition [4,22], then the equilibrium solution of the
aggregated process may be used to derive an exact solution of the original one.

Ordinary lumpability has been introduced in [22] and further studied in [2,13,28,33].

Definition 1 (Ordinary lumpability) Let X(t) be a CTMC with state space S and ∼ be an
equivalence relation over S. We say that X(t) is ordinarily lumpablewith respect to∼ (resp.,
∼ is a ordinary lumpability for X(t)) if ∼ induces a partition on the state space of X(t) such
that for any equivalence classes Si , S j ∈ S/∼ with Si �= S j and s, s′ ∈ Si ,

∑

s′′∈S j
q(s, s′′) =

∑

s′′∈S j
q(s′, s′′) .

Thus, an equivalence relation over the state space of aMarkov chain is an ordinary lumpa-
bility if it induces a partition into equivalence classes such that for any two states within an
equivalence class their aggregated transition rates to any other class are the same. Notice that
every Markov chain is ordinarily lumpable with respect to the identity relation, and also with
respect to the trivial relation having only one equivalence class.

In [22], the authors prove that for an equivalence relation ∼ over the state space of a
Markov chain X(t), the aggregated process is a Markov chain for every initial distribution
if, and only if, ∼ is a ordinary lumpability for X(t). Moreover, the transition rate between
two aggregated states Si , S j ∈ S/∼ is equal to

∑
s′∈S j q(s, s′) for any s ∈ Si .

Proposition 1 (Aggregated process for ordinary lumpability) Let X(t) be a CTMCwith state
spaceS, infinitesimal generatorQ and equilibriumdistributionπ . Let∼ be a ordinary lumpa-
bility for X(t) and X̃(t) be the aggregated process with state space S/∼ and infinitesimal
generator Q̃ defined by: for any equivalence classes Si , S j ∈ S/∼ with Si �= S j

q̃(Si , S j ) =
∑

s′∈S j
q(s, s′)
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for any s ∈ Si . Then the equilibrium distribution π̃ of X̃(t) is such that for any equivalence
class S ∈ S/∼,

π̃(S) =
∑

s∈S
π(s) .

In general, a non-trivial lumpable partition might not exist. In [18] the notion of quasi-
lumpability has been introduced to characterize those Markov chains that can be made
lumpable by a relatively small perturbation to the transition rates.

Definition 2 (Quasi-lumpability) Let X(t) be a CTMC with state space S and ∼ be an
equivalence relation over S. We say that X(t) is quasi-lumpable with respect to ∼ and a
bound ε ≥ 0 (resp., ∼ is a quasi-lumpability for X(t) with respect to ε) if ∼ induces a
partition on the state space of X(t) such that for any equivalence classes Si , S j ∈ S/∼ with
Si �= S j and s, s′ ∈ Si ,

∣
∣
∣
∣
∣
∣

∑

s′′∈S j
q(s, s′′) −

∑

s′′∈S j
q(s′, s′′)

∣
∣
∣
∣
∣
∣
≤ ε .

The notion of quasi-lumpability coincides with the concept of near-lumpability presented
in [13]. Techniques for computing bounds to the steady state probabilities of quasi-lumpable
Markov chains have been studied in [16,18,19,32].

2.3 Proportional lumpability

In [26], we introduced a novel notion of lumpability, named proportional lumpability that as
the notion of quasi-lumpability, extends the original definition of ordinary lumpability but,
differently from the general definition of quasi-lumpability, it allows us to derive an exact
solution of the original process.

Definition 3 (Proportional lumpability) Let X(t) be a CTMC with state space S and ∼ be
an equivalence relation over S. We say that X(t) is proportionally lumpable with respect to
∼ (resp., ∼ is a proportional lumpability for X(t)) if there exists a function κ from S to R+
such that ∼ induces a partition on the state space of X(t) satisfying the property that for any
equivalence classes Si , S j ∈ S/∼ with Si �= S j and s, s′ ∈ Si ,

∑
s′′∈S j q(s, s′′)

κ(s)
=

∑
s′′∈S j q(s′, s′′)

κ(s′)
.

We say that X(t) is κ-proportionally lumpablewith respect to∼ (resp.,∼ is a κ-proportional
lumpability for X(t)) if X(t) is proportionally lumpable with respect to ∼ and function κ .

The following proposition proves that proportional lumpability allows one to compute an
exact solution for the original model when the stationary probabilities of the perturbed one
are known.

Proposition 2 (Aggregated process for proportional lumpability) Let X(t) be a CTMC with
state space S, infinitesimal generator Q and equilibrium distribution π . Let κ be a function
fromS toR+,∼ be a κ-proportional lumpability for X(t) and X̃(t) be the aggregated process
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with state space S/∼ and infinitesimal generator Q̃ defined by: for any equivalence classes
Si , S j ∈ S/∼ with Si �= S j ,

q̃(Si , S j ) =
∑

s′∈S j q(s, s′)
κ(s)

for any s ∈ Si . Then the function μ̃ defined by letting for any equivalence class S ∈ S/∼,

μ̃(S) =
∑

s∈S
π(s)κ(s) , (1)

is an invariant measure of X̃(t).

Proof Let X̃(t) be the aggregated process defined as above. In order for μ̃ to be an invariant
measure, it must satisfy the global balance equations for all S ∈ S/∼, which is

μ̃(S)
∑

S′∈S/∼
S′ �=S

q̃(S, S′) =
∑

S′∈S/∼
S′ �=S

μ̃(S′)̃q(S′, S). (2)

The proof follows by substituting the definitions of q̃ and μ̃ given above. Indeed, the left-hand
side of Eq. (2) can be written as follows, where s′′ is an arbitrary state in S:

(
∑

s∈S
π(s)κ(s)

)
⎛

⎜
⎜
⎜
⎝

∑

S′∈S/∼
S′ �=S

∑
s′∈S′ q(s′′, s′)

κ(s′′)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

∑

s∈S

∑

S′∈S/∼
S′ �=S

π(s)κ(s)

∑
s′∈S′ q(s′′, s′)

κ(s′′)

⎞

⎟
⎟
⎟
⎠

,

and since q(s′′,s′)
κ(s′′) is the same, by proportional lumpability, for all s′′ ∈ S, we can rewrite this

expression as
⎛

⎜
⎜
⎜
⎝

∑

s∈S

∑

S′∈S/∼
S′ �=S

π(s)κ(s)

∑
s′∈S′ q(s, s′)

κ(s)

⎞

⎟
⎟
⎟
⎠

=
∑

s∈S
π(s)

∑

S′∈S/∼
S′ �=S

∑

s′∈S′
q(s, s′) .

The right-hand side of Eq. (2) can be written as: for all s′′ ∈ S′,
∑

S′∈S/∼
S′ �=S

( ∑

s′∈S′
π(s′)κ(s′)

)∑
s∈S q(s′′, s)

κ(s′′)
,

and since q(s′′,s)
κ(s′′) is the same, by proportional lumpability, for all s′′ ∈ S′, we can rewrite this

expression as

∑

S′∈S/∼
S′ �=S

( ∑

s′∈S′
π(s′)κ(s′)

∑
s∈S q(s′, s)

κ(s′)

)

=
∑

S′∈S/∼
S′ �=S

∑

s′∈S′
π(s′)

∑

s∈S
q(s′, s)

=
∑

s∈S

∑

S′∈S/∼
S′ �=S

∑

s′∈S′
π(s′)q(s′, s) .
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Therefore, Eq. (2) can be rewritten as:
∑

s∈S
π(s)

∑

s′∈S,s′ /∈S
q(s, s′) =

∑

s∈S

∑

s′∈S,s′ /∈S
π(s′)q(s′, s)

which is true by the general conservation law that states that, for any closed boundary, the
effective flow inward must equal the effective flow outward. 
�

The following Definition 4 introduces a way to perturb a proportionally lumpable CTMC
in order to obtain a ordinarily lumpable one. In contrast to previous perturbation-based
approaches, Proposition 3 gives a way to compute the stationary probabilities of the original
chain given those of the perturbed lumpable one. In the cases in which lumpability allows for
an efficient computation of the detailed state probabilities, Proposition 3 gives an efficient
way to compute the detailed probabilities also of the original process.

We show how to compute the equilibrium distribution of a proportionally lumpable CTMC
X(t) from the equilibrium distribution of a perturbed chain X ′(t) defined as follows.

Definition 4 (PerturbedMarkov chains) Let X(t) be aCTMCwith state spaceS and infinites-
imal generator Q. Let κ be a function from S to R

+. We say that a CTMC X ′(t) with
infinitesimal generatorQ′ is a perturbation of X(t)with respect to κ if X ′(t) is obtained from
X(t) by perturbing its rates such that for all s, s′ ∈ S with s �= s′,

q ′(s, s′) = q(s, s′)
κ(s)

.

