
Science of Computer Programming 221 (2022) 102842
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Computing (optimal) embeddings of directed bigraphs

Alessio Chiapperini a, Marino Miculan a,1, Marco Peressotti b,∗
a DMIF, University of Udine, Udine, Italy
b IMADA, University of Southern Denmark, Odense, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 January 2021
Received in revised form 7 July 2022
Accepted 11 July 2022
Available online 25 July 2022

Keywords:
Graph rewriting systems
Bigraphs
Weighted bigraphs
Integer linear programming

Bigraphs and bigraphical reactive systems are a well-known meta-model successfully used for 
formalizing a wide range of models and situations, such as process calculi, service oriented 
architectures, multi-agent systems, biological systems, etc. A key problem in the theory and 
the implementations of bigraphs is how to compute embeddings, i.e., structure-preserving 
mappings of a given bigraph (the pattern or guest) inside another (the target or host).
In this paper, we present an algorithm for computing embeddings for directed bigraphs, 
an extension of Milner’s bigraphs which take into account the request directions between 
controls and names. This algorithm solves the embedding problem by means of a reduction 
to a constraint satisfaction problem. We first prove soundness and completeness of this 
algorithm; then we present an implementation in jLibBig, a general Java library for 
manipulating bigraphical reactive systems. The effectiveness of this implementation is 
shown by several experimental results. Finally, we show that this algorithm can be readily 
adapted to find the optimal embeddings in a weighted variant of the embedding problem.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bigraphical Reactive Systems (BRSs) are a family of graph-based formalisms intended to be a meta-model for distributed, 
ubiquitous computing [26,33,36]. In this approach, system configurations are represented by bigraphs, data structures com-
posed by two orthogonal graphs, a place graph and a link graph, describing the locations and the logical connections of 
(possibly nested) components, respectively. The dynamics of a system is defined by means of graph rewriting rules, which can 
replace and change components’ positions and connections. Being a metamodel, BRSs provide a range of general results and 
tools which can be readily instantiated with the specific model under scrutiny: libraries for bigraph manipulation [4,34,35], 
simulation tools [17,30,32,44], graphical editors [16], model checkers [39], modular composition [38], etc. Indeed, BRSs have 
been successfully used to formalize a wide range of models and situations, including process calculi, context-aware systems, 
web-service orchestration languages, cyber-physical scenarios, biological systems, software architectures, and IoT systems 
[2,3,6–8,29,36,41,47–50].

In the wake of these results, for covering further aspects of distributed systems several extensions of original Milner’s 
bigraphs have been proposed. An example is bigraphs with sharing [43], which allow place graphs to be DAGs and not only 
trees. Another variant, which is the one we consider in this paper, is directed bigraphs [20,21], introduced to overcome the 

* Corresponding author.
E-mail addresses: marino.miculan@uniud.it (M. Miculan), peressotti@imada.sdu.dk (M. Peressotti).

1 Supported by Italian MIUR PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems).
https://doi.org/10.1016/j.scico.2022.102842
0167-6423/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2022.102842
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2022.102842&domain=pdf
https://bigraphs.github.io/jlibbig/
http://creativecommons.org/licenses/by/4.0/
mailto:marino.miculan@uniud.it
mailto:peressotti@imada.sdu.dk
https://doi.org/10.1016/j.scico.2022.102842
http://creativecommons.org/licenses/by/4.0/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 1. An example of directed bigraph and its place and link graphs [22].

fact that in original bigraphs links can go only from “inside” to “outside”: a component can connect to the surrounding 
environment, but it cannot access its subcomponents.2 Directed bigraphs instead allow for symmetric link graphs, thus con-
nections can go also “downward”, as shown in the example of Fig. 1. A possible intuition is that these links represent 
the access directions of components to resources or other components; in this view, in Fig. 1 node v2 accesses an exter-
nal resource provided by the surrounding environment (through z), an internal resource provided by some subcomponent 
(through r), and also v3 (in another location). As acknowledged by Milner in [36] “the mild extra complexity of directed 
bigraphs adds expressive power; indeed, the authors [of [20,21]] show how to encode the Fusion calculus of Parrow and 
Victor [37] which cannot be handled directly in bigraphs.” In fact, directed bigraphs have been used to provide models of 
security protocols [19], molecular biology [3], access control [22], multi-agent systems [31], container-based systems [7], etc.
Moreover, directed link graphs subsume also Sassone-Sobocinski’s “input-linear bigraphs” [42], and preserve and generalize 
the important properties of original bigraphs, such as the existence of RPOs [20].

Another key notion is that of bigraph embedding. Informally, an embedding is a structure-preserving map from a bigraph 
(called guest or pattern) to another one (called host or target), similar to subgraph isomorphism. Embeddings are required 
for the application of rewriting rules (i.e., for matching a rule’s redex inside an agent), but also for verifying properties 
on bigraphs in model-checking algorithms, for enforcing some well-formedness conditions over agents, etc. Despite the 
embedding problem is NP-complete in general [5], in most actual instances it turns out to be feasible. In fact, several 
algorithms have been proposed in literature for bigraphs with “traditional” link graphs; see e.g. [13,18,23,34,45,46].

In this work, we propose an algorithm for computing embedding of directed bigraphs. Rather than developing an ad 
hoc algorithm, we reduce the embedding problem to a constraint satisfaction problem (CSP). Our approach is modular, in the 
sense that we first solve the embedding of link graphs and of place graphs separately, with two different reductions (the 
former to a multi-flux problem, the latter to a bipartite matching). These two reductions produce two sets of constraints, 
which are then “glued” together by adding a small set of consistency constraints. This complete constraint set can be fed to 
a CSP solver, and from the solution(s) it provides we can reconstruct the sought embeddings.

This approach has many advantages. First, constraint satisfaction problems are well studied, and efficient solvers are 
available for many languages; for sake of definiteness in this paper we adopt Choco, a free open-source Java library for 
constraint programming [40], but in principle any modern CSP solver can be used. Second, since the embeddings of place 
and link graphs are reduced independently, we can easily port the algorithm to other versions of bigraphs by suitably 
adapting the corresponding part; e.g., we can specialize the algorithm to Milner’s bigraphs or to input-linear bigraphs 
by simplifying constraints on the link graph embedding, but also bigraphs with sharing could be accommodated. Third, 
the use of constraint programming allows us to readily adapt the algorithm to quantitative versions of the embedding 
problem, where we look for optimal solutions according to a given notion of embedding weight. This problem has important 
applications, e.g., when we have to choose which rewriting rule to apply depending on the weight of the part to be replaced. 
Finally, reducing embedding to a constraint satisfaction problem allows us to consider also approximate embeddings, i.e., 
where we admit solutions which may not satisfy all constraints, just by solving the very same constraints using approximate
CSP solvers [27].

The rest of the paper is structured as follows. In Section 2 we recall directed bigraphs and bigraphical reactive systems, 
slightly generalizing [7,20]. Then, the key notion of directed bigraph embedding is defined in Section 3. In Section 4 we 
present a reduction of the embedding problem for directed bigraphs to a constraint satisfaction problem (CSP) and show 
that it provides a sound and complete algorithm for computing embeddings. We have implemented this algorithm as an 
extension of jLibBig [35], a general Java library for BRSs; this implementation, with several experimental results, is reported 
in Section 5. In Section 6 we present a weighted version of the directed bigraph embedding problem, i.e., where embeddings 
are given a weight, and finding an embedding becomes an optimization problem; we show how our approach can be readily 
adapted to this case. In Section 7 we elaborate further this idea, by introducing two extensions of reactive systems over 

2 In pure bigraphs subcomponents can be connected by means of a mediating hyperedge, but this is not equivalent to a link going “inward”, as edges are 
not subject to the place graph hierarchy and thus can be always seen as part of the surrounding environment. In directed bigraphs the mediating edge is 
an unnecessary artifact and can be omitted.
2

https://bigraphs.github.io/jlibbig/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
(directed) bigraphs: on one side, reactive systems over weighted directed bigraphs, on the other weighted reactive systems over 
directed bigraphs—and finally, their combination. Some conclusions and directions for future work are drawn in Section 8.

The main differences with the conference version of the current work [10,11] are a substantial expansion of Section 2
with several examples and discussion, of Section 5 with more detailed examples, and the addition of the new Sections 6
and 7 about weighted directed bigraphs.

2. Reactive systems on directed bigraphs

In this section we introduce a conservative extension of the notions of directed link graphs and bigraphs, and directed 
bigraphical reactive systems, originally defined in [20,21].

2.1. Directed bigraphs

Definition 1 (Polarized interface). A polarized interface X is a pair (X−, X+), where X− and X+ , called downward and upward
interface respectively, are two finite disjoint sets of names.

Definition 2 (Polarized signature). A signature is a pair (K, ar), where K is the set of controls, and ar : K →N ×N is a map 
assigning to each control its polarized arity, that is, a pair 〈n, m〉 where n, m are the numbers of positive and negative ports 
of the control, respectively.

We define ar+, ar− : K →N as shorthand for the positive and negative ports of controls: ar+ � π1 ◦ ar, ar− � π2 ◦ ar.

The main difference between this definition and that from [20] is that we allow also for inward, here called “negative”, 
ports in controls, whereas in [20], like in [36], controls have only outward ports. This turns up also in the definition of 
points and handles in the definition of link graphs.

Definition 3 (Directed Link Graph). A directed link graph A : X → Y is a quadruple A = (V , E, ctrl, link) where V , E are the 
sets of vertexes and edges, X, Y are polarized interfaces and ctrl : V → K is map assigning controls to vertexes, while the 
link map is a function link : Pnt(A) → Lnk(A) where

Prt+(A) �
∑

v∈V ar+(ctrl(v)) Prt−(A) �
∑

v∈V ar−(ctrl(v))

Pnt(A) � X+ � Y − � Prt+(A) Lnk(A) � X− � Y + � E � Prt−(A)

such that link(Y −) ∩ Y + = ∅.
The elements of Pnt(A) and Lnk(A) are called the points and the handles of A, respectively.

The constraint on link in this definition forbids a downward name of the outer interface to be connected to an upward 
name of the same interface. This guarantees that composition of link graphs (along the correct interfaces) is well defined.

Graphically, directed link graphs are depicted like ordinary link graphs but arrows are drawn on links and edges are 
explicitly represented as (placeless) dots.

Inward (“negative”) ports add more flexibility to link graphs: an outward port of a node can be connected directly to 
an inner port of another node or even the same node (thus allowing also self-loops) without passing through an edge or 
a name. This mild extension enables us to represent more faithfully information like roles and asymmetric dependencies 
between entities in the model. Without directed links between nodes, a dependency would be represented by means of an 
extra node or edge, acting as a mediating proxy, as in the following example.

Example 4. Let us consider a bigraph signature for representing multi-tier client-server architectures, where clients can 
access web services and servers have access to some backend database management systems. Servers and DBMS have their 
own disk spaces. Moreover, server and clients share an access token (possibly known to other agents).

