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Abstract

This dissertation is focused on the utility of variational principles and
the vast possibilities they offer as powerful tools for a suggestive use to
solve optimization problems in structural mechanics. To this purpose, an
introduction to the analytical approach to continuous dynamic optimization
problems and the development of a dedicated computational method are
addressed in the first part of the dissertation. For the sake of establishing a
level of practical effectiveness and clarifying their vitality, a few concrete
applications ranging from shape optimization problems for thin-walled
axisymmetric pressure vessels and straight and curved beams to material
optimization problems for functionally graded elastic bodies are addressed.
The corresponding decision variables are the meridian shape, the cross
sectional area distribution and the mechanical properties distributions along
specific directions throughout the body, respectively. Potential performance
criteria destined for optimization and possible structural constraints consist
of reasonable combinations of lightweightness, storage capacity, compliance,
resistance to buckling and load-bearing capacity. These problems are
formulated in the second part of the dissertation, solved and thoroughly
discussed and, when possible, compared to literature. In some cases, optimal
solutions are derived analytically and are accompanied by prompt design
charts, otherwise, in case of a cumbersome analytical tractability, they are
obtained numerically by means of the computational method developed in
the first part.

i



List of Figures

2.1 An extremal n-dimensional state and a comparison neighbor. 12

3.1 Structure of composite LGR differentiation matrix with K
mesh intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Meridian profile of an axisymmetric shell. . . . . . . . . . . . 45

4.2 Normalized optimal meridian profile (a) and thickness
distribution (b) for different values for α and for r1 = L/2
and r2 = L. Solid and dashed lines refer to cases 1 and 2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Optimal normalized meridian shapes (a) and optimal
normalized thicknesses (b) for some values of α. Solid and
dashed lines represent vessels of uniform meridian (oblate
ellipsoids) and hoop (prolate ellipsoids) stress, respectively. . 55

4.4 Iso-α lines for v = 1 (a) and v = 2 (b). Yellow zones indicate
admissible regions where case 1 is achieved. . . . . . . . . . . 56

4.5 Level lines of ∆µ (a) and µ (b) for m = 0.05 and τ = 100. . . 64

4.6 Level lines of ∆µ (a) and µ (b) for m = 0.01 and τ = 100. . . 64

4.7 Level lines of ∆η (a) and η (b) for m = 0.02 and τ = 100. . . 65

4.8 Meridian section of the three vessels considered in Example
4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Graphical representation of the considered meridian shapes
for Problem 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10 Contour levels of g for the conical shell. . . . . . . . . . . . . 69

4.11 Optimal thickness distribution for the prolate (solid line) and
oblate (dashed line) vessels considered in Example 4.5. . . . . 71

4.12 Contour levels of g for the elliptic shell. . . . . . . . . . . . . 72

ii



4.13 Meridian shapes (a) and optimal thickness distributions (b)
of the second-order Bezier cure (solid) and elliptic (dashed)
end closures considered in Example 4.6. . . . . . . . . . . . . 75

4.14 Progressive and cumulative distribution (a) and SEM view of
the 316 L stainless steel powder (b). . . . . . . . . . . . . . . 78

4.15 View of the build job created with Magics RP (a) and view
of the component after production (b). . . . . . . . . . . . . . 78

4.16 Metallographic analysis of a sacrificial AISI 316 L sample (a)
and final prototype of the optimized semi vessel (b). . . . . . 79

4.17 Scanner measurement system (a) and its output consisting in
the cloud of points describing the vessel geometry (b). . . . . 80

4.18 System of reference adopted to represent the scanner
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 Measured points for internal and external theoretical profiles
(a) and associated normalized errors er,m (b) corresponding
to θ = 0, π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.20 Measured points for internal and external theoretical profiles
(a) and associated normalized errors er,m (b) corresponding
to θ = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.21 Thickness normalized error er,th for the three considered
sections (θ = 0, π/2, π). . . . . . . . . . . . . . . . . . . . . . 83

4.22 FE results for hoop (a), meridian (b) and normal (c) stresses
in the vessel prototype. . . . . . . . . . . . . . . . . . . . . . 84

4.23 Normalized stress deviation between FE and theoretical results. 85

5.1 An illustrative cost-displacement diagram for three possible
solutions for a cantilever beam loaded with a force at the free
end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Generic nonuniform beam with partial linear distributed load.
Definition of parameters a, wa and wl. . . . . . . . . . . . . . 90

5.3 Considered cross sectional areas. Top: Solid sections; bottom:
Hollow and rectangular sections. . . . . . . . . . . . . . . . . 91

5.4 Boundary conditions: Cantilever C (left), simply supported
SS (middle) and left-end guided and right-end simply
supported GS (right). . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Optimal area distributions for C beams with n = 1 (solid
lines) and n = 2 (dashed lines), considering ξ = 0, 1, 2. . . . . 96

iii



5.6 Normalized stresses resulting form PΦ, Pv and Pσ
optimization problems in C with a square cross section and
with uniformly (solid lines) and triangularly (dashed lines)
distributed loads. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Optimal SS (a) and GS (b) area distributions for triangular
and uniform loads with α = 0 (solid lines), α = 0.5 (dashed
lines) and α = 0.75 (dotted lines). . . . . . . . . . . . . . . . 99

5.8 Optimal SS (a) and GS (b) area distributions for ξ=2, 5, 10
and when α= 0 (solid lines), α= 0.5 (dashed lines) and α=
0.75 (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Coordinate system, load configuration and definition of the
employed variables for plane (a) and generalized plane (b)
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.10 A simply supported beam under buckling load. . . . . . . . . 107
5.11 Numerical optimal states (a) and cross sectional area

distributions (b) for the first version of Lagrange’s beam
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Numerical optimal states for the second version of Lagrange’s
beam problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.13 Numerical optimal cross sectional area distribution for the
second version of Lagrange’s beam problem. . . . . . . . . . . 113

5.14 Numerical optimal cross sectional area distribution for two
instances of β̃ and µ̃ compared to Clausen’s solution. . . . . . 115

5.15 Initial cross section and its modifications by laterally
removing material according to the cumulative removal depth
function s(r). . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.16 Normalized delimiting radii r1/b (bottom) and r2/b (top) b
in terms of S/b for different values of σi/σi|s=0 in a square
section curved beam. Solid lines refer to acceptable solutions. 121

5.17 Percentage mass reduction %mR in terms of S/b for different
values of σi/σi|s=0 in a square section curved beam. Solid
lines refer to acceptable solutions. . . . . . . . . . . . . . . . . 122

5.18 Normalized delimiting radii r1/b (bottom) and r2/b (top)
in terms of σi/σi|s=0 for different values of S/b in a square
section curved beam. Solid lines refer to acceptable solutions. 123

5.19 Normalized exact stress versus the normalized linearized
stress and the effect of nonlinear terms for S/b = 0.5 in a
square section curved beam. . . . . . . . . . . . . . . . . . . . 124

5.20 Initial geometry of the crane hook and definition of the angle
θ (a). Normal force and bending moment in function of θ (b). 125

iv



5.21 FE model and von Mises stress distribution in the crane hook
for the UIS (a) and IIS (b) conditions. . . . . . . . . . . . . . 127

6.1 Optimal control function V ∗c and definition of v̄, v−, v+, r1

and r2. Case v̄ /∈ [v−, v+] (left) where no solutions are feasible
and v̄ ∈ [v−, v+] (right) where two solutions may exist (black
and grey solid lines). . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Linear, sinusoidal and sigmoidal volume fractions (left)
and the associated Young’s moduli (right) by Voigt (solid
line), Reuss (dotted line) and Mori-Tanaka (dashed line)
micromechanical models. . . . . . . . . . . . . . . . . . . . . . 143

6.3 Extremal solutions for ceramic volume fractions and the
locus of switching points as Ro/Ri increases (a,c) and the
associated effective Young’s moduli (b,d) by Voigt (solid
lines), Reuss (dotted lines) and Mori-Tanaka (dashed lines)
micromechanical models with v−/v+ = 10. . . . . . . . . . . . 145

6.4 The effect of the variation of v−/v+ on the optimal volume
fraction profile for two instances of Ro/Ri. . . . . . . . . . . . 149

6.5 Numerical optimal solutions for ceramic volume fractions for
Voigt (a,c) and Reuss (b,d) models for a plane stress (a,b)
and plane strain (c,d) load conditions and for different values
of Ro/Ri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Effect of the variation of Poisson’s ratio on the numerical
optimal solutions for ceramic volume fractions for Voigt and
Reuss models, for a plane stress (a) and plane strain (b) load
conditions and for Ro/Ri = 2.00. . . . . . . . . . . . . . . . . 155

A.1 Schematizing admissible curves for fixed and free end points
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

v



List of Tables

4.1 Closed form optimal solutions for Problem 4.1. . . . . . . . . 52

4.2 Chemical composition of the 316 L stainless steel used for the
prototype production. . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Values of γ and n for the cross sections in Figure 5.3. . . . . . 92

5.2 Compliance reduction for C beams with ξ=0, 1 and n=2. . . 101

5.3 Compliance reduction for the hollow sections in the C
configuration for α = 0 and for different values of ω/l and
ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Compliance reduction Φ∗/Φcyl for the hollow sections in the
SS and GS configurations for ω/l = 0.1 and for different
values of ξ and α. . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Optimal values of the goal functional, the minimal and
maximal values of the normalized cross sectional area
distributions for different instances of β̃ and µ̃. . . . . . . . . 115

5.6 FE maximum intrados stress σi, deviation from analytical
solution, mass reduction and normalized pocket delimiting
radii at θ = π/2 for UIS and IIS conditions. . . . . . . . . . . 126

6.1 Numerical values of σTeq(Ri)/pi for linear, sinusoidal and
sigmoidal volume fraction profiles and for Voigt (V), Reuss
(R) and Mori-Tanaka (MT) micromechanical models. . . . . . 144

6.2 Numerical values of σTeq(Ri)/pi for both extremal scenarios
with v−/v+ = 10 and for Voigt (V), Reuss (R) and
Mori-Tanaka (MT) micromechanical models. . . . . . . . . . 147

6.3 The effect of variation of v−/v+ on the normalized inner
Tresca stress σTeq(Ri)/pi for two instances of Ro/Ri. . . . . . . 148

vi



6.4 Normalized maximum equivalent stress associated with the
optimal numerical solutions for both plane stress and plane
strain load conditions (uniform ν). . . . . . . . . . . . . . . . 154

6.5 Normalized maximum equivalent stress associated with the
optimal numerical solutions with variable ν. . . . . . . . . . . 156

vii



List of publications

1. Abdalla HMA, Casagrande D, De Bona F, Thin-walled pressure vessels of minimum
mass or maximum volume, Struct Multidisc Optim 61(1), pp. 111-121, 2020.

2. Abdalla HMA, Casagrande D, Analytical thickness distribution for minimum
compliance axisymmetric vessels, Thin-Walled Struct 149, 106641, 2020.

3. Abdalla HMA, Casagrande D, De Bona F, A dynamic optimization setting for
functionally graded thick-walled cylinders, Materials, 13, 3988, 2020.

4. Abdalla HMA, Casagrande D, Strozzi A, A unified relaxed approach easing the
practical application of a paradox in curved beams, Proc IMechC: J Mechanical
Engineering Science 234(22), pp. 4535-4542, 2020.

5. Abdalla HMA, Casagrande D, On the longest reach problem in large deflection
elastic rods, Int J Non Linear Mech 119, 103310, 2020.

6. Abdalla HMA, Casagrande D, Moro L, Thermo-mechanical analysis and
optimization of functionally graded rotating disks, J Strain Anal Eng Des, 55(5-6),
pp. 159–171, 2020.

7. D’Agostino S, Abdalla HMA, Strozzi A, Practical repercussions of a paradox in
curved beams, AIP Conf Proc 2309, 020035, 2020.

8. Abdalla HMA, Srnec JN, Casagrande D, Lower bound estimate for buckling in
axially graded cantilever rods, Eng Res Express 2, 035033, 2020.

9. Abdalla HMA, Casagrande D, Optimal area variation for maximum stiffness
isostatic beams under parametric linear distributed loads, Mech Res Commun 111,
103659, 2021.

10. Abdalla HMA, Casagrande D, De Bona F, De Monte T, Sortino M, Totis G, An
optimized pressure vessel obtained by metal additive manufacturing: Preliminary
results, Int J Pres Ves Pip 192, 104434, 2021.

11. Abdalla HMA, Casagrande D, An intrinsic material tailoring approach for
functionally graded axisymmetric hollow bodies under plane elasticity, J Elast,
144, pp. 15-32, 2021.

12. Marcu GG, Abdalla HMA, Casagrande D, Less is better: Coated spherical vessels

over-perform their entirely graded counterparts, Compos Struct, 276, 114529, 2021.

viii

https://link.springer.com/article/10.1007/s00158-019-02348-x
https://link.springer.com/article/10.1007/s00158-019-02348-x
https://www.sciencedirect.com/science/article/pii/S0263823119310936?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0263823119310936?via%3Dihub
https://www.mdpi.com/1996-1944/13/18/3988
https://www.mdpi.com/1996-1944/13/18/3988
https://journals.sagepub.com/doi/full/10.1177/0954406220924693
https://journals.sagepub.com/doi/full/10.1177/0954406220924693
https://journals.sagepub.com/doi/full/10.1177/0954406220924693
https://www.sciencedirect.com/science/article/pii/S0020746219305268
https://www.sciencedirect.com/science/article/pii/S0020746219305268
https://journals.sagepub.com/doi/10.1177/0309324720904793
https://journals.sagepub.com/doi/10.1177/0309324720904793
https://journals.sagepub.com/doi/10.1177/0309324720904793
https://aip.scitation.org/doi/abs/10.1063/5.0034000
https://aip.scitation.org/doi/abs/10.1063/5.0034000
https://iopscience.iop.org/article/10.1088/2631-8695/abb4f1
https://iopscience.iop.org/article/10.1088/2631-8695/abb4f1
https://www.sciencedirect.com/science/article/pii/S0093641321000045
https://www.sciencedirect.com/science/article/pii/S0093641321000045
https://www.sciencedirect.com/science/article/pii/S0093641321000045
https://www.sciencedirect.com/science/article/pii/S0308016121001307
https://www.sciencedirect.com/science/article/pii/S0308016121001307
https://www.sciencedirect.com/science/article/pii/S0308016121001307
https://link.springer.com/article/10.1007/s10659-021-09822-y
https://link.springer.com/article/10.1007/s10659-021-09822-y
https://link.springer.com/article/10.1007/s10659-021-09822-y
https://www.sciencedirect.com/science/article/pii/S0263822321009910
https://www.sciencedirect.com/science/article/pii/S0263822321009910


Acronyms

AM Additive Manufacturing

BVP Boundary Value Problem

FE Finite Element

FGM Functionally Graded
Material

IIS Imposed Intrados Stress

IVP Initial Value Problem

LGR Legendre-Gauss-Radau

NLP Nonlinear programming

SEM Scanning Electron
Microscope

SLM Selective Laser Melting

STL Standard Triangulation
Language

TO Topology Optimization

UIS Unaltered Intrados Stress

ix



Contents

Abstract i

List of figures ii

List of tables vii

List of publications viii

Acronyms ix

1 Introduction 1

1.1 Shape optimization of axisymmetric vessels . . . . . . . . . . 2

1.2 Shape optimization of beams . . . . . . . . . . . . . . . . . . 3

1.3 Material optimization of functionally graded pressurized
cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objective and structure of the dissertation . . . . . . . . . . . 5

I Theoretical background and computational framework 8

2 Continuous dynamic optimization and Pontryagin’s
Principle 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Necessary conditions for extremals . . . . . . . . . . . . . . . 12

2.3 Problems with inequality path constraints . . . . . . . . . . . 17

2.4 Pontryagin’s Principle . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Development of computational tools 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

x



3.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . 23

3.2.1 Legendre polynomials . . . . . . . . . . . . . . . . . . 23

3.2.2 Lagrange interpolating polynomials . . . . . . . . . . . 24

3.2.3 LGR points and quadrature weights . . . . . . . . . . 25

3.3 Continuous-to-discrete conversion . . . . . . . . . . . . . . . . 25

3.3.1 Global LGR pseudospectral method . . . . . . . . . . 25

3.3.2 Multistage LGR pseudospectral method . . . . . . . . 29

3.4 Computation of the first-order derivatives . . . . . . . . . . . 35

3.4.1 Gradient of the objective function . . . . . . . . . . . 36

3.4.2 Constraints Jacobian . . . . . . . . . . . . . . . . . . . 38

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Application to problems in structural mechanics 41

4 Membrane axisymmetric pressure vessels 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Mechanics of thin-walled axisymmetric shells . . . . . . . . . 44

4.2.1 Governing equations . . . . . . . . . . . . . . . . . . . 45

4.2.2 Selected functionals and integrity constraints . . . . . 47

4.3 Minimum mass vessels . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Optimal solutions . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Practical indications . . . . . . . . . . . . . . . . . . . 51

4.3.3 Extension to ductile materials . . . . . . . . . . . . . . 53

4.4 Maximum volume vessels . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Practical indications . . . . . . . . . . . . . . . . . . . 62

4.4.2 Comments on the spaces of optimal solutions . . . . . 63

4.5 Minimum compliance vessels . . . . . . . . . . . . . . . . . . 65

4.5.1 Optimal thickness distributions . . . . . . . . . . . . . 66

4.5.2 Three special cases . . . . . . . . . . . . . . . . . . . . 68

4.6 Towards printed prototypes: Preliminary results . . . . . . . 74

4.6.1 3D printing of the technological demonstrator . . . . . 76

4.6.2 Scanner measurement and reverse engineering . . . . . 79

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Straight and curved elastic beams 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Minimum compliance straight beams . . . . . . . . . . . . . . 90

5.2.1 Optimal area distributions . . . . . . . . . . . . . . . . 94

5.2.2 Discussion and numerical example . . . . . . . . . . . 101

xi



5.3 Shape optimization of beams against buckling . . . . . . . . . 104
5.3.1 Governing static equations . . . . . . . . . . . . . . . 104
5.3.2 Lagrange’s beam . . . . . . . . . . . . . . . . . . . . . 106

5.4 Paradoxical weight minimization in curved beams . . . . . . . 114
5.4.1 Recall on the paradox . . . . . . . . . . . . . . . . . . 116
5.4.2 Problem setup . . . . . . . . . . . . . . . . . . . . . . 118
5.4.3 Solution for purely flexural loads . . . . . . . . . . . . 120
5.4.4 Solution for flexural and normal loads . . . . . . . . . 123

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Functionally graded pressurized cylinders 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Equilibrium, kinematic and constitutive laws . . . . . 132
6.2.2 Micromechanical models . . . . . . . . . . . . . . . . . 133

6.3 Formulations of the optimization problem . . . . . . . . . . . 135
6.3.1 A Beltrami-Michell based formulation . . . . . . . . . 136
6.3.2 A Beltrami-Michell-Navier based formulation . . . . . 149

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusions 158

Appendices 161

A Calculus of variations 162
A.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . 163

A.1.1 Linear normed spaces . . . . . . . . . . . . . . . . . . 164
A.1.2 Variation of a functional . . . . . . . . . . . . . . . . . 166
A.1.3 Necessary condition for extremal solutions . . . . . . . 167

A.2 The simplest variational problem . . . . . . . . . . . . . . . . 169
A.2.1 Particular cases . . . . . . . . . . . . . . . . . . . . . . 172
A.2.2 Free end points problems . . . . . . . . . . . . . . . . 174

A.3 Further generalizations . . . . . . . . . . . . . . . . . . . . . . 178
A.3.1 Functionals depending on higher-order derivatives . . 178
A.3.2 Variational problems with subsidiary conditions . . . . 179

Bibliography 179

xii



Chapter 1

Introduction

When designing any engineering system, engineers have to take prompt
decisions at several stages, whose primary goal is to provide safety
and endurance under given circumstances. In the practice, this design
process has been always including a mysterious element, since the designer
chooses dimensions and materials by means of intuition and experience.
Whereas this technique has proved effective results even in ancient times
before accurate mathematical or mechanical theories were developed,
today conceptual design processes should also include further aspects to
continuously withstand global competition. Optimization methods, coupled
with modern tools of computer-aided design, have been offering potential
techniques to respond to this creative process of conceptual design.

Optimization problems can be classified in several ways. As far as the
nature of the involved design variables is concerned, two broad categories
of problems may arise. In the first category, values of design parameters
that make some prescribed function of these parameters minimum and
subject to certain constraints are sought. Such problems are often called
static optimization problems; their optimal solution is derived by the
application of the well-known Karush-Kuhn-Tucker necessary conditions.
In the second category, the objective is to find the expression of design
parameters that in turn are all (continuous) functions of a variable, so that
a prescribed functional attains its minimum value and certain constraints are
satisfied. These problems are referred to as dynamic optimization problems.
Here, necessary conditions for optimality are derived within a variational
framework, namely by making use of well established tool from calculus of
variations.

While the overwhelming studies concerning optimization problems in
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Introduction

structural engineering are formulated within the first category, the second
category gains ground rather in other disciplines (e.g., aerospace, control and
chemical engineering). On the one hand, this is partly due to the relatively
rich and well-established literature on methods and solution techniques for
problems pertaining to the first category. In fact, although attempts to
factually establish the extent of practical use of mathematical programming
and other discrete variable optimization methods in structural engineering
date back to several decades ago, as pointed out in [1], this research activity
is still carried out and remarkably characterized by an increasing interest
to employ meta-heuristic methods, e.g., [2, 3, 4]. On the other hand,
reasons range from an existing gap between mathematical approaches to
variational principles and their practical use when formulating problems
in structural mechanics to the computational burden associated with the
computation of optimal solutions. Moreover, unlike dynamic optimization
problems, static problems stated in the realm of structural mechanics are
fairly straightforward to implement as the shape of the structure remains
unchanged [5]. As a consequence, it is easy to implement a design sensitivity
analysis and therefore no refinement or modification is required for the finite
element geometry model.

The above mentioned reasons are further emphasized in the next three
sections by briefly addressing the common encountered challenges when
optimizing the shape or the material distribution of elastic bodies by
dynamic optimization problems, referring the reader, for more details
concerning each problem, in the dedicated chapters.

1.1 Shape optimization of axisymmetric vessels

It can be seen that for axisymmetric problems, the notion of “shape” can
have different meanings. In two-dimensional plane problems, by far the
most commonly found in literature on shape optimization, the shape usually
refers to the boundary shape. In particular, for axisymmetric thin-walled
structures, shape can mean the midwall meridian shape as well as the inside
and outside boundary surface shapes, namely the thickness distribution.
For thin-walled pressurized vessels, it is arguable whether the shape of
the midwall or the thickness distribution plays the most important role.
On the one hand, studies concerning only the first decision variable and
addressed within well-stated static optimization problems are more common
in literature [6]. However, they are generally limited to address simple
geometries such as those constituted by a cylinder of constant thickness with

2



Introduction

end caps, cones, ellipsoids or toroids. Optimal characteristic dimensions
of the resulting vessel depend on the problem under consideration. For
instance, some works offer simple algebraic relations derived from the
application of membrane theory of shells, e.g., [7, 8], while others heavily
rely on successive finite element analyses coupled with internal optimization
routes, e.g., [9]. On the other hand, studies dealing with the optimization of
the thickness distribution of prefixed meridian shapes are rarely encountered
in the literature, e.g., [10, 11, 12, 13], mostly due to the serious technological
issues associated with the realization of the distribution of the thickness with
standard manufacturing processes.

Nowadays, however, this technological challenge can be surmounted
by taking into account the availability of last generation metal additive
techniques, suggesting one to reconsider formulations where both the
midwall meridian shape and the thickness distribution are decision variables.
Attempts by using the calculus of variations are proposed in [14, 15],
where the optimization problem is aimed at minimizing the mass for
given shell strength and cavity volume. Optimal solutions are analytically
obtained and under the hypothesis that the shell is made of a brittle or
quasi-brittle material. The elegance of this treatise motivates the problem
reconsideration, extending the formulation to include ductile materials
and dealing with other objectives and constraints. Furthermore, among
optimal solutions, it is also desired to choose a particular case for which
a technological demonstrator can be manufactured and suitably verified
by performing a reverse engineering process through three-dimensional
scanning and finite element-based validation.

1.2 Shape optimization of beams

Shape optimization for elastic beams is still a very common topic of research
as these structural elements are widely used as efficient load-carrying
members. More specifically, elastic beams with straight and curved
axes have been gaining considerable attention in structural mechanics,
whose shape optimization mostly relies on dedicated computational models
developed by means of topology optimization concepts and formulated
within the three-dimensional elasticity theory. In [16], it is emphasized how
topology optimization has been receiving a boost as it leads to a significant
improvement in the quality of structures. A review on this approach and its
application for continuum structures can be found in [17]. However, some
fundamental issues of this field have not yet been sufficiently researched and
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therefore the correctness and accuracy of methods and applications in a large
number of papers is somewhat questionable [18]. Perhaps, the first successful
application of the topology optimization in the design of beam sections has
been reported in [19], where the finite element approach has been adopted.
Other attempts relying on boundary element method or B-splines methods
can be found in [20, 21]. Nevertheless, the derived optimal solutions are
geometrically complex as, in most of the cases, they lead to free forms.
Despite additive manufacture can accommodate significantly these complex
geometries, additional rules are still needed to ensure manufacturability
without requiring additional support material [22].

These considerations suggest one to make use of theories simpler than
the three-dimensional theory of elasticity, yet capable to correctly mimic
the mechanical behavior of these elastic structures. To this purpose,
one can exploit the one-dimensional nature of beams by referring to the
well-known Euler-Bernoulli and Winkler theories for straight and curved
beams, respectively [23], and suitably formulate a few dynamic optimization
problems whose decision variable is the cross sectional distribution along
the beam axis and so that practical structural criteria such as the overall
compliance, the weight and the resistance to buckling load are optimized.
Cases where solutions can be expressed analytically can be taken as
benchmark solutions for topology optimization problem solvers.

1.3 Material optimization of functionally graded
pressurized cylinders

Functionally graded materials are a kind of composite material whose
physical and mechanical properties vary spatially along specific directions
over the entire domain. They are present in many engineering applications
such as, for example, space planes, nuclear fusion reactors, energy conversion
systems, and thermo generators [24]. Various applications of these materials
have attracted considerable attention in recent years and their increasing
use needs comprehensive mechanical analyses [25]. The optimum response
of material properties to an actual environment is the main requirement in
the design of these materials; nevertheless, very few works deal with the
problem of optimal material distribution because, often, the optimization
process heavily relies on subsequent finite element simulations.

Limiting ourselves to functionally graded axisymmetric bodies whose
mechanical properties are given by certain models described by some
parameters, it can be shown that stresses can be expressed explicitly in
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terms of these parameters, whose tuning values are sought so that a prefixed
mechanical response is minimized. Admittedly, however, the resulting
optimization problems are analyzed merely from the theoretical point of
view, without taking into account the practical aspects associated with the
construction of the optimal property variations. A more realistic (and, in
some sense, intrinsic) optimization problem should a priori consist in the
search for optimal property variations in a set of functions and not merely
in the search for optimal parameters associated with prefixed property
behaviors.

To the extent of the author’s knowledge, previous works dealing with
this problem are rare, where a property variation is referred to as optimal
if it maximizes or minimizes a (pre-defined) mechanical performance. For
instance, a designer may be interested in the search for properties variation
for a spherical vessel of minimum compliance, a cylinder of minimum hoop
stress at a specific radius or a disk of uniform strength or minimum mass,
possibly complying with other constraints which can be economic or related
to the manufacturing process. These problems can also be formulated in
the context of dynamic optimization theory, where governing equations are
the equilibrium, the compatibility and the constitutive equations for linear,
elastic, isotropic and heterogeneous materials. In particular, necessary
conditions for optimal solutions can be derived by means of variational
principles and solved either analytically or numerically, depending on the
complexity of the involved equations.

1.4 Objective and structure of the dissertation

The present dissertation aims to bridge existing gaps between the
mathematical tools offered by variational principles and their practical use
for problems in structural engineering, where applications concerning the
shape of membrane shells of revolution, one-dimensional structural elements
and the best material distribution in internally pressurized heterogeneous
cylinders are shown and discussed. In particular, functions describing the
shape or the material distribution are sought so that prefixed functionals
linked to practical design criteria attain their minimum values and other
structural integrity constraints are satisfied. Whenever necessary conditions
for optimality are hardly tackled analytically, a numerical approach based
on orthogonal collocation method is employed.

The rest of dissertation is organized as follows. The overall content is
divided into two main parts. In the first part (Part I), a concise introduction
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to the theoretical background and the development of the numerical tools
are addressed, whereas applications to structural mechanics are reported in
the second part (Part II).

In particular, based on the basic definitions, lemmas and theorems
in calculus of variations (presented in Appendix A), Chapter 2 extends
the formulation of calculus of variation problems to those complying with
algebraic-differential and inequality path constraints. Introducing states,
costates and input functions, necessary conditions for optimality yield a
boundary value problem which, boundary conditions apart, consists of a
Hamiltonian dynamical system whose primary variables are optimal states
and costates, a set of algebraic conditions and a relation expressing optimal
input functions (Pontryagin’s Principle). It is emphasized that the resulting
boundary value problem is hardly tractably from the analytical point of view
unless in a very few cases.

The development of a dedicated numerical tool is thus illustrated
in Chapter 3, where states are approximated by Lagrange
interpolating polynomials and differential constrains are collocated at
Legendre-Gauss-Radau points destined to avoid numerical oscillations at
the edges of the interval where the problem is defined. The conversion of the
dynamic optimization problem into a static one is presented in two different
schemes and the computation of the first-order derivatives is performed to
decrease the number of function evaluations during the iterative process.

Chapter 4 addresses three dynamic optimization problems in the realm
of membrane axisymmetric pressure vessels subject to internal uniform
pressure. The decision variables are the meridian shape and the thickness
distribution, not necessarily constant. The first one aims at minimizing the
mass of the membrane shell once its cavity volume is fixed. The second
one interchanges the former objective functional with the latter constraint
and the third one concerns with the minimization of the compliance for a
given material mass. The solution of these problems provided prompt design
charts of ample validity in closed form, yet optimal forms are hardly obtained
by means of standard technologies due to the variation of the thickness
distribution. A first and preliminary attempt to the manufacturability of
the resulting forms by metal additive techniques is thoroughly discussed.

Chapter 5 still deals with shape optimization problems, but for
one-dimensional structural beam elements under the theory of linear
elasticity, where cost functionals and constraints range from material volume
to buckling loads and structural compliance. Shape optimization problems
for initially straight beams as well as a recently stated problem addressing
a paradox in curved beams have been considered.
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Chapter 6 addresses the best material distribution in internally
pressurized heterogeneous cylinders. The material is assumed to have
mechanical properties that vary throughout the radial direction. Based
on the theory of linear elasticity, the description of occurring stresses,
strains in plane stress and plane strain conditions has been recalled.
Unlike the overwhelming studies in the literature, the distribution of elastic
properties along the radial direction is considered as the input function to
be determined, thus offering an intrinsic setting for their derivation based
on optimality principles. By taking different measures of the maximum
stress, it is found that the obtained optimal solutions perform better than
those associated with several gradation strategies commonly employed in
the literature.

Finally, Chapter 7 summarizes the presented studies as well as a few
extensions that may be destined for future works.
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Theoretical background and
computational framework
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Chapter 2

Continuous dynamic
optimization and
Pontryagin’s Principle

2.1 Introduction

Continuous dynamic (or functional) optimization is a subject where it is
desired to determine certain inputs to a system of differential equations
which describes the evolution of the variables that model a problem under
consideration, so that a specified functional achieves its minimum value,
while satisfying some constraints on the variable of the system. Its
principles, that can be considered as an extension of calculus of variations,
date back to the Fifties largely due to the works by Pontryagin and Bellman.
Input functions and variables employed to model the problem are commonly
referred to as goal (or objective) functions and state variables, respectively,
whereas the functional to be optimized is called the goal functional or the
performance index. The system of differential equations, usually employing
the above mentioned states, is usually denoted as the plant equations or,
more simply, the dynamics. The requirement that plant equations are given
by a system of differential equations justifies the adjective “continuous”,
differently from problems where the system evolution is described by
recurrence formulas, i.e., discrete relationships.

In Appendix A, elements of calculus of variations have been recalled and
necessary conditions for the existence of extremals have been derived for
different problems, yet a few aspects on which most of the analysis relies
on have been unaltered. For instance, only integral goal functionals have
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been exclusively considered. They consist of a distributed term along the
interval of interest. Hereinafter, these functionals are referred to as Lagrange
goal functionals. However, another type of goal functional depending only
on initial and/or final conditions may also be stated. An example of such
goal functional has been given in Example A.1 in Appendix A. This kind
of goal functionals is referred to as Mayer goal functionals. Furthermore,
boundary conditions apart, extremals were not enforced to satisfy specified
plant equations throughout the interval of interest. In fact, if such condition
is required, the inclusion of this type of differential constraint is necessary
so that the problem results unconstrained and the previous tools can be
borrowed. Moreover, only problems allowing variations in the final boundary
conditions have been addressed. Dynamic optimization principles can
encompasses all these variants (and more) so that necessary conditions are
derived in a nice and versatile fashion.

To this purpose, the following notation is employed. Let

y1(x), y2(x), . . . , yn(x)

and

u1(x), u2(x), . . . , um(x)

denote the states and the objective functions, respectively, of the considered
problem at coordinate x, and suppose that the plant equations are given by

dy(x)

dx
= a(x,y(x),u(x)),

where y and u are vectors whose i-th components are yi and ui, respectively,
and the function a is generally nonlinear. Hereinafter, y and u are taken
as column vectors, whereas the gradient of a scalar function with respect to
any vector quantity, say ξ ∈ Rk, is a row vector, namely

y =



y1

y2

...

yn


, u =



u1

u2

...

um


,
∂(.)

∂ξ
=

[
∂(.)
∂ξ1

∂(.)
∂ξ2

. . . ∂(.)
∂ξk

]
.

Besides, the Jacobian of a vector quantity, say v ∈ Rj , with respect to ξ is
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the k × j matrix

∂v

∂ξ
=



∂v1
∂ξ1

∂v1
∂ξ2

. . . ∂v1
∂ξk

∂v2
∂ξ1

∂v2
∂ξ2

. . . ∂v2
∂ξk

...
... . . .

...

∂vj
∂ξ1

∂vj
∂ξ2

. . .
∂vj
∂ξk


. (2.1)

As previously mentioned, unlike problems stated in Appendix A, in what
follows it will be assumed that the performance index is evaluated by a
measure of the form

J =M(x0,y(x0), xf ,y(xf )) +

∫ xf

x0

L(x,y(x),u(x)) dx,

where x0, xf , y(x0) and y(xf ) may be specified or free, depending on the
statement of the problem, while the first and second members at the right
hand-side refer to Mayer and Lagrange costs, respectively. Besides, let φ be
the set of boundary conditions, abstractly recast as

φ(x0,y(x0), xf ,y(xf )) = 0,

letting functions a, M, L and φ be defined by the following mappings:
a : [x0, xf ]× Rn × Rm → Rn, M : R× Rn × R× Rn → R and L : [x0, xf ]×
Rn × Rm → R and φ : R × Rn × R × Rn → Rb and denoting by a prime
the first derivative with respect to x, a continuous dynamic optimization
problem may be generally formulated as follows:

Problem 2.1. Find the input functions u(x) ∈ Rm which extremize the
functional

J =M(x0,y(x0), xf ,y(xf )) +

∫ xf

x0

L(x,y(x),u(x)) dx (2.2)

and subject to the algebraic-differential constraints{
y′(x) = a(x,y(x),u(x)),

φ(x0,y(x0), xf ,y(xf )) = 0,
(2.3)

where x0, xf , y(x0) and y(xf ) are free (see Figure 2.1).
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Figure 2.1: An extremal n-dimensional state and a comparison neighbor.

