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Abstract

Nowadays, Generative models are considered as potentially successful tools for various different
tasks with different types of data. Many effective and interesting studies based on Generative
models have been introduced, and have achieved good results in various applications even beyond
computer vision. Generative models, which can model the probability distribution of the input data,
have been intensively studied in numerous application. They have been used in text-guided content
generation tools which, are useful and for artists, architects and designers. In addition, They used to
improve information retrieval tools which are useful for text summarization and question generation.
Moreover, generative models are rapidly gaining the interest of researchers in protein sequence
and structure prediction. These models emerged as promising candidates for sequence-data-driven
approaches to protein design, and for the extraction of structural and functional information about
proteins deeply hidden in rapidly growing sequence databases. Protein structures provide a great
level of understanding on how a protein works, and this, in turn, can allow us to create hypotheses
about how to affect it, control it, or modify it. For example, knowing a protein’s structure could
allow you to design site-directed mutations with the intent of changing function. Or you could
predict which kinds of molecules are able to bind to that specific protein. A lot of important tasks
are tackled using generative models, and in particular Generative Adversarial Networks (GANs) and
Transformer-based models (T5) with an increasing trend. In this thesis, I introduce three interesting
tasks and explore the capabilities of different generative models that can be used to solve them, in
order to better understand GAN-based and Transformer-based architectures of generative models
for a better understanding of GANs based architectures and Transformer based architectures. I refer
to the importance of generative models in three different domains: Image Synthesis, Keyphrases
Extraction and Protein Structure Prediction. In the first task a GAN model is applied for Text
to Image Synthesis on Machine Generated Captions. Text to Image Synthesis refers to the process
of automatic generation of a photo-realistic image starting from a given text and is revolutionizing
many real-world applications. The results of using GANs for creating realistic images from specific
distribution given text description have raised many ethical issues along the way. However, there
are some dataset which do not contain associated captions. In order to solve this problem, a GAN
is trained on machine-generated captions. For the experiments, I choose to use the uncaptioned
dataset LSUN bedroom. The results obtained in the study are preliminary but still promising. The
second domain is applying generative models to the problem of Keyphrase Generation. Keyphrase
Generation is the task of synthesizing keyphrases for a piece of text, that is short pieces of text that
convey the main semantic meaning of a document. I introduce a keyphrase generation approach that
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makes use of the GAN architecture. In this system, the Generator produces a sequence of keyphrases
for an input document. The Discriminator, in turn, tries to distinguish between machine generated
and human curated keyphrases. I propose a novel Discriminator architecture based on a BERT
pretrained model fine-tuned for Sequence Classification. I trained our proposed architecture using
only a small subset of the standard available training dataset, amounting to less than 1% of the total,
achieving a great level of data efficiency. The resulting model is evaluated on five public datasets,
obtaining competitive and promising results with respect to four state-of-the-art generative models.

The third domain regards the task of predicting the secondary structure of the proteins from
their single sequence alignments. The most successful methods currently available, which employ
multiple alignments of sequences, can predict the secondary structure of proteins with excellent
performance. Predictions based on multiple alignments take advantage of all the amino acids found
at a given position and their frequencies, reaching very high accuracy. However, the effect of a
single amino acid substitution in a specific protein tends to be hidden by the alignment profile.
Many studies have shown the potential of generative Transformer based architecture to increase the
capacity of handling sequence data. Accordingly, to better understand the effect of single amino
acid in that task, I analyze five different architecture for the task, incluing a model based on a
generative Tranformer architecture (T5), discriminative deep learning models and linear models.
The generative Tranformer-based architecture (T5) is an encoder decoder transformer pretrained in
a text to text denoising generative setting. I compare the performance of the five models using their
accuracy in predicting the secondary structure of a protein, but also use the DeepLIFT analysis to
assess the effect of each amino acid at each position on the secondary structure prediction. The
analysis shows how different network architectures use the information of single protein sequences
and highlights their differences with respect to linear models.
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Chapter 1