This situation can be modeled using a signature with four kinds of nodes: client : 〈2, 0〉, server : 〈3, 1〉, db : 〈1, 1〉, disk :
〈0, 1〉. The inward port of server nodes represents the services offered to clients; the inward port of db nodes represents 
the service offered to web servers, and the inward port of disk nodes represents the accessibility of these storage devices. 
An example is given in Fig. 2(a), where the directed link graph A : 〈∅, ∅〉 → 〈{S}, {K }〉 represents a three-tier architecture 
with two clients, one server and one DBMS, each equipped with a disk storage. The clients access the service provided by 
the server, and the server accesses the service provided by the DBMS. Clients and web server share a key K provided by 
the environment. The service is offered also to other clients via the outer name S .

The same situation is rendered as a “standard” (i.e., non directed) link graph B : ∅ → {S, K } in Fig. 2(b). In standard link 
graphs controls have only outward ports, and names in the outer interface cannot be connected to anything, but only be the 
target of the link map. So we have to add extra edges e1, e2, e3 to mediate between W S and H D1, D BM S and H D2, D BM S
and W S . These extra edges make these connections symmetric; hence we lose the difference between who provides the 
service and who uses it. Moreover, the direction of the name S had to be reversed, thus nullifying the difference between 
what is supplied to the environment (i.e., S) and what is provided by the environment (i.e., K ).
3



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 2. (a) A directed link graph A : 〈∅, ∅〉 → 〈{S}, {K }〉 representing two clients, one server and one DBMS (with their disk storages). (b) The same situation, 
rendered as a “standard” (i.e., pure, non directed) link graph B : ∅ → {S, K }.

Fig. 3. (a) A place graph F : 0 → 3. (b) A directed bigraph G : 〈0, 〈∅, ∅〉〉 → 〈3, 〈{S}, {K }〉〉 representing a server and a backend DBMS on the same location, 
each including its own storage, and two clients on two other locations. This bigraph is obtained by combining the place graph aside with the link graph in 
Figure 2(a).

The definition of place graph is the same as pure bigraphs; we report it here, for sake of completeness.

Definition 5 (Place Graph). A place graph F is a triple F = (V F , ctrlF , prntF ) : m → n where:

• m and n are finite ordinals representing respectively the inner and outer interfaces, they index the sites and roots of 
the place graph;

• V F ⊂ V is a finite set of nodes;
• ctrlF : V F →K is a control map assigning to each node a control belonging to signature K;
• prntF : m � V F → V F � n is a parent map which is acyclic, meaning that if prnti

F (v) = v for some v ∈ V F , then i = 0.

Directed bigraphs are composed by a directed link graph and a place graph (cf. Fig. 1).

Definition 6 (Directed Bigraph). An interface I = 〈m, X〉 is composed by a finite ordinal m, called the width, and by a directed 
interface X = (X−, X+).

Let I = 〈m, X〉 and O  = 〈n, Y 〉 be two interfaces; a directed bigraph with signature K from I to O is a tuple G =
(V , E, ctrl, prnt, link) : I → O where

• I and O are the inner and outer interfaces;
• V and E are the sets of nodes and edges;
• ctrl, prnt, link are the control, parent and link maps;

such that G L � (V , E, ctrl, link) : X → Y is a directed link graph and G P � (V , ctrl, prnt) : m → n is a place graph, that is, 
the map prnt : m � V → n � V is acyclic. The set of nodes and edges of G called support of G and is denoted by |G|. The 
bigraph G is denoted also as 〈G P , G L〉.

Example 7. Continuing Example 4, we can say that W S and D BM S belong to the same location, while C1, C2 belong to two 
other locations. Moreover, we can say that H D1 is an inner component of W S , and similarly H D2 should be an inner part 
of D BM S . This structure is represented by the place graph in Fig. 3(a). Combining this place graph with the directed link 
graph in Fig. 2(a), we obtain the directed bigraph G : 〈0, 〈∅, ∅〉〉 → 〈3, 〈{S}, {K }〉〉 in Fig. 3(b). Notice that in this bigraph, the 
links from W S to H D1 and from D BM S to H D2 go “down” with respect to the order given by the place graph, i.e., from 
outside to inside; this is the opposite direction of standard bigraphs, where the links can go only “upward”, i.e., from inside 
to outside.
4



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 4. (a) A Petri net, and (b) its representation as a directed bigraph.

We refer to [7] for a more elaborate application of directed bigraphs to the representation of processes, entities and 
components, especially in container-oriented architectures.

Example 8. In this example we sketch an encoding of Petri nets as directed bigraphs. The polarised signature has three 
controls: : 〈0, 0〉 for tokens, : 〈0, 2〉 for places, and a countable family of controls : 〈n, 0〉 for transitions. The basic idea 
is that a place is an entity (an object) where tokens can be stored, and offering two services (two methods): port 0 is for 
putting tokens in the place, port 1 is for retrieving tokens from the place. A transition connects to one or the other ports, 
depending whether it consumes or produces tokens on that place. Fig. 4 shows an example encoding for a simple Petri net 
as a directed bigraph.

Two bigraphs may have the same structure and differ only for the choice of the concrete names of their internal com-
ponents, i.e., by their support. Such bigraphs are called support-equivalent.

Definition 9. Two bigraphs G : I → O and G ′ : I → O are called support-equivalent if there is a bijection σ : |G ′| → |G|, called 
support translation that respects their structure in the sense that renaming the elements of the support of G according to σ
yields G ′ i.e., σ G = G ′ .

This notion is needed for defining bigraphical reactive systems in terms of rewritings as we will see in a few paragraphs 
Definition 15.

Directed bigraphs can be composed along matching interfaces.

Definition 10 (Composition and identities). The composition of two place graphs F : k → m and G : m → n, is defined in the 
same way as pure bigraphs (i.e., suitable grafting of forests).

If F : X → Y and G : Y → Z are two link graphs, their composition is the link graph G ◦ F � (V , E, ctrl, link) : X → Z
such that V = V F � V G , E = E F � EG , ctrl = ctrlF � ctrlG , and link : Pnt(G ◦ F ) → Lnk(G ◦ F ) is defined as follows:

Pnt(G ◦ F ) = X+ � Z− � Prt+(F ) � Prt+(G)

Lnk(G ◦ F ) = X− � Z+ � Prt−(F ) � Prt−(G) � E

link(p) �
{

prelink(p) if prelink(p) ∈ Lnk(G ◦ F )

link(prelink(p)) otherwise

where prelink : Pnt(G ◦ F ) � Y + � Y − → Lnk(G ◦ F ) � Y + is linkF � linkG .
The identity link graph at X is idX � (∅, ∅, ∅K, IdX−�X+ ) : X → X .
If F : I → J and G : J → K are two bigraphs, their composite is

G ◦ F � 〈G P ◦ F P , G L ◦ F L〉 : I → K

and the identity bigraph at I = 〈m, X〉 is 〈idm, idX−�X+〉.

Definition 11 (Juxtaposition). For place graphs, the juxtaposition of two interfaces m0 and m1 is m0 + m1; the unit is 0. If 
Fi = (V i, ctrli, prnti) : mi → ni are disjoint place graphs (with i = 0, 1), their juxtaposition is defined as for pure bigraphs.

For link graphs, the juxtaposition of two (directed) link graph interfaces X0 and X1 is (X−
0 � X−

1 , X+
0 � X+

1 ). If Fi =
(V i, Ei, ctrli, linki) : Xi → Yi are two link graphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � (V 0 � V 1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 ⊗ X1 → Y0 ⊗ Y1
5



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 5. Rewriting rule for a Petri net transition with n inputs and m outputs.

For bigraphs, the juxtaposition of two interfaces Ii = 〈mi, Xi〉 (with i = 0, 1) is 〈m0 + m1, (X−
0 � X−

1 , X+
0 � X+

1 )〉 (the unit 
is ε = 〈0, (∅, ∅)〉). If Fi : Ii → J i are two bigraphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � 〈F P
0 ⊗ F P

1 , F L
0 ⊗ F L

1〉 : I0 ⊗ I1 → J0 ⊗ J1.

Polarized interfaces and directed bigraphs over a given signature K form a monoidal category DBig(K).
Milner’s pure bigraphs [36] correspond precisely to directed bigraphs with positive interfaces only, and over signatures 

with only positive ports. On the other hand, one may wonder whether directed bigraphs can be obtained from pure ones. 
It turns out that, as pointed out by Debois [15], “directed bigraphs is the only variation of pure bigraphs which is not a 
sorting”. In fact, directed bigraphs as per [20] can be obtained as a traced category over the category of pure bigraphs; 
however, we cannot properly represent controls with negative ports, as those used in the present paper, using controls with 
positive ports only like in [20,36].

2.2. Reactive systems over directed bigraphs

In order to define reactive systems over bigraphs, we need to define how a parametric reaction rule (i.e., a pair of “redex-
reactum” bigraphs) can be instantiated. Essentially, in the application of the rule, the “sites” of the reactum must be filled 
with the parameters appearing in the redex. This relation can be expressed by specifying an instantiation map in the rule.

Definition 12. An instantiation map η : 〈m, X〉 → 〈m′, X ′〉 is a pair η = (ηP , ηL) where

• ηP : m′ → m is a function mapping sites of the reactum to sites of the redex; for each j ∈ m′ , it determines that the 
j-th site of the reactum is filled with the η( j)-th parameter of the redex.

• ηL :
(∑m′−1

i=0 X
)

→ X ′ is a wiring (i.e., a link graph without nodes nor edges), which is responsible for mapping 

names of the redex to names of the reactum. This can be described as a pair of functions ηL = (η+, η−) where 
η+ :

(∑m′−1
i=0 X+

)
→ X ′+ and η− : X ′− → ∑m′−1

j=0 X− .

We can now define the dynamics of directed bigraphs, starting with the formal definition of parametric reaction rules.

Definition 13 (Parametric reaction rule). A parametric reaction rule for bigraphs is a triple of the form (R : I → J , R ′ : I ′ →
J , η : I → I ′) where R is the parametric redex, R ′ the parametric reactum and η is an instantiation map.

Example 14. Continuing Example 8, the generic rewriting rule for a transition with n inputs and m outputs is given in 
Fig. 5. Notice that there is a (downward) name for each port of each place, in order to allow other transitions to access 
these places. There is such a rule for each n, m ∈ ω, yielding a countable set of rewriting rules. Of course, for a given Petri 
net, we can restrict to a finite set of rewriting rules, given by the transition with the largest number of connections.

We can now define the key notion of reactive systems over directed bigraphs, which is a generalization of that in [21,36]. 
Let Ag(K) be the set of agents (i.e., bigraphs with no inner names nor sites) over a signature K.

