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Intrinsic entropy for generalized quasimetric semilattices

Ilaria Castellano Dikran Dikranjan Domenico Freni Anna Giordano Bruno
Daniele Toller

Dedicated to the memory of Silvana Rinauro

Abstract

We introduce the notion of intrinsic semilattice entropy h̃ in the category Lqm of generalized quasi-
metric semilattices and contractive homomorphisms. By using appropriate categories X and functors
F : X → Lqm, we find specific known entropies h̃X on X as intrinsic functorial entropies, that is, as

h̃X = h̃ ◦ F . These entropies are the intrinsic algebraic entropy, the algebraic and the topological
entropies for locally linearly compact vector spaces, the topological entropy for totally disconnected
locally compact groups and the algebraic entropy for compactly covered locally compact abelian groups.

Keywords: intrinsic entropy, quasimetric semilattice, functorial entropy, algebraic entropy, topolog-
ical entropy, abelian group, vector space, locally compact abelian group, endomorphism, algebraic
dynamical system.
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1 Introduction

Entropy has been intensively studied in ergodic theory and topological dynamics since the introduction
of the measure entropy hmes and the topological entropy htop for single selfmaps roughly sixty years
ago (see [2, 5, 43, 49]). In connection with the topological entropy, the algebraic entropy halg of group
endomorphisms was introduced somewhat later (see [2, 22, 37, 46, 47, 52]), and the adjoint algebraic
entropy h∗alg more recently (see [24, 40]). Moreover, the set-theoretic entropy hset of selfmaps of a set
provided with no further structure was defined in [3] (see also [28, 33, 38]), and used for computing
the topological entropy of generalized shifts. For the details about the origin of all these entropies as
well as the connections among them, see the surveys [19, 31].

In the presence of such a wealth of entropies, it gradually became clear that a common approach
covering all (or at least, most) of them could be very helpful. Such a common approach was proposed
in [17], aiming at a uniform argument for the basic properties of the above mentioned entropies. This
argument was elaborated, partially in collaboration with Simone Virili, in full detail and proofs in
[20, 23].

Recall that an entropy over a category X is an invariant hX : FlowX → R≥0 ∪ {∞} of the category
FlowX of all flows of X: a flow of X is a pair (X,φ) consisting of an object X of X and an endomorphism
φ : X → X, whereas a morphism between flows, say (X,φ) and (Y, ψ), is given by a morphism
α : X → Y of X such that α ◦ φ = ψ ◦ α. Usually, one denotes hX(X,φ) simply by hX(φ) for a flow
(X,φ) of X.

The main idea of the unifying approach from [20, 23] was to define the so-called semigroup entropy
hS : FlowS → R≥0 ∪ {∞}, where S is the category of normed semigroups (S, v) whose morphisms are
all semigroup homomorphisms that are contractive with respect to the norm. In this way, whenever
a category X allows for a functor F : FlowX → FlowS, one can obtain an entropy hF over X by
defining hF = hS ◦ F : FlowX → R≥0 ∪ {∞}. The entropy hF was called functorial entropy in [23]. As
shown in [20, 23], all entropies listed above (measure entropy, topological entropy, algebraic entropy,
adjoint algebraic entropy, set-theoretic entropy) can be obtained as functorial entropies for appropriate
functors F : FlowX → FlowS, where X ranges among categories (such as, respectively, the category
of measure space, the category of compact spaces, the category of groups and the category of locally
compact groups, the category of sets). In all specific cases the functors F : FlowX → FlowS are induced
from functors X→ S in the obvious way.

Meanwhile, the intrinsic algebraic entropy for endomorphisms of abelian groups was introduced
in [27]. Its definition, for a specific endomorphism φ : G → G of an abelian group G, is based on
the subtle notion of φ-inert subgroup, inspired by the well-known notion of inert subgroup in the
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non-abelian context (see [12] for further details). Later on, the algebraic entropy and the topological
entropy of continuous endomorphisms of locally linearly compact vector spaces were defined in [9, 10],
respectively (see also [6, 7]). In these cases, the computation of the entropy of an endomorphism φ
depends on the behavior of some subgroups that turn out to be again φ-inert. So, in a purely informal
way we call those “intrinsic-like” entropies.

Moreover, the general definitions of the topological entropy htop (see [31, 39]) and the algebraic
entropy halg (see [51]) for locally compact groups, involving Haar measure, are not “intrinsic” – they
are covered by a suitable generalization of the scheme in [23] with normed semigroups. Nevertheless,
for totally disconnected locally compact groups and for locally compact strongly compactly covered
groups, respectively, htop and halg allow for an alternative “intrinsic” description, which is handier
since it avoids the use of Haar measure, and the limit superior in the general definition becomes a limit
(see [39, 36] respectively).

As pointed out in [23], the unifying approach from [20, 23] does not (and cannot) cover these
intrinsic-like entropies. So, the aim of this paper is to elaborate a common approach to them. A
careful analysis shows that the common feature of all of them is the presence of a semilattice S
provided with a kind of “non-symmetric distance” which may take also value ∞, namely, a generalized
quasimetric (rather than a norm as one had so far in [23]). We develop the necessary machinery
regarding generalized quasimetric semilattices in the forthcoming project [18] (see also [11]), starting
from the seminal work by Nakamura [45] and from similar structures used in topological algebra (see
[1]) and in computer science (see [48]).

Here we introduce and study the notion of φ-inert element of a generalized quasimetric semilattice
S with respect to a contractive endomorphism φ : S → S. By analogy with the approach in [23], we

define the intrinsic semilattice entropy h̃ : FlowLqm → R≥0 ∪ {∞}, where Lqm denotes the category of
generalized quasimetric semilattices and their contractive homomorphisms. Moreover, for a category
X and a functor F : FlowX → FlowLqm , we define the intrinsic functorial entropy h̃F : FlowX →
R≥0 ∪ {∞} by h̃F = h̃ ◦ F , and we show how the above mentioned specific intrinsic-like entropies can
be obtained from this general scheme as intrinsic functorial entropies. Again, in almost all cases the
functor F : FlowX → FlowLqm is induced by a functor X→ Lqm.

The paper is organized as follows. In Section 2 we introduce the category Lqm we are mainly
interested in, giving basic properties and examples.

In Section 3 we start studying the dynamics of a generalized quasimetric semilattice (S, d) ∈ Lqm.
First, in §3.1, we investigate the behavior of elements of (S, d) under the action of a single contractive
endomorphism φ and we define φ-invariant and φ-inert elements. Then, in §3.2, we introduce fully
invariant, fully inert and uniformly fully inert elements of (S, d) by analogy with [4, 12, 13]. In §3.3
we examine the properties of the trajectories of φ-inert elements in order to introduce the intrinsic
semilattice entropy in §3.4.

Section 4 is devoted to the study of the intrinsic semilattice entropy h̃. In §4.1 we propose some basic
properties of h̃ and we show that it is actually an invariant of the category FlowLqm (see Corollary 4.3).
The whole §4.2 is dedicated to the so-called logarithmic law, that is, we try to answer the following
question: given a contractive endomorphism φ : S → S of a generalized quasimetric semilattice S and
k ∈ N, is it true that h̃(φk) = k · h̃(φ)? We verify the inequality h̃(φk) ≥ k · h̃(φ) (see Corollary 4.6),
while the opposite one is proved only under some additional restraints. Trying to carry over to this
framework the proof of the logarithmic law stated in [27] for the intrinsic algebraic entropy, an error
was found in one of the steps of the argument in [27], and that proof has been corrected in [50].
Nevertheless, the argument used in [50] cannot be extended to our current setting. We expect that the
answer to the above general question is negative, but we did not find a counterexample yet.