2.2 Necessary conditions for extremals

It is known that finding an extremal for the functional (2.2) alone may
not satisfy constraints (2.3). Thus, one is hindered to incorporate these
constraints into the problem formulation. One way is to consider the
augmentation of the functional, just like what illustrated for Problem A.5
in Appendix A. Unlike for Problem A.5, however, multipliers should be
multidimensional, i.e., vectors of numbers or functions of x, depending on
the involved constraints. Yet once introduced in the problem formulation,
the augmented problem yields extremals also for the original problem. In
particular, letting ν ∈ Rb be the column vector containing multipliers
accounting for boundary conditions, namely

ν>φ(x0,y(x0), xf ,y(xf )), (2.4)

where (.)> denotes the transpose of (.), and letting p(x) ∈ Rn be the vector
of multiplier functions (adjoint variables or costates) accounting for the
dynamics, i.e., ∫ xf

x0

p(x)>
[
a(x,y(x),u(x))− y′(x)

]
dx, (2.5)
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from (2.2), (2.4) and (2.5), the augmented cost functional Ja may be recast
as

Ja =M(x0,y(x0), xf ,y(xf ))− ν>φ(x0,y(x0), xf ,y(xf ))

+

∫ xf

x0

{
L(x,y(x),u(x)) + p(x)>

[
a(x,y(x),u(x))− y′(x)

]}
dx,

(2.6)
where the minus sign before the inner product ν>φ is a convention. Note
that an extremal for the functional (2.6) is also an extremal for the functional
(2.2), since it should also satisfy the constraints given by (2.3). Equation
(2.6) consists in two main parts, one is evaluated at initial and end points
and the other is distributed along the interval [x0, xf ]. To find necessary
conditions for the existence of extremals, the variation of the augmented
functional is needed. Setting the first variation equal to zero, one obtains

δJa = δM(x0,y(x0), xf ,y(xf ))− δ
(
ν>φ(x0,y(x0), xf ,y(xf ))

)
+ δ

∫ xf

x0

{
L(x,y(x),u(x)) + p(x)>

[
a(x,y(x),u(x))− y′(x)

]}
dx

= 0.
(2.7)

It is worth to highlight that the quantities that can vary are the states
y(.), the inputs u(.), the costates p(.), multipliers associated with boundary
conditions ν, initial and end points x0 and xf , y0 and yf .

Firstly, the variation of M is computed with respect to its arguments.
In particular, it is worth noting that the variation in x0 does contribute to
the variation of M as well as of y(x0). Same considerations hold for the
variation in xf . Hence,

δM(x0,y(x0), xf ,y(xf )) =
∂M
∂x0

δx0 +
∂M
∂y(x0)

y′(x0)δx0

+
∂M
∂y(x0)

δy(x0) +
∂M
∂xf

δxf

+
∂M
∂y(xf )

y′(xf )δxf +
∂M
∂y(xf )

δy(xf )

(2.8)

and extending Equation (A.26) and its counterpart for x0 to the case of
several states, i.e., {

δy0 = δy(x0) + y′(x0)δx0,

δyf = δy(xf ) + y′(xf )δxf ,
(2.9)
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the variation of M becomes

δM(x0,y(x0), xf ,y(xf )) =
∂M
∂x0

δx0 +
∂M
∂y(x0)

δy0

+
∂M
∂xf

δxf +
∂M
∂y(xf )

δyf .

(2.10)

On the other hand, since φ has the same arguments asM, it is not difficult
to conclude that

δφ(x0,y(x0), xf ,y(xf )) =
∂φ

∂x0
δx0 +

∂φ

∂y(x0)
δy0

+
∂φ

∂xf
δxf +

∂φ

∂y(xf )
δyf

(2.11)

and recalling therefore variations of the fixed term in (2.7), one obtains

δM− δ(ν>φ) = − δν>φ

+

[
∂M
∂x0

− ν>
∂φ

∂x0

]
δx0

+

[
∂M
∂y(x0)

− ν>
∂φ

∂y(x0)

]
δy0

+

[
∂M
∂xf

− ν>
∂φ

∂xf

]
δxf

+

[
∂M
∂y(xf )

− ν>
∂φ

∂y(xf )

]
δyf .

(2.12)

The variation of the integral term in (2.7) is now computed. Defining
the Hamiltonian function H as

H(x,y,u,p) = L(x,y,u) + p(x)>a(x,y,u) (2.13)

and considering Leibniz integral rule for differentiation, the variation of the
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integral in Equation (2.7) is given by

δ

∫ xf

x0

(
H− p>y′

)
dx =

∫ xf

x0

δ
(
H− p>y′

)
dx

+
[
H(xf )− p(xf )>y′(xf )

]
δxf

−
[
H(x0)− p(x0)>y′(x0)

]
δx0

=

∫ xf

x0

δH dx−
∫ xf

x0

δp>y′ dx−
∫ xf

x0

p>δy′ dx

+
[
H(xf )− p(xf )>y′(xf )

]
δxf

−
[
H(x0)− p(x0)>y′(x0)

]
δx0

=

∫ xf

x0

(
∂H
∂y

δy +
∂H
∂u

δu +
∂H
∂p

δp

)
dx

−
∫ xf

x0

δp>y′ dx− p>(xf )
[
δy(xf ) + y′(xf )δxf

]
+ p>(x0)

[
δy(x0) + y′(x0)δx0

]
+H(xf )δxf −H(x0)δx0 +

∫ xf

x0

p′>δy dx.

(2.14)
Making use of Equation (2.9) and realizing that δp>y′ = y′>δp, the
variation of the integral term reads

δ

∫ xf

x0

(
H− p>y′

)
dx =

∫ xf

x0

(
∂H
∂y

+ p′>
)
δy dx

+

∫ xf

x0

∂H
∂u

δu dx

+

∫ xf

x0

(
∂H
∂p
− y′>

)
δp dx

+H(xf )δxf −H(x0)δx0

+ p>(x0)δy0 − p>(xf )δyf

(2.15)
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and therefore, considering (2.12), the overall variation (2.7) is given by

δJa =

∫ xf

x0

(
∂H
∂y

+ p′>
)
δy dx+

∫ xf

x0

∂H
∂u

δu dx+

∫ xf

x0

(
∂H
∂p
− y′>

)
δp dx

+

[
∂M
∂x0

− ν>
∂φ

∂x0
−H(x0)

]
δx0

+

[
∂M
∂y(x0)

− ν>
∂φ

∂y(x0)
+ p>(x0)

]
δy0

+

[
∂M
∂xf

− ν>
∂φ

∂xf
+H(xf )

]
δxf

+

[
∂M
∂y(xf )

− ν>
∂φ

∂y(xf )
− p>(xf )

]
δyf

− φ>δν.
(2.16)

Necessary conditions for the existence of extremals are obtained provided
that Equation (2.16) identically vanishes for independent variations of y, u,
p, x0, xf , y0, yf and ν, namely

y′(x) =

[
∂

∂p
H(x,y,u,p)

]>
= a(x,y,u), (2.17)

p′(x) = −
[
∂

∂y
H(x,y,u,p)

]>
, (2.18)

∂

∂u
H(x,y,u,p) = 0, (2.19)

H(x0,y(x0),u(x0),p(x0)) =
∂M
∂x0

− ν>
∂φ

∂x0
, (2.20)

H(xf ,y(xf ),u(xf ),p(xf )) = −∂M
∂xf

+ ν>
∂φ

∂xf
, (2.21)

p>(x0) = − ∂M
∂y(x0)

+ ν>
∂φ

∂y(x0)
, (2.22)

p>(xf ) =
∂M
∂y(xf )

− ν>
∂φ

∂y(xf )
, (2.23)

and
φ(x0,y(x0), xf ,y(xf )) = 0. (2.24)

Since Equations (2.17) and (2.18) arise from differentiation of a
Hamiltonian function, they constitute a Hamiltonian system. Furthermore,
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Equation (2.19) is used to obtain input functions so that the cost functional
achieves its extremum. It is referred to as the strong form of the so-called
Pontryagin’s Principle, which is emphasized at the end of this chapter.
Finally, the conditions on the initial and final costate and Hamiltonian
functions given in Equations (2.20)-(2.23) are referred to as transversality
conditions. Therefore, the Hamiltonian system (2.17)-(2.18), together with
the boundary conditions (2.24) and transversality conditions (2.20)-(2.23)
form the so-called Hamiltonian boundary value problem [26]. Any solution
{y∗(x),u∗(x),p∗(x),ν∗} is called an extremal and consists of the state,
costate and any multipliers that satisfy the boundary conditions. This
extremal solution can be a maximum, minimum or saddle. The second-order
sufficiency conditions must be inspected to determine which of the extremal
solutions is a global minimum. The derivation of the second-order sufficiency
conditions, however, is beyond the scope of this dissertation. For a local
minimum, the particular extremal with the lowest cost is chosen.

It is worth noting that, in most of the cases, the solution of the
aforementioned system of equations (2.17)-(2.24) is by no means an easy
task. In fact, closed form solutions exist only for a few problems in the
literature and for limited number of cases. An overview of such cases in
engineering can be found in [26, 27, 28]. The reason being states and costates
are coupled one another and may nonlinearly appear in the costate equations
(2.18), hindering the analytical tractability of the resulting Hamiltonian
boundary value problem.

2.3 Problems with inequality path constraints

In addition to the general formulation of the dynamic optimization problem
(Problem 2.1), let some inequality path constraints having the form

c(x,y(x),u(x)) ≤ 0 (2.25)

be also present. These constraints apply over the whole interval of interest
and as such they comprise of a set of infinite-dimensional constraints. The
formultion of the problem is given next.

Problem 2.2. Find the input functions u(x) ∈ Rm which extremize the
functional

J =M(x0,y(x0), xf ,y(xf )) +

∫ xf

x0

L(x,y(x),u(x)) dx (2.26)
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and subject to the algebraic-differential constraints
y′(x) = a(x,y(x),u(x)),

φ(x0,y(x0), xf ,y(xf )) = 0,

c(x,y(x),u(x)) ≤ 0,

(2.27)

where x0, xf , y(x0) and y(xf ) are free (see Figure 2.1).

Letting p be the number of path constraints and m(x) ∈ Rp be the vector
of the multiplier functions accounting for them, the augmented functional
will have the form

Ja =M− ν>φ +

∫ xf

x0

[
L+ p>

(
a− y′

)
−m>c

]
dx. (2.28)

Also here, the minus sign before the inner product m>c is a convention.
Following the above considerations, the Hamiltonian function will be

given by
H(x,y,u,p,m) = L+ p>a−m>c (2.29)

and, setting the variation of the augmented functional (2.28) equal to zero,
the so-called complementary slackness conditions [29, 30]

mj(x) = 0 , when cj(x,y,u) < 0, j = 1, 2, . . . , p

mj(x) < 0 , when cj(x,y,u) = 0, j = 1, 2, . . . , p
(2.30)

hold in addition to necessary conditions (2.17)-(2.24). On the one hand,
when cj < 0, the path constraint in (2.25) is inactive. Therefore, by making
mj(x) = 0, the constraint is simply ignored in augmented functional (2.28).
On the other hand, the negativity of mj when cj = 0 is interpreted such
that improving the cost may only come from violating the constraint.

2.4 Pontryagin’s Principle

The Pontryagin’s Principle is used to determine the conditions for obtaining
the objective functions u so that the cost functional is extremized. Equation
(2.19) is referred to as the strong form of this principle. However, in some
cases the strong form of the Pontryagin’s Principle does not provide any
information about extremal objective functions, e.g., when the Hamiltonian
function is linear with respect to u. To overcome these secnarios, suppose
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u∗ gives a local minimum of the cost functional J . Compatibly with the
notation employed in Appendix A, one has

J(u)− J(u∗) = ∆J(u,u∗) ≥ 0 (2.31)

for all admissible u ∈ U sufficiently close to u∗. If u is taken to be u∗ + δu,
then the change in the cost functional can be expressed as

∆J(u,u∗) = δJ(u∗, δu) + ε||δu|| (2.32)

where ε → 0 as ||δu|| → 0. If δu is sufficiently small, then the cost has a
local minimum if

δJ(u∗, δu) ≥ 0. (2.33)

Since at the optimal solution {y∗(x),u∗(x),p∗(x),m∗(x),ν∗}, the
differential equations, along with the boundary conditions, should be
satisfied, therefore all coefficients of the variation terms in Equation (2.16)
can be set equal to zero, except the term associate with δu. This leaves the
variation of the augmented cost as

δJa(u∗, δu) =

∫ xf

x0

(
∂H
∂u

)
y∗,u∗,p∗,m∗

δu dx (2.34)

Since the first-order approximation of the change in the Hamiltonian is given
by(

∂H
∂u

)
y∗,u∗,p∗,m∗

δu = H(x,y∗,u∗ + δu,p∗,m∗)−H(x,y∗,u∗,p∗,m∗),

(2.35)
the variation of the cost for all admissible and sufficiently small δu reads

δJa(u∗, δu) =

∫ xf

x0

[H(x,y∗,u∗ + δu,p∗,m∗)−H(x,y∗,u∗,p∗,m∗)] dx.

(2.36)
In order for δJ(u∗, δu) to be non-negative for any admissible variation δu,
the Hamiltonian must be greater than the optimal Hamiltonian for all x,
namely

H(x,y∗,u∗ + δu,p∗,m∗) ≥ H(x,y∗,u∗,p∗,m∗). (2.37)

In other words, optimal objective functions u∗ are the admissible controls
that minimize H, i.e.,

u∗(x) = arg min
u∈U
H(x,y∗(x),u(x),p∗(x),m∗), (2.38)
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which is referred to as the weak form of Pontryagin’s Principle. This
relation is important in the particular case when the Hamiltonian function
is linear with respect to u. For instance, suppose that one input function
u : [x0, xf ] → U = [u, u] is involved. Thus, the Hamiltonian function is
formally given by

H(x,y, u,p,m) = A(x,y,p,m) + B(x,y,p,m)u. (2.39)

It is easy to show that the strong form of Pontryagin’s Principle (2.19) does
not supply any useful information, whereas the weak form (2.38) yields

u∗(x) = arg min
u
H(x,y, u,p,m) =


u , if B(x,y,p,m) > 0 ,

u , if B(x,y,p,m) < 0 ,

? , if B(x,y,p,m) = 0 ,

(2.40)

namely the optimal input function either lies on the boundary of the feasible
inputs set (depending on the sign of B along x) or can be found from
other considerations (whenever B is identically zero on a finite subinterval
x1 ≤ x ≤ x2). In the parlance of continuous dynamic optimization, such
kinds of input functions are commonly referred to as bang-bang and singular,
respectively.

2.5 Summary

In this chapter, variational principles to continuous dynamic optimization
problems subject to algebraic-differential constraints have been applied
to derive first-order necessary conditions for optimality. Moreover,
Pontryagin’s Principle in both its strong and weak forms has been introduced
as a generalization of the fundamental theorem of calculus of variations,
and problems with inequality path constraints have been discussed. In
particular, it has been shown that necessary conditions can be written in the
form of a boundary value problem, yet the primary variables are strongly
coupled one another and therefore analytically tractable only for a few cases.
For this purpose, the development of dedicated numerical tools becomes
necessary for the determination of the input functions and states as well as
the assessment of the performance index at optimal solutions.
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Chapter 3

Development of
computational tools

3.1 Introduction

Numerical methods for solving continuous dynamic optimization problems
date back nearly five decades to the 1950s with the work of Bellman.
From that time to the present, the variety of methods and corresponding
complexity have increased tremendously. Generally, these numerical
methods are classified into two major classes: indirect and direct methods.
In indirect methods, the calculus of variations is used to determine the
first-order optimality conditions of the original problem. Multiple-point
boundary-value problems (BVPs) are therefore derived and their solutions
determine candidate extremals. Each of the computed extremals is then
examined to assess whether it is a local minimum, a local maximum or a
saddle point. Of the locally optimizing solutions, the particular extremal
with the lowest performance index in chosen. On the other hand, direct
methods deal with the states and input functions directly, by discretizing
them in some manner and transcribing the original problem into a nonlinear
programming problem (NLP), which in turn are solved by means of well
known optimization techniques.

The two philosophies of indirect and direct methods have led to a
dichotomy in the numerical methods community. Researchers who focus
on indirect methods are generally interested in differential equation theory,
whereas researchers who focus on direct methods are interested more in
optimization techniques. Excellent historical overviews of the two methods
may be found in [31, 32, 33, 34]. While seemingly unrelated, in recent years
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many researchers have delved quite deeply into the connections between the
two methods. In fact, in [35] it is uncovered that the optimality conditions
from many direct methods have a well-defined meaningful relationship,
demonstrating how they merge as time progresses.

In indirect methods, principles of calculus of variations lead to a BVP,
i.e., optimal solution is found by solving a system of first-order differential
equations that satisfy endpoint conditions. The most well-know strategy
pertaining to this method is the so-called shooting method, i.e., to start from
one endpoint and guess the solutions at the other endpoint, then forward
integrate the BVP as an initial value problem (IVP), where a check is made
whether the corresponding boundary values are satisfied. If so, a solution
is found, if not the initial guesses are adjusted [36]. However, despite of
its simplicity, the shooting method presents significant shortcomings since
errors in the unknown boundary conditions may considerably amplify as
the dynamics are forwardly integrated. A solution to this numerical issue
is offered by the so-called multiple-shooting methods, where the interval
in which integration takes place is divided into many subintervals with
initial values of the interior points need to be determined being unknown.
Nevertheless, even this latter can not be much helpful if initial guesses are
not well prescribed [37].

On the other hand, direct methods have been gaining much interest
and their theoretical development is more and more refined which, together
with the increasing improvement of computers generation, led researchers
to efficient algorithms to numerically solve dynamic optimization problems
[38]. Among these methods the so-called orthogonal direct collocation
method (or pseudospectral method) has been increasing in popularity. This
method permits the parameterization of the state and the control using
specified functional forms and collocation is performed at chosen points. In
particular, the state (and sometimes the control) of the original problem
is approximate using global polynomials. The differential equations are
then collocated using nodes obtained from quadrature points such that the
dynamic optimization problem is transcribed to a standard NLP problem.

Pseudospectral methods have been employed in literature
considering many types of collocation point sets and polynomial
approximation basis functions. As far as collocation points are
concerned, a considerable amount of work has been developed by using
Legendre-Gauss, Legendre-Gauss-Lobatto, Legendre-Gauss-Radau, flipped
Legendre-Gauss-Radau and Chebyshev points, e.g., [38, 39, 40, 41, 42].
A numerical framework for the numerical solution of continuous dynamic
optimization problems using most of the aforementioned points is revisited
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in [43] with particular attention devoted to the costate evaluation
using Legendre-Gauss-Radau points. On the other hand, as far as the
approximation of the state and/or the control is concerned, many attempts
have been made available employing Chebyshev [44], Bernstein [45] and,
more frequently, Lagrange polynomials [46, 47, 48], as these latter satisfy
the isolation property.

The present chapter attempts to draw a concise introduction to the
Legendre-Gauss-Radau (LGR) pseudospectral method in its global and
multistage forms. The transcription of the dynamic optimization problem
into a finite-dimensional NLP problem is mainly emphasized. Hints on the
numerical implementation are also given and the resulting NLP problems are
solved by dedicated NLP solvers. Solving the NLP as efficiently as possible
requires that sparsity at first-derivative levels be exploited. Expressions
for the objective functional gradient and constraint Jacobian are therefore
borrowed from [49].

3.2 Mathematical preliminaries

In this section, the theoretical tools needed to develop the numerical
framework are recalled. As a preliminary remark, note that all the
optimization problems considered in this chapter are defined in a finite
interval. Without loss of generality, the numerical framework is developed
with respect to [−1, 1] to which any finite interval can be mapped by a linear
transformation.

3.2.1 Legendre polynomials

Legendre polynomials are a system of polynomial functions with several
applications in physics and engineering. More precisely, they are a countable
set of polynomials, herein denoted by P0, P1, P2, . . . which are the solutions
to Legendre’s differential equation [50]

d

dξ

[
(1− ξ2)

d

dξ
Pk(ξ)

]
+ k(k + 1)Pk(ξ) = 0 (3.1)

over the interval ξ ∈ [−1, 1] (with k = 0, 1, 2, . . . ). Their explicit expression
can be obtained by setting [50] {

P0 = 0 ,

P1 = ξ
(3.2)
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and by the recurrence relation

(k + 1)Pk+1(ξ) = (2k + 1)ξPk(ξ)− kPk−1(ξ) , k = 1, 2, . . . (3.3)

An important property of Legendre polynomials is that they are orthogonal
to one another, namely they have the following property∫ 1

−1
Pi(ξ)Pj(ξ) dξ =

2δij
2j + 1

, (3.4)

where δij is Kronecker’s delta.

3.2.2 Lagrange interpolating polynomials

Lagrange interpolating polynomials are used to approximate a function f :
R→ R whose values in a finite set of distinct points ξ1, ξ2, . . . , ξJ are known.
They are defined by [50]

`i(ξ) =

J∏
j=1,j 6=i

ξ − ξj
ξi − ξj

, i = 1, 2, ..., J, (3.5)

and the approximation to which they lead can be written as

f(x) ≈ f̃(x) ,
J∑
i=1

f(ξi)`i(x) .

Note that since each `i is a polynomial of degree J , so is f̃ . As a consequence,
f̃ ≡ f whenever f is a polynomial of degree less than or equal to J .
Moreover, if f is a polynomial of degree less than or equal to J then

d

dx
f(x) =

J∑
i=1

f(ξi)
d

dx
`i(x) . (3.6)

From definition (3.5) it is easy to see that each polynomial satisfies the
so-called isolation property, i.e.,

`i(ξj) = δij . (3.7)

As mentioned above, the pseudospectral methods described in the following
sections are developed for the interval [−1, 1]. Hence the restriction of
the polynomials to this interval will be of interest. Moreover, all the
interpolation points will belong to this interval with ξ1 = −1 and ξJ = 1.
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3.2.3 LGR points and quadrature weights

For a fixed N ∈ N, the N Legendre-Gauss-Radau collocation points (all
belonging to [−1, 1]) are the roots of the polynomial PN−1(ξ) + PN (ξ) [51],
where PN−1 and PN are the Legendre polynomial (of degree N − 1 and N ,
respectively). An important property of the LGR points is that for any
polynomial φ of degree 2(N − 1) or less [51], the identity∫ 1

−1
φ(ξ) dξ =

N∑
i=1

ωi φ(ξi) , (3.8)

where ωi (i = 1, 2, . . . , N) are the LGR quadrature weights, given by [51]
ω1 = 2/N2 ,

ωi =
1

(1− ξi)
[
dPN−1

dξ (ξi)
]2 , (i = 2, 3, . . . , N)

(3.9)

holds true.

3.3 Continuous-to-discrete conversion

The aim of the transcription procedure is that mapping it into a constrained
NLP that can be solved by using dedicated tools. According to [38],
the minimum fundamental steps of a transcription consist of the domain
discretization and the continuous-to-discrete conversion of states and/or
controls. This transcription can be made on a single mesh interval
(global pseudospectral method) or multiple mesh intervals (multistage
pseudospectral method). Next, a systematic mathematical framework is
devoted to each of the above mentioned two steps for both versions. The
reader is also addressed to other variants of this formulation where f-LGR
points (roots of PN (ξ) − PN−1(ξ), namely the negative counterparts of the
standard LGR points) are considered (see, e.g., [38, 52, 53]).

3.3.1 Global LGR pseudospectral method

Firstly, the noncollocated point ξN+1 = 1 is introduced. Unlike the notation
in the previous chapter, let all vector functions be row vectors. For instance,
the state and the input vectors at ξ are written as

y(ξ) = [y1(ξ) y2(ξ) . . . yn(ξ)] ∈ Rn
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and
u(ξ) = [u1(ξ) u2(ξ) . . . um(ξ)] ∈ Rm ,

respectively, where n and m are the number of states and inputs,
respectively. The approximations of the states and the input functions at
ξ = ξi are denoted by Yi and Ui, respectively. Moreover, the matrix Y ∈
R(N+1)×n refers to the state approximation, where the first N rows contain
the approximations at the collocated points Y1,Y2, . . .YN and the last
row contains the approximation at the noncollocated point, namely YN+1.
Analogously, the matrix U ∈ RN×m refers to the input approximation,
whose rows are Ui (i = 1, 2, ..., N). Besides, the notation Yi:j will be used
to denote rows i through j of Y, while the Di:j denotes columns i through j
of the differentiation matrix D, defined below. Lastly, a dot refers to a first
derivative with respect to ξ.

For the sake of a preliminary exposition of the transcription process, the
unconstrained version of the most general dynamic optimization problem in
the pseudospectral domain ξ ∈ [−1, 1) is firstly addressed, namely

Problem 3.1.

min
u∈C̃([−1,1],Rm)

J =M (y(1)) +
xf − x0

2

∫ 1

−1
L (ξ,y(ξ),u(ξ)) dξ ,

s.t. ẏ(ξ) =
xf − x0

2
a(ξ,y(ξ),u(ξ)) ,

y(−1) = y0 .

(3.10)

Here, C̃([−1, 1],Rm) denotes the set of piece-wise continuous functions
from [−1, 1] to Rm and y0, x0 and xf are assumed to be specified. Being free
from path constraints apart, it is emphasized that the transcription process
for Problem 2.1 is not much different from that of Problem 3.1, although
this latter is defined on the pseudospectral domain. In fact, solutions for
Problem 3.1 can be transformed into solutions for Problem 2.1 by taking
into account the affine transformations from and to the original and the
pseudospectral intervals, namely

x =
xf − x0

2
ξ +

xf + x0

2
,

ξ =
2x

xf − x0
−
xf + x0

xf − x0
.

(3.11)

The transcription begins with considering collocation at the N LGR
points (ξ1, ξ2, ..., ξN ) with ξ1 = −1 and letting ξN+1 = 1 be the noncollocated
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point. The evolution of each coordinate of the state is approximated by a
polynomial of degree N through Lagrange interpolation polynomials, i.e.,

y(ξ) ≈ Y(ξ) =
N+1∑
i=1

Yi`i(ξ) , (3.12)

where, according to Equation (3.5),

`i(ξ) =
N+1∏

j=1,j 6=i

ξ − ξj
ξi − ξj

, i = 1, 2, . . . , N + 1 . (3.13)

It is worth noting that the state approximation (3.12) includes the Lagrange
polynomial `N+1(ξ) (of degree N) associated with the noncollocated point
ξN+1 = 1. Differentiating Equation (3.12), one obtains

ẏ(ξ) ≈ Ẏ(ξ) =

N+1∑
i=1

Yi
˙̀
i(ξ) , (3.14)

which is a polynomial of degree N − 1. Evaluating Equation (3.14) at the
generic collocation point ξj (j = 1, 2, ..., N), one obtains

Ẏ(ξj) =
N+1∑
i=1

DjiYi , (3.15)

where Dji = ˙̀
i(ξj). Moreover, taking into account the right-hand side of the

plant equations in Problem 3.1 at the collocation points, the approximations
Yi are found by imposing

N+1∑
i=1

DjiYi =
xf − x0

2
a(ξj ,Yj ,Uj) , j = 1, 2, . . . , N. (3.16)

According to the notation previously specified, letting

Y1:N =



Y1

Y2

...

YN


, Y =

Y1:N

YN+1

 , A1:N =



a1

a2

...

aN


,
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where ai =
xf−x0

2 a(ξi,Yi,Ui), Equation (3.16) may be written in a more
compact form as

DY = A1:N , (3.17)

where D ∈ RN×(N+1) is the non-square differentiation matrix whose entries
are the coefficients Dji. The extra column of D is due to the Lagrange
polynomial at the noncollocated point ξN+1 = 1. Hence, recalling Equation
(3.8), Problem 3.1 may be transcribed into the following discrete NLP
problem:

Problem 3.2.

min
Y1,...,YN+1,U1,...,UN

J =M(YN+1) +
xf − x0

2

N∑
i=1

ωiLi

s.t. ∆ := DY −A1:N = 0 ,

Y1 − y0 = 0 ,

(3.18)

where Li = L(ξi,Yi,Ui) and ∆ ∈ RN×n is referred to as the defect
matrix. Problem 3.2 is a finite-dimensional NLP constrained problem, whose
decision variables are the approximation of the state at the LGR points plus
the final point and the control only at the LGR points. Moreover, it is
appreciated that the summation term in Problem 3.2 gives an exact value of
the integral term in Problem 3.1 whenever L is of degree at most 2(N − 1)
[51].

Eventually, the correspondence between Problem 3.2 and standard NLP
problems is briefly addressed. Let Vi ∈ RN+1 (i = 1, 2, . . . , n) and Wj ∈
RN (j = 1, 2, . . . ,m) denote the generic columns of the state and input
approximation matrices Y and U, respectively. Let also

V =



V1

V2

...

Vn


∈ Rn(N+1) , W =



W1

W2

...

Wm


∈ RmN ,

be the generalized state and control approximation vectors. The decision
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variables of Problem 3.2 may therefore be collected in the following vector

Z =



V

W

x0

xf


∈ Rn(N+1)+mN+2 ,

serving as the vector of decision variables for the NLP problem. Hence, the
reshape of the goal function and equality constraints in Problem 3.2 in terms
of Z is straightforward.

3.3.2 Multistage LGR pseudospectral method

Unlike the previous section, the most general form of representing a dynamic
optimization problem is rather considered, namely Problem 2.1, but with the
addition of path constraints c(x,y(x),u(x)) ≤ 0. In this section, however,
the dynamic optimization problem is slightly modified as follows. Let s ∈
[−1, 1] be a new independent variable and be linked with x ∈ [x0, xf ] by the
relation

x =
xf − x0

2
s+

xf + x0

2
. (3.19)

The dynamic optimization problem is then defined in terms of the variable
s as follows:

Problem 3.3. Determine the vector u(s) ∈ Rm which minimizes the
functional

J =M(x0,y(−1), xf ,y(1)) +
xf − x0

2

∫ 1

−1
L(s,y(s),u(s)) ds (3.20)

and subject to the differential constraint

dy(s)

ds
=
xf − x0

2
a(s,y(s),u(s)) , (3.21)

the inequality path constraints

c(s,y(s),u(s)) ≤ 0 , (3.22)

and the boundary conditions

φ(x0,y(−1), xf ,y(1)) = 0 . (3.23)
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Suppose now that the interval s ∈ [−1, 1] is divided into a mesh
consisting of K mesh intervals [sk−1, sk], k = 1, 2, . . . ,K, where
(x0, s1, . . . , sK) are the mesh points, which have the property −1 = s0 <
s1 < · · · < sK = 1. Next, let y(k)(s) and u(k)(s) be the state and input
functions in the mesh interval k. Thus, the objective functional (3.20) can
be recast as

J =M
(
x0,y

(1)(−1), xf ,y
(K)(1)

)
+
xf − x0

2

K∑
k=1

∫ sk

sk−1

L
(
s,y(k)(s),u(k)(s)

)
ds .

(3.24)

Moreover, the differential constraint (3.21), the path constraints (3.22) in
mesh interval k can be written as

dy(k)(s)

ds
=
xf − x0

2
a
(
s,y(k)(s),u(k)(s)

)
(3.25)

and
c
(
s,y(k)(s),u(k)(s)

)
≤ 0 , (3.26)

respectively, whereas the boundary conditions (3.23) may be recast as

φ
(
x0,y

(1)(−1), xf ,y
(K)(1)

)
= 0 . (3.27)

Because the state must be continuous at each interior mesh point, it is
required that the condition y(s−k ) = y(s+

k ) be satisfied at (s1, s2, . . . , sK−1).
Using the LGR pseudospectral scheme, this continuity condition across mesh
points is easy to implement. In particular, the state in each mesh interval
k = 1, 2, . . . ,K is approximated as

y(k)(s) ≈ Y(k)(s) =

Nk+1∑
j=1

Y
(k)
j `

(k)
j (s) =

Nk+1∑
j=1

Y
(k)
j

Nk+1∏
l=1,l 6=j

s− s(k)
l

s
(k)
j − s

(k)
l

, (3.28)

where Y
(k)
j (j = 1, 2, . . . , Nk) are the approximations of the state functions

at the Nk LGR points in mesh interval k and (s
(k)
1 , s

(k)
2 , . . . , s

(k)
Nk

) are the LGR
collocation points in mesh interval k defined on the subinterval s ∈ [sk−1, sk].

Moreover, it is worth noting that the point s
(k)
Nk+1 is a noncollocated point.

Differentiating (3.28) with respect to s, one obtains

dY(k)(s)

ds
=

Nk+1∑
j=1

Y
(k)
j

`
(k)
j (s)

ds
. (3.29)
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Besides, the cost functional of Equation (3.24) is then approximated using
a multiple interval LGR quadrature as

J =M
(
x0,Y

(1)
1 , xf ,Y

(K)
NK+1

)
+
xf − x0

2

K∑
k=1

Nk∑
j=1

ω
(k)
j L

(
s

(k)
j ,Y

(k)
j ,U

(k)
j

)
,

(3.30)

where ω
(k)
j (j = 1, 2, . . . , Nk) are the LGR quadrature weights in mesh

interval k, U
(k)
j (j = 1, 2, . . . , Nk) are the approximations of the input

functions at the Nk LGR points in mesh interval k, whereas Y
(1)
1 and

Y
(K)
NK+1 are the approximations of y(s0 = −1) and y(sK = 1), respectively.

Collocating the differential constraints of Equation (3.25) at the Nk LGR
points by means of (3.29), one obtains

Nk+1∑
j=1

D
(k)
ij Y

(k)
j −

xf − x0

2
a
(
s

(k)
i ,Y

(k)
i ,U

(k)
i

)
= 0 , i = 1, 2, . . . , Nk ,

(3.31)
where

D
(k)
ij =

[
d`

(k)
j (s)

ds

]
s
(k)
i

, i = 1, . . . , Nk, j = 1, . . . , Nk + 1, k = 1, . . . ,K,

(3.32)
is the Nk × (Nk + 1) differentiation matrix in mesh interval k.

Next, the path constraint of Equation (3.26) in the mesh interval k are
enforced at the Nk LGR points as

c
(
s

(k)
i ,Y

(k)
i ,U

(k)
i

)
≤ 0 , i = 1, 2, . . . , Nk. (3.33)

Furthermore, the boundary conditions of Equation (3.27) are approximated
as

φ
(
x0,Y

(1)
1 , xf ,Y

(K)
NK+1

)
= 0 . (3.34)

It is noted that the continuity in the state at the interior mesh points is
enforced via the condition

Y
(k)
Nk+1 = Y

(k+1)
1 , k = 1, 2, . . . ,K − 1 . (3.35)

However, it is worth noting that this constraint is taken into account
explicitly and therefore the NLP that arises from the LGR pseudospectral
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approximation is then to minimize the cost function of Equation (3.30)
subject to the algebraic constraints (3.31)-(3.34).

For the sake of a compact notation for the multi-stage version of the LGR
pseudospectral method, consider the following notation and conventions.
As before, all vector functions will be treated a row vectors, whereas any
scalar vector that is denoted as a column vector. Moreover, if f(p) with
f : Rn → Rm is a function that maps row vectors p ∈ Rn to row vectors
f(p) ∈ Rm, then the result of evaluating f(p) at points (p1,p2, . . . ,pN ) is
the matrix F1

N = [f(pk)]
N
1 , namely

F1
N = [f(pk)]

1
N =



f(p1)

f(p2)

...

f(pN )


∈ RN×n .