Definition 15. A reactive system over directed bigraphs (or simply bigraphical reactive systems) B R S(K, R) is defined by a 
signature K and a set R of parametric reaction rules. A reactive system B R S(K, R) induces a rewriting relation � ⊆
Ag(K) × Ag(K) according to the following rule:

(R, R ′, η) ∈ R A = C ◦ (σ R ⊗ IdZ ) ◦ ω ◦ (D0 ⊗ . . . ⊗ Dm−1)

A′ = C ◦ (σ ′R ′ ⊗ IdZ ) ◦ ω′ ◦ (DηP (0) ⊗ . . . ⊗ DηP (m′−1))

A � A′
(1)
6



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
where the support translations σ and σ ′ agree on |R| ∩ |R ′|, ω and ω′ (called wiring maps) are defined as follows:

ω :
m−1∑
i=0

Xi → X ⊕ Z ω′ :
m′−1∑

j=0

XηP ( j) → X ′ ⊕ Z

ω+ :
m−1∑
i=0

X+
i → X+ � Z+ ω′+ :

m′−1∑
j=0

X+
ηP ( j)

→ X ′+ � Z+

ω− : X− � Z− →
m−1∑
i=0

X−
i ω′− : X ′− � Z− →

m′−1∑
j=0

X−
ηP ( j)

ω′+( j, x)�
{
η+( j,ω+(η( j), x)) if ω+(ηP ( j), x) ∈ X+

ω+(ηP ( j), x) if ω+(η( j), x) ∈ Z+

ω′−(x) � ( j, y) for j ∈ ηP−1
(i) and (i, y) ∈ η−(x)

The difference with respect to the previous versions of BRS is that now links can descend from the redex (and reactum) 
into the parameters, as it is evident from the fact that redexes and reactums in rules may have generic inner interfaces (I
and I ′). This is very useful for representing a request flow which goes “downwards”, e.g. connecting a port of a control in 
the redex to a port of an inner component (think of, e.g., a linked library).

However, this poses some issues when the rules are not linear. If any of Di ’s are cancelled by the rewriting, the controls 
in it disappear as well, and we may be not able to connect some name descending from R or IdZ anymore. More formally, 
this means that the map ω− can be defined only if for every x ∈ (X ′− � Z−) there are j, y such that (ηP ( j), y) = η−(x). We 
can have two cases:

1. for some x, there are no such j, y. This means that ω is not defined and hence the rule cannot be applied.
2. for each x, there are one or more pairs ( j, y) such that (ηP ( j), y) = η−(x). This means that for a given source agent 

decomposition, there can be several ways to define ω− , each yielding a different application of the same rule.

Overall, the presence of downward names in parameters adds a new degree of non-determinism to Directed BRSs, with 
respect to previous versions of BRSs.

3. Directed bigraph embeddings

As we have seen in the previous section, to execute or simulate a BRS it is necessary to find the occurrences of a redex 
R within a given bigraph A. Definition 15 formalises the “finding the occurrences of a redex R in A” as a (directed) bigraph 
matching problem i.e., as the finding of a suitable decomposition of A. This presentation style is perhaps the most common 
in the literature of bigraphs and directed bigraphs and it allows for a succinct definition of rewriting. Højsgaard introduced 
in [24] the notion of bigraph embeddings as an alternative formulation of the occurrence problem, where occurrences of R in 
A are represented by suitable mappings from the components of R to those of A. As pointed out in [24], this formulation 
is more suitable for implementation since it contains enough information to subsume matches while dispensing from the 
cost of explicitly computing decomposition of the agent A into context, redex, and parameters. Indeed, the majority of the 
implementations of BRSs rely on embeddings in some form as they compute maps between concrete bigraphs [1,25,35,45]. 
In this section we extend the definition of embedding from [24] to the directed case with the notion of directed bigraph 
embedding.

Directed link graph Intuitively an embedding of link graphs is a structure preserving map from one link graph (the guest) 
to another (the host). This map contains a pair of injections: one for the nodes and one for the edges (i.e., a support 
translation). The remainder of the embedding map specifies how names of the inner and outer interfaces should be mapped 
into the host link graph. Outer names can be mapped to any link; here injectivity is not required since a context can alias 
outer names. Dually, inner names can be mapped to hyper-edges linking sets of points in the host link graph and such that 
every point is contained in at most one of these sets.

Definition 16 (Directed link graph embedding). Let G : XG → YG and H : XH → Y H be two directed link graphs. A directed 
link graph embedding φ : G ↪→ H is a map φ � φv � φe � φi � φo , assigning nodes, edges, inner and outer names with the 
following constraints:

(L1) φv : V G � V H and φe : EG � E H are injective;
(L2) ctrlG = ctrlH ◦ φv ;
7



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
(L3) φi : Y −
H � X+

H � P+
H ⇀ X+

G � Y −
G � P+

G is a partial function s.t.:

φi(x) �
{

φi−(x) if x ∈ Y −
H � P+

H

φi+(x) if x ∈ X+
H � P+

H

where
φi− : Y −

H � P+
H ⇀ Y −

G � P+
G

φi+ : X+
H � P+

H ⇀ X+
G � P+

G
dom(φi+) ∩ dom(φi−) = ∅

(L4) φo : X−
G � Y +

G ⇀ E H � X−
H � Y +

H � P−
H is a partial map s.t.:

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

where
φo− : X−

G ⇀ E H � X−
H � P−

H
φo+ : Y +

G ⇀ E H � Y +
H � P−

H

(L5a) img(φe) ∩ img(φo) = ∅;
(L5b) ∀v ∈ V G , ∀ j ∈ ar(ctrl(v)) . φi((φv(v), j)) = ⊥;
(L6a) φp ◦ link−1

G |EG = link−1
H ◦ φe;

(L6b) ∀v ∈ V G , ∀i ∈ ar(ctrl(v)) . φp ◦ link−1
G ((v, i)) = link−1

H ◦ φport((v, i));
(L7) ∀p ∈ dom(φi) : linkH (p) = (φo � φe)(linkG ◦ φi(p)).

where φp � φi+ � φo− � φport and φport : P G � P H is φport(v, i) � (φv(v), i).

The first three conditions are on the single sub-maps of the embedding. Conditions (L5a) and (L5b) ensure that no 
components (except for outer names) are identified; condition (L6a) imposes that points connected by the image of an edge 
are all covered. Finally, conditions (L2), (L6b) and (L7) ensure that the guest structure (i.e. node controls and point linkings) 
is preserved.

Place graph Like link graph embeddings, place graph embeddings are structure preserving, injective maps from nodes to-
gether with maps for the inner and outer interfaces. In particular, a site is mapped to the set of sites and nodes that are 
“put under it” and a root is mapped to the host root or node that is “put over it” splitting the host place graphs in three 
parts: the guest image, the context and the parameter (which are above and below the guest image).

Definition 17 (Place graph embedding [24, Def 7.5.4]). Let G : nG → mG and H : nH → mH be two place graphs. A place graph 
embedding φ : G ↪→ H is a map φ � φv � φs � φr (assigning nodes, sites and roots respectively) such that:

(P1) φv : V G � V H is injective;
(P2) φs : nG � ℘(nH � V H ) is fully injective;
(P3) φr : mG → V H � mH in an arbitrary map;
(P4) img(φv) ∩ img(φr) = ∅ and img(φv) ∩ ⋃

img(φs) = ∅;
(P5) ∀r ∈ mG : ∀s ∈ nG : prnt∗H ◦ φr(r) ∩ φs(s) = ∅;

(P6) φc ◦ prnt−1
G

∣∣∣
V G

= prnt−1
H ◦ φv;

(P7) ctrlG = ctrl H ◦ φv;
(P8) ∀c ∈ nG � V G : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prnt H (c′);

where prnt∗H (c) = ⋃
i<ω prnt i(c), φf � φv � φr , and φc � φv � φs .

These conditions follow the structure of Definition 16, the main difference is (P5) which states that the image of a root 
cannot be the descendant of the image of another. Conditions (P1), (P2) and (P3) are on the three sub-maps composing the 
embedding; (P4) and (P5) ensure that no components are identified; (P6) imposes surjectivity on children and the last two 
conditions require the guest structure to be preserved by the embedding.

Directed bigraph Finally, a directed bigraph embedding can be defined as a pair composed by a directed link graph em-
bedding and a place graph embedding, with a consistent interplay of these two structures. The interplay is captured by 
two additional conditions ensuring that points (resp. handles) in the image of guest upward (resp. downward) inner names 
reside in some parameter defined by the place graph embedding (i.e. descends from the image of a site).

Definition 18 (Directed bigraph embedding). Let G : 〈nG , XG〉 → 〈mG , YG〉 and H : 〈nH , XH 〉 → 〈mH , Y H 〉 be two directed bi-
graphs. A directed bigraph embedding is a map φ : G ↪→ H given by a place graph embedding φ P : G P ↪→ H P and a link 
graph embedding φL : G L ↪→ H L subject to the following constraints:

(B1) dom(φi+ ) ⊆ X+
H � {(v, i)∈P+

H | ∃s ∈ nG , k ∈N : prntk
H (v) ∈ φs(s)};

(B2) img(φo−
) ⊆ X− � {(v, i)∈P− | ∃s ∈ nG , k ∈N : prntk (v) ∈ φs(s)}.
H H H

8



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 6. Schema of the multi-flux network encoding.

4. Implementing the embedding problem in CSP

In this Section we present a constraint satisfaction problem that models the directed bigraph embedding problem. The 
encoding is based solely on integer linear constraints and is proven to be sound and complete.

Initially, we present the encoding for the directed link graph embedding problem and for the place graph embedding 
problem. Then we combine them providing some additional “gluing constraints” to ensure the consistency of the two sub-
problems. The resulting encoding contains 37 constraint families (reflecting the complexity of the problem definition, see 
Section 3); hence we take advantage of the orthogonality of link and place structures for the sake of both exposition and 
adequacy proofs. We remark that the overall number of variables and constraints produced by the encoding is guaranteed 
to be polynomially bounded with respect to the size of the involved bigraphs, i.e., the number of nodes and edges.

4.1. Directed link graphs

Let us fix the guest and host bigraphs G : XG → YG and H : XH → Y H . We characterize the embeddings of G into H
as the solutions of a suitable multi-flux problem which we denote as DLGE[G, H]. The main idea is to see the host points 
(i.e. positive ports, upward inner names and downward outer names) as sources, and the handles (i.e. edges, negative ports, 
upward outer names and downward inner names) as sinks (see Fig. 6). Each point outputs a flux unit and each handle 
inputs one unit for each point it links. Units flow towards each point handle following H edges and optionally taking a 
“detour” along the linking structure of the guest G (provided that some conditions about structure preservation are met). 
The formal definition of the flux problem is in Fig. 7.

The flux network reflects the linking structure and contains an edge connecting each point to its handle; these edges have 
an integer capacity limited to 1 and are represented by the variables defined in (3). The remaining edges of the network are 
organised in two complete biparted graphs: one between guest and host handles and one between guest and host points. 
Edges of the first sub-network are described by the variables in (2) and their capacity is bounded by the number of points 
linked by the host handle since this is the maximum acceptable flux and corresponds to the case where each point passes 
through the same hyper-edge of the guest link graph. Edges of the second sub-network are described by the variables in (4)
and, like the first group of links, have their capacity limited to 1; to be precise, some of these variables will never assume 
a value different from 0 because guest points can receive flux from anything but the host ports (as expressed by constraint 
(10)). Edges for the link structure of the guest are presented implicitly in the flux preservation constraints (see constraint 
(8)). In order to fulfil the injectivity conditions of link embeddings, some additional flux variables (whereas the previous 
variables are network variables) are defined by (5). These are used to keep track and separate each flux on the bases of the 
points handle.

