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Abstract

Deep neural network is the new norm in the present era, where it’s being used in

almost all the evolving fields, so is the field of anomaly detection. With the modern IT

infrastructure industries are in constant quest to search for new algorithms to analyze

the data in order to be more autonomous, agile, efficient, and cost-effective. Anomaly

detection is one such task, which industries want to automate as it finds its application in

various fields like banking, traffic management, manufacturing, online fraud detection,

anomalous behavior, etc.

In this dissertation, we explored various novel approaches to solve the image anomaly

detection problem. We proposed ways for anomaly detection tasks, keeping real in-

dustrial problems in mind like data scarcity, imbalanced data, limited resources, etc.

The dissertation proposes novel models like adapted capsnet, stacked capsule auto-

encoders, Pyramidal Image Anomaly Detector (PIADE), and Vision Transformer for

Image Anomaly Detection and Localization (VT-ADL) for Deep Anomaly Detection

(DAD) task. The methods can be trained in both supervised and semi-supervised ways.

And VT-ADL is capable of global image classification and localization, without any

need for pixel-precise ground truth data. We tested our methods on various academi-

cally used datasets like MNIST, CIFAR, COIL, FMNIST, and real industrial datasets

like MVTec and BTAD. The proposed methods performed at par or better than the

state-of-the-art methods.
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1
Introduction

"Every industrial revolution brings

along a learning revolution."

– Alexander De Croo

It has been 10 years since Industry 4.0 [17] was first introduced as a concept by

a German consortium to improve the country’s competitiveness in the manufacturing

industry [39]. The fourth industrial revolution was defined as the automation of tradi-

tional manufacturing and industrial practices and has the aim to take manufacturing

processes to a new level. But the barriers proved daunting and what was touted as

a revolution turned into a slow evolution [104]. Artificial Intelligence (AI) is proving

to be a game-changer for production and manufacturing, enabling intelligent factory

automation that is faster and cheaper than ever before. In addition, many industry

experts are using AI for quality control activities. But to achieve industry-grade real-

life AI solutions is tough because still, AI solutions are problem-specific, data hungry,

computationally demanding and work on a single modality(means, only image data, or

sensory signals, or sound, or tabular data). Hence, there is a constant strive among
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the academic and scientific community and industry as well to develop more robust and

fewer data-hungry and easy-use systems for real-life applications.

According to medical terms in cognitive psychology [9], “novelty” is in a total of the

remembered events plus some degree of surprisal aroused from an event observation.

And the surprising part can be mathematically modeled with a low probability to occur

in an expected model.

Anomaly detection is referred to as the process of identifying novel samples that

exhibit significantly different traits with an accepted and pre-defined model of normality.

In real-life scenarios, like Visual Inspection Systems (VIS), the novel sample can show

an unseen considerable surprise, which at that point is not following the pre-defined

normality, and labeling of novel examples are not possible. If we follow the literature

such event were solved by approximating the ideal shape of the boundary separating

normal and novel samples by modeling the intrinsic features of the former. Due to the

increasing demands, ease of application, cost-saving, and security enhancement, anomaly

detection is seeing broad domains of applications and has been an active research area

for several decades, with earlier attempts dating as far as the 1960s [40]. However, from

the practical point of view anomalies can be seen in one of three types (See Fig:1.1) [21]:

• Point Anomalies: It represents anomalies that happen randomly and has no

particular pattern or interpretations. Most of the old literary work is done to

tackle this kind of problem.

• Contextual Anomalies: It is also known as Conditional Anomaly which iden-

tifies anomalies based on some contextual and behavioral information. It usually

uses time and space as the contextual feature while it uses a specific pattern or

certain behavior as a behavioral feature.

• Collective or Group Anomalies: A gathered point of data is classified in this

group if the individual point in this collection seems normal while when observed
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in a group exhibits unusual characteristics.

Figure 1.1: Classical classification of Anomalies

Anomaly detection is an important problem that has been studied in different

research areas and application domains. Many anomaly detection techniques have been

developed specifically for certain application domains, while others are more general.

In computer vision, an anomaly is any image or image portion which exhibits signif-

icant variation from the pre-defined characteristics of normality. Anomaly Detection

is thus the task of identifying these novel samples in supervised or semi-supervised or

unsupervised ways. A system that can perform this task in an intelligent way is hugely

in demand, as its applications range from video surveillance [85] to defect segmenta-

tion [84, 25, 70], inspection [84], quality control [72], medical imagining [64], financial

transactions [127] etc. As it can be seen from the examples, anomaly detection is par-

ticularly significant in the industrial field, where it can be used to automatically identify

defective products.

In recent years deep learning has shown tremendous capabilities in automating var-

ious mundane industrial tasks by learning deep expressive representations of complex

data (high-dimensional data), spatial data, temporal data, tabular data, images and
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videos, and graph data, pushing the boundaries of various research areas, and anomaly

detection is one such field. Deep learning for anomaly detection is also known as deep

anomaly detection, which aims for learning the feature representation or an anomaly

score via a deep neural network. Initial work on deep learning (and Machine Learning)

tries to classify anomaly detection in two main tasks (Fig: 1.2):

• Novelty Detection: A mechanism by which an intelligent organism/system is

able to identify an incoming sensory pattern as being until now unknown. This

has huge application in bio-medical fields [35], manufacturing fields [120], banks

and online transactions [7], trading [117], etc. In this approach, the training data

is not polluted by the outliers and we are interested in detecting whether a new

observation is an outlier. In this context, an outlier is called a Novelty.

• Outlier Detection: An outlier is an observation that diverges from an overall

pattern on a sample. And the task of finding that is called Outlier Detection.

In this approach, the training data contains outliers, which are defined as the

observations that are far from the others. Thus these methods try to fit a region

where the training data is the most concentrated ignoring the deviant observations.

But in terms of learning these two methods differs; where Novelty detection is a

Semi-supervised learning in contrast to Outlier detection as Unsupervised learning (see

Fig 1.3).

Learning the local features and keeping the positional information in an unsupervised

way is a novel and very challenging task in the computer vision domain. The most

informative part of any image dataset is the part with the highest variance. Such regions

can be located in a very small as well as large local area in an industrial image. Hence,

extracting those pixel-precise regions, in an unsupervised way and at the same time

preserving the spatial information is often desirable, as it helps in automating various

industrial scenarios. Most of the classical machine learning techniques try to learn this
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Figure 1.2: Early attempt to classify deep anomaly detection tasks

Figure 1.3: Learning the difference between Novelty and Outlier Detection approaches

variance (also termed as Entropy [38]) to find the causal features [38] in the dataset.

With the rise in modern IT infrastructure, there is a boom in data acquisition, which

subsequently requires better and efficient algorithms to be processed. And this leads to
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our motivation for this research work.

1.1 Motivation

Quality inspection is often carried out by workers on the production line and manu-

facturers are experiencing serious labor shortages and inconsistent quality assessments

by human workers [104]. Experts have estimated that the "Cost Of Poor Quality" (or

COPQ) [17] can be as high as 30 percent of gross sales for manufacturing and service

companies, costing them millions of dollars each year, so there is high motivation to

improve quality inspection and prevent product defects earlier in the process [89].

With decades-long research and earlier attempts, industries are seeing themselves

on the verge of rapidly evolving interconnected systems, where new technologies have

pressing demands to keep the industries competitive and innovative. Following these

demands recent efforts have been made to improve the anomaly detection task using deep

learning. Most of the works try to learn the manifold of a single class representing normal

data [124], using an encoding-decoding scheme, and their output is a classification of

the input image as either normal or anomaly, while fewer works deal with the task to

segment the local anomalous region in an image [12]. Majorly, the methods either use a

reconstruction-based approach or learn the distribution of the latent features extracted

by a pre-trained network or trained in an end-to-end fashion [78]. Availability of training

data is also a big challenge, as most of the industries never share a lot of data because

of privacy issues and even if they share, the data tends to be highly imbalanced.

Since anomaly detection task has huge industrial application, many industries want

to develop there own specialized methods which suits their requirements of anomaly

classification is a complex working domain. The major and prime industrial challenge

is the "lack of data". Many industrial facilities still don’t have proper infrastructure for

ideal data collection facilities. Even if they have; they have a huge data imbalance, as
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data for the normal product is easy to produce, while very few images of the abnormal-

ities are available as they add-up to the COPQ. Quality of data is also important and

many times industries find it very difficult to arrange that, as they may have huge piles

of messy data.

Apart from the above-mentioned challenges, it’s also costly to arrange customized

industrial data because this may affect the entire production schedule. And even if we

get the data, its annotation is costly(both in terms of time and money). Table 1.1 shows

the major challenges with industries and deep anomaly methods.

Vanilla Neural Network Industrial Challenges
All Vanilla Deep Neural Networks
are data hungry

Scarcity of data or standard dataset
because of privacy issues

Most of the classical deep anomaly methods
need annotated data Annotation is costly and time-consuming

Highly imbalanced datasets induces biased
learning or overfitting

Very high-imbalanced datasets are very
common in industrial setups

Table 1.1: Challenges with industries and Vanilla Neural networks

Hence, the industrial challenges and the benefits of recent advances in the deep

learning field being our major motivation for our research work, which includes -

• Low Recall Rate of Anomaly Detection: Though with the decades of research

the classical research still had high false positive [88] on real world datasets [18, 79].

Hence, our motivation is to develop deep anomaly techniques to reduce the false

positive and enhance detection recall rates (see chapter 5.2).

• High-Dimensional Anomaly Detection: Old classical approaches were more

limited to low dimensional space, where a separating plane between the normal

features and novel data point is fitted [51, 58, 83] or feature engineering/selection

is done to separate the normal data points with the novelty [76, 77, 6]. While

at higher dimensions usually anomalies have intricate interaction and it’s tough

to identify them. Higher-dimensional space (e.g. images or videos) poses further
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challenges as they are not spatial invariant, hence, the methods need to preserve

the information for a specific orientation. Hence, our motivation is to develop

methods which can do real industrial class anomaly classification and location

using high-dimensional data (images).

• Imbalanced-Data Learning: Cost, difficulty, and privacy issues related to the

collection of large-scale labeled data, often makes fully supervised learning imprac-

tical to implement. However, in recent times trend has been changed to develop

more semi-supervised or unsupervised learning, that doesn’t (or minimum) require

labels for training [86, 67, 68, 70]. Hence, the biggest motivation our research work

is to learn expressive normality/abnormality representation with the novel deep

networks with limited(scarce) data which can generalize to the novel anomalies.

• Resilient Anomaly Detection and Localization: With deep networks re-

silient feature learning is expected, as deep networks are susceptible to changing

luminosity. Conventionally the anomaly localization part is done through various

segmentation networks like Unet [95], Unet++ [131], UNet2 [48], SegNet [8]. But

these segmentation networks need lots of labeled data (see chapter 7) and are

also hard to train and slower in inference. Additionally, our quest is to develop

novel deep network that can do global image-level anomaly classification as well as

anomaly localization. Indeed, while doing this the network should be fast enough

to be deployed for industrial uses.

1.2 Problem Definition

This thesis outlines novel deep anomaly detection (DAD) methods, whose mathe-

matically problem definition can be can set in the pretext of some real-world industrial

acquired dataset.
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Hence, given a dataset X = {I1, I2, I3, ...., IN} with Ii ∈ RD, let ζ ∈ RK(K ≪ N)

be the feature representation space, then deep anomaly classification methods aims to

learn a feature mapping function ϕ(·) : X ↦→ ζ. On the other hand, deep anomaly

scoring methods, learns a function τ(·) : X ↦→ R, in a way that anomalies can be

easily pointed out from the normal instances in the space yielded by the functions

ϕ or τ . In the classical approaches these ϕ or τ are closed form convex functions,

which usually shows poor performance with high dimensional data. But here ϕ and

τ are trainable neural networks with H ∈ N hidden layers and their weight matrices

Θ = {M1,M2,M3, ...,MH}. In case of classification ϕ(·) produces probability or class

prediction, while τ(·) directly infers the anomaly scores for a novel instance.

1.3 Thesis Outline

The dissertation is organized as follows. Chapter 1 introduces the background on

deep anomaly detection, the motivation behind it, and problem definition. Chapter

2 presents the related work done previously in the field of deep anomaly detection.

Chapter 3 presents our novel approach for image-level anomaly classification using an

adapted capsule network for the high-imbalanced dataset. Chapter 4 and Chapter 5

show our novel semi-supervised approach for the image novel anomaly classification

methods where we used "Stacked Auto Encoders Using Pyramidal Features for Global

Image Anomaly Classification" and "Pyramidal Image Anomaly Detector (PIADE)"

respectively. Chapter 6 presents the novel use of Vision Transformer and Gaussian mix-

ture model for anomaly classification and localization (VT-ADL). Chapter 7 present

an important comparative study between the newly developed patch-based models like

VT-ADL in contrast with other segmentation networks from an industrial point of view.

Following this Chapter 8 discusses the future scope of work and finally, Chapter 9 shows

the conclusion of this dissertation.
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2
Related Work

"Our intelligence is what makes us

human, and AI is an extension of

that quality"

– Yann LeCun

From the previous chapter 1 it can concluded that anomaly detection methods are an

active research field, due to its vivid applications. Also, traditionally it has been studied

widely using classical machine learning approaches. A recent survey by Chandola et al.

[22] gives an excellent overview of the topic, and all possible non-deep approaches. From

a deep learning point of view Kiran et al. [53] has published a survey showcasing all

the recent deep anomaly detection approaches in images and videos. Another good

survey by Pang Guansong et al. [78], excellently tried to discuss the advantages and

disadvantages of the various deep learning approaches used in the recent times.

From the excerpts of literature we can find that the deep anomaly detection can

be classified based on learning (training) methods and conceptual paradigms. Both of

them are discussed below respectively.
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2.1 Categorization based on Learning Methods

Learning methods in Deep Neural Networks (DNN) refers to the technique used for

training. As deep networks are data hungry models, but they demand a well prepared

dataset. Based on these data requirements for training, DNN are classified as (in our

case for deep anomaly detection task):

• Supervised Anomaly Detection methods are prominently used to handle im-

balanced datasets. When the dataset is imbalanced, the previous works domi-

nantly use generic techniques such under-sampling the dominant class or over-

sampling the smaller class either by data duplication or by synthetic generation

of new data. In both cases the idea is to use a pre-processing step to make the

dataset balanced before applying any classification algorithm[16]. These methods

do not always lead to good results, since oversampling produces an over-fitted

model or the model doesn’t learn proper generalization from the training dataset.

Also, when highly imbalanced dataset is used for deep learning models, the model

learns almost nothing about the anomalies and gets over-fitted on the normal

classes. Although the supervised methods have improved their performance over

the time, but not as popular as the semi-supervised or unsupervised methods,

owing to the lack of labels in the training data. Moreover, as discussed earlier the

sub-optimal performance of the supervised models due to class imbalance further

made it more infamous.

• Semi-Supervised Anomaly Detection approach, early work has adopted the

deep learning techniques such as Deep Belief Networks[124] for medical image

analysis or Restricted Boltzmann Machines[37] for network traffic analysis. The

most recent approach is to use the traditional methods using the deep learning

approach, one of such work is done by Ruff et al.[97] propose the Deep Support

Vector Data Description method, in which a deep neural network is trained under
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the same constraints adopted by one-class Support Vector Machines. The majority

of current deep learning methods uses autoencoders or generative models. In

many practical applications, e.g. in medical [35] and industrial fields [120], the

label for the normal class is quite easy to obtain, while the label for anomalies

is rarely available or is very scarce. Hence, using the autoencoders and training

them only on the normal data in a semi-supervised way is the most commonly

opted method [67, 68]. As normal samples are sufficiently available, autoencoders

are trained for the normal classes while training. The trained autoencoder will

produce low reconstruction errors for the normal instances, while it will produce

high reconstructions error for the anomalies[71][112].

• Unsupervised Anomaly Detection methods for the anomaly detection are

solely based on the intrinsic features of the data (outlier detection). Various

deep learning methods have shown to outperform the traditional machine learning

methods like Principal Component Analysis (PCA) [123] and Support Vector Ma-

chine (SVM) [113]. While there is a more recent approach to use the Generative

Adversarial Networks(GAN) [28]. Such generative networks are based on the two

competing networks: a generator, which generates a new unseen data resembling

to the training datasets and a discriminator, which tries to discriminate between

the original dataset and the generated dataset. For the anomaly detection these

GAN networks are trained on the normal class (because of the easy availability

and abundance of normal class data) much like autoencoders. At the time of test-

ing the generator is inverted, which provides the comparison between the latent

space representation of the normal and the anomalous data[29, 102, 2].
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2.2 Categorization based on Conceptual Paradigms

In literature, we can also find different classification based on adopting different learn-

ing and scoring strategy of the networks [70, 11, 55, 93] like: a) Reconstruction based

approach, b) Latent space learning based approach, c) Generative network based ap-

proach. However, there is no strict division between each of the approaches, as many of

these approaches overlaps with one or more methods used. Hence, the three approaches

shown in Figure 2.1 can serve as the reference for any of the other classification methods

present in contemporary literature.

Dataset

Deep Features

Deep Features

Anomaly Scoring Methods

Anomaly
Scores

Dataset

Reconstruction of normal
Images. Expecting higher

losses for anomalous
images

Dataset

Anomaly Scoring Loss Function

A B C

Figure 2.1: Categorization of three main conceptual frameworks of Deep Anomaly De-
tection Approaches. A) Pre-trained networks are used as feature extractors and then
an anomaly scoring method is employed to score the images. B) Normality manifold is
learned via deep network using reconstruction-based methods. C) Anomaly scores are
learned in an end-to-end fashion.

To have a thorough understanding, apart from the learning method (see 2.1), the

approaches are categorised based on three conceptual paradigms [78]:

• Feature Extraction Using Pre-Trained Deep Networks
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• Learning Feature Representation of Normality (Normality Manifold learning)

• End-to-end Anomaly Score Learning.