A single subscript i attached to a matrix P ∈ Rn×m, i.e., Pi, denotes the
i-th row of the matrix P, whereas Pi,j denotes the (i, j)-th element of the
matrix P. Moreover, the notation P:,j will be used to denote all the rows
and column j of a matrix P and the notation P> will be used to denote the
transpose of P.

Next, let P and Q be n × m matrices. Then, the element-by-element
multiplication of P and Q is defined as

P ◦Q =



p11q11 p12q12 · · · p1mq1m

p21q21 p22q22 · · · p2mq2m

...
...

. . .
...

pn1qn1 pn2qn2 · · · pnmqnm


.

It is noted that P ◦Q is not standard matrix multiplication. Furthermore,
if p ∈ Rn, then the operation diag(p) denotes the n × n diagonal matrix
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formed by the element of p, namely

diag(p) =



p1 0 · · · 0

0 p2 · · · 0

...
...

. . .
...

0 0 · · · pn


.

The notation for derivatives of functions of vectors is defined next. First,
let f(p) with f : Rn → R. Then, the gradient of f with respect to p is a
row vector of length n and defined as

∇pf(p) =

[
∂f
∂p1

∂f
∂p2

. . . ∂f
∂pn

]
∈ Rn .

Finally, let f(p) with f : Rn → Rm, where p may be either a row or column
vector and f(p) has the same orientation (i.e., either row or column vector)
as p. Then, the Jacobian of f with respect to p is the m× n matrix whose
i-th row is ∇pfi, namely

∇pf =



∇pf1

∇pf2

...

∇pfm


=



∂f1
∂p1

∂f1
∂p2

· · · ∂f1
∂pn

∂f2
∂p1

∂f2
∂p2

· · · ∂f2
∂pn

...
...

. . .
...

∂fm
∂p1

∂fm
∂p2

· · · ∂fm
∂pn


∈ Rm×n .

Coming back to the equivalent NLP problem, suppose now the following
quantities in mesh intervals k ∈ [1, 2, . . . ,K − 1] and the final mesh interval
K:

s(k) =
[
s

(k)
i

]1

Nk
, k = 1, 2, . . . ,K − 1, s(K) =

[
s

(K)
i

]1

NK+1

Y(k) =
[
Y

(k)
i

]1

Nk
, k = 1, 2, . . . ,K − 1, Y(K) =

[
Y

(K)
i

]1

NK+1

U(k) =
[
U

(k)
i

]1

Nk
, k = 1, 2, . . . ,K

L(k) =
[
L
(
s

(k)
i ,Y

(k)
i ,U

(k)
i

)]1

Nk
, k = 1, 2, . . . ,K
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A(k) =
[
a
(
s

(k)
i ,Y

(k)
i ,U

(k)
i

)]1

Nk
, k = 1, 2, . . . ,K

C(k) =
[
c
(
s

(k)
i ,Y

(k)
i ,U

(k)
i

)]1

Nk
, k = 1, 2, . . . ,K

w(k) =
[
ω

(k)
i

]1

Nk
, k = 1, 2, . . . ,K

and the following vectors:

s =



s(1)

s(2)

...

s(K)


∈ RN+1 , w =



w(1)

w(2)

...

w(K)


∈ RN , Y =



Y(1)

Y(2)

...

Y(K)


∈ R(N+1)×n ,

U =



U(1)

U(2)

...

U(K)


∈ RN×m , L =



L(1)

L(2)

...

L(K)


∈ RN , A =



A(1)

A(2)

...

A(K)


∈ RN×n ,

C =



C(1)

C(2)

...

C(K)


∈ RN×p ,

where N =
∑K

k=1Nk, whereas n, m and p are the number of states,
inputs and path constraints. Therefore, the cost functional and discretized
differential constraints given in Equations (3.30) and (3.31) can be written
compactly as

J =M (x0,Y1, xf ,YN+1) +
xf − x0

2
+ w>L (3.36)

and

∆ = DY −
xf − x0

2
A = 0 , (3.37)
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Figure 3.1: Structure of composite LGR differentiation matrix with K mesh
intervals.

where ∆ ∈ RN×n is the composite defect matrix and D ∈ RN×(N+1) is
the composite LGR differentiation matrix, which has a block structure with
nonzero elements defined by the matrix given in Equation (3.32). Figure 3.1
shows the structure of the composite LGR differentiation matrix where the
mesh consists of K mesh intervals.

Finally, the discretized path constraints of Equation (3.33) and boundary
conditions of Equation (3.34) are expressed as

C ≤ 0 (3.38)

and
φ (x0,Y1, xf ,YN+1) = 0 , (3.39)

respectively.

3.4 Computation of the first-order derivatives

The NLP problem arising from the LGR pseudospectral method has the
vector of decision variables z ∈ RN(n+m)+2 and aims at minimizing

f(z) =M(z) + Γ(z) , (3.40)

where Γ =
xf−x0

2 w>L and subject to the constraint

h(z) ≤ 0 ,
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where

z =



Y:,1

Y:,2

...

Y:,n

U:,1

U:,2

...

U:,m

x0

xf



, h =



∆:,1

∆:,2

...

∆:,n

C:,1

C:,2

...

C:,p

φ1:b



.

In this section, expressions for the gradient of the NLP objective function
and the Jacobian of the NLP constraints are determined. These NLP
derivatives are obtained by differentiating the functions of the original
continuous dynamic optimization problem [49].

3.4.1 Gradient of the objective function

The gradient of the objective function (3.40) with respect to the LGR
pseudospectral NLP decision vector z is given as

∇zf = ∇zM+∇zΓ. (3.41)

The derivative ∇zM is obtained as

∇zM =

[
∇YM ∇UM ∇x0M ∇xfM

]
, (3.42)

where

∇YM =

[
∇Y:,1M ∇Y:,2M . . . ∇Y:,nM

]
, ∇UM =

[
01×Nm

]
.

(3.43)
The derivatives ∇Y:,iM, ∇x0M and ∇xfM are obtained as

∇Y:,iM =

[
∂M

∂yi(x0) 01×(N−1)
∂M

∂yi(xf )

]
, i = 1, 2, . . . , n , (3.44)
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and

∇x0M =
∂M
∂x0

, ∇xfM =
∂M
∂xf

. (3.45)

Next, ∇zΓ is given as

∇zΓ =

[
∇YΓ ∇UΓ ∇x0Γ ∇xfΓ

]
, (3.46)

where

∇YΓ =

[
∇Y:,1Γ ∇Y:,2Γ . . . ∇Y:,nΓ

]
, (3.47)

and

∇UΓ =

[
∇U:,1Γ ∇U:,2Γ . . . ∇U:,mΓ

]
. (3.48)

The derivatives ∇Y:,iΓ, ∇U:,jΓ, ∇x0Γ and ∇xfΓ are obtained as

∇Y:,iΓ =

[
xf−x0

2

{
w ◦

[
∂L
∂yi

]1

N

}>
0

]
, i = 1, 2, . . . , n, (3.49)

∇U:,jΓ =
xf − x0

2

{
w ◦

[
∂L
∂uj

]1

N

}>
, j = 1, 2, . . . ,m, (3.50)

∇x0Γ = −1

2
w>L , ∇xfΓ =

1

2
w>L . (3.51)

It is seen from Equations (3.41)-(3.51) that computing the objective
function gradient requires that the first derivatives of L be determined with
respect to the continuous states y and inputs u, whereas the first derivatives
ofM be determined with respect to y(x0), y(xf ), x0 and xf . Furthermore,
these derivatives are computed at either the N collocation points or at the
endpoints.
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3.4.2 Constraints Jacobian

The Jacobian of the constraints is defined as

∇zh =



∇z∆:,1

...

∇z∆:,n

∇zC:,1

...

∇zC:,p

∇zφ1

...

∇zφb



. (3.52)

The first derivatives of the defect constraints are obtained by

∇z∆:,l =

[
∇Y∆:,l ∇U∆:,l ∇x0∆:,l ∇xf∆:,l

]
, l = 1, 2, . . . , n, (3.53)

where

∇Y∆:,l =

[
∇Y:,1∆:,l ∇Y:,2∆:,l . . . ∇Y:,n∆:,l

]
, (3.54)

and

∇U∆:,l =

[
∇U:,1∆:,l ∇U:,2∆:,l . . . ∇U:,m∆:,l

]
. (3.55)

The derivatives ∇Y:,i∆:,l, ∇U:,j∆:,l, ∇x0∆:,l and ∇xf∆:,l (with l =
1, 2, . . . , n) are obtained as

∇Y:,i∆:,l =

[
δilD:,1:N −

xf−x0
2 diag

([
∂al
∂yi

]1

N

)
δilD:,N+1

]
, i = 1, 2, . . . , n,

(3.56)
where δil is the Kronecker delta function, and

∇U:,j∆:,l = −
xf − x0

2
diag

([
∂al
∂uj

]1

N

)
, j = 1, 2, . . . ,m, (3.57)
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∇x0∆:,l =
1

2
[al]

1
N , ∇xf∆:,l = −1

2
[al]

1
N . (3.58)

As far as the derivatives of the path constraints are concerned, one may
write

∇zC:,q =

[
∇YC:,q ∇UC:,q 0N×1 0N×1

]
, q = 1, 2, . . . , p, (3.59)

where

∇YC:,q =

[
∇Y:,1C:,q ∇Y:,2C:,q . . . ∇Y:,nC:,q

]
, (3.60)

and

∇UC:,q =

[
∇U:,1C:,q ∇U:,2C:,q . . . ∇U:,mC:,q

]
, (3.61)

where the derivatives ∇Y:,iC:,q and ∇U:,jC:,q (with q = 1, 2, . . . , p) are given
by

∇Y:,iC:,q =

[
diag

([
∂cq
∂yi

])
0N×1

]
i = 1, 2, . . . , n, (3.62)

and

∇U:,jC:,q = diag

([
∂cq
∂uj

])
, j = 1, 2, . . . ,m. (3.63)

Finally, the first derivative of the boundary conditions are given as

∇zφd =

[
∇Yφd ∇Uφd ∇x0φd ∇xfφd

]
, d = 1, 2, . . . , b, (3.64)

where

∇Yφd =

[
∇Y:,1φd ∇Y:,2φd . . . ∇Y:,nφd

]
(3.65)

and

∇Uφd =

[
01×Nm

]
. (3.66)

The derivatives ∇Y:,iφd, ∇x0φd and ∇xfφd (with d = 1, 2, . . . , b) are given
by

∇Y:,iφd =

[
∂φd

∂yi(x0) 01×(N−1)
∂φd

∂yi(xf )

]
, i = 1, 2, . . . , n, (3.67)

and

∇x0φd =
∂φd
∂x0

, ∇xfφd =
∂φd
∂xf

. (3.68)
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It is seen from Equations (3.52)-(3.68) that the NLP constraint Jacobian
requires that the first derivatives of c and a with respect to the continuous
states and inputs, whereas the derivatives of φ are determined with respect
to x0, xf , y(x0) and y(xf ). Moreover, these derivatives are computed at
either the N collocation points or at the endpoints.

3.5 Summary

In this chapter, a direct approach based on orthogonal collocation method
is presented, where a dynamic optimization problem is transcribed into a
finite-dimensional nonlinear programming problem. Both its global and
multi-stage versions have been developed by taking Lagrange interpolation
polynomials as basis functions and Legendre-Gauss-Radau points as points
where the collocation of differential constraints is performed. Eventually,
for the sake of efficient computation, explicit expressions for the first
derivatives of the resulting nonlinear programming problem arising from
the pseudospectral discretization of the continuous dynamic optimization
problem have been computed.
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Part II

Application to problems in
structural mechanics
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Chapter 4

Membrane axisymmetric
pressure vessels

4.1 Introduction

The manufacturing process required to obtain a pressure vessel strongly
constraints the choice of its shape. It follows that metal pressure vessels
are generally constituted by a cylinder of constant thickness with end caps.
Other shapes are also possible, but they are limited to simple geometries
such as cones or toroids. In short, simple shapes are compatible with
production requirements but at the same time they do not allow to optimize
important characteristics such as the mechanical resistance, the weight or
the volume of the vessel by assuming that other properties are fixed. For
these reasons, as pointed out in [6], research works concerning with pressure
vessel optimization are rare in the last decades.

Generally, literature deals with the optimization of nozzle regions and
heads of cylindrical vessels. Limiting the review to the most recent works,
the majority of studies considers numerical Finite Element (FE) integrated
approaches. For instance, in [54], the shape optimization of the head and
of the nozzle of axisymmetric pressure vessels was performed considering an
integrated approach that makes use of a multi-objective procedure aiming
to minimize the von Mises mechanical stresses in nozzle and head regions.
Optimal solutions were obtained following a numerical procedure based on
the FE method, leading to shapes different from the usual ones, which,
however, are not profitable considering standard manufacturing processes.
In [55], a numerical approach to the minimum weight design for toroidal
shells subject to internal pressure is presented and optimal shapes were
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obtained by means of particle swarm optimization and differential evolution
algorithms. In [56], the problem of shape optimization of thin-walled
pressure vessel heads was investigated. Also in this case a numerical
procedure was followed, where the shape is described with Bezier functions
and the optimal solution is obtained by using the simulated annealing
algorithm. In [57], the shape optimization was carried out to find the optimal
shape among shallow domes for mass minimization subject to external
pressure and buckling constraints. The dome was described with cubic
Bezier polynomials and results were validated with high fidelity FE analyses.
In [58], the edge effect in three unconventional dished heads of a cylindrical
pressure vessel subject to internal pressure was analytically studied and
numerically predicted by means of FE analyses.

By using the calculus of variations, the optimization of axisymmetric
membrane shells subjected to an internal pressure was proposed in [14, 15],
where both the shape and the distribution of the thickness along the
meridian were considered as design variables. The optimization problem
was aimed at minimizing the mass for given shell strength and cavity
volume. Optimal solutions were analytically obtained under the hypothesis
that the shell is made of a brittle or quasi-brittle material. The elegance
of this treatise motivated the problem reconsideration under different
load conditions and dealing with other objectives. For instance, the
formulation was extended to deal with membranes subject to cyclic loading
with initial cracks [59], under geometric constraints [60] and made of
anisotropic materials [61]. Moreover, in [13] the thickness distribution for
minimum compliance vessels of fixed material mass and meridian profiles
was analytically determined.

In this chapter, problems concerning the optimization of the meridian
shape and thickness distribution of axisymmetric membrane shells of
revolution under the actions of internal pressure are revisited and extended
taking into account constraints accounting for the strength of the shell.
Three formulations of the problem are given and the optimal design is
analytically determined. Whereas the first one aims at minimizing the
mass (objective functional) of the membrane shell once its cavity volume
(constraint) is fixed and the second one interchanges the objective functional
with the constraint, the third one concerns with the minimization of the
compliance for a given material volume. The solution of these problems
may provide prompt design charts of ample validity in closed form, yet the
proposed shapes seems unfeasible with the usual manufacturing process.
Nevertheless, this challenge has been surmounted due to availability of
last generation metal additive techniques. For this purpose, an optimized
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shape will be chosen, the geometrical parameters of a printed technological
demonstrator, constructed on the basis of that shape, will be measured and
the geometry of the manufactured vessel will be recast by an FE model which
will be used to assess the compatibility with the initial strength constraints.

4.2 Mechanics of thin-walled axisymmetric shells

Every part of a structure, of a machine or of any other object is a
three-dimensional body, no matter how small its dimensions may be.
Nevertheless, the three-dimensional theory of elasticity is not often applied
when stresses in such a body are computed. Take for instance, cables, shafts
and columns. They are typical examples of structural elements which receive
a force or a couple at one end and transmit it to the other. Yet, one does
not consider these elements as three-dimensional objects, but rather as lines
having some thickness, namely a kind of “physical lines” as opposed to the
mathematical meaning of the word. Another example consists of all those
objects which are made to bound or enclose some space, e.g., the wall of
tank, the metal hull of an airplane, or the hull of a balloon. All these objects
cannot be described by a line, but can be described by a curved surface, and
consequently their stress analysis must be built on the concept of a “physical
surface”, a surface made of some more or less solid material, capable of
transmitting loads form one part to another and undergoing consequent
deformations.

In the development of the mathematical theory of such structural
elements, it has become necessary to distinguish between plane walls (also
called plates) and all walls shaped to curved surfaces (or shells). Therefore,
one may define a shell as an object which, for the purpose of a simple stress
analysis, may be considered as the materialization of a curved surface. This
definition implies that the thickness of a shell is small compared with its
other dimensions, but it does not require that the smallness be extreme.
Mechanically, the middle surface and the thickness represent the shell in the
same way as a bar is represented by its axis and the cross section. In most
cases, a shell is bounded by two curved surfaces, commonly called as interior
and exterior faces. The middle (or neutral) surface of such a shell is defined
as the surface which passes midway between these two faces. The thickness
of the shell may be the same everywhere or vary from point to point. If
one knows the shape of the middle surface and the thickness of the shell for
every one of its points, then the shell is fully described geometrically.
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Figure 4.1: Meridian profile of an axisymmetric shell.

4.2.1 Governing equations

Consider a shell having the shape of a surface of revolution (see Figure 4.1)
and let the x-axis denote the axis of the shell. The position of the meridian
plane is specified by the angle θ, which is measured from a certain fixed
meridian plane, and the alignment of the parallel circle is defined by the angle
ϕ between the normal to the surface and the axis of rotation. Let L denote
the length of the shell and let r : [0, L]→ R+ be the function describing the
radius of the parallel circle, i.e., the distance from a point on the neutral
surface of the shell to its axisymmetric axis. Let h : [0, L] → R+ be the
function representing the thickness of the shell (not necessarily constant)
and measured along the normal to the neutral surface.

The thickness is assumed to satisfy the condition of thin-walled shells,
namely [62, 63]

hm := max
0≤x≤L

h(x)� min

{
min

0≤x≤L
rϕ(x), min

0≤x≤L
rθ(x)

}
, (4.1)

where rϕ(x) and rθ(x) are the principal radii of curvature denoting the radius
of the osculating circle and the distance, along the normal to the surface,
from the surface to the axis of the shell, respectively, at point of coordinate
x. Denoting by prime and double prime the first and second derivatives
with respect to x, respectively, principal radii of curvature can be expressed
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in terms of the meridian profile by [62, 63]

rϕ(x) =
−
(

1 + r′(x)2
)3/2

r′′(x)
, rθ(x) = r(x)

√
1 + r′(x)2. (4.2)

The shell is loaded with a constant internal pressure q and distributed
shear forces on its ends. The resultants of which are R1 at x = 0 and R2 at
x = L and are directed along the axis of the shell. If the ends of the shell
are fitted with circular end plates, then R1 = πqr2

1 and R2 = πqr2
2, where

r1 = r(0) and r2 = r(L). A shell with r1 = r2 = 0 is said to be naturally
closed and it is characterized by null shear forces, i.e., R1 = R2 = 0.

Consider, now, an element of a membrane shell. The equation for the
equilibrium of the forces acting on the element, written for the direction
normal to the neutral surface of the shell, is [62, 63]

σϕ(x)

rϕ(x)
+
σθ(x)

rθ(x)
=

q

h(x)
, (4.3)

where σϕ and σθ are the meridian and hoop membrane stresses, respectively.
The equilibrium equation for the cut-off part of the shell x < L in the

axial direction is now considered. Firstly, let s be the curvilinear coordinate
taken on the meridian profile. Hence,

ds(x) =
√
dr2(x) + dx2 =

√
1 + r′(x)2 dx. (4.4)

The force due to pressure on the infinitesimal element from 0 to x is given
by ∫ r(x)

r1

2πr(x)q dr(x) = πq
(
r(x)2 − r2

1

)
. (4.5)

Moreover, the meridian force due to the membrane stress σϕ is given by

2πr(x)h(x)σϕ(x) cos
(π

2
− ϕ(x)

)
= 2πr(x)h(x)σϕ(x)

dx

ds(x)

=
2πr(x)h(x)σϕ(x)√

1 + r′(x)2

(4.6)

Summing up these forces together with the resultant of forces on the plate
at x = 0, namely R1 = πqr2

1, and setting them equal to zero one obtains

2πr(x)h(x)σϕ(x)√
1 + r′(x)2

= πqr(x)2 (4.7)
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and consequently

σϕ(x) =
qr(x)

2h(x)

√
1 + r′(x)2. (4.8)

From Equation (4.3), the hoop stress can be written as

σθ(x) = 2σϕ(x) +
qr(x)2

2h(x)

r′′(x)√
1 + r′(x)2

. (4.9)

Example 4.1. Consider a pressurized cylindrical shell has a meridian
profile described by

r(x) = R,

where R is the radius of the middle surface. Since R is a constant, the first
and second derivative with respect to x are both zero and, from (4.2), the
two radii of curvature are consequently rθ = R and rϕ → −∞. If H denotes
the (constant) thickness of the shell, membrane stresses (4.8) and (4.9) read
σϕ = 1

2qR/H and σθ = qR/H, respectively.

Example 4.2. Consider a pressurized spherical shell has a meridian profile
described by

r(x) =
√
R2 − (x−R)2,

where R is the radius of the middle surface. Here, the two principal radii
are equal to each other, namely rϕ = rθ = R. If H denotes the (constant)
thickness of the shell, it is easy to show that the shell is uniformly stressed,
i.e., σϕ = σθ = 1

2qR/H.

4.2.2 Selected functionals and integrity constraints

In a membrane shell, two main design variables could be the meridian
profile and the distribution of the thickness along the meridian axis.
Generally speaking, one may be interested in their shape optimization by
minimizing or maximizing a given cost functional, such as the mass, the
stiffness, the total cost or even mixed performances with different weights.
Nowadays, these requirements are fervently requested in different domains,
e.g., in aeronautical and pharmaceutical applications. In fact, while the
minimization of the mass of the shell implies reduction of material weight
and consequently the reduction of its cost, the maximization of the shell
volume implies, to some extent, the maximum exploitation of the material
mass the shell is made of. These two functionals can be expressed as

M = 2π

∫ L

0
r(x)h(x)

√
1 + r′(x)2 dx (4.10)
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and

V = π

∫ L

0
r(x)2 dx (4.11)

respectively.
Parallel to the aforementioned objectives, the maximization of the

stiffness is concerned whenever shells are desired to exhibit the minimum
deformation during operational life. The stiffness is related to the strain
energy of deformation of the shell, namely the inner product between
the strain and stress tensors. However, since the shell is geometrically
assumed to be a thin object, only strains in the middle surface are
considered. Assuming thus a stress plane condition for the shell, the energy
of deformation can be expressed as [13]

Φ = 2π

∫ L

0
[εϕ(x)σϕ(x) + εθ(x)σθ(x)]r(x)h(x)

√
1 + r′(x)2 dx, (4.12)

where εϕ(x) and εθ(x) denote the meridian and hoop strains, respectively.
In case of a linearly elastic, isotropic and homogeneous material, strains are
related to the membrane stresses by Hooke’s law, namely

Eεϕ(x) = σϕ(x)− νσθ(x), Eεθ(x) = σθ(x)− νσϕ(x), (4.13)

where E is Young’s modulus and ν is Poisson’s ratio. From Equations
(4.12)-(4.13), the functional of deformation energy becomes

Φ =
2π

E

∫ L

0

[
σ2
ϕ(x) + σ2

θ(x) − 2νσϕ(x)σθ(x)
]
r(x)h(x)

√
1 + r′(x)2 dx (4.14)

Eventually, as far as the structural integrity is concerned, it can be
expressed by inequality

σeq(x) ≤ σ∗,
where σeq and σ∗ are the equivalent and allowable stresses, respectively.
Based on the nature of the employed material, different expressions for σeq
may be adopted. In particular, if the shell is made of brittle or quasi-brittle
materials, one can consider the Galileo-Rankine-Navier failure criterion as
strength condition, which simply asserts that the equivalent stress is the
maximum value between the two principal stresses σϕ and σθ. Namely

σeq(x) = max {σϕ(x), σθ(x)} ≤ σ∗, (4.15)

otherwise, in case of a ductile material, Tresca’s failure criterion can be used,
namely

σeq(x) = max{|σϕ(x)−σθ(x)|, |σθ(x)−σν(x)|, |σϕ(x)−σν(x)|} ≤ σ∗ (4.16)

where σν(x) is the normal stress to the meridian profile of the shell.
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4.3 Minimum mass vessels

Consider the following problem.

Problem 4.1. Given the length L and the isoperimetric constraint

π

∫ L

0
r(x)2 dx = V̂ (4.17)

accounting for the cavity volume of the shell, find the meridian shape r∗(x)
and the thickness distribution h∗(x) which minimize the mass

M = 2π

∫ L

0
r(x)h(x)

√
1 + r′(x)2 dx , (4.18)

subject to the constraint
σeq(x) ≤ σ∗, (4.19)

and to the boundary conditions

r(0) = r1 , r(L) = r2 , (4.20)

being σ∗, V̂ , r1 and r2 specified positive constants.

In [14], Problem 4.1 has been solved for naturally closed vessels made of
brittle materials. In the construction of the optimal solution, it is assumed
that, throughout the whole interval [0, L], inequality (4.15) turns into an
equality, i.e., either

σϕ(x) = σ∗ , σθ(x) ≤ σ∗ (4.21)

for all x (which, in what follows, is called case 1), or

σθ(x) = σ∗ , σϕ(x) ≤ σ∗ (4.22)

for all x (case 2). This statement can be justified as follows. Suppose,
by contradiction, that, on a certain segment x ∈ [x1, x2] with x1 > 0 and
x2 < L, the optimal solution {r∗(x), h∗(x)} satisfies

h∗(x) >
Nϕ(x)

σ∗
, h∗(x) >

Nθ(x)

σ∗
, (4.23)

where Nϕ and Nθ are the membrane forces corresponding to the meridian
and hoop directions. On the other segments [0, x1) and (x2, L] of the
closed interval [0, L], it is assumed that the considered optimal solution
{r∗(x), h∗(x)} satisfies either (4.21) or (4.22), i.e., it is assumed that
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inequality (4.15) turns into an equality. In this case, we construct an
admissible design solution {r̂(x), ĥ(x)} in the following way:

r̂(x) = r∗(x), ĥ(x) = h∗(x)

for x ∈ [0, x1) ∪ (x2, L], and

r̂(x) = r∗(x), ĥ(x) =
Nϕ(x)

σ∗
< h∗(x) or ĥ(x) =

Nθ(x)

σ∗
< h∗(x)

for x ∈ [x1, x2]. The design {r̂(x), ĥ(x)} is admissible because they satisfy
the strength condition (4.15) and the isoperimetric constraint imposed on
the shell volume. Note that the admissible design satisfies the equality in
(4.15) throughout the entire closed interval [0, L]. Thus, the constructed
admissible solution is a full-strength design and, for this solution, one has

M [r̂(x), ĥ(x)] = 2π

∫ x1

0
r∗(x)h∗(x)

√
1 + r′∗(x)2 dx

+ 2π

∫ x2

x1

r∗(x)ĥ(x)

√
1 + r′∗(x)2 dx

+ 2π

∫ L

x2

r∗(x)h∗(x)

√
1 + r′∗(x)2 dx

<2π

∫ L

0
r∗(x)h∗(x)

√
1 + r′∗(x)2 dx = M [r∗(x), h∗(x)].

Thus, the contradictory inequality M [r̂, ĥ] < M [r∗, h∗] proves the assertion
that, for the optimal solution, the strict equality in (4.15) is realized
throughout the entire closed interval [0, L].

4.3.1 Optimal solutions

Analytical solutions of the optimal design of a closed axisymmetric shell
with rigid end plates can be derived by means of calculus of variations (see,
e.g., [15]) and are reported in Table 4.1 for cases 1 and 2, where

α =
6V̂

πL3
− 3∆+ , α0 = −(r1 + r2)2

L2
, c = L(∆− + α) ,

∆± =
r2

2 ± r2
1

L2
, χ(x) =

√
α(α− 1)x2 + c(1− α)x+ c2/4 + r2

1 ,

and subscripts ϕ or θ denote that the constraints on the meridian (case 1)
or hoop (case 2) stress are active, respectively. Results are also depicted for
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some values of α in Figures 4.2a and 4.2b, where the normalized meridian
shape r̃ = r

L and the normalized thickness distribution h̃ = σ∗h
qL are shown for

both cases, for r1 = L/2 and r2 = L. As a particular case, when r1 = r2 = 0
the analytical expressions of the meridian shape reported in Table 4.1 lead
to oblate ellipsoids when α > 1 (case 1, see solid lines in Figure 4.3a) and
to prolate ellipsoids when α < 1 (case 2, dashed lines in Figure 4.3a). The
corresponding thicknesses are plotted in Figure 4.3b.

4.3.2 Practical indications

From the above considerations, it is evident that the parameter α is crucial
both for discriminating between case 1 (in which α ≥ 1) and case 2 (in which
α ≤ 1) and for determining the optimal shape and thickness. Therefore it is
convenient to consider it as a function of the constraints and of the geometric
data, namely

α = α(r1, r2, L, V ) .

For practical references, contour levels of the parameter α as a function
of r1 and r2 for different values of v = V

L3 can be computed, allowing the
designer to select the desired uniform-strength condition (i.e., either σϕ = σ∗
or σθ = σ∗ along the x-axis) of the membrane shell. As an example, in
Figures 4.4a and 4.4b the iso-α lines for two values of v are reported. It is
easy to see that optimal shells with σϕ = σ∗ (α > 1) are possible only when
the point (r1/L, r2/L) lies in the yellow region.
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4.3.3 Extension to ductile materials

In many applications such as aircraft systems, pharmaceutical technology
and petrochemical transportation, vessels are mainly made of ductile
materials. It is better therefore that the Galileo-Rankine-Navier yield
criterion be replaced by those for ductile materials such as Tresca’s or
von Mises’s ones. Generally, experiments suggest that the von Mises yield
criterion is the one which provides better agreement with observed behavior
than the Tresca yield criterion. However, this latter is here considered
because of its mathematical simplicity. It can be shown, under some
mild hypotheses, that the Tresca criterion can be formulated in a form
equivalent to the Galileo-Rankine-Navier criterion as follows. First of all,
since membrane shells are subjected to an internal pressure q, the stress
behavior can be thought to be always positive, at least in the (open) interval
(0, L). This reasonable assumption leads to σϕ > 0, σθ > 0 and σn . 0.
Moreover, |σn| is almost equal to the pressure value q, since no other force
is acting in this direction. According to the hypothesis of thin elastic shell
(4.1)

|σn| < σθ , |σn| < σϕ .

As a consequence,

σθ − σn > σθ − σϕ , σθ − σn > 0 > σn − σθ

and

σϕ − σn > σϕ − σθ , σϕ − σn > 0 > σn − σϕ

yielding

max{|σϕ − σθ|, |σθ − σn|, |σϕ − σn|} ≤max{σθ − σn, σϕ − σn}
≤max{σθ + q, σϕ + q} ,

(4.24)

where in the last inequality the identity σn = −q has been used. Since q is
constant, the constraint max{σθ + q, σϕ + q} ≤ σ̃ can be written as

max{σθ, σϕ} ≤ σ∗ − q , (4.25)

namely as a Galileo-Rankine-Navier criterion (4.15), provided that the (new)
allowable stress is given by σ∗−q. Therefore the results obtained in the case
of brittle materials can be easily extended to ductile materials providing
that the constraint on the maximum admissible stress is transformed into
the equivalent maximum admissible stress defined by (4.25).

53



Membrane axisymmetric pressure vessels

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

 = 1

 = 3

 = 5

 = 0.5

 = 0

 = -1

 = -2

(a)

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

1.6

2

 = 1

 = 3

 = 5

 = 0.5

 = 0

 = -1

 = -2

(b)

Figure 4.2: Normalized optimal meridian profile (a) and thickness
distribution (b) for different values for α and for r1 = L/2 and r2 = L.
Solid and dashed lines refer to cases 1 and 2, respectively.
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Figure 4.3: Optimal normalized meridian shapes (a) and optimal normalized
thicknesses (b) for some values of α. Solid and dashed lines represent vessels
of uniform meridian (oblate ellipsoids) and hoop (prolate ellipsoids) stress,
respectively.
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Figure 4.4: Iso-α lines for v = 1 (a) and v = 2 (b). Yellow zones indicate
admissible regions where case 1 is achieved.
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4.4 Maximum volume vessels

The problem concerning the cavity volume maximization once fixed the
material mass is considered in this section. It is formulated as follows:

Problem 4.2. Given the length L and the isoperimetric constraint

2π

∫ L

0
r(x)h(x)

√
1 + r′(x)2 dx = M̂ (4.26)

accounting for the material mass of the shell, find the meridian shape r∗(x)
and the thickness distribution h∗(x) which maximizes the cavity volume

V = π

∫ L

0
r(x)2 dx , (4.27)

subject to the constraint
σeq(x) ≤ σ∗, (4.28)

and to the boundary conditions

r(0) = r1 , r(L) = r2 , (4.29)

being σ∗, M̂ , r1 and r2 specified positive constants.

Hereinafter, the maximization of (4.27) is conveniently replaced by the
minimization of its negative counterpart, i.e.,

V̄ = −π
∫ L

0
r(x)2 dx . (4.30)

The properties of optimal solutions considered in [14] are still valid, since
the cost functional and the constraint are just inverted. Nevertheless,
the reasoning that yields the practical suggestions previously exposed for
Problem 4.1 leads to rather different conclusions for Problem 4.2. For
this reason it is convenient to derive optimal solutions in order to better
understand the differences between the two problems. However, unlike [14,
15] where the calculus of variations has been employed, necessary conditions
for optimality (2.17)-(2.24) can be alternatively used, yet provided that a
plant equation is suitably proposed. To this purpose, the state y(x) and the
input function u(x) are selected to be the meridian profile r(x) and its first
derivative with respect to x, respectively, i.e.,

dr(x)

dx
= u(x), (4.31)
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for case 1, while for case 2 the input function is the second derivative of the
meridian profile with respect to x, namely

dr(x)
dx = v(x),

dv(x)
dx = u(x).

(4.32)

In terms of the notations used in Chapter 2, vectors y(x) and u(x) are given
by r(x) and u(x), respectively, for the case 1 (n = m = 1, i.e., both state and
input vectors belong to R1), whereas y(x) = [r(x) v(x)] ∈ R2 and u(x) is
the input function representing the second derivative of the meridian profile
with respect to x for case 2 (n = 2 and m = 1). Moreover, x0 = 0, xf = L,
y(x0) = r1 and y(xf ) = r2, which are all specified quantities. Next, cases 1
and 2 are separately addressed.

