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Abstract: Power distribution grids are typically installed outdoors and are exposed to environmen-
tal conditions. When contamination accumulates in the structures of the network, there may be
shutdowns caused by electrical arcs. To improve the reliability of the network, visual inspections
of the electrical power system can be carried out; these inspections can be automated using com-
puter vision techniques based on deep neural networks. Based on this need, this paper proposes
the Semi-ProtoPNet deep learning model to classify defective structures in the power distribution
networks. The Semi-ProtoPNet deep neural network does not perform convex optimization of its
last dense layer to maintain the impact of the negative reasoning process on image classification.
The negative reasoning process rejects the incorrect classes of an input image; for this reason, it is
possible to carry out an analysis with a low number of images that have different backgrounds, which
is one of the challenges of this type of analysis. Semi-ProtoPNet achieves an accuracy of 97.22%,
being superior to VGG-13, VGG-16, VGG-19, ResNet-34, ResNet-50, ResNet-152, DenseNet-121,
DenseNet-161, DenseNet-201, and also models of the same class such as ProtoPNet, NP-ProtoPNet,
Gen-ProtoPNet, and Ps-ProtoPNet.

Keywords: power grid inspection; computer vision; convolutional neural networks; deep learning;
insulator classification

1. Introduction

Electric power grids are responsible for supplying electricity to the consumer with se-
curity and reliability. Many distribution networks are installed outdoors without insulation
on the conductors; thus, these networks become vulnerable to environmental conditions [1].
A major problem of electrical power systems installed outdoors is the presence of contami-
nants, which accumulate on the structures and increase the conductivity of the insulating
components [2].

With higher surface conductivity, power grid components have a higher leakage
current that leads to disruptive discharges [3]. When discharges occur on the surface of
the insulation, the contamination burns and becomes encrusted, making cleaning of these
components with rain difficult [4]. From components with high encrusted contamination,
several discharges occur, which reduce the power quality of the electrical power system [5].

To improve the ability to identify damaged components, inspections are performed
on the electrical power system [6]. Inspections are usually carried out from the ground by
specialized teams using specific equipment [7], or aerially, usually through images with
unmanned aerial vehicles (UAV) [8]. Among the equipment used in the inspections, the
ultrasound [9], radio interference [10], ultraviolet camera [11], and infrared camera [12]
are highlighted.

Nowadays, advanced image-based models have shown promise for power grid inspec-
tions [13]. Specifically, for the image classification task, the state-of-the-art ProtoPNet [14]
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models stand out. The great advantage of this class of models is that the network finds
prototypical parts and combines evidence from the prototypes to make a final classifica-
tion. Model variations such as NP-Proto-PNet [15], Gen-ProtoPNet [16], Ps-ProtoPNet [17],
and Quasi-ProtoPNet [18] are efficient for classification in view of their ability to have
interpretability in various applications.

A representative dataset is one of the great difficulties of using deep learning models,
as failures are rare in the electrical power system, and it is difficult to have a representative
database to train the model. Based on the need to identify failures in a preventive way with
a small dataset, this paper proposes the semi prototypical part network (Semi-ProtoPNet) for
the classification of adverse conditions in distribution network structures. The proposed
model is called Semi-ProtoPNet because it does not use all the training steps to avoid a
reduction in accuracy. The proposed Semi-ProtoPNet is a non-interpretable model of the
ProtoNet class with some advantages that will be explained in this paper. The contributions
of this paper to the inspection of the electrical power grid are summarized below:

• The first contribution is due to the need for a small database to train the proposed
Semi-ProtoPNet. Typically, deep neural networks need a large database to train the
model. From the proposed method, high accuracy was obtained using a small dataset,
which would enable the use of this model for field applications.

• The proposed model has better accuracy than the state-of-the-art models (VGG-13,
VGG-16, VGG-19, ResNet-34, ResNet-50, ResNet-152, DenseNet-121, DenseNet-161,
DenseNet-201, ProtoPNet, NP-ProtoPNet, Gen-ProtoPNet, and Ps-ProtoPNet) for im-
age classification. This is because the Semi-ProtoPNet uses a generalized convolutional
layer that helps it to use both positive and negative reasoning processes. The idea of
using a negative reasoning process is similar to the idea of solving a multiple-choice
question, where it becomes helpful to rule out the options that are surely not an answer
to the question.

• The third contribution is related to the use of real inspection images of the electrical
power grid. There is great difficulty in obtaining an adequate database to classify the
conditions of distribution networks. This occurs because the failures are difficult to
find due to the large extension of the network, among other reasons. In this paper,
the analysis of adverse conditions is performed based on real inspection images of
problematic branches reported by the electric utility.

• Considering that the proposed model does not focus on a specific condition or compo-
nent, it has the ability to handle large variations between inspection photos with dif-
ferent image frames, brightness, and backgrounds. This makes inspection easier for
the operator, as it is easier to take the photos; therefore, it is a more comprehensive
method for this evaluation.