Proposition 3 (Equilibrium distribution for proportional lumpability) Let X(t) be a CTMC
with state space S, infinitesimal generatorQ and equilibrium distribution π . Let κ be a func-
tion fromS toR+. Then, for any perturbation X ′(t) of the original chain X(t)with respect to κ

according to Definition 4 with infinitesimal generatorQ′ and equilibrium distribution π ′, the
equilibrium distributionπ of X(t) satisfies the following property: let K = ∑

s∈S π ′(s)/κ(s)
then, for all s ∈ S

π(s) = π ′(s)
K κ(s)

.

Proof Recall that, for ergodic CTMCs, the equilibrium distribution is the only distribution
that satisfies the system of global balance equations. The proof is carried out as follows: we
exploit the fact that π ′ is the only distribution that satisfies the global balance equations for
X ′(t) and show that this implies that π satisfies the global balance equations for X(t).

For all s ∈ S, the corresponding global balance equation is

π(s)
∑

s′∈S
s′ �=s

q(s, s′) =
∑

s′∈S
s′ �=s

π(s′)q(s′, s) . (3)

We now replace the guess of π(s) given above. Indeed, the left-hand side of Eq. (3) can
be written as follows:

π ′(s)
K κ(s)

⎛

⎜
⎜
⎝

∑

s′∈S
s′ �=s

q(s, s′)

⎞

⎟
⎟
⎠ = π ′(s)

K

⎛

⎜
⎜
⎝

∑

s′∈S
s′ �=s

q(s, s′)
κ(s)

⎞

⎟
⎟
⎠ = π ′(s)

K

∑

s′∈S
s′ �=s

q ′(s, s′) ,

where the last equality follows from Definition 4.
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The right-hand side of Eq. (3) can be written as follows:

∑

s′∈S
s′ �=s

π ′(s′)
K κ(s′)

q(s′, s) = 1

K

∑

s′∈S
s′ �=s

π ′(s′)q(s′, s)
κ(s′)

= 1

K

∑

s′∈S
s′ �=s

π ′(s′)q ′(s′, s) .

Hence, global balance equations (3) of X(t) are satisfied by π since they are equivalent to
the global balance equations of X ′(t), i.e. for all s ∈ S

π ′(s)
∑

s′∈S
s′ �=s

q ′(s, s′) =
∑

s′∈S
s′ �=s

π ′(s′)q ′(s′, s) .

We now prove that the normalizing condition also holds: i.e.
∑

s∈S π(s) = 1. The proof
follows trivially from the fact that K = ∑

s∈S π ′(s)/κ(s), in fact:

∑

s∈S
π(s) =

∑

s∈S

π ′(s)
K κ(s)

= 1

K

∑

s∈S

π ′(s)
κ(s)

= 1

K
K = 1 .


�
Understanding which class of models fulfills the conditions of proportional lumpability

may be not straightforward. One possible approach is similar to that introduced in the context
of the analysis of product-form models. These are models that, similarly to lumpable ones,
allow for an efficient numerical or analytical study of the stationary properties of a CTMC.
Intuitively, in order to relax the conditions for the product-form, the authors propose several
methods to modifiy the CTMC transition rates of a product-form model in such a way that
its solution can be used to efficiently derive the stationary distribution (sometimes called
semi-product-form) of the modified model (see, e.g, [8,15,34]). This has led to important
applications such as [36].

In our case, we can follow the same lines and use Definition 3 to understand the modifica-
tions that we can apply to an ordinary lumpable model to obtain a proportionally lumpable
one as shown in Example 1.

Example 1 Consider a set of N independent identical CTMCs X ′
i (t), 1 ≤ i ≤ N on the

state space S0 that represents the computational phases of a single CTMC, then the process
X ′(t) = (X ′

1(t), . . . , X
′
N (t)) is still a CTMC and is known to be ordinary lumpable. Let

s = (s1, . . . , sN ) ∈ SN
0 be a state of the joint process and denote |s|x the number of

components equal to x ∈ S0. Then, the ordinary lumping relation ∼ is defined as follows:

∀s1, s2 ∈ SN
0 , s1 ∼ s2 ⇔ |s1|x = |s2|x ∀x ∈ S0 .

Now, suppose that state y ∈ S0 denotes a critical situation for the process (e.g. some emer-
gency task cannot be taken when the process is in that phase) and hence we aim at reducing
the probability of the situation in which all the processes are simultaneously in state y. We
will observe the state of M < N processes, and if all these are in state y, we can increase
the speed of all M servers by a factor k > 1, e.g. by frequency scaling. As a consequence,
our system consumes more energy but will reduce the residence time in a state in which at
least M processes are in the critical state. Without loss of generality, we define the state s in
such a way that the M observed servers are the first. Let X(t) be the CTMC obtained by this
modification.

We can immediately see that ∼ is not a lumping for X(t) because states (y, . . . , y,
sM+1, . . . , sN ), s j ∈ S0, j = M + 1, . . . , N , do not have the same behaviour as the states
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in which we count the same number of y but not all in the first M positions. However, the
conditions of Definition 3 are trivially satisfied because the speed scaling factor is the same
for all the N processes and hence we can solve the model and apply Proposition 3 to compute
the stationary state probabilities of X(t) given those of X ′(t).

With Proposition 4,we provide a novel useful characterization of proportional lumpability.
Hereafter, for a given equivalence relation ∼ over the state space of a CTMC, we denote by
q ∼ (s) the sum of all transition rates from the state s to any state t such that s∼/ t , i.e. for all
s ∈ S,

q∼(s) =
∑

t�s

q(s, t).

Proposition 4 (Characterization of proportionally lumpable CTMCs) Let X(t) be an ergodic
CTMC with state space S and ∼ be an equivalence relation over S. The relation ∼ is a
proportional lumpability for X(t) if and only if for any equivalence classes Si , S j ∈ S/∼
with Si �= S j and s, s′ ∈ Si ,

– either q∼(s) = q∼(s′) = 0
– or q∼(s), q∼(s′) > 0 and

∑
s′′∈S j q(s, s′′)
q∼(s)

=
∑

s′′∈S j q(s′, s′′)
q∼(s′)

.

Proof ⇒) Suppose that ∼ is a κ-proportional lumpability for a function κ : S → R
+, i.e.

for any equivalence classes Si , S j ∈ S/∼ with Si �= S j and s, s′ ∈ Si ,
∑

s′′∈S j q(s, s′′)
κ(s)

=
∑

s′′∈S j q(s′, s′′)
κ(s′)

. (4)

By summing the left and right terms of the above equation over all S j ∈ S/∼with Si �= S j

we get
∑

S j∈S/∼
i �= j

∑
s′′∈S j q(s, s′′)

κ(s)
=

∑

S j∈S/∼
i �= j

∑
s′′∈S j q(s′, s′′)

κ(s′)
,

that can be rewritten as
∑

S j∈S/∼
i �= j

(∑
s′′∈S j q(s, s′′)

)

κ(s)
=

∑
S j∈S/∼

i �= j

( ∑
s′′∈S j q(s′, s′′)

)

κ(s′)
,

that is:
q∼(s)

κ(s)
= q∼(s′)

κ(s′)
.

Notice that by definition of proportional lumpability q∼(s) = 0 if and only if q∼(s′) = 0. If
q∼(s) = q∼(s′) = 0 then the property is trivially satisfied. Suppose that q∼(s), q∼(s′) > 0,
then we get

κ(s)

q∼(s)
= κ(s′)

q∼(s′)
. (5)

Nowbymultiplying the left and right termsofEqs. (4) and (5)wehave that for any equivalence
classes Si , S j ∈ S/∼ with Si �= S j and s, s′ ∈ Si ,

κ(s)

q∼(s)

∑
s′′∈S j q(s, s′′)

κ(s)
= κ(s′)

q∼(s′)

∑
s′′∈S j q(s′, s′′)

κ(s′)
,
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Fig. 1 Two processor system

and, by simplifying, we get the thesis.
⇐) Suppose that ∼ is an equivalence relation such that for any equivalence classes Si , S j ∈
S/∼ with Si �= S j and s, s′ ∈ Si ,

– either q∼(s) = q∼(s′) = 0
– or q∼(s), q∼(s′) > 0 and

∑
s′′∈S j q(s, s′′)
q∼(s)

=
∑

s′′∈S j q(s′, s′′)
q∼(s′)

.