Case 1: σϕ = σ∗ and σθ ≤ σ∗

In this case, from (4.8), the thickness distribution is given by the relation

hϕ(x) =
qr(x)

2σ∗

√
1 + r′(x)2 , (4.33)

where the subscript ϕ denotes that the constraint on the meridian stress is
active. Substituting (4.33) in the cost functional (4.30) and considering the
isoperimetric constraint on the volume of the shell (4.26), the augmented
cost functional takes the form

V a = V̄ − λM̂ =
πq

σ∗

∫ L

0

[
−σ∗
q
r(x)2 − λr(x)2

(
1 + u(x)2

)]
dx , (4.34)

where λ is the Lagrangian multiplier corresponding to the isoperimetric
constraint (4.26). From (4.34) and (4.31), the Hamiltonian function is given
by

H(x, r, u, p) = −σ∗
q
r(x)2 − λr(x)2

(
1 + u(x)2

)
+ p(x)u(x) (4.35)

where p is the costate function. On the one hand, differentiating (4.35) with
respect to u yields

∂H
∂u

= −2λr(x)2u(x) + p(x) (4.36)

and applying (2.19), one obtains

p(x) = 2λr(x)2u(x). (4.37)
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On the other hand, differentiating the Hamiltonian with respect to r

∂H
∂r

= −2σ∗
q
r(x)− 2λr(x)− 2λr(x)u(x)2 (4.38)

and applying (2.18), one obtains

dp(x)

dx
= 2

[(
σ∗
q
− λ
)

+ λu(x)2

]
r(x). (4.39)

Besides, differentiating (4.37) with respect to x

dp(x)

dx
= 2λ

[
2u(x)2 + r(x)u′(x)

]
r(x) (4.40)

and equating (4.39) with (4.40), the following necessary condition

r′(x)2 + r(x)r′′(x) = 1 +
σ∗
λq

(4.41)

is derived, and optimal meridian profiles are obtained by solving the
boundary value problem

(r(x)2)′′ = 2µ, r(0) = r1, r(L) = r2 , (4.42)

where µ = 1+ σ∗
λq . The solution of problem (4.42) can be written in the form

r(x) =
√
µx2 + ax+ r2

1 , (4.43)

where a = L(∆− − µ). From Equation (4.33) the corresponding thickness
distribution is given by

hϕ(x) =
q

2σ∗

√
µ(µ+ 1)x2 + a(µ+ 1)x+ a2/4 + r2

1 . (4.44)

Note that the optimal solutions have the same form of those reported in
Table 4.1, but with different coefficients. The parameter µ is found using the
information on the constraint (4.26), leading to the following second order
algebraic equation

µ2 − 2µ− 12

(
M̂σ∗
πqL3

− r2
1

L2

)
+ 3∆−(∆− + 2) = 0 , (4.45)

whose discriminant ∆µ is

∆µ = 4 + 48

(
M̂σ∗
πqL3

− r2
1

L2

)
− 12∆−(∆− + 2) (4.46)
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and whose solutions are

µ1,2 = 1± 1

2

√
∆µ. (4.47)

Admissible values for µ are obtained by solving the inequality σθ ≤ σ∗.
From (4.8) and (4.9), this condition can be shown to be µ ≤ −1. If both
µ1,2 satisfies this latter requirement, solution corresponding to the lowest
maximum volume, given by

Vϕ = π

[
µL3

3
+
aL2

2
+ r2

1L

]
, (4.48)

is discarded.

Case 2: σϕ ≤ σ∗ and σθ = σ∗

In this case, from (4.9), the thickness distribution is given by the relation

hθ =
qr(x)

σ∗

(
1

2
r(x)u′(x) + u(x)2 + 1

)
(1 + u(x)2)−1/2 , (4.49)

where the subscript θ denotes that the constraint on the meridian stress is
active. Substituting (4.49) in the cost functional (4.30) and considering the
isoperimetric constraint on the volume of the shell (4.26), the augmented
cost functional takes the form

V a = V̄ − λM̂ =
πq

σ∗

∫ L

0

{
−σ∗
q
− λ

[
2 + 2v(x)2 + r(x)u(x)

]}
r(x)2 dx ,

(4.50)
where λ is the Lagrangian multiplier corresponding to the isoperimetric
constraint (4.26). From (4.50) and (4.32), the Hamiltonian function is given
by

H(x, r, u, v, p1, p2) =

{
−σ∗
q
− λ

[
2 + 2v(x)2 + r(x)u(x)

]}
r(x)2

+ p1(x)v(x) + p2(x)u(x) ,

(4.51)

where p1 and p2 are the costate functions. On the one hand, differentiating
(4.51) with respect to u yields

∂H
∂u

= −λr(x)3 + p2(x) (4.52)

and applying (2.19), one obtains

p2(x) = λr(x)3. (4.53)
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On the other hand, differentiating the Hamiltonian with respect to r and v
one obtains

∂H
∂r = −2σ∗q r(x)− 4λr(x)

(
1 + v(x)2

)
− 3λr(x)2u(x)

∂H
∂v = −4λr(x)2v(x) + p1(x).

(4.54)

Moreover, differentiating (4.53) with respect to x yields

dp2(x)

dx
= 3λr(x)2dr(x)

dx
= 3λr(x)2v(x). (4.55)

Applying Equation (2.18), one obtains

4λr(x)2v(x) + p1(x) = 3λr(x)2v(x),

or
p1(x) = −λr(x)2v(x). (4.56)

Furthermore, differentiating (4.56) with respect to x yields

dp1(x)

dx
= −2λr(x)

dr(x)

dx
v(x)− λr(x)2dv(x)

dx
(4.57)

or, from (4.32),

dp1(x)

dx
= −λ

(
2r(x)v(x)2 + r(x)2u(x)

)
. (4.58)

Now, from (4.54) and applying Equation (2.18) again, one obtains

2
λσ∗
q
r(x) + 4r(x)

(
1 + v(x)2

)
+ 3r(x)2u(x) = −

(
2r(x)v(x)2 + r(x)2u(x)

)
,

which, after some manipulations, leads to the following differential boundary
value problem

(r(x)2)′′ = 2η, r(0) = r1, r(L) = r2 , (4.59)

where η = −2 − σ∗
λq . The solution of problem (4.59) can be written in the

form

r(x) =
√
ηx2 + bx+ r2

1 , (4.60)

where b = L(∆− − η). From Equation (4.49) the corresponding thickness
distribution is given by

hθ(x) =
q

2σ∗
[ξ + (1 + η)(ηx2 + bx+ r2

1)ξ−1] , (4.61)
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where

ξ(x) =
√
η(η + 1)x2 + b(η + 1)x+ b2/4 + r2

1 . (4.62)

Also here, as before in case 1, optimal solutions have the same form of
those reported in Table 4.1, but with different coefficients. The parameter
η is found using the information on the constraint (4.26), leading to the
following second order algebraic equation

η2 + η(4− 6∆+) + 12

(
M̂σ∗
πqL3

− 2
r2

1

L2

)
− 3∆2

− − 12∆− = 0 . (4.63)

whose discriminant ∆η is

∆η = (4− 6∆+)2 − 48

(
M̂σ∗
πqL3

− 2
r2

1

L2

)
+ 12∆−(∆− + 4) (4.64)

and whose solutions are

η1,2 = −(2− 3∆+)± 1

2

√
∆η. (4.65)

Admissible values for µ are obtained by solving the inequality σϕ ≤ σ∗.
From (4.8) and (4.9), this condition can be shown to be µ ≥ 1. If both η1,2

satisfies this latter requirement, the solution corresponding to the lowest
maximum volume, which is still given by (4.48), is discarded.

4.4.1 Practical indications

By comparing the previous equations with those reported in Table 4.1, it
can be observed that normalized meridian profiles and thicknesses reported
in Figure 4.2a and 4.2b for Problem 4.1 are exactly the same as for Problem
4.2 by posing α = −µ for case 1 and α = −η for case 2. Besides, from (4.45)
and (4.63), one can note that µ and η not only depend on geometrical data

r1, r2, L and on the isoperimetric constraint M̂ , as in the mass minimization
problem, but also on the values of q and σ∗, i.e.,

µ = µ(r1, r2, L, M̂ , q, σ∗), η = η(r1, r2, L, M̂ , q, σ∗) .

Moreover, if ∆µ < 0 no optimal solution exists, while if ∆µ ≥ 0 two values of
µ are computed. An analogous result holds for η. If the two values are both
admissible, then only the solution corresponding to the global maximum
should be considered.
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4.4.2 Comments on the spaces of optimal solutions

The analysis carried out above shows that the problem of the vessel of
maximum internal volume, once fixed its mass, is not exactly the dual
problem to the vessel of minimal mass, once fixed the volume of the cavity.
In fact, given r1, r2, L, q and σ∗, there is always a curve r(x) that
minimizes the mass, once fixed the internal volume, provided that some
constraints on the parameter α are fulfilled (see Table 4.1); on the contrary,
the volume maximization problem presents additional algebraic constraints
which, in turn, impose some restrictions to the set of admissible values
for the parameters µ and η. In particular, both in the case of critical
meridian stress and in the case of critical hoop stress, the designer has first
to select geometrical data such that the second order algebraic equation on
the parameter (being it µ or η) admits solutions. Then the solutions have
to be consistent with the constraint representing the critical stress, namely
µ ≤ −1 for the meridian stress and η ≥ 1 for the hoop stress.

To ease the design process one may plot, for given values of the
dimensionless parameters

m =
M̂

L3
, τ =

σ∗
q

the level lines of ∆µ, µ, ∆η and η in the plane (r1/L, r2/L), representing
the (dimensionless) magnitude of the end plates. Consider, as an example,
the case m = 0.05 and τ = 100. Level lines for ∆µ (see Figure 4.5a) and µ
(Figure 4.5b) show that for every r1 and r2 an optimal solution, such that
σϕ = σ∗, exists.

Instead, if m = 0.01 and τ = 100, not all the values for r1 and r2 admit
solution (see Figure 4.6a). Large positive values of ∆µ are approximately
in the region (r1/L, r2/L) ∈ [0, 0.35]× [0, 0.35], hence admissible values of µ
are expectedly obtained in this particular region (see Figure 4.6b, where a
suitable enlargement of the square [0, 0.35]× [0, 0.35] is shown).

Of course the same considerations can be done for the ∆η and η. Figures
4.7a and 4.7b show level lines of ∆η and η for the case m = 0.02 and τ = 100.
Note that high values of r1 and r2 admit solution (see Figure 4.7b, where a
suitable enlargement of the square [0.6, 1]× [0.6, 1] is shown).

It is important to highlight that, while in Problem 4.1 optimal solutions
are characterized by either uniform meridian or circumferential stress, in
Problem 4.2 it is possible to have an intersection between the spaces for
optimal solutions for both strength cases. This is illustrated in the following
example.

63



Membrane axisymmetric pressure vessels

40

5
0

5
0

50
50

6
0

60

60

7
0

70

80

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

-3
.4

-3.2

-3
.2

-3

-3

-3

-2.6
-2

.6

-2
.6

-2.4
-2.4

-2
.4

-2
.4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.5: Level lines of ∆µ (a) and µ (b) for m = 0.05 and τ = 100.
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Figure 4.6: Level lines of ∆µ (a) and µ (b) for m = 0.01 and τ = 100.

Example 4.3. Consider the vessel with r1 = 0.7 m, r2 = 0.9 m, L =
1 m, m = 0.05 and τ = 100. In order to have a vessel of maximum
volume with uniform meridian stress, the algebraic constraint (4.45) leads
to µ1 = −2.5107 and µ2 = 4.5107. Only µ1 is admissible and leads to
Vϕ = 3.3566 m3. On the other hand, in order to have a vessel of maximum
volume with uniform hoop stress, the algebraic constraint (4.63) leads to
η1 = 2.1918 and η2 = 1.6082. Both of them are admissible and lead to
V1θ = 1.2 m3 and V2θ = 0.8944 m3, respectively. Therefore, it is easy to
conclude that η2 corresponds to a local maximum and should be discarded.
Figure 4.8 show the meridian section of the three vessels.
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Figure 4.7: Level lines of ∆η (a) and η (b) for m = 0.02 and τ = 100.

4.5 Minimum compliance vessels

The minimum compliance problem for membrane shells of revolution are
considered in this section. Unlike Problems 4.1 and 4.2, the following
problem is formulated for fixed standard and special meridian shapes,
whereas the objective function is only the thickness distribution.

Problem 4.3. Given the isoperimetric constraint

2πρ

∫ L

0
r(x)h(x)

√
1 + r′(x)2 dx = M̃ , (4.66)

accounting for the weight of the shell, and the meridian shape r(x), find the
thickness distribution h∗(x) which minimizes the compliance

Φ =
2π

E

∫ L

0

[
σϕ(x)2 + σθ(x)2 − 2νσϕ(x)σθ(x)

]
r(x)h(x)

√
1 + r′(x)2 dx , (4.67)

being L, ν, E and ρ specified positive constants.

In order to avoid trivial solutions, the assumption that meridian profiles
prescribed by

rθ(x) 6= k , (4.68)

with k a constant, is made. This implies that cylindrical and spherical shells
are not considered, where no optimization problem can be treated since the
thickness is determined directly and uniquely from (4.66), once fixed M̃ , ρ,
L and the radius of the cylinder or the sphere.
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Figure 4.8: Meridian section of the three vessels considered in Example 4.3.

4.5.1 Optimal thickness distributions

Necessary conditions for minimizing (4.67) under geometrical constraints
(4.66) are considered and optimal the thickness distribution is derived
analytically. The augmented functional for fixed meridian shapes reads

Φa = Φ + λM̃ =

∫ L

0
G(h(x), x) dx , (4.69)

where λ is the Lagrangian multiplier and

G(h(x), x) =
2π

E
[(σϕ(x)2 + σθ(x)2 − 2νσϕ(x)σθ(x)) + λEρ]r(x)h(x)

√
1 + r′(x)2. (4.70)

From (4.2), (4.8) and (4.9) it follows

σϕ(x)2 + σθ(x)2 − 2νσϕ(x)σθ(x) =

(
qrθ(x)ψ(x)

2h(x)

)2

,

where

ψ(x) =

√(
rθ(x)

rϕ(x)
− 1

)2

+ 2ν̃

(
2− rθ(x)

rϕ(x)

)
and ν̃ = 1− ν > 0. Note that for meridian profiles for which the ratio rθ(x)

rϕ(x)

tends to zero for all values of x, ψ =
√

1 + 4ν̃ := Ψ. Consequently, Equation
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(4.70) may be recast as

G(h(x), x) =
πq2rθ(x)3

2Eh(x)

(
ψ(x)2 +

4λEρh(x)2

q2rθ(x)2

)
. (4.71)

In order to find the solution to the optimization problem more easily,
it is convenient to introduce the curvilinear coordinate t along the profile
and express r and h as function of it. Hence, meridian profiles are given in
parametric form, i.e., each of them is defined as the curve

x = x(t), r = r(t) , (4.72)

for given functions x and r and for t ∈ [t1, t2].
By using (4.72), the augmented functional (4.69) can therefore be written
as

Φa =

∫ t2

t1

F (x(t), h(t)) dt , (4.73)

with F (h, x, ẋ) = G(h, x)ẋ. The necessary condition for minimizing (4.73) is
obtained considering the particular case where the integrand of the objective
functional depends on the independent variable and the objective function
and not on the derivative of this latter. The corresponding Euler-Lagrange
equation will be (A.17), namely

∂F

∂h
= 0 , (4.74)

which yields

− rθ(x)2ψ(x)2

h(x)2
+

4λEρ

q2
= 0 (4.75)

or

h(x)∗ = ±1

2

qrθ(x)ψ(x)√
λ∗ρE

, (4.76)

where λ∗ is obtained from (4.66). The sign of the right hand side term has
to be chosen apposite to the sign of rθ, that can be positive or negative, so
that the optimal solution is always positive.

In the following, three different kinds of meridian profiles are considered:
the conical shell, the elliptic shell and the Bezier end closure (see Figure 4.9,
where a sample for each kind is depicted).
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Figure 4.9: Graphical representation of the considered meridian shapes for
Problem 4.3.

4.5.2 Three special cases

Conical shell

The meridian profile of a (truncated) conical shell of length L whose
minimum and maximum radii are r1 and r2, respectively, is given by the
parametric equations

x(t) = Lt , r(t) = a+ bt , (4.77)

where a = r1 and b = r2 − r1 and t ∈ [0, 1].
Since dr

dx = dr
dt

dt
dx , from (4.2) and (4.77) one obtains

rϕ →∞, rθ(t) =
√

1 +m2(a+ bt) , (4.78)

where m = b/L. Substituting into Equation (4.76), the optimal thickness
distribution reads

h∗conical(t) = − qΨ

2
√
λ∗ρE

√
(1 +m2)(a+ bt) . (4.79)

Note that the optimal solution is linear with respect to t. Substituting (4.79)
in (4.66), one obtains√

λ∗ρE =
πρq

3M̃m
Ψ(1 +m2)

[
a3 − (a+ b)3

]
, (4.80)
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Figure 4.10: Contour levels of g for the conical shell.

and therefore

h∗conical(t) =
3M̃

2πρ

m√
1 +m2

a+ bt

r3
2 − r3

1

. (4.81)

Substituting (4.81) in (4.67) one obtains the associated optimal
compliance

Φ∗conical =
π2Ψq2ρ

9EM̃m2
(1 +m2)2(r3

2 − r3
1)2, (4.82)

and the compliance gain g, defined as the ratio between the optimal
compliance Φ∗ and the compliance of the constant-thickness vessel of the
same mass Φc, will given by

g =
8

9

(r2
1 + r1r2 + r2

2)2

(r1 + r2)2(r2
2 + r2

1)
, (4.83)

whose minimum tends to 8/9(≈ 0.88) for either r1 → 0 or r2 → 0, as shown
in Figure 4.10 for suitable ranges of r1 × r2. The dashed line represents the
cylindrical vessels domain, where g = 1 identically (see Equation 4.68). Note
that convergent (r1 > r2) and divergent (r1 < r2) vessels have symmetric
behavior, with respect to the dashed line, in terms of g.

Example 4.4. Consider the divergent conical vessel with r1 = 100 mm,
r2 = 200 mm, L = 500 mm, M̃ = 3 kg, ν = 0.3 and ρ = 7800 kg/m3. The
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optimal thickness is an increasing linear function with h∗|t=0 = 0.5145 mm
and h∗|t=1 = 1.029 mm and the compliance gain is g = 0.9679.

Elliptic shell

In this case the meridian profile is expressed in parametric form as

x(t) = A sin t, r(t) = B cos t , (4.84)

where A and B are the semi-axes and t ∈ [0, π2 ], due to symmetry
considerations, while the principal radii are given by

rϕ(t) =
1

AB
µ3(t), rθ(t) =

B

A
µ(t). (4.85)

where
µ(t) =

√
A2 cos2 t+B2 sin2 t .

From (4.85), Equation (4.76) gives

h∗ellipse(t) =
Bq

2A
√
λ∗ρE

√
η(t), (4.86)

where

η(t) =
(B2 −A2)2 cos4 t

µ2(t)
+ 4ν̃(A2 −B2) cos2 t+ 2ν̃B2 .

The Lagrangian multiplier λ∗ can be obtained substituting (4.86) in (4.66),
leading to √

λ∗ρE =
πρqB2

AM̃
I1, (4.87)

where I1 =
∫ π/2

0 µ(t)
√
η(t) cos t dt and therefore

h∗ellipse(t) =
M̃

2πρBI1

√
η(t) . (4.88)

Substituting (4.88) in (4.67) one obtains the associated optimal
compliance

Φ∗ellipse =
π2q2ρB4I2

1

EM̃A2
(4.89)

and the compliance gain in comparison with that of the constant-thickness
vessel of the same mass is given by

g =
I2

1

I2I3
, (4.90)
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Figure 4.11: Optimal thickness distribution for the prolate (solid line) and
oblate (dashed line) vessels considered in Example 4.5.

where I2 =
∫ π/2

0 µ(t) cos t dt and I3 =
∫ π/2

0 µ(t)η(t) cos t dt.

Contour levels of g are depicted in Figure 4.12. The dashed line indicates
the spherical vessel, where no optimization of the thickness distribution
has been performed according to (4.68), namely g = 1. It is worth to
draw a special attention to the absence of symmetry in terms of compliance
reduction of prolate (A > B) and oblate (A < B) vessels with respect to
the dashed line. Optimal oblate vessels show more significant compliance
reduction than prolate vessels, both with respect to constant-thickness
counterparts of the same mass. The following example is performed in order
to highlight this result.

Example 4.5. Consider the prolate and oblate vessels with semi-axes
400 mm and 100 mm, M̃ = 3 kg, ν = 0.3 and ρ = 7800 kg/m3. The
distribution of optimal thicknesses given by Equation (4.88) is shown in
Figure 4.11. While g = 0.9573 in the prolate vessel (A = 400 mm and
B = 100 mm), g reaches 0.7416 in the oblate one (A = 100 mm and B =
400 mm), demonstrating that oblate vessels with variable thickness presents
a significant compliance reduction with respect to its constant-thickness
counterpart (see Figure 4.12).
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Figure 4.12: Contour levels of g for the elliptic shell.

Bezier curve end closure

Cylindrical pressure vessels can be closed at the ends by different types of
closures. Traditional end closures, for instance the convex torispherical,
ellipsoidal or hemispherical heads, present a discontinuity of meridian
curvatures at the junction, disturbing the membrane stress state and
influencing the strength of such structures. To avoid these latter
disturbances, nonstandard designs for end closures have been recently
gaining much attention. In particular, end closures described by generalized
ellipses, Bezier curves, Cassini curves and Booth curves are employed.

For brevity, only Bezier curve end closure are considered. The parametric
description of this latter in R2 is defined by

B(t) =

n∑
i=0

n!

i!(n− i)!
ti(1− t)n−iPi , (4.91)

where t ∈ [0, 1], P0,..., Pn are called the control points and n is the order of
the curve. The first and last control points are always the end points of the
curve; however, the intermediate control points (if any) generally do not lie
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on the curve. In the following, a Bezier curve defined by a polynomial form

B(t) =

n∑
j=0

Cjt
j , (4.92)

where

Cj =
n!

(n− j)!

j∑
i=0

(−1)i+jPi

i!(j − i)!

is considered. Letting Cj = (ξj , ρj) for j = 0, 1, ..., n, the projection of the
curve B(t) on the x- and r- axes leads to the two parametric polynomials

x(t) =

n∑
j=0

ξjt
j , r(t) =

n∑
j=0

ρjt
j , (4.93)

with t ∈ [0, 1]. Denoting by ẋ(t) = dx(t)
dt and ṙ(t) = dr(t)

dt and omitting the
dependence of t, the principal radii are given by

rθ =
r

ẋ

√
ẋ2 + ṙ2 , rϕ = −

(
ẋ2 + ṙ2

)3/2
ẋr̈ − ṙẍ

, (4.94)

and substituting in (4.76) one obtains

h∗Bezier =
qr

2ẋ
√
λ∗ρE

√
ẋ2 + ṙ2

√
β2 + 2ν̃(β + 1) , (4.95)

where

β =
r(ẋr̈ − ṙẍ)

ẋ(ẋ2 + ṙ2)
.

Substituting in (4.66) and after basic arrangements one obtains

h∗Bezier =
M̃

2πρJ1

r

ẋ

√
ẋ2 + ṙ2

√
β2 + 2ν̃(β + 1) , (4.96)

where

J1 =

∫ 1

0

r(t)2

ẋ(t)

(
ẋ(t)2 + ṙ(t)2

)√
β(t)2 + 2ν̃(β(t) + 1) dt .

Substituting (4.96) in (4.67) one obtains the associated optimal compliance

Φ∗Bezier =
π2q2ρJ1J2

EM̃
, (4.97)

where

J2 =

∫ 1

0

r(t)2[β(t)2 + 2β(t)(1 + ν̃) + 1 + 4ν̃]

ẋ(t)
√
β(t)2 + 2ν̃(β(t) + 1)

dt .
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Example 4.6. Consider the end closure of M̃ = 2 kg, ν = 0.3 and ρ =
7800 kg/m3, whose meridian profile is described by a quadratic Bezier curve
given by (see Figure 4.13a where the curve is depicted together with the
standard elliptic end closure with A = 80 mm and B = 180 mm)

x(t) = −80t2 + 160t , r(t) = −180t2 + 180 . (4.98)

Optimal thickness distribution is shown in Figure 4.13b (solid line) and
compared to the optimal thickness distribution in case of an elliptic end
closure (dashed line) of the same mass.

Despite of the practical similitude of the meridian profiles in Example 4.6
(Figure 4.13a), note their optimal thicknesses are totally different (Figure
4.13b).

4.6 Towards printed prototypes: Preliminary
results

It is worth noting that optimal thicknesses associated with the previous
problems continuously vary, in contrast with that usually obtained by
means of optimization numerical algorithms, where the thickness varies
in step-wise fashion. This may represent an engineering challenge from
the realization viewpoint, since the proposed shapes seems unfeasible with
the usual manufacturing process. Nevertheless, the availability of last
generation metal additive manufacturing techniques shed a new light on
this approach. These novel manufacturing techniques indeed have led to
many opportunities in fabricating complex and novel products. In addition,
the increase of printable materials and the emergence of novel fabrication
processes continuously expand the possibility to create complex geometries
with acceptable dimensional precision and with reduced defects.

In [64], the state-of-the-art developments in the design for additive
manufacturing (AM) and structural optimization was presented. Moreover,
topology optimization by means of density-based approaches, cellular
structures and graded lattices were thoroughly reviewed. It was finally
observed that the main challenge for the future is the development of
optimized solutions for common engineering problems characterized by
low computational costs. In the more specific field of pressure vessels
design and optimization, additive technology has been rarely used. In
[65], AM was used to construct test capsule made of a mixture of glass
and nylon particles successively coated. Nevertheless, an optimized design
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Figure 4.13: Meridian shapes (a) and optimal thickness distributions (b)
of the second-order Bezier cure (solid) and elliptic (dashed) end closures
considered in Example 4.6.
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was not performed and the capsule exhibited the usual cylindrical shape
with hemispherical ends. The use of AM to obtain pressure vessel of
unconventional shape with reduced weight was proposed in [66]. In that
case, a manual trial and error procedure was adopted by using a commercial
FE code in which material in the lower and higher stressed regions was
removed and added, respectively. This method showed promising results
in terms of weight reduction. However, the proposed method is not an
optimization procedure and moreover the feasibility of the proposed vessel
geometries was not verified by manufacturing a demonstrator. Recently,
the use of AM to re-design a pressure reducer valve integrated into an
end-cap as a subcomponent of composite pressure vessel was proposed in
[67]. Prototypes were constructed and relationship between manufacturing
process and required geometrical tolerances were analyzed.

In agreement with the aim of performing only a preliminary feasibility
study, a technological demonstrator consisting of a halved minimum
mass vessel without nozzles is chosen and printed by metal additive
manufacturing. In particular, among the possible geometries, a prolate
ellipsoid with α = 0.4, L = 150 mm, (σ∗ − q)/q = 9 and a thickness
distribution fulfilling case 2 and condition (4.1) is chosen. This solution was
chosen in order to characterize the geometry of the printed halved ellipsoid
and to verify whether the manufacturing process is adequate to obtain the
desired thickness distribution. Although no functional testing of a complete
vessel has been planned at this preliminary stage, the geometry of the real
manufactured vessel will be recast by a finite element (FE) model which will
be used to assess whether its geometry respects integrity constraints.

4.6.1 3D printing of the technological demonstrator

The production of the conceptual prototype was performed with the
selective laser melting (SLM) technology. Combining high accuracy with
high mechanical performance, this technique is one of the most used AM
technologies for metals. The material used to produce the prototype was
316 L stainless steel, which might be suitable for this application due to
its high corrosion-resistance, excellent strength and high ductility. The
characteristics of the 316 L powder are given in Table 4.2 and Figure 4.14a
The powders were characterized by scanning electron microscope (SEM)
(see Figure 4.14b). The grains had a spherical shape, which is typical of
gas-atomized powder. The particle size distribution had a slight positive
skewness with a median diameter value of 28.64 µm, while the 10th and
90th percentile were 18.27 µm and 44.93 µm, respectively. It is worth noting
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Element Fe Cr Ni Mo Mn Si P C S

% weight Bal. 17.7 12.6 2.35 1.14 0.61 <0.045 0.025 0.004

Table 4.2: Chemical composition of the 316 L stainless steel used for the
prototype production.

that according to [68], 316 L stainless steel samples obtained by SLM show
an isotropic behavior up to yielding. Such result confirms the linearity
and isotropy assumptions made on the material in the formulation of the
optimization problem.

Concerning build job preparation, the CAD file was converted to
Standard Triangulation Language (STL) format and then imported in
Magics RP software for STL model correction, part positioning and
orientation, support structures generation and slicing operation. A view
of the build job can be seen in Figure 4.15a. It is worth noting that the
part was oriented with an angle of 45◦ with respect to the build platform
(see Figure 4.15b). This choice was suggested by experience in order to
achieve a good compromise between the required production time and the
expected surface quality. The total height of the part is indeed reduced
with respect to the vertical orientation. As a consequence, the total number
of powder layers required to complete the job are considerably reduced as
well. Furthermore, with the selected orientation, no supports were needed
in the inner surface of the component. However, in case of 3D-printing of
the complete vessel, some internal support structures should be added.

In a preliminary phase a bulk sacrificial sample was 3D printed by
adopting the same process parameters used for the production of the semi
vessel. Archimedes’ tests were then carried out on this sample, proving its
high relative density (about 99.9%). The absence of large pores or voids was
also assessed by analyzing its microstructure through a cross section view
that was aligned with the vertical direction and that was orthogonal to the
laser beam trajectories, which is reported in Figure 4.16a. The obtained
final prototype is shown in Figure 4.16b.
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(a)

(b)

Figure 4.14: Progressive and cumulative distribution (a) and SEM view of
the 316 L stainless steel powder (b).

(a) (b)

Figure 4.15: View of the build job created with Magics RP (a) and view of
the component after production (b).
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(a) (b)

Figure 4.16: Metallographic analysis of a sacrificial AISI 316 L sample (a)
and final prototype of the optimized semi vessel (b).

4.6.2 Scanner measurement and reverse engineering

A 3D laser scanner measuring system (Hexagon RS5 Laser Scanner) was
then used to perform a quantitative analysis of the error induced by the
manufacturing process on the geometry of the prototype (see Figure 4.17a).
The work piece topography was captured with the 3D scanner to describe
the vessel geometry by a cloud of points (see Figure 4.17b, where about 18
million points were captured and successively elaborated by means of the
ad-hoc codes to assess the accuracy of the manufacturing process).

In order to be coherent with the notation proposed in the previous
sections, in the following measurement results are presented by considering
different sections of the vessel, identified by the azimuth angle θ ∈ [0, π]
describing a plane passing through the x-axis of the shell (see Figure 4.18).
For each section the position of a generic point of the profile is defined by
means of the x coordinate or considering the angle γ ∈ [0, π] defined between
the x-axis and the line passing through O′ lying on the plane defined by θ.

Figure 4.19a shows the measured points superimposed to the theoretical
profiles (internal and external) for θ = 0 and θ = π, while Figure 4.19b
reports the corresponding normalized error er,m = em/L measured at the
internal and external surfaces, where em is the difference between theoretical
and real profiles. Results are quite satisfactory: Only close to the ends an
error of 0.4% of the axial length L is observed, whereas the remaining portion
presents an error less than 0.2%. Similar results are obtained in the case
θ = π/2 (see Figures 4.20a and 4.20b).
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(a) (b)

Figure 4.17: Scanner measurement system (a) and its output consisting in
the cloud of points describing the vessel geometry (b).

Figure 4.18: System of reference adopted to represent the scanner
measurements.
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Figure 4.19: Measured points for internal and external theoretical profiles
(a) and associated normalized errors er,m (b) corresponding to θ = 0, π.
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Figure 4.20: Measured points for internal and external theoretical profiles
(a) and associated normalized errors er,m (b) corresponding to θ = π/2.
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Figure 4.21: Thickness normalized error er,th for the three considered
sections (θ = 0, π/2, π).

Finally, in Figure 4.21 the thickness normalized error er,th is reported,
which is defined as

er,th =
(er,me − er,mi)

hmax
L (4.99)

where er,me and er,mi are the meridian profile normalized errors associated
with the external and internal surfaces, respectively, and hm is the maximum
value of the theoretical thickness, given by Equation (4.1). It can
be observed that in this case the normalized error is obviously higher,
nevertheless it is always lower than 8%. Comparing the three sections, a
similar behavior is observed, with maximum positive errors close to the left
end, that remain quite constant up to the middle point and subsequently
decrease up to a negative error around 3%.

In the light of the above results, the theoretical optimization procedure
described in the previous sections can be successfully implemented by
using an additive manufacturing process. Nevertheless, for a final check,
a linear elastic FE analysis by considering the real geometry of the obtained
vessel prototype was also carried out. As Figure 4.21 clearly shows, the
errors pattern is almost uniform with respect to the angle θ. It can be
concluded that the final shape of the actual vessel is almost axisymmetric
with respect to the x-axis and thus a plane axisymmetric FE model can
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Figure 4.22: FE results for hoop (a), meridian (b) and normal (c) stresses
in the vessel prototype.

be adopted. In particular, the internal and external actual profiles were
interpolated with a series of high order spline functions and a mapped mesh
made with axisymmetric quadrilateral element with 8 nodes was generated.
Convergence is fully achieved by using 4 elements along the thickness with
an aspect ratio always lower than 1.2. A model with 2806 nodes and 800
elements was finally obtained. Figure 4.22 shows the hoop, meridian and
normal stresses in absolute values when the applied pressure is 50 MPa, while
Fig. 4.23 reports the results of a comparison between the results obtained
with the theoretical profile and the real one in terms of the normalized stress
deviation defined as

∆σk =
σtheo,k − σreal,k

σtheo,k
, k = θ, ϕ (4.100)

where σtheo,k and σreal,k denote stresses obtained at the neutral surface with
the theoretical and real profiles, respectively.

Figure 4.23 shows the comparison between theoretical and FE results
in terms of hoop and meridian stresses which were assessed considering the
nodes corresponding to the neutral surface. Such stress values are slightly
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Figure 4.23: Normalized stress deviation between FE and theoretical results.

lower (less than 2%) with respect to those occurring at the inner surface
and thus this approach was adopted, even if less conservative from a design
point of view, to be coherent with the optimization stress constraints. In the
actual structure also the meridian stress σϕ shows a quite moderate deviation
from the theoretical values, with a normalized error always lower than
1.5% (Figure 4.23, plot with rhombi). Nevertheless, the most significant
results concern the hoop stress σθ. As already pointed out, the optimization
criterion was in this case implemented according to case 2 condition, which
should guarantee the uniformity of the hoop stress along the whole domain.
As Figure 4.23 clearly shows (see the plot with circles), this condition is
very well fulfilled, with a maximum normalized error (with respect to the
theoretical value) of about 3.5%, but with a deviation from the mean value
along the profile of less than 0.5%.

The achieved results are promising, albeit many problems are still open
and require further investigation. First of all, in order to pursue the final
objective of obtaining the complete vessel, the obvious solution of joining
together two halves has to be compared with the more challenging approach
of making use only of AM technologies. In the latter case, however, an
internal support structure should be added and its influence, both in the
mechanical behavior and in the inevitable weight augmentation and cavity
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volume reduction, has to be taken into account.
Another important aspect to be considered is the need of integrating

the optimized vessel with nozzles. This aspect could be solved by a local
numerical optimization procedure, as illustrated in [69]. Besides, an accurate
characterization of the mechanical properties of the AM material under
cyclic loading conditions would be also required, e.g., by studying the
microstructure and porosity induced by the technological process. Some
data have been recently made available in literature, e.g., [70]. Moreover,
the development of suitable surface post-treatment is also in progress (e.g.,
see [71]) to improve the irregular surface morphology.

Finally, many technological constraints still limit the applicability of the
proposed procedure from an industrial viewpoint. Main reasons are the
limitation of component dimensions due to the actual size of the powder
bed, the need of additional supporting structures for external or internal
part surfaces having an inclination below 45◦ with respect to the building
platform, the long production times and the high production costs associated
with modern metal AM techniques.

4.7 Summary

In this chapter, three optimization problems concerning membrane shells of
revolutions have been formulated and solved. The main decision variables
were the meridian profile and/or the thickness distribution, whereas the
material mass, cavity volume and compliance play interchangeably the
roles of cost functionals and constraints. The application of calculus of
variations theorems and Pontryagin’s Principle luckily led to closed form
solutions and prompt design charts of ample validity. Necessary conditions
for optimality revealed that optimal solutions depend on geometrical and
load considerations. These aspects have been thoroughly discussed for
all the encountered problems. Although original formulations take into
account vessels made of brittle or quasi-brittle materials, it has been
also shown that the extension to cases where ductile materials are used
can be equivalently handled. Furthermore, an optimized solution has
been chosen and preliminary results towards the manufacturability of the
resulting nonstandard forms by means of metal additive technology have
been discussed. Eventually, the technological demonstrator has been subject
of scanning measurement, finite element based validation and rugosity
evaluation, showing promising results.

