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Abstract
Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and 
progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 
(APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs bio-
genesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has 
not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung 
cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 
expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-
376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological 
relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated 
miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation 
existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer devel-
opment but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that 
APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, 
which are of relevance in lung cancer chemoresistance and cancer invasiveness.
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Abbreviations
APE1	� Apurinic/apyrimidinic endodeoxyribonucle-

ase 1
BER	� Base excision repair
DE-miRNA	� Differentially expressed miRNA

EMT	� Epithelial-to-mesenchymal transition
NSCLC	� Non-small cell lung carcinoma
PPI	� Protein–protein interaction

Introduction

Lung cancer is the most frequently diagnosed cancer and, in 
the past decades, the incidence and mortality of lung cancer 
have consistently increased worldwide. Non-small cell lung 
carcinoma (NSCLC) accounts for approximately 85% of all 
lung cancer occurrences [1]. Despite many achievements 
made in anti-cancer therapy over the years, the survival of 
NSCLC is still far from being satisfactory, due to the lack of 
effective prognostic and diagnostic tools. Currently, surgical 
resection remains the most effective treatment for early-stage 
NSCLC; however, many patients with NSCLC still develop 
tumor metastasis and recurrence after the pulmonary resec-
tion procedure [2]. Hence, exploring novel cancer-specific 
biomarkers for NSCLC patients would help monitor early 
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diagnosis, tumor progression and guide tailored clinical 
treatments [2].

miRNAs are a class of small non-coding RNAs that par-
ticipate in gene expression at the post-transcriptional level, 
by pairing to the 3′-untranslated region (3′UTR) of protein-
coding mRNAs, thus causing their degradation or inhibiting 
protein translation [3]. Therefore, miRNAs play pivotal roles 
in a wide spectrum of biological processes including: cell 
proliferation and development, tumorigenesis, metastasis, 
invasion, and apoptosis [4–6]. For all these reasons, miR-
NAs have attracted great attention for their potentiality as 
novel biomarkers for diagnostic, prognostic, and therapeu-
tic applications in multiple malignancies [7]. Recently, the 
application of high-throughput miRNA profiling methods 
has enhanced the identification of aberrantly expressed miR-
NAs in NSCLC [8–10] and the definition of several miRNAs 
as potential biomarkers for lung cancer [11, 12].

The cornerstone treatment for advanced NSCLC remains 
the platinum-based chemotherapy regimen, which relies on 
disrupting replication and transcription via intra- and inter-
strand DNA/RNA crosslinking, finally leading to cell death. 
However, there is a limited efficacy for platinum-based ther-
apy due to inherited or acquired resistance. Several key fac-
tors contribute to chemoresistance; in particular, defects in 
cell cycle checkpoints and elevated DNA repair capacity are 
at the basis of platinum-based resistance [13]. For example, 
the expression and the activity of different base excision 
repair (BER) enzymes have been associated with NSCLC 
development and acquired resistance against chemotherapy 
and radiotherapy [14].

The human apurinic/apyrimidinic endodeoxyribonu-
clease 1 (APE1) is responsible for the protection of cells 
against genotoxins and for safeguarding genome stability as 
the main AP-endodeoxyribonuclease of the BER pathway 
[15] playing a pivotal role in cancer chemoresistance. Its 
overexpression has been identified in several cancer types 
including NSCLC [16, 17] and, in all cases, it is associ-
ated with a worse prognosis. Interestingly, APE1 levels have 
been reported to be a predictive marker for sensitivity to 
chemotherapy in NSCLC patients [18, 19]. More impor-
tantly, some studies have also reported that overexpression 
of APE1 is associated with increased EGFR-TKI-resistant 
cells due to epithelial-to-mesenchymal transition (EMT) 
mechanisms [20–22]. Since numerous evidence now recog-
nizes that EMT not only contributes to metastasis but also to 
drug resistance processes, understanding the role of APE1 in 
lung cancer development is mandatory to use it as a promis-
ing therapeutic target for treating lung cancer patients.

Over the years, knowledge of APE1 biological func-
tions, mechanisms of action, interactions and regulation 
has increased tremendously [23]. APE1 contributes to the 
regulation of oxidative stress responses and has other non-
repair activities, such as direct and indirect modulation of 

the expression of chemo-resistance genes [24]. Recently, 
we and others have provided several lines of evidence sug-
gesting that APE1 may modulate tumor progression and 
chemoresistance by controlling gene expression via unan-
ticipated functions in RNA metabolism, including RNA 
processing for miRNA expression [25, 26]. In particular, 
we demonstrated that APE1’s endonuclease activity on the 
pri-miR-221/222 influenced the expression of the tumor 
suppressor phosphatase and tensin homolog (PTEN), thus 
impacting cell transformation [25]. Whether APE1 regu-
lates miRNAs acting as a prognostic biomarker of lung 
cancer has not been investigated, yet.

In the present study, through an unbiased high-through-
put miRNome profiling approach performed on NSCLC 
cells depleted of APE1 protein, we identified 13 putative 
miRNAs regulated by APE1. Then, we used miRNA–gene 
interaction networks, survival analysis based on TCGA 
datasets and pathway enrichment analysis to identify the 
putative gene targets of these miRNAs and to investigate 
their clinical-related aspects and their biological func-
tions. In particular, we demonstrated that by regulating 
miR-33a and miR-130b expression levels, APE1 modu-
lates DICER1 expression in cancer cell lines. Analysis of 
clinical cancer samples, which showed a direct correlation 
existing between APE1, miR33a, and miR-130b but an 
inverse correlation with DICER, supports a possible role 
for this axis in contributing to the acquisition of a malig-
nant phenotype by lung cancer cells.

Methods

Cell lines and materials

A549 and CH12F3 cells were grown in RPMI medium 
(Euroclone, Milan, Italy), HeLa clones in Dulbecco's 
modified Eagle's medium (Invitrogen, Monza, Italy) 
while JHH-6 were cultured in William’s medium E 
(Sigma-Aldrich, St. Louis, MO). CH12F3 containing two 
(+ / + /Δ) and zero copies of APE1 (Δ/Δ/Δ) have been 
described previously [27]. All cells were supplemented 
with 10% fetal bovine serum (Euroclone), 1% penicil-
lin–streptomycin solution (100 U/mL penicillin, 100 mg/
mL streptomycin), 2 mM L-glutamine (Euroclone) and 
cultured in a humidified incubator at 5% CO2 at 37 °C. 
Cells were tested as free of mycoplasma contamination 
(N-GARDE Mycoplasma PCR Reagent, Euroclone).

For APE1 endonuclease activity inhibition, A549 cells 
were treated with 20 µM APE1 endonuclease inhibitor #3 
[28] while 100 µM of E3330 [29] was used for redox activ-
ity inhibition.
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Transient transfections with siRNA, plasmids 
and miRNA mimic

One day before silencing, cells were seeded in 10-cm plates 
at a density of 3 × 106 cells per plate. Cells were then tran-
siently transfected with 100 pmol siRNA APE1 5ʹ-UAC​UCC​
AGU​CGU​ACC​AGA​CCU-3ʹ or the scramble control siRNA 
5ʹ-CCA​UGA​GGU​CAU​GGU​CUG​dTdT-3ʹ (Dharmacon, 
Lafayette, CO) using DharmaFECT reagent (Dharmacon). 
After 72 h upon transfection, cells were collected and RNA 
extracted using miRNeasy kit (Qiagen, USA).

For the overexpression of the APE1 protein, A549 cells 
were transiently transfected with APE1 FLAG-tagged plas-
mid using the Lipofectamine 3000 reagent (Invitrogen), 
according to the manufacturer’s instructions and collected 
24 h after transfection.

30 nM mimic hsa-miR-33a-5p, mimic hsa-miR-130b-3p 
or mimic negative control (Ambion) was transfected into 
A549 cells using Lipofectamine RNAi max (Invitrogen). 
Cells were incubated at 37 °C, 5% CO2 for 24 h.