Then, by Definition 3, ∼ is a proportional lumpability with respect to the function κ : S →
R

+ such that for all state s ∈ S, κ(s) = q∼(s) if q∼(s) > 0 otherwise κ(s) is an arbitrary
positive real number. 
�
Example 2 Consider a system with multiple CPUs and a two-level memory: the first level is
private for each processor (e.g. a cache) and the second level is a shared memory that can be
accessed in a mutually exclusive way. The CPUs alternate a phase in which they use their
private memory and a phase in which they request the access to the shared memory and, once
this is granted, they use it. At the end of this phase, the shared memory lock is released. The
duration of the first phase is exponentially distributed with mean λ−1

P for processor P . The
common memory access duration is also assumed to be exponentially distributed with mean
μ−1
P for processor P .
For the sake of simplicity, let us analyse a two-processor version of the systems, where

processors are denoted by A and B. Assume that the processors have different timing char-
acteristics: the private and common memory accesses of A are governed by two exponential
distributions with parameters λA and μA, respectively, while the private and common mem-
ory accesses of B are governed by two exponential distributions with parameters λB andμB ,
respectively. The CTMC describing the behaviour of this two-processor system is depicted
in Fig. 1 and has five states that can be interpreted as follows:

– State 1: A and B both executing in their private memories;
– State 2: B executing in private memory, and A accessing common memory;
– State 3: A executing in private memory, and B accessing common memory;
– State 4: A accessing common memory, B waiting for common memory;
– State 5: B accessing common memory, A waiting for common memory.

In general, for arbitrary rates λA, μA, λB and μB , the CTMC is not lumpable. However,
suppose that the rates are related as follows:

λA = k1λ μA = k−1
1 μ λB = k2λ μB = k−1

2 μ
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Fig. 2 Two processor system with proportional factors

Fig. 3 Two processor reduced system

for λ,μ, k1, k2 ∈ R
+. In this case, the CTMC appears as represented in Fig. 2. We can

observe that it is proportionally lumpable with respect to the equivalence classes S1 = {1},
S2,3, = {2, 3} and S4,5 = {4, 5} and the function κ defined by: κ(1) = 1, κ(2) = k−1

1 ,
κ(3) = k−1

2 , κ(4) = k−1
1 , κ(5) = k−1

2 . Thus, we can analyse the reduced chain represented
in Fig. 3 and, by Propositions 2 and 3 , we can compute the exact solution of the original
model.

Example 3 We consider a simple buffer in which messages are added according to a Poisson
process with rate λ and that is cleared at exponentially spaced instants. The mean time
between successive clearances is nμ−1, where n denotes the number of items in the buffer.
The buffer has capacity M and, when full, arrivals are lost.

The behaviour of the buffer is described by the CTMC depicted in Fig. 4.
If we consider the function κ such that κ(B0) = 1 and κ(Bn) = 1/n for all n with

0 < n ≤ M , then it is easy to prove that B0 and B ′
0 are proportionally lumpable as well as

B ′
i and B ′

1 for 1 ≤ i ≤ M , where B ′
0 and B ′

1 are depicted in Fig. 5.
From the equilibrium distribution of the reduced system, we can then compute the equi-

librium distribution of the original system by applying Proposition 3.
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Fig. 4 Original buffer system

Fig. 5 The buffer reduced system

3 PEPA and proportional bisimilarity

In this section, we recall the Performance Evaluation Process Algebra (PEPA) [21] and intro-
duce the notion of proportional bisimilarity. We then study the compositionality properties
of proportional bisimilarity.

3.1 The process algebra PEPA

PEPA is an algebraic calculus enhanced with stochastic timing information that may be used
to calculate performance measures as well as prove functional system properties.

The basic elements of PEPA are components and activities. Each activity is represented by
a pair (α, r)where α is a label, or action type, and r is its activity rate, that is the parameter of
an exponential distribution determining its duration. We assume that there is a countable set,
A, of possible action types, including a distinguished type, τ , which can be regarded as the
unknown type. Activities of this type will be private to the component in which they occur.
Activity rates may be any positive real number, or the distinguished symbol � that should
be read as unspecified.

The PEPA language provides a small set of combinators. These allow language terms to
be constructed defining the behaviour of components, via the activities they undertake and
the interactions between them. The syntax for PEPA terms is defined by the grammar:

S ::= (α, r).S | S + S | A
P ::= P ��

L
P | P/L | S

where L ⊆ A \ {τ }, S denotes a sequential component, while P denotes a model component
that executes in parallel. We assume that there is a countable set of constants, A. We write C
for the set of all possible components.

Structural Operational Semantics The structural operational semantics of PEPA is given in
Table 1. Component (α, r).P carries out the activity (α, r) of typeα at rate r and subsequently
behaves as P . When a = (α, r), component (α, r).P may be written as a.P . Component
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Table 1 Operational semantics for PEPA components

(α, r).P
(α,r)−−−→ P

P
(α,r)−−−→ P ′

A
(α,r)−−−→ P ′

(A
def= P)

P
(α,r)−−−→ P ′

P + Q
(α,r)−−−→ P ′

Q
(α,r)−−−→ Q′

P + Q
(α,r)−−−→ Q′

P
(α,r)−−−→ P ′

P/L
(α,r)−−−→ P ′/L

(α /∈ L)
P

(α,r)−−−→ P ′

P/L
(τ,r)−−−→ P ′/L

(α ∈ L)

P
(α,r)−−−→ P ′

P ��
L

Q
(α,r)−−−→ P ′ ��

L
Q

(α /∈ L)
Q

(α,r)−−−→ Q′

P ��
L

Q
(α,r)−−−→ P ��

L
Q′

(α /∈ L)

P
(α,r1)−−−−→ P ′ Q

(α,r2)−−−−→ Q′

P ��
L

Q
(α,R)−−−→ P ′ ��

L
Q′

R = r1
rα(P)

r2
rα(Q)

min(rα(P), rα(Q)) (α ∈ L)

P + Q represents a system that may behave either as P or as Q. P + Q enables all the
current activities of both P and Q. Component P/L behaves as P except that any activity
of type within the set L are hidden, i.e., they are relabeled with the unobservable type τ .
The meaning of a constant A is given by a defining equation such as A

def= P that gives the
constant A the behaviour of the component P . The cooperation combinator ��

L
is in fact an

indexed family of combinators, one for each possible set of action types, L ⊆ A \ {τ }. The
cooperation set L defines the action types on which the components must synchronize or
cooperate (the unknown action type, τ , may not appear in any cooperation set). It is assumed
that each component proceeds independently with any activity whose type does not occur
in the cooperation set L (individual activities). However, activities with action types in the
set L require the simultaneous involvement of both components (shared activities). These
shared activities will only be enabled in P ��

L
Q when they are enabled in both P and Q.

The shared activity will have the same action type as the two contributing activities and a
rate reflecting the rate of the slower participant [21]. If an activity has an unspecified rate in
a component then the component is passive with respect to that action type. In this case, the
rate of the shared activity will be completely determined by the other component. In general,
the rate of a shared activity will reflect the capacity of each component to carry out activities
of that type. For a given process P and action type α, the apparent rate of α in P , denoted
rα(P), is the sum of the rates of the α activities enabled in P .

The semantics of each term P in PEPA is given via a labeled multi-transition system,
named derivation graph of P (D(P)) obtained by applying the semantic rules exhaustively
and where the multiplicities of arcs are significant. The set of reachable states of a model
P is termed the derivative set of P , denoted by ds(P), and constitutes the set of nodes of
D(P). We denote by A(P) the set of all the current action types of P , i.e. the set of action
types that the component P may next engage in. We denote by Act(P) the multiset of all
the current activities of P . For any component P , the exit rate from P will be the sum of
the activity rates of all the activities enabled in P , i.e. q(P) = ∑

a∈Act(P) ra , with ra being
the rate of activity a. If P enables more than one activity, |Act(P)| > 1, then the dynamic
behaviour of the model is determined by a race condition. This has the effect of replacing
the nondeterministic branching of the pure process algebra with probabilistic branching. The
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probability that a particular activity completes is given by the ratio of the activity rate to the
exit rate from P .

Underlying Stochastic Process In [21], it is proved that for any finite PEPA model P
def= P0

with ds(P) = {P0, . . . , Pn}, if we define the stochastic process X(t) for t ≥ 0, such that
X(t) = Pi indicates that the system behaves as component Pi at time t, then X(t) is a
continuous-time Markov chain.

The transition rate between two components Pi and Pj , denoted q(Pi , Pj ), is the sum
of the activity rates labeling arcs that connect the node corresponding to Pi to the node
corresponding to Pj in D(P), i.e.

q(Pi , Pj ) =
∑

a∈Act(Pi |Pj )

ra

where Pi �= Pj and Act(Pi |Pj ) = {| a ∈ Act(Pi )| Pi
a−→ Pj |}. Clearly, if Pj is not a

one-step derivative of Pi , q(Pi , Pj ) = 0. The q(Pi , Pj ) (also denoted qi j ), are the off-
diagonal elements of the infinitesimal generator matrix of the Markov chain, Q. Diagonal
elements are formed as the negative sum of the non-diagonal elements of each row. We
use the following notation: q(Pi ) = ∑

j �=i q(Pi , Pj ) and qii = −q(Pi ). For any finite and
irreducible PEPA model P , the steady-state distribution π(·) exists and it may be found by
solving the normalization equation and the global balance equations:

∑

Pi∈ds(P)

π(Pi ) = 1 ∧ π Q = 0.

