
Principal Types as Lambda Nets
Pietro Di Gianantonio # Ñ

University of Udine, Italy

Marina Lenisa # Ñ

University of Udine, Italy

Abstract
We show that there are connections between principal type schemata, cut-free λ-nets, and normal
forms of the λ-calculus, and hence there are correspondences between the normalisation algorithms of
the above structures, i.e. unification of principal types, cut-elimination of λ-nets, and normalisation
of λ-terms. Once the above correspondences have been established, properties of the typing system,
such as typability, subject reduction, and inhabitation, can be derived from properties of λ-nets, and
vice-versa. We illustrate the above pattern on a specific type assignment system, we study principal
types for this system, and we show that they correspond to λ-nets with a non-standard notion of
cut-elimination. Properties of the type system are then derived from results on λ-nets.
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1 Introduction

The objective of this paper is to present the connections existing among principal type
schemata, cut-free λ-nets, and normal forms of λ-calculus. As a consequence of these
correspondences there exist correspondences among the normalisation algorithms in the
above structures, that is: unification of principal type schemata, cut-elimination on λ-nets,
normalisation on λ-terms. While the connection between the two latter is well-known, the
relationships between unification of principal type schemata and cut-elimination on λ-nets
have rarely been presented explicitly. There are very few works in the literature, [16, 25, 23],
based on the above correspondence, and a complete detailed presentation relating also cut-
elimination and unification algorithm is missing. We think that it is worthwhile to analyse
in detail such a connection since it allows to derive several properties on the type system
from properties of λ-nets, so giving new proves and explanations of some already known
results concerning type assignment systems. In general, the correspondence existing among
types, principal types, λ-nets, and normal forms can be expressed by the following chain of
equivalences. For any closed λ-term M :

M has type τ in the type assignment system, ⊢ M : τ , if and only if
M has principal type schema τ ′ in the principal type assignment system, ⊩ M : τ ′, and τ

is an instance of τ ′, if and only if
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5:2 Principal Types as Lambda Nets

the λ-net associated with M reduces, by a cut-elimination strategy C, to a cut-free λ-net
t, which is the translation of τ ′, if and only if
M reduces according to the strategy S to a normal form N , and t is the λ-net associated
with N .

Once the above correspondences have been established, it is possible to derive properties
concerning the type system and the reduction strategy S from properties of λ-nets and the
cut-elimination strategy C, or vice-versa.

In this paper, we present in detail an instance of the general pattern outlined above.
Namely, we choose a particular version of type assignment system, we define a corresponding
type assignment system for principal types, and we consider a corresponding notion of λ-net.

The type system that we consider includes an intersection operation ∧ on types, which is
commutative and associative, but non-idempotent. However, most of our results hold also in
the case of idempotency. The type system is almost standard, the only minor non-standard
feature is a bang operator used to mark the type subterms on which the ∧ operator can be
applied. Then we introduce principal types (type schemata) together with a type assignment
system assigning type schemata to λ-terms. Type schemata differ from simple-types by the
introduction of type variables and by a box operator, used to mark parts of the type that
can be replicated. From type schemata, by suitable instantiation, one gets (ground) types.
Each λ-term turns out to have at most one principal type schema, while the set of ground
types assignable to a term consists of all the instances of the principal type schema. In the
type assignment system for principal types, the rule for introducing the type schema of an
application makes use of a generalised unification algorithm on types.

We will show that principal types can be seen as an alternative representation of cut-free
λ-nets, and the unification algorithm on principal types can be seen as a reformulation of the
cut-elimination algorithm for λ-nets. In order to formalise these correspondences, we present
a translation from principal type schemata to λ-nets. However, we need to consider a variation
of the standard cut-elimination procedure on λ-nets, whereby the cut-rule concerning the
conclusions of a weakening and a promotion does not eliminate the box, but leaves a pending
term. With this variation the cut-elimination procedure becomes perpetual, that is a cut
is eliminated only if the λ-net is strongly normalising. On the other hand, we present, in
our setting, the standard translation of λ-terms into λ-nets [20, 1]. The main result of this
paper can be seen as a commutation result, namely: given a λ-term M , we assign to it a
principal type τ , this, in turn, induces a cut-free λ-net, which can be alternatively obtained
by applying to M the standard transformation into λ-nets and then the cut-elimination
procedure.

As consequences of the correspondences that we have established, we derive the following
results on the type assignment system: the typable terms are exactly the strongly normalising
ones, subject reduction holds up-to a suitable relation on types, the inhabitation problem is
decidable.

The present paper builds on [11], where the analogies involutions as principal types and
application as unification have been introduced and explored for a type assignment system
related to Abramsky’s Geometry of Interaction model of partial involutions.

Related work

Duquesne and Van De Wiele have first described the connection between principal types and
proof-nets, [16]. This approach has been further extended by Regnier in his PhD thesis [25].
Similarly to Duquesne, Van De Wiele and Regnier’s approach (referred to as the DVR
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approach in the following), we use indexes to delimit the parts of a type that need to be
replicated. However, there exists a long list of differences. Principal types in the DVR
approach are pairs composed by a variable and a set of pairs of terms that need to be unified;
the most general unifier (MGU) of this set of pairs, if existing, will transform the variable in
a principal type in our sense. As a result, principal types in the DVR approach are almost a
direct translation of proof-nets, while our principal types describe the normal forms of the
proof-nets associated with lambda terms. In defining the principal type of an application, we
explicitly define a notion of MGU among two types, while the MGU notion is not present
in DVR. As far as this aspect is concerned, we are in the tradition of the Hindley-Milner
algorithm for principal types, even if our MGU algorithm is a substantial extension of the
original one. In DVR approach, any lambda-term has a principal type, and the type system
characterises weakly normalisable terms, while our system just the strongly normalising ones.

Our work is also related to [9, 10, 21, 23]. Our type assignment system for principal
types is quite similar to Sistem I, described in [21] and Sistem E, described in [9, 10].
Still, our presentation is completely different, e.g. we use a different syntax and different
auxiliary procedures; what we call index variable, there is called expansion variable, what
we call duplication, there is called expansion. Moreover, the implementations of duplication
and expansion are different, using different auxiliary structures. Nevertheless, one can find
similarities in the technique used in System E to describe the scope of expansion (duplication).
A connection between the principal types in [21] and interaction-nets is then presented in [23].
However, again the notation is completely different from ours; [21] does not consider standard
connectives of MELL but the ones of interaction nets, croissant, sharing, application, . . . ,
the formulas associated to wires are not MELL proposition, but triples formed by a type, a
substitution, and an expansion. Comparing these works to ours, we can say that our principal
type algorithm and the connection between types and proof-nets are simpler and more direct.
Essentially, our algorithm for principal types is directly inspired by the cut-elimination
algorithm on proof-nes. Consequently, the correspondence between the two becomes almost
immediate, but the presentation of the principal type algorithm becomes simpler. Moreover,
compared to [23], we consider a different and broader set of applications of the correspondence
mentioned above. From another point of view, a strict relation between type inference and
β-reduction, on so indirectly to λ-nets, is established in [8].

There exists an extensive literature on principal types in general, or more specifically in
combination with intersection types, as in our case, [7, 15, 24, 28]. However, the objective
of these works is quite different from ours, namely, often principal types are used to define
type inference algorithms for simple programming languages. In other works, [12, 26], the
connection between principal types and β-normal forms of terms is investigated. Moreover,
the type syntax and the type inference algorithm are quite different from ours, and there is
no explicit connection to proof-nets.

Non-idempotent intersection types also have a rich bibliography, their interest lies in
connection with linear logic, and the possibility to give a finer description of the behaviour
lambda terms, e.g. [4, 13]. A quite complete presentation of works on this subject can be
found in [7]. In this paper, we are going to present a series of new proofs of some results
that can be found also in [3, 6, 7, 22].

Summary

In Section 2, we introduce a type assignment system for the λ-calculus, where types include a
∧ and a ! operator. In Section 3, we introduce a type assignment system for assigning principal
type schemata, and we show how the two systems are related via suitable transformations.

TYPES 2021



5:4 Principal Types as Lambda Nets

In Section 4, we present λ-nets together with a translation of λ-terms into λ-nets with a
modified cut-elimination procedure, and we relate this translation to the standard one and
to principal types. In Section 5, we show how the correspondence results established in the
previous sections can be used to prove properties of the ground typing system by exploiting
results on λ-nets. Finally, in Section 6, final comments and lines for future work appear.

2 The intersection types

We separate the set of types in two sets, simple-types, that are used to assign types to
subterms in functional position, and and-types, used to assign types to subterms that are
arguments of a function.