Cell viability and proliferation assay

Cell viability was measured using the 3 (4 5 dimethylthi-
azol 2 yl) 5 (3-carboxymethoxyphenyl) 2 (4-sulfophenyl) 
2H-tetrazolium salt (MTS) assay (Celltiter 96 Aqueous 
One solution cell proliferation assay, Promega) on cells 
grown in 96-well plates. In detail, 5000 cells were plated 
on 96-wells and were allowed to attach to the plate for 24 h. 
The day after, cells were treated with either vehicle DMSO 
or increasing concentrations of APE1 inhibitors for 24 h. 
After treatment, the MTS solution was added to each well 
and the plates were incubated for 2 h at 37 °C. Absorb-
ance was measured at 490 nm using a multiwell plate reader. 
All experiments were run in triplicates. The values were 
standardized to wells containing media alone and the cell 
viability was expressed as a fold change compared to the 
DMSO-treated cells.

Determination of AP sites

Total abasic damage in chromosomal DNA was measured 
with an aldehyde-reactive probe (ARP). A549 cells were 
plated on 6-well plates and 24 h later were exposed to either 
vehicle DMSO or APE1 endonuclease inhibitor compound 
#3. Genomic DNA was isolated from A549 using QIAamp 
DNA Mini Kit (Qiagen) and then concentration and purity 
were determined by Nanodrop (Thermo Fisher Scien-
tific). Samples of genomic DNA were analyzed using the 
DNA Damage Quantification Kit based on ARP (Dojndo, 
Gaithersburg, MD, USA), according to the manufacturer’s 
instructions. Briefly, 1 µg of genomic DNA was labeled 
with a biotinylated ARP for 1 h at 37 °C, and ARP-DNA 

was purified following the manufacturer’s instructions. The 
amount of labeled ARP-DNA was then quantified through 
a colorimetric reaction. Quantification of AP sites/cell was 
then measured using a calibration curve provided with the 
kit.

Preparation of cell extracts and Western blotting 
analysis

Cell extracts were prepared and quantified as already 
described in [26]. For the preparation of whole cell lysate, 
the cell pellet was resuspended in lysis buffer containing 
50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 
1% w/v Triton X-100 supplemented with 1 mM protease 
inhibitor cocktail (Sigma-Aldrich), 1 mM DTT, 0.5 mM 
phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF and 
1 mM Na3VO4 for 30 min at 4 °C. After centrifugation at 
13,000 rpm for 20 min at 4 °C, the supernatant was col-
lected as a whole cell lysate. The protein concentration 
was determined using Bio-Rad protein assay reagent (Bio-
Rad, Hercules, CA, USA). The indicated amounts of whole 
cell extracts were resolved in 12% or 8% SDS-PAGE and 
transferred to nitrocellulose membranes (Sigma–Aldrich). 
Normalization was performed using either monoclonal anti-
tubulin antibody (Sigma-Aldrich) or polyclonal anti-actin 
antibody (Sigma-Aldrich). Detection and quantification were 
performed with the Odyssey CLx Infrared imaging system 
(LI-COR GmbH, Germany) using Odyssey software (Image 
Studio 5.0). A list of the antibodies used is given in the 
Supplementary Information (Table S5). Original uncropped 
images of Western blots used in this study can be found in 
Supplementary Figures S9 and S10.

RNA‑seq

RNA-seq was performed in quadruplicate starting from 
180 ng of total RNA from A549 cells silenced for the APE1 
protein expression and from scramble transfected nega-
tive control. Purified RNAs were quantified with the Qubit 
RNA HS assay kit (Thermo Fisher Scientific). Sequencing 
libraries were prepared based on the SMARTer smRNA-Seq 
kit (Clontech/Takara, USA) protocol with minor changes 
enhancing the identification of pri-miRs in addition to miR-
NAs. The SMARTer smRNA-Seq kit utilizes a ligation-
free ‘tailing approach’. First, the 3ʹ end is polyadenylated; 
subsequently, a reverse transcription (RT) reaction, primed 
by an oligo dT primer, incorporates the 3ʹ adapter. A spe-
cialized reverse transcriptase enzyme switches template 
upon reaching the end of each RNA template and utilizes 
the SMARTer smRNA-Seq oligo as a secondary template 
to attach the 5ʹ adapter. The size profiles of the individual 
libraries were analyzed with LabChip GX II using a DNA 
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High Sensitivity kit (both PerkinElmer, USA). Libraries 
were quantified on a Qubit with the DNA High Sensitivity 
kit (Life Technologies).

Quantified libraries were mixed at an equimolar ratio and 
sequenced on the HiSeq 2500 (Illumina, USA) in rapid run 
mode, using a 100-bp, dual-indexed, single-end sequencing 
configuration.

The FastQC tool (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/, version 0.11.6) was used to 
evaluate fastq files quality and the output was summarized 
with multiQC (http://​multi​qc.​info/, ver1.4). Reads had very 
good quality and no correction was required. We used Cuta-
dapter (https://​cutad​apt.​readt​hedocs.​io, ver 1.15) to remove 
adapters, primers, poly-A tails, and other types of unwanted 
sequences from the fastq files. Transcript quantification 
was conducted with STAR (v2.5.3a) [30], using the human 
genome assembly GRCh38 with reference annotation; 
reads were assigned to a gene-based on EnsEMBL annota-
tion and via the STAR function “quantMode GeneCounts”. 
Differential expression (DE) analysis was performed using 
gene raw counts, within the R/Bioconductor DESeq2 pack-
age [31]: we estimated the dispersion parameter for each 
library using the biological group dispersion; abs(log2(fold 
change)) ≥ 0.75 was considered for differentially regulated 
genes; we adjusted the P value for multiple testing using the 
Benjamini–Hochberg correction with a false discovery rate 
(FDR) ≤ 0.05.

NanoString nCounter system miRNA Assay

miRNA expression profiling was performed with 100 ng of 
total RNA from A549 cells silenced for the APE1 protein 
expression and from scramble transfected negative control. 
The experiment was performed in triplicates. RNA was iso-
lated using the miRNeasy kit (Qiagen, USA) and samples 
were prepared for the nCounter miRNA expression profiling 
using the human v3 miRNA expression panel, according 
to the manufacturer’s recommendations (NanoString, Seat-
tle, Washington, USA) in the SynLab Srl. Transcript counts 
were normalized through the normalization method incor-
porated in the model framework, estimating parameters from 
positive controls, negative controls, and housekeeping genes 
embedded in the nCounter system, using the NanoStringDiff 
package [32] within Bioconductor. Differential expression 
of genes was assessed on log2-normalized data with a gen-
eralized linear model likelihood ratio test, using the glm.
LRT function within the NanoStringDiff package. A q-value 
cutoff of 0.1 was used to determine statistical significance. 
For clustering analysis, we used the normalized values gen-
erated by the NanoStringDiff package. Starting from the 
log2-normalized values, genes with low standard deviation 
(SD < 0.2) were filtered out and hierarchical clustering of 
the samples was performed and visualized as a heatmap of 

log2-normalized, centered, and scaled in the row direction 
values using the heatmap.2 function within the gplots R/
Bioconductor package (Euclidean distance, Complete link-
age) [33]. Principal components analysis was also performed 
to evaluate biological replicates’ reproducibility. Independ-
ent validation analysis on 13 differential miRNAs was per-
formed through qRT-PCR.