The conditional transition rate from Pi to Pj via an action type α is denoted q(Pi , Pj , α).
This is the sum of the activity rates labeling arcs connecting the corresponding nodes in the
derivation graph with label α. It is the rate at which a system behaving as component Pi
evolves to behaving as component Pj as the result of completing a type α activity. The total
conditional transition rate from P to S ⊆ ds(P), denoted q[P, S, α], is defined as

q[P, S, α] =
∑

P ′∈S
q(P, P ′, α) .

3.2 Proportional bisimilarity

In a process algebra, actions, rather than states, play the role of capturing the observable
behaviour of a systemmodel. This leads to a formally defined notion of equivalence in which
components are regarded as equal if, under observation, they appear to perform exactly the
same actions.

Let us first recall the notion of strong equivalence for PEPA components introduced
in [21]. Two PEPA components are strongly equivalent if there is an equivalence relation
between them such that, for any action type α, the total conditional transition rates from those
components to any equivalence class, via activities of this type, are the same.

Definition 5 (Strong equivalence) An equivalence relation over PEPA components, R ⊆
C × C, is a strong equivalence if whenever (P, Q) ∈ R then for all α ∈ A and for all
S ∈ C/R,

q[P, S, α] = q[Q, S, α] .
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We are interested in the relation that is the largest strong equivalence, which is the union
of all strong equivalences. With abuse of notation, we still call such equivalence strong
equivalence and denote it by ∼=.

Definition 6 (Strong equivalence∼=)We say that two PEPA components P and Q are strongly
equivalent, written P ∼= Q, if (P, Q) ∈ R for some strong equivalence R, i.e.

∼= =
⋃

{R | R is a strong equivalence}.
∼= is the largest strong equivalence over PEPA components.

Strong equivalence induces a partition on the derivative set ds(P) of P into equivalence
classes that is an ordinary lumpability for the underlying Markov chain. As a consequence,
the aggregated process satisfies the property that the steady-state probability of each aggre-
gated macro-state is equal to the sum of the steady-state probabilities of the corresponding
equivalent states in the initial CTMC.

In [29] the notion of approximate strong equivalence for PEPA components inducing
a quasi-lumpability on the underlying CTMCs [18] has been introduced in order to relax
the conditions of strong equivalence. Two PEPA components are approximately strongly
equivalent if there is an equivalence relation between them such that, for any action type
α, the total conditional transition rates from those components to any equivalence class, via
activities of this type, are equal after a small perturbation of the system.

Definition 7 (Approximate strong equivalence) An equivalence relation over PEPA compo-
nents, R ⊆ C × C, is an approximate strong equivalence with respect to ε with ε ≥ 0 if
whenever (P, Q) ∈ R then for all α ∈ A and for all S ∈ C/R,

|q[P, S, α] − q[Q, S, α]| ≤ ε , ε ≥ 0 .

It is easy to prove that an approximate strong equivalence over the state space of a PEPA
component P induces a quasi-lumpability on the state space of the Markov chain underlying
P . However approximate strong equivalence is not preserved under union. In [29], a parti-
tioning strategy for PEPA components that involves the use of a clustering algorithm that
minimizes an upper bound for approximate strong equivalence is proposed.

In this paper, we follow a different approach and introduce the notion of proportional
bisimulation to relax the notion of strong equivalence.

Definition 8 (Proportional bisimulation) An equivalence relation over PEPA components,
R ⊆ C × C, is a proportional bisimulation if there exists a function κ from C to R+ such that
whenever (P, Q) ∈ R then for all α ∈ A and for all S ∈ C/R,

q[P, S, α]
κ(P)

= q[Q, S, α]
κ(Q)

.

The following proposition provides a characterization of proportional bisimulation in
terms of the exit rate from a process P .

Proposition 5 (Characterization of proportional bisimulation) An equivalence relation over
PEPA components, R ⊆ C × C, is a proportional bisimulation if and only if whenever
(P, Q) ∈ R then

– either q(P) = q(Q) = 0
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– or q(P), q(Q) > 0 and for all α ∈ A and for all S ∈ C/R
q[P, S, α]

q(P)
= q[Q, S, α]

q(Q)
.

Proof ⇒) Suppose that R is a proportional bisimulation for a function κ from C to R
+, i.e.

for any (P, Q) ∈ R then for all α ∈ A and for all S ∈ C/R,

q[P, S, α]
κ(P)

= q[Q, S, α]
κ(Q)

. (6)

If q(P) = 0 then for allα ∈ A and for all S ∈ C/R, q[P, S, α] = 0 then also q[Q, S, α] = 0,
i.e. q(Q) = 0 and, viceversa, if q(Q) = 0 then also q(P) = 0.Assume that q(P), q(Q) > 0.
By summing the left and right terms of the above equation over all α ∈ A and all S ∈ C/R
we get ∑

α∈A(
∑

S∈C/R q[P, S, α])
κ(P)

=
∑

α∈A(
∑

S∈C/R q[Q, S, α])
κ(Q)

that can be written as
q(P)

κ(P)
= q(Q)

κ(Q)
.

Since, by hypothesis, q(P), q(Q) > 0, we get

κ(P)

q(P)
= κ(Q)

q(Q)
. (7)

Now by multiplying the left and right terms of Eqs. (6) and (7) we have that for any α ∈ A
and for any equivalence class S ∈ C/R

q[P, S, α]
κ(P)

· κ(P)

q(P)
= q[Q, S, α]

κ(Q)
· κ(Q)

q(Q)
,

and, by simplifying, we get the thesis.
⇐) Suppose that R ⊆ C × C is an equivalence relation such that whenever (P, Q) ∈ R

then for all α ∈ A and for all S ∈ C/R
– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and

q[P, S, α]
q(P)

= q[Q, S, α]
q(Q)

.

Then, by Definition 8 of proportional bisimulation, R is a proportional bisimulation with
respect to the function κ from C to R

+ such that κ(P) = q(P) whenever q(P) > 0, and
κ(P) is an arbitrary positive real number otherwise. 
�

Notice that, similarly to the conditions for strong equivalence in PEPA, the conditions for
proportional bisimulations require us to consider also the transitions within an equivalence
class. This is necessary for ensuring the compositionality properties studied at the end of this
section.

We are interested in the relation that is the largest proportional bisimulation, formed by
the union of all proportional bisimulations.

The following proposition states that the transitive closure of a union of proportional
bisimulations generates a proportional bisimulation.
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Proposition 6 (Transitive closure of a union of proportional bisimulations) Let I be a set of
indices and Ri be a proportional bisimulation for all i ∈ I . Then the transitive closure of
their union, R = (∪i∈IRi )

+, is also a proportional bisimulation.

Proof From the fact that each Ri is an equivalence relation, it follows, by the definition of
R, that R is also an equivalence relation.

Let C/R and C/Ri be the sets of equivalence classes forR and eachRi , respectively. By
definition, (P, Q) ∈ Ri implies that (P, Q) ∈ R, and so any equivalence class Sij ∈ C/Ri

is wholly contained within some equivalence class Sk ∈ C/R. Moreover, there is some set
I ik of indices such that Sk = ⋃

j∈I ik S
i
j .

Let us denote by Rn the relation (∪i∈IRi )
n defined by: (∪i∈IRi )

1 = (∪i∈IRi )

and (∪i∈IRi )
n = {(P, Q)| there exists C ∈ C such that (P,C) ∈ Ri for some i ∈

I and (C, Q) ∈ Rn−1}. Let (P, Q) ∈ R, then (P, Q) ∈ (∪i∈IRi )
n for some n > 0.

In order to prove that R is a proportional bisimulation, we prove that for each Rn if
(P, Q) ∈ Rn then for all α ∈ A and for all Sk ∈ C/R
– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and

q[P, Sk, α]
q(P)

= q[Q, Sk, α]
q(Q)

.

We proceed by induction on n.
Base case Let n = 1. Then (P, Q) ∈ R1 implies that (P, Q) ∈ Ri for some i ∈ I . Since

Ri is a proportional bisimulation, for all α ∈ A and for all Sij ∈ C/Ri

– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and

q[P, Sij , α]
q(P)

= q[Q, Sij , α]
q(Q)

.

Assume that q(P), q(Q) > 0. Let Sk ∈ C/R. Since Sk = ⋃
j∈I ik S

i
j for some set I ik we have

q[P, Sk, α]
q(P)

=
∑

j∈I ik q[P, Sij , α]
q(P)

=
∑

j∈I ik q[Q, Sij , α]
q(Q)

= q[Q, Sk, α]
q(Q)

.

Inductive step Let n > 1. We assume that for allRm withm < n, whenever (P, Q) ∈ Rm

then for all α ∈ A and for all Sk ∈ C/R it holds

q[P, Sk, α]
q(P)

= q[Q, Sk, α]
q(Q)

.

If (P, Q) ∈ Rn then there exists C ∈ C such that (P,C) ∈ Ri for some i ∈ I and
(C, Q) ∈ Rn−1. Let Sk ∈ C/R and α ∈ A.