In the final Section 5 we put the general scheme to work and we show how the above mentioned
specific intrinsic-like entropies can be recovered as intrinsic functorial entropies.

Dedication and acknowledgements

This paper is dedicated to the memory of our friend and colleague Silvana Rinauro, whose contributions
towards inertial properties in groups, obtained jointly with U. Dardano (see [12, 14, 16, 15]), triggered
the key notion of φ-inert subgroup, which is the core of the notion of intrinsic entropy.

We warmly thank our friend and colleague Nicolò Zava and the referee for the useful comments and
suggestions.

Notation and terminology

We denote by Z the integers, by N the natural numbers and by N+ = N \ {0} the positive integers.
Moreover, R is the set of reals and R≥0 = {x ∈ R | x ≥ 0}.
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Let X be a category. With some abuse of notation, we write X ∈ X to say that X ∈ Ob(X). If Y
is a full subcategory of X, we briefly write Y ⊆ X.

A flow of X is a pair (X,φ), where X is an object of X and φ : X → X is an endomorphism in
X. A morphism between two flows (X,φ) and (Y, ψ) of X is a morphism α : X → Y in X such that
ψ ◦ α = α ◦ φ. This defines the category FlowX of flows of X.

Clearly, in case F : X → Y is a functor, it induces a functor F : FlowX → FlowY by letting
F (X,φ) = (F (X), F (φ)) for every (X,φ) ∈ FlowX and F (α) = F (α) in case α : (X,φ)→ (X ′, φ′) is a
morphism in FlowX.

2 Generalized quasimetric semilattices and generalized
normed semigroups

2.1 Semilattices with a generalized quasimetric

Here we follow the approach from [18].

Definition 2.1. A generalized quasimetric on a non-empty set S is a function d : S×S → R≥0 ∪{∞}
such that:

(QM1) for x, y ∈ S, d(x, y) = d(y, x) = 0 if and only if x = y;

(QM2) for every x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z); with the standard convention that r < r +∞ =
∞+∞ =∞ for every r ∈ R≥0.

The pair (S, d) is called generalized quasimetric space.

By analogy with the classical case of quasimetrics, we give the following natural definition.

Definition 2.2. Let (S1, d1) and (S2, d2) be generalized quasimetric spaces. Then a map α : S1 → S2

is an isometry if d2(α(x), α(y)) = d1(x, y) for every x, y ∈ S1.

For a generalized quasimetric space (S, d), let ≤d be the partial order on (S, d) defined by letting,
for x, y ∈ S,

x ≤d y if and only if d(y, x) = 0. (2.1)

This is the dual of the specialization order of d.

Definition 2.3 ([18]). A generalized quasimetric space (S, d) is a generalized quasimetric semilattice
if (S,≤d) is a join-semilattice with bottom element 0; the semilattice operation is denoted by +.
Moreover, (S, d) is invariant if

(QM3) d(x, y) = d(x, x+ y) for all x, y ∈ S.

From now on, whenever (S, d) is assumed to be a generalized quasimetric semilattice, we omit the
appearance of the subscript in the notation, i.e., we use ≤ instead of ≤d.

In this paper we consider semilattices with bottom element, denoted by 0, which are commutative
monoids with all elements idempotent. So, when we say semilattice homomorphism we intend that
it also sends the bottom element of the domain to the bottom element of the codomain; briefly, it is
a monoid homomorphism. Moreover, it is natural to define morphisms between invariant generalized
quasimetric semilattices as follows.

Definition 2.4. A semilattice homomorphism φ : (S, d)→ (S′, d′) between two invariant generalized
quasimetric semilattices is contractive if d′(φ(x), φ(y)) ≤ d(x, y) for every x, y ∈ S.

Let Lqm denote the category of all invariant generalized quasimetric semilattices (i.e., satisfy-
ing (QM1), (QM2), (QM3)) and their contractive (semilattice) homomorphisms.

If (S, d) ∈ Lqm, then a simple application of (QM2) and (QM3) shows that the function d(−, y) :
S → R≥0 is decreasing for every y ∈ S, while d(x,−) : S → R≥0 is increasing for every x ∈ S, that is:

(M1) if x, x′, y ∈ S and x ≤ x′, then d(x′, y) ≤ d(x, y);

(M2) if x, y, y′ ∈ S and y ≤ y′, then d(x, y) ≤ d(x, y′).

As further examples show, it is useful to allow the objects (S, d) of Lqm to satisfy the additional
property:

(OC) if x, y, z ∈ S and x ≤ y ≤ z, then d(x, z) = d(x, y) + d(y, z).

In [48], (S, d) ∈ Lqm is called order-convex if it satisfies (OC). One can see that (OC) is equivalent to
d(x, y + y′) = d(x, y) + d(x+ y, y′) for all triples x, y, y′ ∈ S (see [18]).

As proved in [18], (QM3) is equivalent to

d(x+ x′, y + y′) ≤ d(x, y) + d(x′, y′) for every x, x′, y, y′ ∈ S, (2.2)

and an example is given witnessing that (QM3) is strictly weaker than (OC).
Let Lqm be the full subcategory of Lqm with objects all S ∈ Lqm satisfying (OC).
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2.2 The closeness relation

Definition 2.5. Let S ∈ Lqm. Two elements x, y ∈ S are close, denoted by x ∼ y, if d(x, y) <∞ and
d(y, x) <∞.

It is easy to see that ∼ is an equivalence relation on S ∈ Lqm (the transitivity property holds
by (QM2)).

Let (S, d) ∈ Lqm and let
Fd(S) = {x ∈ S | d(0, x) <∞} ⊆ S.

Since by definition d(x, 0) = 0 for every x ∈ S, clearly Fd(S) = [0]∼.

Remark 2.6. Let S ∈ Lqm. Then ∼ is a congruence on S. In fact, for x, x′, y, y′ ∈ S, if x′ ∼ x and
y′ ∼ y, then also x′ + y′ ∼ x+ y by (2.2).

Therefore, if H is a subsemilattice of S, then so is

H∼ = {x ∈ S | ∃y ∈ H, x ∼ y} =
⋃
y∈H

[y]∼.

In particular, if S ∈ Lqm, then Fd(S) = {0}∼ is a subsemilattice of S.

2.3 Examples of generalized quasimetric semilattices

Here we collect some examples that are used in Section 5 (see also [18]).

Example 2.7. Let G be a group and denote by S(G) the family of all subgroups of G. For H,H ′ ∈
S(G) with H ⊆ H ′, the index of H in H ′ is denoted by [H ′ : H].

(a) If G is abelian, S(G) can be considered as a semilattice whose elements are partially ordered
by inclusion and with operation H + H ′ for H,H ′ ∈ S(G). This gives a semilattice S∨(G) =
(S(G),+,⊆) with bottom element the trivial subgroup 0 of G. We endow it with the generalized
quasimetric defined by

d[ : ](H,H
′) = log[H +H ′ : H] for H,H ′ ∈ S(G).