▶ Definition 1 (Ground Types). We introduce the following two sets of types:

(SimTypeG ∋) σ, τ ::= q | σ̂ ⊸ τ

(AndTypeG ∋) σ̂, τ̂ ::= !τ | σ̂ ∧ τ̂

where q ranges over a set of type constants TConst.
Let TypeG = SimTypeG ∪ AndTypeG, and let µ, ν, ρ range over TypeG.

We assume ∧ to be commutative and associative, i.e. we (implicitly) consider the least
congruence on types induced by the following relation:

σ̂1 ∧ σ̂2 = σ̂2 ∧ σ̂1 σ̂1 ∧ (σ̂2 ∧ σ̂3) = (σ̂1 ∧ σ̂2) ∧ σ̂3.

As a side remark, the main reason to assume ∧ commutative and associative is to have
subject reduction, no other result depends on the algebraic properties of ∧.

▶ Definition 2. The intersection type system for the λ-calculus derives judgements ∆ ⊢ M : µ,
where M is a λ term, µ ∈ TypeG and the environment ∆ is a set x1 : σ̂1, . . . , xn : σ̂n, where
σ̂i ∈ AndTypeG for all i, and the rules for assigning intersection types are the following:

x :!τ ⊢ x : τ
(ax) ∆ ⊢ M : σ̂ ⊸ τ ∆′ ⊢ N : σ̂

∆ ∧ ∆′ ⊢ MN : τ
(app)

∆, x : σ̂ ⊢ M : τ

∆ ⊢ λx.M : σ̂ ⊸ τ
(λ!)

∆ ⊢ M : τ x ̸∈ dom(∆) σ̂ ∈ AndTypeG
∆ ⊢ λx.M : σ̂ ⊸ τ

(λA)

∆ ⊢ M : τ

∆ ⊢ M :!τ (!) ∆ ⊢ M : σ̂1 ∆′ ⊢ M : σ̂2

∆ ∧ ∆′ ⊢ M : σ̂1 ∧ σ̂2
(∧)

where ∆ ∧ ∆′ is the environment ∆′′ defined by: x : σ̂ ∈ ∆′′ if and only if x : σ̂ ∈ ∆ and
x ̸∈ dom(∆′), or x : σ̂ ∈ ∆′ and x ̸∈ dom(∆), or σ̂ = σ̂1 ∧ σ̂2 and x : σ̂1 ∈ ∆ and x : σ̂2 ∈ ∆′.

3 Principal type schemata

This section aims to show that, for any λ-term M , the set of typing judgements for M are all
instances of a unique principal type judgement. In order to obtain the principal schema one
needs to introduce in the grammar for types a set of variables and a sort of boxing operators.
If a typing judgement is derivable in the principal type assignment system, any ground type
judgement obtained by instantiating the type variables and by replicating the parts of the
judgement marked by boxing operators will be a valid typing judgement. In the grammar
for principal types we mark the positive and negative occurrences of the same variable α by
α and α, respectively:
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▶ Definition 3. The type schemata are defined by the following grammar:

(SimType ∋) σ, τ ::= α | σ̂ ⊸ τ

(AndType ∋) σ̂, τ̂ ::= !τ | σ̂ ∧ τ̂ | 2iσ̂

where α ∈ TVar is a type variable, and i ∈ Ind is an index.
Let Type = SimType ∪ AndType, let µ, ν, ρ range over Type.

Principal type schemata have been introduced in [24]. Here we present an alternative
version of the algorithm for the derivation of principal type schemata that differs in several
aspects from the original one. The main difference is that our version of the algorithm
is inspired by linear logic and λ-nets, in particular, we introduce a mechanism to define
boxes inside type schemata. With these modifications, there exists a direct correspondence
between the principal type schemata of a term M and the cut-free normal form of the λ-net
representing M . This correspondence goes on by connecting the cut-elimination process
on λ-nets and a Most General Unification (MGU) algorithm on principal types schemata.
Two principal type schemata are unified by generalised notion of substitution, which we call
substitution-replication.

▶ Definition 4 (Substitution-replication). Substitution-replications are transformations on
type schemata that are compositions of four basic actions:

Substitution of type variables α by a simple-type σ, denoted by [σ / α].
Duplication of all the subtypes appearing under a box operator marked by i, denoted by
Dup(i).
Substitution of the box operator index i by a pair of box operators indexed by j1, j2, denoted
by [j1, j2 / i].
Elimination of all the box operators with index i, denoted by [ϵ / i].

The formal definition of the above operators is given by induction on the structure of the
type to which they are applied:

[σ/α](α) = σ, and in the remaining cases by recursive application on the arguments:
[σ/α](opb(µ1, µ2)) = opb([σ/α](µ1), [σ/α](µ2)) with opb ∈ {⊸, ∧}
[σ/α](opu(µ)) = opu([σ/α](µ)), with opu ∈ {2j}j ∪ {!}
[σ/α](opn) = opn with opn ∈ {β | β ̸= α};

Dup(i)(2iσ̂) = V erL(2iσ̂) ∧ V erR(2iσ̂), and in the remaining cases by recursive applic-
ation on the arguments. In turn, V erL and V erR are defined by induction on their type
schemata arguments as:

V erL(α) = αl, V erR(α) = αr,
V erL(2jµ) = 2jl

(V erL(µ)), V erR(2jµ) = 2jr (V erR(µ)),
and in the remaining cases by recursive application on the arguments;

[j1, j2 /i](2iσ̂) = 2j12j2 σ̂, and in the remaining cases by recursive application on the
arguments;
[ϵ /i](2iσ̂) = σ̂, and in the remaining cases by recursive application on the arguments.

According to the above defintion, the duplication operator Dup(i) replaces a subtype in
the form 2iσ̂ by V erL(2iσ̂) ∧ V erR(2iσ̂), where V erL(2iσ̂) and V erR(2iσ̂) are distinct
copies of 2iσ̂, the left and the right versions. These two new versions have the same syntactic
structure but use two distinct sets of indexes and type variables. To accomplish this we
assume that to each index i and type variable α are associated two new fresh instances, their
left and their right versions, denoted by il and ir, αl and αr, respectively.

TYPES 2021



5:6 Principal Types as Lambda Nets

The operations of duplication, substitution of a box index by a pair of box indexes, and
elimination of a box index correspond to box duplication, box insertion rule, and elimination
of a box boundary in cut-elimination of proof nets.

The role of the indexes in the box operators in the types is to mark explicitly the parts
of a type that can be replicated, and this, in turn, is fundamental to have a principal type
whose instantiations define the whole set of types associated with a term.

It is possible to extend to type schemata and substitution-replications the definitions of
partial order and MGU on terms and substitutions:

▶ Definition 5.
(i) On type schemata we define the subsumption preorder ⪯:

µ ⪯ ν if and only if there exists a substitution-replication T such that µ = T (ν) .

(ii) The generality preorder on substitution-replications is defined by:
S ⪯ T iff there exists a substitution-replication R such that S = R ◦ T .

(iii) Two type schemata, µ, ν, have a unifier U if U is a substitution-replication such that
U(µ) = U(ν).

The equivalence relation on type schemata induced by the subsumption preoder can be
characterised as the least equivalence relation closed by renaming of type variables and indexes,
and by uniformly substituting all the boxes with given index i, 2i, by a pair of boxes 2j12j2

with two fresh indexes j1, j2. Namely, 2iτ = 2j12j2τ , because [j1, j2/i](2iτ) = 2j12j2τ

and [ϵ/j1] ◦ [ϵ/j2] ◦ [i, j1/j1](2j12j2τ) = 2iτ .

▶ Proposition 6.
(i) Any two type schemata µ and ν have a supremum ρ in the preoder ⪯.
(ii) If two type schemata, µ, ν, have a unifier, then they have a most general unifier, MGU.

On type schemata we define a partial algorithm that, if converging, finds the MGU of two
types. In order to study some regularities of our typing system, it is convenient to introduce
the following definition, where we distinguish between positive and negative type schemata:

▶ Definition 7. Let PSimType, NSimType, PAndType, NAndType be the sets of type schemata
defined by the following grammars:

(PSimType ∋) τ ::= α | σ̂ ⊸ τ (PAndType ∋) τ̂ ::= 2i!τ
(NSimType ∋) σ ::= α | τ̂ ⊸ σ (NAndType ∋) σ̂ ::=!σ | 2iσ̂ | σ̂1 ∧ σ̂2
Let PType = PSimType ∪ PAndType, let µ range over PType.
Let NType = NSimType ∪ NAndType, let ν range over NType.