2.2.1 Feature Extraction Using Pre-Trained Deep Networks

All the methods [10, 38] which leverages a pre-trained state-of-the-art network to extract

the low-dimensional feature representations from high-dimensional data (images) for

anomaly detection can be classified in this category. The step of feature extraction

and anomaly scoring are fully disjoint and independent from each other. Hence, deep

learning models are only used for leveraging their dimensional reduction property while

keeping the most important features intact. Formally, the method can be written as:

Z = Φ(X;Θ) (2.1)

where Φ : X ↦→ Z is a pre-trained deep neural network, which maps the input image

X ∈ RD,Z ∈ RK and D ≫ K. While a separate anomaly scoring function f is

employed, which has no connection to the feature extraction step. It’s applied on the

Z to calculate the anomaly score.

The underlying assumptions in all such work [67] is that the deep features extracted

preserves the discriminative information, while reducing the dimension, which helps to

separate anomalies from the normal instances. Most popular networks used in such

methods are AlexNet[57], VGG[109] and ResNet[41]. The advantages of these methods

is large number of off-the-shelf state-of-the-art networks, trained on large imagenet or

similar datasets, and are easily available. Deep networks provide much powerful di-

mensionality reduction using complex approximations, filtered through it’s deep layers,

than most of the popular linear and non-linear methods [19, 103]. In addition, it’s very

easy to implement these methods, as most of the deep learning platforms are facilitating

these trained networks and can be adapted in just few lines of codes. Disadvantages
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of this method is that the fully decoupled method of feature extraction and anomaly

scoring often led to sub-optimal scoring. In addition to this, there is minimal control

over the learned manifolds of the pre-trained models.

2.2.2 Learning Feature Representation of Normality (Normality

Manifold learning)

In this approach , the steps of feature extraction and anomaly scoring are coupled/overlapped

in some ways, rather than fully disjoint in the previous approach. The methods learn

the representation of normal images by optimizing a generic feature learning objective

function; that is primarily designed to replicate the input image data. But the learned

representation is still used for the anomaly detection task, since the learned network

captures the key underlying data regularities. Here a deep neural network is trained,

either in semi-supervised or unsupervised fashion to learn the manifold of the normal

data in it’s latent space. While this latent space is used to reconstruct the input data,

in the process by minimising some likelihood loss function, mainly reconstruction losses.

Formally it can be written as -

{Θ∗,W∗} = argmin
θ,W

∑︂
x∈X

ℓ(ψ(Φ(X;Θ);W)), (2.2)

Sx = f(x,ΦΘ∗, ψW∗), (2.3)

where Φ maps the input image data to the latent representation space Z, ψ parame-

terized with W is the learning task that takes the latent representation Z and enforces

the the learning of the normal data manifold, ℓ is a loss function used in the underlying

approach, and f is scoring function that is based on Φ and ψ to calculate the anomaly

score.
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Normality manifold learning includes methods driven by various perspectives, includ-

ing reconstruction based method, generative models, latent space learning, pyramidal

features extraction in both semi-supervised and supervised learning fashion. In most of

the approaches they used autoencoders [67, 68, 46, 42]. This primarily uses encoding

decoding scheme on which the normal data can be well reconstructed. The underly-

ing assumption is that the normal class can be better reconstructed in contrast to the

anomalous images, leading to higher losses for the later class. The advantages of such

methods are they are very straightforward to any type of data and easy to implement.

Additionally, various different type of AE’s like Variational AE[5], Contractive AE[94],

Denoising AE[118] can be used along with complex loss functions, like Structural Simi-

larity Index (SSIM)[122] and perception loss [68]. The generic approaches tried resulted

good in various real life scenarios, but it suffers huge when the input images are disori-

entated or with change in illumination.

To counter such shortcoming of the AE based reconstruction approaches, Generative

Adversarial Network (GAN) based anomaly detection methods [2, 101] emerges quickly,

as it aims to learn the latent feature space of the Generative Network. The latent space

tries to capture the normality underlying the given data. Subsequently, the residual

between the real instance and the generated instance are then defined as the anomaly

score. Such methods has an underlying assumption that, the latent space of the normal

class can be better reconstructed in contrast to the anomalous instances. Advantages of

using GANS’s are, they are really good at generating realistic instances, especially on

image data, enabling the network to see all the possible combinations of normal class

representation. The disadvantages of GAN’s like failure to converge and mode collapse

are still manageable, but the major problem is the complex training schedule which

makes the entire method very sensitive to the training domain. This also results in

the sub-optimal anomaly score as they are based on the generator network which are

designed for artificial data synthesis instead of anomaly detection.
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2.2.3 End-to-end Anomaly Score Learning

In this approach, the learning methods aims to predict a scalar (anomaly score) in an

end-to-end fashion. Such methods usually deduces a novel loss function, which drives

the anomaly scoring network: τ(.;Θ) : X ↦→ R. More formally:

Θ∗ = argmin
θ

∑︂
x∈X

ℓ(τ(X;Θ)), (2.4)

Sx = τ(x,Θ∗), (2.5)

While such methods simultaneously learn the feature representation and the anomaly

score, it is not limited by the inherited limitations of the above mentioned approaches.

The common approaches are, Ranking models [79, 80], where a self trained model is

used to regress the anomaly scores for unsupervised anomaly detection. The end-to-end

anomaly scoring network takes a pseudo-anomaly and normal instance as the input and

learns to optimize the anomaly score in way that the data input of similar class results

in lesser score. Models also include to learn the latent dimension of the normal class

and try to regress it to achieve the minimum score [1]. Some of the methods also tried

to learn the one-class classifier on top of the deep network, making the entire setup

as hybrid architecture[34]. The advantages of such methods are the anomaly scores,

which can be directly optimised with novel adapted loss functions. The ranking models

performs really good in limited anomalies scenarios, while may suffer to generalize the

anomalies. The models can be adversarially optimized and trained in end-to-end fashion,

there application is highly task dependent and sensitive to the training datasets.

All the methods described above are using either reconstruction based approach, or

latent space, or GAN’s, but they all are classifying the images on global level, either

they are anomalous or normal. And most of the industries in the real life wants not only
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to classify the images with the novelties but also they want to localize the anomalies in

the images or at least an approximate area where the anomaly is located. While the

obvious answer to this question can be a segmentation network; but the real industries

have huge datasets,which are either poorly annotated or the industries doesn’t want to

spend resources on the annotation task. Apart from this high-imbalance data is quite

ubiquitous in real life industrial scenarios. In addition to this they also want a fast

network which can be easily be integrated into their present IT infrastructure.

Keeping in mind the industrial needs and the prospects offered by deep learning tech-

niques, this dissertation explores multiple novel model for supervised, semi-supervised

learning, for global image anomaly classification and localisation. The networks are

capable of classifying images at global level, and also provide an approximate location

for the anomalies in the images by scoring each pixel in the images.
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3
Supervised Capsnet for Global

Image Anomaly Classification

"Convolutional Neural Networks are

doomed."

"The pooling operation used in

convolutional neural networks is a

big mistake and the fact that it

works so well is a disaster."

– Geoffrey Hinton

Above are the two very famous quotes from Geoffrey Hinton, Turing Award 1 winner

and often called as the “godfather of deep learning”, from his lectures on computer vision

as inverse graphics. So why does Hinton think that CNNs are bad?

In this chapter we will assess the pros and cons of Convolutional Networks. We will

see how Capsule networks are filling the shortcomings of vanilla Conv networks. More
1https://en.wikipedia.org/wiki/Turing_Award
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specifically we will see how an adapted capsule network, trained in a supervised fashion,

with novel loss function can be used for global image anomaly classification.

3.1 What’s so Common in Industrial Datasets?

Modern IT is playing humongous role in realising goals of the ambitious industries.

Artificial intelligence is proving to be a game changer for production and manufacturing,

enabling intelligent factory automation that is faster and cheaper than ever before [104].

These industries are producing Giga Bytes and Tera Bytes of data either through

Internet-of-Things (IoT) devices or Visual Inspection Systems (VIS). However, most of

the deep learning methods (either supervised, semi-supervised or unsupervised) suffer

from the lack of generalization problem especially in case of imbalanced datasets. There

are many industrial applications, where huge amount of normal data is present and it is

possible to obtain labels easily, but the case of high class imbalance is still dominant in

those industrial applications. Hence, training a neural network with highly imbalanced

data is still challenging to the recent state-of-the-art deep neural networks. Keeping

this problem in center, the proposed method addresses the anomaly detection task

as the "fully supervised" classification problem under highly imbalanced datasets. For

solving this problem we adopted Capsule Networks proposed by Hinton[99]. The network

has shown some promising results by achieving state-of-the-art results on MNIST [60]

dataset (0.25% test error). The capsule networks are the breakthrough as it provides

a great improvement over the shortcomings of the traditional(vanilla) Convolutional

Neural Networks (CNN).
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3.2 Systems Architecture

Before we talk about the detailed system architecture of our proposed model, we will

see the shortcoming of the CNNs and motivating the quotes by Hinton reported at the

beginning of this chapter.

3.2.1 Shortcoming of CNNs

CNNs, achieved benchmarking results in image classification tasks like AlexNet [57],

VGGNet[109], ResNet[41]. They have revolutionized the deep learning field. They have

shown flexibility and great performance in the wider range of real life computer vision

problems. But they are actually pretty bad in detecting objects in different posses [99].

Hence, to overcome this shortcoming either lots of training data is needed or techniques

like data augmentation are used.

CNNs work on three main concepts which are, shared weights and biases, local

receptive fields and activation, and pooling. As CNNs have additive scalar nature of

neurons, at any given layer in the network they are ambivalent to the spatial relationship

between the features captured at previous layers, and consequently within their effective

receptive fields. Hinton et al.[99] introduced the idea of Capsules which solves the

shortcomings of the traditional CNNs. For example an image like Figure 3.1 is enough

to fool a simple CNN to believe that it’s a good sketch of a human face. A simple CNN

can easily extract the dominant features like nose, eyes, mouth correctly, but they fail

or wrongly activate the neuron for the face detection.

3.2.2 Capsule network advantages

Invariance vs. Equivariance: A standard neural network such as a CNN has scalar

outputs. For example, if the network is trained to discriminate between two classes such

as cars and bikes, it will output two scalars, one associated to the car class and the
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Figure 3.1: A wrong human face sketch to confuse a simple CNN.

other to the bike class: the highest one will determine the classification result. If the

network is trained properly and can detect several variants of the objects belonging to

the two classes, it means it reached some degree of invariance to input. For example, no

matter if two cars have different visual aspects, they will both lead to the same output.

On contrast, capsule network adopts a vectorial outputs. Each class is associated to an

output vector, and the classification is done by looking for the vector with highest norm.

In this case, two visually different cars could lead to very different output vectors, but

they will still be classified as cars if the corresponding vector lengths are higher than the

other outputs. This property is called equivariance, meaning that different input images

from the same class will give different outputs, but they are equivalent. Equivariance

is a desirable property because it allows to explicitly model different variants (Hinton

calls them poses[99]) of the same object.

Equivariance is best understood by the way humans see and understand objects.

Equivariance to a transformation means, if we take a input and perform some transfor-

mation on it, then the representation we get is the transformation of the representation

of the originals.
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Figure 3.2: CNN neurons for detecting a face.

Figure 3.3: Capsule neurons for detecting a face.

Mathematically, Equivariance means -

transform(represent(y)) = represent(transform(y)) (3.1)

while the invariance means -

represent(y) = represent(transform(y)) (3.2)

Intuitively, a capsule network detects objects, that can be transform to each other, for

example in the Figure 3.2 we can see that conceptually a CNN model uses multiple

neurons and multiple stacked layers to match and then identify the different variants of

the human face.

To summarize here are the major differences between the capsule and the neuron:

Feature coherence: Neural networks like CNN do not have an explicit way to

model feature coherence. For example, let us consider the case of a face detection
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Table 3.1: Major difference between a Capsule and a Vanilla Neuron

Capsule Vs. Traditional Neurons
Input from low level capsules / previous layer neurons Vector (ui) Scalar (xi)

Operation

Affine Transformation uj |iˆ = Wijui -
Weighting
Sum sj =

∑︁
i cijuj |iˆ aj =

∑︁
i wixi + b

Nonlinear Activation vj =
||sj ||

2

1+||(sj)||2
sj

||sj ||
hj = f(aj)

Output vector(vj) scalar(hj)

network. Intermediate layers of the network could specialize in detecting facial features

like eyes, nose and mouth, and the presence of these three features could fire a face

detection in the upper layers. However, this is independent of the relative spatial position

of those features, and thus a simple CNN could be fooled by an image such as the one

shown in figure 3.1. In contrast, capsule networks adopts vectorial outputs also for the

intermediate layers (the capsules). An innovative routing-by-agreement algorithm then

propagates their outputs to upper layers only if their vectors are coherent, meaning they

have similar orientations. Combined with the equivariance property, this is a powerful

classification scheme. For example, inner capsules could detect a nose and a mouth,

and the training of the network will force their vectors to be coherent and activate a

face detection in the upper layers. The same capsules could also detect a 30◦-tilted

mouth and nose (thanks to equivariance property) and the respective vectors could still

be coherent to fire the detection of a tilted face. However,a tilted nose and a non-tilted

mouth would lead to non-coherent vectors and the face would not be detected. This

way, capsule networks explicitly enforce a global coherence of middle-level features in

order to avoid false matches on images such as Figure 3.1, while Figure 3.3 shows that

capsules can detect multiple variants of the face (i.e. if the face is rotated right 20° or

rotated left 20°) rather than matching with the multiple variants of the face.

Because of these properties, we believe that capsule networks could lead to good

results also when applied to anomaly detection problems. We thus adapted a standard

CapsNet architecture to anomaly detection, as described in section 3.2.3.
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Figure 3.4: CapsNet architecture adopted for this study.

3.2.3 Proposed Network

The advantages mentioned in the previous sections is the major motivations to adopt

the capsule network, especially the CapsNet architecture proposed by Hinton[99]. The

original capsule network is developed for the MNIST digit recognition which consists

of two main parts: an encoder that converts the input digit image into 10 vectors

of instantiation parameters(digit caps), and a decoder which takes the longest vector

out of the 10 vectors and reconstructs the original input. The network is optimized to

maximize the vector length for the correct digit caps and to minimize the reconstruction

loss. Although the decoder has minimal uses in the Hinton’s[99] network, it is used to

for the digit cap to adapt the meaningful instantiation parameters for the correct digit

class.

In our proposed network [86] we are using all the basic architecture of the CapsNet,

and we changed the number of digit caps to two, one for the normal class and the other

for the anomaly class. Also, we are using the reconstruction of the image to perform

image comparison with the original input and gain an extra hint of anomaly presence.

The Figure 3.4 shows a schematic representation of our proposed network.

The main components of the network are:

• Convolution: It’s a single vanilla convolution layer. This layer extracts the
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features of the input image. It uses 256 kernels of the size 9x9 with activation as

ReLU output.

• PrimaryCaps: This layer is also convolutional layer and it’s output is 1152

feature vectors in R8. The squash operation, as defined in[99], preserves the ori-

entation of the vectors while normalizes their length in the range (0,1).

• Routing by Agreement: Dominant features in vanilla CNN networks are ex-

tracted using the max pool operation. Routing by agreement is similar to that,

but here it decides which information will travel to the next layer. In this process

capsule tries to predict the next layer activation based on the vector length and the

orientation of the detected object in the current layer. This algorithm is discussed

in more detail in chapter 5

• DigitCaps: After routing-by-agreement, two digit caps are obtained. These are

squashed vectors in R16, and capture the instantiation parameter for the each

class (normal and anomaly class). The probability for each class is calculated

by the length of the digitcaps vector, while its orientation represent the “pose”.

This specific orientation and the max length vectors are the final instantiation

parameters among the many possible appearances for the same class.

• Decoder: The normal digitcaps vector is used for the reconstruction. The R16

vector is passed through the three fully connected layer to reconstruct the input

image.

Our adapted network has 2 digits caps, while other backbone structure remains the

same. However, in section 3.3, we will clearly reflect that the vanilla capsule network

has extremely poor performance when the dataset is highly imbalanced. Our developed

method uses two anomaly measures reconstruction loss and the vector length difference.
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3.2.4 The Novel Anomaly Scoring Method

Here we explain how we use the reconstruction loss and the vector length difference to

define our novel anomaly score, which will be subsequently used for the classification.

Reconstruction Loss: Reconstruction loss (rl) is a L2 loss, i.e. the Mean Squared

Error, computed as the mean of the squared differences between the pixel values of the

original and the reconstructed image. As the training data is highly imbalanced, the

decoder network weights will be trained to reconstruct correctly only the normal class

using the output of the normal digit caps. This ensures that the network will reconstruct

correctly the normal class while it will behave poorly with the anomalous data. This

technique is predominantly used in all the previous methods discussed in section 2, where

anomalies are identified by their visual difference from their reconstruction created by

a network trained only on normal data (semi-supervised learning).

Vector Length Difference: Since the proposed method is based on a full-supervised

approach, we can also exploit the classification results, rather than just relying on re-

construction loss as in the semi-supervised approaches. In the proposed network archi-

tecture there are two digit capsules vectors (one for the normal class and the another

for the anomaly class), we use the length of these vectors as the measure of the anomaly

score. Let zn and za be the two output vectors for normal and anomaly classes. The

standard CapsNet architecture would classify an image as an anomaly if if ∥za∥ > ∥zn∥,

but this approach does not give good results on imbalanced datasets (see the experimen-

tal results discussed in section 3.3). We thus investigated the values of the two outputs

in presence of normal and anomalous data, and we discovered that the system behaves

exactly as expected for the dominant class of normal images (∥zn∥ ≈ 1, ∥za∥ ≈ 0),

while for the scarce class of anomalies the difference between the two vectors lengths

is typically smaller. For example, vector lengths ∥zn∥ = 0.8, and ∥za∥ = 0.6, are a

strong indication that the sample is anomalous, even though the standard capsule net-
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work would classify it in normal class. Hence, here we propose to use the vector length

difference ∥za∥ − ∥zn∥ as a part of our final anomaly score.
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Figure 3.5: ROC curve for three anomaly detection measures: vector length difference,
reconstruction loss, and vector length difference + reconstruction loss.