(b) The set S(G) can be partially ordered by inverse inclusion even when G is not necessarily abelian.
Hence, S∧(G) = (S(G),∩,⊇) can be regarded as a semilattice with the operation H ∩ H ′ for
H,H ′ ∈ S(G); now the bottom element is G. In such a case, one has the generalized quasimetric
defined by

d∗[ : ](H,H
′) = log[H : H ∩H ′] for H,H ′ ∈ S(G).

The generalized quasimetrics d[ : ] and d∗[ : ] satisfy all the properties (QM1), (QM2), (QM3) and (OC);

so, (S∨(G), d[ : ]) ∈ Lqm and (S∧(G), d∗[ : ]) ∈ Lqm. Clearly, d∗[ : ](H,H
′) = d[ : ](H

′, H) for all H,H ′ ∈
S(G) when G is abelian, that is, d[ : ] coincides with the dual metric of d∗[ : ].

In both cases the closeness relation is known under the name commensurability, that is, H,H ′ ∈
S(G) are commensurable if [H : H ∩H ′] and [H ′ : H ∩H ′] are finite. Moreover, Fd[ : ]

(S∨(G)) is the

family of all finite subgroups of G and Fd∗
[ : ]

(S∧(G)) is the family of all finite-index subgroups of G.

The next obviously generalizes the previous example with i(G) = log |G|.
Example 2.8. Let M be a unitary R-module, where R is a unitary commutative ring. Now let S∨(M)
be the lattice L(M) of all submodules of M , considered as a semilattice with operation H + H ′ for
H,H ′ ∈ L(M) and let S∧(M) be the lattice L(M) considered as a semilattice with operation H∩H ′ for
H,H ′ ∈ L(M). Fix a module invariant i on the category Mod(R) of all R-modules, that is, a function
i : Mod(R) → R≥0 ∪ {∞} such that i(M) = i(N) whenever M and N are isomorphic R-modules.
Moreover, assume that i is subadditive, that is, i(M) ≤ i(N) + i(M/N) when N is a submodule of the
R-module M .

Define the generalized quasimetrics di on S∨(M) and d∗i on S∧(M) by

di(H,H
′) = i((H +H ′)/H) and d∗i (H,H

′) = i(H/(H ∩H ′)) for H,H ′ ∈ S.

If R is a field, then one is left with the only possible invariant i = dimR and M is a vector
space over R. Moreover, di and d∗i satisfy all the properties (QM1), (QM2), (QM3), (OC), and so
(L(M), ddimR) ∈ Lqm and (L(M), d∗i ) ∈ Lqm. Clearly, FddimR

(S∨(M)) is the family of all finite-

dimensional linear subspaces of M and Fd∗
dimR

(S∧(M)) is the family of all linear subspaces of M with

finite co-dimension.

Remark 2.9. In all cases considered above, we have a concrete category X with a forgetful functor
U : X→ Set with plenty of nice properties. For example, for X ∈ X, the poset L(X) of all subobjects
of X in X is obtained from the lifting of subsets of P(U(X)) along U . Hence, the meet in L(X) is
simply the subobject with underlying set the intersection.

In the above commutative examples, L(X) is a complete lattice, so it has two semilattice structures
which are related by an isomorphism or anti-isomorphism.
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3 Dynamics in Lqm

3.1 The φ-invariant and φ-inert elements

In this section we study the interaction of single elements of some (S, d) ∈ Lqm with endomorphisms
of (S, d) in Lqm.

Definition 3.1. Let ((S, d), φ) ∈ FlowLqm . An element x ∈ S is called:

(i) φ-invariant if d(x, φ(x)) = 0 (i.e., if φ(x) ≤ x);

(ii) φ-inert if d(x, φ(x)) <∞.

We denote respectively by Invφ(S) and Iφ(S) the subsets of the φ-invariant and the φ-inert elements
of S (we shall see below that these are actually subsemilattices of S). Obviously, Invφ(S) ⊆ Iφ(S).

Next we see that a large supply of φ-inert elements is provided by the elements of S close to 0,
shortly, Fd(S) ⊆ Iφ(S).

Remark 3.2. Let ((S, d), φ) ∈ FlowLqm and x ∈ S.

(a) If x ∈ Fd(S), then φ(x) ∈ Fd(S) and x ∈ Iφ(S). In fact, d(0, x) < ∞ implies d(0, φ(x)) =
d(φ(0), φ(x)) ≤ d(0, x) <∞. Then d(x, φ(x)) ≤ d(0, φ(x)) by (M1).

(b) The element x is φ-invariant precisely when x = x+ φ(x).

We show some properties of the φ-inert elements, starting with the verification that Iφ(S) is φ-
invariant, that is, φ(Iφ(S)) ⊆ Iφ(S).

Lemma 3.3. Let ((S, d), φ) ∈ FlowLqm . Then:

(a) φn(Iφ(S)) ⊆ Iφ(S) for all n ∈ N; in particular, if x ∈ S is φ-inert, then φ(x) is φ-inert;

(b) Invφ(S) is a subsemilattice of S;

(c) Iφ(S) is a subsemilattice of S.

Proof. (a) It suffices to observe that d(φn(x), φn+1(x)) ≤ d(x, φ(x)).
(b) If x, y ∈ S are φ-invariant, then x+ y is φ-invariant by Remark 3.2(b).
(c) By (2.2), one has 0 ≤ d(x + y, φ(x + y)) = d(x + y, φ(x) + φ(y)) ≤ d(x, φ(x)) + d(y, φ(y)) for

every x, y ∈ S. Therefore, if x, y ∈ S are φ-inert, then x+ y is φ-inert.

3.2 Fully invariant, fully inert and uniformly fully inert elements

Inspired by the notions introduced and studied in [12, 13], we give the following.

Definition 3.4. Let (S, d) ∈ Lqm. An element x ∈ S is called:

(i) fully invariant if x is φ-invariant for every contractive endomorphism φ of S;

(ii) fully inert if x is φ-inert for every contractive endomorphism φ of S;

(iii) uniformly fully inert if there exists C > 0 such that d(x, φ(x)) ≤ C for every contractive endo-
morphism φ of S.

In the sequel, given (S, d) ∈ Lqm, we denote by:

(i) I(S) the set of all fully inert elements of S;

(ii) Inv(S) the set of all fully invariant elements of S;

(iii) Iu(S) the set of all uniformly fully inert elements of S.

Clearly, Inv(S) ⊆ Iu(S) ⊆ I(S) and

I(S) =
⋂

φ∈End(S)

Iφ(S), Inv(S) =
⋂

φ∈End(S)

Invφ(S).

By Lemma 3.3(b), Inv(S) is a subsemilattice of S, while I(S) is a subsemilattice of S by Lemma 3.3(c),
and a similar argument shows that also Iu(S) is a subsemilattice of S.

Lemma 3.5. Let (S, d) ∈ Lqm and x, y ∈ S with x ∼ y.

(a) If φ is a contractive endomorphism of S and x ∈ Iφ(S), then y ∈ Iφ(S).

(b) If x ∈ Iu(S), then y ∈ Iu(S) (in particular, if x ∈ Inv(S), then y ∈ Iu(S)).
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Proof. (a) By (QM2) and the fact that φ is contractive,

d(y, φ(y)) ≤ d(y, x) + d(x, φ(x)) + d(φ(x), φ(y)) ≤ d(y, x) + d(x, φ(x)) + d(x, y) <∞.