The continuation of this paper is organized as follows: In Section 2, the related
works are described and the dataset is presented. In Section 3, the proposed method is
presented, and its advantages and differences from previous versions of the ProtoPNet
are highlighted. In Section 4, the results are discussed and evaluated. In Section 5, the
conclusion is presented.

2. Related Works and Considered Dataset

There are several faults that can occur in the electrical power system because it is
mostly installed outdoors [19]. One of the causes of failures in the electrical power system
is the presence of contamination on the insulating components resulting in greater surface
conductivity [20]. With the highest conductivity, the site becomes more susceptible to the
development of flashovers, which may result in a shutdown of electricity [21].

Shutdowns in the distribution networks result in a lower level of reliability of the grid,
which is a negative result for the electricity utility [22]. Research has been conducted to
improve the insulation performance of components in the electrical distribution grid [23].
From the need to have a reliable electrical power system, there is the challenge of au-
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tomating electrical inspections. Computing [24] and robotics [25] make inspections more
dynamic, improving the identification of faults.

Ibrahim et al. [26] presented a study about insulator surface erosion, which is an
issue that can be related to the contamination problem; they achieved 89.5% accuracy
in the classification of faults. Prates et al. [27] performed an analysis to identify defects
in distribution lines, which is the same goal of this paper; using a laboratory-produced
dataset, they achieved 85.48% accuracy when identifying defects in insulators. There are
also modern failure assessment models that are based on predicting the development of an
anomaly regarding the increase in an adverse condition [28].

Monitoring power grids with aerial images is a cost-effective alternative. This solution
is becoming increasingly used due to the ability to process large datasets through deep
learning neural networks. Models that stand out for this application are VGG, ResNet,
and DenseNet among other convolutional neural network (CNN)-based models. In addi-
tion to contamination [29], the structures installed outdoors are exposed to freezing, wet,
and snowing conditions [30]. Due to these conditions, image analysis using CNNs is a
feasible and promising alternative for electrical system inspections.

Many authors have researched the use of aerial images recorded by UAV for electrical
power system inspection. Sampedro et al. [31], Tao et al. [32], and Han et al. [33] applied
the CNN for fault identification; Miao et al. [34] used a single shot multibox detector
(SSD). Another approach that is currently being used is the detection of objects that have
faults, such as broken insulators. Techniques such as the region-based convolutional neural
network (R-CNN) presented by Li et al. [35] and Li et al. [36], and you only look once
(YOLO) [37] are being widely used for insulator fault identification. The great advantage
of this strategy is that it is possible to identify the exact location of the failure [38]; then,
specialized teams can be directed to solve the problem by having its cause and location
defined in advance.

Techniques based on deep learning are becoming increasingly popular for the identifi-
cation of faults in electrical power networks [39]. Fahim et al. [40] proposed the capsule
network with sparse filtering to classify faults in transmission lines. The great advantage is
that this method does not require a large number of images, which usually is a problem in
inspections. Zhao et al. [41] presented an approach based on adaptive parametric linear
rectifier units to improve resource learning in deep residual networks for fault diagnosis.

The fusion between wavelet transform and deep residual networks is effective for fault
diagnosis, as the vibration resulting from the faults can be evaluated through a series of
combined frequency band techniques that result in an improvement of the model [42]. Ac-
cording to Siniosoglou et al. [43], the detection of anomalies using deep learning strategies
brings greater reliability in the diagnosis of the network condition.

From the extraction of characteristics using techniques such as an improved AlexNet,
it becomes possible to detect anomalies in the electrical power network based on image
analysis [44]. To improve the identification of adverse conditions, generating more accurate
classifier model techniques such as CNNs based on faster regions are used so that the
analysis can be focused on the problem [45].

From advanced models, high accuracy may be obtained to identify faults in the
electrical power systems, making it possible to determine the locations that need future
maintenance [46]. One of the major difficulties for image analysis in electric power networks
is the great diversity of adverse conditions and complex backgrounds, which make the
problem difficult to analyze [47]. Furthermore, the number of images that have defective
equipment is usually small.

According to Wen et al. [48], the use of a small dataset is a challenge in this analysis.
This is mainly because system failures are seldom found during inspections since, when a
failure occurs, the electrical utility replaces the components immediately. To address this
problem and avoid overfitting, various augmentation techniques can be applied to increase
the dataset. Rotation, blurring, scaling, and noise inclusion are techniques that can be used
to increase the number of images [37].
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To enhance the generalization of the model, it is necessary to have a large number
of training samples. With more data for training, it is possible to evaluate all the possible
variations of data to have a stable model. Data augmentation is a strategy that can improve
the generalization of the method [49]. Techniques such as blur, scaling, and rotation are
significantly important to increase the size of data. Based on the problem described in
this section, a dataset was created using real images of electrical branches in faulty and
good conditions.

Dataset

The dataset was recorded in southern Brazil according to reports of problems on
the branch, given by the local electricity utility Centrais Elétricas de Santa Catarina. In this
paper, the classification was performed in relation to two classes, defective (first class) and
normal (second class). Figure 1 presents some images of the used dataset, available at:
https://github.com/SFStefenon/InspectionDataSet (accessed on 17 June 2021).