The final anomaly score AS is a combination of the two measures of reconstruction

loss and vector length difference:

AS = ∥za∥ − ∥zn∥+ rl (3.3)

with ∥za∥, ∥zn∥, rl ∈ [0, 1]. Figure 3.5 shows a ROC curve with the performance results

using the two approaches alone and their combination. It is evident that the vector

length difference approach performs better than the basic image comparison with re-
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Figure 3.6: Anomaly scores on test data, training done with 10% anomalies. The test
dataset is not imbalanced.

construction loss, thus justifying the adoption of a fully-supervised approach rather than

a semi-supervised one. Moreover, the combination of the two anomaly scores leads to

even better results, motivating the use of equation 3.3 as the proposed anomaly score.

Figure 3.6 shows the proposed anomaly scores on a MNIST test dataset for both

normal (blue) and anomalous (red) data: it is visually evident that the two classes are

well separated, giving a strong hint that the proposed metric is a good anomaly score.

This will be measured rigorously in the next section.

3.3 Experimental results

The developed method has been tested with three datasets (MNIST[60], Fashion-MNIST[125],

Kuzushiji-MNIST[26]). Each of the used datasets has 10 classes, respectively showing
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digits, clothing, and ancient Japanese characters. The entire iterative scheme of training

and testing follows these steps:

1. Choose a class as the normal class;

2. The training dataset contains all the training images of the chosen class plus some

training images randomly picked from the other classes. The final dataset will be

imbalanced, the total amount of anomalies varies depending on the experiment.

3. Train the network;

4. Test the system on a balanced test dataset.

This procedure is repeated for each class in the dataset, e.g. all the digits in the MNIST

dataset. It should be noted that the test dataset is not imbalanced, this has been done to

avoid biased results in the computation of the accuracy. The training hyperparameters

are shown in table 3.2.

Table 3.2: Training hyperparameters

Adam learning Rate 0.001
% of anomalies in training data 1% – 10%
batch size 32
Epochs 10

3.3.1 Datasets and Results

• MNIST Dataset: MNIST dataset consists of 60,000 images of handwritten digits

with size 28×28×1. Since we use one class at a time as normal data, the training

set is always composed of 6,000 normal images plus a variable amount of anomalies

(10% or 1% of the normal data) randomly chosen among the other digits. The

images have been standardized using the mean and variance of the whole dataset.

Table 3.3 shows the achieved results with a standard CapsNet and our developed

30



Figure 3.7: Top rows: normal (left) and anomalous (right) samples from the MNIST
test set. Bottom rows: the reconstructed images.

approach. Results of two cases 10% and 1% of anomalies in the training set are

given. The result clearly shows that the standard CapsNet approach fails when

the dataset is extremely unbalanced.

In particular, in the 1% case average accuracy of a standard CapsNet is 51.44%,

which is close to random guess. On the other hand the proposed approach gives

a high accuracy even with the extremely unbalanced datasets (accuracy is on

average 98.84% and 96.46% for the 10% and 1% anomaly cases respectively).

The reconstructed images for both the normal and the anomaly can be seen in

Figure 3.7.

Table 3.3: Accuracy % on MNIST dataset for standard CapsNet and the proposed
method. The amount of anomalies in the training data is 10% (top rows) or 1% (bottom
rows).

0 1 2 3 4 5 6 7 8 9 avg
Standard, 10% an. 97.46 98.78 97.02 92.87 96.36 93.42 96.87 96.83 95.50 92.13 95.72
Proposed, 10% an. 99.50 99.27 99.22 99.21 99.10 98.33 98.74 98.05 99.00 97.93 98.84
Standard, 1% an. 48.90 73.58 50.00 49.66 48.95 46.56 48.34 50.00 48.75 49.63 51.44
Proposed, 1% an. 99.20 98.24 98.19 95.48 94.37 95.46 98.34 97.07 97.85 90.41 96.46

• Fashion MNIST Dataset: Fashion MNIST dataset is similar to the MNIST

dataset, except it contains the images from an online clothing store. It again

contains 60,000 images for training and 10,000 images for testing, representing 10

classes of cloths. The images are 28 × 28 grayscale images and are standardized
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similar to MNIST case. Labels encoding and Results are shown in table 3.5 and

table 3.4 and reconstructions are shown in Figure 3.8. The datset is more complex

than the digit MNIST dataset, but the results clearly shows that the proposed

method outperforms the standard CapsNet when the training anomalies dataset

is highly unbalanced.

Table 3.4: Fashion MNIST label encoding

Label 0 1 2 3 4 5 6 7 8 9
Desc. T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

Table 3.5: Accuracy % on Fashion MNIST dataset.

0 1 2 3 4 5 6 7 8 9 avg
Standard, 10% an. 88.14 96.89 85.08 92.19 85.77 96.15 76.93 95.11 94.96 97.18 90.84
Proposed, 10% an. 93.28 98.07 87.50 95.01 91.50 98.07 84.44 96.64 97.73 97.83 94.01
Standard, 1% an. 49.41 49.41 49.41 49.41 49.41 49.41 49.41 49.46 49.41 49.41 49.41
Proposed, 1% an. 87.45 95.31 84.98 90.86 87.70 94.27 77.32 93.33 92.14 96.15 89.95

Figure 3.8: Top row: normal (left) and anomalous (right) samples from the Fashion
MNIST test set. Bottom row: the reconstructed images.

• Kuzushiji-MNIST(K-MNIST): This dataset contains the 28 × 28 grayscale

images of ancient Japanese handwritten characters. The dataset size is same as

MNIST and Fashion MNIST i.e. it contains the 60,000 training image and the

10,000 test images organized in 10 classes. It is a challenging dataset since images

from the same class can be visually very different, as shown in Figure 3.9 where

the 10 rows corresponding to each class can be seen. The accuracy for K-MNIST

dataset can be seen in table 3.6 and reconstruction examples are in Figure 3.10.

32



The results obtained using this dataset confirm the robustness of our proposed

approach. Our method outperforms the standard CapsNet architecture, especially

in the extremely imbalanced dataset (1% training anomaly) case.

Figure 3.9: 10 classes of Kuzushiji-MNIST, with the first column showing each charac-
ter’s modern hiragana counterpart.

Table 3.6: Accuracy % on K-MNIST dataset.

0 1 2 3 4 5 6 7 8 9 avg
Standard, 10% an. 91.55 80.58 72.88 87.40 49.41 87.10 83.05 93.23 81.92 81.97 80.91

Proposed, 10% an. 96.54 93.92 88.69 96.25 88.19 93.43 93.08 93.48 95.85 95.01 93.44
Standard, 1% an. 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95 49.95
Proposed, 1% an. 92.31 86.11 79.17 93.06 83.27 90.81 86.56 76.37 87.91 90.71 86.63

Figure 3.10: Top row: normal (left) and anomalous (right) samples from the K-MNIST
test set. Bottom row: the reconstructed images.

The above experiments showed that the proposed method consistently outperforms stan-

dard capsnet approach in the case of 10% anomalies, and it performs well even in the

1% case, where the standard algorithm fails. We thus did further tests to compare the
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two approaches and analyze their behaviour when the number of anomalies in the train-

ing dataset is particularly low. Figure 3.11 shows the achieved results on the MNIST

dataset: as it can be seen, the proposed approach performs well even with extremely

low amounts of anomalies (0.1% of the training dataset), while the standard capsnet

error quickly grows when the anomalies are less than 6% of the training data.
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Figure 3.11: Comparison of standard CapsNet and the proposed method with vary-
ing amounts of outliers in a training set of 6000 samples (MNIST dataset, results are
averaged over all the digits).

Finally, we compared the proposed system with other anomaly detection techniques.

We first considered classical techniques such as Kernel Density Estimation and one-

class Support Vector Machines both on PCA and Alexnet-extracted features, as well as

Isolation Forests and Gaussian Mixture Models. Regarding more recent deep learning

techniques, we considered both standard and variational autoencoders and two GAN-

based models: AnoGAN[102] and ADGAN[29]. Results are taken from[29], where full

details on the training parameters are given. Table 3.7 shows the achieved results, where
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Table 3.7: Comparative results with other anomaly detection methods.

Dataset yc
KDE OC-SVM IF GMM DCAE AnoGAN VAE ADGAN ProposedPCA Alexnet PCA Alexnet

MNIST

0 0.982 0.634 0.993 0.962 0.957 0.970 0.988 0.990 0.884 0.999 0.995
1 0.999 0.922 1.000 0.999 1.000 0.999 0.993 0.998 0.998 0.992 0.993
2 0.888 0.654 0.881 0.925 0.822 0.931 0.917 0.888 0.762 0.968 0.992
3 0.898 0.639 0.931 0.950 0.924 0.951 0.885 0.913 0.789 0.953 0.992
4 0.943 0.676 0.962 0.982 0.922 0.968 0.862 0.944 0.858 0.960 0.991
5 0.930 0.651 0.881 0.923 0.859 0.917 0.858 0.912 0.803 0.955 0.983
6 0.972 0.636 0.982 0.975 0.903 0.994 0.954 0.925 0.913 0.980 0.987
7 0.933 0.628 0.951 0.968 0.938 0.938 0.940 0.964 0.897 0.950 0.980
8 0.924 0.617 0.958 0.926 0.814 0.889 0.823 0.883 0.751 0.959 0.990
9 0.940 0.644 0.970 0.969 0.913 0.962 0.965 0.958 0.848 0.965 0.979

Average 0.941 0.670 0.951 0.958 0.905 0.952 0.919 0.937 0.850 0.968 0.988

CIFAR10

0 0.705 0.559 0.653 0.594 0.630 0.709 0.656 0.610 0.582 0.661 0.608
1 0.493 0.487 0.400 0.540 0.379 0.443 0.435 0.565 0.608 0.435 0.555
2 0.734 0.582 0.617 0.588 0.630 0.697 0.381 0.648 0.485 0.636 0.586
3 0.522 0.531 0.522 0.575 0.408 0.445 0.545 0.528 0.667 0.488 0.587
4 0.691 0.651 0.715 0.753 0.764 0.761 0.288 0.670 0.344 0.794 0.660
5 0.439 0.551 0.517 0.558 0.514 0.505 0.643 0.592 0.493 0.640 0.501
6 0.771 0.613 0.727 0.692 0.666 0.766 0.509 0.625 0.391 0.685 0.647
7 0.458 0.593 0.522 0.547 0.480 0.496 0.690 0.576 0.516 0.559 0.484
8 0.595 0.600 0.719 0.630 0.651 0.646 0.698 0.723 0.522 0.798 0.619
9 0.490 0.529 0.475 0.530 0.459 0.384 0.705 0.582 0.633 0.643 0.576

Average 0.590 0.570 0.587 0.601 0.558 0.585 0.583 0.612 0.524 0.634 0.582

it can be seen that the proposed method on average outperforms the other techniques.

For a fair comparison, it must however be noted that the proposed method is fully

supervised although with imbalanced datasets (data shown in the table are from the 10%

anomaly case), while the other techniques are either unsupervised or semi-supervised.

The problem of identifying anomalous images is still relatively new in the field of

deep learning. Most approaches rely on autoencoders or GAN models to learn the aspect

of normal images in a semi-supervised way, and identify anomalies by visual comparison.

In this chapter we proposed an alternative approach based on fully supervised learning

with imbalanced datasets. This idea came from real-world scenarios, in which anomalous

data are often available but their amount is extremely scarce. The proposed approach,

which is a variant of the the capsnet architecture, showed good performances even with

extremely imbalanced datasets, outperforming both the standard capsnet architecture

and other anomaly detection techniques.

As the proposed method is fully supervised approach, this brings us to the limiting

condition of this approach. As discussed in section 3.1, the problems of modern indus-
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tries, it’s the need of hour that we develop semi-supervised or unsupervised approaches

to deal with the anomaly detection problem. The next chapter we proposed a novel

semi-supervised approach using stacked autoencoders and pyramidal feature extraction

for global image anomaly classification.

36



4
Stacked Auto Encoders Using

Pyramidal Features for Global

Image Anomaly Classification

"The significance which is in unity is

an eternal wonder."

– Rabindranath Tagore

Supervised anomaly detection methods are still significant and result quite well in

real-life scenarios. But the limiting condition of the highly imbalanced dataset forces us

to develop semi-supervised and unsupervised methods. In this chapter, we will discuss

a semi-supervised approach using stacked autoencoders. The work learns the normality

and in turn predicts the anomalous novel instances for higher losses.
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4.1 Autoencoders: A Glance

Encoding-Decoding scheme or Autoencoders (AE) networks aim to learn low-dimensional

feature representation space, which can further be well reconstructed. It consists of an

encoding network and a decoding network. The encoder is used to map the high di-

mensional data (images in our case) to a low dimensional feature space (also called

latent space [38]), while the decoder takes these latent space features and projects them

to recover the original data. The bottleneck (latent space) is the most optimum low-

dimensional representation of the original data. To minimize the overall loss of the

recovered data via decoder, it is required that the retained features should be as much

relevant as possible to the dominant instances, in our case normal instances. This re-

tained information at the latent space is called Causal Features[38] This is a widely

used technique of data compression or dimension reduction [42, 46]. The assumption

in the anomaly detection scenario is that the network is unable to correctly reconstruct

anomalous images, which can be identified by direct comparison of the original and

reconstructed images. The basic formulation of this approach is given as follows:

z = ϕe(x; Φe), x̂ = ϕd(z; Φd), (4.1)

Φ∗
e,Φ

∗
d = arg min

Φe,Φd

∑︂
x∈X
∥x− ϕd(ϕe(x; Φe); Φd)∥2 (4.2)

sx = ∥x− ϕd(ϕe(x; Φ∗
e); Φ

∗
d)∥2 (4.3)

where ϕe is the network encoding with learnable parameters Φe and ϕd is the decod-

ing network with the learnable parameters Φd. sx is the anomaly score based on the

reconstruction error of x.

However, current methods generally do not address the problem at different scales.
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Moreover, the comparison is often based on the trivial pixel-by-pixel comparison, which

is not necessarily the best approach to evaluate image similarity[29, 2, 130, 97, 82].

Finally, many papers are evaluated on trivial datasets only, e.g. MNIST[60], which are

not explicitly studied for anomaly detection problems.

4.2 Proposed Network
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Figure 4.1: Proposed network architecture. The network consists of the first levels of
a Resnet18 network for feature extraction, followed by a pyramidal pooling layer that
feeds 4 encoders, each one connected to an upsampling layer with shared weights, and a
final decoder. The features obtained from the four upsampling layers are concatenated
with the output features of resnet18.

Our proposed model [69] runs around a significantly important question about rep-

resentation learning: How to make one representation capture the causal factors of an

image? One hypothesis to this problem is that features in any representation are the

underlying causes of the ground truth data. Separate features or separately acquired

features correspond to different causes and it’s needed so that the representation can

disentangle the causes from one another.

A representation of the ground truth that cleanly disentangles the causal factors

are not always easy and most of the time our approach is to learn a procedure that
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can easily learn a representation. However, the hypothesis also motivates the semi-

supervised learning where capturing the causal factors in an objective. Hence, we are

proposing a semi-supervised reconstruction-based approach to learn the causal features

for anomaly detection. As we want to capture features that are more independent and

are easier to capture, we are using a deep pyramidal representation of the causal features

and using those features for the reconstruction-based approach.

Following a global trend in deep anomaly detection, we propose a reconstruction-

based approach. The basic idea is to find a low-dimension feature representation of

the input image that captures its fundamental properties (the causal factors, as named

in some works) from which the image can be reconstructed. The network thus has

an encoder-decoder structure, as in standard autoencoders, which ideally models an

identity function, but passing through a dimensionality-reduction bottleneck after the

encoding part. The main idea is that the network, when trained on normal data, learns a

mapping from input space to the low-dimensional latent space which is suitable only for

normal data. If anomalous data are fed as an input to the network, their reconstruction

should be poor in quality, and thus the anomalies can be detected by image comparison

with the original input.

Compared to other [1, 102, 29, 2] similar works, our main contribution consists in

the addition of a pyramidal level in the network structure, in order to extract features

at different resolution scales. This way we increase the chances to extract features at a

scale level in which the anomaly is particularly evident. Another improvement consists

in the way the input and reconstructed images are compared. Most methods rely on a

trivial MSE loss that, when applied to image comparison context, consists of a simple

pixel-by-pixel comparison. We instead propose a high-level perceptual loss, that better

models visual similarity between images.
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4.2.1 Network architecture

We propose a network to learn the manifold of the normal class by analyzing the feature

representation at different scale levels using pyramidal pooling. This way the network

can better find meaningful features that describe the image content at different scales,

and as a consequence will perform better at detecting anomalies of different sizes.

Figure 4.1 shows the schematic diagram of our proposed novel network. The main

components of the network include:

• Resnet18 - A pre-trained Resnet18 network (trained over imagenet dataset) is

being used for deep feature extraction from images. Only the first four layers

of the network have been used. The basic idea is that the network can extract

generic low-level features that are meaningful for many different types of images.

excluding the maxpool layer, in the beginning, the average pool layer from the

second last layer and the fully connected output layer. The output feature from

the resnet block is in the shape (batch, 512, height, width).

• Pyramidal Pooling Layer - The pyramidal pooling layer scales the input fea-

tures at different magnification levels, thus increasing the possibility that features

relevant for the anomaly detection task is actually extracted, see Figure 4.2. The

layer takes input from the Resnet 18 block and applies an average pooling such

that the output will have a unit width and height. Then it uses a convolutional

layer to reduce the channel features at different scales respectively 1, 2, 3, and

6, followed by batch normalization and ReLU activation layers. The outputs are

respectively fed into four encoders. The bias from the convolution layer is made

false because it’s not desired to learn the average value, which allows to shift of

the activation function while extracting the features of passed magnification.

• Encoders - We use four encoders, which receive their input from the pyrami-

dal pooling layer. Each encoder is composed of a sequence of three convolutional
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layers which reduce the input to a feature vector in R8. We used convolutional

autoencoders without any regularization because the unsupervised training guar-

antees for the regularization [38]. Also, we didn’t intend to use the variational

autoencoders (VAE) because it seeks to converge representations to a fixed and

expected value, whereas our solutions want to capture the different causal rep-

resentations. This flexibility allows attuning the model reconstructing capability

and the richness of latent representation. conversely, in VAE’s, the effectiveness

of fixed priors regularises and potentially leads to the over-smooth representation,

which is not desirable for the anomaly detection tasks.