(b) Similarly, if for some C > 0 one has d(x, φ(x)) ≤ C for all contractive endomorphisms φ of S,
then using the fact that φ is contractive and (QM2), we have

d(y, φ(y)) ≤ d(y, x) + d(x, φ(x)) + d(φ(x), φ(y)) ≤
≤ d(y, x) + d(x, φ(x)) + d(x, y) ≤ d(y, x) + d(x, y) + C.

Let us consider the set Inv(S)∼ of all elements x ∈ S which are close to some y ∈ Inv(S). In
Lemma 3.5(b) we showed that Inv(S)∼ ⊆ Iu(S). It is not clear whether one can invert this inclusion,
namely:

Question 3.6. Let (S, d) ∈ Lqm. If y ∈ Iu(S), does there exist x ∈ Inv(S) such that x ∼ y? In other
words, does the equality Inv(S)∼ = Iu(S) hold?

Remark 3.7. The above notions come from the case of groups, that is, in case G is a group, one
considers the lattice S(G) of all its subgroups with the generalized quasimetric discussed in Exam-
ple 2.7(b).

(a) Since fully invariant subgroups are usually hard to come by, one relaxes the property of fully
invariance defining a subgroup H of G to be characteristic in G if H is φ-invariant for every φ ∈ Aut(G).

In this case one may also choose some other subgroup of Aut(G); in particular, if this subgroup of
Aut(G) is Inn(G), then the subgroups H of G with φ(H) ⊆ H for every φ ∈ Inn(G) are obviously the
normal ones.

(b) More in general, for an operator group or Ω-group G (that is, a group G equipped with a family
Ω of endomorphisms of G), a subgroup H of G is called Ω-invariant or Ω-admissible if φ(H) ⊆ H
for every φ ∈ Ω. In particular, with Ω = Inn(G) (respectively, Ω = End(G), Ω = Aut(G)), the Ω-
admissible subgroups of G are precisely the normal (respectively, the fully invariant, the characteristic)
ones.

(c) Analogously to the discussion in item (a), the subgroups H of G that are “fully inert with
respect to Inn(G)”, that is, those H that are φ-inert for every φ ∈ Inn(G) where studied under the
name inert subgroups in the nineties. Clearly, fully inert subgroups in the above sense are inert. This
triggered the introduction of fully inert subgroups of abelian groups in [26].

(d) Bergman and Lenstra [4] introduced the notion of uniformly inert subgroups of G. These are
the subgroups H of G that are “uniformly inert with respect to Inn(G)”, that is, those H such that for
some constant C > 0, [H : φ(H) ∩H] ≤ C for every φ ∈ Inn(G). Clearly, every uniformly fully inert
subgroup is uniformly inert.

It is known from [4, Theorem 3] that a subgroup of a group G is uniformly inert if and only if it is
commensurable with a normal subgroup of G. Nevertheless, Question 3.6 is still open; it was raised in
[12, 13] in the case of a group G and the semilattice S(G) with the generalized quasimetric described
in Example 2.7(b).

3.3 Trajectories and their properties

In this subsection we investigate the properties of the φ-trajectories of φ-inert elements, which turn
out to be φ-inert elements (see Lemma 3.12).

Definition 3.8. Let ((S, d), φ) ∈ FlowLqm and x ∈ S. For n ∈ N+, the n-th φ-trajectory of x is
Tn(φ, x) = x+ φ(x) + . . .+ φn−1(x) ∈ S and let T0(φ, x) = 0.

We simply write Tn in place of Tn(φ, x), when φ and x are clear from the context.

Remark 3.9. Let ((S, d), φ) ∈ FlowLqm and x ∈ S. For every n,m, i ∈ N+ with i ≤ m, it is
straightforward to see that Tn(φi, Tm) = T(n−1)i+m.

The implication (a)⇒(c) in the next result is in Lemma 3.3(a).

Proposition 3.10. Let ((S, d), φ) ∈ FlowLqm and x ∈ S. Then the following conditions are equivalent:

(a) x is φ-inert (i.e., d(x, φ(x)) <∞);

(b) d(x, Tn) <∞ for every n ∈ N+;

(c) x is φn-inert (i.e., d(x, φn(x)) <∞) for every n ∈ N+.

Proof. (c)⇒(a) This is trivial.
(b)⇒(c) For n ∈ N+, (M2) gives d(x, φn−1(x)) ≤ d(x, Tn).
(a)⇒(b) For n ∈ N+,

d(x, Tn) ≤ d(x, φ(x)) + d(φ(x), φ(Tn−1)) ≤ d(x, φ(x)) + d(x, Tn−1).

By induction, one gets d(x, Tn) ≤ (n − 1)d(x, Tn−1). Hence, by (M2), d(x, φn−1(x)) ≤ d(x, Tn) ≤
(n− 1)d(x, φ(x)) <∞.
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The above proposition implies in particular that Iφ(S) =
⋂
n∈N+

Iφn(S).

Lemma 3.11. Let ((S, d), φ) ∈ FlowLqm and let x ∈ S be φ-inert. Then, for every n ∈ N+,
d(Tn, Tn+1) ≤ d(Tn−1, Tn). So, the sequence {d(Tn, Tn+1)}n∈N of non-negative reals is decreasing.

Proof. Fix n ∈ N+. Since φ(Tn−1) ≤ x+ φ(Tn−1) = Tn, (QM3) gives

d(Tn, Tn+1) = d(x+ φ(Tn−1), x+ φ(Tn−1) + φ(Tn)) =

= d(x+ φ(Tn−1), φ(Tn)) ≤ d(φ(Tn−1), φ(Tn)) ≤ d(Tn−1, Tn).

The next result is useful in §4.2 about the so-called logarithmic law.

Lemma 3.12. Let ((S, d), φ) ∈ FlowLqm . If x is φk-inert for some k ∈ N, then Tk is φ-inert and so
φk-inert. In particular, if x is φ-inert, then Tn is φ-inert for all n ∈ N.

Proof. Let k ∈ N and x be φk-inert. Since

Tk + φ(Tk) = Tk+1 = Tk + φk(x),

(QM3) implies that
d(Tk, φ(Tk)) = d(Tk, Tk + φk(x)) = d(Tk, φ

k(x)).

Then d(Tk, φ(Tk)) ≤ d(x, φk(x)) by (M1), so Tk is φ-inert.
The remaining part is a consequence of Proposition 3.10.

Remark 3.13. Let ((S, d), φ) ∈ FlowLqm . If x, y ∈ S are φ-inert and n ∈ N, d(Tn(φ, x), Tn(φ, y)) ≤
nd(x, y) by (2.2). Therefore, for every m ∈ N, since Tn+m = Tn(φ, Tm+1) by Remark 3.9,

d(Tn, Tn+m) ≤ nd(x, Tm+1).

Lemma 3.14. Let ((S, d), φ) ∈ FlowLqm
and x ∈ S. Then, for every n,m ∈ N, d(x, Tn+m) =

d(x, Tn) + d(Tn, Tn+m).

Proof. Since x ≤ Tn ≤ Tn+m, the assertion follows from (OC).