The constraint families (6) and (7) define the outgoing and ingoing flux of host points and handles respectively. The 
points have to send exactly one unit considering every edge they are involved with and the handles receive one unit for 
each of their point regardless if this unit comes from the point directly or from a handle of the guest.

The linking structure of the guest graph is encoded by the constraint family (8) which states that flux is preserved while 
passing through the guest i.e. the output of each handle has to match the overall input of the points it connects.

Constraints (9), (10), (19), (20), (21) and (22) shape the flux in the sub-network linking guest and host points. Specifically, 
(9) requires that each point from the guest receives at most one unit; this is needed when we want to be able to embed 
a redex where some points (e.g. upward inner names) would not match with an entity of the agent and (those points) 
would be deleted anyway when composing the resulting agent back. Constraints (10), (19) and (20) disable edges between 
guest ports and host inner names, between mismatching ports of matching nodes and between ports of mismatching nodes. 
Constraint (22) ensures that ascending inner names or descending outer names of the redex are not matched with positive 
9



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Nh,h′ ∈ {0, . . . , |link−1
H (h′)|} h ∈ EG � Y +

G � X−
G � P−

G , h′ ∈ E H � Y +
H � X−

H � P−
H (2)

Np,h′ ∈ {0,1} h′ ∈ E H � Y +
H � X−

H � P−
H , p ∈ link−1

H (h′) (3)

Np,p′ ∈ {0,1} p′ ∈ X+
G � P+

G � Y −
G , p ∈ X+

H � P+
H � Y −

H (4)

Fh,h′ ∈ {0,1} h ∈ EG � Y +
G � X−

G � P−
G , h′ ∈ E H � Y +

H � X−
H � P−

H (5)∑
k

Np,k = 1 p ∈ X+
H � P+

H � Y −
H (6)

∑
k

Nk,h = |link−1
H (h)| h ∈ E H � Y +

H � X−
H � P−

H (7)

∑
k

Nh,k =
∑

p∈link−1
G (h)

∑
k

Nk,p h ∈ EG � Y +
G � X−

G � P−
G (8)

∑
k

Nk,p ≤ 1 p ∈ X+
G � P+

G � Y −
G (9)

Np,p′ = 0 p′ ∈ P+
G , p ∈ X+

H � Y −
H (10)

Nh,h′

|link−1
H (h′)| ≤ Fh,h′ ≤ Nh,h′ h ∈ EG � Y +

G � X−
G � P−

G , h′ ∈ E H � Y +
H � X−

H � P−
H , link−1

G (h) �=∅, link−1
H (h′) �= ∅ (11)

Np,p′ ≤ Fh,h′ h ∈ EG � Y +
G � X−

G � P−
G , h′ ∈ E H � Y +

H � X−
H � P−

H , p ∈ link−1
G (h), p′ ∈ link−1

H (h′) (12)

Fh,h′ ≤
∑

p∈link−1
G (h)

p′∈link−1
H (h′)

Np,p′ h ∈ EG � Y +
G � X−

G � P−
G , h′ ∈ E H � Y +

H � X−
H � P−

H , link−1
G (h) �=∅, link−1

H (h′) �= ∅ (13)

∑
k

Fh,k = 1 h ∈ EG � Y +
G � X−

G � P−
G (14)

Np,h′ + Fh,h′ ≤ 1 h ∈ EG , h′ ∈ E H � Y +
H � X−

H � P−
H , p ∈ link−1

H (h′) (15)

Fh,h′ + Fh′′,h′ + Fh′′′,h′ + Fh′ v ,h′ ≤ 1 h ∈ EG , h′ ∈ Y +
H � X−

H � P−
H , h′′ ∈ Y +

G , h′′′ ∈ X−
G , h′ v ∈ P−

G (16)

Fh,h′ = 0 h ∈ EG , h′ ∈ Y +
H � X−

H � P−
H (17)

Fh,h′ ≤ 1 h ∈ EG � Y +
G � X−

G � P−
G , h′ ∈ E H (18)

Np,p′ = 0 v ∈ V G , v ′ ∈ V H , ctrlG (v) = ctrlH (v) = c, i �= i′ ≤ c, p = (v, i) ∈ P+
G � P−

G ,
p′ = (v ′, i′) ∈ P+

H � P−
H

(19)

Np,p′ = 0 v ∈ V G , v ′ ∈ V H , ctrlG (v) �= ctrlH (v), p = (v, i) ∈ P+
G � P−

G , p′ = (v ′, i′) ∈ P+
H � P−

H (20)∑
j≤c

N(v, j),(v ′, j) = c · Np,p′ v ∈ V G , v ′ ∈ V H , ctrlG (v) = ctrlH (v) = c, i ≤ c, p = (v, i) ∈ P+
G � P−

G , p′ = (v ′, i′) ∈ P+
H � P−

H (21)

Np,p′ = 0 p ∈ P+
H , p′ ∈ X+

G � Y −
G (22)

Fig. 7. Constraints of DLGE[G, H ].

ports of the agent. Finally, the flux of ports of the same node has to act compactly, as expressed by (21): if there is flux 
between the i-th ports of two nodes, then there should be flux between every other ports.

Constraints (11), (12) and (13) relate flux and network variables ensuring that the formers assume a true value if, and 
only, if there is actual flux between the corresponding guest and host handles. In particular, (12) propagates the information 
about the absence of flux between handles disabling the sub-network linking handles points and, vice versa, (13) propagates 
the information in the other way disabling flux between handles if there is no flux between their points.

The remaining constraints prevent fluxes from mixing. Constraint (14) requires guest handles to send their output to 
exactly one destination thus rendering the sub-network between handles a function assigning guest handles to host handles. 
This mapping is subject to some additional conditions when edges are involved: (17) and (18) ensure that the edges are 
injectively mapped to edges only, (16) forbids host outer names to receive flux from an edge and an outer name at the 
same time. Finally, (15) states that the output of host points cannot bypass the guest if there is flux between its handle and 
an edge from the guest.

Adequacy Let �N be a solution of DLGE[G, H]. The corresponding link graph embedding φ : G ↪→ H is defined as follows:

φv(v)� v ′ ∈ V H if ∃i : N(v,i),(v ′,i) = 1 φe(e) � e′ ∈ E H if Fe,e′ = 1

φi(x) �
{

φi−(x) if x ∈ Y −
H � P+

H

φi+(x) if x ∈ X+
H � P+

H

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

10



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
where

φo−
(y) � y′ ∈ X−

H � P−
H if F y,y′ = 1 φo+

(y) � y′ ∈ Y +
H � P−

H if F y,y′ = 1,

φi−(x) � x′ ∈ Y −
G � P+

G if Nx,x′ = 1, φi+(x) � x′ ∈ X+
G � P+

G if Nx,x′ = 1

and dom(φi+) ∩ dom(φi−) = ∅.

It is easy to check that these components of φ are well-defined and compliant with Definition 16.
On the other way around, let φ : G ↪→ H be a link graph embedding. The corresponding solution �N of DLG E[G, H] is 

defined as follows:

Np,p′ �

⎧⎪⎨
⎪⎩

1 if p ∈ X+
H � Y −

H ∧ p′ = φi(p)

1 if p′ = (v, i) ∈ P+
G ∧ p = (φv(v), i)

0 otherwise

Np,h′ �
{

1 if h′ = linkH (p) ∧ �p′ : Np,p′ = 1

0 otherwise

Nh,h′ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if h′ ∈ E H ∧ h ∈ EG ∧ h′ = φe(h)

1 if h′ ∈ Y +
H � X−

H ∧ h ∈ Y +
G � X−

G ∧ h′ = φo(h)

1 if h = (v, i) ∈ P−
G ∧ h′ = (φv(v), i)

0 otherwise

Fh,h′ = 1
�⇐=⇒ Nh,h′ �= 0

Every constraint of DLG E[G, H] is satisfied by the solution just defined.
The constraint satisfaction problem in Fig. 7 is sound and complete with respect to the directed link graph embedding 

problem given in Definition 16.

Proposition 19 (Adequacy of DLGE). For any two concrete directed link graphs G and H, there is a bijective correspondence between 
the directed link graph embeddings of G into H and the solutions of DLGE[G, H].

4.2. Place graphs

Let us fix the guest and host place graphs: G : nG → mG and H : nH → mH . We characterize the embeddings of G into 
H as the solutions of the constraint satisfaction problem in Fig. 8. The problem is a direct encoding of Definition 17 as a 
matching problem presented, as usual, as a bipartite graph. Sites, nodes and roots of the two place graphs are represented 
as nodes and partitioned into the guest and the host ones. For convenience of exposition, the graph is complete.

Edges are modelled by the boolean variables defined in (23); these are the only variables used by the problem. So far, a 
solution is nothing more than a relation between the components of guest and host containing only those pairs connected 
by an edge assigned a non-zero value. To capture exactly those assignments that are actual place graph embeddings some 
conditions have to be imposed.

Constraints (24) and (25) prevent roots and sites from the host to be matched with nodes or sites and nodes or roots 
respectively. (26) disables matching between nodes decorated with different controls. Constraint (27) prevents any matching 
for host nodes under a passive context (i.e. have an ancestor labelled with a passive control). (28) propagates the matching 
along the parent map from children to parents. Constraints (29) and (30) ensure that the matching is a function when 
restricted to guest nodes and roots (the codomain restriction follows by (24) and (25)). (31) says that if a node from the 
host cannot be matched with a root or a node/site from the guest at the same time; moreover, if the host node is matched 
with a node then it cannot be matched to anything else.

The remaining constraints are the counterpart of (28) and propagate matchings from parents to children. (32) applies to 
matchings between nodes and says that if parents are matched, then children from the host node are covered by children 
from the guest node. In particular, the matching is a perfect assignment when restricted to guest children that are nodes 
(because of (31)) and is a surjection on those that are sites. (33) imposes a similar condition on matchings between guest 
roots and host nodes. Specifically, it says that the matching has to cover child nodes from the guest (moreover, it is injective 
on them) leaving child sites to match whatever remains ranging from nothing to all unmatched children. Finally, (34)
prevents matching from occurring inside a parameter.