Construction of DE‑miRNAs and APE1 PPI targets 
network

To determine the relationship between APE1-interacting 
protein communities and DE-miRNAs in both NanoString 
and RNA-seq experiments, we constructed a miRNA-PPI 
network for the LUAD dataset. For this purpose, experi-
mentally retrieved APE1-interacting partners were initially 
used to establish the global APE1 protein–protein interaction 
network using the InWeb_InBioMap [34] and Cytoscape 
(v3.6.1) tools [35] as described in detail in [36]. Briefly, the 
differential gene expression results from TCGA and normal 
datasets (GTEx data) for the genes encoding the proteins 
present in the APE1-PPI network were obtained via the 
GDC data portal and the RUVSeq R/Bioconductor package 
[37] was used to eliminate the batch effect coming from the 
combination of two data sources. Kaplan–Meier curves were 
plotted for each differentially expressed gene by RTCGA R/
Bioconductor package [38]. As a result, we selected genes 
significantly differentially expressed (p < 0.05, absolute log 
fold change > 1) and associated with a bad prognosis. The 
up-regulated and poor prognostic APE1-PPI were selected 
as poor prognostic markers. miRNAs targeting the genes 
of the constructed network were then retrieved by mirWalk 
v.3.0 [39] and DIANA-Tarbase v.8.0 tools following the 
authors’ recommendations [40]. DE-miRNAs identified in 
RNA-seq and NanoString experiments were selected from 
those previously retrieved and were used to build the final 
DE-miRNAs – APE PPI targets network (Nproteins = 96 and 
NmiRNAs = 42).

RNA extraction and quantitative Reverse 
Transcriptase‑PCR (qRT‑PCR)

For miRNAs and RNAs qRT-PCR analysis from in vitro 
cultured cell lines, RNA was isolated using miRNeasy kit 
(Qiagen, USA), according to the manufacturer’s instructions.

Selected candidate miRNAs were validated by RT-qPCR 
using TaqMan Advanced miRNA assay (Life Technologies, 
Carlsbad, CA, USA) following the manufacturer's instruc-
tions. Detection of successfully transcribed products was 
carried out using TaqMan Fast Advanced Master Mix and 
CFX Touch™ Real-Time PCR System (Bio-Rad, Hercu-
les, CA). qRT-PCR results were calculated using the ΔΔct 
method, utilizing the expression of miR-16-5p as reference.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://multiqc.info/
https://cutadapt.readthedocs.io
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For the measurement of mRNA expression, one micro-
gram of total RNA was reverse transcribed using the Sensi-
FAST cDNA synthesis kit (Bioline, London, UK), according 
to the manufacturer’s instructions. qRT-PCR was performed 
with a CFX96 Real-Time System (Bio-Rad) using Sensi-
FAST SYBR No-ROX kit (Bioline, London, UK). The prim-
ers and probes used are listed in Supplementary Information 
(Table S6).

MiRNA extraction and analysis from tissue samples

Total RNA was extracted from formalin-fixed paraffin-
embedded (FFPE) samples using QIAGEN’s RNeasy FFPE 
kit (RNeasy FFPE, Hilden, Germany) following the manu-
facturer’s instructions. cDNA was synthesized from 200 ng 
total RNA and amplified by RT‑qPCR using TB Green Pre-
mixExTaq II (Takara Bio Inc., Japan). The thermocycling 
condition for miRNA consisted of 95˚C for 20 sec followed 
by 40 cycles of 10 sec at 95˚C, 20 sec at 60˚C and 10 sec at 
70˚C. For normalization, U6 was used as an internal refer-
ence control. All the primers were designed by Biowavelet 
Ltd., Chongqing, China and synthesized by Tsingke Biotech-
nology Ltd., Beijing, China. The expression level of miR-
NAs was calculated using the log2(2−ΔCt × 1010) formula 
based on the previous description [41].

Cancer specimens and immunohistochemistry

One hundred paraffin-embedded cancerous tissue samples, 
including colorectal cancer, glioblastoma, breast cancer, cer-
vical cancer, and NSCLC were collected from patients who 
underwent surgical resection without prior chemotherapy 
or radiotherapy in Daping Hospital, Third Military Medi-
cal University (Chongqing, China) from 2015 to 2016. This 
study was approved by the Ethics and Research Committee 
of the Daping faculty of Medicine, Third Military Medi-
cal University, Chongqing, China; written informed con-
sent was obtained from all patients. The Histopathological 
assessment was carried out separately by two pathologists 
and then a consensus was made on discordant assessments. 
Sections from formalin-fixed and paraffin-embedded (FFPE) 
tumors were incubated with primary antibodies overnight, at 
4 °C. Antibodies were purchased from Abcam (Cambridge, 
MA), unless indicated otherwise. All antibodies used for 
the immunohistochemistry are listed: APE1 antibody (clone 
13B8E5C2; dilution 1:5000; Novus Biologicals), Dicer1 
antibody (clone13D6; dilution 1:50; Abcam, Cambridge, 
MA), ADM antibody (10778-1-AP; dilution 1:100; Pro-
teintech), CDKN1A antibody (ab109520; dilution 1:100; 
Abcam), CCN2 antibody (ab6992; dilution 1:100, Abcam), 
DICER1 antibody (ab259327; dilution 1:100, Abcam), FLT1 
antibody (ab259327; dilution 1:250, Abcam), JAG1 anti-
body (ab7771; dilution 1:100, Abcam) and TGM2 antibody 

(ab2386; dilution 1:50, Abcam). Sections were rinsed with 
PBS and incubated with goat anti-mouse secondary anti-
body. Sections were rinsed with PBS, developed with diam-
inobenzidine substrate, and then counterstained with diluted 
Harris hematoxylin. APE1, DICER1, ADM, CDKN1A, 
CCN2, FLT1, JAG1, and TGM2 staining were analyzed 
and scored for four categories: (i) score 0, no expression in 
tumor cells; (ii) score 1 + , faint/barely perceptible partial 
expression in < 10% of tumor cells; (iii) score 2 + , weak to 
moderate expression in > 10% of tumor cells; (iv) score 3 + , 
strong expression in > 10% of tumor cells. Image analysis 
was done by two experienced pathologists independently.

Survival analysis

The prognostic value of selected DE-miRNAs was first 
evaluated singularly in the TCGA-LUAD lung adenocarci-
noma dataset using the YM500v3 database [42]. Using the 
“Survival” function, we split patients by median, upper- or 
lower-tertile expression levels, drawing Kaplan–Meier plots 
and assessing the statistical significance of each curve.

miRNA expression data (HiSeq, miRgene level; RPM, 
Log2(Val + 1), miRNA expression for tumor samples (Illu-
mina HiSeq platform, miRgene level, Normalized, RPM), 
and clinical data were downloaded from the LinkedOm-
ics portal for TCGA-LUAD patients (n = 450 and n = 522, 
respectively; http://​linke​domics.​org/​data_​downl​oad/​TCGA-​
LUAD/; last accessed: January 24, 2022).

The prognostic value of the thirteen-candidate DE-miR-
NAs signature was evaluated using the RTCGA.clinical 
(providing clinical datasets from The Cancer Genome Atlas 
Project for all cohort types) and survival R packages (con-
taining the core survival analysis routines, including defi-
nition of Surv objects, Kaplan–Meier and Aalen–Johansen 
(multi-state) curves, Cox models, and parametric accelerated 
failure time models). We first applied a Cox proportional 
hazard model and defined, for each miRNA, the multivariate 
analysis Cox coefficient; we then multiplied this coefficient 
by the expression value of the associated miRNA for every 
patient in the TCGA-LUAD dataset, obtaining the miRNA 
score; finally, the sum of all miRNA scores provided the 
Prognostic Index (PI) of each patient. We separated patients 
into “high-risk” and “low-risk” based on p value optimiza-
tion using the ‘surv_cutpoint’ function (minprop = 0.33). 
The difference in overall survival rates between the two 
subgroups was verified by applying a log-rank test and a 
Kaplan–Meier plot was finally drawn to summarize the data.

miRNA targets functional enrichment analysis

DE-miRNA human validated targets were retrieved through 
the DIANA-MirPath v.3 web server [43]. Functional enrich-
ment analysis was performed by querying the KEGG and 

http://linkedomics.org/data_download/TCGA-LUAD/
http://linkedomics.org/data_download/TCGA-LUAD/
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Gene Ontology – Biological Process databases (p ≤ 0.05), 
applying the “genes union” and “pathways union” meth-
ods. A reduced graphical representation of raw data was 

obtained using KEGG-PathwayConnector [44] (sorted by 
ascending Adjusted p value; number of EnrichR pathways to 
analyze: 10) and REVIGO [45] (default settings). Additional 



APE1 controls DICER1 expression in NSCLC through miR‑33a and miR‑130b﻿	

1 3

Page 7 of 22    446 

information on expressed DE-miRNA targets was retrieved 
from the Molecular Signatures Database v6.2 Hallmark, 
Computational, Oncogenic, Immunologic and Chemical and 
Genetic Perturbations (C4, C6, C7, CGP, H) collections (top 
20 gene sets, FDR q value ≤ 0.05) [46, 47].