86



Chapter 5

Straight and curved elastic
beams

5.1 Introduction

Beams are among the most important classical structural components and
are, therefore, subject of many well established analytical results, as well
as design methods, available in the literature. In engineering, models of
beams are of several types, depending on the nature of boundary conditions
and applied loads. Although many classical textbooks treat the statically
determinate (or isostatic) case, many researchers still investigate their static
and dynamic behaviors, straight and initially curved [72, 73, 74, 75, 76, 77].
As far as straight beams are concerned, the search for the optimal shapes of
beams under various loading conditions has a relatively long history dating
back at least to the Sixties [78, 79]. Candidates for objective functionals and
constraints vary from the weight, stiffness, to buckling loads and maximum
induced stresses.

For instance, solutions to weight-constrained stiffness maximization are
commonly referred to as Michell structures [80]. The stiffness maximization
may possibly be attained either by taking the maximum deflection or the
mean compliance as goal functionals to be minimized. Notwithstanding an
idea on the stiffness is more likely given by the former approach, many good
results in the literature have been attained by considering the latter (see,
e.g., [81, 82, 83, 84, 85]). In [86], in fact, the former objective functional has
been considered for cantilever beams and it has been shown that the free end
deflection decreases by an extra 10% in comparison with the one obtained
by minimizing the mean compliance. Yet, optimal solutions associated
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Figure 5.1: An illustrative cost-displacement diagram for three possible
solutions for a cantilever beam loaded with a force at the free end.

with the mean compliance minimization problems are uniform along the
beam axis as reported in [87] for weight-constrained cantilevers subject to
distributed loads. Moreover, it has been shown that optimal cross sectional
area distributions are equivalent to those obtained by (weight-constrained)
maximum stress minimization.

Currently, the above mentioned structural optimization problems are
solved mostly by using topology optimization (TO), which relies on
FE simulations to evaluate the design performance. The design is
optimized using either deterministic mathematical programming techniques
or non-deterministic algorithms (such as neural networks or genetic
algorithms) [88]. The computational burden associated with TO is often also
accompanied with serious manufacturing issues due to the free forms that
naturally occur [22]. Actually, in some cases the results can be implemented
using only additive manufacturing. These considerations are highlighted
in Figure 5.1 (inspired from [89]) where a cost-performance diagram for
three possible solutions of a simple cantilever beam subjected to a force at
the free end is shown: The three candidates have the same mass but the
candidate with the best performance has the highest realization cost. To
bypass these issues, different solutions may be adopted. One of the classical
approaches is to consider nonuniform beams, namely beams with variable
bending rigidity along the beam axis which may provide a better or more
suitable distribution of mass and strength and therefore can meet special
functional requirements. Herein lies the idea of variable cross sectional area
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leads to a structure that represents a trade-off between performances and
realization costs. Exploiting the one-dimensional nature of the beam, the
resulting optimization problem can be addressed and may be analytically
solved. Similar research can be found in the literature even though they
impose different objectives and constraints [90, 91] or using multi-objective
optimization [92, 93]. In the first part of this Chapter, Euler-Bernoulli
isostatic beams subject to linearly distributed loads are considered, where
the objective is to maximize the structural stiffness by reducing the mean
compliance, which is computed as a distributed cost associated with the
elastic energy along the beam axis. Optimal solutions are obtained by means
of calculus of variations, constituting a peculiar advantage of the analytical
approach for problems in mechanics as well as benchmark examples when
employing TO for beam-like structures.

Another cost functional may be the first mode buckling load for elastic
beams. The problem of determining the shape of compressed beam which
has the largest Euler buckling load was formulated by Lagrange in 1773.
In [94], a solution for a simply supported beam of circular cross section
has been proposed, yet it did have points where the cross section vanishes,
inducing infinite stresses in these points. Apparently, it seems that the first
work which went beyond this theoretical solution is in [95], proposing a more
practical one, where a constraint on the minimal value of the cross sectional
area so that given limiting stresses are not exceeded is added. Since then,
many results of structural optimization in the realm of beam theory have
been addressed considering different load and boundary conditions [96, 97,
98, 99, 100, 101, 102, 103, 104, 105]. Besides, other works abandoned elastic
constitutive laws in favor of simpler expressions for resultant forces and
moments in terms of extension, curvatures and torsion. According to this
line, many attempts posed Lagrange’s problem (and other variants) within
a generalized plane theory, namely including shear and compressibility
effects [106] and when Eringen’s nonlocal elasticity hypothesis is taken into
account [107, 108]. As far as necessary conditions for optimal solutions
are concerned, Pontryagin’s Principle and calculus of variations have been
considerably exploited. However, the cumbersomeness of the resulting
systems of equations hinders one to derive analytical solutions, so that
the use of numerical integration methods results mandatory. Hence, the
orthogonal collocation method previously described in Chapter 3 is used for
the determination of the solution numerically.

The third part concerns with the weight minimization of curved beams
through a paradox recently stated and formulated in [109] for curved beams
subjected to bending moment and normal force. The paradox consists in
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Figure 5.2: Generic nonuniform beam with partial linear distributed load.
Definition of parameters a, wa and wl.

the fact that by laterally removing material from section zones close to
the neutral axis, not only an obvious reduction of the beam mass can be
obtained, but also an unexpected, though technically negligible, reduction
of the stress. Such zones constitute a strip, whose delimiting radii can
been evaluated analytically. This approach gave rise to an appreciable mass
diminution (about 10%) and, at the same time, to a stress reduction as
well, although technically less evident (about 1%). In a subsequent work
[110], the demanding achievement of a concurrent stress and mass reduction
is relaxed in favor of two weaker requests and applied to the optimization
of a crane hook, showing a mass reduction up to 25%, without altering
significantly the stress. Here, the assumption of a lightening pocket around
the neutral axis is made. To further broaden the horizon of the theory, the
simultaneous presence of bending moment and normal force is considered.
Based on the linearized version of the objective functional, solutions for
the radii delimiting the lateral groove are derived in closed form, whose
results are compared to those obtained in [110] for the same crane hook and
compared to FE solutions.

5.2 Minimum compliance straight beams

Consider a straight beam of length l (see Figure 5.2) made of elastic, linear,
homogeneous and isotropic material and subject to a linearly distributed
load along its axis. Suppose that the cross sectional area is not fixed and
constant but, on the contrary, is allowed to vary along the beam axis. Indeed,
it is the design variable and has to be determined in order to minimize, for
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Figure 5.3: Considered cross sectional areas. Top: Solid sections; bottom:
Hollow and rectangular sections.

a given load distribution, the compliance of the beam.
The compliance cost functional represents the elastic energy of the beam,

which can be expressed as the work of external dead loads. In linear
elasticity, under the assumption of zero normal forces, zero shear forces
and zero torsional moments, the overall compliance Φ of a beam is given by
the sum of the stress and strain elastic energies, namely [82]

Φ =

∫ l

0

M(x)2

EI(x)
dx , (5.1)

where E is Young’s modulus and M(x) and I(x) are the bending moment
and the moment of inertia, respectively, at a distance x from one of the
extremes of the beam. While M(x) depends on the load condition and,
for a given load distribution, is known, I(x) depends on the sectional area
A(x). To simplify the reasoning, the seven sections depicted in Figure 5.3
are considered. The shapes on the top are naturally associated with a
one-dimensional problem, since the decision variable is the value of the edge
denoted by ω (for the square and the equilateral triangle) or the diameter
(for the circle). To keep the problem one-dimensional also for the shapes on
the bottom, we suppose that one of the characteristic quantities, ω, is fixed
while the other one, i.e., the width b of the rectangle and the thickness t of
the hollow shapes, is the decision variable. For these sections, the relation
between the moment of inertia and the area can be written as [82]

I(x) = γ cA(x)n , (5.2)

where γ, c and n are constants whose values are reported, for the seven
sections, in Table 5.1.
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Section type γ c n

Square 1/12 1 2

Circular 1/4π 1 2

Triangular
√

3/18 1 2

Rectangular 1/12 ω2 1

Hollow square 1/6 ω2 1

Hollow circle 1/8 ω2 1

Hollow triangular 1/12 ω2 1

Table 5.1: Values of γ and n for the cross sections in Figure 5.3.

Substituting (5.2) in (5.1) and rearranging one obtains

Φ =
1

γ cE

∫ l

0

M(x)2

A(x)n
dx .

In addition, the (fixed) material volume is given by

V =

∫ l

0
A(x) dx .

As previously mentioned, the beam is subject to a linearly distributed
load along its axis. More precisely (see Figure 5.2), the unit load (force per
length), denoted by w, is considered to be zero in an interval [0, a], with
a ∈ [0, l], and to vary linearly from w(a) = wa to w(l) = wl. Moreover, RA
and RB are the vertical end reactions at the left and right ends, respectively,
and are positive upward; MA and MB are the reaction end moments. All
moments are positive when producing compression on the upper portion of
the beam cross section. All applied loads are positive as shown in Figure 5.2.

As far as the boundary conditions are concerned, the following analysis
is limited to the following three cases:

C: Cantilever beam (left-end free, right-end fixed, see Figure 5.4, left);

SS: Simply supported beam (see Figure 5.4, middle);
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GS: Left-end guided and right-end simply supported beam (see Figure 5.4,
right);

Figure 5.4: Boundary conditions: Cantilever C (left), simply supported SS
(middle) and left-end guided and right-end simply supported GS (right).

Considering Clebsch’s approach, the bending moment, expressed in
terms of the reaction and of the moment at the left end, is given by [111]

M(x) = MA +RAx−
wa
2
〈x− a〉2 − wl − wa

6(l − a)
〈x− a〉3 , (5.3)

where 〈x− a〉 is the Macaulay bracket defined by

〈x− a〉 =

 x− a , if x ≥ a ,

0 , otherwise.
(5.4)

The value of the left-end reaction RA and left-end moment MA depend on
the boundary conditions. In particular [111]
• for the C beams RA = MA = 0;
• for the SS beams, MA = 0 and

RA = wa(l − a)2/(2l) + wl(l − a)2/(6l) ; (5.5)

• for the GS beams RA = 0 and

MA = wa(l − a)2/2 + wl(l − a)2/6 . (5.6)

For convenience, hereinafter the load configuration is represented by the
pair (α, ξ), where α = a/l and ξ = wa/wl. As an example, (0, 0) and
(0, 1) refer to triangularly and uniformly distributed loads, respectively.
Once defined the pair load configuration (α, ξ), the kind of beam (C, SS
or GS) and the type of the cross section (γ, c and n), the mean compliance
minimization problem can be formulated as follows:
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Problem 5.1. Given the length l and the isoperimetric constraint∫ l

0
A(x) dx = Ṽ , (5.7)

accounting for the volume of the beam, find the optimal cross sectional area
distribution A∗(x) which minimizes the compliance functional

Φ =
1

γ cE

∫ l

0

M(x)2

A(x)n
dx , (5.8)

for specified load configuration parameters (α, ξ) and for the aforementioned
different boundary conditions (C, SS and GS).

Problem 5.1 is solved analytically by considering the calculus of
variations. It is worth noting that the nature of the applied loads as well as
the boundary conditions ensures that the bending moment is a continuous
function along the beam axis, avoiding abrupt changes to the cross section.

5.2.1 Optimal area distributions

Using Equations (5.8) and (5.7), the augmented functional may be written
as

Φa = Φ− λṼ =

∫ l

0
F (x,A(x)) dx , (5.9)

where λ is the Lagrangian multiplier associated with the isoperimetric
constraint on the volume (5.7) and

F (x,A(x)) =
M(x)2

γ E cA(x)n
− λA(x) . (5.10)

The necessary condition for minimizing (5.10) is obtained considering the
particular case where the integrand of the objective functional depends on
the independent variable and the objective function and not on the derivative
of this latter. The corresponding Euler-Lagrange equation will be (A.17),
namely

∂F

∂A
= 0 , (5.11)

leading to the following algebraic equation

λ γ E cA(x)n+1 + nM(x)2 = 0 , (5.12)
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or

A∗(x) =

[
−nM(x)2

λ∗ γ E c

] 1
n+1

. (5.13)

The value λ∗ appearing in (5.13) is the only value of λ that, when using
(5.12) (or (5.13)) in (5.7) allows to fulfill the identity. More precisely, λ∗ is
such that

1

(λ∗)
1

n+1

∫ l

0

[
−nM(x)2

γ E c

] 1
n+1

dx = V , (5.14)

which, solved for λ∗, yields

λ∗ =

(
1

Ṽ

∫ l

0

[
−nM(x)2

γ E c

] 1
n+1

dx

)n+1

. (5.15)

Substituting (5.15) into (5.13) one obtains the final expression for the
optimal cross-sectional area:

A∗(x) = Ṽ M(x)
2

n+1

(∫ l

0
M(x)

2
n+1dx

)−1

, (5.16)

or, introducing the normalized coordinate x̃ = x/l and the normalized area
Ã∗ = A∗ l/Ṽ ,

Ã∗(x̃) = x̃
2

n+1

(∫ 1

0
M(x̃)

2
n+1dx̃

)−1

. (5.17)

Equation (5.17) yields the explicit value of the optimal cross-sectional
area provided that the integral appearing in the denominator at the
right-hand side term can be solved in closed-form. Since, as shown in the
following, the bending moment for C, SS and GS beams is a polynomial
function of x̃, a closed-form solution can easily be obtained, in all the three
cases, when n = 1. When n = 2, however, the integral can be solved
numerically thus providing an explicit practical value of the optimal area.

Analytical and closed-form solutions for C beams

In C beams both RA and MA are identically zero. In addition, it is easily
shown that reasonable solutions are associated with a value of a equal to zero,
otherwise the cost functional vanishes for all x ∈ [0, a], and consequently
A(x) is zero in this interval, which is an infeasible, although theoretically
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Figure 5.5: Optimal area distributions for C beams with n = 1 (solid lines)
and n = 2 (dashed lines), considering ξ = 0, 1, 2.

admissible, solution. The corresponding bending moment is therefore given
by

M(x̃) = −wll
2

2

(
ξx̃2 +

1− ξ
3

x̃3

)
, (5.18)

which, substituted into (5.17), provides the optimal solution. When n = 1
the integral in (5.17), after the natural simplification between numerator
and denominator, reduces to

ξ

∫ 1

0
x̃2dx̃+

1− ξ
3

∫ 1

0
x̃3dx̃ =

ξ

3
+

1− ξ
12

=
1 + 3ξ

12
. (5.19)

Finally, the optimal cross-sectional area is

Ã∗C,n=1(x) =
12

1 + 3ξ

(
ξx̃2 +

1− ξ
3

x̃3

)
, (5.20)

which is represented in Figure 5.5 for ξ = 0, 1, 2 with solid lines. For cross
sections with n = 2, normalized optimal solutions are given substituting
(5.18) in (5.17). The integral term has been computed numerically and
optimal solutions are represented in Figure 5.5 with dashed lines. It is
worthwhile to note that optimal solutions vanish at the free end, evincing
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Figure 5.6: Normalized stresses resulting form PΦ, Pv and Pσ optimization
problems in C with a square cross section and with uniformly (solid lines)
and triangularly (dashed lines) distributed loads.

an exploitation of the total material volume where the bending moment is
not zero.

Equation (5.20) provides optimal solutions more general than those
obtained in [87], in which the compliance, free end deflection and maximum
stress minimization problems are solved only for beams with triangularly and
uniformly distributed loads and only for a square cross section cantilever
beam. In particular, it is shown that the solution for the minimum
compliance problem (herein referred to as PΦ) is identical to the maximum
stress minimization problem (Pσ), as previously stated in [78, 79]. Optimal
solutions corresponding to these two problems lead to an iso-stress behavior
along the beam axis (see Figure 5.6). For instance, a square cross section

cantilever exhibits normalized constant bending stress σ̃ :=
√
σ2Ṽ 3/(w2

l l
7)

equal to
√

243/343 or
√

1/27 when subjected to uniformly or triangularly
distributed loads, respectively. On the other hand, the free end deflection
minimization problem (Pv) leads to variable bending stress along the beam
axis. Precisely, the bending stress reads

√
9x̃/8 or

√
27/243 x̃ for uniformly

or triangularly distributed loads, respectively.
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Closed-form solutions for SS and GS beams

On a hand, for SS beams MA = 0, while RA is given by (5.5). Substituting
in (5.3), one obtains

M(x̃)=wl(l−a)2

[
1+2ξ

6
x̃− ξ

2
r(x̃, α)2− 1−ξ

6
r(x̃, α)3

]
, (5.21)

where

r(x̃, α) =
〈x̃− α〉
(1− α)

.

On the other hand, for GS beams RA = 0 and MA is given by (5.6).
Substituting in (5.3) one obtains

M(x̃)=wl(l − a)

[
1+2ξ

6
− ξ

2
r(x̃, α)2 − 1−ξ

6
r(x̃, α)3

]
. (5.22)

Therefore, for n = 1 one obtains

Ã∗SS,n=1(x̃)=
4x̃(1+2ξ)−12 ξ r(x̃, α)2−4(1−ξ)r(x̃, α)3

(1 + ξ) + (1 + 3ξ)α
, (5.23)

for SS beams (which is more general than that obtained for Euler-Bernoulli
SS beams in [82], where only load conditions (0, 0) and (0, 1) are discussed)
and

Ã∗GS,n=1(x̃) =
4(1+2ξ)−12 ξ r(x̃, α)2−4(1−ξ)r(x̃, α)3

(3 + 5ξ) + (1 + 3ξ)α
. (5.24)

for GS beams. The following simple sensitivity analysis shows how optimal
solutions depend on the load parameters α and ξ. Solutions corresponding to
triangularly and uniformly distributed loads, for three values of α, are shown
in Figures 5.7a and 5.7b. It is worth noting that optimal solutions vanish
at the extremities of the beam and only at x̃ = 1 for SS and GS beams,
respectively. Moreover, as far as SS beams are concerned, the optimal
solution for the load configuration (0, 1) is perfectly symmetric, assuming
the largest value where the bending moment is maximum, namely for x̃=0.5,
in agreement with [82]. Besides, as α increases, optimal solutions associated
with SS beams lose symmetry. Finally, optimal solutions behave linearly in
SS beams and tend to be constant in GS beams (slightly higher than their
cylindrical uniform counterparts of the same volume) for x̃<α and do not
vary sensibly as ξ increases (see Figures 5.8a and 5.8b).
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Figure 5.7: Optimal SS (a) and GS (b) area distributions for triangular and
uniform loads with α = 0 (solid lines), α = 0.5 (dashed lines) and α = 0.75
(dotted lines).
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Figure 5.8: Optimal SS (a) and GS (b) area distributions for ξ=2, 5, 10 and
when α=0 (solid lines), α=0.5 (dashed lines) and α=0.75 (dotted lines).
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Φ∗/Φcyl in the C configuration for solid shapes

ξ = 0 ξ = 1

Solid square 0.248 0.376

Solid circle 0.259 0.394

Solid triangle 0.214 0.326

Table 5.2: Compliance reduction for C beams with ξ=0, 1 and n=2.

5.2.2 Discussion and numerical example

The analysis carried out is interesting if the solution permits to obtain a high
compliance reduction with respect to the uniform (cylindrical) counterpart
of the same material volume. Generally, the compliance of this latter is
given by

Φcyl =
4πl2

EV 2

∫ l

0
M(x)2 dx , (5.25)

while the compliance Φ∗ of optimal solutions can be obtained substituting
in (5.8) the optimal value of A(x). A reasonable performance index could
then be the compliance reduction given by the ratio Φ∗/Φcyl. Hereinafter,
for the sake of simplicity, we refer only to triangularly (ξ = 0) and uniformly
(ξ = 1) distributed loads.

Firstly, the performance of optimal solutions for C beams is addressed
for solid cross sections with n = 2. Table 5.2 lists some numerical ratios
Φ∗/Φcyl. As one may note, the reduction of the compliance is of the order
of 3 ÷ 5 with respect to uniform counterparts of the same mass and of the
same cross-sectional shape. The stiffest response, in terms of compliance
reduction, is provided by the triangular cross section both for ξ = 0 and for
ξ = 1.

Now, attention is drawn to assess the performance of optimal solutions
for hollow cross sections (n = 1) within a numerical example for C, SS
and GS beams. Consider a hollow cross section beam with l = 0.5 m,
E = 2.1×105 MPa and Ṽ = 2.5×105 mm3. Numerical values of the gain in
compliance relative to optimal solutions for α = 0 and ξ = 0, 1 are listed in
tabular format. It is important to note that the reference length ω should
be taken into account (see Figure 5.3). Values of compliance reduction
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Φ∗/Φcyl in the C configuration for hollow shapes

ω/l 0.05 0.1 0.2

ξ 0 1 0 1 0 1

Triangle 0.343 0.435 0.086 0.109 0.021 0.027

Square 0.171 0.218 0.043 0.054 0.011 0.014

Circle 0.228 0.290 0.057 0.072 0.014 0.018

Table 5.3: Compliance reduction for the hollow sections in the C
configuration for α = 0 and for different values of ω/l and ξ.

for the C configuration (α = 0) and for different values of ω/l and ξ are
reported in Table 5.3. Among optimal solutions, beams of hollow square
sections present the stiffest geometric configuration, once fixed the material
mass, even when compared with the shapes reported in Table 5.2. As ω/l
increases, Φ∗/Φcyl decreases significantly and the more the optimal thickness
is decreased. This theoretical result arises since the optimization problem
does not provide lower and upper bound constraints on the thickness. In
practical engineering, these bounds are superimposed in order to avoid
structural instability phenomena, such as buckling.

In SS or GS beams, unlike C ones, α can be chosen different from zero.
For these two configurations, numerical values for Φ∗/Φcyl for different values
of α and for ω/l = 0.1 are reported in Table 5.4. Again, for a fixed value
of the mass, hollow square cross sections still present the stiffest behavior.
Moreover, when α increases the performance of optimal solutions change
marginally. This is in accordance with Figures 5.7a, 5.7b, 5.8a and 5.8b,
where the optimization problem leads to practically identical optimal design
shapes as α tends to 1. Eventually, note that for all the hollow shapes
the compliance of optimal solutions is of the order of 10 times that of
uniform beams, giving rise to a stiffer behavior employing the same amount
of material volume.
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5.3 Shape optimization of beams against buckling

In this section, an attention is dedicated to problems where closed-form
solutions cannot be easily obtained, thus requiring a numerical approach. In
particular, the shape optimization of elastic beams, namely the minimization
of their material volume when to avoid elastic instability, is presented within
the plane deformation hypothesis. The historical example concerning beams
subject to a concentrated compressive force (Lagrange’s beam)is addressed.
In particular, the numerical approach by means of the LGR pseudospectral
method given in Chapter 3 is considered, by which cross sectional area
distributions are forecast within a unified fashion and without resorting
to accurate guesses of optimal solutions beforehand, as typically occurs for
numerical techniques employed in the literature (e.g., the shooting method).

5.3.1 Governing static equations

Consider a slender beam of a given length L represented by a plane curve C
in a rectangular Cartesian coordinate system whose horizontal and vertical
axes are denoted by z̄ and ȳ, respectively. Let i and j be the unit vectors
along z̄ and y, respectively, and k = i × j. The curve C represents the
beam axis which coincides with the centroidal line of the beam cross section.
Suppose that the bending rigidity of the beam and the angle between the
tangent to the beam axis and the z̄ axis are denoted by EI and θ, both
functions of the arc length of C measured from one end point, namely EI(S)
and θ(S) where S ∈ [0, L]. Denoting by A(S) the area of the cross section,
the material volume of the beam is given by

W =

∫ L

0
A(S) dS . (5.26)

Moreover, let qz(S) and qy(S) denote the intensities of the distributed forces
along z̄ and ȳ, respectively, both per unit of the beam axis (see Figure 5.9a).
Besides, letH(S) and V (S) denote the components of the contact force R(S)
in an arbitrary section of the beam and M(S) denote the contact couple,
which represent the influence of the cut-off part [0, S) of the beam on the
element of length dS. Hence, R(S) = H(S) i+V (S) j, and M(S) = M(S) k.

Assume the beam is made of material exhibiting a linear stress–strain
relation. Based on the framework reported in [112], if Euler-Bernoulli
assumptions hold, namely plane sections in the natural state remain plane
in the deformed state and extensional and shear rigidity are infinite, the

104



Straight and curved elastic beams

(a) (b)

Figure 5.9: Coordinate system, load configuration and definition of the
employed variables for plane (a) and generalized plane (b) deformation.

nonlinear governing equations for the static behavior of an elastic beam are

dH(S)
dS = −qz(S) ,

dV (S)
dS = −qy(S) ,

dM(S)
dS = −V (S) cos θ(S) +H(S) sin θ(S) ,

dz(S)
dS = cos θ(S) ,

dy(S)
dS = sin θ(S) ,

dθ(S)
dS = M(S)/(EκA(S)k) ,

(5.27)

where E is Young’s modulus and κ and k are two constants depending on
the shape of the cross section (for a circular shape, κ = 1/4π and k = 2). In
case the extensibility of the beam axis ε and the rotation of the cross section
with shear angle γ are taken into account, the variation of coordinates along
S take the form [112]

dz(S)
dS = (1 + ε(S)) cos θ(S) ,

dy(S)
dS = (1 + ε(S)) sin θ(S) ,

(5.28)

and the contact couple is given by

M(S) = EI

(
dθ(S)

dS
− dγ(S)

dS

)
. (5.29)
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Besides, referring to the constitutive equations of the beam in the form that
follows from [113], the shear angle and the beam axis extensibility take the
form (see Figure 5.9b) sin γ(S) = cQ(S)

GA(S) ,

ε(S) = N(S)
EA(S) ,

(5.30)

respectively, where c is the shear correction factor, EA(S) and GA(S) are
the extensional and shear rigidity, respectively, while Q(S) and N(S) are
the components of the contact force in the direction of the sheared plane
and tangent to the beam axis, respectively, which according to Engesser’s
model, are given byN(S) = H(S) cos(θ(S)−γ(S))

cos γ(S) + V (S) sin(θ(S)−γ(S))
cos γ(S) ,

Q(S) = V (S) cos θ(S)
cos γ(S) −H(S) sin θ(S)

cos γ(S) .
(5.31)

On a hand, with prescribed loads {qz(S), qy(S)}, cross sectional
distribution A(S) and boundary conditions at endpoints, the system (5.27)
determines the horizontal and vertical contact forces, the contact couple,
coordinates and and the angle θ(S) and therefore the static behavior of the
beam is completely determined. Therefore, H(S), V (S), M(S), z(S), y(S)
and θ(S) may be considered to be the state variables. On the other hand, one
may be interested in finding out the cross sectional area distribution so that a
prescribed functional is minimized while static equations are satisfied. More
precisely, denoting by x the state variables and recasting static equations
into the form

dx(S)

dS
= f(x(S), A(S)) , (5.32)

the shape optimization problem associated with a goal functional J(x, A)
and characterized by states at endpoints x0 and xL, an admissible state space
X and an admissible shape spaceA consists in finding the cross sectional area
distribution A : [0, L] → A which minimizes J and such that, if x(0) = x0,
then x(S) ∈ X for all S ∈ [0, L] and x(L) = xL.

5.3.2 Lagrange’s beam

In the following, Pearson’s formulation of the Lagrange’s beam problem is
recalled [114], namely to find the curve which by its revolution about an
axis in its plane determines the beam of great efficiency, i.e., the simply
supported beam of circular cross section (κ = 1

4π and k = 2) and maximum
resistance to buckling under axial compression (see Figure 5.10).
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Figure 5.10: A simply supported beam under buckling load.

The case of plane deformation

Here it is implicitly assumed that extensional and shear rigidity are infinite.
The nonlinear static equation for this case is [112]

d

dS

(
A(S)2dθ(S)

dS

)
+

4π

E
F sin θ(S) = 0 . (5.33)

Introducing the dimensionless quantities s = S
L , a = A

L2 , w = W
L3 , λ = 4πF

EL2 ,
Equation (5.33) reads

(a2θ′)′ + λ sin θ = 0 , (5.34)

where a prime denotes the first derivative with respect to s, subject to the
boundary conditions

θ(1/2) = 0 , θ′(0) = 0 . (5.35)

Due to symmetry considerations, the problem can be studied for S ∈
[0, L/2]. The normalized half volume of the beam is therefore

w =

∫ 1/2

0
a(s) ds . (5.36)

Introducing x1 = θ, x2 = a2θ′, x3 = w and x4 = λ as state variables,
the beam’s resistance to buckling under axial compression as a shape
optimization problem can be expressed in the following two different ways:

Problem 5.2. Find the distribution of material along the length of the beam
so that the beam is of minimum volume and supports a given load λ̃ without
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buckling, i.e.,

min
a(s)

∫ 1/2

0
a(s) ds

s.t. x′1(s) = x2(s)/a(s)2 ,

x′2(s) = −λ̃x1(s) ,

x1(1/2) = 0 ,

x2(0) = 0 .

(5.37)

Problem 5.3. Find the distribution of material along the length of the beam
of a given half volume w̃ which gives the largest possible buckling load, i.e.,

min
a(s)

− x4(1/2)

s.t. x′1(s) = x2(s)/a(s)2 ,

x′2(s) = −x1(s)x4(s) ,

x′3(s) = a(s) ,

x′4(s) = 0 ,

x1(1/2) = 0 ,

x2(0) = 0 ,

x3(0) = 0 ,

x3(1/2) = w̃ .

(5.38)

Note that in the above mentioned two problems static equations have
been linearized since the optimal beam is supposed to still remain straight,
i.e., no post-buckling analysis is considered. Moreover, goal functionals are
of Lagrange and Mayer types in the first and second problem, respectively. In
[106], a slightly different form of the two problems above has been considered,
where the optimal beam having the same volume of a uniform one has
been numerically obtained by means of the shooting method, while here, as
mentioned above, the cross sectional area is normalized with respect to the
square of the beam length instead.

Hamiltoninans and necessary conditions for optimal solutions have been
firstly derived. Following the formulation of Chapter 2 and omitting the
functional dependence on s for brevity, one obtains

H = a+
p1 x2

a2
− λ̃ p2 x1 ,

a = 3
√

2p1 x2,
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p′1 = λ̃ p2 , p′2 = −p1/a
2 ,

p1(0) = p2(1/2) = 0 ,

for the first problem, and

H =
p1 x2

a2
− p2 x1 x4 + p3 a ,

a = 3

√
2p1 x2

p3
,

p′1 = p2 x4 , p′2 = −p1

a2
, p′3 = 0 , p′4 = p2 x1 ,

p1(0) = p2(1/2) = p4(0) = 0 , p4(1/2) = −1 ,

for the second problem, where pk are the costates associated with states
xk, with k = 1, 2, 3, 4. In [106], it has been found that the goal functional
associated with the optimal cross sectional area distribution in the first
problem associated with λ̃ = π2 is w∗ = 0.433. Once this latter result is
introduced into the second problem as w̃, one obtains x∗4(1/2) = 9.869 ≈
π2, which leads to the conclusion that the two problems are equivalent.
Furthermore, it is obvious that the condition p1(0) = 0 always implies that
the cross section vanishes at the end of the beam, i.e., a(0) = 0 (Clausen’s
solution).

It is worth noting that by employing the approach presented here, there
is no need to obtain necessary conditions for optimality and therefore, unlike
the shooting method, the burden of accurately guessing optimal states and
costates is bypassed. In particular, referring to Equation (5.32) and taking

f(x, a) = [x2/a
2 − λ̃x1]

and
f(x, a) = [x2/a

2 − x1x4 a 0]

for the first and second problem, respectively, optimal states and optimal
objective functions can be directly obtained solving the corresponding NLP
problems.

As far as the first problem is concerned, Figures 5.11a and 5.11b show
the optimal states and optimal cross sectional area distributions obtained
by the orthogonal collocation method taking as λ̃ = π2, 1.2π2 and 1.5π2.
As expected, the high λ̃, the high the volume required to withstand the
load without buckling. Optimal values of the goal functional associated
with the first problem are w∗ = 0.4330, 0.4743 and 0.5303, respectively.
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Numerical solution associated with λ̃ = π2 has been compared to that
obtained in [106]. It is easy to notice that both solutions are in good
agreement and the cross section vanishes at the end (Clausen’s solution).
In parallel, one may be interested in imposing a minimal value of the cross
sectional area distribution amin. Unlike the shooting method, the present
approach allows to consider this requirement as an inequality constraint. For
instance, besides the Clausen’s solution, optimal states as well as optimal
area distributions have been numerically forecast so that a ≥ 0.3 and a ≥ 0.5
(Figures 5.12a-5.12d and 5.13). Optimal values for the goal functional
associated with the second problem read x∗4(1/2) = 9.869, 9.7578, 7.4376,
for the Clausen’s solution, with a ≥ 0.3 and with a ≥ 0.5, respectively,
namely the maximum buckling resistance diminishes as the amin increases
for a given half volume w̃ = 0.4330.

The case of generalized plane deformation

Here, the same load configuration as well as the symmetric buckling mode
are considered, but now with finite values for the extensional and shear
rigidity. To this purpose, Equations (5.28)-(5.31) are employed. When the
beam is subject to a compressive force F , then H = −F and V = 0 and
therefore the axis extensibility and the shear angle are given by [113]

ε(S) = − F

EA(S)

cos(θ(S)− γ(S))

cos γ(S)
(5.39)

and

γ(S) =
1

2
arcsin

(
2cF

GA(S)
sin θ(S)

)
, (5.40)

respectively. Now, defining the angle α(S) = θ(S) − γ(S) and taking into
consideration the linearized version of the static equations, one obtains

M ′(S) = F
1− F

EA(S)

1− cF
GA(S)

α(S) ,

α′(S) =
M(S)

EI(S)

(5.41)

and subject to the boundary conditions

M(0) = 0 , α(1/2) = 0 . (5.42)

Introducing the additional dimensionless quantities m = 4πM
EL3 , µ̃ = F

EL2 and

β̃ = cF
GL2 and denoting by x1 and x2 the variables α and m, respectively, the

minimum mass shape optimization problem reads
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Figure 5.11: Numerical optimal states (a) and cross sectional area
distributions (b) for the first version of Lagrange’s beam problem.
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Figure 5.12: Numerical optimal states for the second version of Lagrange’s
beam problem.
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Figure 5.13: Numerical optimal cross sectional area distribution for the
second version of Lagrange’s beam problem.

Problem 5.4.

min
a(s)

∫ 1/2

0
a(s) ds

s.t. x′1(s) =
x2(s)

a(s)2
,

x′2(s) = −λ̃
(
a(s)− µ̃
a(s)− β̃

)
x1(s) ,

x1(1/2) = 0 ,

x2(0) = 0 ,

(5.43)

where λ̃, µ̃ and β̃ are linked through the relation

λ̃ = π2 1− β̃
1− µ̃

. (5.44)

It is worth noting that shear and compressibility have opposite influence
on Euler buckling load and for β̃ = µ̃ = 0, one obtains the classical
dimensionless critical load. Besides, according to [115], it is assumed that
µ̃ < 1 and β̃ > µ̃.
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Omitting the functional dependence on s, necessary conditions for
optimal solutions are given by

H = a+
p1 x2

a2
− λ̃

(
a− µ̃
a− β̃

)
p2 x1 ,

∂H
∂a

= 0 = 1− 2p1 x2

a3
− p2 x1

λ̃(µ̃− β̃)

(a− β̃)2
,

p′1 = λ̃

(
a− µ̃
a− β̃

)
p2 , p′2 = −p1/a

2 ,

p1(0) = p2(1/2) = 0 .