Introduction

Deep learning techniques have achieved impressive accuracy and improved the state-of-the-art in
many fields, like speech recognition, visual object recognition, object detection, drug discovery and
genomics [66]. Deep learning models consist of a network of multiple processing layers. Data flows
in the network to discover intricate structures in large datasets, while backpropagation is used to
indicate how the model should change its internal parameters to improve the task for which it
has been designed [66]. Deep learning algorithms had the most success in discriminative models,
which are a class of models used for statistical classification, i.e. identifying which one of a set of
categories a new observation belongs to. Deep learning is a series of machine learning methods based
on special forms of neural networks that can conduct both feature extraction and classification in
unison and with little human effort. It aims at teaching machines to automate the tasks performed
by human sensory systems. One of the most powerful and distinctive aspects of human cognition
is the ability to imagine (synthesize) mental objects which are not limited by what is immediately
present in reality. The area of machine Learning which aims to endow machines with this same
essential capacity to imagine and synthesize new entities is referred to as generative modeling. There
are many practical motivations for generative models. One common argument is that humans may
use generative models as a way of doing supervised and reinforcement learning while using less
labeled data. Generative modeling is the use of artificial intelligence, statistics and probability in
applications to produce a representation or abstraction of observed phenomena or target variables
that can be calculated from observations. Generative modeling is used in unsupervised machine
learning as a means to describe phenomena in data, enabling computers to understand the real
world. This artificial intelligent understanding can be used to predict all manner of probabilities
on a subject from modeled data. Generative modeling can automatically discover and learn the
regularities or patterns in input data in such a way that the model can be used to generate or output
new examples that plausibly could have been drawn from the original dataset where is the quality of
the generated examples is so close to the original ones and difficult to distinguish. Generative models
have achieved tremendous success in just a few years. A Generative model has a powerful way of
learning any type of data distribution using unsupervised learning. This means that generative
models aim at learning the true data distributions pdata of the training set to generate new data
points with some variations. But it is not always possible to learn the exact distribution of the data
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under analysis either implicitly or explicitly and so we try to model a distribution that is as similar as
possible to pdata. It means that we can leverage the power of neural networks to learn a function that
can approximate the model distribution to the true distribution. One of the strengths of generative
models that is used to improve the generalization of deep learning models in the training. To train
effective neural networks large amounts of data are needed. In the low-data regime, parameters
are underdetermined, and the network generalizes poorly. Data Augmentation alleviates this by
using existing data more effectively. However standard data augmentation produces only limited
plausible alternative data. Using generative models, generated samples provide a greater diversity
of augmentations that allow adversarial training to perform well using an inexpensive approach.
Generative models have been used in various tasks such as information retrieval [4], text classification
[100], speech generation [123].
Not only generative Networks are capable of creating entirely new data (such as images, text, or
speech), but also they do so in a way where the user can have more control over the type of data
that will be generated. While generative models are quite capable of handling different types of
problems and achieving the necessary solutions, there are numerous variations of these generative
models to accomplish more specific tasks in order to achieve the best possible results. It is a way
to get complete control over the type of data that we aim to generate with these simple networks,
which might sometimes be required if you train the data on a larger dataset but need to generate
a specific type of data (or image) that you are looking for. Those types of networks are called
conditional generative models. Conditional generative architectures help to solve various tasks in
many applications. For example, in the application of image-to-image translation, we make use of
an input image to map it to its respective output image. With the help of a conditional model,
we can specify the type of input image that we want as the particular condition and train the
output images accordingly with respect to the input image. Given the particular input condition,
one or more variations of the respective output can be generated. In addition, the application
of the text to image synthesis is similar to the one we worked on in the second chapter of this
thesis. Given a text description, the generative network of CGAN can generate images for the
particular description [85]. Those conditional generative architectures are extremely useful for
some significant applications that help artists and designers to solve various problems like super-
resolution, colorization, and artistic style transfer in various tasks. For example,tile art generation
[78] where images are made by assembling small pieces of actual tiles. We can also mention the task
of generating aesthetically pleasing photography, sometimes termed photographic fine art [86] and
the task of painting generation where generative model can be conditioned on different attributes
of paintings in order to generate novel paintings that have specified attributes of our choosing [85].
There are many types of generative models that are commonly used as efficient approaches. We
are going to focus on two types from those types: generative Adversarial Networks (GAN) and
Transformer blocks. Transformer blocks are different types of building blocks that are widely used
in neural networks designed for generative problem. In this chapter, I will provide a brief overview
of several popular generative models. Based on this, I will then discuss the contributions that have
made in this field during my Ph.D. study. This includes the generative models that I introduce for
text-to-image translation, keyphrase generation, and protein structure prediction.
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1.1 GAN: Generative adversarial networks