Definition of the EMT consensus signature

We assembled an “EMT Consensus Signature” (n = 1407) 
through data mining and union of the following datasets: 
(a) genes associated with “Adherens Junctions” (https://​
www.​genome.​jp/​dbget-​bin/​www_​bget?​hsa04​520; n = 71) 
and “Focal Adhesion” (https://​www.​genome.​jp/​dbget-​bin/​
www_​bget?​hsa04​510; n = 199) in the KEGG database (last 
accessed: February 25, 2020); (b) genes associated with 
“epithelial-to-mesenchymal transition” (http://​amigo.​geneo​
ntolo​gy.​org/​amigo/​term/​GO:​00018​37; n = 181) in the Gene 
Ontology database (last accessed: February 26, 2020); (c) 
complete list of EMT-associated genes from dbEMT (http://​
dbemt.​bioin​fo-​minzh​ao.​org/​index.​html; n = 1185; last 
accessed: February 26, 2020) [48, 49].

Definition of the 13 DE‑miRNAs expressed validated 
targets EMT model network

The fifteen expressed validated targets of the 13 DE-miR-
NAs signature, which were included in the EMT signature, 
were used as input gene list of the InWeb_InBioMap [34]. 
Settings for network construction were as follow: database 
version 2020_03_04; Network Expansion to Include neigh-
boring proteins; Relevance Score Type inclusive; Relevance 
score cutoff 0.8. Functional enrichment analysis was per-
formed using the InWeb_InBioMap built-in tool, focusing 
on statistically significant, biologically relevant annotations 
obtained from all the queried databases.

Gene expression profiling of EMT‑related expressed 
validated targets in TCGA and GTEx datasets

Gene expression data of the fifteen EMT-related expressed 
validated targets were obtained, for the TCGA-LUAD data-
set (n = 483) and for the matched TCGA normal and GTEx 
data (n = 347), querying the GEPIA2 web tool ([50], sequen-
tially selecting “Expression Analysis, Expression DIY, Box 
Plots, Signatures” and finally copy-pasting the gene symbols 
of interest in the “Gene Set A” box. The output was repre-
sented as boxplots (red: tumor; black: normal).

Statistical analysis

The results are presented as means ± S.D., and data analy-
sis was performed with the Prism GraphPad 7.0 software. 
For comparisons between two groups, unpaired and paired 
Student’s t-tests were used. In all tests, p values < 0.05 were 
considered statistically significant. *p < 0.05; **p < 0.001.

Results

Analysis of miRNA expression profiles in A549 lung 
cancer cells upon APE1 knockdown

Previous studies showed that APE1 expression is up-reg-
ulated in different tumor tissues, including lung cancer 
[19]. More interestingly, recent works supported a role for 
APE1 in miRNAs processing involved in chemoresistance 
[25, 51]. However, the specific involvement of APE1 in the 
expression of miRNAs in NSCLC tissues and cell lines has 
not been elucidated, so far. In this present study, the A549 
cell line was used to evaluate differentially expressed 
miRNAs (DE-miRNAs) upon APE1 depletion. A549 were 
transiently silenced for the expression of the APE1 pro-
tein (Fig. S1A) and both NanoString (abs(log2FC) ≥ 1.0, 
q-value ≤ 0.1) and RNA-seq (abs(log2FC) ≥ 1.0, 
q-value ≤ 0.05) analyses were performed to identify DE-
miRNAs occurring between APE1-siRNA silenced and 
scramble-siRNA cells (Fig. 1; Table S1–2). By comparing 
both the hierarchical-clustering and the principal compo-
nents analysis, we were able to confirm the good reproduc-
ibility of all biological replicas (Fig. S1B–C).

Among the 798 miRNAs profiled through the 
NanoString technology, a total of 61 miRNAs resulted dif-
ferentially expressed in a statistically significant manner, 
including 11 up-regulated and 50 down-regulated miRNAs 
(Fig. 1A and Table S1). Moreover, the RNA-seq analysis 
identified 12 miRNAs that were significantly dysregulated 
(10 had decreased expression and 2 were up-regulated) 

Fig. 1   Global profiling of microRNA expression in A549 cells 
APE1-depleted. a MA plot showing the average fold change (log2 
scale, y-axis) and the average expression (log2 scale, x-axis) of the 
798 miRNAs profiled in the NanoString experiment. DE-miRNAs 
with multiple-test adjusted-pvalue less than 0.1 and log2 fold change 
greater or lower than 1 are indicated in red (up-regulated in siAPE1, 
n = 11) and green (down-regulated in siAPE1, n = 50), respectively. 
b MA plot showing the average fold change (log2 scale, y-axis) and 
the average expression (log2 scale, x-axis) of all the transcripts pro-
filed in the RNA-seq experiment. RNA-seq features with multiple-test 
adjusted-pvalue less than 0.05 and log2 fold change greater or lower 
than ± 1.0 are indicated in red (up-regulated in siAPE1, n = 316) and 
green (down-regulated in siAPE1, n = 421), respectively. DE-miR-
NAs with at least 10 average counts in the samples are indicated by 
their corresponding labels

◂

https://www.genome.jp/dbget-bin/www_bget?hsa04520
https://www.genome.jp/dbget-bin/www_bget?hsa04520
https://www.genome.jp/dbget-bin/www_bget?hsa04510
https://www.genome.jp/dbget-bin/www_bget?hsa04510
http://amigo.geneontology.org/amigo/term/GO:0001837
http://amigo.geneontology.org/amigo/term/GO:0001837
http://dbemt.bioinfo-minzhao.org/index.html
http://dbemt.bioinfo-minzhao.org/index.html
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(Fig. 1B and Table S2). By comparing the lists of DE-
miRNAs obtained through the two methodologies, 11 out 
of 12 miRNAs found in the RNA-seq analysis were also 
confirmed by NanoString and showed the same trend of 
down-regulation, although only 7 were statistically signifi-
cant (miR-337, miR-323A, miR-409, miR-382, miR-495, 
miR-130b and miR-183). miR-1229, found in RNA-seq 
analysis, was not profiled through NanoString.

Several publications have disclosed inconsistencies 
among the amounts of miRNAs present in the original 
samples and those identified using different analysis plat-
forms [52], sequencing approaches [53, 54] and even 
library preparation protocols [55]. Most of these discrep-
ancies are in the miRNA detection rate sensitivity and dif-
ferential expression. Moreover, in our RNA-seq library 
preparation, the protocol was also modified to allow the 
detection not only of miRNAs but also pri-miRNAs and 
other kinds of RNAs; therefore, a complete overlap with 
the NanoString DE-miRNA outcomes was not expected.