Assume that q(P) = q(C) = 0. From the fact that q(C) = 0, by induction hypothesis
we have that also q(Q) = 0 and hence q(P) = q(Q) = 0.

Assume now that q(P), q(C) > 0, then by induction hypothesis also q(Q) > 0. Since
each Sk = ⋃

j∈I ik S
i
j for some set I ik , by the same argument as above,

q[P, Sk, α]
q(P)

= q[C, Sk, α]
q(C)

,
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moreover, by the induction hypothesis,

q[C, Sk, α]
q(C)

= q[Q, Sk, α]
q(Q)

,

and then we can conclude

q[P, Sk, α]
q(P)

= q[Q, Sk, α]
q(Q)

as required. Hence R is a proportional bisimulation. 
�
Based on the above result we can define the maximal proportional bisimulation as the

union of all proportional bisimulations.

Definition 9 (Proportional bisimilarity) Two PEPA components P and Q are proportionally
bisimilar, written P ≈p Q, if (P, Q) ∈ R for some proportional bisimulation R, i.e.

≈p =
⋃

{R | R is a proportional bisimulation}.
≈p is called proportional bisimilarity and it is the largest proportional bisimulation over
PEPA components.

The relation≈p partitions the set of components C, and it is easy to see that if restricted to
the derivative set of any component P , the relation partitions this set. Let ds(P)/≈p denote
the set of equivalence classes generated in this way. It is easy to prove the following result.

Proposition 7 (Proportional bisimilarity vs proportional lumpability) For any PEPA com-
ponent P, ds(P)/≈p induces a proportional lumpability on the state space of the Markov
chain corresponding to P whenever it is irreducible.

Proof Let Si , S j ∈ ds(P)/≈p such that i �= j and consider two elements P, P ′ ∈ Si . By
Definition 8, there exists a function κ from C to R

+ such that
∑

α∈A q[P, S j , α]
κ(P)

=
∑

α∈A q[P ′, S j , α]
κ(P ′)

that can be rewritten as
∑

P ′′∈S j q(P, P ′′)
κ(P)

=
∑

P ′′∈S j q(P ′, P ′′)
κ(P ′)

.

Hence, by Definition 3, it follows immediately that the partition ds(P)/≈p induces a
proportional lumpability on the state space of the Markov chain corresponding to P . 
�

Moreover, the relation ≈p can be efficiently computed exploiting classical lumpability
algorithms [17].

Proposition 8 (Proportional bisimilarity algorithm) The quotient ds(P)/≈p can be com-
puted in time O(m log n), where m is the number of edges and n the number of states of
D(P).

Proof As a consequence of Proposition 5, the quotient ds(P)/≈p can be computed as fol-
lows. Let Disc(P) be the multi-transition system obtained from D(P) by replacing in each

transition Q
(α,r)−−→ Q′ the label (α, r)with (α, r

q(Q)
). The algorithm described in [2] on input

graph Disc(P) and initial partition {ds(P)} returns the quotient ds(P)/≈p . 
�
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Properties of proportional bisimilarity We prove some compositionality properties of pro-
portional bisimilarity ≈p . First we show that proportional bisimilarity is preserved by prefix
and hiding operators.

Proposition 9 (Preservation by prefix and hiding) Let P1 and P2 be two PEPA components.
If P1 ≈p P2 then for all activity a = (α, r) and for all L ⊆ A \ {τ } it holds:
1. a.P1 ≈p a.P2,
2. P1/L ≈p P2/L.

Proof Since P1 ≈p P2 then, by Proposition 5, for all α ∈ A and for all S ∈ C/≈p

– either q(P1) = q(P2) = 0
– or q(P1), q(P2) > 0 and

q[P1, S, α]
q(P1)

= q[P2, S, α]
q(P2)

.

1. Let a = (α, r) and

R = {(a.P1, a.P2)| P1 ≈p P2}.
We prove thatR+ = R∪ I d is a proportional lumpability. Indeed, q(a.P1) = q(a.P2) =
r and then it follows trivially that for all S ∈ C/R+

q[a.P1, S, α]
q(a.P1)

= q[a.P2, S, α]
q(a.P2)

,

i.e., a.P1 ≈p a.P2.
2. Let L ⊆ A \ {τ } and

R = {(P1/L, P2/L)| P1 ≈p P2}.
We prove that R+ = R ∪ I d is a proportional lumpability. First, it is easy to see that
q(P1/L) = q(P1) and q(P2/L) = q(P2). Moreover for all α �= L , by the hypothesis
that P1 ≈p P2, we have

q[P1/L, S, α]
q(P1/L)

= q[P1, S, α]
q(P1)

= q[P2, S, α]
q(P2)

= q[P2/L, S, α]
q(P2/L)

.

Now, consider the unknown type τ . By the operational semantics for PEPA components
presented in Table 1 and the hypothesis that P1 ≈p P2, we have

q[P1/L, S, τ ]
q(P1/L)

= q[P1, S, τ ] + ∑
α∈L q[P1, S, α]

q(P1)

= q[P2, S, τ ] + ∑
α∈L q[P2, S, α]

q(P2)

= q[P2/L, S, τ ]
q(P2/L)

,

i.e. P1/L ≈p P2/L .


�
Preservation by choice does not hold in general.
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Fig. 6 Two simple proportionally bisimilar processes

Example 4 Consider the simple proportionally bisimilar PEPA processes depicted in Fig. 6
where k1 and k2 are constants with k1 �= k2. It is easy to see that P0 ≈p P ′

0 and P1 ≈p P ′
1.

However, for an arbitrary PEPA model Q, we cannot always infer that P0 + Q ≈p P ′
0 + Q.

Indeed, let S = {P1, P ′
1}, q(Q) = ρ and q[Q, S, τ ] = 0 then

q[P0 + Q, S, τ ]
q(P0 + Q)

= k1λ

k1λ + k1μ + ρ

and

q[P ′
0 + Q, S, τ ]

q(P ′
0 + Q)

= k2λ

k2λ + k2μ + ρ
,

and, in general

k1λ

k1λ + k1μ + ρ
�= k2λ

k2λ + k2μ + ρ
.

The following proposition shows that proportional bisimilarity is preserved under the
choice operator when the equivalent components satisfy some condition on the exit rates.

Proposition 10 (Preservation by choice)Let P1, P2 and Q bePEPA components. If P1 ≈p P2
and q(P1) = q(P2) = kq(Q) where k > 0 is a constant then P1 + Q ≈p P2 + Q.

Proof Since P1 ≈p P2 then, by Proposition 5, for all α ∈ A and for all S ∈ C/≈p

– either q(P1) = q(P2) = 0
– or q(P1), q(P2) > 0 and

q[P1, S, α]
q(P1)

= q[P2, S, α]
q(P2)

.

If q(P1) = q(P2) = q(Q) = 0, thenwe have the thesis. In the other case, since by hypothesis
q(P1) = q(P2) = kq(Q) we have q(P1 + Q) = k+1

k q(P1) = k+1
k q(P2) = q(P2 + Q). Let

h = k+1
k . Hence,

q[P1 + Q, S, α]
q(P1 + Q)

= q[P1, S, α] + q[Q, S, α]
hq(P1)

= q[P2, S, α] + q[Q, S, α]
hq(P2)

= q[P2 + Q, S, α]
q(P2 + Q)

.

Thus we conclude that P1 + Q ≈p P2 + Q. 
�
Notice that the requirement in the above proposition that q(P1) = q(P2) is not required

for their derivatives and hence does not entail that they are stronglt equivalent.
In order to prove that, under some conditions, proportional bisimilarity is preserved by

cooperation, we first provide a further useful characterization of proportional bisimulation.
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Proposition 11 (Second characterization of proportional bisimulation) An equivalence rela-
tion over PEPA components,R ⊆ C×C, is a proportional bisimulation if and only if whenever
(P, Q) ∈ R then

– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and for all α ∈ A and for all S ∈ C/R

– either rα(P) = rα(Q) = 0
– or rα(P), rα(Q) > 0 and

rα(P)

q(P)
= rα(Q)

q(Q)
and

q[P, S, α]
rα(P)

= q[Q, S, α]
rα(Q)

.

Proof ⇒) By Proposition 5, we have that, sinceR is a proportional bisimulation, whenever
(P, Q) ∈ R it holds that

– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and for all α ∈ A and for all S ∈ C/R

q[P, S, α]
q(P)

= q[Q, S, α]
q(Q)

.

Let (P, Q) ∈ Rwith q(P), q(Q) > 0. From the last equationwe have that for eachα ∈ A
it holds rα(P) = ∑

S∈C/R q[P, S, α] = 0 if and only if rα(Q) = ∑
S∈C/R q[Q, S, α] = 0.

So we have to consider the case rα(P), rα(Q) > 0 and we have to prove that for all S ∈ C/R
rα(P)

q(P)
= rα(Q)

q(Q)
and

q[P, S, α]
rα(P)

= q[Q, S, α]
rα(Q)

.