Generative adversarial networks(GAN) [32] is a framework for learning generative models through
the use of an adversarial process. a GAN works to generate new data which can not be distinguished
from real data that is a different learning process from Autoencoders(AEs) which learns to encode
the given input (say, an image) and then reconstructs it from the encoding. AEs is a type of artificial
neural network used to learn data encoding in an unsupervised manner [62]. The aim of AEs is
to learn a lower-dimensional representation (encoding) for higher-dimensional data, typically for
dimensionality reduction, by training the network to capture the most important parts of the input
image. AEs aim at learning to reconstruct its input by minimizing the loss between original data
and compressed data,

Figure 1.1: Autoencoder Schema Source

To do so, the AEs use two main components: an encode that compresses the input, and a decoder
that tries to reconstruct it as shown in Figure 1.1. While GAN consists of two neural networks
called the generator (generative model) denoted by G and the discriminator (discriminative model)
denoted by D. The adversarial process comprises the training of both the generator G and the
discriminator D simultaneously.
The generator G is trained to learn the true data distribution pdata. The discriminator D, on
the other hand, acts as the adversary of the generator and is trained to distinguish between the
real data samples and the samples generated by the generator G. While the discriminator has
access to both the real and the fake data, the generator does not have access to the real data,
thus it can learn only from the interaction with the discriminator. The error is calculated based
on whether the discriminator can distinguish successfully the reals from the fakes. The calculated
error is then used to train both the discriminator and the generator. The competition between
the generator and the discriminator leads to an improvement to their methods until the fake data
are indistinguishable from the reals. Figure 1.2 provides a high-level overview GAN. Consider pg
denote the true distribution over an observed data sample x ∈ X and pz denote the input noise’s
prior. Then, the generator G(z; θg) represents a mapping from the noise space to the data space
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Figure 1.2: GAN ArchitectureSource

and is parameterized by θg. The discriminator D(z; θd)is also parameterized by θd and produces a
singular probability value. The higher the output probability the more likely it is that the input to
the discriminator was sampled from pdata(x). Alternatively, the discriminator D and the generator
G play the following min-max game with the objective function V (G,D):

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1.1)

GANs have become widely used for generative modeling tasks in both computer vision [3, 9] and
Natural language Processing (NLP) [135, 148] domains with great success.

1.1.1 Conditional Generative Adversarial Network

On GAN, there is no possibility to control the data samples generated by the generator. Mirza et al
[84] proposed a conditional generative adversarial network (CGAN). The proposed CGANs allowed
the generated samples from the generator to be conditioned on some supplementary information
about the input data items. Many methods use simple conditional variables such as attributes
or class labels [18, 90, 129] to represent this information. Other works condition images for the
tasks of photo editing [10, 154] domain transfer [119, 50], and super-resolution [67]. GAN can be
extended to CGAN by feeding y which represents information about the data denoted by x to both
the generator and the discriminator. So, the objective function for CGAN became the following
equation:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (1.2)

1.2 Transformer

We will explain step by step the transformer approach. Since thet Transformer-based framework
was built for machine translation task. We start by defining machine translation. Machine Trans-
lation A sequence-to-sequence task deals with a certain sequence (e.g., words, genes, etc) and its
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output is a sequence as well. An example of such a problem is a machine translation that gets
a sequence of words in English that will be translated into a sequence of Italian words. Some
other examples are questions answering, part-of-speech tagging, etc. There are a few ways to solve
the translation problem e.g., RNNs, ConvS2S, and Transformers-based models. There are some
attempts to solve the machine translation task using recurrent neural networks (RNN) based archi-
tectures that have shown the best performance but still they have some problems to cope with long
range of dependencies that had to be solved. Because of the problem of their recurrent nature, It is
difficult to parallelize each hidden state that depends on the previous one and make it efficient on
GPUS. To solve this problem, Vaswani et al. [124] proposed an encoder-decoder model architecture
based entirely on an attention mechanism called the Transformer [124]. The Transformer blocks
utilize the self-attention mechanism extensively to model global dependencies between the input
and output which can be described as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.3)