Identification of candidate prognostic miRNAs 
for NSCLC

To identify a signature of candidate miRNAs having a 
potential prognostic value, we evaluated different features 
(Table 1). First, we queried the YM500v3 database [42] to 
correlate miRNA expression data and survival, according 
to TCGA datasets. Nine DE-miRNAs (miR-1246, miR-
4488, miR-660, miR-218, miR-543, miR-200c, miR-376c, 
miR-376a, and miR-146a) showed a significant correlation 
between poor survival and miRNA expression in the TCGA-
LUAD lung adenocarcinoma dataset (Fig. S2). Second, we 

compared DE-miRNAs identified by NanoString in A549 
cells with those previously found in APE1-depleted HeLa 
cells [25], to highlight putative common regulators of tumor 
progression, picking out 11 miRNAs: 10 showed the same 
trend of down-regulation (miR-24, miR-301a, miR-196b, 
miR-500a + miR-501, miR-505, miR-628, miR-92b, miR-
33a, miR-660, miR218), while only miR-1246 showed an 
opposite trend. Three of these miRNAs (miR-1246, miR-
660-5p, and miR-218-5p) were also included among those 
having TCGA-prognostic values. Finally, we reviewed 
existing literature demonstrating an involvement of these 
miRNAs in chemoresistance processes [56–59]. Based on 
all these assumptions, we finally selected a group of 13 DE-
miRNAs for further studies (Table 1). Interestingly, many of 
them were already reported in the literature to be altered in 
several cancer types (Table 1), implying the possible exist-
ence of common regulators/pathways involved in multiple 
malignancies and leading to the onset of drug resistance 
mechanisms through APE1 regulation.

To further explore the prognostic power of candidate DE-
miRNAs in TCGA-LUAD patients, we developed a prog-
nostic index (PI) to associate patients’ overall survival to 
the DE-miRNAs signature (miR-4488 was excluded from 
the analysis since no data were available). In particular, we 
calculated patients’ PI using Cox regression coefficients and 
the expression values of DE-miRNAs. The risk groups were 
defined by stratifying patients based on p value optimiza-
tion and a Kaplan–Meier plot was generated, with overall 
survival rates that were clearly different between high-risk 
(n = 259) and low-risk (n = 171) patients (p value = 0.00076) 
(Fig. 2, Fig. S2 and Table S3).

These findings support the potential prognostic value of 
the DE-miRNAs signature correlated with APE1 expression.

Table 1   List of candidate miRNAs selected
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Confirmation of DE‑miRNAs status and clinical 
outcome

Based on previous results, we first experimentally veri-
fied the expression levels of these 13 candidate miRNAs 
in the RNA samples used for high-throughput analysis, by 
qRT-PCR, using miRNA-specific TaqMan probes in pooled 
samples (Fig. S3A). Consistently, qRT-PCR results were in 
accordance with the RNA seq and NanoString expression 
levels for all the 13 miRNAs tested. Simultaneously, data 
were also validated in an independent experimental data 
set, in which we both downregulated, through specific a 
siRNA, or overexpressed the APE1 protein through the use 
of a specific FLAG-APE1 expressing plasmid (Fig. 3A). 
As expected, APE1 silencing confirmed the transcriptomic 
results, while the overexpression of APE1 resulted in an 
increased expression of miRNAs that were down-regulated 
upon APE1 silencing, supporting the hypothesis that the 
expression of the selected miRNAs indeed depends on APE1 
extent.

To better define the role of APE1 in processing DE-miR-
NAs, we tested whether its endonuclease or redox activities 
were involved. For this purpose, A549 cells were treated with 
two APE1 inhibitors: (i) Compound #3, a catalytic inhibitor 

of APE1 endonuclease activity [28] and (ii) E3330, a well-
known inhibitor of APE1 redox activity now used in clinical 
trials [29]. Cells were challenged with APE1 inhibitors for 
24 h and the thirteen selected DE-miRNAs were quantified 
through qRT-PCR (Fig. 3B). Time and doses of treatments 
were chosen based on their effect on cell viability and previ-
ously published data [25]. The efficacy of the treatments was 
evaluated by measuring the accumulation of AP sites genera-
tion, in the case of Compound #3, and the expression levels 
of Survivin, a known target of the APE1 redox function, in 
the case of E3330 [25, 60] (Fig. S3B, C). Treatment with 
Compound #3 resulted in an increased expression of miR-
1246 and miR-4888; this was also apparent when A549 cells 
were challenged with APE1 redox inhibitor E3330, making 
it difficult to delineate which of the two APE1 functions 
could be involved in the expression of these miRNAs. For 
the other selected DE-miRNAs, few significant differences 
were observed with respect to non-treated cells: miR-33a 
and miR-376c were down-regulated when APE1 endonu-
clease function was inhibited, while miR-24 and miR-146a 
seemed to be regulated by the redox function of the protein. 
Two opposite results were observed for miR-200c and miR-
146a, in comparison to those obtained upon APE1 depletion. 

Fig. 2   Prognostic value of the miRNA signature in TGCA-LUAD 
patients. Kaplan–Meier plot showing the different overall survival 
rates of patients belonging to the “high risk” and “low risk” groups, 

stratified based on the Prognostic Index calculated from the thirteen-
candidate miRNA signature (see Fig. S2)
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Further experiments are required to better circumstantiate 
these results.

To further investigate the oncogenic relevance of the 
thirteen DE-miRNAs identified in this work, we evaluated 
their expression along with APE1 protein levels in a large 
cohort of NSCLC patients' tissues. Tissue samples were 

obtained from surgical resection specimens of NSCLC. 
According to the results of the immunohistochemistry 
(IHC) analysis, patients were divided into two groups: 
the low tissue APE1-expressing group (low-t APE1) and 
the high tissue APE1-expressing group (high-t APE1) 
(Fig. S4A). Firstly, we defined the IHC score of 0–1 as 
low-t APE1 group (n = 12), and 2–3 as high-t APE1 group 
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Fig. 3   Validation of APE1 functional involvement in selected DE-
miRNA expression. a RT-qPCR analysis on the thirteen selected DE-
miRNAs was performed on A549 cells silenced for APE1 (siAPE1) 
or transiently transfected with the expression plasmid for the FLAG-
tagged siRNA-resistant APE1 protein APE1WT (siSCR + APE). 
Histograms report data using the ΔΔCT method with miR-16-5p 
as the reference. A two-sample, two-tailed, unpaired t test was used 
to compare the ΔΔCT values from each group with respect to cells 

transfected with scramble siRNA (siSCR). b RT-qPCR analysis on 
the thirteen selected DE-miRNAs performed on A549 cells treated 
with 20  µM #3 and 100  µM E3330 for 24  h, respectively (see also 
Fig. S3B-C). c Correlative expression of APE1 and DE-miRNAs in a 
cohort of human NSCLC specimens. Scatter plots report for each DE-
miRNA the expression levels detected in the two cohorts of low- and 
high-APE1 protein (see also Fig. S4). Statistical significance is repre-
sented as *p < 0.05, **p < 0.01
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(n = 24). The results showed the existence of 10 miRNAs 
(miR-24, miR-33a, miR-92b, miR-130b, miR-200c, miR-
146a, miR-660, miR-218, miR-4488, and miR-183) that 
were expressed at significantly higher levels in the high-t 
APE1 group than in the low-t one (Fig. 3C). For three 
miRNAs (miR-1246, miR-376c, and miR-543), a non-
significant difference was found between the two cohorts, 
while for miR-4488 an opposite trend was observed. 

Considering the large number of high-t APE1 patients, we 
defined score 3 as the high-t APE1 group (n = 11). Simi-
lar significant results were obtained for 10 miRNAs (Fig. 
S4B). Altogether, these results suggest that the expression 
levels of the large majority (10 out of 13) of tissue miR-
NAs and APE1 are related, providing clinical relevance 
to our in vitro data.
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Fig. 4   Functional enrichment analysis of DE-miRNAs expressed 
validated target. a. Network of the top10 enriched KEGG functional 
terms (p value ≤ 0.05) associated with the expressed validated targets 
(n = 74) of DE-miRNA, according to KEGG-PathwayConnector. Ten 
major clusters (purple nodes) can be defined including tumorigenic 
pathways (e.g., p53, Hippo, HIF1A, and PI3K-Akt signaling), meta-
bolic and structural events associated with the cell cycle and immune 

response. The role of miRNAs in non-small cell lung carcinoma is 
also identified. In addition, the genes associated with each enriched 
functional term are reported (blue nodes). b Gene expression profil-
ing of APE1 DE-miRNAs targets in A549 cells. A549 cell line was 
silenced using APE1 siRNA for 72  h and mRNA expression levels 
were assessed by Real-Time qPCR and normalized with GAPDH. 
*p < 0.01
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Thoroughly, these results mirror an oncogenic poten-
tial role for candidate APE1-regulated-miRNAs in lung 
cancer.