A B C

D E F

Figure 1. Images of inspections of electric power distribution network.

The photographs recorded during inspections of the electrical power system are
taken at different positions, with variations in the image approximation in relation to the
network components. The photographs are intended to highlight the conditions of the
insulating components, which are responsible for insulating the distribution system and
the supporting structure of the grid.

The structures A, B, and C shown in Figure 1 are from a network that has high
contamination on its surface. This contamination comes from organic waste that adheres to
the structure of the network, a fact that occurs mainly in rural regions. Comparatively, D, E,
and F of this figure are photographs taken from networks in good condition that do not
have a high concentration of contamination.

In addition to surface contamination of support structures of the power network,
during inspections, broken insulators can be found, which is an even greater problem,
considering that cleaning the network is not enough to solve this issue. When the insulator
has its constructive properties damaged, it is necessary to replace it. To avoid disconnection
from the network, this task can be performed by a specialized team with the network
energized, having a higher cost when it comes to corrective maintenance [50].

The dataset was built with the purpose of evaluating all the structures surrounding
the power grid, such as the crossarms, poles, and insulators. In this way, the presence of
strange objects such as bird nests are considered as places that have adverse conditions.

https://github.com/ElectricalPowerGrid/InspectionDataSet
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This approach was taken because strange objects near the distribution line cause discharge
to the ground, which is a problem for the electrical power utility.

The photographs were taken during the inspections performed on equivalent distribu-
tion networks in the Santa Catarina State in Brazil, being medium-voltage conventional
power grids. In this way, the model can be used in any electric branch that has the same
construction features as the site where the inspections were made. This type of structure
is present in a major part of the electrical distribution networks in southern Brazil. The
model proposed in this paper can be applied to other types of structures, being necessary
to perform new inspections to define an updated training dataset for power grids that have
a different profile from the one considered in this work.

The dataset used in this paper has 120 images of defective structures and 120 images of
structures in good condition, totaling 240 images. All images of the dataset are original and
were recorded during inspections of the electrical power grid. Initially, an evaluation of the
change in dataset size is presented; after that, all the analyses use the same configuration to
compare the best methodology.

The training set has 84 images of defective structures and 84 images of normal struc-
tures. The testing set has 36 images of defective structures and 36 images of normal
structures. This means that 70% of the data were used for network training and 30% for
testing. In this work, the initialization and division of the training, testing, and validation
data was performed randomly; no cross-validation was performed. All used images were
dimensioned to 224× 224, as required by the base models.

3. Methodology

In this section, the applied method, and considerations for the analysis are presented.
The proposed Semi-ProtoPNet deep learning model stands out for image classification
because the prototypes are not latent patches of the training images. They are tensors with
values close to values of latent patches of the output of the convolutional layers of the
base models.

Along with the positive reasoning process, including the negative reasoning process
to reject incorrect classes of an input image, Semi-ProtoPNet does not perform convex
optimization of its last dense layer to keep the weights constant. The consideration of both
types of reasoning processes improves the performance of the model, making it possible to
carry out an analysis with a low number of images that have different backgrounds.

The positive reasoning process means the positive connection between similarity
scores of the prototypes and the logits of a correct class; whereas, the negative reasoning
process means a negative connection between similarity scores of the prototypes and logits
of incorrect classes.

Previous models such as ProtoPNet [14], NP-Proto-PNet [15], Gen-ProtoPNet [16],
and Ps-ProtoPNet [17] use prototypes that are latent patches of the training images. The re-
placement of prototypes with latent patches of training images leads to a decrease in the
logit for the correct class of the input image and an increase in the logits of incorrect
classes that further leads to a decrease in the accuracy of the ProtoPNet models, see Theo-
rem 2.1 in [14] and Theorem 1 in [17]. The proposed Semi-ProtoPNet outperforms these
applications, as will be presented here.

The replacement of prototypes with latent patches reduces the accuracy because there
can be only few images that have identical patches, but some pixel values of two patches
can be close to each other. Then, similarity of an input image with prototypes of its own
class can be reduced if we use prototypes as latent patches of the training image, which
further lead to a decrease in the accuracy. For this reason, the nonreplacement of prototypes
with latent patches and the use of both types of reasoning processes (positive and negative)
helps the model perform classifications successfully even with the small datasets.
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3.1. Architecture

The ProtoPNet class classifies the images on the basis of a weighted combination of
the similarity scores of the latent patches of the training images [14]. For each class (normal
and defective), a fixed number of prototypes (which are replaced with the latent patches)
are selected. For this application, 10 prototypes for each class were used. Based on this
topology, the Semi-ProtoPNet structure is defined.