where Q,K, V in the above function are interpreted as "query", "key" and "value" matrix. dk is the
dimension of K. Dot product attention was not applied directly to the positions. The multihead
attention mechanism was also added to the transformer blocks. The Q,K, V matrix are projected
into groups, and self-attention is applied within each group. Finally, the outputs of all heads are
concatenated and projected. The purpose of the multi-head attention is to make Transformer blocks
focus on different information in different subspaces. The encoder part of the model is bidirectional,
and it takes the sequence to be translated as input. Also, the decoder uses Transformer blocks and
masks over the attentions applied to the decoder to make sure that each position only attends to
its prefix. So, in the decoder, the model is unidirectional and it outputs the translated sequence.
Additionally, encoder-decoder attention is applied between the Transformer blocks in the decoder.
This allows each position in the decoder to attend to the encoder’s output. Figure 1.3 shows
illustrations of the encoder’s and decoder’s Transformer blocks. Recently, Transformer-based models
[26]started to outperform RNN-based methods in many tasks [74].
Transformers were used as a basis for modeling the language, which was possible by pretraining on
large-scale datasets of textual data, and these pretrained models were shown to be quite powerful
in zero-shot settings but also when finetuned on downstream tasks.

The Transformers architectures have been and continue to perform well in the range of NLP
tasks. It considered as are the basis of NLP that aim at solving many problems like sequence-
to-sequence tasks and handling long-range dependencies with ease. Transformer-based pretrained
Language models were proven to be potentially useful where pretrained weights can serve as a
regularization term to make the model have generalization performance [27]. Recently, Transformers
for generative tasks [144, 15] in the hope that the increased expressivity can benefit the generation
of complex images. Many tasks in computer vision are using transformers to synthesize pixels in an
auto-regressive manner [7], but the slow inference speed limits their practical usage. In the following
sections, we introduce some popular Transformers that were mainly useful to apply for the tasks
along this thesis (eg. BERT and T5).
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Figure 1.3: Transformer Framework: left half of the figure shows the encoder architecture and the
right half shows the decoder architecture.
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1.2.1 BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding

BERT model was introduced by Jacob Devlin et.al [24]. Bert is designed to pretrained deep bidirec-
tional representation from the unlabeled text by jointly working on both the left and right context
in all layers. The model architecture of BERT is bi-directional and is almost identical to the encoder
part described in Figure 1.3. BERT-base has twelve layers (Transformer blocks), each with twelve
self-attention heads and 768 hidden neurons. The input sentences for BERT were tokenized into
sub-words. A special token [CLS] was always placed in the head of the input sequence. There was
a need for the special token [SEP], which was for marking the end of a sequence if there might be
two sentences in the input. The token embedding of the current token, the position embedding of
the current position, and the segment embedding of the current sentence were added up to form
the input representation of one position as shown in Figure 1.4. BERT is pretrained on the English
Wikipedia with 2, 500M and wordsBooksCorpus with 800M words. BERT is pre-trained simulta-
neously on two tasks [24]: masked language modeling (MLM) and next sentence prediction (NSP).
The training loss is simply the sum of the mean MLM likelihood and the mean NSP likelihood.
MLM is the task of predicting a percentage of input tokens that are randomly masked by a special
token [MASK]. The MLM training objective was chosen over the traditional LM objective because
of the bi-directionality of BERT. Hence, BERT is trained using masked language modeling. the
prediction result is given by the five hidden vectors corresponding to the masked tokens, that are
fed into an output softmax over the vocabulary, as in a standard LM. Then the next step is next
sentence prediction (NSP) which is a binary classification task in which these receive pairs of sen-
tences as input and learn to predict if the second sentence in the pair is the subsequent sentence in
the original corpus. This training objective helps to understand the relationship between pairs of
sentences, which is not directly captured by language modeling but is still very important for many
downstream tasks such as question-answering (QA) and natural language inference (NLI).
As a result, the pretrained BERT model can be finetuned with one additional output layer to create
as a result models for various tasks classification, language inference, and question answering.

Figure 1.4 is an illustration of how the input representations are computed from the processed
tokenized sequences.

Figure 1.4: BERT Framework [24]
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Figure 1.5: T5 Framework

1.2.2 T5: Text-to-Text Transfer Transformer

Text-to-Text Transfer Transformer (T5) is an encoder-decoder model pretrained on a multi-task
mixture of unsupervised and supervised tasks, each of which is converted into a text-to-text format.