APE1 cellular depletion affects the expression 
of genes related to miRNA processing

To investigate the role of DE-miRNAs in cellular pro-
cesses, we assessed the enriched biological functions asso-
ciated with their target genes by focusing on those involved 
in lung tumor progression and chemoresistance. For each 
DE-miRNA, we defined its validated targets and com-
mon enriched functional terms, as described in the Meth-
ods section. Interestingly, along with the identification of 
tumorigenic pathways (e.g., p53 and Hippo signaling) and 
metabolic/structural events associated with the cell cycle 
(Table S4), we also found immune-related terms implying 
the existence of a complex immune scenery in NSCLC, 
possibly having major implications in setting up protocols 
for immune-based precision medicine strategies [61]. We 
then specifically focused on the subset of targets (n = 74) 
differentially expressed in the A549 cell line based on RNA-
seq results (abs(logFC) ≥ 1.0, q value ≤ 0.05). In particular, 
considering all the differentially expressed genes (DEGs), 
we only retained those having an anti-correlated expression 
compared to their regulatory miRNAs. We confirmed the 
previous results (Fig. 4A and Table S4), likely identify-
ing some real effectors of those phenotypes (e.g., CDK1, 
CDK6, and CDKN1A): for each functional node (violet 
spheres), representing a dysregulated pathway, the network 
also shows some of the major target genes that were affected 
(blue spheres). Consistently, qRT-PCR analysis confirmed 
the upregulation of DE-miRNA targets when cellular APE1 
was depleted (Fig. 4B). Thus, the overall characterization of 
tumor-related pathways was improved, now including also 
the HIF1A and the PI3K-Akt pathways in the pool of those 
affected. We also obtained clear evidence for the association 
of expressed target genes with miRNAs involved in cancer 
and small cell lung cancer, thus emphasizing the role of the 
deregulated miRNAs/mRNAs axis in the development and 
maintenance of lung cancer (Fig. 4A and Table S4). Finally, 
two other important nodes were represented by focal adhe-
sion and miRNA processing, this is in accordance with sev-
eral works pointing to a role of APE1 in the epithelial–mes-
enchymal transition (EMT) process [20, 22, 62, 63] and in 
APE1 contribution to miRNA biogenesis [25].

APE1‑mediated miRNA regulation is associated 
with the promotion of an EMT program

Previous studies highlighted the APE1 association with 
increased EGFR-TKI-resistant cells due to epithelial-to-mes-
enchymal transition mechanisms [20, 21]. In agreement, we 

demonstrated that, in our cellular models, APE1 depletion 
was associated with the upregulation of the epithelial marker 
E-cadherin, while its overexpression resulted in the upregu-
lation of the mesenchymal marker Vimentin, which also cor-
related with the increased expression of three EMT-related 
transcription factors ZEB1, ZEB and SNAL1 (Fig. S5). Con-
sidering the importance of EMT as a crucial process for drug 
resistance, and that several miRNAs co-regulate both EMT 
and chemoresistance processes, we assembled an “EMT 
Consensus Signature” through data mining of several pub-
lic databases. We then evaluated how many expressed and 
validated targets of the thirteen DE-miRNAs were included 
in the EMT signature. We found fifteen hits and used them 
for building a network model of the EMT pathway, thus 
recapitulating: (i) APE1-regulated miRNAs, (ii) their vali-
dated target genes and iii) additional interactors, putatively 
involved in the same biological processes (Fig. 5A). Finally, 
we annotated the network nodes, in search of additional rel-
evant pathways significantly enriched. Interestingly, DNA 
repair and the immune response were two other functions 
associated with many nodes, suggesting that APE1 regula-
tion could also affect the tumor microenvironment at differ-
ent levels. DICER1 and LAMC1 were the nodes regulated 
by the highest number of DE-miRNAs, including miR-130b 
and miR-33a, followed by CCN2 and CDKN1A; STAT1 rep-
resented the central node of the EMT/immune subnetwork, 
connected through BRCA1 to immune/DNA repair nodes.

Notably, we also evaluated the expression levels of vali-
dated target genes in the TCGA-LUAD dataset, compared 
to matched TCGA and GTEx normal data (Fig. 5B), and 
found that seven genes (ADM, CDKN1A, CCN2, DICER1, 
FLT1, JAG1, and TGM2) were significantly down-regulated 
in the tumor, while STAT1 was the only up-regulated one. 
These results confirmed what we previously observed in 
A549 cells, indicating that this network module highlights 
a likely contribution of APE1 to the regulation of miRNAs 
function in lung cancer progression.

Next, IHC analysis was performed in 31 NSCLC tissue 
specimens to examine the association between APE1 and 
some of its target genes identified in the above-described 
analysis. Representative images of APE1-high and -low 
examples for the NSCLC were shown in Fig. 6. Notably, 
APE1 overexpression was associated with DICER1 and 
TGM2 reduction, and similar results were obtained for 
FLT1 and JAG1 while APE1 accumulated (IHC = 2,3). In 
addition, there was no manifest correlation between APE1 
and CCN2 or CDKN1A. Finally, as APE1 increased gradu-
ally, the expression level of ADM decreased first and sub-
sequently increased. Therefore, data obtained from cancer 
specimens only partially recapitulated our findings using 
the A549 cell line model but clearly support the evidence 
for the existence of a direct relationship between APE1 and 
DICER1 expression.
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Fig. 5   Role of APE1 in the 
regulation of Epithelial–Mesen-
chymal Transition. a Network 
showing the interconnections 
between APE1-regulated miR-
NAs (n = 10), their expressed 
validated target genes involved 
in EMT (n = 15, red label) and 
additional interactors (black 
label), according to the InWeb_
InBioMap tool. Arrows close 
to miRNAs indicate the effect 
of APE1 regulation on miRNA 
expression (red: up-regulation); 
arrows close to target genes 
indicate the statistically signifi-
cant expression status in TCGA-
LUAD samples compared to 
matched TCGA and GTEx 
normal data (red: up-regulation; 
green: down-regulation). Nodes 
were functionally annotated 
using the InWeb_InBioMap 
built-in tool and genes associ-
ated with immune response and 
DNA repair are shown in tur-
quoise and orange, respectively 
(p value < 0.05) b Gene expres-
sion profiling of EMT-related 
expressed validated targets 
in the TCGA-LUAD dataset. 
Boxplots showing the log2-
transformed gene expression 
levels of the eight EMT-related 
expressed validated targets 
having significant differences 
in the TCGA-LUAD (n = 483) 
compared to the matched TCGA 
normal and GTEx datasets 
(n = 347). Red: tumor; black: 
normal. *p < 0.01
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APE1 regulates DICER1 expression through miR‑33a 
and miR‑130b

We decided to focus our attention on the possible role of 
APE1 in the expression of DICER1 since the downregulation 

of DICER1 was related to EMT and tumor metastasis [64, 
65].

Based on bioinformatics analysis, the DICER1 tran-
script is targeted by five DE-miRNAs: miR-33a, miR-92b, 
miR-130b, miR-200c, and miR-218 [66–68]. In particular, 

Fig. 6   Correlative expression of APE1 and EMT genes. Representa-
tive images of APE1-high and -low examples for ADM, CDKN1A, 
CCN2, DICER1, FLT1, JAG1, and TGM2 protein expression deter-
mined by IHC assay were shown. Bar graph showing the percent-
age of each gene score level in 0, 1, 2, and 3 score levels of APE1. 