Since for all S ∈ C/R
q[P, S, α]

q(P)
= q[Q, S, α]

q(Q)

by summing over all the classes of C/R we get

rα(P)

q(P)
=

∑
S∈C/R q[P, S, α]

q(P)
=

∑
S∈C/R q[Q, S, α]

q(Q)
= rα(Q)

q(Q)
.

Now since for all S ∈ C/R
q[P, S, α]

q(P)
= q[Q, S, α]

q(Q)
and

rα(P)

q(P)
= rα(Q)

q(Q)

bymultiplying the terms of the first equation by the inverse of the terms of the second equation
we get

q[P, S, α]
rα(P)

= q[Q, S, α]
rα(Q)

.

⇐) We have to prove that R is a proportional bisimulation. We can equivalently prove
that R satisfies Proposition 5. In particular, we have to prove that if q(P), q(Q) > 0, then
for each α ∈ A and for each S ∈ C/R it holds that

q[P, S, α]
q(P)

= q[Q, S, α]
q(Q)

.
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If rα(P) = rα(Q) = 0, then we get the thesis. Let us now consider the case rα(P), rα(Q) >

0. In this case from

rα(P)

q(P)
= rα(Q)

q(Q)
and

q[P, S, α]
rα(P)

= q[Q, S, α]
rα(Q)

by multiplying the terms of the two equations we get the thesis. 
�
By applying the above characterization to≈p , that is the largest proportional bisimulation,

we obtain the following result.

Corollary 1 Let P and Q be PEPA components. It holds that P ≈p Q if and only if:

– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and for each α ∈ A and for each S ∈ C/≈p:

– either rα(P) = rα(Q) = 0
– or rα(P), rα(Q) > 0 and

rα(P)

q(P)
= rα(Q)

q(Q)
and

q[P, S, α]
rα(P)

= q[Q, S, α]
rα(Q)

.

Moreover, the following necessary condition can be used to easily prove that two compo-
nents are not proportionally bisimilar.

Corollary 2 (Necessary conditions for proportional bisimilarity) Let P and Q be two com-
ponents. If P ≈p Q then:

– either q(P) = q(Q) = 0
– or q(P), q(Q) > 0 and A(P) = A(Q) and for each α ∈ A(P) it holds that

rα(P)

q(P)
= rα(Q)

q(Q)
.

As preservation by choice, also preservation by cooperation does not hold in general.

Example 5 Consider again the simple proportionally bisimilar PEPA processes depicted in
Figure 6 where k1 and k2 are constants with k1 �= k2, P0 ≈p P ′

0 and P1 ≈p P ′
1. For an

arbitrary PEPA model Q, we cannot always infer that P0 ��
L

Q ≈p P ′
0
��
L

Q. Indeed, let
S = {P1, P ′

1}, q(Q) = ρ, q[Q, S, τ ] = 0 and L ⊆ A \ {τ } such that both P0 and P ′
0 do not

synchronize with Q. Then

q[P0 ��
L

Q, S, τ ]
q(P0 ��

L
Q)

= k1λ

k1λ + k1μ + ρ

and

q[P ′
0
��
L

Q, S, τ ]
q(P ′

0
��
L

Q)
= k2λ

k2λ + k2μ + ρ
,

and, in general

k1λ

k1λ + k1μ + ρ
�= k2λ

k2λ + k2μ + ρ
.

The following proposition proves that, under some conditions, proportional bisimulation
is preserved by cooperation.
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Proposition 12 (Preservation by cooperation) Let P1, P2 and Q be PEPA components and
L ⊆ A \ {τ }. If
1. P1 ≈p P2,
2. for all P ′

1 ∈ ds(P1), Q′ ∈ ds(Q) it holds (A(P ′
1) \ L) ∩ (A(Q′) \ L) = ∅,

3. for all P ′
1 ∈ ds(P1), P ′

2 ∈ ds(P2), Q′ ∈ ds(Q), if P ′
1 ≈p P ′

2, then:

– either q(P ′
1
��
L

Q′) = q(P ′
2
��
L

Q′) = 0

– or q(P ′
1
��
L

Q′), q(P ′
2
��
L

Q′) > 0 and for all α ∈ A

rα(P ′
1
��
L

Q′)
q(P ′

1
��
L

Q′)
= rα(P ′

2
��
L

Q′)
q(P ′

2
��
L

Q′)

then P1 ��
L

Q ≈p P2 ��
L

Q.

Proof We first observe that since P1 ≈p P2 then for each P ′
1 ∈ ds(P1) there exists at least

one P ′
2 ∈ ds(P2) such that P ′

1 ≈p P ′
2. As a consequence, hypothesis 3 implies that for all

A, B ∈ ds(P1) ∪ ds(P2), Q′ ∈ ds(Q) if A ≈p B, then:

– either q(A ��
L

Q′) = q(B ��
L

Q′) = 0

– or q(A ��
L

Q′), q(B ��
L

Q′) > 0 and for all α ∈ A

rα(A ��
L

Q′)
q(A ��

L
Q′)

= rα(B ��
L

Q′)
q(B ��

L
Q′)

.

This is stronger than hypothesis 3 since it just requires A, B ∈ ds(P1) ∪ ds(P2) instead of
A ∈ ds(P1) and B ∈ ds(P2). Consider the relation

R = {(A ��
L

Q′, B ��
L

Q′) | A ≈p B and A, B ∈ ds(P1) ∪ ds(P2) and Q′ ∈ ds(Q)}.
We extend this relation to a relation R† over all components, where R† = R ∪ I d . We will
show that R† is a proportional bisimulation. Since ≈p is an equivalence relation, R† is an
equivalence relation. We will prove that R† satisfies Proposition 11.

In particular, hypothesis 3 in its stronger version ensures that we only have to prove that
if (A ��

L
Q′, B ��

L
Q′) ∈ R, then

– either q(A ��
L

Q′) = q(B ��
L

Q′) = 0

– or q(A ��
L

Q′), q(B ��
L

Q′) > 0 and for all α ∈ A and for all T ∈ C/R†

– either rα(A ��
L

Q′) = rα(B ��
L

Q′) = 0

– or rα(A ��
L

Q′), rα(B ��
L

Q′) > 0 and

q[A ��
L

Q′, T , α]
rα(A ��

L
Q′)

= q[B ��
L

Q′, T , α]
rα(B ��

L
Q′)

If q(A ��
L

Q′) = 0 then, from the hypothesis that A ≈p B, it is easy to prove that also

q(B ��
L

Q′) = 0.

Let us consider the case q(A ��
L

Q′), q(B ��
L

Q′) > 0. This means that both A ��
L

Q′

and B ��
L

Q′ have at least one derivative. Notice that any derivative of a cooperation of
components will have the form of a cooperation of components. Thus we only consider the
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equivalence classes T ∈ C/R† such that there is some element C ��
L

Q′′ ∈ T with C ∈ S
and Q′′ ∈ ds(Q). Then, for some S ∈ C/≈p ,

T = {C ��
L

Q′′| C ∈ S and C ∈ ds(P1) ∪ ds(P2) and Q′′ ∈ ds(Q)}.
Moreover, we always have q[A ��

L
Q′, T , α] = q[A ��

L
Q′, T ′, α] and q[B ��

L
Q′, T , α] =

q[B ��
L

Q′, T ′, α], where T ′ = {C ��
L

Q′′| C ∈ S}. Thus we may denote each such T

as T(S,Q′′). For any equivalence class T ∈ C/R† that is not of this form, for all α ∈ A,
q[A ��

L
Q, T , α] = 0 = q[B ��

L
Q, T , α] and the thesis trivially holds.

If rα(A ��
L

Q′) = 0, then α /∈ A(A ��
L

Q′). Hence, α /∈ A(B ��
L

Q′) and rα(B ��
L

Q′) =
0. On the other hand if rα(A ��

L
Q′), rα(B ��

L
Q′) > 0, three cases are possible.

a. α ∈ A(A) \ L = A(B) \ L . In this case, by hypothesis 2, α /∈ A(Q′).
b. α ∈ A(Q′) \ L . In this case, by hypothesis 2, α /∈ A(A) = A(B).
c. α ∈ L .

Case a Let α ∈ A(A) \ L . We have α /∈ A(Q′). Only A can complete activities of type α

and so for all T(S,Q′′) ∈ C/R†,

q[A ��
L

Q′, T(S,Q′′), α] =
∑

C∈S
q(A,C, α) = q[A, S, α] .

The action type α is also an individual action type for B in B ��
L

Q′ and by similar rea-

soning q[B ��
L

Q′, T(S,Q′′), α] = q[B, S, α]. In particular, rα(A ��
L

Q′) = rα(A) and

rα(B ��
L

Q′) = rα(B). By definition of R we have A ≈p B, and then by Proposition 11,

q[A, S, α]
rα(A)

= q[B, S, α]
rα(B)

.