T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input
corresponding to each task. As mentioned before, the transformer model lends itself to effective
parallelization of the model training process.

This opened up the possibility of training very large transformers-based models on massive NLP
corpus using distributed computational resources.

T5 uses the same basic architecture as proposed in the original transformer paper [124] with
some minor variations. It is based on the idea that most problems in NLP can be formulated
as text-to-text transformation. In other words, given a sequence of words as input, the model
produces other sequences of words as output. Figure [102] shows how the input and output are
formulated for performing a variety of tasks using the T5 model. T5 choose to use a denoising pre-
training objective as BERT. The pretrained objective was to replace spans of tokens with indexed
placeholders and to make the decoder predict the replaced tokens. T5 is a sequence-to-sequence
model, and it has an auto-regressive decoder. So, in nature, it coheres with the task of language
generation. Some studies showed that pretrained T5 model and fine-tune it for some down-stream
task such as question generation performed very well[34, 94].

1.3 Thesis Contributions

Generative models can generate various types of data: In this thesis, we will focus on different
applications that cover different types of data text, images and biological data.

1.3.1 Generative Model for Text-to-Image Translation

There is a common problem for training supervised deep learning tasks, which is the need for large-
scale datasets with labels /annotations; these annotations are costly, difficult to collect and/or
annotate, tedious, error-prone, etc; therefore, unlabelled datasets are quite interesting because it is
easier to collect data at scale; yet, many tasks, such as text-to-image synthesis, are difficult to solve
without proper guiding/supervision; for example dataset of bedrooms exists and contains 3, 000, 000
images[140], it does not contain the associated captions; therefore, techniques to automatically label
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the data are often studied and researched; in particular, to address this issue, in this paper we
propose an approach capable of generating images starting from a given text using CGAN trained
on uncaptioned images dataset. In particular, uncaptioned images are fed to an Image Captioning
Module to generate the descriptions. Then, the GAN Module is trained on both the input image
and the “machine-generated” caption. To evaluate the results, the performance of our solution is
compared with the results obtained by the unconditional GAN. For the experiments, we chose to
use the uncaptioned dataset LSUN-bedroom. The results obtained in our study are preliminary but
still promising. This work was published in [79].

1.3.2 Generative Model for Keyphrase Generation

Keyphrase Generation is the task of predicting keyphrases (KPs), short phrases that summarize
the semantic meaning of a given document. Several past studies provided diverse approaches to
generate keyphrases for an input document. However, all of these approaches still need to be trained
on very large datasets. We introduce BeGan- KP, a new conditional GAN model to address the
problem of keyphrase generation in a low-resource scenario. Our main contribution relies in the
discriminator’s architecture: a new BERT-based module which is able to distinguish between the
generated and human-curated KPs reliably. Its characteristics allow us to use it in a low-resource
scenario, where only a small amount of training data are available, obtaining an efficient generator.
This work has been published in [64, 64]

1.3.3 Generative Model and different Neural network models for Protein Struc-
ture Prediction

We applied Generative model to the task of protein structure prediction from amino acid sequences.
Our main contribution, we analyze how generative model and different network architectures for
the task of protein structure prediction use the information of single protein sequences and high-
lights their differences with respect to linear models. In addition, We compare mutual information,
the coefficients of two different implementations of a linear model, and two deep learning network
architectures. We compare mutual information, the coefficients of two different implementations of
a linear model and three deep learning network architectures. For the deep learning algorithms,
we use the DeepLIFT analysis to assess the, effect of each amino acid at each position on the sec-
ondary structure prediction. Mutual information and linear models quantify direct effects, whereas
DeepLIFT applied on deep learning networks is able to quantify both direct and indirect. Our main
contribution, we analysis and compare generative and different disrimnative network architectures
use the information of single protein sequences bu using DeeLIFT analysis method. This work has
been submitted to Current Bioinformatics Journal.