Figure 2 presents the architecture of the Semi-ProtoPNet with VGG-19 [51] as the
baseline, though Semi-ProtoPNet can also be constructed over the convolutional layers of
some other base models. After the convolution layers, there are two additional layers of
dimensions 2× 2 and 1× 1, respectively. These convolutional layers ` are followed by a
generalized convolution layer of prototypical parts pp [52] and a dense layer w with weight
matrix mw.

p
1

1

p
p

p
2

20

Defective

Normal

Additional 2 × 1
& 1 × 1 layers

Convolution layers l
Generalized layers

Dense layer w
Logits

1

p
p
20

224×224×3

Baseline

Convolutional layer (ReLU)

2×2 max pooling

Legend of the baseline
112×112×128

56×56×256
28×28×512

14×14×512

7×7×512

224×224×64

112×112×128

56×56×256

28×28×512

14×14×512

Figure 2. Semi-ProtoPNet architecture.

The rectified linear unit (ReLU) activation function [53] is used for the first additional
convolutional layer and the sigmoid activation function [54] is used for the second ad-
ditional convolutional layer. The use of ReLU and sigmoid activation functions are the
most appropriate for CNN-based image classification of this class of algorithms, as used
in [14,16,18] for models of the same class. For an input image x, `(x) is the output of `,
where the shape of `(x) is 512× 6× 6. Thus, Pk = {pk

l }
m′
l=1 is a set of prototypes of class k

and P = {Pk}n
k=1 is the set of prototypes of all classes, m′ is the number of prototypes for

each class, and n is the total number of classes. In this approach, m′ = 10, n = 2, and the
hyperparameter m′ = 10 is chosen randomly.

The shape of each prototype is 512× h × w, where 1× 1 < h × w < 6× 6. There-
fore, every prototype can be considered a representation of some prototypical part of the
image. Semi-ProtoPNet calculates the similarity scores between an input image and the
prototypical parts p1

1 − p1
10 and p2

1 − p2
10. In layer w, the matrix S is multiplied with mw to

obtain the logits. To achieve a complete analysis of the model structure, the architecture of
the proposed Semi-ProtoPNet with VGG-19 is compared using the several VGG, ResNet,
and DenseNet baselines. At the end of this paper, the proposed model is compared with
the baselines and models of ProtoPNet class.

The acronym VGG refers to Visual Geometry Group; it is a standard multilayer deep
CNN architecture. Deep refers to the number of layers, e.g., VGG-13 [55], VGG-16 [56],
and VGG-19 [57], have 13, 16, and 19 convolutional layers, respectively. These models
are structured as a series of convolutional layers, which can efficiently extract features
from the data. After the first convolutional layers, max-pooling layers are used to compute
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the maximum of a local patch of units in a feature map. At the end of the model, a fully
connected layer is used to perform the classification [58].

A residual neural network (ResNet) is one of the first artificial neural networks used
in deep learning using hundreds of layers; one of the great advantages of this architecture
is that it maintains good performance results even when using a large number of layers,
being possible to compute many more layers than previous models [59]. Given the uni-
versal approximation theorem, a feedforward network with a single layer is enough to
represent any given function. Nevertheless, the layer can be massive, and the net is likely
to overfill the data. Thus, there is a general trend in the research community to use deeper
architectures, making the ResNet model promising. Similar to VGG networks, the ResNet
model has several variations, such as ResNet-34 [60], ResNet-50 [61], and ResNet-152 [62],
which depend on the number of layers used.

The dense convolutional network (DenseNet) is a type of CNN that uses dense con-
nections between layers, where all layers are connected directly to each other. In each
layer, the feature maps of all previous layers are used as inputs and their feature maps are
utilized as inputs in all following layers [63]. The major advantages of using DenseNets
are that they alleviate the vanishing gradient problem, strengthen feature propagation,
and encourage feature reuse, thus reducing the number of parameters in the network
and making it more efficient. This structure also has variations according to the number of
its layers, such as DenseNet-121 [64], DenseNet-161 [65], and DenseNet-201 [66].

The NP-ProtoPNet attempts to simulate human reasoning for image recognition while
comparing the parts of a test image with the corresponding parts of known class images [15].
The accuracy of NP-ProtoPNet achieves values comparable with the best non-interpretable
deep learning models. While the ProtoPNet and NP-ProtoPNet use prototypes of spatial
dimension 1× 1 and the distance function L2, the Gen-ProtoPNet [16] uses a generalized
form of the distance function, which allows the use of prototypes of any spatial dimension.
According to Singh and Yow [17], the Ps-ProtoPNet classifies images by recognizing objects
rather than the background in the images. Quasi-ProtoPNet is an interpretable model that
considers only the positive reasoning process [18].