• Up-sampling Layer - The upsampling blocks are composed of two linear layers

and are used to upsample the latent features of the encoders from R8 to R512. All

the upsampling blocks share the same network weights. dimension 8 to dimension

512*mf(multiplying factor). The multiplying factor is calculated as the 0.5∗ (out-

put height of Resent18 feature). We use four upsampling blocks for each encoder

and shared weights. A detailed structure can be seen in table 4.1.

• Decoder - The decoder layer takes as input the concatenated features from up-

sampling layers and the output of the Resnet layer. The decoder uses 4 transposed

convolutional layers to reconstruct the sample, thus giving in output an image of

the same size as the input image. The detailed structure of the decoder can be

seen in the table4.2.

Each network layer is followed by a batch normalization layer and uses the ReLU

activation function except for the last layer, where a sigmoid activation forces the pixel

values to be in the range [0, 1].
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Table 4.1: Encoders and Up-sampling layer architecture: in,out,k,s,p means in_channel,
out_channel, kernel, stride and padding respectively. ’mf’ is multiplying factor which
is calculated as 0.5*(output height of Resnet18 features)

Encoder1 Encoder 2 Encoder 3 Encoder 4 Upsampling
Conv2d
in:512,out:16
,k:3,s:1,p:1

Conv2d
in:256,out:16,
k:3,s:1,p:1

Conv2d
in:170,out:16,
k:3,s:1,p:1

Conv2d
in:85,out:16,
k:3,s:1,p:1

Linear
in:8,out:128

Batch norm
ReLU

Batch norm
ReLU

Batch norm
ReLU

Batch norm
ReLU

Batch norm
ReLU

Conv2d
in:16,out:8,
k:3,s:1,p:1

Conv2d
in:16,out:8,
k:3,s:1,p:1

Conv2d
in:16,out:8,
k:3,s:1,p:1

Conv2d
in:16,out:8,
k:3,s:1,p:1

Linear
in:128,
out:512*mf2

Batch norm
ReLU

Batch norm
ReLU

Batch norm
ReLU

Batch norm
ReLU ReLU

Conv2d
in:8,out:8,
k:1,s:1

Conv2d
in:8,out:8,
k:1,s:1

Conv2d
in:8,out:8,
k:1,s:1

Conv2d
in:8,out:8,
k:1,s:1

Decoder
MNIST and FM-
NIST

Mvtech

ConvTranspose2d
in:64,out:16:k:5,s:1p:1

ConvTranspose2d
in:1024,out:16:k:3,s:2p:1

Batch norm
ReLU

Batch norm
ReLU

ConvTranspose2d
in:16,out:32:k:5,s:1

ConvTranspose2d
in:16,out:32:k:3,s:2p:1

Batch norm
ReLU

Batch norm
ReLU

ConvTranspose2d
in:32,out:32:k:6,s:1

ConvTranspose2d
in:32,out:32:k:4,s:2

Batch norm
ReLU

Batch norm
ReLU

ConvTranspose2d
in:32,out:32:k:6,s:1

ConvTranspose2d
in:32,out:3:k:4,s:2,p:1

Batch norm
ReLU

Tanh

ConvTranspose2d
in:32,out:3:k:5,s:1
1-1 Tanh

Table 4.2: Decoder structure
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Event 
Sub-Process

Input feature from
Resnet and Pool Size

Adaptive Average Pool 
(output dim =1x1x512)

Conv2d 
(in:1x1x512, out:

1x1x512/pool_size, k= 1,
bias=false)

BatchNorm2d 
and 

ReLU

output feature of pool
size

The p

Figure 4.2: Proposed network architecture of pyramidal pooling block. The network
consists of an adaptive average pooling layer withan output dimension of 1x1x512, a
conv2d layer, batchnorm and relu. Input to this block is from the output feature of
Resnet18 and pools size (four pool size 1, 2, 3 and 6 (magnification) has been used as
input for encoder1, encoder2, encoder3, and encoder4 respectively.

4.2.2 Objective and losses

In order to train the network, we adopted a reconstruction-based approach, in which

the network output is requested to be similar to the input. If the training is successful,

it means that the low-dimension latent feature space in which the input is mapped after

the encoders efficiently describes the visual properties of normal images. We assume

that the same features will not be able to reconstruct anomalous images, which will

then be identified by their higher loss. The network is trained using the following two

44



losses:

• Reconstruction loss: It’s an MSE loss computed between the input and the re-

constructed image, i.e. 1
WH ∥X − X̂∥

2
2, where X is the input and X̂ is the output

of the network (reconstructed image). This is a pixel-by-pixel image comparison,

widely adopted in other anomaly detection works. However, because of its in-

trinsic pixel-level independence assumption, it fails at modeling high-level visual

features.

• Perceptual loss: Perceptual loss[49] is a more sophisticated loss trying to catch

visually meaningful differences in images. It catches the high-level perceptual

and semantic difference between images. It negates the assumption that all the

pixels in an image are independent of each other. It is an MSE loss computed

between the high-level image features obtained by a pre-trained VGG11 [109]

network using its first four layers. The loss is defined as 1
WHC ∥F (X) − F (X̂)∥22,

where F is the transformation function applied through the trained four layers

of VGG11 network, and W,C,H are the size of the resulting feature map. The

trained network is only used for the calculation of loss and the weights are not

updated during training.VGG11 network is used specifically as it has a very simple

network structure without any maxpool layer, which makes it an ideal candidate

for this work.

the proposed objective function minimizes the total loss L:

L =
1

WH
∥X − X̂∥22 + λ

1

WHC
∥F (X)− F (X̂)∥22 (4.4)

where X is the input image, X̂ is the network output, and F is the non-linear function

computed by the first four layers of a pre-trained VGG11 network. λ is a weighing factor

between two losses, all the experiments discussed in section 4.3 are obtained with λ = 1.
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4.3 Experimental results

We tested the proposed model on the publicly available standard datasets like MNIST [60]

and FMNIST [125]. Although this dataset was not initially meant to be used in anomaly

detection tasks, it has been widely adopted in literature to show the ability of the sys-

tem to discriminate between one class, considered normal, and the other ones considered

anomalies. In addition to this, we also tested our model over the recently published real-

world anomaly detection dataset by MVTec [11], which contains more realistic data.

4.3.1 Datasets and Results

• MNIST: MNIST dataset consists of 60,000 28x28 gray images of handwritten

digits, grouped in 10 classes. The gray images were converted to RGB images and

then passed through the network. For training, one class has been considered as

the normal class while the remaining classes are considered anomalies. Results

are averaged over several runs in which each one of the original classes has been

chosen as the normality model.

• Fashion MNIST: FMNIST dataset composed of 60,000, 28x28 grey images of

clothes from an online clothing store. The images were standardized similar to

the MNIST before passing to the network. Table 4.4 shows our network per-

forms better in comparison to other state-of-the-art methods like GPND [87] and

OCGAN [82]. The respective ROC curve score was used for the performance

measurement.

• MVTec : MVTec dataset contains 5354 high-resolution color images of different

texture and object categories (see Fig. 4.3). It contains normal and anomalous

images (70 different types of anomalies) from real-world products. Since gray-

scales are quite common in industrial uses, it has 3 object categories (zipper,
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Figure 4.3: Examples from the MVTec dataset. The first two columns show the original
and reconstructed images for normal objects (hazelnuts and glass bottles). The last
two columns show the same results for anomalous images (broken hazelnuts, defective
bottles).
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Figure 4.4: First Column: Ground truth for MNIST and FMNIST, Second Column:
Reconstruction for MNIST and FMNIST. While the first and third row is for normal
class, the second and last row is for anomaly class

screw, and grid) available solely in single-channel images. As the original image

sizes were large, the images were resized to 120x120 pixels before passing it to the

proposed network. The size justifies as it maintains the structural integrity of the

images such that anomalies are still visible by the human eye.

We trained our model in order to learn the manifold of the normal class and force

our decoder to capture all the causal features for the same. Training is started by

initializing the weights of the network using Orthogonal Initialization [100], except the

resent block, which was pretrained on imagenet, and the VGG11 block, which was

pretrained on imagenet and was kept fixed.

The architectural hyper-parameters details are shown in the table4.3.

Table 4.5 shows the achieved results on the MNIST dataset. Tests have been done

considering one of the classes as normal and using the remaining ones as anomalies, this
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Adam learning Rate 0.0001
weight decay 0.0001
batch size 120
Epochs 600

Table 4.3: Training hyperparameters.

has been done for each one of the 10 classes. The achieved results have been compared

with standard methods such as one-class support vector machines and kernel density

estimators, as well as with deep learning approaches such as denoising autoencoders,

variational autoencoders [52], Pix-CNN [115] and Latent Space Autoregression [1]. The

comparative results have been taken from [1]. Performance is measured using the Area

Under ROC Curve (AUC) metric. As it can be seen, the proposed method achieves the

best result on 6 out of 10 classes, and it has the best average result, at the same level of

LSA. Table 4.4 shows the achieved results on the FMNIST dataset. The test is done

similarly to the MNIST approach. The achieved results are compared with the other

state-of-the-art methods like GPND [87] and OCGAN [82]. Performance is measured

using the AU ROC curve, averaged over 10 classes. The proposed methods perform at

par and even better than the compared methods.

Table 4.6 shows the results on the MVTec dataset over all the 16 categories, compris-

ing both textures (carpet, grid, leather, etc.) and objects (bottle, cable, capsule, etc).

Our results are compared with other deep learning anomaly detection algorithms such

as autoencoders with L2 norm loss and structural similarity loss [13], the GAN-based

approach AnoGAN [102], and CNN feature dictionary [72]. The comparative results

have been taken from [11]. Performance is measured again using True Positive Rate

(TPR) and True Negative Rate (TNR). The study follows the same method as that of

the compared state of the art. The proposed method achieves the best results on 9 out

of 16 categories, and it reaches the best average result.
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Table 4.4: ROC AUC for anomaly detection using FMNIST. We report the average
value for the network for all the classes. Results are taken from [87, 82]

FMNIST

Network Average
AU ROC

GPND 0.933
OCGAN 0.924
ours 0.936

Table 4.5: AUC results of anomaly detection using MNIST. Each row shows the normal
class on which the model has been trained. Comparative results are taken from [1]

MNIST

Class OC
SVM KDE DAE VAE

Pix
CNN
GAN

LSA Deep
SVDD Ours

0 0.988 0.885 0.991 0.994 0.531 0.993 0.98 0.995
1 0.999 0.996 0.999 0.999 0.995 0.999 0.0.997 0.999
2 0.902 0.710 0.891 0.962 0.476 0.959 0.917 0.941
3 0.950 0.693 0.935 0.947 0.517 0.966 0.919 0.966
4 0.955 0.844 0.921 0.965 0.739 0.956 0.949 0.960
5 0.968 0.776 0.937 0.963 0.542 0.964 0.885 0.972
6 0.978 0.861 0.981 0.995 0.592 0.994 0.983 0.992
7 0.965 0.884 0.964 0.974 0.789 0.980 0.946 0.993
8 0.853 0.669 0.841 0.905 0.340 0.953 0.0.939 0.895
9 0.955 0.825 0.960 0.978 0.662 0.981 0.0.965 0.989

Mean 0.95 0.81 0.94 0.97 0.62 0.97 0.948 0.97
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Table 4.6: Results on the MVTec dataset. Each row shows the results achieved in a
specific category. Each cell shows the best TNR (bottom) and TPR (top) values. The
method with the highest mean of the two values is shown in bold. Comparative results
are taken from literature [11].

MVTec Results

Class AE
SSIM

AE
(L2)

Ano
Gan

CNN
Feat.
Dict.

ours

Carpet 0.43 0.57 0.82 0.89 0.42
0.90 0.42 0.16 0.36 0.72

Grid 0.38 0.57 0.90 0.57 0.86
1.00 0.98 0.12 0.33 0.53

Leather 0.00 0.06 0.91 0.63 0.62
0.92 0.82 0.12 0.71 0.625

Tile 1.00 1.00 0.97 0.97 0.44
0.04 0.54 0.05 0.44 0.85

Wood 0.84 1.00 0.89 0.79 0.85
0.82 0.47 0.47 0.88 0.95

Bottle 0.85 0.70 0.95 1.00 0.84
0.90 0.89 0.43 0.06 1.00

Cable 0.74 0.93 0.98 0.97 0.58
0.48 0.18 0.07 0.24 0.89

Capsule 0.78 1.00 0.96 0.78 0.62
0.43 0.24 0.20 0.03 0.74

Hazelnut 1.00 0.93 0.83 0.90 0.90
0.07 0.84 0.16 0.07 0.89

Metal nut 1.00 0.68 0.86 0.55 0.98
0.08 0.77 0.13 0.74 0.55

Pill 0.92 1.00 1.00 0.85 0.76
0.28 0.23 0.24 0.06 0.62

Screw 0.95 0.98 0.41 0.73 0.73
0.06 0.39 0.28 0.13 0.71

Toothbrush 0.75 1.00 1.00 1.00 0.8
0.73 0.97 0.13 0.03 0.92

Transistor 1.00 0.97 0.98 1.00 0.60
0.03 0.45 0.35 0.15 0.89

Zipper 1.00 0.97 0.78 0.78 0.64
0.60 0.63 0.40 0.29 0.82
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4.3.2 Ablation Study

Here we propose a set of ablation studies, in which we removed some parts of the

network and the whole setup is retrained in order to see the influence of those parts on

the network performance. First, we try to study the effect of the number of encoders.

We started it with one encoder and then successively in the multiple of 2 i.e. 1, 2, 4,

and 6. We found that the learning performed better in terms of anomaly capturing and

reconstruction capabilities. But these improvements got saturated as with the increase

in the numbers of autoencoders. Ablation studies have been done on the MVTech

dataset (’bottle’ and ’carpet’, one from product and one from texture category) so that

complexity of the learning domain(accuracy) and the reconstruction capacity, Structural

Similarity Index (SSIM) [43, 75, 24], can be tested. All the tests have been done with

the hyperparameters, refer table 4.3, kept constant. The result for the same can be

seen in Figure 4.5 and Figure 4.6.

While average SSIM obtained from configuration having 1 and 2 encoders remained

below 0.65 for bottle and 0.40 for carpet, for the normal class, the average SSIM obtained

with 4 encoders remained above 0.68 for bottle and 0.53 for carpet. Also, accuracy has

been tested to choose the best model configuration. The accuracy with a configuration

having 1 and 2 encoders remained below 85% and 36% for bottle and carpet respectively

in comparison to 93+% and 57% obtained with 4 encoder configuration for bottle and

carpet respectively. Distinctively the study showed that adding more AE didn’t lead to

statistically relevant improvement in the SSIM and accuracy of the model performance.

As with the 6AE configuration, the results didn’t improve much and remained pretty

much the same. Hence, we choose 4 AE configurations for our further studies.

In addition to this, we also tried to apply the perceptual loss at the feature level

i.e. between the concatenated out of the upsampling layer and the output of resnet

block. This is done in order to map the features at both locations to represent the
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same output of the resnet block. This will force the decoder for easy reconstruction. In

the study, we found that neither MSE loss nor perceptual loss at the feature level was

helpful. It minutely contributes to the early convergence of the training result and has

no significant role while testing. Hence, we decided to drop the perceptual loss between

the features.

At last, we also tried to study the effect of perceptual loss, see section 4.2.2, over the

model performance. To measure the system performance two model has been trained

in the following configuration: a) MSE loss only (λ = 0); b) MSE + Perceptual loss.

The network was trained with 4AE configuration and constant hyperparameters, see

table4.3, for ’Bottle’ and ’Carpet’. The results as measured in terms of the AUC and

can be referenced to Fig 4.7.
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Figure 4.5: SSIM comparison results for different AE configurations.

our proposed deep network for the anomaly detection identifies anomalies by means

of a network that encodes normal images in a low-dimensional latent space and then

reconstructs them, ideally modeling an identity function. Since the network is trained
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Figure 4.6: Accuracy comparison results for different AE configurations.
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Figure 4.7: ROC AUC comparison for different losses.

on normal data only, it fails at reconstructing anomalous images, which can be detected

by an image similarity loss. The main contributions of this work consist in the usage of

a multi-scale pyramidal approach that extracts latent features at different resolutions,
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and the usage of a high-level perceptual loss to better compare images at the feature

level, rather than at pixel level. We also found that our proposed model worked best

for the product while in the case of fine texture products like carpet, it further can

be improved Moreover, differing from many works that have been evaluated on basic

datasets only such as MNIST and FMNIST, we also tested the proposed network on

MVTec, a real-world dataset of defective products. Achieved results are promising and

often outperform other state-of-the-art methods.

While this work undertook a semi-supervised approach using stacked autoencoders.

it still needs improvement as the network is still large, due to four AEs. Also, the

network performed poorly for the texture images. In the next chapter, we again used

a reconstruction based semi-supervised approach, which uses pyramidal features and

dynamic routing, see chapter 3.2.3, for the global image level anomaly classification.
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5
Pyramidal Image Anomaly

Detector(PIADE)

"Life will not be a pyramid with the

apex sustained by the bottom, but

an oceanic circle whose centre will be

the individual."

"From the heights of these pyramids,

forty centuries look down on us."

– Mahatma Gandhi

- Napoleon Bonaparte

Semi-supervised or unsupervised approaches are lately the most used approaches for

the anomaly detection tasks. Sometimes they are interchanged based on some intrinsic

calculation which produces pseudo labels for the images. In this chapter, we talk about

our new state-of-the-art method Pyramidal Image Anomaly Detector (PIADE) [68].

For this approach, we assume that there are no anomalies in the training set, thus
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following a semi-supervised approach. The basic idea is to adopt a reconstruction-based

strategy, in which a neural network learns how to encode the input images into a low-

dimension latent space and then reconstructs them in order to minimize the difference

between the original and reconstructed image. By training such a network on normal

data only, the network will learn only the features that are useful for the reconstruction

of the training set, and thus will fail at reconstructing anomalous images. The difference

between input and reconstructed images can thus be used as an anomaly score.