In this domain, we also investigate the generalized born radii prediction task. Generalized Born
(GB) models provide, for many applications, an accurate and computationally facile estimate of
the electrostatic contribution to aqueous solvation. The computation of generalized born radii is
still costly. In our main contribution, we propose an alternative approach using neural network
that encodes the physics of the phenomena and the chemical structure of the molecules in model
parameters which are learned from examples. We found that Neural networks further improve the
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accuracy of the predictions with correlation coefficient with "perfect" GB radii. This work had been
publish in [75].

1.4 Thesis Outline

In my thesis, we applied different generative model architectures to different types of applications
with different types of data (text, images, biological data). Each chapter represents an application
that used different deep learning techniques based of generative models. In Chapter 2, we ap-
plied GANs on text-to-image synthesis application. We proposed an approach with the capable of
generating images starting from a given text using conditional GANs trained on an uncaptioned
images dataset. For the experiments, we use the uncaptioned dataset LSUN bedroom. In Chapter
3, we applied GANS based on Bert framework to keyphraeses generation. Keyphrase Generation
is the task of predicting keyphrases: short text sequences that convey the main semantic meaning
of a document. In this paper, we introduce a keyphrase generation approach that makes use of a
generative adversarial networks (GANs) architecture. generative models. In Chapter 4 We applied
different architectures: generative model, discriminative models and linear models to predict the
protein structure given its single sequence alignment. Also, we provide an analysis of the effect of a
single amino acid on the structure prediction state. All the materials and datasets for the thesis’s
projects can be found here https://github.com/SaidaSaad/My_thesis_Databases
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Chapter 2

Text-to-Image Synthesis Based on
Machine Generated Captions using
GANS

2.1 Introduction

Text-to-Image Synthesis, also called Conditional Image Generation, is a process that consists in
generating a photo-realistic image given a textual description. It is a challenging task and it is revo-
lutionizing many real-world applications. For example, starting from a Digital Library of adventure
books it could be possible to enrich the reading experience with computer-generated images of the
locations explored in the story, while a Digital Library of recipe books may be enriched with images
representing the steps involved in a given recipe. In addition, such images may be used to exploit In-
formation Retrieval systems based on visual similarity. Due to its great potentiality and usefulness,
it raised a lot of interest in the research fields of Computer Vision, Natural Language Processing,
and Digital Libraries. One of the main approaches used for the text-to-image task involves the use
of Generative Adversarial Networks (GAN) [32]: starting from a given textual description, GANs
can be conditioned on text [106], [105], [146] in order to generate high-quality images that are highly
related to the text meaning. To condition a GAN on text, captioned images datasets are needed,
meaning that one (or more) captions must be associated to each image. Despite the large amount
of uncaptioned images datasets, the number of captioned datasets is limited. For example, LSUN
[141] dataset, which consists in more than 59 million labeled images for each of 10 scene categories
and 20 object categories [141]. The LSUN-bedroom dataset contains images from LSUN dataset
tagged with the “bedroom” scene category. It contains around ∼ 3, 000, 000 images [141], but it
does not contain the associated captions. This may lead to a difficulty in training a conditional
GAN to generate bedroom images related to a given textual description, such as “a bedroom with
blue walls, white furniture and a large bed”. In this paper we propose an innovative, though quite
simple approach to address this issue as shown in Figure 2.1.
First of all, a captioning system (that we call Image Captioning Module) is trained on a generic

captioned dataset and used to generate a caption for the uncaptioned images. Then, the conditional
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Figure 2.1: Our pipeline: captioned images are used to train the Image Captioning Module; un-
captioned images are then captioned through the Trained Image Captioning Module and both the
image and the generated captions are used to train the GAN Module; finally, the Trained GAN
Module is used to generate an image based on an input caption.

GAN (that we call GAN Module) is trained on both the input image and the “machine-generated”
caption. A high-level representation of the architecture is shown in Figure 2.2. To evaluate the
results, the performance of the GAN using “machine-generated” captions are compared with the
results obtained by the unconditional GAN. To test and evaluate our pipeline, we are using the
LSUN-bedroom [141] dataset.

The results obtained in the experiments are very preliminary yet very promising. According to
our study, the GAN Module does not learn how to produce meaningful images, with respect to the
caption meaning, and we hypothesize that this is due to the “machine-generated” captions we use to
condition the GAN Module. The Image Captioning module is trained on the COCO dataset [71],
which contains captioned images for many different classes of objects and intuitively this should
lead the Image Captioning Module to learn how to produce captions for bedroom images as well.
Despite being able to produce the desired captions, we notice that the “machine-generated” captions
are often too similar and not detailed for different bedroom images. The last section of the paper
proposes some approaches that can deal with these problems.