Adequacy Let �M be a solution of PGE[G, H]. The corresponding place graph embedding φ : G ↪→ H is defined as follows:

φv(g) � h ∈ V H if ∃i : Mh,g = 1 φs(g) � {h ∈ nh � V H | Mh,g = 1} φr(g) � h ∈ mH � V H if Mh,g = 1
11



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Mh,g ∈ {0,1} g ∈ nG � V G � mG , h ∈ nH � V H � mH (23)

Mh,g = 0 g ∈ nG � V G , h ∈ mH (24)

Mh,g = 0 g ∈ V G � mG , h ∈ nH (25)

Mh,g = 0 g ∈ V G , h ∈ V H , ctrlG (g) �= ctrl H (h) (26)

Mh,g = 0 g ∈ mG , h /∈ mH , v ∈ prnt∗H (h) ∩ V G , ctrlG (v) /∈ �a (27)

Mh,g ≤ Mh′,g′ g /∈ mG , g′ ∈ prntG (g), h /∈ mH , h′ ∈ prnt H (h) (28)∑
h∈V H �mH

Mh,g = 1 g ∈ mG (29)

∑
h∈nH �V H

Mh,g = 1 g ∈ V G (30)

mG ·
∑

g∈nG �V G

Mh,g +
∑

g∈mG

Mh,g ≤ mG h ∈ V H (31)

|prnt−1
H (h)| · Mh,g ≤

∑
h′∈prnt−1

H (h),

g′∈prnt−1
G (g)

Mh′,g′ g ∈ V G , h ∈ V H (32)

|prnt−1
G (g) \ nG | · Mh,g ≤

∑
h′∈prnt−1

H (h)\nh ,

g′∈prnt−1
G (g)\ng

Mh′,g′ g ∈ mG , h ∈ V H (33)

Mh,g +
∑

h′∈prnt∗H (h),g′∈mG

Mh′,g′ ≤ 1 g ∈ V G , h ∈ V H (34)

Fig. 8. Constraints of PGE[G, H ].

These components of φ are well-defined and compliant with Definition 17.
On the opposite direction, let φ : G ↪→ H be a place graph embedding. The corresponding solution �M of PGE[G, H] is 

defined as follows.

Mh,g �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if g ∈ V G ∧ h = φv(g)

1 if g ∈ mG ∧ h = φr(g)

1 if g ∈ nG ∧ h ∈ φs(g)

0 otherwise

It is easy to check that every constraint of PGE[G, H] is satisfied by this solution. Hence, the constraint satisfaction problem 
in Fig. 8 is sound and complete with respect to the place graph embedding problem (Definition 17).

Proposition 20 (Adequacy of PGE). For any two concrete place graphs G and H, there is a bijective correspondence between the place 
graph embeddings of G into H and the solutions of PGE[G, H].

4.3. Bigraphs

Let G : 〈nG , XG 〉 → 〈mG , YG〉 and H : 〈nH , XH 〉 → 〈mH , Y H 〉 be two bigraphs. By taking advantage of the orthogonality of 
the link and place structures we can define the constraint satisfaction problem capturing bigraph embeddings by simply 
composing the constraints given above for the link and place graph embeddings and by adding four consistency constraints 
to relate the solutions of the two problems. These additional constraint families are reported in Fig. 9. The families (35)
and (36) ensure that solutions for DLGE[G, H] and PGE[G, H] agree on nodes since the map φv has to be shared by the 
corresponding link and place embeddings. The families (37) and (38) respectively, ensure that positive ports (negative ports 
resp.) are in the same image as upward inner names (downward inner names resp.) only if their node is part of the 
parameter i.e. only if it is matched to a site from the guest or it descends from a node that is so.

Conditions (37) and (38) correspond exactly to (B1) and (B2). It thus follows from Propositions 19 and 20 that the CSP 
defined by Figs. 7 to 9 is sound and complete with respect to the bigraph embedding problem given in Definition 18.

Theorem 21 (Adequacy of DBGE). For any two concrete bigraphs G and H, there is a bijective correspondence between the bigraph 
embeddings of G into H and the solutions of DBGE[G, H].
12



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Mv,v ′ = Np,p′ v ∈ V H , v ′ ∈ V G , p = (v,k) ∈ P+
H , p′ = (v ′,k) ∈ P+

G (35)

Mv,v ′ = Fh,h′ v ∈ V H , v ′ ∈ V G , h ∈ P−
G , h′ ∈ P−

H (36)∑
p′∈X+

G

Np,p′ ≤
∑

h∈prnt∗H (v)
g∈nG

Mh,g v ∈ V H , p = (v,k) ∈ P+
H (37)

∑
h∈X−

G

Fh,h′ ≤
∑

h∈prnt∗H (v)
g∈nG

Mh,g v ∈ V H , h′ = (v,k) ∈ P−
H (38)

Fig. 9. Constraints of DBGE[G, H ].

Fig. 10. Rewriting rule for the test cases (top) and an example of its application (bottom) where the embedding of the redex and the instantiation of the 
reactum to replace it are highlighted.

5. Experimental results

The reduction algorithm presented in the previous section has been successfully integrated into jLibBig, an extensible 
Java library for manipulating bigraphs and bigraphical reactive systems which can be used for implementing a wide range 
of tools and can be adapted to support several extensions of bigraphs [35]. The proposed algorithm is implemented by 
extending the data structures and the models for pure bigraphs to suit our definition of directed bigraphs.

In this section we test our implementation by simulating a system in which we want to track the position and the 
movements of a fleet of vehicles inside a territory divided in “zones”, which are accessible via “roads”. The rewriting rule 
and an example agent can be found in Fig. 10.

We consider two main application scenarios:

1. in the first, all possible reactions are explored;
2. in the second, only one reaction is explored.

We evaluate the running time of the different components of our algorithm: model construction, CSP resolution, building 
of the actual embedding and execution of the rewriting rule. Moreover, we want to evaluate how these performances 
13

https://bigraphs.github.io/jlibbig/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
scale while increasing the size of the agent. The parameters used to build the tests are: number of zones, number of cars 
and “connectivity degree”. The latter is a number between 1 and 100 representing the probability of the existence of a 
connection, where 100 means that every node is connected to all its neighbours.

We consider the following kinds of tests:

1. varying number of cars, with fixed number of zones and connectivity degree;
2. varying number of zones, with fixed number of cars and connectivity degree;
3. varying connectivity degree, with fixed numbers of zones and cars.

Each test case is made up of four groups of instances, where for each group we choose an increasing value for their fixed 
parameters. For each group we choose ten values for its variable parameter. The instances generation works as follows: for 
each test case and for each group of that particular test case we generate ten random instances for each combination of 
the values of the fixed parameters and the variable parameter. We then take the average of the running times of those 
ten random instances. At the end of the process, for each group we have tested 100 instances, 10 for each value of the 
variable parameter, so 400 instances for each test case and 1200 in total. To avoid the JVM warm-up effect (class loading, 
bytecode interpretation) and attain a realistic condition for the heap, we perform ten additional instances of each case. 
Measurements are taken by instrumenting jLibBig and using millisecond precision. All tests have been performed on an 
Intel Core i7-4710HQ (4 cores at 3.5GHz), 8 GB of RAM running on ArchLinux with kernel 5.5.2 and using OpenJDK 12; 
jLibBig v0.0.4 with Choco v4.10 as the underlying solver. Although the CPU used in the experiments is multicore, all steps 
under test (model construction, resolution, embedding, and rewriting) are sequential. Results for all tests are reported in 
Appendix A, Figs. A.16–A.24. The code for generating and running the experiment instances is available at [12].

Overall, we observe that of the four test phases, searching for a solution to the model and translating a solution into the 
structures used by jLibBig to represent an embedding are the most costly (cf. Fig. 11). The remaining two phases, namely, 
setting up the solver and applying a rewriting rule given the embedding, are negligible. While the cost of translating a 
solution into an embedding is essentially constant for instances of the same size (cf. Figs. 11b and 11c), the cost of finding 
the solutions reduces drastically after the first one (cf. Fig. 11d). All these observations are within our expectations.

In the remainder of this section, we review the results obtained in each kind of test.

Time vs. number of cars In this case we evaluate how our implementation scales with an increasing number of cars; see 
Fig. 11. We can observe that the total execution time increases linearly following to the number of solutions. In fact, the 
average execution time per solution is constant. We can also see that the two phases that contribute the most to the total 
running time are the solving phase of the CSP and the phase in which the embedding is built from the solution of the CSP. 
On the other hand, the building and rewriting phases are executed nearly instantly. We observe that the time needed to 
build the CSP is almost constant, while the rewriting time scales almost linearly as well.

Time vs. number of zones In this case we evaluate how our implementation scales with an increasing number of zones; see 
Fig. 12. We can see that the running time grows exponentially compared to the size of the network, especially the resolution 
time. Similarly to the previous test case, the time spent building the CSP and applying the reaction rule is negligible even 
though we can see that the time necessary to build the CSP increases linearly with the grid size. We can also observe that 
there is no correlation between the rewriting time and the number of zones.

Time vs. connectivity degree In this case we evaluate how our implementation scales with an increasing connectivity degree; 
see Fig. 13. We can see that the running time scales exponentially, no matter the grid size or the number of cars. Differently 
from the previous cases, time is mainly consumed translating a solution into an embedding as shown by the breakdown 
of the average time per solution the translation in Fig. 13c. Once again, we see that although increasing, the time spent 
building the model and applying the rewriting rule is negligible.

6. Optimal directed embeddings

In this section we consider the optimisation problem for a quantitative variant of bigraph embedding, and show that our 
algorithm can be readily adapted to this setting.

Let us fix a semiring of weights W . Given a guest G and a host H , one could consider a function assigning a value 
in W to each embedding of G into H ; then, we can formulate an optimisation analogue of the embedding problem by 
looking for solutions of minimal (resp. maximal) weight. This problem has important applications; e.g., one can model 
reconfigurations of a system architecture by means of bigraphical rewritings [7], then the optimal embedding would be the 
one which minimizes the total cost of the components to be refactored. As another example, one could adapt the use case 
from Section 5 to penalise roads with pay tolls or heavy traffic.

In our approach, we can readily reduce the optimal bigraph embedding problem to a (linear) constraint optimisation 
problem using the same model introduced in Section 4. To this end, we need to refine the notion of weighting function to 
meet the linearity requirement.
14

https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 11. Execution time (ms) vs. number of cars, 11x11 grid with 100% connectivity (time values are in milliseconds).

Given bigraphs G and H , we call W -weighting for (G ↪→ H) any function χ that can be decomposed as functions with 
the following types:

χ v : V G × V H → W

χ s : nG × (nH � V H ) → W

χ r : mG × (V H � mH ) → W

χe : EG × E H → W
15



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 12. Execution time (ms) vs. grid size, 70 cars and 100% connectivity (values are in milliseconds).