5.1 Proposed Network

Despite the reconstruction-based approach has been already used in literature, in this

chapter we propose piade (Pyramidal Image Anomaly DEtector), a network architec-

ture that includes several novel strategies to improve the overall system performance.

First, we adopt a pyramidal approach [111] that analyzes the image features at differ-

ent scale levels in parallel. This way, we improve the probability that relevant image

features are extracted at the scale level in which the anomaly is more evident. Then,

we borrow the idea of dynamic routing from capsule networks [99] to have finer control

on the features that are really useful for the task of anomaly detection. Moreover, most

of the reconstruction-based methods use pixel-wise loss functions in order to compare

reconstructions and input data. This assumes independence among the pixels, which

is generally not true. Hence, we adopted a more sophisticated loss function that con-

siders the inter-relationship between the pixels and a perception-based loss computed

by a pre-trained network. Finally, while many papers [29, 2, 130, 97, 82] in this field

have been evaluated on simple and not anomaly-oriented datasets such as MNIST [60],

we tested our proposed network and method on one of the first real-world datasets for

image anomaly detection published by MVTec [11]. We found that the proposed model

performed at par or better when compared with various state-of-the-art methods.
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Figure 5.1: Proposed piade network architecture. The network consists of the first levels
of a SE-Resnet18 network for feature extraction, followed by a pyramidal pooling layer
that extracts features at different scales. The features are then dynamically routed to
two instantiation vectors in R64. The vectors are passed to a linear upsampling layer and
a final transposed convolutional decoder. The features obtained from the upsampling
layer are concatenated with the output features of ResNet18 before passing to the final
decoder.

5.1.1 Network Architecture

The piade network architecture is shown in Figure 5.1. It consists of an initial ResNet

block to extract basic image features. These features are then pooled in the pyramidal

pooling block, in order to represent them at different scales. Following the idea of capsule

networks [99], the pooled features are then dynamically routed to two instantiation

vectors (more details below), in order to filter the best ones that are useful for later

image reconstruction. Image is then reconstructed via a linear upsampling layer and a

convolutional decoder in order to obtain an output with the same shape as the input

data. We here give a detailed description of each block.

• SE-ResNet18 - A pre-trained ResNet18 network is used for deep feature extrac-

tion. The network was trained over the imageNet dataset [31]. All 5 convolutional

layers of the ResNet18 [41] have been used. The primary idea is that the network

is able to extract generic features of images. A pre-trained network also gives the

benefits of transfer learning as the real-world datasets are mostly related to the

imageNet dataset.
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In order to improve the quality of the extracted features, each convolutional block

is followed by a Squeeze-and-Excitation (SE) block, as proposed by Hu et al. [45]

(see Figure 5.2). The SE block is a form of attention mechanism among con-

volutional channels, that adaptively calculates channel-wise weights to explicitly

model the interdependencies between channels.
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Figure 5.2: Squeeze-Excitation (SE) Block [45].

Formally, given the output tensor U ∈ RW×H×C of a convolutional layer, SE

first squeezes it to a vector z ∈ R1×1×C by aggregating the spatial dimensions

according to the following equation:

zc =
1

H ×W

H∑︂
i=1

W∑︂
j=1

uc(i, j). (5.1)

Then, the excitation vector s ∈ R1×1×C , containing the channel weights, is com-

puted as follows:

s = σ(W2δ(W1z)) (5.2)

where σ is an element-wise sigmoid function, δ is a ReLU activation function, and

W1 ∈ RC
4 ×C ,W2 ∈ RC×C

4 are two learned matrices that model the excitation

function itself. Then, the tensor U is channel-wise re-weighted using weights

s (meaning that each channel Uc ∈ RW×H is multiplied by the scalar sc) to

generate the output of the SE block, which is subsequently passed to the other

59



13 8

10 1

average 
pooling 

12 20

8 12

20 0

2 10

27 0

0 13

3 0

0 1

Figure 5.3: Average pooling with k = 2.

network layers. The entire operation can be seen as a self-attention mechanism on

the channels using global information of the entire receptive field.

• Pyramidal Pooling Layer - The idea behind the pyramidal pooling layer is that

image features can be analyzed at different magnifications, and possibly relevant

features that are well-visible at a given scale could be not well extracted by the

network at another scale. The pyramidal pooling layer thus scales the input fea-

tures at different magnification levels, thus increasing the possibility that features

relevant for the anomaly detection task is actually extracted.

Each pyramid layer consists of the application of an adaptive average pooling. For

a given feature map with spatial size W ×H, standard average pooling creates a

new map with size W/k×H/k, and each element of the new map is the average of

the corresponding elements in the original map, as shown in Figure 5.3. Adaptive

average pooling works in a similar way, but the term k is automatically chosen to

guarantee a fixed size output, independently from the input size.

In the proposed architecture we adopt four different pyramid levels, respectively

with spatial output sizes of 8×8, 4×4, 2×2, and 1×1. The number of channels is

left unchanged (in our case, the ResNet18 module final output uses 512 channels).

Each pooling layer is followed by a convolution to reduce the number of channels
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(1×1 kernel, stride=1, 64 channels) and batch normalization. The output features

of each pyramid level are then flattened, concatenated, and reshaped in a final set

of 8-dimensional feature vectors.

• Dynamic Routing - Dynamic routing is a novel algorithm proposed by Hinton

in his Capsule Networks paper[99]. In capsule networks, the belonging of a sample

to a given class is represented by a vector (called instantiation vector) rather than

a scalar value. The norm of the vector represents how much the sample belongs to

a specific class, while the vector itself represents a specific instance of that class,

hence the name. Each instantiation vector is defined as a sum of several features,

and dynamic routing is the algorithm that dynamically chooses which features

must be routed to each vector. In other words, for each class, dynamic routing

selects the best features that are more suited to describe that class.

Dynamic routing algorithm is shown in algorithm 1, where the squash() function

forces the vector norms to be in the range [0, 1]:

squash(sj) =
||sj ||2

a+ ||sj ||2
sj
||sj ||

(5.3)

In the proposed system, dynamic routing is used to route the features from the

pyramidal pooling layer to two instantiation vectors, described below.
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Algorithm 1 Dynamic Routing Algorithm [99]

1: function Routing(ûj|i, r, l)

2: ▷ ûj|i are the features from layer i to j

3: ▷ l is the current layer

4: ∀i ∈ l,∀j ∈ l + 1 : bij ← 0

5: for r iterations do

6: ∀i ∈ l : ci ← softmax(bi)

7: ∀j ∈ (l + 1) : sj ←
∑︁

i cij ûj|i

8: ∀j ∈ (l + 1) : vj ← squash(sj)

9: ∀i ∈ l,∀j ∈ (l + 1) : bij ← bij + ûj|i · vj

10: end for

11: return vj

12: end function

• Instantiation Vectors - In a standard capsule network classifier, each instanti-

ation vector represents a class. In our case, we adapted this model to anomaly

detection by using only two instantiation vectors: the first one represents the nor-

mal class, while the second one is just used to collect all the features that are

discarded by the routing algorithm because not relevant enough to model the nor-

mal class. Observe that this is not the same as modeling the anomaly class because

we do not have anomalies in the training set. In the proposed reconstruction-based

method, these vectors are the low-dimension (R64 in our experiments) latent space

in which images are mapped before reconstruction. For this reason, during train-

ing, the first instantiation vector is always passed to the upsampling and decoding

layers. While testing, the vector with the maximum norm is decoded instead. This

method is in contrast with traditional approaches where all the features contribute

to the output computation, which can be accomplished using a single instantia-
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tion vector (and thus no routing at all). In section 5.2.3 we propose an ablation

study to prove that the two-vectors approach always performs better than the

single-vector approach.

• Upsampling and decoding layers - The upsampling layer consists of three

linear layers and it is used to upsample the instantiation parameters from R64

to R512×mf×mf , where “mf” is the multiplying factor equals to the width of out-

put features from SE-Resnet18. The decoder is made of transposed convolutional

layers [107, 62], which take concatenated features from the SE-Resnet18 and up-

sampling layers with dimensions Rbatch×n×8×8 and transforms them into the re-

constructed image of the same size as the input image.

5.1.2 Objective and Losses

As stated before, the proposed model uses a reconstruction-based approach, in which the

aim is to produce a network output similar to its input. Since the model is trained over

the normal class (single class, semi-supervised training), it is imperative that the causal

features for the normal class are learned at the instantiation vectors. Subsequently,

taking the maximum length vector for the reconstruction at the time of testing, it’s

assumed that the total reconstruction error at the time of testing will be higher. In

order to measure the similarity between the original image and its reconstruction, we

considered three possible loss functions:

• MSE Loss - Mean Squared Error (MSE) loss is a pixel-level loss, which assumes

independence between pixels. MSE loss is computed as the average of the squared

pixel-wise differences of the two images, and can be formally defined in terms of

the Frobenius norm as 1
WH ∥X − X̂∥

2
F , where X is the input and X̂ is the output

of the network (respectively the original and the reconstructed image), and W,H

are the image width and height. MSE loss is often used in many reconstruction-
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based works, however, the pixel-level independence assumption is unrealistic in

real-world images.

• Perceptual Loss - Perceptual loss [49] is a more sophisticated loss trying to catch

visually meaningful differences in images. It is an MSE loss computed between the

high-level image features obtained by a pre-trained VGG11 network [109] using

its first four layers. The loss is defined as 1
WHC ∥F (X)− F (X̂)∥2F , where F is the

transformation function applied through the trained four layers of VGG11 network,

and W,C,H are the size of the resulting feature map. The trained network is only

used for the calculation of loss and the weights are not updated during training.

• Structural Similarity Index - The Structural Similarity Index (SSIM) [13] is used

to measure the image similarity by considering visual properties that are lost in

the standard MSE approach. The important feature in this loss calculation is that

it takes care of perceptual phenomena, including both luminance and contrast,

and it is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.4)

where, µx, µy, are the average values of input and reconstruction image, σ2
x, σ2

y

are the variance of input and reconstructed image, σxy is their co-variance and

c1, c2 are the two constants used for numerical stability.

The overall proposed objective function minimizes the total loss L, defined as a

weighted sum of the three image comparison losses:

L(X, X̂) =MSELoss(X, X̂) + λ1PercLoss(X, X̂) + λ2SSIM(X, X̂) (5.5)

where X is the input image and X̂ is the image reconstructed by the network. λ1 and λ2

are weighing factors between three losses. All the experiments discussed in section 5.2
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are obtained with λ1 = λ2 = 1; since we noted that small differences in these values

do not lead to significant differences in the results. In the ablation study presented in

section 5.2.3 we show the results with λ1 = 0 and λ1 = λ2 = 0, thus disabling the

perceptual and/or the SSIM components.

5.2 Experimental Results

In this section, we present the experimental results obtained with piade. We first de-

scribe the datasets used for training and testing, then we describe the testing procedure

and the adopted metrics to measure the system performance. Finally, comparative re-

sults are given, in order to evaluate the achieved results with other state-of-the-art works

on anomaly detection.

Figure 5.4: Reconstructions of normal and anomaly images for (a) CIFAR10, (b) COIL-
100, and (c) MVTec datasets. Rows 1, 3, and 5 show few examples taken from the
normal class and from the anomalies. Rows 2, 4, and 6 show the reconstructed images.
The network is unable to correctly reconstruct anomalous data. The normal classes
shown for the CIFAR10 examples are respectively Ship (row 1), Car (row 3), and Dog
(row 5). The normal classes for COIL100 are the first three objects of the dataset. The
normal classes for MVTec are Hazelnut, Bottle, and Screw.
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5.2.1 Performance metrics

In order to measure the system performance, we consider the total loss L(X, X̂) (equa-

tion 5.5) as a measure of the degree of the anomalous image. This is a sound approach

since the loss measures the dissimilarity between input and reconstructed images, and

the reconstruction-based approach assumes this dissimilarity will be high for anomalous

images.

Once this anomaly score is computed, a threshold is required to convert it to a binary

classification: any image with a score above the threshold will be considered anomalous,

while the remaining ones will be classified as normal. Once this classification is done,

standard statistics such as True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN) can be computed. These raw values are then converted

into suitable ratios: in particular, we considered the True Positive Rate (TPR, also

known as Recall, or Sensitivity) and the False Positive Rate (FPR), defined as follows:

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)

(5.6)

Rather than choosing an arbitrary threshold, we followed the popular approach of

computing the (TPR,FPR) pairs for every possible threshold: the plot of these values

gives the well-known Receiver Operating Characteristic (ROC) Curve. Finally, the

area under the ROC curve (AUC) is used as a performance measure that summarizes

the overall quality of the achieved results. This approach has been adopted to perform

comparative analysis with state-of-the-art methods both on CIFAR10 [56] and COIL-100

[73] datasets. Observe that the choice of (TPR,FPR) pairs, and thus the use of ROC

curves, is typically more suited when the tested dataset is balanced, while on imbalanced

datasets the Precision/Recall values are more suited since they are not affected by

the large abundance of True Negatives. However, despite dealing with anomalies, our
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datasets are balanced for testing: in CIFAR10 and COIL-100, anomalies belong to 9

classes out of 10, and thus can be safely chosen so that their total amount is comparable

to the amount of normal data.

Also, the MVTec dataset [13] has enough test anomalies to be considered balanced

for testing. In this case, however, we adopted the same testing procedure described in

the original paper where the dataset is proposed[11]. Here, for each class and each tested

method, we compute the Sensitivity (TPR) and Specificity (TNR) for all the possible

thresholds, and we select the best pair (TPRbest, TNRbest) as the one that maximizes

their sum TPR + TNR. The best algorithm for each class is defined as the one with

the highest mean of the two values, i.e. with the highest (TPRbest + TNRbest)/2.

5.2.2 Datasets and Results

The proposed piade model has been tested using publicly available datasets. Tests

have been done on CIFAR10[56] and COIL-100 [73] datasets. Although these datasets

are not specifically designed for anomaly detection tasks, they are useful to show the

ability of the system to discriminate between one class, considered normal, and the

other ones considered anomalies. Since the performances of many previous works have

been evaluated on these datasets, testing on CIFAR10 and COIL-100 is important for

comparative results. In addition to this, the proposed model has also been tested on the

real-world MVTec anomaly detection dataset [11], which is a recently published dataset

specifically for anomaly detection tasks (see figure 5.4).

• CIFAR10: It contains 60,000 images with size 32× 32 pixel. Images are grouped

into ten classes: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship,

and Truck. 50,000 images are for training while 10,000 images are for testing. For

this study, we treated one of the classes as normal and the rest as an anomaly. The

results presented here are averaged over all the classes in several runs, in which
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each one of the original classes is chosen to be the normality model.

• COIL-100: The dataset has been taken from the Columbia Object Image Library.

It contains 7,200 color images of 100 objects, having dimension 128 × 128 pixels.

Differing from CIFAR10, each class in COIL-100 represents a single object, but

is observed from different points of view: each object was kept on an automated

turntable, and the images were taken at a fixed pose step of 5 degrees. For each

object, a total of 72 images were recorded. As in the case of CIFAR10, experi-

mental results are averaged over 100 runs, each one with a different class chosen

as normal. While training, one of the objects is treated as normal while all others

as anomalies. The images were resized to 120× 120, this is to maintain the same

network structure used for the MVTec dataset. As the number of images in this

dataset is limited, we used the training strategy of Pidhorskyi et al. [87], and split

the training and testing data with a ratio of 80% : 20%.

• MVTec Dataset: MVTec recently published a real-world anomaly detection

dataset. It contains 5,354 high-resolution color images of different textures and

objects categories. It has normal and anomalous images which showcase 70 differ-

ent types of anomalies of different real-world products. It also contains 3 products

images in grayscale, as grayscale images are very common in industrial practices.

With this dataset, all the images were first resized to 120 × 120 pixel size before

being passed to the model. Image anomalies are still visible at this resolution.

The model is trained by minimizing the total loss L(X, X̂) (equation 5.5). The

same loss is also used in the testing phase as an anomaly score. The model weights

are initiated with orthogonal initialization except for the ResNet block, which was pre-

trained on imageNet, and the VGG11 block, which was pre-trained on imageNet and

kept fixed. The architectural hyper-parameters are shown in the table5.1. The model
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has been implemented in Python using the Pytorch framework [81],1, the source code

is available online2. All the experiments have been done on a dual Xeon E5-2660 CPU,

224 GB RAM, 1 Tesla K40, and 2 Titan XP GPUs. On such hardware, training took on

average 20 minutes for each class of the MVTec dataset, and 30 minutes for each class

of the CIFAR10 dataset. Inference time is however extremely low, requiring on average

0.012 seconds to classify a single MVTec image and 0.006 seconds for a CIFAR10 image.

Table 5.1: Training hyperparameters.

Adam learning Rate 0.001
weight decay 0.0001
batch size 120
Epochs 400

Table 5.2: AUC scores using the COIL-100 dataset

Models Reference AUC
GPND NIPS 2018 0.979

OCGAN CVPR2019 0.995
DCAE MLSDA14 0.908
PIADE
(ours) − 0.998

Table 5.3 shows the results obtained for the CIFAR10 dataset. Training has been

done considering one class as normal and the rest as an anomaly, and this procedure has

been repeated over all the classes. The achieved results have been compared with stan-

dard methods such as one-class support vector machines and kernel density estimators,

as well as with deep learning approaches such as denoising autoencoders, variational

autoencoders [52], Pix-CNN [115], and Latent Space Autoregression [1]. The compar-

ative results have been taken from the work by Abati et al. [1]. Table 5.3 shows that

the proposed model superseded the results of the state-of-the-art models in 7 out of 10

classes, and it has the best average result.
1https://pytorch.org/
2https://github.com/pankajmishra000/PIADE

69



Table 5.3: AUC scores using the CIFAR10 dataset. Each row shows the normal class
on which the model has been trained. Comparative results are taken from literature [1]

Class OC
SVM KDE DAE VAE Pix

CNN GAN LSA PIADE
(ours)

0 0.630 0.658 0.718 0.688 0.788 0.708 0.735 0.751
1 0.440 0.520 0.401 0.403 0.428 0.458 0.580 0.550
2 0.649 0.657 0.685 0.679 0.617 0.664 0.690 0.708
3 0.487 0.497 0.556 0.528 0.574 0.510 0.542 0.609
4 0.735 0.727 0.740 0.748 0.511 0.722 0.761 0.805
5 0.500 0.496 0.547 0.519 0.571 0.505 0.546 0.645
6 0.725 0.758 0.642 0.695 0.422 0.707 0.751 0.729
7 0.533 0.564 0.497 0.500 0.454 0.471 0.535 0.651
8 0.649 0.680 0.724 0.700 0.715 0.713 0.717 0.771
9 0.508 0.540 0.389 0.398 0.426 0.458 0.548 0.532

Mean 0.586 0.610 0.590 0.586 0.551 0.592 0.641 0.675

Table 4.6 shows the results on the MVTec dataset over all the 16 categories, compris-

ing both textures (carpet, grid, leather, etc.) and objects (bottle, cable, capsule, etc).