Therefore it follows that

q[A ��
L

Q′, T(S,Q′′), α]
rα(A ��

L
Q′)

= q[A, S, α]
rα(A)

= q[B, S, α]
rα(B)

= q[B ��
L

Q′, T(S,Q′′), α]
rα(B ��

L
Q′)

.

Case b Let α ∈ A(Q′) \ L . In this case only Q′ can complete activities of type α so

A ��
L

Q′ (α,r)−−→ A ��
L

Q′′ for some Q′′ and similarly B ��
L

Q′ (α,r)−−→ B ��
L

Q′′. Therefore
rα(A ��

L
Q′) = rα(B ��

L
Q′) = rα(Q′). By definition ofR, A ��

L
Q′′ and B ��

L
Q′′ will lie

within the same equivalence class T(S,Q′′), and so, for all T(S,Q′′) ∈ C/R†,

q[A ��
L

Q′, T(S,Q′′), α] = q[B ��
L

Q′, T(S,Q′′), α] ,
and hence,

q[A ��
L

Q′, T(S,Q′′), α]
rα(A ��

L
Q′)

= q[A ��
L

Q′, T(S,Q′′), α]
rα(Q′)

= q[B ��
L

Q′, T(S,Q′′), α]
rα(Q′)

= q[B ��
L

Q′, T(S,Q′′), α]
rα(B ��

L
Q′)

.
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Case c Let α ∈ L , α ∈ A(A ��
L

Q′). In this case α is a shared action type of A and Q′.
In general for a shared action type α,

q(P ��
L

Q, P ′ ��
L

Q′, α) = q(P, P ′, α)

rα(P)
· q(Q, Q′, α)

rα(Q)
· min(rα(P), rα(Q))

and min(rα(P), rα(Q)) = rα(P ��
L

Q). Since by definition of R, A ≈p B, then by Propo-
sition 11, for all S ∈ C/≈p

q[A, S, α]
rα(A)

= q[B, S, α]
rα(B)

.

Now we consider q[A ��
L

Q′, T(S,Q′′), α] for arbitrary T(S,Q′′) ∈ C/R†:

q[A ��
L

Q′, T(S,Q′′), α]
rα(A ��

L
Q′)

=
∑

C ��
L

Q′′∈T(S,Q′′)
q(A ��

L
Q′,C ��

L
Q′′, α)

rα(A ��
L

Q′)

= 1

rα(A ��
L

Q′)
· q(Q′, Q′′, α)

rα(Q′)
·
∑

C∈S q(A,C, α)

rα(A)
· rα(A ��

L
Q′)

= q(Q′, Q′′, α)

rα(Q′)
· q[A, S, α]

rα(A)

= q(Q′, Q′′, α)

rα(Q′)
· q[B, S, α]

rα(B)

= 1

rα(B ��
L

Q′)
· q(Q′, Q′′, α)

rα(Q′)
·
∑

C∈S q(B,C, α)

rα(B)
· rα(B ��

L
Q′)

=
∑

C ��
L

Q′′∈T(S,Q′′)
q(B ��

L
Q′,C ��

L
Q′′, α)

rα(B ��
L

Q′)

= q[B ��
L

Q′, T(S,Q′′), α]
rα(B ��

L
Q′)

.


�

Proposition 12 looks mainly of theoretical interest, since it requires the computation of
the derivation graphs of both P1 ��

L
Q and P2 ��

L
Q in order to check condition 3. However,

it allows us to prove the following compositionality result which avoids such computation.

Corollary 3 Let P1, P2 and Q be PEPA components and L ⊆ A \ {τ }. If
1. P1 ≈p P2,
2. for all Q′ ∈ ds(Q) it holds A(Q′) ⊆ L,
3. for all P ′

i ∈ ds(P1) ∪ ds(P2), Q′ ∈ ds(Q) and α ∈ A(P ′
i ) ∩ A(Q′) ∩ L,

min(rα(P ′
i ), rα(Q′)) = rα(P ′

i ),

then P1 ��
L

Q ≈p P2 ��
L

Q.
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Proof By Proposition 12, we have to prove that if q(P ′
1
��
L

Q′), q(P ′
2
��
L

Q′) > 0 with
P ′
1 ≈p P ′

2, then for all α ∈ A
rα(P ′

1
��
L

Q′)
q(P ′

1
��
L

Q′)
= rα(P ′

2
��
L

Q′)
q(P ′

2
��
L

Q′)
.

We have that either α /∈ L or α ∈ L . However, in both cases:

rα(P ′
1
��
L

Q′)
q(P ′

1
��
L

Q′)
= rα(P ′

1)

q(P ′
1)

= rα(P ′
2)

q(P ′
2)

= rα(P ′
2
��
L

Q′)
q(P ′

2
��
L

Q′)
.


�
The previous results show that, in general, we must restrict the conditions on cooperation

between processes in order to preserve proportional bisimilarity. Indeed, Corollary 3 states
that proportional bisimilarity is preserved if the transition rate of the cooperation is determined
by process P and not by environment Q.

Example 6 Consider a system consisting of the following components: a set of processes
Compi for i = 1, . . . , N and a shared remote server Server . ProcessesComp1, . . . ,CompN
are functionally identical and can perform the computations either locally or may (partially)
delegate the remote server Server to perform the computations.

The process algebraic description of this system is the following:

Compi
def= (dispatch, kiλ).(compute, wiμ).Compi + (task, kiη).Compi

Server
def= (dispatch,�).Server

System
def= (Comp1|| . . . ||CompN ) ��

{dispatch} Server

where || denotes ��
∅ , i.e. the parallel composition without any synchronization. The par-

tial delegation of Compi is modeled by (dispatch, kiλ).(compute, wiμ) where ki and wi

are inversely proportional with proportionality constant h. Notice that part of the work is
done by Compi internally ((compute, wiμ)) and part is delegated. If ki is high, then the
internal computation modeled by type task requires less expected time than the sequence
dispatch, compute that models the remote computation.

Consider for simplicity the system:

Comp1
def= (dispatch, k1λ).(compute, w1μ).Comp1 + (task, k1η).Comp1

Comp2
def= (dispatch, k2λ).(compute, w2μ).Comp2 + (task, k2η).Comp2

Server
def= (dispatch,�).Server

System12
def= (Comp1||Comp2) ��

{dispatch} Server12

where k1w1 = k2w2 = h.
Consider the component (Comp1||Comp2)whose derivation graph is depicted in Figure 7

where:

S0
def= Comp1||Comp2

S1
def= (compute, w1μ).Comp1||Comp2

S2
def= Comp1||(compute, w2μ).Comp2

S3
def= (compute, w1μ).Comp1||(compute, w2μ).Comp2
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Fig. 7 Derivation graph of (Comp1||Comp2)

Fig. 8 Derivation graph of S′
0

If we consider the function κ from PEPA components to R
+ such that κ(S1) = k2 and

κ(S2) = k1 then it is esay to prove that (Comp1||Comp2) ≈p S′
0 depicted in Figure 8.

This follows from the fact that k1w1 = k2w2 = h and then w1/k2 = w2/k1. Therefore, by
Corollary 3, we obtain System12 ≈p S′

0
��

{dispatch} Server12.

4 Comparison with other forms of lumpability

In this section, we compare the notion of proportional lumpability with others that share
some of the ideas that we propose. Specifically, we first compare the idea of proportional
lumpability with that of lumping the embedded Markov chain, then with weak lumpability
as discussed in [22,24] and finally with some notions of lumpability defined for the solution
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of systems of ordinary differential equations (ODEs). For all these cases, we conclude that
proportional lumpability has substantial differences.

Ordinary lumping of the embedded Markov chain.One standard approach for computing the
stationary probability distribution of an ergodic continuous-time Markov chain X(t) is by
analyzing its embeddedMarkov chain XE (t). Strictly speaking, the embeddedMarkov chain
is a regular discrete-time Markov chain (DTMC), sometimes referred to as its jump process.
Given X(t)with state spaceS, each element of the one-step transition probabilitymatrix of the
corresponding embeddedMarkov chain is denoted by p(s, s′), and represents the conditional
probability of transitioning from state s into state s′. These conditional probabilities may be
found by

p(s, s′) = q(s, s′)
q(s)

, for s �= s′

and p(s, s) = 0. Assuming that XE (t) is aperiodic, let π∗ be its steady-state distribution.
One may derive the distribution π of X(t) as follows: let W = ∑

s∈S π∗(s)/q(s), then

π(s) = π∗(s)
Wq(s)

.

Notice that, in general, q∼(s) is different from q(s), hence the fact that X(t) is proportionally
lumpable does not imply that the corresponding embeddedMarkov chain XE (t) is lumpable.
We may clearly see this from Example 3. The probability of jumping from state Bi , i > 0,
to state B0 is:

p(Bi , B0) = μ/i

λ + μ/i
= μ

λi + μ
,

which depends on i and hence cannot be the same for all the states B1, . . . , BM as would be
required by the ordinary lumping condition applied to the embedded process.