Data were categorized as follows: (i) score 0, no expression in tumor 
cells; (ii) score 1, faint/barely perceptible partial expression in < 10% 
of tumor cells; (iii) score 2, weak to moderate expression in > 10% of 
tumor cells; iv) score 3, strong expression in > 10% of tumor cells
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Fig. 7   Downregulation of miR-33a and miR-130b by APE1 affects 
Dicer1 protein expression. a Dicer1 protein levels in A549 cells 
silenced for APE1 or transiently transfected with the expression plas-
mid for the FLAG-tagged siRNA-resistant APE1 protein APE1WT. 
Representative western blotting analyses on A549 total cell extracts 
are shown. The endogenous (endo) and ectopic (ecto) form of the 
APE1 protein is visible. Actin was used as a loading control and 
for data normalization. The amount of Dicer1 protein normalized to 
siSCR is reported under each lane. b DICER1 mRNA levels evalu-
ated by qRT-PCR analysis in A549 cells silenced for APE1 or tran-
siently transfected with an expression plasmid for the FLAG-tagged 

siRNA-resistant APE1 protein APE1WT. Histograms report data using 
the ΔΔCT method with GAPDH as the reference. c, d, e DICER1 
mRNA expression levels were assessed by qRT-PCR and normalized 
with GAPDH in JHH-6 (c), HeLa cell clones (d) and CH12F3 (e) 
silenced for APE1 (see also Fig. S6). f, g A549 cells were transiently 
silenced for APE1 for 72 h and then transfected for 24 h with miR-
33a, miR-130b mimics or negative control (mimic NC). DICER1 
mRNA (f) and protein (g) expression levels were determined (see also 
Fig. S7). The amount of Dicer1 protein normalized to siSCR trasn-
fected with mimic negative control is reported under each lane. Statis-
tical significance is represented as *p < 0.05, **p < 0.01
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previous studies showed that miR-130b overexpression 
empowered cell motility by targeting DICER1 expression 
[69] and that miR-33a had a role in regulating key EMT fac-
tors [70]. Since all these miRNAs resulted down-regulated 
upon APE1 silencing, we first validated, in our samples, if 
this impairment could affect DICER1 expression at the pro-
tein (Fig. 7A) and mRNA (Fig. 7B) levels. As evident, APE1 
silencing resulted in the upregulation of both the protein and 
mRNA levels in accordance with the dysregulation of the 
above-mentioned miRNAs.

As APE1 depletion likely impaired miRNA process-
ing, we also tested if APE1 overexpression would give 
the opposite effect by transfecting the A549 cells with a 
plasmid encoding the APE1 FLAG-tagged protein. The 
absence of a statistically significant effect on the Dicer1 
protein and mRNA levels suggests that other proteins, 
in addition to APE1, may act as the rate-limiting factors 
(Fig. 7A, B). Additional experiments are required to estab-
lish the specific molecular mechanism involved.

Similar results on the expression of miR-33a, miR-
130b, miR-200c, and miR-218 were obtained in different 
lung cancer cell lines (SK-MES-1, H358, H3255) (data not 
shown) demonstrating the general validity of our findings. 
The evaluation of the impaired expression of DICER1 upon 
APE1 dysregulation (both silencing or overexpression) was 
confirmed in another lung cancer cell line, the H358 cell line 
(Fig. S6) and cancer cell lines of different origin, i.e., JHH-6 
(Fig. 7C), HeLa (Fig. 7D), as well as in non-cancer APE1-
KO mouse lymphocytes (CH12F3) [27] (Fig. 7E and Fig. 
S6), supporting the notion that a common regulatory mecha-
nism is possibly responsible for the regulation of the miRNA 

processing mechanism. Indeed, we found that among the 
five predicted miRNAs targeting DICER1, miR-33a resulted 
significantly dysregulated in all of the three tested cell lines 
(Fig. S6). Therefore, we concentrated on the APE1-miR-
33a-DICER1 axis for further analyses.

To better characterize the involvement of APE1 in 
DICER1 expression through the regulation of miR-33a, 
we transfected miR-33a mimics in A549 cells depleted of 
APE1. The miR-130b mimic was also transfected since this 
was the only miRNA for which there is clear published evi-
dence demonstrating its involvement in targeting DICER1 
expression [69]. Furthermore, a combination of both miRNA 
mimics was also tested. We found that consistently with our 
hypothesis, DICER1 mRNA levels (Fig. 7F) and, to a less 
extent, its protein levels (Fig. 7G) significantly decreased 
when miR-33a and miR-130b mimics were transfected, 
compared to those transfected with mimics negative controls 
(Fig. S7). Different kinetics in the turnover rates between 
the mRNA levels and the protein levels of DICER1 can 
explain the discrepancies observed between mRNA and 
protein results. Hence, we assumed that APE1 could control 
DICER1 expression levels through the regulation of miR-
33a and miR-130b.

Correlation of APE1 and DICER1 expression levels 
in cancer specimens

To confirm the association of APE1 and DICER1 in can-
cer progression, a cohort of a hundred tissue samples from 
chemotherapy- and radiotherapy-naïve patients diagnosed 
with colorectal cancer, glioblastoma, breast cancer, cervical 
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Fig. 8   Correlative expression of APE1 and DICER1 in human cancer 
specimens. Dicer1 protein expression was determined by IHC assay 
and the representative images are shown. Bar graph showing the per-
centage of each score level of Dicer1 in 0, 1, 2, and 3 score level of 
APE1. Data were categorized as follows: (i) score 0, no expression 

in tumor cells; (ii) score 1, faint/barely perceptible partial expression 
in < 10% of tumor cells; (iii) score 2, weak to moderate expression 
in > 10% of tumor cells; (iv) score 3, strong expression in > 10% of 
tumor cells
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cancer, and non-small cell lung cancer (NSCLC) were also 
tested for APE1 and Dicer1 protein expression by IHC, and 
representative images of APE1-high and -low examples 
for the five cancer types are shown in Fig. 8. The statis-
tical results of the IHC assay depict a trend showing that 
the tumor groups characterized by higher Dicer1 expres-
sion (IHC score = 2 or 3) showed also APE1 low expression 
(IHC score = 0 or 1), suggesting that APE1 and Dicer1 pro-
tein levels are inversely correlated (r = − 0.437, p < 0.0001) 
across the cohort.

Discussion

Experimental and clinical data have shown that altered bio-
genesis of miRNAs is a common feature of chemoresistance 
in several cancers, including lung carcinomas, thus limiting 
curative effects. Therefore, elucidating the molecular mecha-
nisms behind chemoresistance represents the primary chal-
lenge to improve the effectiveness of lung cancer treatments. 
Numerous research findings have shown that miRNAs are 
involved in drug resistance by targeting drug-resistance-
related genes and genes related to the cell cycle, cell prolif-
eration, and apoptosis [71].

Another mechanism contributing to drug resistance is 
represented by the alteration of the DNA damage repair 
capacity of tumors. Increased expression of DNA damage 
repair enzymes has been associated with cell resistance to 
DNA alkylating agents [72, 73]. In this context, the BER 
enzyme APE1 is considered a good predictive biomarker 
for lung cancer prognosis and treatment effect, since its 
overexpression is an important cause of poor chemothera-
peutic efficacy in NSCLC patients [18, 20, 21, 29]. APE1, 
besides being a key DNA repair enzyme, modulates through 
its redox function the activity of several transcription factors 
related to cancer progression and metastasis [23]. Recently, 
we also demonstrated that APE1 actively contributes to can-
cer progression by controlling gene expression through its 
direct processing activity of specific miRNAs [25].

In this study, we first applied high-throughput approaches 
to identify miRNAs differentially expressed upon APE1 
downregulation in the A549 cell line. Thirteen miRNAs 
were chosen as candidates for further analysis either for their 
potential prognostic value or due to their common dysregu-
lated expression in APE1-silenced HeLa cells: 11 miRNAs 
resulted down-regulated (miR-24, miR-183, miR-660, miR-
130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, 
miR-92b, and miR-33a), 2 were up-regulated (miR-4488 
and miR-1246). Survival analysis confirmed the prognostic 
value of the thirteen-miRNAs signature in LUAD patients 
and, furthermore, their altered expression was confirmed in 
human cancer specimens, thus supporting the prognostic 
value of our findings.