χ i : (Y −
H � X+

H � P+
H ) × (Y −

G � X+
G � P+

G ) → W

χo : (X−
G � Y +

G ) × (E H � X−
H � Y +

H � P−
H ) → W

The function χ can be seen as a biparted graph whose edges are labelled in W and connect elements of G to elements of 
H coherently with the domains and codomains of the maps that define embeddings of G into H (e.g., there are no edges
16



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 13. Execution time (ms) vs. connectivity, 11x11 grid and 70 cars (values are in milliseconds).

between a node and an outer name). Given a weighting χ for G and H and an embedding φ : G ↪→ H , we can assign a 
weight χ • φ to φ by laying the graph of φ over that of χ and taking the sum of the weights on its edges. Formally:

χ • φ �
∑

v∈V G

χ v(v, φv(v)) +
∑
s∈nG

∑
p∈φs(s)

χ s(s, p) +
∑

r∈mG

∑
p∈φr(r)

χ r(r, p) +
∑

e∈EG

χe(e, φe(e))+

+
∑

i∈Y −
H �X+

H �P+
H

χ i(i, φ i(i)) +
∑

o∈Y −
G �X+

G

χo(o, φo(o))

The assignment φ �→ χ • φ defines a function from the set of embeddings (G ↪→ H) to W .
17



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 14. A Petri net as directed graph (left) and as a weighted directed graph (right).

Weighted embeddings allow us to assign weights to different occurrences of the redex of a parametric reaction rule. As 
suggested above, we can use this information to weight reactions and refine a DBRS to its subsystem with optimal reactions. 
Another application is to extend the notion of DBRS from a nondeterministic to a quantitative semantics by replacing the 
reaction relation with a weighted one—we develop this direction in the next section.

Computing optimal embeddings Let S be the set of all assignments for the binary variables of DBGE[G, H]. Given an assign-
ment ( �N, �F , �M) ∈ S , we can assign a weight χ • ( �N, �F , �M) to it by reading it as a graph, laying it over the graph of χ and 
taking the sum of the weights on its edges. Formally:

χ • ( �N, �F , �M)�
∑
p,l

χ(p, l) · Np,l +
∑
h,h′

χ(h,h′) · Fh,h′ +
∑
g,h

χ(g,h) · Mg,h (39)

Proposition 22. Let S be the set of all assignments for the binary variables of DBGE[G, H]. Any multi-linear map from S to W is 
induced by a W -weighting for G and H.

It follows that an instance of the optimal embedding problem can be solved using our algorithm whenever the cost 
function is induced by some W -weighting.

The library jLibBig already offers experimental support for optimal weighted embeddings using Java integers as weights—
other types can be easily added provided they are supported by the underlying solver. In practice, weights are defined as a 
function of data attached to the components of the guest and host bigraphs (called attached properties, in jLibBig).

7. Weighted bigraphs and reactive systems

In the previous section we weighted embeddings using functions that can be specific of the given guest and host bigraphs 
in an effort to keep the definition general. A less general but more practical approach is to weight the components of a 
graph and use this information to define weighing functions independently from the specific guest and host at hand. This 
consideration leads us to introduce weighted directed bigraphs and reactive systems over them.

7.1. Weighted directed bigraphs

Let W be a set of weights (additional structure will be added when needed).
Given a directed bigraph G , we call W -weighting for G any function ρ : |G| →W that assigns weights from W to the 

elements in the support of G . We define weighted versions of place, link, and bigraphs by equipping them with weighting.

Definition 23 (W -Weighted Directed Bigraph). A W -weighted directed bigraph is a pair 〈G ·ρ〉 where G is a directed graph and 
ρ is a W -weighting for G .

We extend the graphical notation for directed bigraphs to the weighted case by labelling the components of their sup-
port with their weight; to avoid confusion with edge and node names we enclose weights in brackets. For instance, Fig. 14
contains two encodings of the same Petri net: in the first tokens are represented by individual nodes (as discussed in Exam-
ple 8)) whereas in the second they are represented by weights attached to the nodes representing places. By representing 
tokens with weights instead of nodes we obtain a model that is more precise and more efficient. In fact, when tokens are 
18

https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
Fig. 15. Rewriting rule for a Petri net transition with n inputs and m outputs using weights to represent tokens.

represented by nodes they carry an identity even if they are all equivalent when it comes to the dynamics of Petri nets: a 
bigraph that represents exactly one token admits one embedding for each token in the host bigraph.

Here we have taken the design choice to weight only components in the support of bigraphs, and not those outside the 
support (e.g., links, names, interface widths). The reason is that these components may not be preserved by composition 
and juxtaposition; this makes unclear how to give them weights without committing to specific applications. For instance, 
assume links are also assigned weights; this can be done in a clean and elegant way by having the adjacency matrix for 
links take values in W , and then composition can be defined in terms of matrix multiplication. Although the elegance of 
this solution is tempting, we lack a strong justification from the meta-modelling perspective. Bigraphs have been introduced 
as a meta-model for ubiquitous computing and as such any extension should prioritise expressiveness and generality.

The notion of support translation and support-equivalence (Definition 9) readily extends to weighted bigraphs: two 
weighted bigraphs 〈G ·ρ〉 and 

〈
G ′ ·ρ ′〉 are support-equivalent if there is a support translation σ : |G ′| → |G| such that σ G =

G ′ and ρ ◦ σ = ρ ′ . We write σ 〈G ·ρ〉 for the weighted bigraph 〈(σ G) · (ρ ◦ σ)〉.
Given two W -weightings ρF : |F | →W and ρG : |G| →W we write (ρF �ρG) for function given on any x ∈ |F | � |G| as 

follows:

(ρF � ρG)(x) �
{
ρF (x) if x ∈ |F |
ρG(x) if x ∈ |G|

We define composition and juxtaposition by lifting of the corresponding operations for DBGs.

Definition 24 (Composition and Juxtaposition). For weighted directed bigraphs 〈F ·ρF 〉 and 〈G ·ρG〉, their composition 
〈F ·ρF 〉 ◦ 〈G ·ρG〉 is the weighted directed bigraph (G ◦ F , ρG � ρF ). For weighted directed bigraphs 〈F ·ρF 〉 and 〈G ·ρG〉, 
their juxtaposition 〈F ·ρF 〉 ⊗ 〈G ·ρG〉 is the weighted directed bigraph 〈G ⊗ F ·ρG � ρF 〉.

7.2. Reactive systems over weighted directed bigraphs

The first step for defining reactive systems over weighted directed bigraphs is to extend the notion of parametric reaction 
rule to act also on weightings.

Simply replacing bigraphs with weighted ones in Definition 13 is too restrictive: under this approach a parametric 
reaction rule is a triple (〈R : I → J ·ρR〉, 〈R ′ : I ′ → J ·ρR ′

〉
, η : I → I ′) and its application would require exact occurrence 

of the redex 〈R : I → J ·ρR〉. This notion is too restrictive for many applications of interest. For instance, describing the 
dynamics of Petri nets would require an infinite number of rules, one for each possible marking. Instead, reaction rules 
should be parametrised (also) on weightings and describe how the weighting associated to the redex is replaced by a 
weighting for the reactum. To this end, we extend Definition 13 with a (possibly) partial function mapping weightings for 
the redex to weightings for the reactum. Partiality allows us to encode side conditions for the applicability of a rule (e.g., 
that a place must have at least n tokens).

Definition 25. A parametric reaction rule for weighted directed bigraphs is a tuple of the form (R : I → J , R ′ : I ′ → J , η : I →
I ′, θ : W |R| ⇀ W |R ′|) where R is the parametric redex, R ′ the parametric reactum, η is an instantiation map, and θ is a 
(possibly partial) function mapping weightings for R to weightings for R ′ .

Example 26. To describe the dynamics of Petri nets in our model using weighted bigraphs, adapt the generic rewriting 
rule for a transition with n inputs and m outputs given in Fig. 5 by modelling markings using weights. Because nodes 
representing places do not contain other nodes we do not to use sites further simplifying the rule. The result is given in 
Fig. 15 where we represent θ using expressions with unknowns v0, . . . , vm−1.
19



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
We can now define the key notion of reactive systems over weighted directed bigraphs as an extension of that for 
directed bigraphs (Definition 15). Let Ag(K, W ) be the set of agents (weighted bigraphs with no inner names nor sites) 
over a signature K and domain of weights W .

Definition 27. A reactive system over weighted directed bigraphs W B RG(K, R) is defined by a signature K and a set R of 
parametric reaction rules for DBGs weighted over W . A reactive system W BG(K, R) induces a rewriting relation � ⊆
Ag(K, W ) × Ag(K, W ) according to the following rule:

(R, R ′, η, θ) ∈ R θ(ρR) = ρR ′
〈A ·ρA〉 = 〈C ·ρC 〉 ◦ (

σ 〈R ·⊗〉〈IdZ ·ρIdZ

〉) ◦ 〈ω ·ρω〉 ◦ (〈
D0 ·ρD0

〉 ⊗ . . . ⊗ 〈
Dm−1 ·ρDm−1

〉)〈
A′ ·ρA′

〉 = 〈C ·ρC 〉 ◦ (
σ ′〈R ′ ·ρR ′

〉 ⊗ 〈
IdZ ·ρIdZ

〉) ◦ 〈
ω′ ·ρω′

〉 ◦ ◦ (〈
Dη(0) ·ρDη(0)

〉 ⊗ . . . ⊗ 〈
Dη(m−1) ·ρDη(m−1)

〉)
〈A ·ρA〉 �

〈
A′ ·ρA′

〉 (40)

where the support translations σ and σ ′ agree on |R| ∩ |R ′|, ω and ω′ are wiring maps (cf. Definition 15).

The notion of reactive system over weighted DBGs, is a direct generalisation of the one for the non-weighted setting: if 
we remove weightings from (40) (or equivalently, if the weightings are only the trivial one, constantly equal to 0) we obtain 
(1), the corresponding rule in Definition 15.

7.3. Weighted reactive systems over directed bigraphs

In this section we extend BRS in a different direction by adding weights to their dynamics akin to weighted transition 
systems [28]. This allows us to encode various quantitative aspects such as stochastic rates, by suitably choosing the set of 
weights and its structure.

Fix a commutative monoid structure for the set of weights W and let + and 0 denote its operation and unit, respectively. 
We extend parametric reaction rules with a weight to describe the contribution of the rule to a rewriting.

Definition 28. A weighted parametric reaction rule for directed bigraphs is a tuple of the form (R : I → J , R ′ : I ′ → J , η : I →
I ′, w) where R is the parametric redex, R ′ the parametric reactum, η is an instantiation map, and w ∈ W is the weight 
associated to the rule.

The weight of a rewriting is given by the sum of the contributions of all applicable reactions.

Definition 29. A weighted reactive system over directed bigraphs BW R S(K, R) is defined by a signature K and a set R of 
weighted parametric reaction rules for DBGs. A weighted reactive system W B R S(K, R) induces a function δR : Ag(K) ×
Ag(K) →W that assigns weights to rewritings as follows:

δR(A, A′) �
∑⎧⎨

⎩ w

∣∣∣∣∣∣
(R, R ′, η, w) ∈ R
A = C ◦ (σ R ⊗ IdZ ) ◦ ω ◦ (D0 ⊗ . . . ⊗ Dm−1)

A′ = C ◦ (σ ′R ′ ⊗ IdZ ) ◦ ω′ ◦ (DηP (0) ⊗ . . . ⊗ DηP (m′−1))

⎫⎬
⎭ (41)

We write A 
w
� A′ for δR(A, A′) = w .