3.4 The intrinsic semilattice entropy

The next result enables us to introduce the fundamental notion of this paper, namely, the intrinsic
semilattice entropy of a contractive endomorphism φ of an object (S, d) of Lqm.

Theorem 3.15. Let ((S, d), φ) ∈ FlowLqm . The following limit exists for every x ∈ Iφ(S):

h̃(φ, x) = lim
n→∞

d(x, Tn(φ, x))

n
.

This important result is a consequence of the following proposition and Fekete Lemma (see [32]).

Proposition 3.16. Let ((S, d), φ) ∈ FlowLqm and x ∈ Iφ(S). Then {d(x, Tn+1)}n∈N is subadditive.

Proof. For n ∈ N, let cn = d(x, Tn+1). We have to prove that cm+n ≤ cm + cn for every m,n ∈ N. One
has

cm+n = d(x, Tm+n+1) ≤ cn + d(Tn+1, Tm+n+1)

by (QM2). Hence, to conclude that cm+n ≤ cm + cn, it suffices to compute

d(Tn+1, Tm+n+1) = d(Tn+1, Tn+1 + φn+1(Tm))

= d(Tn+1, φ
n+1(Tm))

≤ d(φn(x), φn+1(Tm))

≤ d(x, φ(Tm))

≤ d(x, Tm+1) = cm,

where the first equality holds by definition, the second by (QM3), the first inequality by (M1) since
φn(x) ≤ Tn+1, the second inequality because φ is contractive, and the last inequality by (M2) since
φ(Tm) ≤ Tm+1.

Theorem 3.15 allows us to give the main definition of this paper.

Definition 3.17. Let ((S, d), φ) ∈ FlowLqm . The intrinsic semilattice entropy of φ with respect to

x ∈ Iφ(S) is the value h̃(φ, x) introduced in Theorem 3.15.

The intrinsic semilattice entropy of φ is h̃(φ) = sup{h̃(φ, x) | x ∈ Iφ(S)}.
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Due to Lemma 3.14 we see now that a stronger result with respect to Theorem 3.15 holds for flows
in Lqm.

Proposition 3.18. Let ((S, d), φ) ∈ FlowLqm
and the value set d(S × S) be a well-ordered subset of

the range. If x ∈ S is φ-inert, then

h̃(φ, x) = inf
n∈N

d(Tn, Tn+1) ∈ R≥0.

Proof. By Lemma 3.11 the sequence {d(Tn, Tn+1)}n∈N is decreasing, so it stabilizes, according to our
hypothesis. Let α = inf{d(Tn, Tn+1) | n ∈ N}. There exists n0 ∈ N such that d(Tn, Tn+1) = α for
every n ∈ N with n ≥ n0. By Lemma 3.14, d(x, Tn0+m) = d(x, Tn0) +mα for every m ∈ N; therefore,

h̃(φ, x) = lim
m→∞

d(x, Tn0+m)

n0 +m
= lim
m→∞

d(x, Tn0) +mα

n0 +m
= α.

4 Basic properties of the intrinsic semilattice entropy

In this section we investigate several properties of the map h̃ : FlowLqm → R≥0 ∪ {∞}, where we let

h̃(φ) = h̃(S, φ) for every (S, φ) ∈ FlowLqm .

4.1 The intrinsic semilattice entropy is an invariant

We start by showing that the identity map has zero intrinsic semilattice entropy.

Example 4.1. If S ∈ Lqm, then h̃(idS) = 0. Indeed, every x ∈ S is idS-inert, and Tn(idS , x) = x for

every n ∈ N, so h̃(idS , x) = 0.

The condition needed in item (a) of the next result seems to be different from the surjectivity of
α : S1 → S2.

Proposition 4.2. Let α : ((S1, d1), φ1)→ ((S2, d2), φ2) be a morphism in FlowLqm . Then α(Iφ1(S1)) ⊆
Iφ2(S2) and Tn(φ2, α(x)) = α(Tn(φ1, x)) for every x ∈ S1 and n ∈ N. Moreover:

(a) if α(Iφ1(S1)) = Iφ2(S2), then h̃(φ2) ≤ h̃(φ1);

(b) if α is an injective isometry, then h̃(φ2) ≥ h̃(φ1).

Proof. Since α is a contractive semilattice homomorphism such that α ◦ φ1 = φ2 ◦ α, one has

d2(α(x), φ2(α(x))) = d2(α(x), α(φ1(x))) ≤ d1(x, φ1(x)) <∞.

Then α(x) ∈ S2 is φ2-inert whenever x ∈ S1 is φ1-inert.
If x ∈ S1 and n ∈ N, then

Tn(φ2, α(x)) = α(x) + φ2α(x) + · · ·+ φn−1
2 α(x) =

= α(x) + αφ1(x) + · · ·+ αφn−1
1 (x) = α(Tn(φ1, x)).

(a) Let y ∈ Iφ2(S2), and let x ∈ Iφ1(S1) be such that y = α(x). Using the first part of the proof,
we obtain

h̃(φ2, y) = lim
n→∞

d2(α(x), α(Tn(φ1, x)))

n
≤ lim
n→∞

d1(x, Tn(φ1, x))

n
= h̃(φ1, x).

Since h̃(φ1, x) ≤ h̃(φ1), taking the supremum over y ∈ Iφ2(S2) in the above inequality, we get h̃(φ2) ≤
h̃(φ1).

(b) Assume that α is injective and d2(α(x), α(y)) = d1(x, y) for every x, y ∈ S1. For a φ1-inert
element x ∈ S1, we proved already that α(x) ∈ S2 is φ2-inert. Moreover,

h̃(φ2, α(x)) = lim
n→∞

d2(α(x), α(Tn(φ1, x)))

n
= lim
n→∞

d1(x, Tn(φ1, x))

n
= h̃(φ1, x).

Then h̃(φ2) ≥ h̃(φ2, α(x)) = h̃(φ1, x) for every φ1-inert element x, so h̃(φ2) ≥ h̃(φ1).

When α : ((S1, d1), φ1)→ ((S2, d2), φ2) is an isomorphism in FlowLqm , it satisfies all the hypotheses

in Proposition 4.2(a,b). Moreover, φ2 coincides with α ◦ φ1 ◦ α−1, so h̃(α ◦ φ1 ◦ α−1) = h̃(φ1) in this
case.

Corollary 4.3 (Invariance under conjugation). Let α : ((S1, d1), φ1) → ((S2, d2), φ2) be an isomor-

phism in FlowLqm . Then α(Iφ1(S1)) = Iφ2(S2) and h̃(φ2) = h̃(φ1).

This shows that h̃ : FlowLqm → R≥0 ∪ {∞} is an invariant of FlowLqm .
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4.2 Towards the logarithmic law

In the following results we compare the intrinsic semilattice entropy h̃(φ) of a flow ((S, d), φ) in FlowLqm

with the intrinsic semilattice entropy of the composition flow ((S, d), φk).

Lemma 4.4. Let ((S, d), φ) ∈ FlowLqm and k ∈ N. If x is φ-inert, then h̃(φ, Tk(φ, x)) = h̃(φ, x).