Training Procedure

The generalized distance function d of the Euclidean distance function L2 was used in
the Semi-ProtoPNet. The shape of `(x) is 512× 6× 6, where 512 is the depth of `(x) and
6× 6 are its spatial dimensions. The output z of the convolutional layers ` has (7− h)(7−w)
patches of dimensions h× w. The square of the distance d(Zij, p) between the prototype p
and the patch Zij of z is given by

d2(Zij, p) =
h

∑
l=1

w

∑
m=1

512

∑
k=1
||z(i+l−1)(j+m−1)k − plmk||22. (1)

where plmk denotes a kth prototype of length l and width m.
For prototypes of spatial dimension 1 × 1, where h = w = 1, the square of the

Euclidean distance between the prototype p and a patch of z is

d2(Zij, p) =
512

∑
k=1
||zijk − p11k||22, (2)

where p11k ' pk. Therefore, the distance function d is a generalization of L2. Then, pp is
calculated according to

pp(z) = max
Z∈patches(z)

log
(

d2(Z , p) + 1
d2(Z , p) + ε

)
. (3)

Equation (3) shows that a prototype is more similar to the input image if the inverse of
the distance between a latent patch of the image and the prototype is smaller.
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In the proposed Semi-ProtoPNet, all layers are optimized before the dense layer.
Considering that X = {x1 . . . xn} and Y = {y1 . . . yn} are, respectively, sets of images and
corresponding labels, where D = {(xi, yi) : xi ∈ X, yi ∈ Y}, the objective function to be
optimized is

min
P,`conv

1
n

n

∑
i=1

CrosEnt(h ◦ pp ◦ `(xi), yi) + λ1ClstCst + λ2SepCst, (4)

where cluster cost (ClstCst) and separation cost (SepCst) are

ClstCst =
1
n

n

∑
i=1

min
j:pj∈Pyi

min
Z∈patches(`(xi))

d2(Z , pj); (5)

SepCst = − 1
n

n

∑
i=1

min
j:pj 6∈Pyi

min
Z∈patches(`(xi))

d2(Z , pj). (6)

According to Equation (5), the decrease in the ClstCst leads to the grouping of proto-
types around their classes. However, based on Equation (6), the decrease in SepCst keeps
prototypes away from their incorrect classes. Finally, Equation (4) shows that the drop
in cross-entropy leads to improvement in the classification. As the distance function is
non-negative, optimizing all layers except the last layer with the stochastic gradient descent
(SGD) optimizer [67] helps Semi-ProtoPNet to learn important latent space.

Observing that mw is the weight matrix for the last layer, m(i,j)
w is the weight assigned

to the connection between the similarity score of jth prototype and logit of ith class; in a
class k, m(i,j)

w = 1 is defined for all j with pi
j ∈ Pi, and for all pk

j 6∈ Pi with k 6= i, m(k,j)
w equal

to −1, where λ1 and λ2 are hyperparameters belonging to {0.7, 0.8}. Therefore, the weight
matrix is given by

mw =

[
1 . . . 1 −1 . . . −1
−1 . . . −1 1 . . . 1

]
(7)

In the proposed method, the convex optimization of the last layer is not performed
to keep the impact of negative reasoning in the image classifications process. The SGD
optimizer updates the parameters to minimize the loss function [68], taking steps at each
iteration towards the negative loss gradient,

θi+1 = θi − α∇F(θi) (8)

where θ is the vector to be minimized, α is the learning rate, and F(θ) is the loss function.
The computational effort in the training phase of the proposed model is higher in

relation to standard neural networks. As the training of the model is done offline, reducing
the time to train is not the objective of this methodology, as the goal of the proposed model
is to achieve as high an accuracy as possible for the classification task. Considering that the
computational effort of testing is considerably low, after the training phase, testing of the
conditions can be performed in the field with embedded systems.

Compared with previous versions of ProtoPNet, the proposed Semi-ProtoPNet has
the following advantages:

• The proposed method does not replace prototypes with the latent patches of the training
images; these prototypes have values very close to the pixel values of the training images.

• The prototypes with spatial dimensions bigger than 1× 1 are used. With the generalized
distance function d, it is possible to use prototypes with any type of spatial dimensions—
that is, square spatial dimensions as well as rectangular spatial dimensions.

• The Semi-ProtoPNet does not perform convex optimization of the last layer to main-
tain the impact of the negative reasoning process on the image classification, whereas
the ProtoPNet model emphasizes the positive reasoning process. Further, the nonopti-
mization of the last layer reduces the training time considerably.
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• Using the Semi-ProtoPNet, regardless of the weight given to the positive class, it gives
exactly equal to the negative of that weight to the negative class, and this weight is
not reduced to zero, unlike ProtoPNet. By doing so, we equally consider both positive
reasoning and negative reasoning to classify the images.

3.2. Limitations

Theorem 2.1 in [14] and Theorem 1 in [17] provide lower bound in the decrease in
logit for correct class and increase in the logits of incorrect classes when prototypes are
replaced with the latent patches of input images. So, if the change in the logits of the other
ProtoPNet models is far from the bounds provided by theorems, then Semi-ProtoPNet may
not perform better than the other ProtoPNet models.

3.3. Performance Evaluation Metrics

For comparison purposes, the accuracy Equation (9), precision Equation (10), recall
Equation (11), and F1-score Equation (12) measures were evaluated, given by

Accuracy =
TP + TN

Total Cases
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1-score =
2

Precision−1 + Recall−1 , (12)

where abbreviations refer to true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). In the confusion matrices, the values are presented in relation
to the defective and normal classes, and each matrix corresponds to the evaluation of a
different model. For the final comparative analysis, the test of hypothesis, standard deviation,
and kurtosis were calculated.