Positive types are assigned to λ-terms. Inside a positive type, the subterms occurring
in negative positions, i.e. on the left of an odd number of ⊸, will be negative types, while
those occurring in positive positions will be positive. A positive type describes the behaviour
of a λ-term or the behaviour of a subterm inside a normalised λ-term, while a negative type
describes how a potential argument of a λ-term is used inside the term. This fact explains
the different shapes of positive and negative types. For example, when an ∧-negative type is
the meet of several component types, the corresponding argument is used several times inside
a term, in different contexts, and each use of the argument is described by a component type.

Notice that, in particular, in the above definition we distinguish between positive and
negative occurrences of type variables.

The MGU algorithm that we introduce below is defined on pairs of types, (ν, µ), where
µ ∈ PType, ν ∈ NType, and µ, ν are either both simple or both “and” types. As we will see,
this is sufficient for our purposes.
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▶ Definition 8. Let µ, ν be a positive and a negative type, respectively, with µ, ν either both
simple or both and-types. The partial algorithm MGU(ν, µ) yields a substitution-replication
U on types and indexes such that U(ν) = U(µ), and it is defined via the following rules:

α /∈ V ar(σ)
MGU(σ, α) = [σ / α]

α /∈ V ar(τ)
MGU(α, τ) = [τ / α]

MGU(σ̂1, τ̂1) = U1 MGU(U1(σ2), U1(τ2)) = U2

MGU(τ̂1 ⊸ σ2, σ̂1 ⊸ τ2) = U2 ◦ U1

MGU(σ̂1, V erL(2i!τ)) = U1 MGU(U1(σ̂2), U1(V erR(2i!τ))) = U2

MGU(σ̂1 ∧ σ̂2,2i!τ) = U2 ◦ U1 ◦ Dup(i)

MGU(σ̂,2i!τ) = U

MGU(2j σ̂,2i!τ) = U ◦ [j, i / i]
MGU(σ, τ) = U

MGU(!σ,2i!τ) = U ◦ [ϵ / i]

One can notice that, to avoid introducing an extra ad hoc rule, the unification of two
type schemata of the form 2j !σ̂ and 2i!τ is performed by first duplicating the box i, and
then removing one instance of the two boxes which have been just created. It is not difficult
to check that the MGU algorithm is well-defined, i.e.:

▶ Lemma 9. Let µ, ν be a positive and a negative type, respectively, with µ, ν either both
simple or both and-types. Then

(i) if MGU(ν, µ) terminates yielding a substitution-replication U , then U is the most
general unifier of µ, ν;

(ii) if µ, ν have a unifier, then the MGU algorithm terminates with a well-formed
substitution-replication U , i.e., for each variable α, the substitution part includes either
[σ/α] or [τ/α].

Since the ∧-operator is commutative and associative, the MGU-algorithm performs
different runs starting from different writings of the input values ν, µ. However, since by
Proposition 6 the MGU solution is unique up-to the equivalence relation on type schemata
of Definition 5, all runs lead to the same result (up-to equivalence relation). A similar
consideration applies if one considers an alternative formulation of the MGU algorithm,
where the rule for the ⊸ case unifies the subterms of the types in a different order. The
alternative formulation of the MGU algorithm gives the same results, up-to equivalence
relation on type schemata.

When the two types µ, ν do not have a unifier, then the MGU algorithm does not
terminate, because there is an infinite number of applications of the rules. This happens
when searching for principal type schemata of non-normalising λ-terms, for example the
λ-term Ω = (λx.xx)(λx.xx). Namely, as we will see, to assign a principal type to Ω one needs
to find a unifier of the types !(2i!α ⊸ β) ∧ 2i!α and 2j′ !(!(2i′ !α′ ⊸ β′) ∧ 2i′ !α′) ⊸ β′). In
more detail, the steps of the MGU algorithm for the above case are given in the following
example.

▶ Example 10. Let σ̂ =!(2i!α ⊸ β)∧2i!α. Given a generic list p of l and r labels, we denote
by σ̂p the type !(2ip

!αp ⊸ βp) ∧ 2ip
!αp, where αpo...pn

denotes the variable ((αp0)...)pn
and

analogously for the index ip.
With this notation, the MGU evaluation mentioned above is equivalent to evaluate:

U = MGU(σ̂l, 2j !(σ̂r ⊸ βr))

= MGU(!(2il !αl ⊸ βl) ∧ 2il !αl, 2j !(σ̂r ⊸ βr)) = U2 ◦ U1 ◦ Dup(j)

TYPES 2021



5:8 Principal Types as Lambda Nets

where

U1 = MGU(!(2il !αl ⊸ βl), 2jl !(σ̂rl ⊸ βrl))

= MGU(2il !αl ⊸ βl, σ̂rl ⊸ βrl) ◦ [ϵ/jl]

= MGU(2il !αl ⊸ βl, (!(2irl !αrl ⊸ βrl) ∧ 2irl !αrl) ⊸ βrl) ◦ [ϵ/jl]

= [βl/βrl] ◦ MGU(!(2irl !αrl ⊸ βrl) ∧ 2irl !αrl, 2il !αl) ◦ [ϵ/jl]

= [βl/βrl] ◦ [αrl/αlr] ◦ [ϵ/ilr] ◦ [irl, ilr/ilr] ◦ [2irl !αrl ⊸ βrl/αll] ◦ [ϵ/ill] ◦ Dup(il) ◦ [ϵ/jl]

and

U2 = MGU(U1(2il !αl), U1(2jr !(σ̂rr ⊸ βrr))) = MGU([βl/βrl](σ̂rl), 2jr !(σ̂rr ⊸ βrr)).

Up-to renaming of the indexes, U2 coincides with U , so the attempt to define the unifier
U leads to build an infinite sequence of equivalent unification problems, none of them having
solution.

▶ Definition 11. The principal intersection type system for the λ-calculus derives judgments
∆ ⊩ M : µ, where µ ∈ PType, the environment ∆ is a set x1 : σ̂1, . . . , xn : σ̂n, σ̂i ∈ NType
for all i, and the rules for assigning principal intersection types are the following:

x :!α ⊩ x : α
(ax) ∆, x : σ̂ ⊩ M : τ

∆ ⊩ λx.M : σ̂ ⊸ τ
(λ!)

∆ ⊩ M : τ x, α fresh
∆ ⊩ λx.M : !α ⊸ τ

(λA)

∆ ⊩ M : α ∆′ ⊩ N : τ̂ β fresh
[(τ̂ ⊸ β) / α](∆ ∧ ∆′) ⊩ MN : β

(appNorm) ∆ ⊩ M : τ i fresh
2i∆ ⊩ M : 2i!τ

(box)

∆ ⊩ M : σ̂ ⊸ τ1 ∆′ ⊩ N : τ̂ U = MGU(σ̂, τ̂)
U(∆ ∧ ∆′) ⊩ MN : U(τ1) (appRedex)

where
in each derivation, for rules with two premises, i.e. ∆1 ⊩ M1 : τ1 ∆2 ⊩ M2 : τ2

∆ ⊩ M : τ
, we

implicitly assume that ∆1, τ1 and ∆2, τ2 have disjoint sets of type variables and indexes.
2i(x1 : σ̂1, . . . , xn : σ̂n) denotes the environment x1 : 2iσ̂1, . . . , xn : 2iσ̂n;
∆ ∧ ∆′ is defined as in Definition 2;
U denotes the most general unifier of types σ̂, τ̂ , obtained from the MGU algorithm
previously defined.

Next one can observe that all derivable judgements have a specific form, for this purpose we
define the notions of well-formed judgement and well-formed application of a substitution-
replication:

▶ Definition 12.
(i) A well-formed judgement ∆ ⊩ M : µ is a judgement where:

each type variable occurs at most twice, at most once as positive simple-type
PSimType, and once as negative simple-type NSimType;
each index occurs once as box index in a positive type, 2i!τ , and an arbitrary number
of times as box index of and-types of the shape 2iσ̂.

(ii) A well-formed application of a substitution-replication, U(µ), satisfies the following
condition: if U contains an action on an index i, that is an operation in the form
Dup(i), [j1, j2/i], [ϵ/i], then i appears only negatively in µ, that is the boxes with index
i have all form 2iσ̂.
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▶ Lemma 13. For every λ-term M :
(i) there is at most one derivable judgement ∆ ⊩ M : τ , up-to-renaming of type variables

and indexes;
(ii) every derivable judgment ∆ ⊩ M : τ is well-formed;
(iii) in deriving ∆ ⊩ M : τ the substitution-replications obtained via the MGU algorithm

induce well-formed applications.