Proof. Let k ∈ N and x ∈ S be φ-inert. Then Tk(φ, x) is φ-inert by Lemma 3.12. Let n ∈ N+.
Remark 3.9 gives

h̃(φ, Tk(φ, x)) = lim
n→∞

d(Tk(φ, x), Tn(φ, Tk(φ, x)))

n

= lim
n→∞

d(Tk(φ, x), Tn+k−1(φ, x))

n
.

Since x ≤ Tk(φ, x), d(Tk(φ, x), x) = 0 by (2.1). Then by (QM2), we obtain

h̃(φ, Tk(φ, x)) ≤ lim
n→∞

d(Tk(φ, x), x)

n
+ lim
n→∞

d(x, Tn+k−1(φ, x))

n
=

= lim
n→∞

d(x, Tn+k−1(φ, x))

n+ k − 1
· n+ k − 1

n
= h̃(φ, x).

On the other hand,

h̃(φ, x) = lim
n→∞

d(x, Tn+k(φ, x))

n+ k

≤ lim
n→∞

d(x, Tk(φ, x))

n+ k
+ lim
n→∞

d(Tk(φ, x), Tn+k(φ, x))

n+ k
.

As d(x, Tk(φ, x)) ∈ R and does not depend on n, Remark 3.9 gives

h̃(φ, x) ≤ lim
n→∞

d(Tk(φ, x), Tn+1(φ, Tk(φ, x)))

n+ 1

n+ 1

n+ k
= h̃(φ, Tk(φ, x)).

Then we obtain some sort of “local” logarithmic law passing to the trajectories.

Proposition 4.5. Let ((S, d), φ) ∈ FlowLqm and k ∈ N. If x is φk-inert, then

h̃(φk, Tk(φ, x)) = k · h̃(φ, Tk(φ, x)). (4.1)

Moreover, if x is φ-inert, then

h̃(φk, Tk(φ, x)) = k · h̃(φ, Tk(φ, x)) = k · h̃(φ, x). (4.2)

Proof. First assume that x is φk-inert. Then Tk(φ, x) is φ-inert and φk-inert by Lemma 3.12. Let
n ∈ N+. By Remark 3.9,

Tnk(φ, x) = Tn(φk, Tk(φ, x)) = Tkn−k+1(φ, Tk(φ, x)). (4.3)

Then we get (4.1) as

h̃(φk, Tk(φ, x)) = lim
n→∞

d(Tk(φ, x), Tn(φk, Tk(φ, x)))

n

= lim
n→∞

d(Tk(φ, x), Tkn−k+1(φ, Tk(φ, x)))

kn− k + 1

kn− k + 1

n

= k · h̃(φ, Tk(φ, x)).

Now assume that x is φ-inert. Then x is φk-inert as well, so (4.1) ensures the first equality in (4.2).
Moreover, Lemma 4.4 applies to provide the second equality in (4.2).

As an immediate consequence of Proposition 4.5 we obtain:

Corollary 4.6. If ((S, d), φ) ∈ FlowLqm and k ∈ N, then k · h̃(φ) ≤ h̃(φk).

Proof. Let x ∈ Iφ(S). By (4.2), k · h̃(φ, x) = h̃(φk, Tk(φ, x)) ≤ h̃(φk). Thus, k · h̃(φ) ≤ h̃(φk) by taking
the supremum over all x ∈ Iφ(S).

In the rest of this subsection we give partial results concerning the converse inequality h̃(φk) ≤
k · h̃(φ). We start from a “local” version generalizing Proposition 4.5, where we replace the φ-inert
element Tk(φ, x) that appears in (4.1) with a generic φ-inert element of S.

Lemma 4.7. If ((S, d), φ) ∈ FlowLqm , k ∈ N and x is φ-inert, then h̃(φk, x) ≤ k · h̃(φ, x).
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Proof. Note first that (even in case x is not φ-inert), Tn(φk, x) ≤ Tkn−k+1(φ, x). Then

h̃(φk, x) ≤ lim
n→∞

d(x, Tkn−k+1(φ, x))

kn− k + 1

kn− k + 1

n
= k · h̃(φ, x).

The next corollary gives a precise description of k · h̃(φ) and covers, in particular, Corollary 4.6.

Corollary 4.8. Let ((S, d), φ) ∈ FlowLqm , and k ∈ N. Then

k · h̃(φ) = sup{h̃(φk, x) | x ∈ Iφ(S)} ≤ h̃(φk).

Proof. The second inequality follows from the fact that Iφ(S) ⊆ Iφk (S). Let x ∈ Iφ(S); then y =
Tk(φ, x) ∈ Iφ(S) by Proposition 3.10. Respectively from Lemma 4.7 and Lemma 4.4, it follows that

h̃(φk, x) ≤ k · h̃(φ, x) = k · h̃(φ, y). So, sup{h̃(φk, x) | x ∈ Iφ(S)} ≤ k · h̃(φ). To prove the converse
inequality, apply (4.2) to obtain

k · h̃(φ, x) = h̃(φk, Tk(φ, x)) ≤ sup{h̃(φk, x) | x ∈ Iφ(S)}.

Hence, k · h̃(φ) ≤ sup{h̃(φk, x) | x ∈ Iφ(S)}.

Corollary 4.8 implies that the logarithmic law holds in the following special cases.

Corollary 4.9. Let ((S, d), φ) ∈ FlowLqm and k ∈ N. If either h̃(φk) = 0 or Iφ(S) = Iφk (S), then

h̃(φk) = k · h̃(φ).

As Iφ(S) ⊆ Iφk (S) holds in general by Proposition 3.10, Iφ(S) = Iφk (S) occurs for example when
Iφ(S) = S. This is the case when the generalized quasimetric d is a quasimetric (that is, d takes only
finite values), and so we obtain the following instance of the logarithmic law.

Corollary 4.10. Let ((S, d), φ) ∈ FlowLqm with d a quasimetric, and let k ∈ N. Then h̃(φk) = k · h̃(φ).

5 Obtaining the specific entropy functions

In the next subsections of this section we use the following scheme in order to find the known intrinsic-
like entropies as intrinsic functorial entropies.

5.1 Intrinsic functorial entropy

As recalled in the introduction, for X a category and F : FlowX → FlowLqm a functor, the intrinsic

functorial entropy h̃F associated to F is defined by letting h̃F = h̃ ◦ F . We set h̃F (φ) = h̃F (X,φ) for
every (X,φ) ∈ FlowX as usual.

The following shows that h̃F is an invariant of FlowX.

Proposition 5.1. For every functor F : FlowX → FlowLqm , the intrinsic functorial entropy h̃F
is invariant under conjugation, that is, for every (X,φ), (Y, ψ) ∈ FlowX such that there exists an

isomorphism α : (X,φ)→ (Y, ψ), one has h̃F (φ) = h̃F (ψ).

Proof. Assume that F : FlowX → FlowLqm is covariant. By hypothesis, ψ = α ◦ φ ◦ α−1. Then

F (ψ) = F (α) ◦ F (φ) ◦ F (α)−1 in Lqm. By Corollary 4.3, h̃F (ψ) = h̃(F (ψ)) = h̃(F (φ)) = h̃F (φ). For a
contravariant functor F one can proceed analogously.