Functional enrichment analysis on validated targets of 
this signature releveled microRNAs pathway in cancer as 
one of the most predicted pathways affected by the thirteen 
DE-miRNAs. Among the validated targets, DICER1 was 
the node regulated by the highest number of DE-miRNAs 
(i.e., miR-33a, miR-92b, miR-130b, miR-200c, and miR-
218). Then, we focused our attention on the APE1-miR-33a-
DICER1 axis since miR-33a expression was down-regulated 
also in other cell lines depleted for the APE1 protein (i.e., 
HeLa, JHH-6 and mouse APE1-null cells) alongside with an 
upregulation of DICER1 expression, suggesting the presence 
of a conserved co-regulatory mechanism.

miR-33a, an intronic miRNA located within the sterol 
regulatory element-binding protein 2 (SREBP-2) gene, is 
found to be dysregulated in several human cancers including 
melanoma [74], breast [75], and osteosarcoma [76], in which 
it acts as a tumor suppressor. In lung cancer, its down-regu-
lation is predictive of a poor prognosis [77], as it is involved 
in EMT through the targeting of key pro-EMT genes [70, 
78]. Nevertheless, its clinical significance remained elusive 
since other findings demonstrated opposite effects, indicat-
ing a complex and context-dependent response. For exam-
ple, miR-33a is up-regulated in chemoresistant osteosarcoma 
[79] and, furthermore, its increased expression is a potential 
prognostic marker of HCC [80]. In the present study, we 
found a downregulation of miR-33a expression in the A549 
cell line upon APE1 depletion and a significant upregula-
tion in a cohort of NSCLC specimens, in which APE1 is 
overexpressed.

A global miRNAs dysregulation, matched by a defect in 
miRNAs production, has emerged as a hallmark of human 
cancer [65, 81]. Among the different mechanisms that can 
explain miRNAs deregulation, impairment of the miRNA 
processing machinery is attracting increasing interest in the 
field [82].

Here, we identified a global downregulation of miRNA 
expression upon APE1 silencing, in agreement with our 
previous observation [25] and, for the first time, we vali-
dated DICER1 as a direct functional target of miR-33a in the 
A549 cell line and confirmed a previous study showing that 
miR-130b directly targeted DICER1 3’UTRs [69]. DICER1 
belongs to the RNase III family of double-stranded RNase, 
representing a key enzyme controlling the maturation of 
miRNAs in the cytoplasm [83]. Altered DICER1 expres-
sion has been documented in various tumors, such as breast 
[84], ovarian [85], colorectal [86], and lung cancers [87]. In 
particular, low levels of DICER1 in lung cancer are known 
to correlate with a poor clinical outcome [88, 89]; whereas 
high DICER1 expression levels entailed a significantly better 
prognosis [90]. However, the reasons for DICER1 down-
regulation in cancers are not fully understood and repre-
sent an emerging open field. Several mechanisms have been 
described as underlying regulators of DICER1 reduced 
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expression, such as monoallelic loss [91] and transcrip-
tional and epigenetic regulation [92]. Our study suggests 
that the post-transcriptional regulatory mechanism medi-
ated by miRNAs can impinge DICER1 mRNA expression, 
as already shown for miR-107 [64]. Furthermore, DICER1 
depletion and, consequently, miRNAs down-regulation, have 
been shown to foster epithelial-to-mesenchymal transition 
(EMT) and promote higher metastatic potential [64, 65]. 
Interestingly, all of the five APE1 DE-miRNAs involved 
in DICER1 targeting (i.e., miR-33a, miR-130b, miR-92b, 
miR-200c, and miR-218) have been also implicated in EMT 
processing through the regulation of key modulators, such 
as the transcription factors ZEB1, ZEB2, TWIST or signal-
ing transduction pathways, implicated in EMT [79, 93–95]. 
In particular, a recent work demonstrated that overexpres-
sion of miR-130b promoted invasion and matrix metallopro-
teinase-2 (MMP-2) activity in A549 cells and, consistently 
with this, miR-130b expression was significantly increased 
in NSCLC clinical specimens from patients affected by 
vascular and lymphatic invasion [93]. Mounting evidence 
have also shown that EMT could be a mechanism rendering 
cell resistant to anti-cancer therapy. Likewise, the involve-
ment of miRNAs in the combined regulation of EMT and 
chemoresistance is tangible. Alongside, some studies have 
already highlighted the association of APE1 overexpression 
with increased EGFR-TKI-resistant cells due to epithelial-
to-mesenchymal transition mechanisms [20, 21]. However, 
nobody has ever linked this regulation to a possible involve-
ment of APE1 through its activity on miRNA expression. 
Here, we showed that APE1 up-regulation in lung cancer 
positively correlates with an increased expression of miR-
NAs that target DICER1, thus affecting EMT-driven meta-
static pathways. Moreover, this regulatory axis also involved 
genes associated with DNA damage and immune response. 
Interestingly, we confirmed the expression trends of eight 
EMT-related target genes also in TCGA-LUAD tumor sam-
ples, indicating that this regulatory network could indeed 
underline a likely contribution of APE1 in the regulation of 
miRNAs function in lung cancer progression, at different 
levels.

The detailed interplay between these regulatory pathways 
remains to be elucidated, as well as the molecular mecha-
nisms responsible for the observed specific activity of APE1 
on certain miRNAs. APE1-redox and -endonuclease inhibi-
tors (Fig. 3B) only partially explained the observed miR-
NAs dysregulation upon APE1 silencing. miRNAs biologi-
cal regulation is a complex process, typically involving an 
intricate network of regulatory loops. We recently charac-
terized the APE1 interactome finding several proteins asso-
ciated with miRNA binding and processing (e.g., NPM1, 
hnRNAPA2/B1, FUS, hnRNPD, hnRNPE1, etc.) that might 
explain APE1 indirect involvement in miRNA dysregulation. 

A preliminary network analysis was performed to elucidate 
this regulatory axis showing that significantly up-regulated 
APE1-interacting partners associated with a poor prognostic 
value were related to their DE-miRNA targets (Fig. S8).

The IHC analysis performed on a cohort of NSCLC 
patients, characterized by different expression levels of 
APE1, confirmed a good correlation existing in the expres-
sion of four (i.e., DICER1, TGM2, FLT1, and JAG) out of 
seven genes, hypothetically regulated by APE1 through 
specific miRNAs, except for CCN2, CDKN1A, and ADM. 
These data, while showing a limitation of our overall 
approach, are ascribable to the biological complexity of 
tumor development in vivo with respect to the mechanisms 
acting in in vitro cell cultures.

In summary, our results revealed another layer of gene 
regulation in the APE1-associated gene expression axis, 
which could provide a better understanding of the interac-
tion between mRNAs and miRNAs. Our results identify, 
for the first time, a crucial role for the miR-33a/miR-130b-
APE1-DICER1 axis in NSCLC progression. The work 
developed herein enabled us to evaluate APE1 contribu-
tion to lung cancer progression and metastasis, identifying 
candidate miRNAs, playing a pivotal role in these pro-
cesses. We acknowledge that our results represent a pre-
liminary hypothesis, which should be experimentally vali-
dated through additional in vivo studies. Our data suggest 
that modulating the expression levels of APE1 may affect 
miRNA expression and, therefore, clinical responses to 
anticancer drug treatments. We propose the use of APE1-
regulated miRNAs as novel prognostic biomarkers that 
could be potentially relevant to develop innovative RNA-
based drugs for targeting oncogenes, in multiple cancers, 
in combination with APE1 inhibitors. Further exploration 
of the recognized associations is expected to improve drug 
effectiveness and to identify interesting therapeutical com-
binations for precision medicine.
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