Proof. Item (i) is proved by induction on the structure of M . Items (ii) and (iii) are proved
by first proving, by induction on the derivation, that any well-formed application of the
MGU algorithm defines a unification that is well-formed, and that any application of the
unification is well-formed. After that, item (ii) is proved by induction on the derivation, and
item (iii) is almost straightforward. ◀

▶ Example 14. Completing Example 10, one can show that, by applying the rules of
Definition 11, we derive the following chain of type assignments:

x : !γ ⊩ x : γ

x : 2i!α ⊩ x : 2i!α
x : !(2i!α ⊸ β) ∧ 2i!α ⊩ x x : β

⊩ λx.xx : !(2i!α ⊸ β) ∧ 2i!α ⊸ β

⊩ (λx.xx) : 2j !( !(2i!α ⊸ β) ∧ 2i!α ⊸ β).

However, Ω = (λx.xx)(λx.xx) is not typable, since the types !(2i!α ⊸ β) ∧ 2i!α and
2j !( !(2i′ !α′ ⊸ β′) ∧ 2i′ !α′ ⊸ β′ do not have a unifier, as shown in Example 10 above.

A more complex and somewhat classical example, which shows in more detail how
duplication works, is obtained by considering the Church numeral two, 2 = λf.λx.f(fx),
applied to itself, 2 2:

▶ Example 15. The principal type of the λ-term 2 is derived by the following chain of
principal typing judgements:

f : !α′ ⊩ f : α′

x : 2j !γ ⊩ x : 2j !γ
f : !(2j !γ ⊸ β), x : 2j !γ ⊩ f x : β

f : 2i !(2j !γ ⊸ β), x : 2i2j !γ ⊩!(f x) : 2i!β
f : !(2i!β ⊸ α) ∧ 2i !(2j !γ ⊸ β), x : 2i2j !γ ⊩ f(f x) : α

f : !(2i!β ⊸ α) ∧ 2i !(2j !γ ⊸ β) ⊩ λx.f(f x) : 2i2j !γ ⊸ α

⊩ 2 : !(2i!β ⊸ α) ∧ 2i !(2j !γ ⊸ β) ⊸ (2i2j !γ ⊸ α)

To simplify the evaluation, we introduce the following notation: given a list p of l and r

labels, we denote by σp the type !(2ip
!βp ⊸ αp) ∧ 2ip

!(2jp
!γp ⊸ βp) and by τp the type

σp ⊸ (2ip
2jp

!γp ⊸ αp).
Taking advantage by these notations, up-to renaming of variables and indexes, we have

that:

⊩ 2 2 : U(2il
2jl

!γl ⊸ αl),

where U = MGU(σl, 2k!τr).
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By applying the MGU rules, the evaluation of U develops as follows:

U = U2 ◦ U1 ◦ Dup(k)

where

U1 = MGU(!(2il
!βl ⊸ αl), V erL(2k!τr))

= MGU(!(2il
!βl ⊸ αl), 2kl

(σrl ⊸ 2irl
2jrl

!γrl ⊸ αrl))
= MGU(2il

!βl ⊸ αl, σrl ⊸ 2irl
2jrl

!γrl ⊸ αrl) ◦ [ϵ/kl].

It follows U1 = U4 ◦ U3 ◦ [ϵ/kl], where

U3 = MGU(σrl, 2il
!βl)

= MGU(!(2irl
!βrl ⊸ αrl) ∧ 2irl

!(2jrl
!γrl ⊸ βrl), 2il

!βl)
= [γrl ⊸ βrl/βlr] ◦ [irl/ilr] ◦ [2irl

!βrl ⊸ αrl/βll] ◦ [ϵ/ill] ◦ Dup(il)

To have a more compact notation, in the above formula, the substitution [ϵ/ilr] ◦ [irl, ilr/ilr],
formally obtained by application of the MGU rules, is written as [irl/ilr]; in the following a
similar simplification is used. Carrying on with the evaluation, we have:

U4 = MGU(U3(αl), U3(2irl
2jrl

!γrl ⊸ αrl)) = [2irl
2jrl

!γrl ⊸ αrl/αl]

It is not difficult to check that U1 is indeed the unifier of the types !(2il
!βl ⊸ αl) and

2kl
(σrl ⊸ 2irl

2jrl
!γrl ⊸ αrl).

Continuing with the evaluation, we have:

U2 = MGU(U1(2il
!(2jl

!γl ⊸ βl)), U1(V erR2k!τr))
= MGU(!(2jll

!γll ⊸ 2irl
!βrl ⊸ αrl) ∧ 2irl

!(2jlr
!γlr ⊸ 2jrl

!γrl ⊸ βrl), 2kr
!τrr))

= U6 ◦ U5 ◦ Dup(kr), where
U5 = MGU(!(2jll

!γll ⊸ 2irl
!βrl ⊸ αrl),2krl

!(σrrl ⊸ (2irrl
2jrrl

!γrrl ⊸ αrrl)))
= [αrl/αrrl] ◦ [γrrl/βrl] ◦ [irrl, jrrl/irl] ◦ [σrrl/γll] ◦ [ϵ/jll] ◦ [ϵ/krl], and

U6 = MGU(U5(2irl
!(2jlr

!γlr ⊸ 2jrl
!γrl ⊸ βrl)), U5(V erR(2kr

!τrr)))
= MGU(2irrl

2jrrl
!(2jlr

!γlr ⊸ 2jrl
!γrl ⊸ γrrl),

(2krr
!(σrrr ⊸ (2irrr

2jrrr
!γrrr ⊸ αrrr)))))

= [γrrl/αrrr] ◦ [γrrr/γrl] ◦ [irrr, jrrr/jrl] ◦ [σrrr/γlr] ◦ [ϵ/jlr] ◦ [irrl, jrrl/krr]

Summing up we obtain:

U(2il
2jl

!γl ⊸ αl)
= U2 ◦ U4 ◦ U3 ◦ [ϵ/kl] ◦ Dup(k)(2il

2jl
!γl ⊸ αl)

= U2 ◦ U4 ◦ [γrl ⊸ βrl/βlr] ◦ [irl/ilr] ◦ [2irl
!βrl ⊸ αrl/βll] ◦ [ϵ/ill] ◦ Dup(il)(2il

2jl
!γl ⊸ αl)

= U2 ◦ U4 ◦ [γrl ⊸ βrl/βlr] ◦ [irl/ilr]((2jll!γll ∧ 2ilr2jlr!γlr) ⊸ αl)
= U6 ◦ U5 ◦ Dup(kr)((2jll!γll ∧ 2irl

2jlr!γlr) ⊸ 2irl
2jrl

!γrl ⊸ αrl)
= U6 ◦ [αrl/αrrl] ◦ [γrrl/βrl] ◦ [irrl, jrrl/irl] ◦ [σrrl/γll] ◦ [ϵ/jll]

((2jll!γll ∧ 2irl
2jlr!γlr) ⊸ 2irl

2jrl
!γrl ⊸ αrl)

= U6 ◦ [αrl/αrrl]((σrrl ∧ 2irrl
2jrrl

2jlr!γlr) ⊸ 2irrl
2jrrl

2jrl
!γrl ⊸ αrl)

= [βrl/αrrr] ◦ [γrrr/γrl] ◦ [irrr, jrrr/jrl] ◦ [σrrr/γlr] ◦ [ϵ/jlr]
((([αrl/αrrl]σrrl) ∧ 2irrl

2jrrl
2jlr!γlr) ⊸ 2irrl

2jrrl
2jrl

!γrl ⊸ αrl)
= [γrrl/αrrr]◦[γrrr/γrl]((([αrl/αrrl]σrrl)∧2irrl

2jrrl
σrrr) ⊸ 2irrl

2jrrl
2irrr

2jrrl
!γrl ⊸ αrl)

= ((([αrl/αrrl]σrrl) ∧ 2irrl
2jrrl

([γrrl/αrrr]σrrr)) ⊸ 2irrl
2jrrl

2irrr2jrrl
!γrrr ⊸ αrl)

which coincides with the principal type of the Church number 4.
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3.1 Relating the typing systems

The ground typing system and the principal type system are connected via substitution-
replications:

▶ Theorem 16.
(i) If ∆ ⊢ M : µ is derivable, then there exist ∆′, µ′ and a substitution-replication T such

that ∆′ ⊩ M : µ′ is derivable, T (∆′) = ∆ and T (µ′) = µ.
(ii) For any derivable judgement ∆ ⊩ M : µ and for all substitution-replications T , if the

judgement T (∆) ⊢ M : T (µ) contains only ground types, then it is derivable.