5.2 Intrinsic (adjoint) algebraic entropy

Let G be an abelian group and let f : G → G be an endomorphism. A subgroup H of G is f-inert if
|(H + f(H))/H| is finite. The family If (G) of the f -inert subgroups of G contains all finite subgroups,
all finite-index subgroups, as well as all f -invariant and fully invariant subgroups of G. The notion of
f -inert subgroup allowed to introduce in [25, 27] two new notions of algebraic entropy: the intrinsic
algebraic entropy and the intrinsic adjoint algebraic entropy.

In detail, let (G, f) ∈ FlowAb, where we denote by Ab the category of abelian groups and their
homomorphisms. Given an f -inert subgroup H of G, the intrinsic algebraic entropy of f with respect
to H is

ẽnt(f,H) = lim
n→∞

1

n
log

∣∣∣∣H + f(H) + · · ·+ fn−1(H)

H

∣∣∣∣ , (5.1)

and the intrinsic algebraic entropy of f is ẽnt(f) = sup{ẽnt(f,H) | H ∈ If (G)}.
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On the other hand, the intrinsic adjoint algebraic entropy of f with respect to H is

ẽnt
∗
(f,H) = lim

n→∞

1

n
log

∣∣∣∣ H

H ∩ f−1(H) ∩ · · · ∩ f−n+1(H)

∣∣∣∣ , (5.2)

and so the intrinsic adjoint algebraic entropy of f is ẽnt
∗
(f) = sup{ẽnt

∗
(f,H) | H ∈ If (G)}.

Hereafter, we show that the intrinsic algebraic entropy and the intrinsic adjoint algebraic entropy are
part of the general scheme introduced in this paper, namely, we prove them to be intrinsic functorial
entropies with respect to suitable functors FlowAb → FlowLqm

. Recall that the family If (G) is a

bounded sublattice of the lattice of all the subgroups of G (see [27, Lemma 2.6]).

5.2.1 Intrinsic algebraic entropy for abelian groups

For an abelian group G, Example 2.7(a) gives (S∨(G), d[ : ]) ∈ Lqm. In addition, for a morphism
f : G→ G′ in Ab, let

S∨(f) : (S∨(G), d[ : ])→ (S∨(G′), d[ : ]),

mapping H 7→ f(H). This defines the functor S∨ : Ab→ Lqm, which induces a functor S∨ : FlowAb →
FlowLqm

.

Theorem 5.2. On FlowAb, we have ẽnt = h̃S∨ .

Indeed, IS∨(f)(S∨(G), d[ : ]) = If (G) and ẽnt = h̃ ◦ S∨ (i.e., the following diagram commutes).

FlowAb

ẽnt ''

S∨ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.2.2 Intrinsic adjoint algebraic entropy for abelian groups

Conversely, for an abelian group G, Example 2.7(b) yields (S∧(G), d∗[ : ]) ∈ Lqm. In addition, for a
morphism f : G→ G′ in Ab, let

S∧(f) : (S∧(G′), d∗[ : ])→ (S∧(G), d∗[ : ]),

mapping H 7→ f−1(H). This defines the functor S∧ : Ab → Lqm, which induces a functor S∧ :
FlowAb → FlowLqm

.

Theorem 5.3. On FlowAb, we have ẽnt
∗

= h̃S∧ .

Indeed, IS∧(f)(S∧(G), d[ : ]) = If (G) and ẽnt
∗

= h̃ ◦ S∧ (i.e., the following diagram commutes).

FlowAb

ẽnt
∗ ''

S∧ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.2.3 A different choice of the semilattices

In order to obtain the intrinsic algebraic entropy and the intrinsic adjoint algebraic entropy as intrinsic
functorial entropies, we can also proceed as follows.

For (G, f) ∈ FlowAb, let I∨f (G) = (If (G), d[ : ]) ∈ Lqm be the subsemilattice of S∨(G) endowed
with the generalized quasimetric induced by d[ : ]. Moreover, let

I∨G(f) : (I∨f (G), d[ : ])→ (I∨f (G), d[ : ]), H 7→ f(H).

The assignment (G, f) 7→ ((I∨f (G), d[ : ]), I∨G(f)) produces the functor I∨ : FlowAb → FlowLqm
, such

that ẽnt = h̃ ◦ I∨.

FlowAb

ẽnt ''

I∨ // FlowLqm

h̃ww
R≥0 ∪ {∞}
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Analogously, let I∧f (G) = (If (G), d∗[ : ]) ∈ Lqm be the subsemilattice of S∧(G) endowed with the
generalized quasimetric induced by d∗[ : ]. Moreover, let

I∧G(f) : (I∧f (G), d∗[ : ])→ (I∧f (G), d∗[ : ]), H 7→ f−1(H).

This yields the functor I∧ : FlowAb → FlowLqm
such that ẽnt

∗
= h̃I∧ .

FlowAb

ẽnt
∗ ''

I∧ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.3 Algebraic and topological entropy for locally compact groups

For a locally compact group G, denote by CO(G) the family of all compact open subgroups of G, which
forms a neighborhood basis at 1G.

5.3.1 Algebraic entropy for compactly covered locally compact abelian groups

A topological group G is said to be compactly covered if each element of G is contained in some compact
subgroup of G. Let LCAcc denote the category of compactly covered locally compact abelian groups
and their continuous endomorphisms. For example, the additive group Qp of p-adic rationals is an
object of LCAcc. Compactly covered locally compact abelian groups are of great interest because
they are the Pontryagin duals of totally disconnected locally compact abelian groups (see the next
subsection).

Let (G, f) ∈ FlowLCAcc . By [21, Proposition 2.2], the algebraic entropy of f with respect to
U ∈ CO(G) is

halg(f, U) = lim
n→∞

1

n
log[U + f(U) + . . .+ fn−1(U) : U ],

and halg(f) = sup{halg(f, U) | U ∈ CO(G)} is the algebraic entropy of f .
For G ∈ LCAcc, we consider the semilattice CO∨(G) = (CO(G) ∪ {0},+,⊆) equipped with the

generalized quasimetric d[ : ]. Then (CO∨(G), d[ : ]) ∈ Lqm. Subsequently, for f : G → G′ in LCAcc,
let CO∨(f) : CO∨(G)→ CO∨(G), U 7→ U + f(U). This defines the functor CO∨ : LCAcc → Lqm, and

so the functor CO∨ : FlowLCAcc → FlowLqm
.

Remark 5.4. For every (G, f) ∈ FlowLCAcc and every U ∈ CO(G), we have d[ : ](U, CO∨(f)(U)) =
log[U + f(U) : U ] <∞, that is,

CO∨(G) = ICO∨(f)(CO∨(G)) ⊆ If (G), (5.3)

so CO∨(G) is a subsemilattice of If (G).

Theorem 5.5. On FlowLCAcc , we have halg = h̃CO∨ .

Indeed, the following diagram commutes by (5.3).

FlowLCAcc

halg ((

CO∨ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.3.2 Topological entropy for totally disconnected locally compact groups

A locally compact group G is said to be totally disconnected if the connected component of 1G is reduced
to the singleton {1G}. Discrete groups and profinite groups are example of totally disconnected locally
compact groups. In particular, profinite groups are precisely the topological groups that are compact
and totally disconnected.

Denote by TDLC the category of totally disconnected locally compact groups and their continuous
homomorphisms. As a consequence of van Dantzig’s theorem, CO(G) is a neighborhood basis at 1G
whenever G ∈ TDLC. As pointed out in [19, 31], such a property allows to define the topological
entropy of continuous endomorphisms of G without resorting to the Haar measure, as follows.