Table 5.5 lists optimal values of the goal functional and minimal and
maximal values of the optimal normalized cross sectional area distribution
for different values of β̃ and µ̃. Besides, optimal cross area distributions for
two instances of β̃ and µ̃ are shown in Figure 5.14 and compared to Clausen’s
solution. Unlike before, here the cross section does not vanish at the beam
end, as a consequence of the application of the strong form of Pontryagin’s
Principle (2.19), namely

a(0) = β̃ +

√
λ̃(µ̃− β̃)x1(0)p2(0) ,

confirming that the shape of the optimal beam and its end depends on the
load and material.

5.4 Paradoxical weight minimization in curved
beams

It is a well known fact that in some mechanical components the stresses can
be relieved by wisely removing material. This interesting result is achieved
by machining grooves in specific zones [116]. However, as far as elastic
beams are concerned, this technique may not work properly, except for rare
cases encountered in literature, specifically for straight beams subjected to
bending [117]. For a straight beam, in particular, the zones from which a
material removal, from a generic initial cross section, produces a bending
stress reduction, are farthest from the neutral axis [23]. In the realm of
curved beams modeled in terms of Winkler theory, it has been shown recently
[109] that an analogous paradoxical behavior occurs by removing material
from section zones close to the neutral axis. In a subsequent work [110],
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β̃ µ̃ λ̃
∫ 1/2

0 a∗(s) ds a∗(0) a∗(1/2)

0 0 π2 0.4330 0 1.1545

1.5× 10−2 1× 10−3 9.7313 0.4376 0.1569 1.1580

1× 10−2 9.8118 0.4350 0.1028 1.1560

1.5× 10−1 1× 10−3 8.3976 0.4637 0.5100 1.1597

1× 10−2 8.4739 0.4628 0.5021 1.1599

1× 10−1 9.3213 0.4504 0.3864 1.1603

Table 5.5: Optimal values of the goal functional, the minimal and maximal
values of the normalized cross sectional area distributions for different
instances of β̃ and µ̃.
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Figure 5.14: Numerical optimal cross sectional area distribution for two
instances of β̃ and µ̃ compared to Clausen’s solution.
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Figure 5.15: Initial cross section and its modifications by laterally removing
material according to the cumulative removal depth function s(r).

the demanding achievement of a concurrent stress and mass reduction is
relaxed in favor of two weaker requests. One request consists in removing
material from all sections without essentially altering the stress level in a
generic section. The second request consists in removing material without
increasing the stress in a most loaded section, and in removing material
from the adjacent sections until the stress for a generic section equals the
maximum stress. The second request may be interpreted as an application
of the idea of uniform strength body.

Unlike [110], the delimiting radii defining the lateral lightening pocket
are here assumed to be equidistant from the neutral radius. This assumption
simplifies remarkably the functional expression for the intrados stress and
leads to closed form solutions for the pocket width. Admittedly, solutions
obtained with this simplification do not provide both mass and stress
reduction at the same time. However, as shown below, significant mass
reduction can be obtained at the cost of a small intrados stress increase.

5.4.1 Recall on the paradox

The theoretical framework of the paradoxical behavior is briefly recalled
next. Consider a curved beam subjected to a bending moment and an axial
force. Let A denote the cross section area, rg the radius of the center of
mass, rn the neutral radius and r the radius of a generic line. See Figure
5.15, where a generic cross section is depicted. Let ri and ro be the inner and
outer radii, respectively, and let r1 and r2 define the extrema of the groove
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obtained as the consequence of a possible removal of material. Finally the
cumulative lateral removal depth at the radius r is denoted by s(r).

According to Winkler theory for curved beams, the bending and normal
stresses for a generic radius r are given by

σM =
M(rn − r)
A(rg − rn)r

, σN =
N

A
, (5.45)

where M and N denote the bending moment and the normal force,
respectively. Herein, the simplifying assumption of a uniform normal force
is adopted. In the following, as suggested by [109], a distinction is made
between the symbols addressing the initial and modified cross sections. In
particular, a subscript 0 is added to denote the variables belonging to the
former.

The expression of the intrados stress functional in terms of the
cumulative removal depth function s(r) is given by [109, 118]

σi =
M

A0 −
∫ ro
ri
s(r) dr

[
A0−

∫ ro
ri

s(r) dr

A0
rn,0
−
∫ ro
ri

s(r)
r
dr
− ri

]
[
A0rg,0−

∫ ro
ri

s(r)r dr

A0−
∫ ro
ri

s(r) dr
−

A0−
∫ ro
ri

s(r) dr

A0
rn,0
−
∫ ro
ri

s(r)
r
dr

]
ri

, (5.46)

where A0, rg,0 and rn,0 are the initial cross section area, center of mass
and neutral radii, respectively, and a positive value of s(r) describes a
lateral removal of material. In [109], Equation (5.46) has been simplified
by linearizing the effect of the removal depth s(r) through a first order
Taylor expansion based upon Gateaux differentiation, namely

σi ≈
M(rn,0 − ri)

A0(rg,0 − rn,0)ri

− M

A2
0(rg,0 − rn,0)2ri

∫ ro

ri

s(r)

r
(rn,0 − r)[r(rn,0 − ri)− rn,0(rg,0 − ri)] dr ,

(5.47)
where the first term expresses the initial intrados bending stress σi|s=0. The

factor multiplying s(r)
r in the integrand of Equation (5.47) is a second-degree

polynomial in r, whose roots are

r1 = rn,0 , r2 = r1
(rg,0 − ri)
(rn,0 − ri)

. (5.48)

The above polynomial remains positive for r1 < r < r2 and negative
elsewhere. Consequently, if material is removed between the two roots r1
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and r2, the paradoxical result is achieved according to which the intrados
bending stress diminishes upon mass reduction.

In [110], the normal force has been taken into account, adding in
(5.46) the term N

A0−
∫ ro
ri

s(r) dr
and a lightening pocket of rectangular profile

described by linear s(r) has been assumed, i.e.,

s(r) =
2Sr

r1 + r2
, (5.49)

where S > 0 is a constant quantifying the mean cumulative groove depth;
s(r) is assumed to be non null only within the interval delimited by r1

and r2 and to be null elsewhere. This pocket shape is technically an
approximation of a more realistic pocket with constantly deep bottom.
Hence, two modifications of the strictly paradoxical approach have been
proposed [110]. In particular, two conditions have been addressed:

• Unaltered intrados stress (UIS): The intrados stress of a particular
groove-free cross section is assumed to be the reference stress and the
maximum mass reduction of that particular cross section, achieved by
laterally removing material, is sought under the condition that the
intrados stress equals such reference stress;

• Imposed intrados stress (IIS): It requires that the radial extent of the
lightening pocket produces a constant intrados stress with respect to
a reference value when considering various sections along the beam
axis. With this approach an optimized uniform-strength shape may
be achieved.

While the achievement of closed form expressions for r1 and r2 after
linearization and through implicit differentiation has been made possible
only for UIS, on the other hand, for IIS, it was not possible to derive a
closed form solution and it was necessary to compute r1 and r2 numerically.
Here, an assumption on the shape of the lightening pocket is made. In
particular, r1 and r2 are taken in such a way that the lightening pocket
symmetrically straddles rn,0. Consequently, the intrados stress expression
becomes remarkably simplified and the proposed theory is more amenable
to practically significant optimization applications.

5.4.2 Problem setup

For the sake of a simpler notation we introduce the following functionals:

x1(r1, r2, s(r)) =

∫ r2

r1

s(r) dr ,
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x2(r1, r2, s(r)) =
1

rg,0

∫ r2

r1

s(r)r dr ,

and

x3(r1, r2, s(r)) = rn,0

∫ r2

r1

s(r)

r
dr .

The dependence of these quantities on r1, r2 and s(r) is omitted hereinafter.
The integrals are defined from r1 to r2 since s is assumed to be null elsewhere.
Taking into account the normal stress term, Equation (5.46) can be written
as

σi =
M
[
rn,0(A0−x1)
A0−x3 − ri

]
(A0 − x1)

[
rg,0(A0−x2)
A0−x1 − rn,0(A0−x1)

A0−x3

]
ri

+
N

A0 − x1
. (5.50)

Considering linear lightening pockets (obeying Equation (5.49)) around the
neutral axis, i.e., such that

r1 = 2rn,0 − r2 , (5.51)

one obtains x1 = S(r2− r1) , x2 = 2S
3rg,0

r32−r31
r1+r2

and x3 = x1 . Accordingly, the

intrados stress may be written as

σi =
M(rn,0 − ri)

[rg,0(A0 − x2)− rn,0(A0 − x1)]ri
+

N

A0 − x1
, (5.52)

showing a remarkable complexity reduction with respect to (5.50). Equation
(5.52) can be further simplified by linearizing the effect of the removal depth
s through a first order Taylor expansion and omitting the nonlinear terms,
namely

Σ =
Γ

A2
0(rg,0 − rn,0)2ri

, (5.53)

where Σ = σi|s=0 − σi and

Γ =

∫ r2

r1

[M(rn,0 − ri)(rn,0 − r) +N(rg,0 − rn,0)2ri]s(r) dr .

Substituting (5.49) in (5.53) and rearranging, one obtains

A2
0Σ(rg,0 − rn,0)2ri

S
= (r2 − r1)

[
M(rn,0 − ri)rn,0 +N(rg,0 − rn,0)2ri

]
− 2M(rn,0 − ri)

3(r1 + r2)
(r2

1 + r1r2 + r2
2)(r2 − r1) ,

(5.54)
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which, together with (5.51), permits the groove delimiting radii r1 and r2

to be found. This problem setup presents a unified formulation for both
conditions: Solutions of (5.54) and (5.51) with Σ = 0 and Σ 6= 0 give the
lateral groove delimiting radii for the UIS and IIS conditions, respectively.
Closed form solutions for delimiting groove radii are reported next.

5.4.3 Solution for purely flexural loads

The special case of purely flexural loading, i.e. N = 0, is emphasized first.
While the UIS condition leads to the trivial solutions (r1 = r2 = rn,0), the
IIS condition for a grooved section yields

(r2 − rn,0)3 =
−3A2

0Σ(rg,0 − rn,0)2rn,0ri
2M(rn,0 − ri)S

(5.55)

and the groove delimiting radii read
r1 = rn,0 + 3

√
3A2

0Σ(rg,0 − rn,0)2rn,0ri
2M(rn,0 − ri)S

,

r2 = rn,0 − 3

√
3A2

0Σ(rg,0 − rn,0)2rn,0ri
2M(rn,0 − ri)S

.

(5.56)

It is appreciated that the above simplification of the expressions of r1 and
r2 delimiting the groove produces approximations in the stress analysis of a
curved beam. However, the two r1 and r2 values determined in [109, 110]
with Gateaux linearization are themselves inevitably approximate.

As an example, Figure 5.16 shows the normalized radii r1/b and r2/b for
a curved beam of square cross section of edge b for three imposed intrados
stresses, 1%, 5% and 10% higher than σi|s=0. The plotted values correspond
to ri = 1, ro = 2 and b = 1. The corresponding neutral radius is rn,0 =
1.442. For small values of S/b, the radii r1 and r2 tend to the inner and
outer borders ri and ro, respectively. This behavior is remarked as σi/σi|s=0

increases. Since the neutral radius is lower than the radius of center of
mass, the former is closer to r1 than r2 and solutions are thought valid and
physically acceptable when ri < r1 < r2 < ro. These design limitations are
represented by dashed lines in Figures 5.16, 5.17 and 5.18. For instance, a
designer can not claim to impose an intrados stress 1.1 times than that of
the groove-free section with S/b = 0.1 (see dashed lines in Figure 5.16).
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Figure 5.16: Normalized delimiting radii r1/b (bottom) and r2/b (top) b
in terms of S/b for different values of σi/σi|s=0 in a square section curved
beam. Solid lines refer to acceptable solutions.

Mass reduction

Another effect of the machining of a groove symmetric with respect to rn,0
is that solutions for imposed intrados stresses lower than σi|s=0 are in C, i.e.
have an imaginary part, implying that they are not feasible. This fact entails
that the relaxation of the strictly paradoxical approach in [109], namely
linear groove around the neutral radius, cannot lead to the simultaneous
reduction of mass and bending stress. However, significant mass reduction
can still be achieved (see Figure 5.17, where the percentage mass reduction
%mR in terms of S/b for different values of σi/σi|s=0 has been reported).
In fact, by imposing S/b = 0.5 (an excessively thin hub thickness shall be
avoided for stability-related issues [118, 119]), the reduction of the cross
section is (1.578 − 1.306) × 0.5 ≈ 0.136 = 13.6%, (1.674 − 1.210) × 0.5 ≈
0.232 = 23.2% and (1.734 − 1.150) × 0.5 ≈ 0.292 = 29.2%, for σi|s=0/σi =
1.01, 1.05 and 1.10, respectively. For an intrados stress 1.2 times larger than
that computed in the absence of groove, the delimiting radii are r1 = 1.074
and r2 = 1.810 and the corresponding section diminution is about 37%,
while. In [110], the mass reduction for the same geometric parameters (b,
ri, ro and S) turns out to be 40%, yet solutions were obtained numerically.
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Figure 5.17: Percentage mass reduction %mR in terms of S/b for different
values of σi/σi|s=0 in a square section curved beam. Solid lines refer to
acceptable solutions.

Further comments

Figure 5.18 shows r1/b and r2/b for different values of S/b, as σi/σi|s=0

increases. It is not hard to see that low values of S/b restrict the domain
of desirable imposed intrados stresses with respect to those obtained in
free-groove sections. Analogous to Figure 5.16, solutions are considered
valid and physically acceptable when ri < r1 < r2 < ro: A designer can not
claim to impose, for example, an intrados stress 1.25 times larger than that
of the groove-free section with S/b = 0.1 or 0.3 (see dashed lines in Figure
5.18).

Eventually, Figure 5.19 reports on the x−axis the normalized imposed
stress σi/σi|s=0 and on the y−axis the normalized exact intrados stress
σi,exact/σi|s=0 computed using Equation (5.46). The cumulative groove
depth is expressed by S and its value is kept fixed (S/b = 0.5). If the
linearization provided exact results, the curve would mirror the x values
over the y values. However, the nonlinear behavior is fiddling, showing that
the nonlinear terms in the Taylor expansion series are limited, reaching a
value of about 12% for σi/σi|s=0 = 1.2, which is technically acceptable.
Moreover, for small x values, the linearization seems to fit very well.
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Figure 5.18: Normalized delimiting radii r1/b (bottom) and r2/b (top) in
terms of σi/σi|s=0 for different values of S/b in a square section curved
beam. Solid lines refer to acceptable solutions.

5.4.4 Solution for flexural and normal loads

In the following, both flexural and normal stresses are considered. Starting

from Equation (5.54) and calling Σ̄ =
A2

0Σ(rg,0−rn,0)2ri
S one obtains

Σ̄

M(rn,0 − ri)
= 2(r2 − rn,0)

[
rn,0 −

1

3rn,0
(r22 + 4r2n,0 − 2rn,0r2) +

N(rg,0 − rn,0)2ri
M(rn,0 − ri)

]
.

(5.57)

Recalling that σi|s=0 =
M(rn,0−ri)

A0(rg,0−rn,0)ri
+ N

A0
, Equation (5.57) may be recast

as

(r2− rn,0)3−

[
3N(rg,0 − rn,0)rn,0

A0(σi|s=0 − N
A0

)

]
(r2− rn,0) +

3Σ̄rn,0
2M(rn,0 − ri)

= 0. (5.58)

Defining the parameters

p =
−3N(rg,0 − rn,0)rn,0

A0(σi|s=0 − N
A0

)
, q =

3Σ̄rn,0
2M(rn,0 − ri)

,

one obtains the following cubic equation

ρ3 + pρ+ q = 0, (5.59)
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Figure 5.19: Normalized exact stress versus the normalized linearized stress
and the effect of nonlinear terms for S/b = 0.5 in a square section curved
beam.

where ρ = r2 − rn,0. Obviously, assuming N = 0, Equation (5.59) turns to
be (5.55). Solutions of (5.59) for the UIS and IIS conditions are

r2 = rn,0 +

√
3N(rg,0 − rn,0)rn,0

A0(σi|s=0 − N
A0

)
(5.60)

and

r2 = rn,0 +
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
, (5.61)

respectively. The discussion of Equations (5.60) and (5.61) is provided
within the numerical example given below.

A numerical example: crane hook optimization

Following [120], a crane hook of square section is considered. The length of
the sides of the square section is 12 mm. The applied load P is 5600 N. The
inner radius ri = 24 mm, the outer radius ro = 36mm and the cross section
A0 = 144 mm2. Consequently, rn,0 = 29.5956 mm and rg,0 = 30 mm. The
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Figure 5.20: Initial geometry of the crane hook and definition of the angle
θ (a). Normal force and bending moment in function of θ (b).

cumulative groove depth S has been imposed to be 4.8 mm. Denoting by θ
the angle measured counterclockwise from the vertical line passing through
the hook center (see Figure 5.20a) the maximum bending moment M is
Prg,0 sin θ, while the corresponding normal force N is P sin θ. Consequently,
the maximum values for M and N are achieved at θ = π/2 (see Figure 5.20b,
where M(θ) and N(θ) are plotted for θ ∈ [π/4, 3π/4]). The analytical
maximum intrados bending stress is 672.70 MPa, the maximum normal
stress is 38.89 MPa, so that the total maximum intrados stress is σ̄ = 711.59
MPa.

To derive a graphical representation of the stress distribution along the
crane hook, a three-dimensional FE model has been developed. To assess
the validity of numerical solutions, a convergence analysis has been done
and a mesh of tetrahedral elements has been employed (with about 153000
elements and 30000 nodes). The upper surface has been clamped and the
concentrated force has been modeled as a uniformly distributed pressure
acting along three adjacent rows of intrados nodes defined by θ = 0.

The determination of the values of r1 and r2 so that, for a general section,
the intrados stress equals its ungrooved analogue (UIS condition) is firstly
addressed. Since for the hook loading the bending momentM is proportional
to the normal force N for any value of θ, the radii delimiting the groove
width remain constant. Their values r2 = 31 mm and r1 = 28.19 mm are
computed with (5.60) and (5.51), respectively. The area diminution with
respect to the ungrooved geometry is 9.36%, about two percent higher than
that obtained in [109]. Figure 5.21a shows the von Mises stress field, whose
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UIS IIS

σi [MPa] 741 808

σi−σ̄
σi

[%] 3.96 11.93

mR [%] 9.36 18.00

r1/b|θ=π/2 [-] 2.349 2.349

r2/b|θ=π/2 [-] 2.583 2.583

Table 5.6: FE maximum intrados stress σi, deviation from analytical
solution, mass reduction and normalized pocket delimiting radii at θ = π/2
for UIS and IIS conditions.

maximum value is about 741 MPa occurring at θ = π/2, agreeing well with
analytical result.

When considering the IIS condition, the reference intrados stress is
the bending plus the normal stress for θ = π/2. A lateral groove is
therefore manufactured so that intrados stress in the understressed regions
increases. The values adopted for the radii delimiting the groove width
have been computed using (5.61) and (5.51) for an angular interval around
θ = π/2. The profile is clearly shown in Figure 5.21b. However, in
order to avoid unfeasible solutions, the inner and outer borders have been
superimposed to be at least 2 mm thick. This value has been chosen, after
several FE simulations, as the minimum value guaranteeing an acceptable
stress concentration factor in this region. FE simulations (Figure 5.21b)
evidence that around θ = π/2 the hook exhibits a constant intrados
stress of about 808 MPa, corresponding to a volume reduction of 18%
and highlighting that the relaxation made in this paper does not lead to
simultaneous reduction of bending stress and mass. However, the variation
with respect to the analytical counterpart is σi−σ̄

σi
≈ 0.1193 = 11.93%, which

is technically acceptable taking into account the inevitable discrepancy
between the 1D nature of Winkler model and the 3D nature of the FE
model. For comparison, in [110] the numerical evaluation of the delimiting
radii produced a weight reduction of 23.88%. Finally, Table 5.6 summarizes
the achieved results by the two conditions in terms of maximum stress,
deviation from analytical result and mass reduction.
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(a) (b)

Figure 5.21: FE model and von Mises stress distribution in the crane hook
for the UIS (a) and IIS (b) conditions.
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5.5 Summary

This chapter dealt with several optimization problems in the realm
of one-dimensional structural elements. In particular, beams with an
initially straight axis have been considered. Potential cost functionals and
constraints were the material mass, the compliance and the buckling load.
Also, a problem including a recently stated paradox have been formulated,
whose optimal solutions have been derived in both analytical and numerical
fashions, depending on the resulting necessary conditions.
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Chapter 6

Functionally graded
pressurized cylinders

6.1 Introduction

In recent years, composite materials have been used in many applications
in civil and mechanical engineering. They consist of an assembly of layers
of fibrous metallic, ceramic or polymeric materials distributed in a matrix,
allowing excellent combinations between different materials. However, since
they are realized by means of discrete change of properties, interlaminar
shear stresses may arise, which may cause failure by delamination. A
smoother change of properties can be achieved by using novel heterogeneous
composite materials called “Functionally Graded Materials” (FGMs), whose
constituents (e.g., a metal and a ceramic) spatially grade according to
specific requirements which may range from a response to deformation, to
corrosion and wear. Due to their excellent mechanical performance, they
are gradually being more and more used in mechanical and aeronautical
applications.

The general idea of structural gradients was first advanced for composites
in the Seventies [121]. However, there was no genuine investigation about
how to design, fabricate and evaluate graded structures until the Eighties
[24]. More recently, FGMs are present in many engineering applications such
as space shuttles, nuclear fusion reactors and energy conversion systems
[122]. Since FGMs are not homogeneous materials, it is clear that in
order to create them, comprehensive studies need to be performed in design
methodology and theoretical modeling as well as in processing and properties
evaluation. On the other hand, unlike conventional homogeneous materials,
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the spatial variation of mechanical and physical properties in FGMs can be
exploited to obtain better performances by microstructural control.

Generally, the variation in material properties of FGMs is exclusively
examined within two categories of analyses. While in the first one the
mechanical and physical properties are assumed to vary according to specific
functions with respect to spatial coordinates by means of the so called
heterogeneity factors, the second category is based on the description of the
material heterogeneity by means of volume fractions of the constituents.
Volume fractions are in turn linked to the material properties through
the so called micromechanical models, which may range from explicit
traditional rule of mixtures, such as Voigt, Reuss, Mori-Tanaka and
Wakashima-Tsukamoto models, to implicit ones (such as Hill-Budianski
model) to variational ones (e.g., Hashin-Shtrikman model) [24]. Works
pertaining to both categories can be found in the literature concerning, for
instance, the torsion in bars [123], the stress concentration factors and the
static, buckling, and free- and forced-vibration in plates [124, 125] as well
as the out of plane displacement field in inclined cracks [126].

As far as axisymmetric bodies are concerned, several papers are devoted
to the stress analysis in hollow cylinders subject to internal pressure [127],
thermal [128] and axial [129] loads, pressure vessels [130] and rotating disks
[131]. The optimum response of the material to an actual environment is
one of the most important aspects in the design of FGMs [132], leading
to interesting results for several different functionally graded structures.
However, the overwhelming majority of works belongs to the first category,
namely dealing with optimization problems in FGMs which consist in finding
the values of some tuning parameters of the heterogeneity factors for prefixed
types of property variations (e.g., power-law, exponential, trigonometric
models, etc.) such that an objective function is minimized or maximized.
Gradient-based methods as well as meta-heuristic algorithms led researchers
towards these objectives. For instance, a finite element based optimization
of a pressure vessel consisting in a finite length hollow cylinder and two
spherical closed ends has been performed in [133]. In [134], a combination
of a co-evolutionary particle swarm optimization approach coupled with a
differential quadrature method is applied to obtain minimized stress and
displacement fields through the geometry of a disk under thermoelastic
loads. Not by chance, the aforementioned works consider power-law
property distributions, as they are simple and allow closed-form solutions
amenable for numerical optimization, yet imposing considerable limitations
to the generalization of the optimization procedures. Another strong
limitation not mentioned in the aforementioned works is that once fixed
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the class of property variation and once the optimized heterogeneity factors
have been found, optimal solutions for material properties do not necessarily
give rise to realistic structures, i.e., with unfeasible associated metallic and
ceramic volume fractions, being considered a micromechanical model.

The above mentioned facts entail that a more intrinsic optimization
procedure should a priori consist in the search for the best volume fractions
and not merely in the tuning of the parameters of prefixed property
behaviors. In this case, the formulation of the resulting problem is also
useful from the technological viewpoint. In fact, although it must be based
on a micromechanical model to relate elastic properties to volume fractions,
it does not hinder one to deal with a specified class of functions describing
property variations. Only a few studies concerning with a material tailoring
approach have been addressed. For instance, the simultaneous optimization
of material properties and structural layout for an elastic continuum with
maximum structural stiffness is formulated and analyzed in [135]. The
optimization of a two-phase isotropic composite under time-dependent
thermomechanical loadings with no a priori assumptions are made regarding
the spatial distribution of each phase is addressed in [136]. In [137],
an algorithm is proposed to minimize the time-averaged stress energy of
a two-phase composite under dynamic loading. A three-layer cylinder
consisting of a functionally graded interlayer sandwiched between a metallic
layer and a ceramic layer is considered in [138], where the problem of finding
the interlayer composition profile minimizing the stresses resulting from
material property mismatch and induced in the cylinder by temperature and
pressure loading is addressed. In [139], thermoelastic bodies composed of
two-constituent FGMs under steady-state conditions are considered and the
problem of the optimal choice of composition profile is addressed. Moreover,
in [140, 141], the inverse problem of finding the variation with the radius of
the shear modulus is considered, yet it is desired that the difference between
the radial and the hoop stress satisfies a particular relation along the radius.
Moreover, in [142], the shear modulus such that stresses radially evolve in
rubber-like cylinders and spheres within a more general functional constraint
is sought. These three latter works give nontrivial peculiarities, however they
have been written in a context different from that of optimal design, which
is the framework that the present chapter belongs to.

The present chapter addresses the problem of finding the optimal
composition profile of the constituents for cylinders subject to mechanical
loadings and for which plane elasticity holds. The material is assumed to be
functionally graded in the radial direction. In light of these considerations,
equilibrium, compatibility and constitutive relations are firstly recalled. The

131



Functionally graded pressurized cylinders

problem of minimizing the equivalent stresses is formulated in two different
ways. The first one is exclusively based on the radial stresses and can lead to
an analytical solution under some mild hypotheses if Pontryagin’s Principle
is properly employed, however some critical remarks are observed so that
it is found to be not exhaustive. Another formulation is therefore given
in terms of both radial stress and radial displacement, yet hinders one to
resort to numerical tools presented in Chapter 3. Nevertheless, in both
cases optimal solutions perform better than classic variations distributions
commonly employed in the literature and lead to promising results in terms
of stress reduction.

6.2 Governing equations

Consider a radially graded axisymmetric cylindrical body and let Ri and Ro
denote the inner and outer radii, respectively. Define a cylindrical coordinate
system and let the radial, circumferential and axial coordinates be denoted
by r, θ and z, respectively. If the body is subject to an axially-uniform
and axisymmetric load, then deformations are also axisymmetric, i.e., they
vary only in the radial direction. In particular, the strains and the internal
stresses, denoted by εi and σi (with i = r, θ, z), respectively, are supposed
to be continuous functions of r only. According to the theory of elasticity,
a problem may be simplified if either one of the stresses or the strains
is zero along a particular direction. Such behaviors are referred to as
plane stress (in which a generic infinitesimal element is subject to a biaxial
stress condition accompanied by a triaxial strain state) and plane strain (in
which a generic infinitesimal element is subject to a triaxial stress condition
accompanied by a biaxial strain state), respectively. The resulting elastic
problem may be formulated following either Navier or Beltrami-Michell
approaches, so far as boundary conditions are expressed in terms of radial
displacements or stresses, respectively [143]. With reference to the latter
approach, the equilibrium equation written for the infinitesimal element in
the radial direction and the consideration of Hooke’s constitutive laws for
linear, elastic, isotropic and non-homogeneous materials entail that both the
hoop σθ and axial σz stresses may be written in terms of the radial stress
σr. Consequently, the stress analysis may be described in terms of σr only.

6.2.1 Equilibrium, kinematic and constitutive laws

According to the infinitesimal linear elasticity theory (in absence of body
forces), the stress equilibrium equation in the radial direction may be written

132



Functionally graded pressurized cylinders

in the form [144]
(rσr(r))

′ − σθ(r) = 0 , (6.1)

where the prime symbol denotes a first derivative with respect to r. The
strain-displacement (or kinematic) equations for an axisymmetric body
loaded by axisymmetric forces are

εr(r) = u′(r) , εθ(r) = u(r)/r , (6.2)

where u is the radial displacement, while the plane stress state Hookean
constitutive relations in terms of Young’s modulus E and Poisson’s
coefficient ν are

εr(r) =
σr(r)− ν(r)σθ(r)− ν(r)σz(r)

E(r)
,

εθ(r) =
σθ(r)− ν(r)σr(r)− ν(r)σz(r)

E(r)
,

εz(r) =
σz(r)− ν(r)σθ(r)− ν(r)σr(r)

E(r)
.

(6.3)

Situation where the axial stress or the axial strain identically vanishes
throughout the domain are referred to as plane stress and plane strain
conditions, respectively. It is emphasized that the Hookean constitutive
relations for the plane strain condition can be obtained from the plane stress
condition by substituting E with E

1−ν2 and ν with ν
1−ν [144].

6.2.2 Micromechanical models

Realistic predictions of the stress and strain behavior of FGMs require
appropriate constitutive relations. This aspect represents the most
significant difficulty in FGM modeling when subjected to thermal or
mechanical loading conditions. Efforts to analytically determine the effective
properties of heterogeneous structures were initiated more than a century
ago by such famous scientists as Maxwell, Lord Rayleigh, and Einstein
[24]. Recently, due to the increased interest in composite structures for
industrial applications, the subject of composite materials properties has
been thoroughly developed, and a large literature nowadays exists. In several
extensive review articles and textbooks, both good overviews of the subject
and insight into the significant involved complexities are provided (see, e.g.,
[145, 146]). For simple geometries and reasonably simple material properties
(e.g., elastic behavior) analytical solutions are often available in terms of
volume fractions. It is worthwhile to note that in case the micromechanical
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models are expressed in terms of effective bulk K and shear G moduli, these
latter, due to the isotropy assumption, are linked to the Young’s modulus
E and Poisson’s ratio ν by the relations

E =
9KG

3K +G
(6.4)

and

ν =
3K − 2G

2(3K +G)
, (6.5)

respectively.

Voigt (V) and Reuss (R) models

The simplest micromechanical model to achieve the equivalent macroscopic
material properties is the rule of mixture which was first formulated by
Voigt. Voigt’s idea is to determine material properties by averaging stresses
over all phases with the strain uniformity assumption within the material
[24]. The resulting model, that is frequently used in most FGM analyses,
estimates effective properties P as a volume based arithmetic average, i.e.,
[147]

P (r) = PmVm(r) + PcVc(r), (6.6)

where Pm and Pc are bulk properties of the metal and ceramic constituents
and Vm(r) and Vc(r) are their volume fractions at the generic radius r,
respectively, and related to each other by the relation

Vc(r) + Vm(r) = 1. (6.7)

It is convenient to rewrite (6.6) in terms of one volume fraction function
only (usually Vc) exploiting (6.7), namely

P (r) = Pm[1− Vc(r)] + PcVc(r) = Pm + (Pc − Pm)Vc(r). (6.8)

Another well-known mixture rule is that based on the harmonic mean
estimate (Reuss model), namely [24]

P (r) =
PcPm

PmVc(r) + [1− Vc(r)]Pc
. (6.9)

In their most basic form, the above rules of mixtures are employed using
bulk constituent properties, assuming no interactions between phases. They
are often used for FGMs, since a single relationship can be used for all
volume fractions and microstructures. However, due to their simplicity,
their validity is limited.
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Mori-Tanaka (MT) model

The Mori-Tanaka model provides estimates for effective mechanical
properties of a graded microstructure with ceramic and metal phases. The
steps for obtaining the overall material properties depend on the bulk and
shear moduli of the metal and the ceramic. More precisely, if Km and
Kc, Gm and Gc denote bulk and shear moduli of the metal and ceramic,
respectively, the effective bulk K and shear G moduli are given by [148]

K(r) =
(Kc −Km)Vc(r)

1 + 3(Kc−Km)
3Km+4Gm

(1− Vc(r))
+Km (6.10)

and

G(r) =
(Gc −Gm)Vc(r)

1 + (Gc−Gm)

Gm+
Gm(9Km+8Gm)

6(Km+2Gm)

[1− Vc(r)]
+Gm, (6.11)

and E and ν are given by (6.4) and (6.5), respectively.

Other models

It is worth to note that several other models are covered in the literature,
such as the models proposed by Kerner [149], Hashin and Shtrikman
[150], Tamura [151], Wakashima and Tsukamoto [152], etc. A comparison
of various analytical methods with experimental data is graphically
made to find out the best suitable micromechanical model in [153].
Notwithstanding the above mentioned models generally yield dissimilar
estimates (discrepancies of more than 50% may be observed in the case
of some volume fractions [125]), they are explicit in terms of phases’ volume
fractions, offering a possibility to estimate the FGM properties for the whole
composition range with a single model.

6.3 Formulations of the optimization problem

Consider a cylinder subject to an intrernal pressure and made of FGM,
whose microstructure compositionally grades from a ceramic to metallic
materials, whose bulk mechanical properties are generically denoted by Pc
and Pm, respectively. In order to formulate the optimization problem in
the context of dynamic optimization theory, a state-space representation,
boundary conditions and a goal functional are needed. Reference is made to
two different formulations. The first one is based on the Beltrami-Michell
approach, namely states are given by stresses and their derivatives. The
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other formulation includes both the radial displacement and the radial stress,
and therefore referred to as Beltrami-Michell-Navier based formulation.

6.3.1 A Beltrami-Michell based formulation

For the sake of simplicity, let the Poisson’s ratio be constant throughout
the radial domain and only the Young’s modulus be the only mechanical
property that vary. The radial strain in Equation (6.2) can be written as

εr(r) = (εθ(r)r)
′ =

(
σθ(r)

E(r)
r − ν σr(r)

E(r)
r

)′
, (6.12)

which, together with Equation (6.3), yields

(1+ν)[σθ(r)−σr(r)]E(r)−[σθ(r)−νσr(r)]E′(r)r+E(r)[rσ′θ(r)−νrσ′r(r)] = 0.
(6.13)

From Equation (6.1) the hoop stress and its first derivative with respect to
r are

σθ(r) = σr(r) + rσ′r(r) (6.14)

and

σ′θ(r) = 2σ′r(r) + rσ′′r (r), (6.15)

respectively. Substituting Equations (6.14) and (6.15) in (6.13) and
rearranging the terms one obtains

Oσr(r) = 0 (6.16)

where O is a differential operator given by

O(∗) = r2(∗)′′ + r[3− rE ′(r)](∗)′ − ν̃E ′(r)r(∗) (6.17)

with E = ln(E) and ν̃ = 1 − ν. If the plane strain condition holds, the
differential operator reads

O(∗) = r2(∗)′′ + r[3− rE ′(r)](∗)′ − ν̆E ′(r)r(∗), (6.18)

where ν̆ = 1− ν
ν̃ .