Since accuracy is the proportion of correctly classified images among all the test images,
the test of hypothesis concerning a system of two proportions is applied. If the size of
test dataset n and the number of images correctly classified by models 1 and 2 are x1 and
x2, respectively, then p̃1 = x1/n and p̃2 = x2/n. The statistic for the test concerning the
difference between two proportions is

Z =
p̃1 − p̃2√

2p̃(1− p̃)/n
, (13)

where p̃1 and p̃2 are the accuracies given by the compared methods, and p̃ is calculated by

p̃ = (x1 + x2)/2n. (14)

Therefore, the hypothesis is as follows:{
H0 : (p1 − p2) = 0 (null hypothesis),

Ha : (p1 − p2) 6= 0 (alternative hypothesis).
(15)

The test of hypothesis was performed for the level of confidence (α) = 0.01. As the
hypothesis is two-tailed, the p-value must be less than 0.005 to reject the null hypothesis.
In this hypotheses test, p1 is the accuracy given by Semi-ProtoPNet and p2 represents
the accuracies given by the other models. The values of test statistic Z are given by
Equation (13).

The simulations were performed in a Deep Learning Server (Lambda Labs of the Uni-
versity of Regina, Canada); the specifications of this cluster are presented in Table 1. The
algorithm proposed in this paper was developed in Python.
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Table 1. Specifications of the used Deep Learning Server.

Description Specification

Intel(R) Xeon(R) Silver 4214 2.20 GHz
NVIDIA Quadro RTX 5000 8 × GPUs of 16 GB
Random Access Memory 256 GB

Hard Drive (SSD) 1.9 TB

The flowchart of the procedure performed for this research is presented in Figure 3.
The development of this project began with field inspections carried out by a specialized
team after the indication that the evaluated distribution branch had high evidence of faults
with disconnection due to the presence of contamination. The inspections were conducted
in the state of Santa Catarina, in southern Brazil.

Electrical distribution 
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Network 
photograph 

Inspection 
of the grid

Neural network 
training

Evaluation of 
the baseline

Comparison to 
other strutures

Comparison to 
other authors

Conclusion 

Faults               
identified?

No

Yes

Best               
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No

Yes

Our                        
struture is the      

best?

No

Yes

Is a     
representative 

dataset?

No

Yes

Semi-ProtoPNet 
model building

Statistical 
evaluation

Figure 3. Flowchart of the analysis performed in this paper.

4. Results and Discussion

In this section, the results of the proposed method are presented and discussed.
To have a global analysis, the evaluation will be presented with different base models
to define the best structure of the proposed method. Then, the proposed model will be
compared with these state-of-the-art models using the base model by itself.

The first evaluation is performed in relation to the dataset, with the goal of verifying
the influence of changing the size of the used dataset on the model’s performance. The com-
ments and evaluation are related to accuracy and F1-score. The best results of each model
are underlined and the best overall result is shown in bold.

4.1. Dataset Evaluation

The dataset can be a limiting factor in the use of deep layer models due to the need
for a large number of images to perform the training. For this reason, a reduction in
the number of images is evaluated. The VGG, ResNet, and DenseNet class models are
evaluated using the database reduced from 240 to 160 images, maintaining a balanced
distribution between “damaged” power grids (80 images) and networks in good condition
(80 images). The results of these variations are presented in Table 2.
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Table 2. Assessment of the database reduction.

Model Numb.
Imag.

Accur.
(%)

Precision Recall F1-Score

VGG-13 240 91.67 0.9310 0.8999 0.9153
160 78.12 0.9999 0.5625 0.7199

VGG-16 240 76.67 0.7222 0.8667 0.7879
160 81.25 0.9999 0.6250 0.7692

VGG-19 240 76.67 0.7222 0.8667 0.7879
160 75.00 0.8333 0.6249 0.7143

ResNet-34 240 90.00 0.8529 0.9667 0.9062
160 90.62 0.9999 0.8125 0.8965

ResNet-50 240 90.00 0.8529 0.9667 0.9062
160 90.00 0.8749 0.9333 0.9032

ResNet-152 240 91.67 0.8788 0.9667 0.9206
160 87.50 0.9286 0.8125 0.8667

DenseNet-121 240 90.00 0.8999 0.8999 0.8999
160 84.37 0.9999 0.6875 0.8148

DenseNet-161 240 90.00 0.9285 0.8667 0.8968
160 87.50 0.9999 0.7499 0.8571

DenseNet-201 240 91.67 0.8788 0.9667 0.9206
160 84.37 0.9999 0.6875 0.8148

The reduction of the database is a major issue; as can be seen in Table 2, all the models
evaluated had a lower F1-score and most of them had a lower accuracy using a smaller
database. This further highlights the difficulty in performing the analysis with a reduced
number of images, which is the goal of the model proposed in this paper.

Comparatively, Sampedro et al. [31], Jiang et al. [46], Zhang et al. [69], and Tao et al. [32],
respectively, used 160, 385, 400, and 600 images to identify adverse conditions on the grid.
All these authors highlight the difficulty in dealing with small datasets. Following the anal-
ysis, considering that the dataset is sufficient to obtain reasonable accuracy and F1-score
results, the complete evaluation of the proposed model is presented here.