Proof.
(i) By induction on ⊢-judgement derivations, using Lemma 13(i) above, and the fact that

MGU gives the most general substitution-replication (Lemma 9).
(ii) By induction on ⊩-judgement derivations. ◀

4 Principal types and lambda nets

The aim of this section is to show that the principal type of a λ-term M is an alternative
description of the cut-free form of the λ-net representing M . Moreover, the MGU algorithm
amounts to the cut-elimination algorithm on λ-nets.

In order to exhibit the correspondence, and maybe against the spirit of proof nets, we are
going to give a representation of proof structures by sets of terms. Similar representations
have been used in [17] for MLL, and in [18] for interaction nets. The main idea in this
representation is to use a pair of variables to represent a proof-net axiom, and a term to
represent a proof-net conclusion. Differently from the cited works, we consider MELL, the
multiplicative and exponential fragment of LL, so we give a term representation also for
boxes.

The following grammar defines a set of proof terms in the form t : A, where A is a formula
of MELL, and t is a term representing the part of a proof structure having A as conclusion:

t : A ::= α : A | α : A⊥ | (t : A) O (s : B) : A O B

| (t : A) ⊗ (s : B) : A ⊗ B | !i(t : A) : !A
| d(t : A) :?A | c((t :?A), (s :?A)) :?A | w :?A

| cut(t : A, s : A⊥) : ⊥
| 2i(t :?A) :?A | 2i(t : ⊥) : ⊥

where α ranges over a set of basic variables TVar , and i over a set of indexes Ind. We assume
that TVar is equipped with an involution operation α 7→ α. The idea is to use a pair α, α to
mark the pair of formulas introduced by an axiom, and an index i to mark the boundary of
a box in proof structures. The constructor c is taken to be associative and commutative.

In an almost straightforward way, one can transform a proof structure with conclusions
A1, ..., Am and containing a set of cuts between the pairs of formulae (B1, B⊥

1 ), ..., (Bm, B⊥
m)

in a set of proof terms ⊢ t1 : A1, ..., tm : Am, cut(s1 : B1, s′
1 : B⊥

1 ) : ⊥, ..., cut(sm : Bm, s′
m :

B⊥
m) : ⊥.

▶ Example 17. With the above notation, the proof-net represented in the standard notation
by the following diagram:
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A⊥ A⊥ A A

d d ⊗

?A⊥ ?A⊥ A ⊗ A

c !

?A⊥ !(A ⊗ A)

is written as the list of proof terms:

2i(c(d(α : A⊥) :?A⊥, d(β : A⊥) :?A⊥) :?A⊥, !i((β : A) ⊗ (α : A) : A ⊗ A) : !(A ⊗ A).

To limit redundancy, the MELL formulae appearing inside a proof term will be most of the
times omitted. With this convention, the above formula is written as:

2i(c(d α, d β)) :?A⊥, !i(β ⊗ α) : !(A ⊗ A).

The sets of proof terms representing a valid proof structure is inductively defined by the
following set of rules:

|=α : A⊥, α : A
(ax) |=Γ, t : A, s : B

|=Γ, t O s : A O B
(par) |=Γ1, t : A |=Γ2, s : B

|=Γ1, Γ2, t ⊗ s : A ⊗ B
(tens)

|=Γ
|=Γ, w :?A

(weak) |=Γ, t : A

|=Γ, d t :?A
(der) |=Γ, t1 :?A, t2 :?A

|=Γ, c(t1, t2) :?A
(con)

|=?Γ, s : A i fresh
|=2i(?Γ), !is :!A (prom) |=Γ1, t : A |=Γ2, s : A⊥

|=Γ1, Γ2, cutA(t, s) : ⊥
(cut)

where in each derivation rules with two premises, |=Γ1 |=Γ2
|=Γ , we implicitly assume that Γ1

and Γ2 have disjoint sets of basic variables and indexes, Γ denotes any possible set of proof
terms, ?Γ denotes a set of proof terms in the form t1 :?A1, . . . , tn :?An, s1 : ⊥, . . . , sm : ⊥,
for m, n ≥ 0.
Given ?Γ = t1 :?A1, . . . , tn :?An, s1 : ⊥, . . . , sm : ⊥, the expression 2i(?Γ) denotes

2i(t1) :?A1, . . . ,2i(tn) :?An,2i(s1) : ⊥, . . . ,2i(sm) : ⊥.

Note that in the compact notation for proof terms, in order to be able to associate
a MELL formula to each sub-proof term, we mark each application of cut with a MELL
formula. Moreover, it is necessary to choose a type variable α for each axiom rule, and an
index variable for each promotion rule. These choices are completely arbitrary, and therefore
we consider equivalent proof-nets that differ only by variable relabelling.

It is not difficult to check that the above rules are in direct correspondence with MELL
rules.

4.1 Lambda nets
In this paper, we are interested in λ-nets, that is in proof nets representing λ-terms. These
particular proof nets are characterised by introducing polarity on formulas and by restricting
the occurrences of O and ⊗ according to polarities. To model the pure untyped λ-calculus,
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one needs to define a structure isomorphic to its own function space, D = D → D; in the
linear logic encoding this corresponds to consider a proposition O such that O =!O ⊸ O =
?(O⊥) O O. As a consequence, we consider proof structures having as conclusion just four
kinds of propositions, O, !O, I and ?I, related by I = O⊥, and satisfying the equivalence
induced by O = !O ⊸ O . This in particular implies O = ?I O O and I = !O ⊗ I.

The grammar for proof terms is the following:

t : C ::= α : O | α : I

| (s :?I) O (t : O) : O | (t :!O) ⊗ (s : I) : I

| !i(t : O) :!O | d(s : I) :?I | c((s1 :?I), (s2 :?I)) :?I

| 2i(t :?I) :?I | 2i(s : ⊥) : ⊥
| cut(s : I, t : O) : ⊥ | cut!(s :?I, t :!O) : ⊥
| w :?I

In the following, we are going to consider two classes of λ-nets, the standard ones and a
modified version. Since we are dealing with a type system where only strongly normalisable
terms are typable, and principal types correspond to λ-nets in normal form, we need to define
a cut-elimination that is perpetual, i.e. it converges on a λ-net if the standard cut-elimination
procedure converges for every possible choice of order in which cuts are reduced. This can
be achieved by modifying the way weakening is defined. While in a standard cut-elimination
procedure boxes containing cuts can be removed, in our approach boxes are only partially
eliminated and the cuts that they contain are left pending, so the cut-elimination procedure
needs to explicitly eliminate all the cuts which are present in the λ-net.

In the following, we present two rules for weakening, the standard and the modified one:
standard λ-nets are built using standard weakening, i.e. rule (s-weak), while modified λ-nets
are constructed using modified weakening, i.e. rule (m-weak). Note that in a modified λ-net
a type variable, α or α, can appear just once. In the graphical representation of λ-nets, this
possibility corresponds to admitting axioms with a single component.

λ-structures are then defined as sets of proof terms containing a single term with type O

or !O, with all other terms having types I, ?I or ⊥.
The set of rules defining λ-nets are the following:

|=α : I, α : O
(ax) |=Γ, s :?I, t : O

|=Γ, s O t : O
(par)

|=Γ1, s : I |=Γ2, t :!O
|=Γ1, Γ2, t ⊗ s : I

(tens)

|=Γ, s : I

|=Γ, d s :?I
(der) |=Γ, s1 :?I, s2 :?I

|=Γ, c(s1, s2) :?I
(con) |=?Γ, t : O i fresh

|=2i(?Γ), !it :!O (prom)

|=Γ1, s : I |=Γ2, t : O

|=Γ1, Γ2, cut(s, t) : ⊥
(cut)

|=Γ1, s :?I |=Γ2, t :!O
|=Γ1, Γ2, cut!(s, t) : ⊥

(cut!)

|=Γ
|=Γ, w :?I

(s-weak)
|=Γ1, t1 : O |=Γ2, t2 : O

|=Γ1, Γ2, t1 : O
(m-weak)

where in each derivation rules with two premises, |=Γ1 |=Γ2
|=Γ , we implicitly assume that Γ1

and Γ2 have disjoint sets of basic variables and indexes.
In this setting, the cut-elimination steps are defined by the following rules:

|=Γ, cut(s, α) : ⊥ →ces |=Γ[s/α]
|=Γ, cut(α, t) : ⊥ →ces |=Γ[t/α]
|=Γ, cut(t1 ⊗ s1, s2 O t2) : ⊥ →ces |=Γ, cut(s1, t2) : ⊥, cut!(s2, t1) : ⊥
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|=Γ, cut!(c(s1, s2), !i t) : ⊥ →ces

⊢ Γ(Dup(i)), cut!(s1, V erL(!i t)) : ⊥, cut!(s2, V erR(!i t)) : ⊥
|=Γ, cut!(2j s, !i t) : ⊥ →ces |=Γ[j, i / i], 2j(cut!(s, !i t)) : ⊥
|=Γ, cut!(d s, !i t) : ⊥ →ces |=Γ[ϵ / i], cut(s, t) : ⊥
|=Γ, cut!(w, !i t) : ⊥ →ces |=Γ(Del(i))

where with Γ[t/α], Γ[j, i / i], Γ[ϵ / i], Γ(Dup(i)) we denote respectively the environment Γ
where a suitable operation has been performed: namely, in Γ[t/α], the substitution of a
variable α by the term t; in Γ[j, i / i], the substitution of each 2i by the sequence 2j2i; in
Γ[ϵ/ i], the cancellation of each 2i; in Γ(Dup(i)), the duplication of each subterm in the
form 2it, implemented similarly to the MGU algorithm; in Γ(Del(i)), the substitution of
each subterm in the form 2it by w.