Hereinafter, the Young’s modulus is expressed as a function of the
ceramic volume fraction, namely E = E(Vc). Therefore, the term E ′ can
be written as

E ′ = (ln(E(Vc)))
′ = g(Vc)vc , (6.19)
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where vc = dVc
dr is the rate of change of the ceramic volume fraction through

the domain and is chosen to be the input function, while

g(Vc) =
1

E(Vc)

dE(Vc)

dVc
,

whose explicit expression is derived from the involved micromechanical
model. Just by way of an example,

g(Vc) =
1

Em
Ec−Em + Vc

and

g(Vc)) =
Ec − Em

EmVc + (1− Vc)Ec
for Voigt and Reuss models, respectively. Introducing the state variables
x1 = σr, x2 = dσr/dr and x3 = Vc, the differential equation (6.16) may be
written as the first-order nonlinear system

x′1(r) = x2(r) ,

x′2(r) = g(x3(r))

(
x2(r) + ν̃

x1(r)

r

)
vc(r)−

3x2(r)

r
,

x′3(r) = vc(r) ,

(6.20)

or, defining x = (x1 x2 x3), in more compact form as

x′(r) = f(r,x(r), vc(r)) . (6.21)

Note that not all the boundary states are specified. In particular, x1(Ri)
and x1(Ro) can be deduced from the mechanical loads, yielding

x1(Ri) = −pi , x1(Ro) = 0 , (6.22)

where pi is the internal pressure, while x2(Ri) and x2(Ro) are unknown. As
far as concerns x3, if the cylinder is compositionally graded from ceramic to
metal, then

x3(Ri) = 1 , x3(Ro) = 0 . (6.23)

Firstly, a goal functional of the Mayer form is considered, consisting in
a function K depending on the initial and final state conditions, namely

J(vc) = K(x(Ri), Ri,x(Ro), Ro) . (6.24)
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Taking into account the plane stress condition and using the above
introduced state variables and Equation (6.14), the equivalent Tresca stress
may be written as

σTeq(r) = |σθ(r)− σr(r)| = |x1(r) + rx2(r)− x1(r)| = |rx2(r)| .

Now if the body is pressurized only internally, x1 strictly increases along
the radius, and therefore x2 > 0. Consequently, the absolute value can be
omitted and

K = x2(Ri)

leads to the minimization of the internal Tresca stress, being fixed Ri. The
same problem can be stated within the plane strain condition, taking into
account that

σz(r) = ν[σr(r) + σθ(r)] = ν[2x1(r) + rx2(r)] .

According to [132], there are a few optimization studies in which the
manufacturability cost is taken into consideration. Adding technological
constraints to the optimization studies is highly recommended since it leads
to more practical designs with prospects of being produced in large scales.
To this purpose, one may model the cost in such a way that steep variations
of the volume fractions along the radius are, reasonably, more costly and
more difficult to obtain than moderate variations. As a consequence, in
the present optimization framework, it is reasonable to assume that vc be
constrained in an admissible range of values. More precisely, we assume,
for all values of r, vc ∈ [v−, v+]. However, the following analysis remains
unchanged if, instead of [v−, v+], one considers the union of a set of disjoint
closed and bounded intervals [v−, v1]∪ [v2, v3]∪ . . .∪ [vn, v+], with v− < v1 <
. . . < vn < v+, thus including in the model also situations for which, for
some technological reasons, some values of vc between v− and v+ are not
admissible. Suitable values for v− and v+ can be deduced from fixed radial
property variations or from technological process data.

The optimization problems can now be stated formally. In the
formulation of the problem, as well as in the computation of the solution,
reference is made to the goal functional (6.24) in its general form. Hence,
solutions to the inner Tresca stress minimization problem within the plane
stress and plane strain conditions can be found in a common fashion.

Problem 6.1. Find the distribution of the derivative of the ceramic volume
fraction v∗c (r) so that the inner Tresca stress due to internal pressure is as
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minimum as possible, i.e.,

min
vc(r)

K = x2(Ri)

s.t. x′1(r) = x2(r) ,

x′2(r) = g(x3(r))

(
x2(r) + ν̃

x1(r)

r

)
vc(r)−

3x2(r)

r
,

x′3(r) = vc(r) ,

x1(Ri) = −pi ,
x1(Ro) = 0 ,

x3(Ri) = 1 ,

x3(Ro) = 0 ,

v− ≤ vc(r) ≤ v+ ,

0 ≤ x3(r) ≤ 1 ,

(6.25)

where Ri, Ro, v−, v+, pi and ν̃ are given constants and g is a specified
function.

Pontryagin’s principle applied to Problem 6.1 states that the optimal
control function vc, i.e., the one which minimizes the cost functional J(vc) is,
among all admissible functions, the one which, at any value of r, minimizes
the Hamiltonian function H(r,x,p, vc) which, recalling Equation (2.13), it
is given by

H(r,x,p, vc) = s(r,x,p) + q(r,x,p) vc , (6.26)

where p = (p1 p2 p3) is the vector of the costate variables associated with
the states x, all functions of r, whereas s and q are functions of the states
and costates, whose explicit expressions for the plane stress condition are
given by

s = p1x2 −
3p2x2

r
, q = g(x3)p2

(
x2 + ν̃

x1

r

)
+ p3 . (6.27)

It is worth noting that the problem is characterized by a Hamiltonian
function linear with respect to vc and since the set of admissible values
for vc is compact, Pontryagin’s Principle yields extremal solution for the
minimization of (6.26). More precisely, the optimal control function v∗c is
defined, when q 6= 0, by

v∗c (r) = arg min
vc
H(r,x,p, vc) =

 v− , if q(r,x,p) > 0 ,

v+ , if q(r,x,p) < 0 ,
(6.28)
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that is, the optimal control function may undergo two scenarios. In the first
one, the v∗c assumes its minimum or maximum value, possibly switching
among them when q = 0. In the parlance of control theory, the design
admits a “bang-bang” control, jumping in value at certain points rj (with
j = 1, 2, 3, . . . ). The roots of q are called switching points since the control
function switches from a bound to the other. In the second scenario, q
vanishes in a finite length interval and the solution in this subinterval shall
be found from other considerations. For the sake of analytical tractability,
the investigation of the second scenario is omitted. Hence, recalling the
definition of vc, optimal ceramic volume fraction V ∗c turns out to be
piece-wise linear with respect to r. This conclusion is particularly interesting
since the piece-wise linearity is supposed to be the simplest volume fraction
profile among all possible forms of variation.

Equation (6.28) does not yet provide the explicit expression of the
optimal solution; in fact, it is clear that in order to know the explicit value of
vc for any value of r one should know the value of q. In turn, the computation
of q requires the knowledge of the solution of the dynamical system (6.20)
and of the differential equations (2.18), which for the plane stress condition
are given by

p′1(r) = − ν̃ p2(r) g(x3(r)) vc(r)

r
,

p′2(r) = −p1(r)− p2(r) g(x3(r)) vc(r) +
3p2(r)

r
,

p′3(r) = −p2(r)
dg(x3)

dx3
vc(r)

(
x2(r) + ν̃

x1(r)

r

)
.

(6.29)

Moreover, boundary conditions for costates are determined by Equations
(2.22) and (2.23) which, once again, for the plane stress condition, yield

p2(Ri) = −1 , p2(Ro) = 0 . (6.30)

The state-space representation, boundary states, costate equations and
boundary costates for the plane strain condition are the same as
(6.20)-(6.23), (6.29) and (6.30), provided that ν̃ is replaced by ν̆.

A special attention is drawn to the case in which q has only one root,
i.e., when the optimal solution admits a single switching point. Beside
its simplicity, this choice is justified since the resulting volume fraction
profile is amenable for physical realization from the technological viewpoint.
Denoting by v̄ the rate of the linear variation between x3(Ri) = 1 and
x3(Ro) = 0, namely

v̄ = − 1

Ro −Ri
,
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Figure 6.1: Optimal control function V ∗c and definition of v̄, v−, v+, r1 and
r2. Case v̄ /∈ [v−, v+] (left) where no solutions are feasible and v̄ ∈ [v−, v+]
(right) where two solutions may exist (black and grey solid lines).

two situations may occur. Firstly, if v̄ /∈ [v−, v+], there is no feasible solution,
since no variation vc : [Ri, Ro] → [v−, v+] is consistent with the boundary
conditions (see Figure 6.1, left). As a consequence, no optimal solution exists
either. On the other hand, if v̄ ∈ [v−, v+], two optimal solutions are possible.
More precisely, one characterized by a subinterval in which vc = v+ followed
by a subinterval in which vc = v− (black bold line in Figure 6.1, right) and
the other one with the opposite situation (first vc = v− and then vc = v+,
as in the grey bold line in Figure 6.1, right). With reference to Figure 6.1,
right, the switching points r1 and r2 can be geometrically determined as

r1 =
−1− v−Ro − v+Ri

v+ − v−
, r2 =

1− v−Ri + v+Ro
v+ − v−

. (6.31)

A motivating example

To this purpose, a numerical example concerning the design of a family of
internally pressurized thick-walled FG cylinders is shown, where the material
variation has to be chosen to minimize the inner equivalent Tresca stress.
We first show the results obtained with three “classic” material variations
widely used in the literature. These results are then compared with the
ones associated with the optimal solution previously described where, for
simplicity, a single switching point is supposed to exist. The inner radius
is selected to be 20 mm, while the outer radius is chosen to vary from
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Ro,min = 30 mm to Ro,max = 50 mm. The hollow cylinder is subject to
an internal pressure pi = −10 MPa. Alumina and steel are taken as the
ceramic and metallic constituents at the inner and outer radii, respectively,
whose Young’s moduli are taken to be 3.9×105 MPa and 2.1×105 MPa. For
simplicity, Poisson’s ratio is chosen to be ν = 0.3.

Results of classic variations

In a first analysis, linear, sinusoidal and sigmoidal volume fraction profiles
have been taken into account. They are widely used in the literature and
exhibit different stress behaviors throughout the thickness. Employing the
micromechanical models introduced in Section 6.2.2, effective bulk and shear
moduli are obtained while the effective Young’s modulus is derived using
(6.4). Figure 6.2 shows the above mentioned volume fractions and the
associated Young’s moduli for a fixed Ro/Ri ratio. A dedicated FE model
has been developed to numerically forecast the stress behavior within the
plane stress and plane strain conditions. Numerical values for the inner
Tresca stress have been computed for selected Ro/Ri ratios. The effect
of micromechanical models on the stress responses can be readily seen in
Table 6.1, where the values of the ratio σTeq(Ri)/pi are reported. Voigt and
Reuss estimates yield the lowest and highest normalized inner equivalent
stress values, respectively, for all the aforementioned volume fraction profiles,
while results for Mori-Tanaka model present an intermediate stress behavior.
Moreover, the employment of a sigmoidal volume fraction leads to lower
σTeq(Ri)/pi values with respect to the linear and sinusoidal ones, regardless
of the involved micromechanical model.

Results of the Pontryagin’s solution

Solutions associated with the Pontryagin’s Principle have been, then,
investigated and compared to the three above-mentioned volume fractions.
In light of the single switching point assumption, two possible extremal
solutions may occur (see Equation (6.31)). One of the two solutions
corresponds to the minimum value of σTeq(Ri)/pi, while the other one can
be discarded. Upper and lower limits for v− and v+, respectively, are firstly
determined. In particular, from simple geometric considerations, an optimal
solution exists for all Ro/Ri ratios when

v− <
1

Ri −Ro,min
= −1/10 , v+ >

1

Ri −Ro,max
= −1/30 . (6.32)
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Figure 6.2: Linear, sinusoidal and sigmoidal volume fractions (left) and the
associated Young’s moduli (right) by Voigt (solid line), Reuss (dotted line)
and Mori-Tanaka (dashed line) micromechanical models.
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Plane stress Plane strain

Ro/Ri V R MT V R MT

Linear 1.50 4.309 4.526 4.422 4.327 4.552 4.444

1.75 3.469 3.630 3.552 3.486 3.654 3.573

2.00 3.057 3.189 3.125 3.073 3.212 3.144

2.25 2.815 2.929 2.874 2.830 2.950 2.892

2.50 2.657 2.758 2.709 2.670 2.778 2.726

Sinusoidal 1.50 4.591 4.807 4.706 4.618 4.843 4.737

1.75 3.674 3.839 3.761 3.698 3.872 3.790

2.00 3.222 3.361 3.294 3.245 3.392 3.322

2.25 2.954 3.077 3.018 2.976 3.106 3.044

2.50 2.778 2.889 2.836 2.798 2.917 2.860

Sigmoidal 1.50 4.253 4.312 4.284 4.263 4.324 4.295

1.75 3.410 3.452 3.432 3.419 3.462 3.442

2.00 2.996 3.029 3.014 3.004 3.039 3.022

2.25 2.753 2.781 2.768 2.760 2.789 2.775

2.50 2.595 2.618 2.607 2.601 2.625 2.614

Table 6.1: Numerical values of σTeq(Ri)/pi for linear, sinusoidal and sigmoidal
volume fraction profiles and for Voigt (V), Reuss (R) and Mori-Tanaka (MT)
micromechanical models.
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Figure 6.3: Extremal solutions for ceramic volume fractions and the locus
of switching points as Ro/Ri increases (a,c) and the associated effective
Young’s moduli (b,d) by Voigt (solid lines), Reuss (dotted lines) and
Mori-Tanaka (dashed lines) micromechanical models with v−/v+ = 10.

Two suitable values for v− and v+ are therefore preliminary chosen to be
-0.2 and -0.02, respectively (v−/v+ = 10). The associated extremal solutions
for ceramic volume fractions and the effective Young’s moduli obtained by
Voigt, Reuss and Mori-Tanaka models are represented in Figures 6.3a-6.3d
as Ro/Ri increases. The equations for the locus of switching points can
be derived easily from (6.31), showing a linear dependence with respect
to Ro/Ri, being fixed v−/v+. In particular, the switching points r1 and
r2 get close to the inner and outer radii, respectively, as Ro/Ri increases.
Numerical values of σTeq(Ri)/pi for both extremal solutions are reported in
Table 6.2, showing worse and best stress scenarios when the switching point
occurs at r1 and r2, respectively. These considerations allow one to conclude
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that the optimal solution is the one associated with r2 (grey bold line in
Figure 6.1, right) while the one associated with r1 (black bold line in Figure
6.1, right) has to be discarded.

Comparison

From the results described above, it is clear that the optimal solution, despite
its simplicity, outperform the classical linear, sinusoidal and sigmoidal
variations. Taking for instance Ro/Ri as 1.50 and considering Voigt
and Mori-Tanaka models, optimal volume fraction profile shows, for the
Pontryagin’s solution, a significant normalized inner equivalent stress
reduction of about 10%, 15% and 9% with respect to the linear, sinusoidal
and sigmoidal ones, respectively, for both plane stress and plane strain
conditions. The reduction percentages read slightly higher considering Reuss
model for the same Ro/Ri ratio. The normalized inner equivalent stress
reduction percentage decreases as Ro/Ri increases, reaching averagely 3%
for Ro/Ri = 2.50.

To further analyze the performance of the Pontryagin’s solution the effect
of the v−/v+ has also been investigated. It has been pointed out above that
volume fraction profiles switching at r1 can be discarded. As a consequence,
numerical analyses have been performed considering only the switching in r2

(grey bold line in Figure 6.1, right). In particular, results have been obtained
by keeping v+ constant and acting on v− only. The resulting volume fraction
profile is characterized by a switching point r2 getting linearly closer to Ro as
v−/v+ increases. Figure 6.4 shows the optimal volume fraction profiles and
the corresponding switching points for v−/v+ = 10, 20, 30 and for Ro/Ri =
1.50, 2.00. The corresponding numerical values of σTeq(Ri)/pi are listed in
Table 6.3 considering only Voigt and Reuss models for the assessment of
lower and higher stress behaviors, respectively, showing further inner stress
reduction as v−/v+ increases (see Table 6.2, where results are reported for
v−/v+ = 10). Finally, analyses show marginal stress percentage reduction
for higher Ro/Ri ratios for higher v−/v+ ratios.
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Plane stress Plane strain

Ro/Ri V R V R

v−/v+ = 20 1.50 3.814 3.905 3.818 3.912

2.00 2.819 2.904 2.825 2.916

v−/v+ = 30 1.50 3.777 3.866 3.780 3.872

2.00 2.814 2.902 2.821 2.912

Table 6.3: The effect of variation of v−/v+ on the normalized inner Tresca
stress σTeq(Ri)/pi for two instances of Ro/Ri.

Critical remarks

Although optimal solutions perform better than classic property variations
employed in the literature, the aforementioned formulation of the problem
could suffer from some critical aspects. The first one concerns the absence
of a criterion for the selection of v− and v+. Bounds for these latter
can be derived from Equation (6.32) but most importantly, after imposing
the number of switching points beforehand. By doing so, it is implicitly
assumed that the function q(r,x,p) in (6.26) is either strictly positive or
strictly negative along r. This assumption has been made to favor the
analytical tractability of the problem. In fact, it is emphasized that the
Beltrami-Michell based formulation has not been of much help to determine
whether the function q identically vanishes in a finite interval or in more
finite intervals throughout the radial direction. Secondly, it is observed
that the expression for optimal solutions (6.28) thus derived is paradoxically
insensitive neither to whether the pressurized cylinder is exhibiting a plane
stress or a plane strain load condition nor to the employed micromechanical
model.

These considerations hint one to reconsider the optimization problem
by means of a different formulation, possibly bypassing the exploitation
of Pontryagin’s Principle so that it overcomes the aforementioned
shortcomings. To this purpose, a mixed formulation based on both Navier
and Beltrami-Michell approaches is illustrated next.
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Figure 6.4: The effect of the variation of v−/v+ on the optimal volume
fraction profile for two instances of Ro/Ri.

6.3.2 A Beltrami-Michell-Navier based formulation

Unlike the Beltrami-Michell based formulation, states are taken to be the
radial displacement and the radial stress. Hereinafter, the variation of
Poisson’s ratio along the radial coordinate is included.

Firstly, the assumption of plane stress load condition is made. On a hand,
from Equations (6.2), (6.3) and (6.14), the radial strain can be expressed as

u′(r) =
σr(r)− ν(r)σθ(r)

E(r)
=
σr(r)− ν(r)[σr(r) + rσ′r(r)]

E(r)
. (6.33)

On the other hand, the hoop strain can be expressed as

u(r)

r
=
σθ(r)− ν(r)σr(r)

E(r)
,

and consequently, the hoop stress can be expressed in terms of the states as
follows

σθ(r) = E(r)
u(r)

r
+ ν(r)σr(r) .

Consequently, the variation of the radial displacement and the radial
displacement with respect to the radial coordinate, in terms of the two
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states, are given by

u′(r) = −ν(r)

r
u(r) +

1− ν(r)2

E(r)
σr(r) (6.34)

and

σ′r(r) =
E(r)

r2
u(r) +

ν(r)− 1

E(r)
σr(r) , (6.35)

respectively, where Equation (6.15) has been used to derive (6.35).

Now, the assumption of a plane strain load condition is assumed. Here,
the axial stress should be taken into account, whereas the axial strain is
identically zero. This latter yields a relation between the three stresses,
namely

σz(r) = ν(r)[σr(r) + σθ(r)] . (6.36)

From constitutive equations (6.3) and Equation (6.14), the variation of the
radial displacement and radial stress with respect to the radial coordinate,
in terms of the two states, are given by

u′(r) =
ν(r)

[ν(r)− 1]r
u(r) +

[1 + ν(r)][1− 2ν(r)]

E(r)[1− ν(r)]
σr(r) (6.37)

and

σ′r(r) =
E(r)

[1− ν(r)2]r2
u(r) +

2ν(r)− 1

[1− ν(r)]
σr(r) , (6.38)

respectively.

Unlike Problem 6.1, the maximum value for the Tresca equivalent stress
is taken as the objective functional to be minimized and not that occurring
at the inner radius. Nevertheless, a sound comparison can be still made
since in all previous FE forecasts the inner Tresca stress was found to be the
maximum throughout the radial coordinate. However, This is particularly
true only for the plane stress condition. In fact, the equivalent Tresca stress
is given by

σTeq(r) = max{|σθ(r)− σr(r)|, |σθ(r)− σz(r)|, |σr(r)− σz(r)|} , (6.39)

which, in the case of plane stress condition, is just reduced to the first
argument at the right hand-side and can be written in terms of the two
states as follows

σTeq(r) = |σθ(r)− σr(r)| =
∣∣∣∣E(r)

u(r)

r
+ [ν(r)− 1]σr(r)

∣∣∣∣ (6.40)
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and its maximum value can be approximated by the p-norm (p even) and is
given by:

σTeq,max ≈
{∫ Ro

Ri

[
E(r)

u(r)

r
+ [ν(r)− 1]σr(r)

]p
dr

}1/p

. (6.41)

As far as the plane strain condition is concerned, it is not trivial to decide
which argument in Equation (6.39) is prevalent. Consequently, a potential
candidate for the objective functional can be the maximum value for the
hoop stress, which can be approximated as

σθ,max ≈
{∫ Ro

Ri

[
1

1− ν(r)2

(
E(r)

u(r)

r
+ ν(r)[1 + ν(r)]σr(r)

)]p
dr

}1/p

.

(6.42)

Consequently, two formulations are stated depending on the load
condition. Hereinafter, states y1 and y2 denote the radial displacement and
the radial stress, respectively. Besides, to broad the spectrum of analysis,
the Poisson’s ratio is allowed to vary along the radial coordinate.

Problem 6.2. Find the distribution of the ceramic volume fraction along
the radial direction of the cylinder so that the maximum Tresca stress attains
its minimum value, i.e.,

min
Vc(r)

σTeq,max =

{∫ Ro

Ri

[
E(r)

y1(r)

r
+ [ν(r)− 1]y2(r)

]p
dr

}1/p

s.t. y′1(r) = −ν(r)

r
y1(r) +

1− ν(r)2

E(r)
y2(r) ,

y′2(r) =
E(r)

r2
y1(r) +

ν(r)− 1

E(r)
y2(r) ,

y2(Ri) = −pi ,
y2(Ro) = 0 ,

0 ≤ Vc(r) ≤ 1 ,

(6.43)

where Ri, Ro, pi and p are given constants and E(r) and ν(r) are linked to
Vc(r) through a micromechanical model.

Problem 6.3. Find the distribution of the ceramic volume fraction along
the radial direction of the cylinder so that the maximum hoop stress attains
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its minimum value, i.e.,

min
Vc(r)

σθ,max =

{∫ Ro

Ri

[
1

1− ν(r)2

(
E(r)

y1(r)

r
+ ν(r)[1 + ν(r)]y2(r)

)]p
dr

}1/p

s.t. y′1(r) =
ν(r)

[ν(r)− 1]r
y1(r) +

[1 + ν(r)][1− 2ν(r)]

E(r)[1− ν(r)]
y2(r) ,

y′2(r) =
E(r)

[1− ν(r)2]r2
y1(r) +

2ν(r)− 1

[1− ν(r)]r
y2(r) ,

y2(Ri) = −pi ,
y2(Ro) = 0 ,

0 ≤ Vc(r) ≤ 1 ,
(6.44)

where Ri, Ro, pi and p are given constants and E(r) and ν(r) are linked to
Vc(r) through a micromechanical model.

Problems 6.2 and 6.3 have been solved by means of the numerical
method described in Chapter 3. In all the simulations presented here,
the exponent p was taken to be equal to 60. The two bulk materials
are Steel and Alumina, whose Poisson’s ratios are taken to be 0.33 and
0.25, respectively, but firstly a comparison with results in Tables 6.2 and
6.3 is made, namely when the Poisson’s ratio is uniform (ν = 0.3) and
for pi = −10 MPa. The corresponding optimal ceramic volume fractions
are shown in Figures 6.5a-6.5d for both Voigt and Reuss models and for
both load conditions. Optimal solution associated with Ro/Ri = 1.50 in
both load conditions apart, it can be seen that optimal solutions behave
similarly, namely there is a finite interval between Ri and Ro where the
material grades, while it is homogeneous elsewhere. In particular, there
is an initial and final radial strips where the optimal distribution of the
material yields ceramic (Vc = 1) and metal (Vc = 0) phases, respectively.
Therefore, unlike the Beltrami-Michell formulation, this new formulation
goes beyond the limits on the maximum and minimum derivatives of Vc and
can yield a solution where the material partly grades throughout the radial
coordinate. The position of these radial strips depends on the geometric
aspect of the cylinder. Moreover, numerical solutions for the maximum
equivalent Tresca stress have been forecast for Ro/Ri = 1.50÷ 2.50 and are
identical for both models. The associated normalized maximum equivalent
stress (which still occurs at the inner boundary) are given in Table 6.4,
where it is shown that arising maximum stresses are much lower than those
employed in the literature (≈ 40%), and even the optimal solution associated
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Figure 6.5: Numerical optimal solutions for ceramic volume fractions for
Voigt (a,c) and Reuss (b,d) models for a plane stress (a,b) and plane strain
(c,d) load conditions and for different values of Ro/Ri.
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Ro/Ri σTmax/pi

Plane stress 1.50 2.647

1.75 2.132

2.00 1.908

2.25 1.785

2.50 1.708

Plane strain 1.50 3.000

1.75 2.358

2.00 2.081

2.25 1.922

2.50 1.824

Table 6.4: Normalized maximum equivalent stress associated with the
optimal numerical solutions for both plane stress and plane strain load
conditions (uniform ν).

with the Pontryagin’s best extremal obtained from the Beltrami-Michell
formulation (≈ 30%).

Finally, the variation of the Poisson’s ratio is taken into account and
optimal solutions are computed for the aspect ratio Ro/Ri = 2.00. Figures
6.6a and 6.6b show the optimal ceramic volume fractions for uniform and
variable Poisson’s ratios, where it is emphasized that numerical solutions for
the ceramic volume fractions do not remarkably differ from those associated
with uniform ν, which in turn it leads to marginal differences between
corresponding maximum Tresca stresses (see Tables 6.4 and 6.5).

6.4 Summary

The optimization of functionally graded internally pressurized cylinders
has been the central objective of this chapter. The description of the
stress and strain states has been addressed by borrowing notions from
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Figure 6.6: Effect of the variation of Poisson’s ratio on the numerical optimal
solutions for ceramic volume fractions for Voigt and Reuss models, for a
plane stress (a) and plane strain (b) load conditions and for Ro/Ri = 2.00.
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Ro/Ri σTmax/pi

V R

Plane stress 1.50 2.635 2.633

1.75 2.108 2.107

2.00 1.878 1.877

2.25 1.752 1.752

2.50 1.674 1.674

Plane strain 1.50 3.000 3.000

1.75 2.358 2.355

2.00 2.075 2.073

2.25 1.909 1.908

2.50 1.807 1.806

Table 6.5: Normalized maximum equivalent stress associated with the
optimal numerical solutions with variable ν.
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the theory of linear elasticity. Unlike the overwhelming studies in the
literature, the distribution of elastic properties along the radial direction
is not fixed a priori, thus offering an intrinsic setting for their derivation
based on optimality principles. To this purpose, two formulations have
been proposed depending in the nature of the involved states. The first
formulation showed a relatively higher analytical tractability under some
mild hypotheses, while challenges associated with the second one have been
tackled numerically. Nevertheless, optimal solutions over-performed with
respect to several gradation strategies commonly employed in the literature.
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Chapter 7

Conclusions

This chapter recapitulates the principal findings of this dissertation and
suggests advancements for future research work.

In the first part, variational principles have been employed to derive
necessary conditions for optimality in continuous dynamic optimization
problems subject to algebraic and differential constraints (Chapter 2). In
particular, strong and weak forms of Pontryagin’s Principle have been
presented and discussed. It has been shown that optimality conditions,
unless in a few cases, are hardly tractable from the analytical point of
view, and therefore required the development of dedicated numerical tools.
This shortcoming has been addressed by means of the direct orthogonal
collocation (or pseudospectral) method (Chapter 3). More precisely,
the transcription process of (infinite-dimensional) dynamic optimization
problems into (finite-dimensional) static ones is shown in both global and
local forms. Moreover, explicit expressions for the first derivatives of
the resulting nonlinear programming problem this discretization have been
reported and used for the sake of an efficient computation efficiency.

In the second part, optimization problems formulated in the realm of
membrane shells of revolutions (Chapter 4), one-dimensional structural
elements (Chapter 5) and functionally graded cylinders (Chapter 6) have
been formulated, solved, thoroughly discussed and compared to the
literature. Potential goal functionals and structural constrains ranged
from lightweightness, to maximum storage capacity, stiffness, resistance to
buckling and load bearing capacity. In some cases, optimal solutions have
been derived analytically or even in closed-form, otherwise computational
tools have been exploited. Among these applications, an optimized
axisymmetric pressure vessel has been considered, a detailed discussion
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on its manufacturability by means of metal additive techniques has been
reported and highlighting several aspects of reverse engineering such as
its scanning measurement, finite element based validation and rugosity
evaluation, showing satisfactory results.

Results summarized in this dissertation formed a considerable part of
the research activities carried out during my doctoral studies and led to
the publications of a few journal articles [154, 155, 156, 157, 158, 159, 160].
Moreover, further efforts and relatively close analyses have been performed
in other works [161, 162, 163, 164, 165]. Nevertheless, three potential
challenges hinting future investigations are listed next:

1. It is known that cracks can form as a consequence of manufacturing
processes or during operation. For membrane shells of revolution
subject to a cyclic internal pressure, it is required to formulate
longevity constraints in terms of critical stress intensity factors by
means of the well-known Paris-Erdogan law [166]. As mentioned in
Chapter 4, efforts employing the so-called minimax (or guaranteed)
approach have been done in [59, 60] for membrane shells. However,
solutions are provided for a particular class of materials, for which the
longevity constraints are simplified. A similar effort has been proposed
for cantilever beams in [167] by using a probabilistic approach. Also
here, solutions are analytically provided for a basic load case. To
overcome these shortcomings, the numerical approach in Chapter
3 can be employed to find optimal shapes beyond these analytical
tractability issues.

2. The analysis of micro/nano beams has been gaining a considerable
attention by researchers. Nano beams are modeled within the
framework of second grade elasticity and within integral-based
nonlocal theories. Recently, there has been a number of studies of
buckling of nonlocal nano beams, e.g., [107, 108, 168]. It was shown in
these works that the Pontryagin’s principle may be used successfully
to determine the shape of the rod that has minimal mass and is
stable under the action of a prescribed force, yet the development of
nontrivial variational principles is needed. The idea is to study to what
extent pseudospectral methods can be helpful in the determination of
optimal solutions, bypassing this nontrivial stage.

3. Increased interest in recent years can be attributed to many
interesting studies on functionally graded materials when multiple
loads are acting, e.g., centrifugal forces, forces due to the presence of
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electromagnetic fields and under hydrogenated environment [24, 169,
170]. In Chapter 6, only cylinders subject to an internal pressure have
been taken into account. Apart from extensions to other axisymmetric
bodies (e.g., spheres, annular rings and disks), it is believed that
the developed numerical method can address problems not only when
the loads are simultaneously applied, but also when mechanical and
thermal properties vary with temperature.
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Appendix A

Calculus of variations

Correspondences which assign a definite (real) number to each function (or
curve) belonging to some class are commonly referred to as functionals. In
other words, functionals are a kind of functions, whose independent variables
are themselves functions (or curves). They play an important role in many
problems arising in analysis, mechanics, geometry, etc. Typical examples
are the following:

• Consider the set of all rectifiable plane curves. A definite number is
associated with each curve, namely, its length. Thus, the length of a
curve is a functional defined on the set of rectifiable curves.

• Suppose that each rectifiable plane curve is regarded as being made
out of a homogeneous material. Then a functional can be defined if
each curve is associated with the ordinate of its center of mass.

• Consider all possible paths joining two given points A and B in the
plane. Suppose that a particle can move along any of these paths and
let the particle have a definite velocity. Then, a functional can be
defined by associating with each curve the time the particle takes to
move from A to B.

Particular instances of problems involving the concept of a functional
have been considered more than three hundred years ago. The first
important results in this area are due to Euler. Nevertheless, up to now, the
calculus of functionals still does not have methods of generality comparable
to classical analysis, i.e., ordinary calculus of functions. The most developed
branch of the calculus of functionals is concerned with finding the maxima
and minima of functionals. This particular branch is referred to as calculus
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of variations. An important factor in the development of the calculus of
variations was the investigation of a number of mechanical and physical
problems. In turn, the methods of the calculus of variations are widely
applied in various physical and engineering problems. Besides, it should be
emphasized that the application of the calculus of variations to mechanics
and physics does not consist merely in the solution of individual, albeit
very important problems. In fact, the so-called variational principles are
essentially a manifestation of very general physical laws, which are valid in
diverse branches of physics and engineering.

The present Appendix gives a concise introduction to this classic
field through basic definitions and theorems and aims to derive necessary
conditions for the existence of extremal solutions for different basic
variational problems. Necessary conditions turn out to be second-order
ordinary differential equations which, together to boundary conditions,
constitute boundary value problems. Eventually, a few generalizations have
been eventually formulated, discussed and linked to the simplest variational
problem.

A.1 Preliminary concepts

To understand the basic meaning of the problems and methods of the
calculus of variations, it is very important to see how they are related
to problems of classical analysis, i.e., to the study if functions of multiple
variables. Euler works made considerable effort to establish this link. For
the sake of an example, consider the minimization of the functional of the
form

J [y] =

∫ b

a
F(x, y, y′) dx, y(a) = A, y(b) = B, (A.1)

where a prime denotes the first derivative with respect to x and F : [a, b]×
R × R → R, namely, to find the curve y = y(x) with y : [a, b] → R joining
the fixed points A and B such that the cost (or goal) functional J is as
minimum as possible. By replacing smooth curves by polygonal lines, Euler
reduced the problem of finding extrema of a functional to the problem of
finding extrema of a function of multiple variables. In particular, to find a
related function of the sort considered in classical analysis, one may use the
points

x0 = a, x1, x2, . . . , xn, xn+1 = b
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and divide the interval [a, b] into n + 1 equal parts. Then the curve y is
replaced by the polygonal line with vertices

(x0, A), (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)), (xn+1, B)

and the functional J is approximated by the sum

J(y1, ..., yn) =
n+1∑
i=1

F
(
xi, yi,

yi − yi−1

h

)
h, (A.2)

where yi = y(xi) and h = xi − xi−1. Each polygonal line is uniquely
determined by the ordinates y1, y2, . . . , yn of its vertices and the sum
(A.2) is therefore a function of n variables. Hence, one can regard the
variational problem as the problem of finding the extrema of the function
J(y1, y2, ..., yn). It is clear that exact solutions can be obtained by passing to
the limit as n→∞. In this sense, functionals can be regarded as functions
of infinitely many variables and the calculus of variations can be considered
as the corresponding analog of differential calculus.

In the study of functions of n variables, it is convenient to use geometric
language by regarding a set of n numbers (y1, y2, . . . , yn) as point in an
n-dimensional space. Similarly, geometric language is useful when studying
functionals. Thus, we shall regard each function y(x) belonging to some
class as a point in some space and spaces whose elements are functions will
be called function spaces. In fact, there is no universal space, it is the
nature of the problem under consideration that determines the choice of the
function space. For example, if a functional of the form (A.1) is considered,
it is natural that this functional should be defined on the set of all functions
with a continuous first derivative.

Next, preliminary concepts regarding involved functional spaces, a few
useful definitions and theorems are given to fix the basic concepts and
terminology without worrying about technical details. Concise proofs of
these theorems are addressed, whereas more rigorous analyses can be found
in several textbooks, e.g. [171, 172, 173].