4.2. Confusion Matrices

The confusion matrices of Semi-ProtoPNet with different base models are presented
in Figure 4. From the confusion matrices, the accuracy, precision, recall, and F1-score are
obtained. These results are used to compare the performance of the structure of the model
using different baselines. From the baseline change, the structure is also updated, thus
generating a variation of the model.
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Figure 4. Semi-ProtoPNet confusion matrices with different base models.

4.3. Baseline Evaluation

The first evaluation of the structure of the proposed Semi-ProtoPNet (SPPN) is the use
of different baselines. The results of this variation are presented in Table 3. Using VGG-19 as
a baseline, the results of Semi-ProtoPNet were considerably promising for field applications,
considering that the accuracy of 97.22% and a F1-score of 0.9729 were achieved.

Table 3. Evaluation of the Semi-ProtoPNet with different baselines.

Baseline for
Semi-ProtoPNet

Accuracy
(%)

Precision Recall F1-Score

SPPN-VGG-13 95.83 0.9459 0.9722 0.9589
SPPN-VGG-16 94.44 0.9210 0.9722 0.9459
SPPN-VGG-19 97.22 0.9473 0.9999 0.9729

SPPN-ResNet-
34 93.05 0.9189 0.9444 0.9315

SPPN-ResNet-
50 94.44 0.9210 0.9722 0.9459

SPPN-ResNet-
152 94.44 0.9444 0.9444 0.9444

SPPN-
DenseNet-121 95.83 0.9459 0.9722 0.9589

SPPN-
DenseNet-161 95.83 0.9459 0.9722 0.9589

SPPN-
DenseNet-201 94.44 0.9210 0.9722 0.9459

The ResNet as a base model results in inferior performance regarding the evaluated
metrics, the best accuracy and F1-score were obtained with ResNet-50 being inferior to the
previously analyzed VGG-19. Using DenseNet, the results were also inferior to VGG-19;
based on this, VGG-19 is defined as the standard baseline.

These results prove that sometimes the use of more layers in the structure of the deep
neural network is not a good strategy, as this could require more computational effort and
does not improve the performance of the model. This shows that to have an optimized
structure, it is important to evaluate several variations of the parameters.

The Semi-ProtoPNet has acceptable results, even changing the baseline, showing that it
is not the baseline that makes the method reach high result values, it is the proposed method
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by itself. This statement can also be made when analyzing the difference between the
convergence of the Semi-ProtoPNet to different baselines; the results of these comparisons
are presented in Figure 5.
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Figure 5. Convergence of Semi-ProtoPNet compared with different baselines.

As can be seen, all variations of the model achieve convergence in less than 20 epochs
with a stable result. All analyses were carried out until 100 epochs, so there was certainty
about the convergence of the algorithm and its stability.

4.4. Benchmarking

Table 4 presents a comparison of the proposed method with the VGG, ResNet, and
DenseNet class algorithms and the family of ProtoPNet models. This comparison aims to
assess whether the result occurs because the proposed method is superior or if it happens
in other equivalent models. For a fair analysis, the ProtoPNet models use the VGG-19
baseline, which was the best backbone previously found.
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Table 4. Benchmarking evaluation.

Evaluated
Method

Accuracy
(%)

Precision Recall F1-Score

VGG-13 88.88 0.9117 0.8611 0.8857
VGG-16 79.16 0.8181 0.7499 0.7826
VGG-19 84.72 0.8205 0.8888 0.8533

ResNet-34 91.66 0.9166 0.9166 0.9166
ResNet-50 91.66 0.9687 0.8611 0.9117
ResNet-152 90.27 0.8536 0.9722 0.9090

DenseNet-121 93.05 0.9189 0.9444 0.9315
DenseNet-161 94.44 0.9210 0.9722 0.9459
DenseNet-201 93.05 0.9428 0.9166 0.9295

ProtoPNet 83.33 0.7999 0.8888 0.8421
NP-ProtoPNet 75.00 0.7249 0.8055 0.7631
Gen-ProtoPNet 88.88 0.8499 0.9444 0.8947
Ps-ProtoPNet 93.05 0.9189 0.9444 0.9315

SPPN-VGG-19 97.22 0.9473 0.9999 0.9729

The Semi-ProtoPNet with VGG-19 (SPPN-VGG-19) presented in this paper has better
results than all variations of the compared ProtoPNet models. The presented results
highlight that even models for this specific task have lower results than the proposed
SPPN-VGG-19. This probably occurs because of the small number of images, which is a
common problem in the inspections. This proves that the SPPN-VGG-19 is well-indicated
for this evaluation.

The nonreplacement of prototypes with the patches of the training images, the nonop-
timization of the last layer, and the use of prototypes with rectangular spatial dimensions
and square spatial dimensions greater than 1× 1 helped the proposed model to improve
its performance.