Notice that the first two rules for cut-elimination correspond to the standard rule for
the axiom case, the 3rd rule corresponds to the standard rule for par-tensor, the 4th rule
corresponds to the standard rule for the promotion-promotion case, where one box is inserted
into the other, the 5th rule corresponds to rule for dereliction-promotion where a box is
eliminated, and the 6th rule corresponds to the contraction-promotion case where a box is
duplicated. The last rule is the weakening-promotion case, and it will be applied only to
λ-nets obtained through the standard translation of λ-terms.

Notice moreover that there is an, at the moment informal, one to one correspondence
between the MGU-rules and the first 6 rules of cut-elimination. This correspondence will be
formalised later.

4.2 From λ-terms to λ-nets
In this section we present two translations from λ-terms in the two classes of λ-nets: a
translation S to standard λ-nets, mimicking the standard translation, [20], and a modified
translation, L, in the modified λ-nets. We will state some properties explaining how the two
translations are connected; this will allow us to derive properties of L from already known
properties of S.

▶ Definition 18. We associate to a λ-term M two λ-structures, L(M) and S(M), where the
types ?I appearing outermost are marked with the free variables of M .
The λ-net L(M) is inductively defined as follows:

L(x) = |=d α :?Ix, α : O

L(M) = |=Γ1, t : O L(N) = |=Γ2, s : O α fresh
Var(Γ1, t : O) ∩ Var(Γ2, s : O) = ∅

L(MN) = |=c(Γ1,2iΓ2), cut((!is) ⊗ α), t) : ⊥, α : O

L(M) = |=Γ, s :?Ix, t : O

L(λx.M) = |=Γ, s O t : O

L(M) = |=Γ, t : O x, α fresh
L(λx.M) = |=Γ, (d α) O t : O

where c(Γ, Γ′) = {c(s, t) :?Ix | (s ∈?Ix) ∈ Γ ∧ (t :?Ix) ∈ Γ′)}
∪{s :?Ix | (s ∈?Ix) ∈ Γ ∧ ∄t . (t :?Ix) ∈ Γ′} ∪ {s :?Ix | (s ∈?Ix) ∈ Γ′ ∧ ∄t . (t :?Ix) ∈ Γ}.

The standard λ-net S(M) is inductively defined by the same rules as above, just the last rule
is reformulated as:

S(M) = |=Γ, t : O x fresh
S(λx.M) = |=Γ, (w O t) : O
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Notice that in the above definition one needs to choose the type and index variables
appearing in L(M), however, all choices generate equivalent λ-nets.

▶ Lemma 19. The function L associates to each λ-term M a λ-net in the form L(M) =
|=s1 :?Ix1 , . . . , sn :?Ixn , t1 : ⊥, . . . , tk : ⊥, t : O, where {x1, . . . , xn} = FV (M), k gives the
number of cuts, which corresponds to the number of applications in the λ-term. A similar
result holds for S.

Proof. By induction on the structure of M . One can easily check that the λ-structure
L(M) is a λ-net, using the inductive hypothesis and a suitable set of derivation rules. The
correspondence is the following:

for a variable one uses (ax) and (der) rules;
for a λ-abstraction binding a variable appearing in the body of the term, one uses the
(par) rule;
for a λ-abstraction binding a variable not appearing in the body of the term, one uses
(ax), (der), (m-weak), and (par) rules;
for application, one uses (prom), (ax), (tens), (cut), and (con) rules.

An analogous proof can be formulated for S. ◀

Notice that, given a λ-term M in normal form, the translations L(M) and S(M) are λ-
nets not in normal form, however they can be reduced to normal form by a number of
cut-elimination steps all of the shape |=Γ, cut(s : I, α : O) : ⊥ →ces |=Γ[s/α]. Quite often
proof nets that differ just by the application of the above cut-elimination steps are informally
considered equivalent.

The translation L differs from the standard translation S of λ-calculus into λ-nets because
of the weakening rule. This difference leads to a difference in the way cut-elimination is
performed. The standard translation leads to cuts between exponentials and weakening
constants, where the whole box containing the exponential is eliminated. The new translation
leads to cuts between unpaired variables and exponentials, where not the whole box containing
the exponential is eliminated, but just the exponential terms, while the remaining parts of
the box are left unchanged, just the box boundary is removed. As a consequence, given a
closed term M , the cut in L(M) can be eliminated if and only if M is strongly normalisable,
and this is due to the fact that in cut-elimination no cut is deleted without being resolved.

In the following we present a formal proof of the above facts.

▶ Definition 20.
(i) Let ⪅ be the least congruent order relation on proof terms and λ-nets s.t. w :?I ⪅ d β :?I,

for any type variable β.
(ii) Let ≲ be the least congruent order relation on proof terms and λ-nets such that:

w :?I ≲ d β :?I, t :?I ≲ c(t, t′) :?I

|=Γ ≲ |=Γ, t :?I, |=Γ ≲ |=Γ, t : ⊥, and |=Γ, t : A ≲ |=Γ, t′ : A whenever
t : A ≲ t′ : A.

A lemma relating ⪅ and ≲ is the following:

▶ Lemma 21. If |=Γ ⪅ |=Γ′, |=Γ ≲ |= ∆ and ∆ does not contain the constant w, then
there exists |=Γ′′, which coincides, up-to renaming of type variables, with |=Γ′, and such that
|=Γ′′ ≲ |= ∆.

Proof. Any instance of w appearing in Γ must be replaced by a proof terms t :?I with
d β :?I ≲ t :?I (for some type variable β) in ∆, while the same instance of w, can remain
the same or be replaced by a proof term d α :?I in Γ′. The λ-net |=Γ′′ is obtained from |=Γ′

by replacing any such α in Γ′ by the corresponding β appearing in ∆. ◀
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The relation ≲ is preserved by the cut-eliminations steps, that is:

▶ Lemma 22. For any pair of λ-nets |=Γ and |=∆ such that |=Γ ≲ |= ∆, the following hold:
for any Γ′ such that |=Γ →ces |=Γ′, there exists ∆′ such that |=∆ →ces |=∆′ and
|=Γ′ ≲ |= ∆′.
for any ∆′ such that |=∆ →ces |=∆′, either |=Γ ≲ |= ∆′ or there exists Γ′ such that
|=Γ →ces |=Γ′ and |=Γ′ ≲ |= ∆′.

|=Γ ≲ |=∆

|=Γ′ ≲ |=∆′

ces ces

Proof. Both items can be proved by case analysis on the kind of the cut-elimination step,
and by observing that, when |=Γ ≲ |= ∆, any subterm in Γ appears, possibly in an extended
form (i.e. c(t, t′) in place of t) also in ∆, therefore any reduction in Γ can be replicated in
∆. ◀

The above lemma, whose proof is immediate, relates the λ-nets S(M) and L(M) for any
term M .

▶ Lemma 23. For any term M , S(M) ≲ L(M) and S(M) ⪅ L(M).

The following lemmas show that β-reduction on λ-terms can be simulated (even not
faithfully) by cut-elimination.

▶ Lemma 24. For any pair of λ-terms M and N , if M →β N , then there exists a λ-net |=Γ
such that L(M) →ces |=Γ and L(N) ≲ |=Γ.

Proof. By the properties of λ-nets, see e.g. [19], we have that S(M) →ces S(N), then by
Lemmas 23 and 22, there exists |=Γ such that L(M) →ces |=Γ and S(N) ≲ ⊢ Γ. Applying
Lemmas 21 and 23, we derive the thesis. ◀

Notice that if M does not contain any affine abstraction, L(M) coincides with S(M),
and so if M β-reduces to N , also L(M) reduces to L(N).