On the other hand, if XE (t) is lumpable then X(t) is proportionally lumpable with respect
to function κ from S toR+ such that κ(s) = q(s) for all s ∈ S. In conclusion, we can say that
if X(t) has an ordinarily lumpable embedded process, then it is also proportionally lumpable
but the opposite does not hold.

Weak lumpability. This notion of lumpability has been firstly introduced in [22] and then
extended to continuous-time Markov chains. Among the works in this field, we will use
the necessary condition for weak lumpability of CTMCs as stated in [24]. While weak
lumpability is defined for DTMCs and CTMCs that may be not necessarily ergodic, for our
purpose we will focus only on ergodic chains, i.e. they admit a unique stationary distribution,
the steady-state one.

Let v(t) be the probability distribution of X(t) at time t ≥ 0 and let v(0) = v. In weak
lumpability, we aim at finding v and a partition of the state space ∼ such that the stochastic
process obtained by aggregating the states according to ∼ is a CTMC. Clearly, if ∼ is an
ordinary lumping, any probability vector v satisfies this property. In [22], the authors observe
that if v and ∼ determine a weak lumping, it must hold that for all t ≥ 0, the probabilities
of the states in v(t) within the same equivalence class must maintain the same proportion.
Notice that, since in our case X(t) is ergodic, then:

lim
t→∞ v(t) = π ,
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thus, also π must satisfy the same property of v(t). Let us consider the Markov chain with
the following infinitesimal generator taken from [24]:

Q =
⎡

⎣
−18 6 12
0 −20 20
21 3 −24

⎤

⎦ .

If we choose as probability vector v = (1−3a, a, 2a) for some a, and S1 = {1}, S2 = {2, 3},
it can be shown that for all t ≥ 0, v(t) is such that the third component is twice the second.
In particular, since X(t) is ergodic, its steady-state distribution is:

π =
(

7

16
,
3

16
,
3

8

)

,

and 3/8 = 2 · 3/16. Notice that Q cannot be proportionally lumpable for any choice of
κ because while state 3 has a positive rate to state 1, state 2 does not. Therefore, weak
lumpability does not imply proportional lumpability. To verify if the opposite is true, we
consider another example with the following infinitesimal generator:

Q =
⎡

⎣
−4 3 1
4 −6 2
0 5 −5

⎤

⎦

Wenotice that the CTMC is ergodic, and proportionally lumpable with respect to the partition
S1 = {1, 2} and S2 = {3}, for example we can choose κ(2) = 2 and κ(1) = κ(3) = 1. Let us
prove that this CTMC is not weakly lumpable with respect to this partition. First, we compute
the steady-state distribution so that we can find the proportions of the probabilities within
the equivalence classes, we have:

π =
(

5

13
,
5

13
,
3

13

)

,

thus a necessary condition for the chain to be weakly lumpable is that the first two states have
the same probabilities in v(t) for all t starting for a certain v. We now prove that such a v
cannot exist. Assume, by contradiction, that X(t) is weakly lumpable, then the infinitesimal
generator of the lumped process is:

Q̃ =
[−3/2 3/2
5 −5

]

,

where 3/2 is obtained by averaging the rates from class S1 to class S2 according to theweights
1/2 and 1/2 obtained by the reasoning on the steady-state distribution.We now use Corollary
4.2 of [24] that essentially states that, in the aggregated process, the residence time in class
S2 is exponentially distributed if one of the diagonal elements of Q̃ is an eigenvalue of the
partial block of Q associated with that aggregation, in our case:

QS1 =
[−4 3

4 −6

]

.

The eigenvalues are −5 − √
13 and −5 + √

13, neither of which are present in the diagonal
of Q̃. In conclusion, we have shown an example of a CTMC that is proportionally lumpable
but not weakly lumpable.

It is important to notice that a weakly lumpable CTMC enjoys important properties on the
transient phase of the aggregated process, in particular by stating that this process is a CTMC.

123



Proportional lumpability and proportional bisimilarity

In contrast, the proportional lumpability does not guarantee that the aggregated process is
still a Markov chain. Instead it states that the Markov chain defined on the aggregated state
space according to Definition 3 has a steady-state distribution that is related with that of the
original process according to Proposition 3.

Lumpability on Differential Equations In [23], systems of linear differential equations
obtained by monomolecular reactions are considered. The authors aim to obtain a system of
differential equations with fewer variables while preserving some properties of the original
one. Intuitively this corresponds to replacing the species occurring in the reactions with ficti-
tious species obtained as combinations of the original ones. As observed by the authors when
the fictitious species are obtained considering a partition of the original ones they obtain a
lumpability in the sense of Kemeny and Snell. On the other hand, semiproper and improper
lumping are obtained when each species is not assigned to a unique class and fictitious
species are generic linear combinations of the original ones. In [23], the analysis is extended
to near lumpability. A first attempt to extend these works to the case of nonlinear systems
of differential equations can be found [25]. In particular, the authors consider systems of the
form

dy/dt = f (y)

where y is a vector of n variables. If ŷ is a vector of n̂ < n variables such that

ŷ = My

for an opportune matrix M of dimension n̂ × n, then one could try to study the evolution of
ŷ defined as

d ŷ/dt = f̂ (ŷ) = M f (y)

and infer properties on the evolution of y. When M is such that there exists M of dimension
n × n̂ such that MM = I d , we have that

y = Mŷ

As proved in [25], a necessary and sufficient condition for f̂ to be properly defined is that

M f (y) = M f (MMy)

This is a generalization of the necessary and sufficient condition of exact lumpability as
presented in [22], where the infinitesimal generator Q has been replaced by the function f
and the matrix U representing a probability distribution over each block of the lumpability
has been replaced by M and the matrix V assigning each node to a block is M . In other terms
if we refer to CTMCs the necessary and sufficient condition of [25] is

UQ = UQVU

whereU is a n̂×n matrix, V is a n× n̂ matrix, andUV = I d . This generalizes the notion of
exact lumpability since inU and V nodes can belong to more than one block, i.e. semiproper
and improper lumpings are admissible. In [35], properties of original and lumped systems
are analysed, e.g. properties of equilibria, invariant sets and periodic solutions. However,
the considered definition of lumping is always the one given in [25] that generalizes exact
lumpability as explained above.

For these reasons there is no relationship with our notion of proportional lumpability.
Nevertheless, similarly to what has been as done in [25] for differential equations, we can
try to express proportional lumpability in term of matrix products. It is easy to prove that an
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equivalence relation ∼ is a proportional lumpability for a Markov chain having infinitesimal
generator Q if and only if there exists a diagonal matrix D such that

V∼ ∗U∼ ∗ D ∗ Q ∗ V∼ = D ∗ Q ∗ V∼

where V∼ is a Boolean matrix whose columns represent the equivalence classes of ∼ and
U∼ is a matrix whose rows are probability distributions over the classes of ∼ as in [22]. In
other terms, lumpability requires thatQ∗V∼ is a fixpoint for the left operator V∼ ∗U∼, while
proportional lumpability requires that there exists a diagonal matrix D such that D ∗Q ∗ V∼
is a fixpoint for the left operator V∼ ∗ U∼. Moreover, Proposition 4 ensures that instead of
checking the condition over any possible diagonal matrix D, we can refer to the diagonal
matrix D∼ in which D∼[i, i] is the rate from i to the states that are not equivalent to i .

Finally, recent results on forward and backward differential equivalences have been proved
in [14]. The authors show their equivalences coincide with ordinary (resp., exact) lumpability
in the case of differential equations obtained from CTMCs.

5 Conclusion

In this paper, we have introduced a novel notion of quasi-lumpability, named proportional
lumpability, which extends the original definition of lumpability but, differently from the
general definition of quasi-lumpability, it allows one to derive exact performance indices at
steady-state for the original process. As far as concerns proportional lumpability defined on
Markov chains, we have given a characterization that avoids the universal quantification over
all possible functions κ . As a consequence, given an equivalence relation we can check in
linear time whether it is or not a proportional lumpability. As for the problem of finding the
coarsest proportional lumpability that refines a given equivalence relation, even exploiting
such characterization, it is not possible to immediately generalize the standard coarsest stable
partitioning algorithms available for lumpability. Function κ would change during the com-
putation and the stability conditions that guarantee the correctness of such algorithms would
not be preserved.More elaborate extensions of partitioning strategies are under investigation.

Moreover, we have illustrated the concept of proportional bisimilarity for PEPA com-
ponents that induces a proportional lumpability on the underlying Markov chain. We have
provided various characterizations of proportional bisimilarity to give more insights on its
definition. In particular, differently from what happens in the context of Markov chains, the
first characterization of proportional bisimilarity for PEPA models allowed us to obtain an
efficient algorithm for computing the maximum proportional bisimilarity.

Finally, we have investigated the compositionality properties of proportional bisimulation
and illustrated the applicability of our theory through examples.
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