A.1.1 Linear normed spaces

The concept of continuity plays an important role for functionals and should
be properly defined. To this purpose, it is necessary to introduce the concept
of closeness for elements in a function space. This is most conveniently
done by introducing the concept of the norm of a function in a general and
abstract form, namely by introducing the concept of a normed linear space.
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A set R of elements x, y, z, . . . is referred to as linear space if for which
the operations of addition and multiplication by (real) numbers α, β, . . . are
defined and obey the following properties:

• x+ y = y + x;

• (x+ y) + z = x+ (y + z);

• There exists an element 0 (the zero element) such that x + 0 = x for
any x ∈ R;

• For each x ∈ R, there exists an element −x such that x+ (−x) = 0;

• α(βx) = (αβ)x;

• (α+ β)x = αx+ βx;

• α(x+ y) = αx+ αy.

A linear space R is said to be normed if each element x ∈ R is assigned a
non-negative number ||x||, called norm of x, such that

• ||x|| = 0 iff x = 0;

• ||αx|| = |α| ||x||;

• ||x+ y|| ≤ ||x||+ ||y||.

Examples of normed linear spaces that are useful for subsequent
considerations are D0, D1 and Dn, consisting of all continuous functions, all
continuous functions having continuous first derivative and all continuous
functions having continuous derivatives up to order n ∈ N inclusive,
respectively. More precisely, if functions are defined on I = [a, b], they
are denoted by D0(I), D1(I) and Dn(I), respectively. Letting ||y||0, ||y||1
and ||y||n denote the associated norms of a function y = y(x) with y : I → R,
respectively, defined as

||y||n =

n∑
i=0

max
a≤x≤b

|y(i)(x)|,

where y(i) = diy(x)
dxi

and y(0) denotes the function y(x) itself, it is easily
verified that all the properties of a normed linear space are satisfied. After
a norm has been introduced in the linear space R, it is natural to give the
following definition:
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Definition A.1. The functional J [y] is said to be continuous at the point
ŷ ∈ R if for any ε > 0 there is a δ > 0 such that

|J [y]− J [ŷ]| < ε,

provided that ||y − ŷ|| < δ.

A.1.2 Variation of a functional

In this section, the variation of a functional is introduced. It is analogous
to the concept of differential of a function of multiple variables.

Definition A.2. Given a normed linear space R, let each element h ∈ R
be assigned a number ϕ[h]. Then ϕ[h] is said to be a linear functional if

1. ϕ[αh] = αϕ[h] for any h ∈ R and any real number α;

2. ϕ[h1 + h2] = ϕ[h1] + ϕ[h2];

3. ϕ[h] is continuous for all h ∈ R.

Based on Definition A.2, the following examples hold:

Example A.1. If each function h(x) ∈ D0(I) is associated with its value
at a fixed point x0 ∈ I, i.e. if

J [h] = h(x0),

then J [h] is a linear functional on D0(I).

Example A.2. The integrals

J [h] =

∫ b

a
h(x) dx

and

J [h] =

∫ b

a
g(x)h(x) dx

define linear functionals on D0(I), where g(x) is a fixed function in D0(I).

Example A.3. More generally, the integral

J [h] =

∫ b

a
[g0(x)h(x) + g1(x)h′(x) + · · ·+ gn(x)h(n)(x)] dx

defines a linear functional on Dn(I), where gi(x) are fixed functions in
D0(I).
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Definition A.3. Let J [h] be a functional defined on some normed linear
space. The increment of the functional is defined as

∆J [y, h] = J [y + h]− J [y],

namely corresponding to the increment h = h(x) of the variable y = y(x).

Definition A.4. The functional is said to be differentiable at y = ŷ if

∆J [h] = J [ŷ + h]− J [ŷ]

can be written as

∆J [h] = ϕ[h] + ε||h||,

where ϕ[h] is a linear functional and ε→ 0 as ||h|| → 0.

Letting the variation of the functional be the principal linear part of
∆J , i.e., ϕ, and denoting it by δJ [h], therefore, from Definition A.4, the
functional is differentiable at y = ŷ if

∆J [h] = δJ [h] + ε||h||. (A.3)

A.1.3 Necessary condition for extremal solutions

Proposition A.1. If ϕ is a linear functional and ϕ[h]
||h|| → 0 as ||h|| → 0,

then ϕ[h] = 0 for all admissible h.

Proof. Suppose that the above statement is not true. It means that there
exists h0 such that ϕ[h0] 6= 0. Now let hn = h0

n , with n > 0, and λ = ϕ[h0]
||h0|| .

From the construction of hn, it is clear that limn→∞ hn = 0, but

lim
n→∞

ϕ[hn]

||hn||
= lim

n→∞

ϕ[h0n ]

||h0n ||
= lim

n→∞

ϕ[h0]

||h0||
= λ 6= 0. (A.4)

On the other hand, from the properties of limits

lim
n→∞

ϕ[hn]

||hn||
=
ϕ[limn→∞ hn]

|| limn→∞ hn||
= 0,

which is in contradiction with (A.4) and therefore proves the statement.

Theorem A.1. The variation of a differentiable functional is unique.

167



Appendix A - Calculus of variations

Proof. Suppose the variation of the functional J [y] is not uniquely defined,
so that

∆J [h] = ϕ1[h] + ε1||h||

and

∆J [h] = ϕ2[h] + ε2||h||,

where ϕ1[h] and ϕ2[h] are linear functionals and ε1, ε2 → 0 as ||h|| → 0.
This implies

ϕ1[h]− ϕ2[h] = (ε2 − ε1)||h||.

Defining ε = ε2 − ε1 and from linearity of ϕ1 and ϕ2 one obtains

(ϕ1 − ϕ2)[h] = ε||h||,

where ε→ 0 as ||h|| → 0. Manipulating terms, the equivalent expression

(ϕ1 − ϕ2)[h]

||h||
→ 0

holds as ‖|h|| → 0. Since ϕ1 − ϕ2 is a linear functional, from Proposition
A.1 one obtains ϕ1 = ϕ2 for all admissible h. This is in contradiction with
the above assumption and therefore proves the theorem.

Theorem A.2. A necessary condition for the differentiable functional J [y]
to have an extremum for y = ŷ is that its variation vanishes for y = ŷ, i.e.,

δJ [h] = 0

for y = ŷ and all admissible h.

Proof. Without loss of generality, assume that J [y] assumes minimum value
at y = ŷ. Therefore,

∆J [h] = J [ŷ + h]− J [ŷ] ≥ 0 (A.5)

for all h in a neighborhood N of ŷ. The differentiability of the functional
implies that

∆J [h] = δJ [h] + ε||h||,

where ε → 0 as ||h|| → 0. Thus, for sufficiently small ||h||, which in turn
defines the neighborhood of ŷ, the sign of ∆J [h] will be the same as δJ [h].
Now suppose that δJ [h0] 6= 0, for an admissible h0, in contradiction to the
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statement. Then for any α > 0, no matter how small, ŷ + αh0 and ŷ − αh0

live in N and the corresponding variations read

δJ [ŷ + αh0]− J [ŷ] = δJ [αh0]

and

δJ [ŷ − αh0]− J [ŷ] = δJ [−αh0],

respectively. Besides, since δJ is linear, both variations have opposite signs,
namely

δJ [−αh0] = −δJ [αh0],

which is impossible because of relation (A.5). This contradiction proves the
theorem.

In the next section, the fundamental theorem to determine extrema of
functionals depending on a single function is used. In particular, it will
be assumed initially that end points are fixed and then will be allowed to
be free. Necessary conditions are derived and comments on extrema are
addressed for problems summarized in Figure A.1.

A.2 The simplest variational problem

Necessary conditions for extremum solutions for the simplest variational
problem is considered next. It consists of finding a smooth curve y =
y(x) joining two fixed points, which extremizes a given functional, whose
integrand depend on y itself and its derivative (see Figure A.1a). The
problem is formulated as follows:

Problem A.1. Among all continuous differentiable functions y : [x0, xf ]→
R satisfying given boundary conditions

y(x0) = y0, y(xf ) = yf , (A.6)

find the extremum of the cost functional

J [y] =

∫ xf

x0

F(x, y(x), y′(x)) dx. (A.7)

Problem A.1 was originally proposed by Lagrange in his monograph
Mécanique Analytique in 1788. The assumption y ∈ D1 is made to ensure
that J is well defined (of course one does not need it if y′ does not appear in
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Figure A.1: Schematizing admissible curves for fixed and free end points
problems.
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F). As previously asserted in Theorem A.2, the necessary condition for an
extremum is to set the first variation of the functional equal to zero, namely

δJ = 0 = δ

∫ xf

x0

F(x, y(x), y′(x)) dx =

∫ xf

x0

δF(x, y(x), y′(x)) dx, (A.8)

where it can be seen that the variation sign moved under the integral sign
since x0 and xf are fixed, due to Leibniz integral rule for differentiation
under the integral sign. Thus, neglecting higher order terms, the variation
of the integrand function is given by

δF(x, y(x), y′(x)) =
∂F
∂y

δy +
∂F
∂y′

δy′

and therefore, from Equation (A.8), necessary conditions can be recast as∫ xf

x0

∂F
∂y

δy dx+

∫ xf

x0

∂F
∂y′

δy′ dx = 0. (A.9)

Now, consider the second term at the left-hand side of (A.9). By employing
integration by parts, one obtains∫ xf

x0

∂F
∂y′

δy′ dx =

[
∂F
∂y′

δy

]xf
x0

−
∫ xf

x0

d

dx

∂F
∂y′

δy dx. (A.10)

Since boundary conditions (A.6) are fixed, admissible variations δy require

δy(x0) = δy(xf ) = 0 (A.11)

and therefore relation (A.9) may be recast as∫ xf

x0

(
∂F
∂y
− d

dx

∂F
∂y′

)
δy dx = 0. (A.12)

The only way that the integral appearing in (A.12) equals zero for all
admissible variations δy satisfying (A.11) is that

∂F
∂y
− d

dx

∂F
∂y′

= 0. (A.13)

Relation (A.13) is commonly referred to as Euler-Lagrange equation and
yields the necessary condition for the existence of an extremum solution
for Problem A.1. It gives a necessary condition for an extremum, but in
general, one which is not sufficient. The question of sufficient conditions for
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an extremum is out of the scope of this dissertation. In many cases, however,
Euler-Lagrange equation by itself is enough to give a complete solution of
the problem. In fact, the existence of an extremum is often clear from the
physical or geometric meaning of the problem, e.g., in the brachistochrone
problem, the problem concerning the shortest distance between two points,
etc. If in such a case there exists only one extremal satisfying the boundary
conditions of the problem, this extremal must perforce be the curve for which
the extremum is achieved.

A.2.1 Particular cases

Euler-Lagrange equation plays a fundamental role in the calculus of
variations, and is in general a second-order differential equation. However,
there are some special cases where it can be reduced to a first-order
differential equation or its solution can be obtained entirely in terms of
quadratures or by solving an algebraic equation. For the sake of light
notation, let subscripts y and y′ denote the first partial derivative with
respect to y and y′ respectively, namely (.)y = ∂(.)

∂y and (.)y′ = ∂(.)
∂y′ .

Case 1: F = F(x, y′)

Suppose the integrand does not depend on y, i.e., let the functional under
consideration have the form∫ xf

x0

F(x, y′(x)) dx,

where F does not contain y explicitly. In this case, from relation (A.13),
Euler-Lagrange equation becomes

d

dx
Fy′ = 0

which has the first integral

Fy′ = C, (A.14)

where C is a constant. This is a first-order differential equation which does
not contain y. Solving Equation (A.14) for y′, one obtains an equation of
the form

y′ = f(x,C),

from which y can be found by a quadrature.
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Case 2: F = F(y, y′)

If the integrand does not depend on the independent variable x, i.e., if

J =

∫ xf

x0

F(y(x), y′(x)) dx,

then

Fy −
d

dx
Fy′ = Fy −Fy′yy′ −Fy′y′y′′ = 0. (A.15)

Multiplying Equation (A.15) by y′, one obtains

Fyy′ −Fy′yy′2 −Fy′y′y′y′′ =
d

dx

(
F − Fy′y′

)
and therefore, Euler-Lagrange equation has the first integral

F − Fy′y′ = C, (A.16)

where C is a constant. Equation (A.16) is commonly referred to as
Beltrami’s identity.

Case 3: F = F(x, y)

If F does not depend on y′, Euler-Lagrange equation takes the form

Fy(x, y) = 0 , (A.17)

and hence is not a differential equation, but an algebraic one, whose solution
consists of one or more curves y = y(x).

Case 4

In a variety of problems, one encounters functionals of the form∫ xf

xo

Γ(x, y)
√

1 + y′2 dx

representing the integral of a function Γ(x, y) with respect to the so-called
arc length s (ds =

√
1 + y′2 dx). In this case, Euler-Lagarnge equation can

be transformed into

Fy −
d

dx
Fy′ = Γy

√
1 + y′2 − d

dx

[
Γ

y′√
1 + y′2

]

= Γy
√

1 + y′2 − Γx
y′√

1 + y′2
− Γy

y′2√
1 + y′2

− Γ
y′′

(1 + y′2)3/2

=
1√

1 + y′2

[
Γy − Γxy

′ − Γ
y′′

1 + y′2

]
= 0,
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i.e.,

Γy − Γxy
′ − Γ

y′′

1 + y′2
= 0.

A.2.2 Free end points problems

Unlike the simplest variational problem, problems having end points that are
not fixed are now considered. Suppose now to be given the same functional
(A.7), but either xf or y(xf ) (or both) are not fixed, i.e., free. Three possible
cases may therefore arise and are investigated below, yet it is convenient to
highly remark a few important quantities. In particular, δxf , δy(xf ) and δyf
denote the variation in xf , the variation in the value of y(x) at xf and the
variation in the final value of y(x), respectively. In Problem A.1, it is easy
to show that δy(xf ) is identically δyf , since both end points are specified,
yet they can be related one another with the aid of the former quantity via
other relations, depending on the problem under consideration.

Specified xf and free y(xf )

Problem A.2. Find a necessary condition for a function to be an extremal
for the functional

J [y] =

∫ xf

x0

F(x, y(x), y′(x)) dx,

where x0, y(x0) and xf are specified and y(xf ) is free.

Admissible curves all start from the same point and terminate on a
vertical line, as shown in Figure A.1b. Before setting the first variation to
be zero, suppose y∗ is an extremal for Problem A.2, as shown in Figure A.1c.
Therefore δJ(y∗) must be zero. Moreover, suppose that y∗(xf ) = yf . Now
consider a fixed end point problem with the same functional, the same x0

and xf and with specified end points y(x0) = y0 and y(xf ) = yf that are the
same as for the extremal y∗ in the free end point problem. Therefore, the
curve y∗ must be a solution of the Euler-Lagrange equation (A.13). In other
words, an extremal for a free end point problem is also an extremal for the
fixed end point problem with the same end points and the same functional.
Thus, regardless of the boundary conditions, Euler-Lagrange equation must
be satisfied. However, an additional boundary condition (at xf ) is still
needed. To this purpose, the following considerations are made. Firstly,
mathematical manipulations from Equation (A.8) to Equation (A.10) are
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still valid. In particular, one obtains

δJ =

∫ xf

x0

Fyδy dx+
[
Fy′δy

]xf
x0
−
∫ xf

x0

d

dx
Fy′δy dx

=

∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx+

[
Fy′δy

]
xf
−
[
Fy′δy

]
x0

= 0.

(A.18)

Now, since admissible variations δy require δy(x0) = 0, it follows∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx+ Fy′(xf )δy(xf ) = 0. (A.19)

On the other hand, admissible variations are characterized with δy(xf ) 6= 0,
consequently the first variation can be identically zero when both

Fy −
d

dx
Fy′ = 0 (A.20)

and
Fy′(xf ) = 0 (A.21)

are satisfied. It is worth noting that Equation (A.21) provides the
second required boundary condition for Euler-Lagrange equation and it is
commonly referred to as the natural boundary condition of the problem.

Free xf and specified y(xf )

Problem A.3. Find a necessary condition for a function to be an extremal
for the functional

J [y] =

∫ xf

x0

F(x, y(x), y′(x)) dx,

where x0, y(x0) and y(xf ) are specified and xf is free.

Admissible curves all start from the same point and terminate on a
horizontal line with ordinate yf , as shown in Figure A.1d. Because of the
free final value xf , necessary conditions for Problem A.3 are different when
compared with those for Problem A.2. In Figure A.1e an extremal curve y∗,
terminating at the point (xf , yf ) and a neighboring curve y terminating at
the point (xf + δxf , yf ) are shown. Limiting ourselves to first order terms,
it is easy to show by inspection of Figure A.1e that

δy(xf ) + y′(xf )δxf = 0
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or

δy(xf ) = −y′(xf )δxf . (A.22)

Setting the first variation of the functional equal to zero, namely

δJ = 0 = δ

∫ xf

x0

F(x, y(x), y′(x)) dx, (A.23)

and making use of Leibniz integral rule for differentiation, one obtains∫ xf

x0

δF(x, y(x), y′(x)) dx+ δxf

∫ xf

x0

F(x, y(x), y′(x)) dx = 0,

where the symbol δxf (.) at the second term at the left hand-side denotes
the variation of (.) due to the variation in xf . Integrating the first term by
parts and using the fundamental theorem of calculus for the second term,
one obtains∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx+

[
Fy′δy

]
xf
−
[
Fy′δy

]
x0

+ [F ]xf δxf = 0 (A.24)

Now, since admissible variations δy require δy(x0) = 0, it follows∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx+

[
Fy′
]
xf
δy(xf ) + [F ]xf δxf = 0

and using Equation (A.22), one obtains∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx−

[
Fy′(xf )y′(xf )−F(xf )

]
δxf = 0.

Besides, admissible variations are characterized with δxf 6= 0, consequently
the first variation can be identically zero when Euler-Lagrange equation

Fy −
d

dx
Fy′ = 0

holds and the following relation

Fy′(xf )y′(xf )−F(xf ) = 0 (A.25)

is satisfied.
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Free xf and y(xf )

In this section, problems having both xf and y(xf ) free are considered. Not
surprisingly, necessary conditions for Problems A.2 and A.3 are included as
special cases. The problem is stated as follows:

Problem A.4. Find a necessary condition for a function to be an extremal
for the functional

J [y] =

∫ xf

x0

F(x, y(x), y′(x)) dx,

where x0 and y(x0) are specified, while xf and y(xf ) are free.

Figure A.1f shows an extremal y∗ and an admissible neighboring curve y.
Neglecting higher order terms, a relation for δy(xf ) and δyf may be easily
found, namely

δyf = y′(xf )δxf + δy(xf ) (A.26)

or

δy(xf ) = δyf − y′(xf )δxf . (A.27)

It is easy to note that mathematical manipulations for Problem A.4 are
identical to those for Problem A.3 up to Equation (A.24), which taking
into account Equation (A.27) and highlighting that admissible variations δy
require δy(x0) = 0, one obtains∫ xf

x0

(
Fy −

d

dx
Fy′
)
δy dx−

[
Fy′(xf )y′(xf )−F(xf )

]
δxf +Fy′(xf )δyf = 0.

(A.28)
Consequently, the first variation is identically zero when

Fy −
d

dx
Fy′ = 0

holds and the following relationsFy′(xf )y′(xf )−F(xf ) = 0,

Fy′(xf ) = 0
(A.29)

are satisfied.
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A.3 Further generalizations

A.3.1 Functionals depending on higher-order derivatives

So far, the aforementioned variational problems considered functionals
whose integrands depend on the independent x, the function y(x) and
its derivative y′(x). However, many problems involve functionals whose
integrands contain not only y(x) and y′(x), but also higher-order derivatives,
e.g., y′′(x), namely

J [y] =

∫ xf

x0

F(x, y(x), y′(x), y′′(x)) dx, (A.30)

where F : [a, b] × R × R × R → R. Considering fixed boundary conditions
expressed by y(x0) = y0, y(xf ) = yf , y′(x0) = ŷ0 and y′(xf ) = ŷf , the first
variation becomes

δJ =

∫ xf

x0

(Fyδy + Fy′δy′ + Fy′′δy′′) dx. (A.31)

In fact, necessary conditions for an extremal (δJ = 0) can be carried out by
using the method illustrated above without essential changes, yet integration
by parts applies twice, leading to the following Euler-Lagrange equation

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ = 0. (A.32)

More generally, if derivatives of y appear in the integrand of the
functional up to the order n, i.e.,

J [y] =

∫ xf

x0

F(x, y(x), y′(x), . . . , y(n)(x)) dx, (A.33)

where F : [a, b]×R×R× · · · ×R→ R, and an extremal is seeked satisfying
the (fixed) boundary conditions y(x0) = A0, y′(x0) = A1, y′′(x0) = A2,
. . . , y(x0)(n−1) = An−1 and y(xf ) = B0, y′(xf ) = B1, y′′(xf ) = B2, . . . ,
y(xf )(n−1) = Bn−1, the necessary condition for the existence of extremals
assumes the form

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ − · · ·+ (−1)n

dn

dxn
Fy(n) = 0, (A.34)

which is commonly denoted as Euler-Poisson equation.
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Appendix A - Calculus of variations

A.3.2 Variational problems with subsidiary conditions

In the simplest variational problem, the class of admissible curves was
specified (apart from certain smoothness requirements) by conditions
imposed on the end points of the curves. However, many application of
the calculus of variations lead to problems in which not only boundary
conditions, but also conditions of quite a different type known as subsidiary
(or side) conditions are imposed on the admissible curves. As an example,
consider the following isoperimetric problem, which can be stated as follows:

Problem A.5. Find the curve y = y(x) for which the functional

J [y] =

∫ xf

x0

F(x, y(x), y′(x)) dx

has an extremum, where admissible curves satisfy the (specified) boundary
conditions y(x0) = y0 and y(xf ) = xf and are such that another functional

K[y] =

∫ xf

x0

G(x, y(x), y′(x)) dx

has a fixed value, being F , G : [a, b]× R× R→ R.

To solve this problem, we assume that functions F and G defining
the functionals J and K have continuous first and second derivatives for
arbitrary values of y and y′. For this kind of variational problems, one
defines the so-called augmented cost functional Ja defined as

Ja[y] = J [y]− λK[y], (A.35)

where λ is a constant, commonly referred to as the Lagrangian multiplier. By
doing so, the constraint has been included within the (new) cost functional
and therefore the constrained problem becomes an unconstrained one,
allowing the use of Theorem A.2, namely

δJa = δJ [y]− λδK[y]

=

∫ xf

x0

[(
Fyδy + Fy′δy′

)
− λ

(
Gyδy + Gy′δy′

)]
dx = 0.

(A.36)

Hence, after integration by parts of integrals including δy′ and taking into
account the fixed boundary conditions, the corresponding Euler-Lagrange
equation may be recast as

Fy −
d

dx
Fy′ − λ

(
Gy −

d

dx
Gy′
)

= 0. (A.37)

where the constant λ is derived using the isoperimetric constraint.

179



Bibliography

[1] Cohn MZ, Dinovitzer AS, Application of structural optimization, J
Struct Eng 120(2), pp. 617-650, 1994.

[2] Lee KS, Geem ZW, A new meta-heuristic algorithm for continuous
engineering optimization: Harmony search theory and practice, Comput
Methods Appl Mech Eng 194(36-38), pp. 3902-3933, 2005.

[3] Yang XS, Gandomi AH, Bat algorithm: A novel approach for global
engineering optimization, Eng Comput 29(5), pp. 464-483, 2012.

[4] Panagant N, Pholdee N, Bureerat S, Kaen K, Yildiz AR, Sait
SM, Seagull optimization algorithm for solving real-world design
optimization problems, Mater Test 62(6), pp. 640–644, 2020.

[5] Thanedar PB, Vanderplaats GN, Survey of discrete variable
optimization for structural design, J Struct Eng 121(2), pp. 301-306,
1995.

[6] B lachut J, Magnucki K, Strength, Stability and optimization of pressure
vessels: Review of selected problems, Appl Mech Rev 61(6), 2008.

[7] Zingoni A, Parametric stress distribution in shell-of-revolution sludge
digesters of parabolic ogival form, Thin-Walled Struct 40(7-8), pp.
691-702, 2002.

[8] Zingoni A, Shell forms for egg-shaped concrete sludge digesters: a
comparative study on structural efficiency, Struct Eng Mech 19(3),
pp. 321-336, 2005.

[9] Zhu L, Boyle JT, Optimal shapes for axisymmetric pressure vessels: A
Brief overview, J Pressure Vessel Technol 122(4), pp. 443-449 , 2000.

[10] Prager W, Rozvany GIN, Optimal spherical cupola of uniform strength,
Ingenieur-Archiv 49, pp. 287–293, 1980.

180



Bibliography

[11] Nakamura H, Dow M, Rozvany GIN, Optimal spherical cupola of
uniform strength: Allowance for Selfweigth, Ingenieur-Archiv 51, pp.
159-181, 1981.

[12] Dow M, Namakmura H, Rozvany GIN, Optimal cupolas of
uniform strength: Spherical M-shells and axisymmetric T-shells,
Ingenieur-Archiv 52, pp. 335-353, 1982.

[13] Serra M, Design of membrane shells of revolution with optimal stiffness,
Mech Base Des Struct Mach 38, pp. 403-416, 2010.

[14] Banichuk NV, Shape optimization for membrane shells of revolutions,
Dokl Phys 50(11), pp. 338-342, 2005.

[15] Banichuk NV, Optimization of axisymmetric membrane shells, J Appl
Math Mech 71, pp. 527-535, 2007.

[16] Kozikowska A, Geometry and topology optimization of statically
determinate beams under fixed and most unfavorably distributed load,
Lat Am J solids Struct 13(4), pp. 775-795, 2016.

[17] Eschenauer HA, Olhoff N, Topology optimization of continuum
structures: A review, Appl Math Rev 54, pp. 331-390, 2001.

[18] Rozvany GIN, A critical review of established methods of structural
topology optimization, Struct Multidisc Optim 37, pp. 217–237, 2009.

[19] Kim YY, Kim TS, Topology optimization of beam cross sections, Int J
Solids Struct 37(3), pp. 477-493, 2000.

[20] Mota Soares C, Rodrigues HC, Oliveira Faria LM, Haug EJ,
Optimization of the geometry of shafts using boundary elements, J
Mech Transms Automa Des 106, pp. 199-202, 1984.

[21] Schramm U, Pilkey WD, Structural shape optimization for the torsional
problem using direct integration and B-splines, Comp Meth Appl Mech
Eng 107, pp. 251-268, 1993.

[22] Leary M, Merli L, Torti F, Mazur M, Brandt M, Optimal topology for
additive manufacture: A method for enabling additive manufacture of
support-free optimal structures, Mater Des 63, pp. 678-690, 2014.

[23] Timoshenko SS, Strength of materials, John Wiley and Sons, New York,
1930.

181



Bibliography

[24] Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG,
Functionally graded materials. Design, processing and applications,
Kluwer Academic Publishers, London, 1999.

[25] Birman V, Byrd LW, Modeling and analysis of functionally graded
materials and structures, Appl Mech Rev 60, pp. 195-216, 2007.

[26] Kirk DE, Optimal control theory. An introduction, Dover Publications,
New York, 2004.

[27] Bertsakes DP, Dynamic programming and optimal control, volume 1,
Athena Scientific Publishers, Belmont, 2012.

[28] Bertsakes DP, Dynamic programming and optimal control, volume
2: Approximate dynamic programming, Athena Scientific Publishers,
Belmont, 2012.

[29] Bertsakes DP, Nonlinear programming, Athena Scientific Publishers,
Belmont, 2004.

[30] Nocedal J, Wright S, Numerical optimization, Springer-Verlag, New
York, 2006.

[31] Polak E, An historical survey of computational methods in optimal
control, SIAM Rev 15, pp. 553-584, 1973.

[32] Miele A, Recent advances in gradient algorithms for optimal control
problems, J Optim Theory App 17, pp. 361-430, 1975.

[33] Stryk OV, Bulirsch R, Direct and indirect methods for trajectory
optimization, Ann Oper Res 37, pp. 357-373, 1992.

[34] Betts JT, Survey of numerical methods for trajectory optimization, J
Guid Control Dyn 21, pp. 193-207, 1998.

[35] Rao AV, A Survey of Numerical Methods for Optimal Control,
Proceedings of the Astrodynamics Specialist Conference AAS/AIAA,
Pittsburgh, USA, AAS Paper 09-334, August, 2009.

[36] Stoer J, Bulirsch R, Introduction to Numerical Analysis,
Springer-Verlag, New York, 1980.

[37] Grimm W, Markl A, Adjoint estimation from a multiple shooting
method, J Optim Theory App 26, pp. 185-189, 2003.

182



Bibliography

[38] Sagliano M, Theil S, Bergsma M, D’Onofrio V, Whittle L, Viavattene G,
On the Radau pseudospectral method: Theoretical and implementation
advances, CEAS Space J 9, pp. 313-331, 2017.

[39] Vlassebroeck J, Dooren RV, A Chebyshev technique for solving
nonlinear optimal control problems, IEEE Trans Automat Contr 33(4),
pp. 333-340, 1988.

[40] Elnagar G, Kazemi M, Razzaghi M, The pseudospectral Legendre
method for discretizing optimal control problems, IEEE Trans Automat
Contr 40(10), pp. 1793-1796, 1995.

[41] Rao AV, Benson DA, Darby C, Patterson MA, Francolin C, Sanders
I, Huntington GT, Algorithm 902: GPOPS, a MATLAB software
for solving multiphase optimal control problems using the Gauss
pseudospectral method, ACM T Math Software 37(2), pp. 22:1-22:39,
2010.

[42] Garg D, Patterson MA, Darby C, Francolin C, Huntington GT, Hager
WW, Rao AV, Direct trajectory optimization and costate estimation
of finite-horizon and infinite-horizon optimal control problems using a
Radau pseudospectral method, Comput Optim Appl 49, pp. 335–358,
2011.

[43] Garg D, Advances in global pseudospectral methods for optimal control,
PhD dissertation, University of Florida, Gainesville, USA, 2011.

[44] Vlassenbroeck J, A Chebyshev polynomial method for optimal control
with state constraints, Automatica 24(4), pp. 499-506, 1988.

[45] Cichella V, Kaminer I, Walton C, Hovakimyan N, Pascoal AM,
Consistent approximation of optimal control problems using Bernstein
polynomials, Proceedings of the IEEE 58th Conference on Decision and
Control Nice, France, pp. 4292-4297, 11-13 December, 2019.

[46] Cizniar M, Salhi D, Fikar M, Latifi MA, A Matlab package for
orthogonal collocations on finite elements in dynamic optimisation,
Proceedings of the 15th International Conference Process Control
Strbske Pleso, Slovakia, 7-10 June, 2005.

[47] Biegler LT, An overview of simultaneous strategies for dynamic
optimization, Chem Eng Process 46(11), pp. 1043-1053, 2007.

183



Bibliography

[48] Wang Y, Zhu Y, Jiang X, Li S, Comparison of LPM, GPM and RPM
for optimization of low-thrust Earth-Mars rendezvous trajectories,
Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control
Conference Yantai, China, 8-10 August, 2014

[49] Patterson MA, Rao AV, Exploiting sparsity in direct collocation
pseudospectral methods for solving optimal control problems, J Spacecr
Rockets 49(2), pp. 364-377, 2012.

[50] Hildebrand FB, Introduction to Numerical Analysis, Dover
Publications, New York, 1987.

[51] Abramowitz M, Stegun I, Handbook of mathematical functions with
formulas, graphs and mathematical tables, Dover Publications, New
York, 1965.

[52] Fahroo F, Ross IM, Pseudospectral methods for infinite-horizon
nonlinear optimal control problems, J Guid Control Dyn 31(4), pp.
927–936, 2008.

[53] Ross IM, Fahroo F, Convergence of the costates does not imply
convergence of the controls, J Guid Control Dyn 31(5), pp. 1492–1496,
2008.

[54] Carbonari RC, Munoz-Rojas PA, Andrade EQ, Paulinjo GH, Nishimoto
K, Silva ECN, Design of pressure vessels using shape optimization: An
integrated approach, Int J Pres Ves Pip 88(5), pp. 198-212, 2011.

[55] Vu VT, Minimum weight design for toroidal shells with strengthening
component, J Pressure Vessel Technol 138, 021202, 2016.

[56] Kruzelecki J, Proszowski R, Shape optimization of thin-walled pressure
vessel end closures, Struct Multidisc Optim 46, pp. 739-754, 2012.

[57] Santhosh R, Shaik Ismail, Jain PC, Anjaneyulu PSR, Shape
optimization of shallow domes subjected to external pressure, Struct
Multidisc Optim 57, pp. 903-908, 2018.

[58] Sowinski K, Magnucki K, Shaping of dished heads of the cylindrical
pressure vessel for diminishing of the edge effect, Thin-Walled Struct
131, pp. 746-754, 2018.

[59] Banichuk NV, Yu Ivanova S, Makeev EV, Sinistin AV, Optimal shape
design of axisymmetric shells for crack initiation and propagation under
cyclic loading, Mech Base Des Struct Mach 33(2), pp. 253-269, 2005.

184



Bibliography

[60] Banichuk NV, Ragnedda F, Serra M, Axisymmetric shell optimization
under fracture mechanics and geometric constraint, Struct Multidisc
Optim 31, pp. 223-228, 2006.

[61] Kobelev V, The anisotropic pressure vessel of minimal mass, Struct
Multidisc Optim 55, pp. 375-380, 2017.

[62] Timoshenko SS, Theory of plates and shells, Mc Graw Hill, New York,
1959.

[63] Flugge W, Stresses in shells, Springer, Berlin, 1973.

[64] Plocher J, Panesar A, Review on design and structural optimisation
in additive manufacturing: towards next-generation lightweight
structures, Mater Des 182, 108164, 2019.

[65] McNelly BP, Hooks RL, Additive manufacturing of pressure vessels
(with plating), Proceedings of the ASME 2017 Pressure Vessels and
Piping Conference PVP2017, Waikoloa, Hawaii, USA 9V92017-65888,
July 16-20, 2017.

[66] Kroll E, Buchris E, Weight reduction of 3D-printed cylindrical and
toroidal pressure vessels through shape modification, Procedia Manuf
21, pp. 133-140, 2018.

[67] Hassani V, An investigation of additive manufacturing technologies for
development of end-use components: a case study, Int J Pres Ves Pip
187, 104171, 2020.

[68] Ni XQ, Kong DC, Wen Y, Zhang L, Wu WH, He BB, Lu L, Zhu DX,
Anisotropy in mechanical properties and corrosion resistance of 316L
stainless steel fabricated by selective laser melting, Int J Mineral Metall
26(3), pp. 319-328, 2019.

[69] Liu JS, Parks GT, Clarkson PJ, Shape optimisation of axisymmetric
cylindrical nozzles in spherical pressure vessels subject to stress
constraints, Int J Pres Ves Pip 78, pp. 1-9, 2001.

[70] Solberg K, Guan S, Razavi SMJ, Welo T, Chan KC, Berto F, Fatigue of
additively manufactured 316L stainless steel: the influence of porosity
and surface roughness, Fatig Fract Eng Mater Struct 42(9), pp.
2043-2052, 2019.

185



Bibliography

[71] Maleki E, Bagherifard S, Bandini M, Guagliano M, Surface
post-treatments for metal additive manufacturing: Progress, challenges,
and opportunities, Addit Manuf 37, 101619, 2021.

[72] Wang CY, Longest reach of a cantilever with a tip load, Eur J Phys
37, 012001, 2016.

[73] Plaut RH, Virgin LN, Furthest reach of a uniform cantilevered elastica,
Mech Res Commun 83, pp. 18–21, 2017.

[74] Bigoni D, Kirillov ON, Misseroni D, Noselli G, Tommasini M, Flutter
and divergence instability in the Pflüger column: Experimental
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