A subject reduction property for λ-nets in normal form is the following:

▶ Lemma 25. For any pair of λ-terms M and N , if M →β N , and L(M) normalises to a
cut-free λ-net |=Γ, then also L(N) normalises to a cut-free λ-net |=Γ′, and |=Γ′ ≲ |= Γ.

Proof. By Lemma 24 there exists |=∆ such that L(M) →ces |=∆ and L(N) ≲ |=∆. Since
cut-elimination satisfies the Church-Rosser property, it is possible from |=∆ to reduce to |=Γ.
By multiple applications of Lemma 22, L(N) reduces to a λ-net |=Γ′ satisfying |=Γ′ ≲ |= Γ.
Hence |=Γ′ does not contain any cut, that is, is in normal form.

L(M) |=∆ |=Γ

L(N) |=Γ′

ces ces∗ces∗

≳

ces∗

≳

◀

For λ-nets not containing the constant w all reduction strategies are equivalent from the
termination point of view.
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▶ Lemma 26. For any λ-net |=Γ not containing the constant w, either the cuts cannot be
completely eliminated from |=Γ or any possible sequence of cut-elimination steps leads to a
normal form.

Proof. Let corecursively define a cut divergent if, when eliminated by the associated elimin-
ation rule, it generates new cuts and one of these is divergent. Notice that no rule can create
a new divergent cut, unless a divergent cut already exists in the λ-net. If a cut-elimination
sequence diverges on a λ-net |=Γ, then |=Γ must contain a divergent cut. If the constant
w is not present in a λ-net |=Γ, no rule eliminating boxes can be applied, so no cut can be
eliminated as a consequence of the elimination of a box. It follows that, if |=Γ can diverge, it
contains a divergent cut, then divergent cuts cannot be completely eliminated from |=Γ, no
matter in what order the reduction steps are applied. ◀

The previous proposition implies that, for any λ-term M , strong normalisation and weak
normalisation on L(M) coincide.

▶ Proposition 27. For any λ-term M , the following conditions are all equivalent:
(i) L(M) is weakly normalising.
(ii) L(M) is strongly normalising.
(iii) S(M) is strongly normalising.
(iv) M is strongly normalising.

Proof. By Lemma 26, conditions (i) and (ii) are equivalent.
The implication (ii) ⇒ (iii) is proved using Lemmas 23 and 22. In fact, by these lemmas,
any reduction starting from S(M) can be lifted to a reduction starting from L(M). Since
the lifted reduction terminates, also the original reduction terminates.
To prove (iii) ⇒ (i), one starts with S(M) and applies a reduction strategy where no cut
rule for w is used if the eliminated box contains a cut. In this case one eliminates first the
cut inside the box. Since S(M) is strongly normalising, in this way we obtain a terminating
chain C of reductions. Using the construction in Lemma 22, the chain C can be lifted to
a sequence of reductions starting from L(M). Since no box containing a cut is eliminated,
the lifted chain does not contain extra cuts, hence this leads to a cut-free λ-net, that is it
terminates.
The equivalence between (iii) and (iv) is a standard result in the theory of proof nets, [20]. ◀

4.3 From principal types to λ-nets
We define functions Pp, Pn transforming positive and negative principal types in proof terms
representing parts of proof nets:

Pp(α) = α : O

Pp(σ̂ ⊸ τ) = (Pn(σ̂) O Pp(τ)) : O

Pp(2i!τ) = (!iPp(τ)) :!O
Pn(α) = α : I

Pn(τ̂ ⊸ σ) = (Pp(τ̂) ⊗ Pn(σ)) : I

Pn(!σ) = d(Pn(σ)) :?I

Pn(2iσ̂) = 2i(Pn(σ̂)) :?I

Pn(σ̂1 ∧ σ̂2) = c(Pn(σ̂1), Pn(σ̂2)) :?I

The translations above induce a translation P from judgements to cut-free λ-nets, where the
types in the proof net are indexed by free variables:

P(x1 : σ̂1, . . . , xn : σ̂n ⊩ M : τ) = |= Pn(σ̂1)x1 , . . . , Pn(σ̂n)xn
, Pp(τ).
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First of all, we have the following lemma (whose proof is immediate):

▶ Lemma 28. The function Pp defines an isomorphism between positive simple-types and
proof terms having type in the form t : O, and between positive and-types and proof terms in
the form t :!O; the function Pn defines an isomorphism between negative simple-types and
proof terms having type in the form t : I, and between negative and-types and proof terms in
the form t :?I.

The main result of this section consists in showing that a judgement ∆ ⊩ M : τ is
derivable if and only if L(M) reduces to the cut-free λ-net P(∆ ⊩ M : τ). In order to show
this, we need first to establish a correspondence between performing cut-elimination and
evaluating a MGU and applying it to a judgement. This correspondence is expressed by the
following lemma:

▶ Lemma 29. For any negative type ν and positive type µ, either both simple or both
and-types, and for any judgement ∆ ⊩ M : τ ,

MGU(ν, µ) exists iff the λ-net |=cut(Pn(ν), Pp(µ)) reduces to a cut-free λ-net.
If MGU(ν, µ) exists, then:
P(MGU(ν, µ)(∆ ⊩ M : τ)) is equal to the normal form of |=Γ, cut(Pn(ν), Pp(µ)) : ⊥,
where Γ = P(∆ ⊩ M : τ).

Proof. The proof is by induction on the derivation MGU(ν, µ) = U , for some unification U .
Informally, the correspondence can be explained in the following way. When in a proof net
|=Γ, cut(Pn(ν), Pp(µ)) : ⊥ the cut cut(Pn(ν), Pp(µ)) : ⊥ is eliminated, the remaining part
of the proof is affected in several ways, i.e. some variables are substituted, some boxes are
duplicated, the boundaries of some boxes are deleted, some boxes are inserted in other boxes.
All these actions coincide with the actions generated by the MGU(ν, µ). ◀

Comparing the MGU definition to cut-elimination, one observes that, while the MGU
is essentially deterministic, i.e. there is always a single rule to apply (up-to the axioms,
in the case of two variable types), the cut-elimination procedure is non-deterministic, i.e.
one can choose the order in which cuts are eliminated. So the MGU evaluation is in direct
correspondence with one particular strategy of cut-elimination. However, in Proposition 27
we have shown that all strategies on L(M) are equivalent from the normalisation point of
view.

We are now in the position to state the following:

▶ Proposition 30. For any ∆, M, τ , the principal type judgement ∆ ⊩ M : τ is derivable iff
the λ-net L(M) reduces, by cut-elimination, to the cut-free λ-net P(∆ ⊩ M : τ).

Proof. The proof is by induction on the structure of M , all cases but application are
immediate. For the application case, M = M1N , one distinguishes two subcases. The first
is when the normal form of L(M1) has the shape |=Γ, α : O. In this case, one observes
that the cut introduced by the main term application can be eliminated in one step, by a
single substitution, and the normal form of L(M1N) coincides with the λ-net obtained by
P-translation of a judgement derived by the (appNorm)-rule. When this case does not apply,
i.e., L(M) is not in the form |=Γ, α : O, the thesis follows from Lemma 29 and from the fact
that L(M) is weakly normalising iff it is strongly normalising, by Proposition 27. ◀
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5 Applications

In this section we aim at showing how the various correspondence results established in the
previous sections (between the two typing systems, λ-nets and the principal typing system,
the two translations of λ-terms into λ-nets) can be exploited to prove properties of the
ground typing system of Definition 2.

The properties that we are going to analyse are strong normalisation, subject reduction,
and inhabitation. Such properties are already known, and they have been extensively studied
in the literature, but here we present alternative proofs based on the above correspondence
results.

All proofs in this section follow this basic pattern:
given a property of λ-terms, we associate a property of λ-nets via the standard interpret-
ation;
via the correspondence between standard and modified interpretations, we associate a
property of λ-nets through the modified interpretation;
via the correspondence between modified interpretation and the principal typing system,
we associate a property on principal types;
finally, via the correspondence between the principal typing system and the ground
system, we derive a property of the ground typing assignment system.

5.1 Typability and strong normalisation
Idempotent or non-idempotent intersection types are quite often used to characterise (strongly)
normalisable terms, [2, 22, 3, 6]. By extending the chain of equivalences of Proposition 27, we
can give an alternative proof of a classical result, using the correspondence between principal
types and lambda-nets:

▶ Proposition 31. For all M ∈ Λ0, the following conditions are equivalent:
(i) M is strongly normalising.
(ii) M has a principal type.
(iii) M has a ground type.