Our results are compared with other deep learning anomalies detection algorithms such

as autoencoders with L2 norm loss and structural similarity loss [13], the GAN-based

approach AnoGAN [102], and CNN feature dictionary citenapoletano2018anomaly. The

comparative results have been taken from the work by Bergmann et al. [11]. Perfor-

mance is compared by computing the average of the best TPR and TNR for each class

and for each model. The proposed method achieves the best results in 10 out of 15 cat-

egories. It is worth noting that piade performs poorly on the texture classes (Carpet,

Grid, Leather, Tile). This is probably due to the ResNet module, which has been pre-

trained to extract features that are meant to describe full objects rather than textures

and patterns.

5.2.3 Ablation Studies

We here propose a set of ablation studies, in which the network is re-trained after the

removal of specific parts in order to measure the influence of those parts on the network

70



Table 5.4: Results on the MVTec dataset. Each row shows the results achieved in a
specific category. Each cell shows the best TNR (top) and TPR (bottom) values. The
method with the highest mean of the two values is shown in bold. Comparative results
are taken from literature [11]

Class AE
SSIM

AE
(L2)

Ano
Gan

CNN
Feat.
Dict.

PIADE
(ours)

Carpet 0.43 0.57 0.82 0.89 0.33
0.90 0.42 0.16 0.36 0.74

Grid 0.38 0.57 0.90 0.57 0.67
1.00 0.98 0.12 0.33 0.60

Leather 0.00 0.06 0.91 0.63 0.82
0.92 0.82 0.12 0.71 0.45

Tile 1.00 1.00 0.97 0.97 0.97
0.04 0.54 0.05 0.44 0.19

Wood 0.84 1.00 0.89 0.79 0.85
0.82 0.47 0.47 0.88 0.93

Bottle 0.85 0.70 0.95 1.00 0.87
0.90 0.89 0.43 0.06 1.00

Cable 0.74 0.93 0.98 0.97 0.73
0.48 0.18 0.07 0.24 0.93

Capsule 0.78 1.00 0.96 0.78 0.60
0.43 0.24 0.20 0.03 0.83

Hazelnut 1.00 0.93 0.83 0.90 0.89
0.07 0.84 0.16 0.07 0.97

Metal nut 1.00 0.68 0.86 0.55 0.57
0.08 0.77 0.13 0.74 0.78

Pill 0.92 1.00 1.00 0.85 0.89
0.28 0.23 0.24 0.06 0.51

Screw 0.95 0.98 0.41 0.73 0.80
0.06 0.39 0.28 0.13 0.67

Toothbrush 0.75 1.00 1.00 1.00 0.92
0.73 0.97 0.13 0.03 0.96

Transistor 1.00 0.97 0.98 1.00 0.70
0.03 0.45 0.35 0.15 0.90

Zipper 1.00 0.97 0.78 0.78 1.00
0.60 0.63 0.40 0.29 0.65

performance.

The first ablation study has been done to justify the use of dynamic routing with two

instantiation vectors. Our hypothesis is that using a single vector, and thus disabling

dynamic feature routing, will lead to worse results, since all the features are forced to
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Figure 5.5: Comparison of AUC for one and two instantiation vectors respectively.

contribute to the same instantiation vector. On the other hand, with two vectors, fea-

tures are allowed at testing time to accumulate at the second vector if they do not give a

valid contribution to the image reconstruction task. The proposed model reconstruction

capabilities have been tested by comparing the Structural Similarity Index (SSIM) of

the reconstructed images. The ablation study has been made using the MVTec dataset,

maintaining the same hyperparameters used for regular testing (Table 5.1). For the com-

parison, three products (Bottle, Capsule, Hazelnut) and three textures(Carpet, Leather,

Wood) have been chosen from the dataset. The comparative results can be seen in Fig-

ure 5.5. In all the categories, the two instantiation vectors approach performed better

than one vector with a 9% improvement on average.

Another ablation study has been done to study the effect of the Squeeze-Excitation

attention module. In this case, we used the ResNet with and without soft attention

and found that the model with soft attention performed better in comparison to vanilla
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ResNet. We took the same 7 objects of the previous experiment and measured the

AUC. Results of SE-ResNet performed always better or at par with the vanilla ResNet,

as shown in Figure 5.6.
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AUC results with and without SE-Block
With SE Block
No SE Block

Figure 5.6: Comparison of AUC with and without the Squeeze-Excitation attention
module.

The last ablation study aims at testing the performance of the three-loss functions

described in section 5.1.2. In order to measure the system performances, three models

have been trained with the following configurations: a) MSE loss only (λ1 = λ2 = 0);

b) MSE + SSIM loss (λ1 = 0); c) MSE + SSIM + Perceptual loss (λ1 = λ2 = 1). The

network was trained on the MVTec dataset categories “bottle”, “capsule” and “carpet”,

results are measured in terms of AUC. The results are shown in Figure 5.7 clearly show

that the model with all the three losses has superior results if compared to the other

configurations.

Hence, in this work, we proposed a reconstruction-based, semi-supervised deep neural
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Figure 5.7: Comparison of AUC with different loss function combinations.

network for image anomaly detection. The network is trained on normal data only, and

it builds a “normality model” by mapping the input images in a low-dimension feature

space, from which they can be correctly reconstructed. The inability of the network to

reconstruct other images allows the identification of anomalies, which can be detected

by their higher reconstruction error. Compared to other state-of-the-art works, the

proposed models include a pyramidal multi-scale approach to analyze image features

at different scale levels, a dynamic routing layer inspired by the architecture of capsule

networks, and a high-level image comparison loss. Moreover, the system has been tested

not only on standard datasets such as CIFAR10 and COIL-100 (which have not been

initially created for anomaly detection experiments) but also on the recently proposed

MVTec dataset of anomalies in industrial images. Experimental results showed that the

proposed model is at least at par, and often outperforms other state-of-the-art works.

Further ablation experiments prove the validity of the architectural choices on which
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the proposed network is based.

Till now we have seen the methods, which are capable of classifying in real-life

industrial scenarios. While this gives rise to another interesting paradigm, where a

model can also localize the anomaly in the images. In the next chapter, we will see our

novel method, where a single model is capable of both classifying an image globally as

normal or anomaly while localizing the anomaly in the image. The most interesting

part is while doing this, it doesn’t need any ground truth or pixel precise mapping of

anomalies for the training.
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6
VT-ADL : A Vision Transformer

Network for Image Anomaly

Detection and Localization

"Do Not Forget What You Have

Learned Of Our Past, Rodimus.

From Its Lessons, The Future Is

Forged."

– Optimus Prime ( Transformers:

The Movie)

Learning the local features and keeping the positional information in an unsupervised

way is a novel and very challenging task in the computer vision domain. The most

informative part of any image dataset is the part with the highest variance. While

such regions can be located in a very small as well as large local area in an industrial
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image. Hence, extracting those pixel-precise region, in an unsupervised way and at the

same time preserving the spatial information is often desirable, as it helps in automating

various industrial scenarios. Most of the classical machine learning techniques try to

learn this variance (also termed as Entropy [38]) in the dataset, and with the rise

in modern IT infrastructure there is a boom in data acquisition, which subsequently

requires better and efficient algorithms to be processed.

6.1 Transformer: A Glance

Since the paper "Attention is all you need" [116] in 2017, the way attention was thought

has changed. The paper showed that with enough data, matrix multiplications, linear

layers and normalization layers one can propose state-of-the-art language models. It is

this technology which is behind the famous language models like BERT [32], GPT-2 [90],

GPT-3 [15], which were the state-of-the-art solutions for various tasks, including lan-

guage modeling, text summarizing, and question answering. In year 2020 transformers

foray into the computer vision field [20]. And ViT [33] is the most successful application

of transformers in computer vision tasks.

Before taking transformers to the anomaly detection task and computer vision ap-

plications, let’s first see some basic structural ideas from the language models. We will

be seeing some basic structure of the transformers, which will help us to understand the

functioning better.

6.1.1 Transformers in NLP: A Brief Overview

The Figure 6.1is taken from the original paper of Vaswani et al. [116], it shows the

encoder-decoder architecture of the model, being left and right respectively. Both en-

coder and decoder are composed of Multi-Layer Attention and Feed Forward Layers

modules, which are stacked on top of each other. Here we try to look closer at these
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Figure 6.1: The Original Transformer-model architecture from Vaswani et al. [116]

Multi-Head-Attention modules (see Figure 6.2) of the model as these are the most im-

portant part in transformer functioning.
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Figure 6.2: left shows Scaled Dot-Product Attention, right shows Multi-head Attention
layers running in parallel, from Vaswani et al. [116]

Let’s see the left part of the Figure6.2, it basically shows the equation 6.1 :

Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V (6.1)

Q is called Query matrix, which contains the vectorized representation of one word in the

sequence. K is called Keys matrix, which contains the vector representation of all the

words in the sequence. V is called Value matrix, which is again the vector representation

of all the words in the sequence. For the encoder and decoder, Multi-head attention

module, V is the same word sequence as Q. But, for the attention module that is taking

into account the encoder and the decoder sequence, V is different from the sequence

represented by Q. Mathematically, we can say that attention calculated is the weighted

multiplication of V. Where the weights a is given by :

a = softmax

(︃
QKT

√
dk

)︃
(6.2)

It means that the weighing factor a is calculated with the dot product of Q and K,

meaning, how each word of the sequence (matrix Q) is influenced by all the other words

79



in the sequence (matrix K). The softmax function projects all the weights a to have a

distribution between 0 and 1.

The right hand of the Figure 6.2 shows the attention mechanism in parallel. The

parallelization is achieved with the linear projection of Q,K, and V . This allows the

system to learn from the combinations of Q,K, and V , which further helps in model

generalization.

Similarly, in the computer vision application, these word token sequence is obtained

from the image patches. Motivated from the benefits of transformers and industrial

needs, we developed a Vision-Transformer-based Image Anomaly Detection and Lo-

calization network (VT-ADL), which learns the manifold of normal class data in an

unsupervised way, thus requiring only normal data in the training process.

6.2 Proposed Method

In our work, we propose a novel Deep Anomaly Detection (DAD) network using adapted

transformer network and Gaussian approximation [14, 114] for anomaly classification

and localization in industrial images and also how different configurations can be tweaked

to win some of the shortcomings of the vision transformer network. We tried to discover

the limitation of transformer networks in the vision field and tried to mitigate them.

Additionally, use of only linear layers in the transformer network makes it really fast to

train and test, and this makes it a competitive candidate for industrial uses.

In addition to this, we also published a real-world industrial dataset (the beanTech

Anomaly Detection dataset — BTAD) for the anomaly detection task. The dataset

contains a total of 2830 real-world images of 3 industrial products showcasing body and

surface defects.

The proposed model combines the traditional reconstruction-based methods with

the benefits of a patch-based approach. The input image is subdivided into patches and
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Figure 6.3: Left image: a model overview. Image is split into patches, which are aug-
mented with positional embedding. The resulting sequence is fed to the Transformer
encoder. Then encoded features are summed into a reconstruction vector which is fed
to the decoder. The transformer encoded features are also fed into a Gaussian approxi-
mation network [14], which is later used to localize the anomaly. Right image: detailed
structure of the transformer encoder (image from [33]).

encoded using a Vision Transformer. The resulting features are then fed into a decoder

to reconstruct the original image, thus forcing the network to learn features that are

representative of the aspect of normal images (the only data on which the network is

trained). At the same time, a Gaussian mixture density network models the distribu-

tion of the transformer-encoded features in order to estimate the distribution of the

normal data in this latent space. Detecting anomalies with this model automatically al-

low their localization, since transformer-encoded features are associated with positional

information.

An overview of the model is depicted in Figure 6.3. To handle a 2D image X ∈

RH×W×C , we break the image into a sequence of 2D patches Xp ∈ RN×(P×P×C), where

(H,W ) is the original image resolution, C is the number of channels, (P, P ) is the patch

dimensions and N is the resulting number of patches N = HW/P 2. These patches are

then embedded to a D-dimensional embedding space through a linear layer. Positional

embedding is added to the patch embedding to preserve the positional information.
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• Transformer Encoder: The transformer encoder layer is based on the work

by Vaswani et al [116] and its application to images by Dosovitskiy et al [33].

The input patches are first mapped to the embedding space and are augmented

with positional information (eq. 6.3), then passed to a Multi-headed Self-Attention

block (eq 6.4) and an MLP block (eq. 6.5). Layer normalization (LN) is applied

before the two blocks and residual connections are added after the two blocks.

We didn’t use the dropout layer throughout the network, as this causes instability

in the Gaussian approximation network. MLP contains two linear layers with a

GELU activation function.

Z0 = [X1
pE;X2

pE; ...;XN
p E] + Epos, (6.3)

where E ∈ R(P 2.C)×D, Epos ∈ R(N+1)×D

Z
′

l =MSA(LN(Zl−1)) + Zl−1, l = 1..L (6.4)

Zl =MLP (LN(Z
′

l )) + Z
′

l , l = 1..L (6.5)

The final encoded patches are reshaped and projected in to a reconstruction vector

via learned projection matrix.

• Reconstruction Vector: It’s a vector of dimension 512, which is obtained by a

learned projection matrix. The projection matrix projects all the patch embedding

from the normal instance, coming from encoder to a vector of dimension R512.

• Decoder: The decoder is used to decode the reconstruction vector back to the

original image shape. It maps R512 −→ RH×W×C . In our experiments with the

MVTec and BTAD dataset, we used 5 transposed convolutional layers, with batch
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normalization and ReLU in-between, except for the last layer, we use tanh as the

final non-linearity.

• Gaussian Mixture Density Network: This kind of network estimates the

conditional distribution p(y|x) [14] of a mixture density model. In particular, the

parameters of the unconditional mixture distribution p(y) are estimated by the

neural network, which takes the image embedding (conditional variable x) as the

input. For our purpose, we employ the Gaussian Mixture Model (GMM) with full

covariance matrix Σk as the density model. The density estimate p̂(y|x) follows

the weighted sum of K Gaussian functions.

p̂(y|x) =
K∑︂

k=1

wk(x; θ)N (y|µk(x; θ), σ
2
k(x; θ)) (6.6)

wherein, wk(x; θ) denotes the weight, µk(x; θ) the mean, σ2
k(x; θ) the variance

of the k-th Gaussian. All the GMM parameters are estimated using the neural

network with parameters θ and input x. The mixing weights of the Gaussians must

satisfy the constraints
∑︁K

k=1 wk(x; θ) = 1 and wk(x; θ) ≥ 0 ∀k. This is achieved

using the softmax function to the output of weight estimation:

wk(x) =
exp(awk (x))∑︁K
k=1 exp(a

w
i (x))

(6.7)

wherein awk (x) ∈ R is the logit scores emitted by the neural network. Additionally,

standard deviation σk(x) must be positive. To satisfy this, a SoftPlus (see equation

6.8) non-linearity is applied to the output of the neural network.

σk(x) = log(1 + exp(β × x));β = 1 (6.8)

Since mean µk(x; θ) doesn’t have any constraint, we used only linear layers without
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any non-linearity for the respective output neurons.

6.2.1 Objective and Losses

Training the network has two objectives: on one side we want the decoder output to

resemble the network input, as in reconstruction-based anomaly detection. This forces

the encoder to catch features that are relevant to describe the normal data. On the other

side, the goal is to train the Gaussian mixture density network to model the manifold

where the encoded features of normal images reside. For the reconstruction-based part

we adopted a combination of two losses:

• Mean Squared Error (MSE): it is a pixel-level loss, which assumes independence

between pixels. MSE loss is computed as the average of the squared pixel-wise

differences of the two images, and can be formally defined in terms of the Frobenius

norm as 1
WH ∥X − X̂∥

2
F , where X is the input and X̂ is the output of the decoder

network (respectively the original and the reconstructed image), and W,H are the

image width and height respectively.

• Structural Similarity Index - The Structural Similarity Index (SSIM) [13] is used

to measure the image similarity by considering visual properties that are lost in

the standard MSE approach:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6.9)

where, µx, µy, are the average values of input and reconstruction image, σ2
x, σ2

y

are the variance of input and reconstructed image, σxy is their co-variance and

c1, c2 are the two constants used for numerical stability.

For the Gaussian mixture density network training, we used the Log-Likelihood Loss

(LL). The parameter θ of the Gaussian estimation network is fitted through maximum
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likelihood estimation. We minimize the negative conditional log-likelihood of the normal

class training data.

θ∗ = − argmin
θ

K∑︂
k=1

log pθ(yn|xn) (6.10)

For the purpose of regularization, we also add Gaussian noise N (0, 0.2) to the trans-

former embedded features before feeding it to the GMM model. Adding noise during

training is seen as a form of data augmentation and regularization that biases towards

smooth functions [14, 4].

Hence, the final objective function to minimize is the weighted addition of the above

three losses.

L(X) = −LL+ λ1MSE(X, X̂) + λ2SSIM(X, X̂) (6.11)

wherein, λ1 = 5 and λ2 = 0.5, are the scalar weights found heuristically for all the

datasets used in this study.