If W is the commutative monoid B = ({true, false}, ∨, false) of Boolean values equipped with logical disjunction, 
then a function weighting rewritings is equivalent to a relation allowing us to regard a weighted reactive system over DBGs 
as a reactive system over DBGs. In particular, (41) instantiates to

δR(A, A′) �
∨⎧⎨

⎩ w

∣∣∣∣∣∣
(R, R ′, η, w) ∈ R
A = C ◦ (σ R ⊗ IdZ ) ◦ ω ◦ (D0 ⊗ . . . ⊗ Dm−1)

A′ = C ◦ (σ ′R ′ ⊗ IdZ ) ◦ ω′ ◦ (DηP (0) ⊗ . . . ⊗ DηP (m′−1))

⎫⎬
⎭

which is equivalent to (1) once we remove all parametric rewriting rules in R with weight false.

7.4. Weighted reactive systems over weighted directed bigraphs

In this section we combine both extensions to bigraphical reactive systems discussed in the previous sections. Let W be 
a commutative monoid.
20



Definition 30. A weighted parametric reaction rule for weighted directed bigraphs is a tuple of the form (R : I → J , R ′ : I ′ →
J , η : I → I ′, θ : W |R| ⇀W |R ′| ×W ) where R is the parametric redex, R ′ the parametric reactum, η is an instantiation map, 
and θ is a partial function mapping weightings for R to weightings for R ′ and weights for the rule.

Definition 31. A weighted reactive system over weighted directed bigraphs W BW R S(K, R) is defined by a signature K and a set 
R of weighted parametric reaction rules for DBGs weighted over W . A weighted reactive system W BW R S(K, R) induces 
a function δR : Ag(K) × Ag(K) →W that assigns weights to rewritings as follows:

δR(〈A ·ρA〉, 〈A′ ·ρA′ 〉) �
∑

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w

∣∣∣∣∣∣∣∣∣∣

(R, R ′, η, θ) ∈ R θ(ρR) = (ρR ′ , w)

〈A ·ρA〉 = 〈C ·ρC 〉 ◦ (
σ 〈R ·ρR〉 ⊗ 〈

IdZ ·ρIdZ

〉) ◦ 〈ω ·ρω〉 ◦
◦ (〈

D0 ·ρD0

〉 ⊗ . . . ⊗ 〈
Dm−1 ·ρDm−1

〉)〈
A′ ·ρA′

〉 = 〈C ·ρC 〉 ◦ (
σ ′〈R ′ ·ρR ′

〉 ⊗ 〈
IdZ ·ρIdZ

〉) ◦ 〈
ω′ ·ρω′

〉 ◦
◦ (〈

Dη(0) ·ρDη(0)

〉 ⊗ . . . ⊗ 〈
Dη(m−1) ·ρDη(m−1)

〉)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We write 〈A ·ρA〉 w
�

〈
A′ ·ρA′

〉
for δR(〈A ·ρA〉, 〈A′ ·ρA′

〉
) = w .

8. Conclusions and future work

In this paper, we have presented a new version of directed bigraphs and bigraphical reactive systems, which subsume 
many previous versions (such as Milner’s bigraphs). For this kind of bigraphs we have provided a sound and complete 
algorithm for solving the embedding problem, based on a constraint satisfaction problem. The resulting model is compact 
with the number of variables and linear constraints are polynomially bounded by the size of the guest and host bigraphs. 
We adapted the algorithm to compute optimal embeddings provided that the cost function meets some mild criteria related 
multi-linearity; this is the first algorithm for computing optimal embeddings of bigraphs. Moreover, we have introduced 
new quantitative versions of weighted bigraphs, of weighted reactive systems over bigraphs, and their combination.

The algorithm has been successfully integrated into jLibBig, an extensible library for manipulating bigraphical reactive 
systems. At the time of this writing there are no “official” (or “widely recognized”) benchmarks, nor any other algorithms or 
available tools that solve the directed bigraph embedding problem, to compare with; therefore, to evaluate our implemen-
tation we considered a concise use case that covers most features typically occurring in modelling agent-based ubiquitous 
systems. The empirical evaluation on this case looks promising. As expected, the major contributors to the cost of comput-
ing a BRS are two: searching for a solution to the CSP and translating it into the structures used by jLibBig to represent 
an embedding. The first phase depends on the solver and could benefit from solver-specific optimisations of the model and 
heuristic. The second phase depends on the data structures used by jLibBig to represent bigraphs and their embeddings: 
bigraphs are immutable objects and embeddings include complete (and costly to build) decomposition of the host bigraph 
into a context, redex, and parameters as required by the notion of bigraphical matching. We think that the cost of the second 
phase can be substantially reduced by switching to mutable structures for bigraphs and decoupling the structures used for 
representing bigraphical embeddings and matchings.

The proposed approach offers great flexibility: it can be easily applied also to other extensions of bigraphs and directed 
bigraphs e.g. bigraphs with sharing [9] or local directed bigraphs [7]. An interesting direction for future work would be to 
extend the algorithm also to stochastic and probabilistic bigraphs [29]; this would offer useful modelling and verification 
tools for quantitative aspects, e.g. for systems biology [3,14]. Approximated embeddings are supported in jLibBig, but still as 
experimental feature. In fact, the theoretical foundations of this extension have not been fully investigated yet, suggesting 
another line of research.

CRediT authorship contribution statement

Alessio Chiapperini: Investigation, Software. Marino Miculan: Conceptualization, Formal analysis, Writing – original draft, 
Writing – review & editing, Supervision, Funding acquisition. Marco Peressotti: Conceptualization, Formal analysis, Software, 
Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. Experimental results, omitted cases

Experimental results for the cases omitted from Section 5 are reported in Figs. A.16–A.24.
A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
21

https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/


A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.16. Execution time (ms) vs. number of cars, 5x5 grid with 50% connectivity (time values are in milliseconds).
22



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.17. Execution time (ms) vs. number of cars, 8x8 grid with 70% connectivity (time values are in milliseconds).
23



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.18. Execution time (ms) vs. number of cars, 10x10 grid with 90% connectivity (time values are in milliseconds).
24



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.19. Execution time (ms) vs. grid size, 10 cars and 55% connectivity (values are in milliseconds).
25



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.20. Execution time (ms) vs. grid size, 30 cars and 70% connectivity (values are in milliseconds).
26



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.21. Execution time (ms) vs. grid size, 50 cars and 85% connectivity (values are in milliseconds).
27



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.22. Execution time (ms) vs. connectivity, 5x5 grid and 5 cars (values are in milliseconds).
28



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.23. Execution time (ms) vs. connectivity, 8x8 grid and 20 cars (values are in milliseconds).
29



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842

Fig. A.24. Execution time (ms) vs. connectivity, 10x10 grid and 40 cars (values are in milliseconds).
30



A. Chiapperini, M. Miculan and M. Peressotti Science of Computer Programming 221 (2022) 102842
References

[1] B. Archibald, K. Burns, C. McCreesh, M. Sevegnani, Practical bigraphs via subgraph isomorphism, in: L.D. Michel (Ed.), 27th International Conference on 
Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, in: LIPIcs, vol. 210, Schloss 
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 15:1–15:17.

[2] B. Archibald, M.-Z. Shieh, Y.-H. Hu, M. Sevegnani, Y.-B. Lin Bigraphtalk, Verified design of iot applications, IEEE Int. Things J. 7 (4) (2020) 2955–2967.
[3] G. Bacci, D. Grohmann, M. Miculan, Bigraphical models for protein and membrane interactions, in: G. Ciobanu (Ed.), Proc. MeCBIC 2009, in: EPTCS, 

vol. 11, 2009, pp. 3–18.
[4] G. Bacci, D. Grohmann, M. Miculan, DBtk: a toolkit for directed bigraphs, in: Proc. CALCO, Springer, 2009, pp. 413–422.
[5] G. Bacci, M. Miculan, R. Rizzi, Finding a forest in a tree, in: International Symposium on Trustworthy Global Computing, Springer, 2014, pp. 17–33.
[6] M. Bundgaard, A.J. Glenstrup, T. Hildebrandt, E. Højsgaard, H. Niss, Formalizing higher-order mobile embedded business processes with binding bi-

graphs, in: Proc. COORDINATION, Springer, 2008, pp. 83–99.
[7] F. Burco, M. Miculan, M. Peressotti, Towards a formal model for composable container systems, in: Proc. SAC, ACM, 2020, pp. 173–175.
[8] M. Calder, A. Koliousis, M. Sevegnani, J.S. Sventek, Real-time verification of wireless home networks using bigraphs with sharing, Sci. Comput. Program. 

80 (2014) 288–310.
[9] M. Calder, M. Sevegnani, Process algebra for event-driven runtime verification: a case study of wireless network management, in: Int. Conference on 

Integrated Formal Methods, Springer, 2012, pp. 21–23.
[10] A. Chiapperini, M. Miculan, M. Peressotti, Computing embeddings of directed bigraphs, in: F. Gadducci, T. Kehrer (Eds.), Proc. ICGT, in: LNCS, vol. 12150, 

Springer, 2020, pp. 38–56.
[11] A. Chiapperini, M. Miculan, M. Peressotti, A CSP implementation of the directed bigraph embedding problem, CoRR, arXiv:2003 .10209 [abs], 2020.
[12] A. Chiapperini, M. Miculan, M. Peressotti, An evaluation of jLibBig rewriting engine for directed bigraphs, Available at https://doi .org /10 .5281 /zenodo .