Let (G, f) ∈ FlowTDLC. The topological entropy of f with respect to U ∈ CO(G) is

htop(f, U) = lim
n→∞

1

n
log[U : U ∩ f−1(U) ∩ · · · ∩ f−n+1(U)],

and htop(f) = sup{htop(f, U) | U ∈ CO(G)} denotes the topological entropy of f .
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For G ∈ TDLC, we consider the semilattice CO∧(G) = (CO(G) ∪ {G},∩,⊇) equipped with the
generalized quasimetric d∗[ : ]. Therefore, (CO∧(G), d∗[ : ]) ∈ Lqm. Subsequently, for f : G → G′ in

TDLC, let CO∧(f) : CO∧(G′)→ CO∧(G), U 7→ U ∩ f−1(U). This defines a functor CO∧ : TDLC→
Lqm, which induces a functor CO∧ : FlowTDLC → FlowLqm

.

Remark 5.6. For every (G, f) ∈ FlowTDLC and every U ∈ CO(G), we have d∗[ : ](U, CO∧(f)(U)) =

log[U : U ∩ f−1(U)] <∞, that is,

CO∧(G) = ICO∧(f)(CO∧(G)) ⊆ If (G), (5.4)

and in particular CO∧(G) is a subsemilattice of If (G).

Theorem 5.7. On FlowTDLC, we have htop = h̃CO∧ .

Indeed, the following diagram commutes by (5.4).

FlowTDLC

htop ((

CO∧ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.4 Algebraic and topological entropy for l.l.c. vector spaces

5.4.1 Locally linearly compact vector spaces

Let K be a discrete field. A topological K-vector space V is linearly compact when:

(LC1) it is a Hausdorff space in which there is a neighborhood basis at 0 consisting of linear subspaces
of V ;

(LC2) any collection of closed linear varieties (i.e., closed cosets of linear subspaces) of V with the finite
intersection property has non-empty intersection.

For example, finite-dimensional discrete vector spaces are linearly compact, and compact vector spaces
satisfying (LC1) are linearly compact. More precisely, every linearly compact K-space is a Tychonoff
product of one-dimensional K-spaces, and vice versa. Let KLC denote the category of linearly compact
K-vector spaces and their continuous homomorphisms. We collect here a few properties of linearly
compact vector spaces (see [44]) that we use further on. Let V,U be K-vector spaces satisfying condition
(LC1) and W a linear subspace of V ; thus:

(lc1) if φ : V → U is a surjective continuous homomorphism and V is linearly compact, then U is
linearly compact;

(lc2) if V is linearly compact and W is closed, then W is linearly compact;

(lc3) if V is discrete, then V is linearly compact if and only if V has finite dimension over K;

(lc4) if W is closed, then V is linearly compact if and only if W and V/W are linearly compact.

A topological K-vector space V is said to be locally linearly compact if the family LCO(V ) of
all linearly compact open linear subspaces of V is a neighborhood basis at 0. Let KLLC denote
the category of locally linearly compact K-vector spaces and their continuous homomorphisms. The
category KLC is a full subcategory of KLLC, and also the category KVect of discrete K-vector spaces
is a full subcategory of KLLC.

Remark 5.8. The partially ordered set (LCO(V ),⊆) is a lattice with join-operation given by the sum
of linear subspaces (see (lc1)) and meet-operation given by the intersection (see (lc2)). The lattice
(LCO(V ),⊆) is not bounded unless V has finite dimension. If V is discrete, then (LCO(V ),⊆,+) has
as zero element 0. If V is linearly compact, then (LCO(V ),⊇,∩) has as zero element V .

5.4.2 Algebraic entropy for locally linearly compact vector spaces

Following [9], for every flow (V, f) over KLLC, the algebraic entropy of f with respect to U ∈ LCO(V )
is

ent(f, U) = lim
n→∞

1

n
dim

U + f(U) + . . .+ fn−1(U)

U
,

and the algebraic entropy of f is ent(f) = sup{ent(f, U) | U ∈ LCO(V )}.
For V ∈ KLLC, let LCO∨(V ) denote the semilattice (LCO(V )∪{0},⊆,+) with zero element given

by the trivial subspace. Recall that the trivial subspace of V is not open unless V is discrete, and
therefore we need to add it. By Example 2.8, LCO∨(V ) inherits the generalized quasimetric ddim.
Then (LCO∨(V ), ddim) ∈ Lqm.
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Moreover, for a morphism f : V → V ′ in KLLC, let LCO∨(f) : LCO∨(V ) → LCO∨(V ′), U 7→
U+f(U). This gives the functor LCO∨ : KLLC→ Lqm, which induces the functor LCO∨ : FlowKLLC →
FlowLqm

.

Remark 5.9. For every (V, f) ∈ FlowKLLC and every U ∈ LCO(V ), we have ddim(U,LCO∨(f)(U)) =
dim(U + f(U)/U) <∞ by (lc4) and (lc3), that is,

LCO∨(V ) = ILCO∨(f)(LCO∨(V )) ⊆ If (V ), (5.5)

and in particular LCO∨(V ) is a subsemilattice of If (V ).

Theorem 5.10. On FlowKLLC, we have ent = h̃LCO∨ .

Indeed, in view of (5.5) the following diagram commutes.

FlowKLLC

ent ''

LCO∨ // FlowLqm

h̃ww
R≥0 ∪ {∞}

5.4.3 Topological entropy for locally linearly compact vector spaces

The topological counterpart of the algebraic entropy for locally linearly compact vector spaces was
introduced in [10] as follows. The topological entropy of f with respect to U ∈ LCO(V ) is

ent∗(f, U) = lim
n→∞

1

n
dim

U

U ∩ f−1(U) ∩ . . . ∩ f−n+1(U)
,

and the topological entropy of f is ent∗(f) = sup{ent∗(f, U) | U ∈ LCO(V )}.
For V ∈ KLLC, consider the semilattice LCO∧(V ) given by (LCO(V ) ∪ {V },⊇,∩); the semi-

lattice LCO∧(V ) has zero element V . We consider on LCO∧(V ) the generalized quasimetric d∗dim
from Example 2.8. Then (LCO∧(V ), ddim) ∈ Lqm. Moreover, for a morphism f : V → V ′ in

KLLC, let LCO∧(f) : LCO∧(V ′) → LCO∧(V ), U 7→ U ∩ f−1(U). This produces the functor

LCO∧ : KLLC→ Lqm, which induces the functor LCO∧ : FlowKLLC → FlowLqm
.

Remark 5.11. For every (V, f) ∈ FlowKLLC and every U ∈ LCO(V ), by (lc2), (lc3) and (lc4), we
have d∗dim(U,LCO∧(f)(U)) = dim(U/U ∩ f−1(U)) <∞, that is,

LCO∧(V ) = ILCO∧(f)(LCO∧(V )) ⊆ If (V ), (5.6)

and in particular LCO∧(V ) is a subsemilattice of If (V ).

Theorem 5.12. On FlowKLLC, we have ent∗ = h̃LCO∧ .

Indeed, by (5.6) the following diagram commutes.

FlowKLLC

ent∗ ''

LCO∧ // FlowLqm

h̃ww
R≥0 ∪ {∞}

(5.7)
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