6.3 Experimental Results

In this section, we present the experimental results obtained by our proposed network

VT-ADL. We first describe the used datasets, training and testing procedures, and com-

parative results. We also introduce the beanTech Anomaly Detection Dataset1 (BTAD),

a novel dataset of real-world, industry-oriented images composed of both normal and

defective products. The defective images have been pixel-wise manually labeled with a

ground-truth anomaly localization mask.

6.3.1 Datasets and Results

• MNIST: MNIST dataset consists of 60K gray images of handwritten digits. Al-

though this dataset was not originally developed for anomaly detection tasks, it
1http://avires.dimi.uniud.it/papers/btad/btad.zip
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Figure 6.4: Anomaly detection on MVTec dataset. The first row shows the actual
anomalous image of bottle, cable, capsule, metal nut, and brush. The second row shows
the actual ground truth and the third row shows the generated anomaly score and
anomaly localization by our method

has often been used as a baseline dataset, thus we used it to compare with other

state-of-the-art approaches. For training, one class has been considered as normal,

while all others as anomalies.

• MVTec Dataset: It’s a real-world anomaly detection dataset. It contains 5,354

high-resolution color images of different textures and objects categories. It has

normal and anomalous images which showcase 70 different types of anomalies of

different real-world products. It contains grayscale images as well as RGB images.

Grayscale images are quite common in industrial scenarios. With this dataset,

all the images were first scales to 550 × 550 pixels and then center cropped to

512× 512pixels before being passed to the model.

• BTAD Dataset: It contains RGB images of three industrial products (see Fig

6.5). Product 1 is 1600 × 1600 pixels, product 2 is 600 × 600 and product 3 is
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Figure 6.5: BTAD dataset. First column: normal images pf thee industrial products;
Second column: anomalous images; Third column: pixel-precise ground truth

800× 600 pixels in size. Product 1, 2, and 3 have 400, 1000, and 399 train images

respectively. For training all the images were first scaled to 512 before passing to

the model. For each anomalous image, a pixel-wise ground truth mask is given.

For training, we fed our model using the normal class data only. And for testing, a

combination of reconstruction losses and the maximum of the log-likelihood loss are

used to perform global anomaly detection, while the log-likelihood loss alone is used for

anomaly localization. In this second case, we stored the log-likelihood loss for all the

patch positions and then upsample it using 2D bilinear-upsampling, to input image size,

to obtain the heatmap. Then we employed the PRO (Per Region Overlap) [12, 11] as the

evaluation metric for the MVTec and BTAD datasets. For computing PRO, heatmaps

are first thresholded at a given anomaly score to make the binary decision for each pixel.

Then the percentage of overlap with the ground truth (GT) is computed. We followed
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the same approach as in [12], to find the PRO value for a large number of increasing

thresholds until an average per-pixel positive rate of 30% is reached. For the MNIST

dataset, we adopted AUC (area under ROC curve) as a performance metric in order to

show comparative results (see table 6.2).

The hyper-parameters used in the training are shown in table 6.1.

Adams lr rate 0.0001
Weight decay 0.0001
Batch Size 8
Epochs 400
No. of Gaussian’s 150
Patch Dimension P = 64

Table 6.1: Training hyperparameters

Class OC
SVM KDE DAE VAE

Pix
CNN
GAN

LSA Deep
SVDD

Pyr.
AE VT-ADL

0 0.988 0.885 0.991 0.994 0.531 0.993 0.98 0.995 0.99
1 0.999 0.996 0.999 0.999 0.995 0.999 0.997 0.999 1
2 0.902 0.71 0.89 0.96 0.478 0.959 0.917 0.941 0.976
3 0.950 0.693 0.935 0.947 0.517 0.966 0.919 0.966 0.976
4 0.955 0.844 0.921 0.965 0.739 0.956 0.949 0.960 0.984
5 0.968 0.776 0.937 0.963 0.542 0.964 0.885 0.972 0.971
6 0.978 0.861 0.981 0.995 0.592 0.994 0.983 0.993 0.995
7 0.965 0.884 0.964 0.974 0.789 0.980 0.946 0.993 0.99
8 0.853 0.669 0.841 0.905 0.340 0.953 0.939 0.895 0.974
9 0.995 0.825 0.96 0.978 0.662 0.981 0.965 0.989 0.99
Mean 0.95 0.81 0.94 0.97 0.62 0.97 0.948 0.97 0.984

Table 6.2: AUC results of anomaly classification using MNIST, Each row shows the
normal class of the trained model. Comparative results are taken from [1, 67]

Table 6.3 shows the results for the MVTec dataset. The value shows the PRO

curve up to an average false positive rate per pixel of 30% is reported. It measures

the average overlap of each ground truth region with the predicted anomaly region for

multiple thresholds. Our proposed methods performed at par with the most recent

state-of-the-art algorithms (results taken from [12]) and even outperformed them in 7

product categories. For our newly published BTAD dataset, we are also reporting the
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Category 1-NN OC
SVM

K
Means

AE
MSE VAE AE

SSIM
Ano
GAN

CNN
Feat.
Dic

Uni.
Stud.

VT-ADL
(Ours)

Carpet 0.512 0.355 0.253 0.456 0.501 0.647 0.204 0.469 0.695 0.773
Grid 0.228 0.125 0.107 0.582 0.224 0.849 0.226 0.183 0.819 0.871
Leather 0.446 0.306 0.308 0.819 0.635 0.561 0.378 0.641 0.819 0.728
Tile 0.822 0.722 0.779 0.897 0.87 0.175 0.177 0.797 0.912 0.796
Wood 0.502 0.336 0.411 0.727 0.628 0.605 0.386 0.621 0.725 0.781
Bottle 0.898 0.85 0.495 0.91 0.897 0.834 0.62 0.742 0.918 0.949
Cable 0.806 0.431 0.513 0.825 0.654 0.478 0.383 0.558 0.865 0.776
Capsule 0.631 0.554 0.387 0.862 0.526 0.86 0.306 0.306 0.916 0.672
Hazelnut 0.861 0.616 0.698 0.917 0.878 0.916 0.698 0.844 0.937 0.897
Metal Nut 0.705 0.319 0.351 0.83 0.576 0.603 0.32 0.358 0.895 0.726
Pill 0.725 0.544 0.514 0.893 0.769 0.83 0.776 0.46 0.935 0.705
Screw 0.604 0.644 0.55 0.754 0.559 0.887 0.466 0.277 0.928 0.928
Toothbrush 0.675 0.538 0.337 0.822 0.693 0.784 0.749 0.151 0.863 0.901
Transistor 0.68 0.496 0.399 0.728 0.626 0.725 0.549 0.628 0.701 0.796
Zipper 0.512 0.355 0.253 0.839 0.549 0.665 0.467 0.703 0.933 0.808
Means 0.64 0.479 0.423 0.79 0.639 0.694 0.443 0.515 0.857 0.807

Table 6.3: Comparative results on the MVTec dataset. Comparative results are taken
from [12].

Prdt
PRO
Score
ours

PR
AUC
ours

AE
MSE

AE
MSE+SSIM

0 0.92 0.99 0.49 0.53
1 0.89 0.94 0.92 0.96
2 0.86 0.77 0.95 0.89
Mean 0.89 0.90 0.78 0.79

Table 6.4: Results on BTAD dataset. We also compare our PR-AUC with the results
of convolutional autoencoders trained with MSE loss and MSE+SSIM loss.

first results in table 6.4 with a similar model configuration as of MVTec. For comparison,

we also report the PR-AUC of a basic convolutional autoencoder on BTAD with MSE

and MSE+SSIM loss.

6.3.2 Ablation Studies

Here we discuss our ablation studies and tweaked methods which justify our choice

of network and show the interesting configurations Ano-VT can be used in different

anomaly detection scenarios. Most of the ablation studies are done on select products
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from the MVTec dataset.

Gaussian mixture model tuning

Figure 6.6: Plot shows the PRO score for the different no of Gaussians used in the
Gaussian approximation.

Here we justify the choice of a number of Gaussians for our mixture model. For this,

we trained on the MVTec dataset with an increasing number of Gaussians and calculated

the PRO-score (Fig.6.6). we found that with an increasing number of Gaussians, PRO-

score increases and then becomes constant. We also tried to see the effect of noise

addition in the transformer encoded features for generalization. With noise added, the

PRO score with 150 Gaussians is 0.897 in contrast to 0.807 without noise. Hence, noise

addition actually helps in generalizing the learning procedure.

Inductive Bias Induces Average Learning

We also tried to check the effect of the dynamic routing algorithm on the results. We

found that if we don’t use the reconstruction vector, (see section 6.2), the network tries
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to average out the learning. A training reconstruction can be seen in the Figure6.7.

When we use the reconstruction vector(projected via projection matrix) the network

becomes equivariant and captures the different orientations of the same product in the

reconstruction. This is a problem of inductive bias [33] in vision transformer. However,

this problem can be solved using the projection matrix, which forces the network to

become equivariant. Additionally, projection matrix also helps in capturing better causal

features at the transformer encoder.

Figure 6.7: First row: Reconstructions of average learning without reconstruction vector;
Second Row: Reconstructions of Learning with reconstruction vector
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7
Industrial Application: How to

choose a model for Image

Anomaly Detection and

Localization

"If you have a lot of data and you

want to create value from that data,

one of the things you might consider

is building up an AI team."

– Andrew Ng

Localizing the image anomalies is predominantly perceived as the task of pixel-

level image segmentation. The fact that industrial datasets are highly imbalanced (a

high amount of normal image data is available), and industries deterrence to invest
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in data annotation has attracted far less research interest than image-level anomaly

detection. There are several attempts made to the anomaly detection task using the

unsupervised approach for image-level classification, but no relevant attempts have been

done for anomaly localization. The prime reason is the non-availability of pixel-precise

annotated data or limited absorption of advanced AI technologies at an industrial scale

[104]. In addition to this, the legacy system used by industries and the minimalist

approach to upgrade present IT infrastructure in many industries also deters them from

using the recent and state-of-the-art AI Visual Inspection Systems (VIS). Due to the

increasing complexity of machines, downtime of any kind can affect the overall success

of a company. That’s why companies are looking for new ways to manage this issue

cost-effectively [104, 39].

Lately, we find that some encouraging attempts have been done in this limiting field,

where a single network has been developed, which can do the image anomaly detection

and localization at the same time [1, 70, 93]. The most interesting thing about such

works is that they can be trained in an unsupervised fashion, which means, they don’t

need pixel-precise ground truth for the training, and they are really fast in their inference

time, while they can easily be integrated with any of the present IT infrastructures.

Hence, this comparative study seeks to provide a structured and comprehensive

overview of the research carried out on possible Deep Anomaly Detection (DAD) solu-

tions in real-life applications in industries. The selection of appropriate machine learning

techniques in the field of the manufacturing industry is challenging, as numerous aspects

have to be considered before adoption. This study considers some previous state-of-the-

art segmentation networks, which are scarcely used in the image anomaly detection

task, contrary to the new patch-based networks. These new patch-based techniques

possess an interesting situation as they don’t need any ground truth for the pixel-level

segmentation. Hence, a single network is capable of both image-level classification and

pixel-level classification.
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We studied some of the most recent approaches developed in recent times like SPADE

[27], and VT-ADL [70] and compared them with the segmentation networks like FCN32

[106], Unet [95], Unet++ [131], UNet2 [48], SegNet [8], used for the same VIS purpose

and we found some underlying conclusions from this comparative study. The comparison

will mainly include the Network complexity, Training complexity, Inference time, IT infra

requirements, Accuracy of the network, and Agile nature for future adaptation.

7.1 Deep Learning Models

We use some of the most successful segmentation networks, in contrast with the very

recent patch-based models. As posed in their respective published work, recent methods

are showing an edge over the previous state-of-the-art methods. Hence, it’s really in-

teresting from an industrial application point of view to critically study these methods.

For the purpose of this study we performed comparative evaluations on the following

anomaly detection techniques:

• FCN32 1 [106]: It is one of the most popular Fully Convolutional networks for

image segmentation. In this approach, an image is downsized passing through the

convolutional layers. The output of the convolutional layer is a feature of size

smaller than the input image. The output is then up-sample using transposed

convolution layers[62] to get the pixel-wise, image size output (label map). The

model was an initial attempt at the image segmentation task and produced good

results on various types of datasets. We use this model for comparison in order

to test the performance of such benchmarking models in contrast to the recent

attempts using patch-based methods for anomaly localization tasks.

• Unet/ Unet++ / Unet223 [95, 131, 48]: It’s an U-shaped convolutional network
1https://github.com/pochih/FCN-pytorch
2https://github.com/4uiiurz1/pytorch-nested-unet
3https://github.com/upashu1/Pytorch-UNet-2
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of a specific encoder-decoder scheme: The encoder squeezes the spatial dimension

while increasing the number of channels. On the other hand, the decoder network

just does the opposite of the encoder in each successive layer. The input to the

decoder is called a "Bottleneck". Then there are skip connections directly between

the encoder and decoder network, which passes the high-level feature maps, which

helps in getting rich features at each layer of the decoder. In the end, the decoder

restores the image dimension to make predictions for each pixel in the input image.

These kinds of models are highly applicable in real-life scenarios. In fact, most of

the industries which are using the deep learning solution for any kind of Visual

Inspection Systems are using one of these adapted networks. Unet++ and Unet2

are the new variants of the original Unet network, with optimized operations and

lower parameters. This allows for faster training and faster inferences. Tiny Unet

4 is the vanilla Unet with half the layer of the vanilla Unet, this has been especially

adapted for faster industrial applications.

• SegNet 5 [8]: SegNet is also an encoder-decoder scheme-based network followed

by a final pixel-wise classification layer The encoder is usually a pre-trained clas-

sification network like VGG [56] or ResNet [41] or MobileNet[44]. The major

difference with the above-mentioned networks includes a) similar to upsampling

approach it uses an approach called Unpooling, b) it doesn’t use pooling indices

rather it transfers the entire feature maps from the encoder to the decoder, then

with the concatenation to perform convolution. These two approaches make the

model larger and memory hungry.

• SPADE 6 [27]: Semantic Pyramid Anomaly Detection doesn’t require any train-

ing, rather it uses a pre-trained deep neural network to extract image features,
4https://ngc.nvidia.com/catalog/resources/nvidia:unet_industrial_for_tensorflow
5https://github.com/delta-onera/segnet_pytorch
6https://github.com/byungjae89/SPADE-pytorch
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then it arranges the features of the normal images using nearest K normal images.

At last, it finds the pixel-level correspondence between the target image and the

normal image. The novel target image which doesn’t match the retrieved normal

images is labeled as anomalous.

• VT-ADL 7 [70]: Vision Transformer for Image Anomaly Detection and Localiza-

tion is a patch-based approach that uses a vision transformer network to encoded

the patches of the normal images and tries to learn the distribution of these patches

using a Gaussian Mixture Network[14]. It labels a novel target image as anoma-

lous based on higher log-likelihood loss and the patch-based losses are used for the

anomaly localization.

7.2 Techniques used for the comparison

First, a direct comparison has been made by training each of the models separately and

testing it on MVTec [11] and BTAD [70] datasets. We used Per Region Overlap (PRO)

score [12, 70] for the comparison.

Additionally, we tried to compare various other meta-features of the models for

example training complexity, size of the network, inference time, and agile nature. Below

is the explanation of what all we covered in the meta feature analysis.

• Training Complexity: Even though deep learning showed remarkable success,

it struggles to find a preferential position in real-life industrial scenarios. Deep

networks have proven their prowess in processing and finding patterns using big

data, where traditional machine learning algorithms still don’t perform efficiently.

The price of this remarkable success of deep learning is highly dependent on the

resources and hence, it’s important to know what we are trading off while we are
7https://github.com/pankajmishra000/VT-ADL
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choosing a deep learning approach to solve a real-life industrial scenario. In this

research we tried some of the most important factors which define the training

complexity of a model, we compare practical factors like (see table 7.1) -

– Total parameters of the model(see Fig7.1, shows the total trainable pa-

rameters used in the model. Ideally, we desire lesser parameters for efficient

learning, else the model becomes complex.

– Multi-stage training requires, training a network in two or more than

two stages. usually, such training procedures are complex and unstable, for

example, GAN’s [38].

– Pre-trained networks are used in various methods to extract the features

from images. Usually, the parameters of these networks are not updated

during the backward pass of an overall training procedure.

– Multiple loss functions are used in various deep learning approaches, as

they force a network to learn a particular regularity while training. Inter-

estingly, a higher number of loss functions results in complex training proce-

dures.

– Ground truth/Annotated data are required for supervised learning pro-

cedures. This could be a limiting aspect of a deep learning approach, as

annotating data can be time-consuming and costly.

– Training Procedure plays an important role in deep learning solutions.

Supervised learning can be very accurate but requires lot of annotated and

balanced datasets. On the other hand semi-supervised or unsupervised learn-

ing saves us from the requirement of annotated data.

– Training with high imbalanced datasets are important in critically an-

alyzing the models when comparison needs to be for industrial scenarios.

In industries, highly imbalanced datasets are quite mundane and industries
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have limited interest in annotating them. Hence, a model capacity to get

trained on such datasets. while at the same time not compromising with the

performance is an ideal candidate for the industrial use cases.

– Minimum data needed for deep learning methods shows the learning and

generalizing capacity of a network. Lower data-hungry networks are always

preferred over the higher data-hungry networks.

– Training time for the first 100 epochs are measured in order to check

how fast a network can be trained.

– Presence of attention Module in a network helps in learning the impor-

tant features from the dataset. Attention networks have already shown their

superiority in the language and vision field [116, 33].

– Ability to work with high-definition images is a particularly desirable

property for a deep learning network opted for an industrial use case. This is

because high-definition images are common in industrial VIS systems. Also,

higher image pixels demand higher computing resources, which is an impor-

tant factor from a cost point of view in industries.

• Size of Network: Size of the network is a very important factor when we talk

in the context of real-life deployment. This is especially keeping the fact that

most of the industries try to deploy the AI solutions either on their present IT

infrastructure or they want it to be deployed at some edge devices. In both cases,

size plays an important matter. Hence, we tried to study the size of the deep

models (see section 7.1) in the forward pass, backward pass, full model size, and

ONNX 8 exported model size, see figure 7.2.

