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Introduction - Nowadays agricultural research is dealing with innovative approaches for an eco-sustainable management of

crops. One of the most interesting innovations is the application of nanomaterials as shuttles for the efficient transport of biological

agents aiming to protect plants from biotic or abiotic stresses [1]. At the same time, the study of alternative defense methods based

on molecular techniques is raising interest, including the exploitation of the RNA-interference (RNAi) mechanism [2]. We tried to

combine the two technologies, using chitosan (a natural and environment-friendly polymer) nanoparticles (NPs) to be used as carriers

for dsRNA sequences. The nucleotide sequence used was total RNA obtained from a transformed E. coli strain able to synthetize the

dsRNA of GFP-protein [3]. Here earlier results are shown, concerning (1) the synthesis and characterization of two types of NPs and

their functionalization with dsRNAs, (2) the evaluation of their retention capacity and (3) a preliminary test of leaf distribution of the

most promising NPs, doped with fluorescein-isothiocyanate (FITC) to allow visualization through confocal microscopy.

Experimental design & Results

Conclusions – The results revealed how the different treatments applied to the chitosan polymer, aiming to reduce its molecular

weight [4], led to obtain NPs with different characteristics. Empty NPsF, even though characterized by a larger hydrodynamic diameter

compared to NPsD, turned out to be the best choice both in terms of post-functionalization dimensions and dsRNAs retention. For this

reason, NPsF have also been used for a first application test on leaf, showing their adhesion capacity when formulated with a wetting

agent commonly used in agriculture. These findings are promising for future studies concerning the application on whole plants of NPs

loaded with nucleotide sequences for triggering RNAi against plant pathogens.
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(fluorescein-isothiocyanate) resuspended
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Fig.3 Confocal microscopy analysis of abaxial surface of

N. benthamiana leaves sprayed with FITC-NPsF

resuspended in 0.1% EIA. Green channel: FITC; red

channel: chlorophyll autofluorescence. Scalebar 20 µm.

NPsF are able to adhere on the leaf surface in a dose-

dependent manner and concentrate mainly along the

tangential cell walls of the epidermis.
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1. NPs synthesis

Ionic gelation

&

Functionalization

20 µg/mL dsRNAs

2. Sonication

3 pulses of 15 sec

50 W

A. Filtration of CH stock 

solution (0.2 µm filter)

MW: 100 000 – 300 000 gmol-1

B. Oxidative degradation

treatment of CH stock 

solution for 24h (6% H2O2) [4]
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Fig.1 Size and ζ potential of NPsF

and NPsD before (A) and after (B)

their functionalization with dsRNAs.
Data are means ± SD (n = 6). The

significance of the applied t test is

P = 0.000 (A) and P = 0.017 (B).

NPsD are not suitable for

functionalization since they increase

their size much more than NPsF.

Fig.2 Electrophoretic evaluation

of the dsRNAs retention

capacity of NPsF and NPsD.

Only NPsF are able to retain

dsRNAs under electric field.

Sonication does not cause loss

of material, as shown by the

absence of signal in the

supernatant.
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