2.2 Related Work

In 2014, Goodfellow et al. introduced Generative Adversarial Networks (GAN) [32], a generative
model framework that consists in training simultaneously two models: a generator network and a
discriminator one. The generator network has the task of generating images as real as possible, while
the discriminator network has to distinguish the generated images from the real ones. Generative
models are trained to implicitly capture the statistical distribution of training data; once trained,
they can synthesize novel data samples, which can be used for example in the tasks of semantic
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Figure 2.2: Pipeline: images are fed to a captioning system that outputs its captions. The generated
captions and the images are then given as input for training the conditional GAN.

image editing [155] and data augmentation [8]. GANs can be trained to sample from a given data
distribution, in such case a random vector is provided as input to the generator. Otherwise, as in
the case of text-to-image synthesis, they can be trained conditionally, meaning that an additional
variable is provided as input to control the generator output. In certain formulations, the discrimi-
nator observes the conditioning variable too, during training. In the literature, several possibilities
were tested for the variables used to condition a GAN: attributes or class labels (e.g. [19], [91]),
images (e.g. for the tasks of photo editing [155] and domain transfer [51]).
Several methods have been developed to generate images conditioned on text. Mansimov et al.
[76] built an AlignDRAW model trained to learn the correspondence between text and generated
images. Reed et al. in [107] used PixelCNN to generate images using both text descriptions and
object location constraints. Nguyen et al. [88] used an approximate Langevin sampling approach
to generate images conditioned on text, but it required an inefficient iterative optimization process.
In [106], Reed et al. successfully generated 64 × 64 images for birds and flowers conditioning on
text descriptions. In their follow-up work [105], they were able to generate 128 × 128 images by
using additional annotations on object part locations. Denton et al. in [23] proposed the Lapla-
cian pyramid framework (LAPGANs), which is composed of a series of GANs. A residual image is
conditioned at each level of the pyramid on the image of the previous stage to produce an image
for the next stage. Also in [57], Kerras et al. use a similar approach by incrementally adding more
layers in the generator and in the discriminator. [145] and [146] suggest the use of a so-called sketch-
refinement process, where the images are first generated at low resolutions using a GAN conditioned
over the textual description, and then refined with another GAN conditioned on both the image
generated at the previous step and the input textual description. [45] and [68] infer a semantic
label map by predicting bounding boxes and object shapes from the text, and then synthesize an
image conditioned on the layout and the text description. A recent work by Qiao et al. [101] uses
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a three-step approach where it first computes word- and sentence-level embedding from the given
textual description, then it uses the embeddings to generate images in a cascaded architecture, and
finally starting from the image generated at the previous step it tries to regenerate the original tex-
tual description, in order to semantically align with it. Although several different state-of-the-art
architectures may be chosen for the task, such as HDGAN [151] and AttGAN [136], in our pipeline
we decided to use StackGAN-v2 [146] as the conditional GAN component, given the availability of
its code on GitHub.

Recently, several impressive results [152], [70], [108] were obtained for the Image Captioning (or
image-to-text) task, which deals with the generation of a caption describing the given image and
the objects taking part to it. It is an important task that raises a lot of interest in the Computer
Vision and Natural Language Processing research fields. A recent and comprehensive survey about
the task is provided by Hossain et al. in [46]. Some of the approaches used for this task involve the
use of Encoder/Decoder networks and Reinforcement learning techniques.

The encoder/decoder paradigm for machine translation using recurrent neural networks (RNNs)
[20] inspired [56], [125] to use a deep convolutional neural network to encode the input image, and
a Long Short-Term Memory (LSTM) [44] RNN decoder to generate the output caption. Given
the unavailability of labeled data, recent approaches to the image captioning task involve the use
of reinforcement learning and unsupervised learning-based techniques. [152] and [70] use actor-
critic reinforcement learning methods, where a “policy network” (the actor) is trained to predict the
next word based on the current state, whereas a “value network” (the critic) is trained to estimate
the reward of each generated word. These techniques overcome the need to sample from the policy
(actors) action space, which can be enormous, at the expense of estimating future rewards. Another
approach, used by Ranzato et al. in [103], consists in applying the REINFORCE algorithm [131].
A limitation of this algorithm consists in the requirement of a context-dependent normalization to
tackle the high variance encountered when using mini-batches. The approach we are following uses
Self-Critical Sequence Training (SCST) [108] which is a REINFORCE algorithm that utilizes the
output of its own test-time inference algorithm to normalize the rewards it experiences: doing so,
it does not need neither to estimate the reward signal nor the normalization.