• Inference Time: Inference time is an important parameter to compare as it

decides if the network can be deployed for real-time deployment. Hence, we tried
8https://onnx.ai/
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Figure 7.1: Total trainable parameters of the deep learning model used for this study.

Figure 7.2: Network Sizes: The stacked bar plot shows the size (in MB) of the forward
pass, backward pass, full size model and the ONNX-exported model size of the deep
models used in this study.

to compare the inference time of the single precision model(32 bit)(see figure 7.3

and half precision model(16 bit) over GPU (Nvidia Tesla K40 11GB) and single

precision model over CPU (CPU - i5 3,1GHz) (see Figure 7.4 and table 7.2).
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Table 7.1: Network training complexity of the deep learning models

Categories VT-ADL SPADE FCN32 Unet(Tiny) Unet ++ Unet2 Segnet
Total parameters 19041555 68883240 18643713 3352257 9163329 19667969 29443585
Multi-stage
training No No No No No No No

Pre-trained
network No Yes No No No No No

Multiple Loss
function Yes Yes Yes Yes Yes Yes Yes

Ground truth
required No No Yes Yes Yes Yes Yes

Supervised/
semi-supervised semi-sup semi-sup sup sup sup sup sup

imbalanced
dataset training Yes Yes No No No No No

Min.number
of Image
Data needed

100 100 200-400 200-400 200-400 200-400 200-400

Training time
needed (sec.)

/100ephs
734.92 255.29 1488.52 1316.11 1961.15 1886.41 1709.16

Attention
module Yes No No No No No No

work on
Patches Yes Yes No No No No No

Table 7.2: Inference time(in sec.) of the deep models measured over GPU and CPU.

VT-ADL SPADE FCN32 Unet(Tiny) Unet ++ Unet2 Segnet
single precision 0.01 0.035 0.037 0.021 0.059 0.057 0.044
half precision 0.0083 0.033 0.028 0.016 0.055 0.04 0.042
full precision 0.03 1.75 2.81 1.45 6.29 6.13 5.3
Global AD/
Anomaly Localization both both local local local local local
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Figure 7.3: Inference time (in sec) of full precision models over GPU from all the deep
models.

Figure 7.4: Inference time(in sec) of full precision models over CPU from all the deep
models.

7.3 Experimental Results

In this section, we show the comparison results obtained by training the deep models

over the MVTec (see table 7.3) and BTAD datasets (see table 7.4). We computed the
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PRO score for all the models. A global level image classification score i.e. a Precision

recall curve is not employed in this comparison study.

7.3.1 Datasets and Results

In literature various methods were tested on datasets that were not suited for anomaly

detection task (eg. MNIST [60] and CIFAR [56]), and only recently few datasets have

been released specifically for anomaly detection, with a focus on industrial products.

We used the following dataset for this study:

• MVTec Dataset [11]: It’s an industrial anomaly detection dataset. It contains

5,354 high-resolution color images of different textures and objects categories, see

figure 4.3. It has normal and anomalous images which showcase 70 different types

of anomalies of different real-world products. It contains grayscale images as well

as RGB images. Grayscale images are quite common in industrial scenarios. With

this dataset, all the images were first scaled to 550 × 550 pixels and then center

cropped to 512× 512 pixels before being passed to the model.

• BTAD Dataset [70]: It contains 3 industrial products both in RGB colour spec-

trum. Product 1 is 1600 × 1600 pixels, product 2 is 600 × 600 and product 3 is

800 × 600 pixels in size, see fig 6.5. Product 1, 2, and 3 have 400, 1000, and 399

train images respectively. While training all the images were first scaled to 512

before passing to the model.

7.4 Discussion

In this section, we discuss the results of the comparative techniques used and the clas-

sification results.

102



Table 7.3: Inference performance of the models. the table shows the PRO scores of
the model over the MVTec dataset. The best PRO score in the category has been
highlighted in bold.

Product SPADE FCN32 Unet(tiny) UNet2 Unet++ SegNet VT-ADL
bottle 0.94 0.96 0.97 0.97 0.97 0.94 0.77
cable 0.84 0.87 0.91 0.96 0.94 0.83 0.87
capsule 0.98 0.57 0.77 0.56 0.72 0.59 0.73
grid 0.99 0.79 0.90 0.93 0.89 0.90 0.78
hazelnut 0.99 0.97 0.98 0.98 0.98 0.97 0.95
pill 0.95 0.95 0.99 0.97 0.99 0.93 0.67
metal_nut 0.95 0.99 0.99 0.99 0.99 0.99 0.90
screw 0.99 0.63 0.78 0.66 0.74 0.54 0.73
tile 0.87 0.98 0.98 0.99 0.98 0.99 0.71
toothbrush 0.99 0.88 0.97 0.97 0.98 0.90 0.93
transistor 0.76 0.90 0.96 0.97 0.96 0.93 0.90
wood 0.96 0.90 0.96 0.98 0.97 0.95 0.80
zipper 0.99 0.78 0.87 0.93 0.91 0.83 0.81
Means 0.94 0.86 0.92 0.91 0.93 0.88 0.81

Table 7.4: Inference performance on the BTAD dataset. Best PRO score in each category
has been highlighted in bold

Product SPADE FCN32 Unet(tiny) UNet2 Unet++ SegNet VT-ADL
Mech part body (0) 0.98 0.92 0.93 0.97 0.91 0.94 0.92
Mech part surface (1) 0.98 0.87 0.91 0.93 0.91 0.90 0.89
Motor case (2) 0.99 0.87 0.95 0.97 0.95 0.84 0.86
Mean 0.98 0.89 0.93 0.96 0.92 0.89 0.89
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First, we discuss the results of the comparative techniques used. We are comparing

the newly suggested methods like VT-ADL and SPADE against the other segmentation

networks. Starting with training complexity (see figure 7.1) - Total trainable param-

eters are important for any deep model and it also defines the complexity and size of

the network. We find that networks like Tiny Unet followed by Unet++ have the least

trainable parameters, while the Segnet has 1.5 times (approx) more trainable parame-

ters in contrast to VT-ADL. While VT-ADL and Unet2 are at par with the trainable

parameters. Although SPADE has the highest number of parameters, they are not train-

able, as SPADE doesn’t require any training, rather these are the trained parameters

of the backbone network it uses for the feature extraction. Hence, considering trainable

parameters Tiny Unet has edge over other deep models.

Other training complexities of the networks can be seen in Table7.1. The most

important of them is a type of training procedure and the ability to train the net-

work on high-imbalance datasets. All the segmentation networks are trained in the

supervised fashion, i.e. they need labeled data, in this case, pixel-precise ground truth

mask for the segmentation. On the contrary VT-ADL and SPADE, trained in semi-

supervised/unsupervised fashion, don’t need any masks for the training. Hence, this

gives the new approaches a competitive edge over the segmentation networks. Addi-

tionally, VT-ADL has an attention module, which helps in exploiting the benefits of

self-attention while training. Encouragingly, VT-ADL and SPADE, both can work on

image patches, while other segmentation networks don’t have these abilities. Working

on image patches is indeed an advantage as many industrial image acquisition systems

produce high/ultra-high-definition images, which are tough to processes with limited

computing resources.

Comparing the size of the network, we find that Tiny Unet is again the smallest

when we see only the exported ONNX model. While if we combine the forward pass

size, backward pass size, and full model size, VT-ADL emerges the smallest overall (see
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figure7.2). This factor is important as the size of the network forward and backward

pass determines the batch size while training a network. While ONNX model size is

helpful in determining the resource requirements during real-time deployment. For this

study, we were not able to export Segnet to ONNX, because of the technical limitations

of ONNX library.

Inference time plays crucial role when we talk about the real-time deployment of the

deep models, hence we tried to compare the inference performance and inference time

of the models. Inference performance can be seen in table 7.3 and table 7.4. We can see

that SPADE performed best in all the networks in most of the categories with a close

margin to Unet++. Inference time can be seen in Figure 7.3 over GPU and Figures 7.4

over CPU. Interestingly inference time of SPADE is 0.035 sec (on GPU) and 1.75 sec

(on CPU). The lowest inference time is of VT-ADL (0.01 sec over GPU and 0.03 sec

over CPU). VT-ADL has also performed at par with most of the segmentation networks

with the lowest inference time, both on GPU and CPU. Interestingly Tiny Unit has

also shown at par inference performance with SPADE and UNet++ and second-lowest

inference time over GPU in case of single precision and half precision, while it lagged

on CPU. The reason for lowest inference time for VT-ADL is that it doesn’t have any

convolutional operations, hence, it has very fast executions.

This chapter shows a comparative study between some of the widely used deep net-

work for the segmentation task and the recently developed approach like VT-ADL. We

have shown that how the recent network are more industry friendly and can be easily

used in the real life industrial scenarios. In the next chapter we explored the opportu-

nities given by “Continual Learning” and “Few Shot Learning” in the field of DAD. And

how the future of industrial scale anomaly detection is lying at the interjection of these

two approaches.
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8
Future Work

"Without the capability of retaining

and accumulating knowledge learned

in the past, making inferences about

it, and using the knowledge to help

future learning and problem solving,

achieving artificial general

intelligence (AGI) is unlikely.."

– Zhiyuan Chen and Bing Liu,

Lifelong Machine Learning

After the take-off of Deep Learning (DL) [59], especially after 2012 and the following

groundbreaking work by other researchers, has open the path to a broader range of

applications, whose complexity was even unthinkable to tackle a few decades ago. In

fact, recent novel learning algorithms, like their biological counterparts, would likely

access huge volumes of high-dimensional, multi-domain, real-time data from complex

and constantly evolving environments in order to scale in terms of intelligence [50] and

adapt to the evolving circumstances continually over time.
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If we see the application of deep learning in the anomaly detection task then the

above sentences are apt and are also a reason for motivation to see continuous learn-

ing (CL) as the solution to the highly evolving industrial needs. In all of the previous

chapters, we talked about the supervised or unsupervised method to tackle the anomaly

detection task. All these are trained once and are then used for inference. These meth-

ods performed well in industrial scenarios, they lack the ability to improve over time.

Industries these days are more interested in the methods which automatically adapted

themselves to the new products, hence, reducing the downtime to a minimum. Addi-

tionally, the problem of Catastrophic Forgetting [54], makes them unfit for sequential

learning. Hence, to provide the solution to the newly evolving industrial anomaly de-

tection task, continual learning methods are posing promising solutions.

8.1 Continual Learning for Anomaly Detection

With the recent progress in CL and its applications, there are three fuzzy categorizations

of the most common strategies [30]:

• Replay Methods: These methods tend to store the samples in raw format or

generate a similar-looking sample with generative models. The previously learned

samples are replayed while learning a new task to avoid forgetting. These methods

reuse a model input for rehearsal, or for constrained optimization to prevent the

previously learned tasks. The most common examples of these methods are - SER

[47], TEM [23], DGR [108], LGM [91], GEM [63] etc.

• Regularization Based Methods: These methods usually avoid storing raw

data, prioritizing privacy, and thus reducing memory requirements. Here an extra

regularization factor is introduced in the loss function which helps in retaining the

previously learned weights while learning on new data. Some of the major work

in this field are - EWC [54], IMM [61], DMC [128], MAS [3], EBLL, [92] etc.
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• Parameter Isolation Methods: These methods are based on an idea to have

a separate model for separate work. So, these models dedicate different model

parameters to each of the new tasks in order to prevent possible forgetting. While

these approaches can have a huge memory requirement and can also grow new

branches making the network architecture too huge to manage. Various attempts

have been made to make the network part static with fixed parts allocated to

dedicated work. Some of the major examples are - packet [65], PathNet [36], HAT

[105], PNN [98], RCL [126], DAN [96] etc.

In all the approaches, regularisation-based methods show the most promising solutions

for the deep anomaly detection (DAD) task up to industrial levels. The methods like

EWC and IMM are suggesting for new mathematical ways to tie the newly learned

weights over the new task with the previously learned task, without increasing the

network size. Hence, these approaches can be used to transform the methods discussed

in the previous research into CL methods for anomaly detection. Hence, the future of

anomaly detection work lies in the exploration of Continual Learning approaches.

8.2 Few Shot Learning for Anomaly Detection

Like CL, Few Shot Learning (FSL) is a newly explored branch of deep learning. The

need to train the data-hungry deep neural network with fewer data is in high demand,

especially in industrial use cases. Hence, exploring the paradigms of FSL for the anomaly

detection task is very encouraging to solve the anomaly detection problem at an indus-

trial scale. FSL can rapidly generalize to new tasks containing only a few samples with

supervised information. The recent developments like Proto-typical nets [110], Match-

ing Networks [119], PMN [121], SNAIL [66], DCCN [129], and TADAM [74] provide

various kinds of embedding learning with fewer datasets.

As discussed in the previous chapters major problem of deploying DL approaches for
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Figure 8.1: Image showing that ideal solution will lie at the interaction of CL and FSL

the anomaly detection task at the industrial application is the fewer or high imbalanced

availability of the datasets. Additionally, the cost of data annotation is very high.

Hence, if to minimize the cost of data annotation which in turn means using fewer data

for the training, FSL could plays an interesting role. There have been some recent

approaches to try FSL approaches for anomaly detection tasks [93], but with limited

success. Although most of the approaches developed are supervised learning, but that’s

not the limiting case in industrial scenarios. Because industries are generating huge

amount of unbalanced dataset. So, using the concepts of FCL over a scare annotated

dataset from both the classes could be a possible solution. Nonetheless, this field posses

huge potential for further future research in the field of unsupervised or semi-supervised

approaches as well.

In fact, the best solution will lie somewhere at the intersection of CL and FSL.

Hence, exploring the approaches of CL combined with FSL will give the most advanced
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solution to the most advanced evolving problems of the industrial needs.
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9
Conclusion

"Let your concern (or focus) be on

your action, let it not be on the

outcome of the action. Do not act

only out of expectation of a result,

but then do not slip into inactivity."

– 2.47, Srimad Bhagwat Gita, Sri

Krishna

Deep learning has successfully demonstrated to operate in rather vertical and self-

contained context, their application is more natural, ever evolving, multi-modal, and

multi-tasking has been relatively modest. The goal of deep anomaly detection (DAD)

approaches explored in this dissertation is to provide novel and viable solution to the

anomaly detection task in the industrial context.

Most deep anomaly methods focus on point anomalies (see chapter 1), and have

demonstrated exceptionally good results than traditional methods. However, deep mod-

els have recently forayed into the high-dimensional field of group/conditional anoma-

lies (see chapter 1), and are new challenging research topic in the anomaly detec-
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tion domain. With this work we explored novel methods which are supervised, semi-

supervised/unsupervised, keeping industrial needs at sight.

9.1 Supervised Global Anomaly Classification

Our supervised work with adapted capsule network (see chapter 3), solved the prob-

lem of high-imbalance data training in real-life cases. Our proposed method currently

outperforms or it is comparable to other deep learning anomaly detection techniques

as the ones discussed in Chapter 3, however a direct comparison would be unfair since

most of those methods use semi-supervised or unsupervised techniques. We proposed

an alternative approach based on fully supervised learning with imbalanced datasets.

This idea came from real-world scenarios, in which anomalous data are often available

but their amount is extremely scarce. The proposed approach, which is a variant of the

the capsnet architecture, showed good performances even with extremely imbalanced

datasets, outperforming both the standard capsnet architecture and other anomaly de-

tection techniques.

9.2 Semi-supervised Approaches for Global Image Clas-

sification

In addition to supervised approach, see chapter 3, we also developed novel semi-supervised

approaches for the global image anomaly classification. We proposed deep pyramidal

network with stacked autoencoders for anomaly detection, see chapter 4. Anomalies

are identified by means of a network that encodes normal images in a low-dimensional

latent space and then reconstructs them, ideally modeling an identity function. Since

the network is trained on normal data only, its fails at reconstructing anomalous images,

which can be detected by an image similarity loss. The main contributions of this work
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consist in the usage of a multi-scale pyramidal approach that extract latent features

at different resolutions, and the usage of a high-level perceptual loss to better compare

images at feature level, rather than at pixel level. Moreover, differing from many works

that have been evaluated on basic datasets only such as MNIST, we tested the proposed

network on MVTec, a real-world dataset of defective products. Achieved results are

promising and often outperform other state-of-the-art methods

While in Chapter 5, we proposed a novel network PIADE, a deep reconstruction-

based pyramidal approach, in which image features are extracted at different scale levels

to better catch the peculiarities that could help to discriminate between normal and

anomalous data. The network is trained on normal data only, and it builds a “normality

model” by mapping the input images in a low-dimension feature space, from which

they can be correctly reconstructed. The inability of the network to reconstruct other

images allows the identification of anomalies, which can be detected by their higher

reconstruction error. Compared to other state-of-the-art works, the proposed models

includes a pyramidal multi-scale approach to analyze image features at different scale

levels, a dynamic routing layer inspired by the architecture of capsule networks, and

a high-level image comparison loss. Moreover, the system has been tested not only on

standard datasets such as CIFAR10 and COIL-100 (which have not been initially created

for anomaly detection experiments), but also on the recently proposed MVTec dataset

of anomalies in industrial images. Experimental results showed that the proposed model

is at least at-par, and often outperforms other state-of-the-art works.

9.3 Unsupervised Approaches for Global Image Clas-

sification and Localization

We proposed a transformer-based framework VT-ADL, see chapter 6 which uses re-

construction and patch-based learning for image anomaly detection and localization.
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The anomalies can be detected at a global level using a reconstruction-based approach,

and can be localized with the application of a Gaussian mixture model applied to the

encoded image patches. The achieved results are at par with or outperform other state-

of-the-art techniques. We also published BTAD, a real world industrial dataset for the

anomaly detection task.

Hence, this dissertation concludes that new deep learning methods has huge poten-

tial to offer for the new age industries striving to adopt advance technologies for their

VIS systems. And newer DAD methods are smart, easy to implement, have better per-

formance, agile and less resource dependent. The ideal solution can be obtained with a

balanced mix of great data preparation and carefully crafted deep models.
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