Proof. By Proposition 27, M is strongly normalising iff L(M) is normalisable, by Proposi-
tion 30 this is equivalent to (ii), which in turn is equivalent to (iii) by Theorem 16. ◀

5.2 Subject reduction
Subject reduction is a sort of minimal requirement for any typing system; again one can use
the correspondence between principal types and lambda-nets to derive this standard result.
In particular, subject reduction holds up-to a suitable ≲-relation on types. Notice that,
however, subject conversion fails, as it is always the case for typing systems characterising
strongly normalisable terms.

▶ Definition 32. Let ≲ be the least precongruence on (principal) types extending the relation
σ̂1 ≲ σ̂1 ∧ σ̂2.

Precongruences on types and on λ-nets are related by:

▶ Lemma 33. For all positive types µ1, µ2, µ1 ≲ µ2 iff Pp(µ1) ≲ Pp(µ2).

▶ Theorem 34 (Subject Reduction). For all M ∈ Λ0,

⊢ M : τ & M →β N =⇒ ∃τ ′. ⊢ N : τ ′ & τ ′ ≲ τ .
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Proof. By Theorem 16, M has a principal type, hence, by Proposition 31, M is strongly
normalisable. Therefore also N is strongly normalisable, and by Proposition 31 it has a
principal type. By Proposition 30, both L(M) and L(N) reduce to normal forms. Since M

and N are closed, such λ-nets are composed by a single proof term, |=t1 : O and |=t2 : O.
Moreover, let τ1 and τ2 be the type schemata such that Pp(τ1) = t1 and Pp(τ2) = t2 (they
exist since Pp is an isomorphism). By Lemmas 24 and 22, |=t2 : O ≲ |=t1 : O, and therefore,
by Lemma 33, τ2 ≲ τ1. By Proposition 30 ⊩ M : τ1 and ⊩ N : τ2. By Theorem 16(i), there
exists a substitution-replication T such that τ = T (τ1). Since τ2 ≲ τ1, it follows that T (τ2)
is a ground type, hence ⊢ N : T (τ2), and T (τ2) ≲ τ . ◀

5.3 Inhabitation
Here we show that the inhabitation problem for principal types can be reduced to the problem
of correctness of λ-structures, and therefore it is decidable. Then we reflect this result to the
ground typing system, obtaining an alternative proof of the decidability result proved in [5].
Here the hypothesis of non-idempotency of the ∧-operator is essential.

▶ Proposition 35. For any list of negative and-types σ̂1, ..., σ̂n, and for any positive type τ ,
there exists a λ-term M with free variables x1, ..., xn such that: x1 : σ̂1, . . . , xn : σ̂n ⊩ M : τ

if and only if the λ-structure |=Pn(σ̂1), . . . , Pn(σ̂n), Pp(τ) is a λ-net.

Proof.
(⇒) If M exists then, by Proposition 30, |=Pn(σ̂1), . . . , Pn(σ̂n), Pp(τ) is the normal form of
L(M), and therefore a λ-net.
(⇐) By structural induction on the derivation of λ-nets, we show that, for any λ-net in
the form |=s1 : I, . . . , sm : I, t1 :?I, . . . , tn :?I, t : O, there exists a λ-term M with free
variables x1, . . . , xm, y1, . . . , yn such that each variable xi appears once in M , and the
normal form of L(M) is the λ-net |=d s1 :?Ix1 , . . . , d sm :?Ixm

, t1 :?Iy1 , . . . tn :?Iym
, t : O

(up-to commutativity and associativity of the contraction operator, c). Then the thesis
follows from Proposition 30. In proving the above fact, many of the inductive cases are
quite straightforward, here we consider the most difficult ones, namely (tens), (con), and
(m-weak). In the following, let the metavariable Γ denote a sequence of proof terms in the
form t1 :?I, . . . tn :?I, while ∆ denotes a sequence of proof terms in the form s1 : I, . . . , sm : I,
in this case ∆? denotes the sequence of proof terms d s1 :?I, . . . , d sm :?I.
(tens) Let us suppose that |=∆1, Γ1, Γ2, t2 ⊗ s : I, t1 : O is derived from |=∆1, Γ1, s : I, t1 : O

and |=Γ2, t2 :!O. Notice that |=Γ2, t2 :!O can only be derived through the (prom) rule. By
inductive hypothesis there exist two terms M [x] and N , such that M [x] contains a variable x

once and the normal form of L(M [x]) has shape |=∆1?, d s :?Ix, Γ1, t1 : O, while the normal
form of L(N) has shape |=Γ2, t2 :!O. Quite obviously, the free variables in M [x] and N can
be chosen is such a way that no free variable is in common between the two terms. Now one
can prove by structural induction on M [x] that the normal form of L(M [x]N) has shape
|=∆1?, Γ1, Γ2, d(t2 ⊗ s) :?I, t1 : O, from which the thesis follows.
(con) Let us suppose that |=∆, Γ, c(s1, s2) :?I, t : O is derived from |=∆, Γ, s1 :?I, s2 :?I, t : O,
by inductive hypothesis there exists a term M [y1, y2] such that L(M [y1, y2]) has shape
|=∆?, Γ, s1 :?Iy1 , s2 :?Iy2 , t : O. Now one can prove, by structural induction on M [y1, y2],
that the normal form of L(M [y, y]) has the shape (up-to commutativity and associativity of
contraction) |=∆, Γ, c(s1, s2) :?Iy, t : O, from which the thesis follows.
(m-weak) Let us suppose that |=∆, Γ, ?Γ′, t : O is derived from |=∆, Γ, t : O and |=?Γ′, t′ : O.
By inductive hypothesis, there exist terms M and N such that the normal forms of L(M)
and L(N) have shapes |=∆?, Γ, t : O and |=?Γ′, t′ : O. Let x be a variable fresh in M , then
it is easy to check that the normal form of L((λx.M)N) has shape |=∆?, Γ, ?Γ′, t : O. ◀
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▶ Proposition 36. The inhabitation problem for principal types is decidable.

Proof. By Proposition 35, a type schema τ is inhabited iff the λ-structure |=Pp(τ) is a λ-net.
Notice that, since we consider a modified version of the weakening rule, one cannot use
the standard correctness criterion for λ-structures. However, by a simple induction on the
complexitity of λ-structures, it is easy to prove that the correctness problem is decidable
also in the case of modified weakening. ◀

The previous result can then be transferred to the ground type system, obtaining an
alternative proof of the decidability result of [5].

▶ Proposition 37. The inhabitation problem for ground types is decidable.

Proof. By Theorem 16, a ground type τ is inhabited by a term M if and only if there is a
type schemata τ ′ inhabited by M , and such that τ is an instance of τ ′. Now a ground type τ

can be the instance of just a finite set of well-formed positive type schemata, {τi | 0 < i ≤ n},
that one can construct starting from τ . So the inhabitation of τ can be reduced to the
inhabitation of the finite set of type schemata {τi | 0 < i ≤ n}, which is decidable. ◀

Notice that, in the proof of the above proposition, the hypothesis of non-idempotency
of ∧ is essential. Namely, if ∧ is idempotent, it is not true that a ground type can be an
instance of just a finite set of type schemata. In fact, it is known that the inhabitation
problem is undecidable for ground types when ∧ is idempotent [27].

5.4 Normalisation algorithm for λ-terms
As a further development of the theory in the present paper, it is possible to use the type
system for principal types to build a normalisation algorithm for λ-terms, that in turn can
be seen as a normalisation algorithm based on proof nets, but working on terms and not
on graphs. The code of the Haskell implementation of the above algorithm is available
as supplementary material of the present submission in [14]. It is quite simple but not
particularly efficient. Mainly, we wrote it as a first check of correctness for the formally given
rules.

6 Final Remarks

We have illustrated the analogy of “principal types as λ-nets”, by focusing on a specific type
assignment system for typing strongly normalising λ-terms. The correspondence allowed
us to relate different concepts and to derive properties of the type assignment system from
known results on λ-nets.

In our type assignment system, the ∧ operator is taken to be non-idempotent, however,
all the results in the present paper, apart from inhabitation (Proposition 37), hold also in
the case of idempotency of ∧.

In this paper, we started from a type assignment system, and we built a modified version
of λ-nets that naturally correspond to the principal types of our type assignment system.
However, it is also possible to move the other way round, that is, start from a given notion
of λ-net, define a corresponding principal type assignment system and from this build a
corresponding ground type assignment system. If the construction is carried out correctly, the
ground assignment system will automatically satisfy properties of subject reduction, strong
or weak normalisation, etc. As future work, we plan to pursue this investigation by starting
from standard λ-nets or from different encodings of the λ-calculus in proof nets, in particular
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the one associated with the call-by-value reduction strategy, see [19], Section 4.2.1. The
corresponding type assignment systems should characterise weakly (or strongly) normalising
λ-terms w.r.t. different reduction strategies.
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