4.4.1. Test of Hypothesis for the Accuracy and Statistical Evaluation

As mentioned in Section 3.3, the test of hypothesis concerning a system of two propor-
tions is applied to see whether the accuracy given by the proposed model is statistically
significantly better than the accuracies given by the other models. Considering that α is
0.01, the null hypothesis for all the p-values listed in Table 5 are rejected. Based on the value
of the α this analysis has 99% confidence that the accuracies given by SPPN-VGG-19 are
significantly better than the accuracies given by each of the other models.
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Table 5. Statistical results for the evaluated models.

Evaluated
Method

Z-
Statistic

p-Value Standard
Deviation

Kurtosis

VGG-13 1.97 2.50 × 10−2 7.38 × 10−1 8.01 × 101

VGG-16 3.36 4.00 × 10−4 3.86 × 10−1 2.81 × 101

VGG-19 2.62 4.53 × 10−3 1.45 2.46 × 101

ResNet-34 1.45 7.35 × 10−2 9.89 × 10−1 1.67 × 101

ResNet-50 1.45 7.35 × 10−2 8.80 × 10−1 2.50 × 101

ResNet-152 1.72 4.27 × 10−2 6.69 × 10−1 4.87 × 101

DenseNet-121 1.16 1.23 × 10−1 6.33 × 10−1 1.28 × 101

DenseNet-161 0.83 2.03 × 10−1 1.02 1.06 × 101

DenseNet-201 1.16 1.23 × 10−1 6.32 × 10−1 3.45 × 101

ProtoPNet 2.81 2.48 × 10−3 3.12 × 10−2 6.17 × 101

NP-ProtoPNet 3.85 6.00 × 10−5 1.25 × 10−1 4.77
Gen-ProtoPNet 1.97 2.50 × 10−2 1.42 × 10−2 1.56 × 101

Ps-ProtoPNet 1.16 1.23 × 10−1 1.71 × 10−2 2.29 × 101

SPPN-VGG-19 - - 2.99 × 10−2 2.20 × 101

The result of the statistical Z-statistic and p-value are not presented for SPPN-VGG-19,
as this model is used for comparison with other models. The statistical results show that
there is stability in the compared models, although some models result in low accuracy.

4.4.2. State-of-the-Art Approaches

SPPN-VGG-19 outperformed other authors who used CNNs for the equivalent pur-
pose. Han et al. [33] achieved a F1-score of 0.9466 and Tao et al. [32] achieved 0.9340 using
CNNs for insulator faults detection.

Liu et al. [37] had a F1-score of 0.9499 using YOLOv3 and Feng et al. [70] had a
F1-score of 0.9293 using YOLOv5, which is the most current model for object detection
nowadays. The applications of Jiang et al. [46] and Miao et al. [34] using single shot
multibox detector had a F1-score of 0.9244 and 0.9184, respectively. In this paper, using
SPPN-VGG-19, a F1-score of 0.9729 was reached in the evaluation of power grids structures
with adverse conditions. This method also proved that it is stable when statistical analysis
is evaluated.

Comparison with previous works showed that the proposed model has a better F1-
score than other approaches, in addition to the fact that in some studies such as [71],
the analysis is performed only with the focus on identifying the chain of insulators and
not on the defect classification, which is necessary for inspections of the electrical power
system. The proposed method presented in this paper was applied to evaluate the entire
structure of the grid and if an adverse condition is present near the insulators.

5. Conclusions

The identification of failures in the distribution networks improves the quality of the
electric energy supply since it is possible to determine preventive maintenance strategies
to correct failures before network outages occur. Contamination is a problem found in
several networks that are close to unpaved streets, especially in rural areas. As soon as
the contamination becomes encrusted, it is necessary to perform the maintenance of the
network to ensure its operation. This paper proves that using deep learning for computer
vision is possible to classify adverse conditions on the network, considering that through
the proposed model acceptable values were reached to use the model in field applications.

The use of the proposed Semi-ProtoPNet model showed considerable promise for
the analysis in question, considering that the accuracy of 97.22% was obtained for the
classification of adverse conditions in distribution networks. Using VGG-19 as the baseline,
the proposed method was superior to models of the same class such as ProtoPNet, NP-



Sensors 2022, 22, 4859 16 of 19

ProtoPNet, Gen-ProtoPNet, and Ps-ProtoPNet, in addition to being superior to the analysis
carried out by other authors for equivalent problems.

As was presented, changing the structure of the network results in variation in its
performance; so, it is necessary to carry out an analysis using several baselines in order
to obtain the best structure of the model. The result of this work was promising, since
the dataset used is based on real images without preprocessing, where there are great
variations in image background, brightness, and framing, conditions commonly found in
photographs of the electrical power grid. This shows that the application has the possibility
of being carried out directly for field inspections.

Several authors only evaluate the location of the insulator chain and not specifically
network faults. In addition, it is common to use artificial datasets, in which failures were
obtained from overlapping, which often does not correspond to the real problems of the
electrical power system. For this reason, this paper stands out among all the work already
done. Future work can be done by combining the Semi-ProtoPNet, presented in this paper,
with specific equipment for the inspection of the network. Cross-validation can be used to
improve the generalizability of the evaluation.
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