6546652, May 2022.
[13] T.C. Damgaard, A.J. Glenstrup, L. Birkedal, R. Milner, An inductive characterization of matching in binding bigraphs, Form. Asp. Comput. 25 (2) (2013) 

257–288.
[14] T.C. Damgaard, E. Højsgaard, J. Krivine, Formal cellular machinery, Electron. Notes Theor. Comput. Sci. 284 (2012) 55–74.
[15] S. Debois, Sortings and bigraphs, Ph.d. Thesis, IT University of Copenhagen, 2008.
[16] A.J. Faithfull, G. Perrone, T. Hildebrandt, Big red: a development environment for bigraphs, Electron. Commun. EASST 61 (2013).
[17] A. Gassara, I.B. Rodriguez, M. Jmaiel, K. Drira, Executing bigraphical reactive systems, Discrete Appl. Math. 253 (2019) 73–92.
[18] A.J. Glenstrup, T.C. Damgaard, L. Birkedal, E. Højsgaard, An implementation of bigraph matching, IT University of Copenhagen, 2007, p. 22.
[19] D. Grohmann, Security, cryptography and directed bigraphs, in: Proc. ICGT, in: LNCS, vol. 5214, Springer, 2008, pp. 487–489.
[20] D. Grohmann, M. Miculan, Directed bigraphs, Electron. Notes Theor. Comput. Sci. 173 (2007) 121–137.
[21] D. Grohmann, M. Miculan, Reactive systems over directed bigraphs, in: Proc. CONCUR, in: LNCS, vol. 4703, Springer, 2007, pp. 380–394.
[22] D. Grohmann, M. Miculan, Controlling resource access in directed bigraphs, Electron. Commun. EASST 10 (2008).
[23] D. Grzelak, Bigraph framework: a framework written in Java for the manipulation and simulation of bigraphical reactive systems, Available at https://

bigraphs .org /products /bigraph -framework/, Jan. 2022.
[24] E. Højsgaard, Bigraphical languages and their simulation, PhD thesis, IT University of Copenhagen, 2012.
[25] E. Højsgaard, A.J. Glenstrup, The bpl tool: a tool for experimenting with bigraphical reactive systems, in: Bigraphical Languages and Their Simulation, 

2011, p. 85.
[26] O.H. Jensen, R. Milner, Bigraphs and Transitions, SIGPLAN Notices, vol. 38, ACM, 2003, pp. 38–49.
[27] S. Khanna, M. Sudan, L. Trevisan, D.P. Williamson, The approximability of constraint satisfaction problems, SIAM J. Comput. 30 (6) (2001) 1863–1920.
[28] B. Klin, V. Sassone, Structural operational semantics for stochastic and weighted transition systems, Inf. Comput. 227 (2013) 58–83.
[29] J. Krivine, R. Milner, A. Troina, Stochastic bigraphs, Electron. Notes Theor. Comput. Sci. 218 (2008) 73–96.
[30] A. Mansutti, M. Miculan, M. Peressotti, Distributed execution of bigraphical reactive systems, Electron. Commun. EASST 71 (2014).
[31] A. Mansutti, M. Miculan, M. Peressotti, Multi-agent systems design and prototyping with bigraphical reactive systems, in: K. Magoutis, P. Pietzuch 

(Eds.), Proc. DAIS, in: LNCS, vol. 8460, Springer, 2014, pp. 201–208.
[32] A. Mansutti, M. Miculan, M. Peressotti, Towards distributed bigraphical reactive systems, in: R. Echahed, A. Habel, M. Mosbah (Eds.), Proc. GCM’14, 

2014, p. 45.
[33] M. Miculan, M. Peressotti, Bigraphs reloaded: a presheaf presentation, Technical Report UDMI/01/2013, Dept. of Mathematics and Computer Science, 

Univ. of Udine, 2013.
[34] M. Miculan, M. Peressotti, A CSP implementation of the bigraph embedding problem, CoRR, arXiv:1412 .1042 [abs], 2014.
[35] M. Miculan, M. Peressotti, jLibBig: a library for bigraphical reactive systems, Available at https://bigraphs .github .io /jlibbig/, Nov. 2015.
[36] R. Milner, The Space and Motion of Communicating Agents, Cambridge University Press, 2009.
[37] J. Parrow, B. Victor, The fusion calculus: expressiveness and symmetry in mobile processes, in: Proc. LICS, IEEE, 1998, pp. 176–185.
[38] G. Perrone, S. Debois, T. Hildebrandt, Bigraphical refinement, in: Refine@FM, in: EPTCS, vol. 55, 2011, pp. 20–36.
[39] G. Perrone, S. Debois, T. Hildebrandt, A model checker for bigraphs, in: Proc. SAC, 2012, pp. 1320–1325.
[40] C. Prud’homme, J.-G. Fages, X. Lorca, Choco Documentation, TASC - LS2N CNRS UMR 6241, COSLING S.A.S., 2017.
[41] H. Sahli, T. Ledoux, É. Rutten, Modeling self-adaptive fog systems using bigraphs, in: Proc. FOCLASA, 2019, pp. 1–16.
[42] V. Sassone, P. Sobocinski, Reactive systems over cospans, in: Proc. 20th Symposium on Logic in Computer Science, LICS 2005, IEEE, 2005, pp. 311–320.
[43] M. Sevegnani, M. Calder, Bigraphs with sharing, Theor. Comput. Sci. 577 (2015) 43–73.
[44] M. Sevegnani, M. Calder, BigraphER: rewriting and analysis engine for bigraphs, in: Computer Aided Verification - 28th International Conference, CAV 

2016, 2016, pp. 494–501.
[45] M. Sevegnani, M. Calder, Bigrapher: rewriting and analysis engine for bigraphs, in: S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification - 28th 

International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, in: Lecture Notes in Computer Science, vol. 9780, 
Springer, 2016, pp. 494–501.

[46] M. Sevegnani, C. Unsworth, M. Calder, A SAT based algorithm for the matching problem in bigraphs with sharing, Tech. Rep., University of Glasgow, 
2010.

[47] M. Souad, B. Faiza, H. Nabil, Formal modeling iot systems on the basis of biagents* and maude, in: International Conference on Advanced Aspects of 
Software Engineering (ICAASE), 2020, pp. 1–7.

[48] C. Tsigkanos, T. Kehrer, C. Ghezzi, Modeling and verification of evolving cyber-physical spaces, in: E. Bodden, W. Schäfer, A. van Deursen, A. Zisman 
(Eds.), Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4–8, 2017, 
ACM, 2017, pp. 38–48.

[49] C. Tsigkanos, N. Li, Z. Jin, Z. Hu, C. Ghezzi, Scalable multiple-view analysis of reactive systems via bidirectional model transformations, in: 35th 
IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21–25, 2020, IEEE, 2020, 
pp. 993–1003.

[50] C. Tsigkanos, L. Pasquale, C. Ghezzi, B. Nuseibeh, On the interplay between cyber and physical spaces for adaptive security, IEEE Trans. Dependable 
Secure Comput. 15 (3) (2018) 466–480.
31

http://refhub.elsevier.com/S0167-6423(22)00075-2/bib75FDEFEFB15BD4A8E6E10F5AD30AE042s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib75FDEFEFB15BD4A8E6E10F5AD30AE042s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib75FDEFEFB15BD4A8E6E10F5AD30AE042s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9F8FC0DA08EA01DBD2585247EC0BDDA3s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE2696718DF2CC966D8FF1C72009A9EE6s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE2696718DF2CC966D8FF1C72009A9EE6s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib353CA49AE17DD6D8671BAF0FC3597355s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib30896080D2B6F294616D1EF5976F0D73s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibA7911C749F252D5A5192E3F62B55E39Ds1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibA7911C749F252D5A5192E3F62B55E39Ds1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibA3AA9F50B239816F1946CAD9ECB198D7s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE03FA3929BBE0849348BE104C78AADBEs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE03FA3929BBE0849348BE104C78AADBEs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9299AC7AF5C6541EE913BC24B7E0D306s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9299AC7AF5C6541EE913BC24B7E0D306s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib30096DF9B644E4FF2F9370EAF28E8FF4s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib30096DF9B644E4FF2F9370EAF28E8FF4s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib797CF17BFD5144DB35A6281A623B56ABs1
https://doi.org/10.5281/zenodo.6546652
https://doi.org/10.5281/zenodo.6546652
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib7CAB62880EE3719A947268D6D86E6563s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib7CAB62880EE3719A947268D6D86E6563s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibEBF5F67EE65DD349E0C652A307FA940Fs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib768D453C52556776EA8774E9F6412518s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib3344BA899B18F379C029FB0FDD8BD92As1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9241EF55182E348632A04A0ADB48835As1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib1BBC0E51E53317244B7976A26D823206s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibA31A765A44DF4FC518381CB9ACE5C05Ds1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib776650FA0F148A0B07A82AAA7B3050E5s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE5D207D908240FA598949FCF836E37F6s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibF5CAD12EB4E0D8FB17AA2D506D8E3E75s1
https://bigraphs.org/products/bigraph-framework/
https://bigraphs.org/products/bigraph-framework/
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibB9E3EBBB490A4195F70E85BF2C05BD02s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib1F027D6FF4B67B850F3C904FDDC9CE78s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib1F027D6FF4B67B850F3C904FDDC9CE78s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib171DC00616DD2FA249DA52DF3F2236DCs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib4A604FB376395677F1FA4CB3BCB0C25As1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib0E4948E913F5A280F21C3D18A7A07BB5s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib3644B56EF4EFA37881B49C6B06E57B03s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib651DF86F599105A571B29A1634169F71s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib5FC92179032CEB81976C397A8B87ECE0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib5FC92179032CEB81976C397A8B87ECE0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib7D53896B2E4412777D04A473BE85685Fs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib7D53896B2E4412777D04A473BE85685Fs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9520BABA8A2846144B79157231BF3703s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9520BABA8A2846144B79157231BF3703s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibF02FEBF846AA1F91266E064EC28B5B63s1
https://bigraphs.github.io/jlibbig/
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibBE61C91D283622DF6DC1522E0AE70C1Bs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib1BBE2696FA44FF0E60A98920A6AE6BB2s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibE79B8BF1788938F6E15DA06B5A73773Es1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib9CD6620EB54A59B3C89AD980DE2BF406s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibEFD18C35CC5F1EF7280A0A8BEE5FBBD3s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib98E51E9EBAC6F1CACD2E7DD4BA43FA8Es1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib1FD0EE8E99AC3F694BD88197AD4034D0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibDDEE43A29A742D286B4B1AE4E1FF77E3s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib4D196EED16EE14DDE83192B45FCD3A3Cs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib4D196EED16EE14DDE83192B45FCD3A3Cs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibDC9746C1B1DFC5703B3D21537AF93A14s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib681989CF79AF83B93FBDFF38ABD30FCDs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib681989CF79AF83B93FBDFF38ABD30FCDs1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibAD670038A14205929F6336AB7F6E1433s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibAD670038A14205929F6336AB7F6E1433s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib47693DE867BE184C4DF3A337A7E2BAF0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib47693DE867BE184C4DF3A337A7E2BAF0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bib47693DE867BE184C4DF3A337A7E2BAF0s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibACA86018BD2B167E4D92530CE02C5706s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibACA86018BD2B167E4D92530CE02C5706s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibACA86018BD2B167E4D92530CE02C5706s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibC88AC98EC5C3B3E13ED7E5A22B087542s1
http://refhub.elsevier.com/S0167-6423(22)00075-2/bibC88AC98EC5C3B3E13ED7E5A22B087542s1

	Computing (optimal) embeddings of directed bigraphs
	1 Introduction
	2 Reactive systems on directed bigraphs
	2.1 Directed bigraphs
	2.2 Reactive systems over directed bigraphs

	3 Directed bigraph embeddings
	4 Implementing the embedding problem in CSP
	4.1 Directed link graphs
	4.2 Place graphs
	4.3 Bigraphs

	5 Experimental results
	6 Optimal directed embeddings
	7 Weighted bigraphs and reactive systems
	7.1 Weighted directed bigraphs
	7.2 Reactive systems over weighted directed bigraphs
	7.3 Weighted reactive systems over directed bigraphs
	7.4 Weighted reactive systems over weighted directed bigraphs

	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Experimental results, omitted cases
	References