2.3 Our Approach

We propose a pipeline whose goal is to generate images by conditioning on “machine-generated”
captions. This is fundamental when image captions are not available for a specific domain of
interest. Thus, the proposed solution involves the use of a generic captioned dataset, such as the
COCO dataset, to make the Image Captioning Module capable of generating captions for a specific
domain.

To do so, we want to explore the possibility of using an automatic system to generate textual
captions for the images and use them for the training of a Generative Adversarial Network. For
achieving our goal, we built a pipeline composed by an Image Captioning Module and a GAN
Module, as shown in Figure 2.1. First of all, the Image Captioning Module is trained over a generic
captioned dataset to generate multiple captions for the input image. Then, real images are given
as input to the Trained Image Captioning Module, which outputs multiple captions for each image.

26



The generated captions together with the images are then fed to the GAN Module, which learns
to generate images conditioned on the “machine-generated” captions. By feeding the GAN with
multiple captions for each image, the GAN can better learn the correspondence between images
and captions.

In the following sections, we detail the two modules used in our pipeline: the Image Captioning
Module and the GAN Module.

2.3.1 Image Captioning Module

The goal of the Image Captioning Module is to generate a natural language description of an image.
Good performance in this task is obtained by learning a model which is able to first understand the
scene described in the image, the objects taking part to it and the relationships between them, and
then to compose a natural language sentence describing the whole picture. Given the complexity of
such a task, it is still an open challenge in the fields of Natural Language Processing and Computer
Vision. The task of open domain captioning is a challenging task. It requires a fine-grained un-
derstanding of the whole entities, attributes and relationships in an image. In our pipeline, we are
implementing our Image Captioning Module in a similar way as the one proposed in [108], meaning
that we also use a captioning system based on FC models. It has been built using an optimization
approach that is called Self-Critical Sequence Training (SCST).

Typical deep learning models used for the Image Captioning task are trained with the “teacher-
forcing” technique, which consists in maximizing the likelihood of the next ground-truth word given
the previous ground-truth word. This has been shown to generate some mismatches between the
training and the inference phase, knows as “exposure bias”. Moreover, the metrics used during
the testing phase are non-differentiable (such as BLEU and CIDEr), meaning that the captioning
model can not be trained to directly optimize them. To overcome these problems, Reinforcement
Learning techniques such as the REINFORCE algorithm have been used. SCST is a variation and
an improvement of the popular REINFORCE algorithm that, rather than estimating a baseline
to normalize the rewards and reduce variance, utilizes the output of its own test-time inference
algorithm to normalize the rewards it experiences. This means that it is forced to improve the
performance of the model under the inference algorithm used at test time. Practically, SCST has
much lower variance than REINFORCE and can be more effectively trained on mini-batches of
samples using SGD. Moreover, it has been shown that SCST system has achieved state-of-the-art
performance by optimizing their system using the test metrics of the MSCOCO task. Practically,
it has been found that SCST has much lower variance, and can be more effectively trained on mini-
batches of samples using SGD. Since the SCST baseline is based on the test-time estimate under
the current model, SCST is forced to improve the performance of the model under the inference
algorithm used at test time. In addition, this encourages training consistency like the maximum
likelihood-based approaches except it optimized sequence metrics.

2.3.2 GAN Module

The GAN Module has the major role of learning to generate images by conditioning on the “machine-
generated” captions. In particular, we are using StackGAN-v2 [146] as our GAN Module.
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StackGAN-v2 consists of a multiple stage generation process, where high-resolution images are
obtained by initially generating low-resolution images which are then refined in multiple steps. It
consists in a single end-to-end network composed by multiple generators and discriminators in a
tree-like structure. Different branches of the tree generate images of different resolutions: at branch
i, the generator Gi learns the image distribution pGi at that scale, while the discriminator Di

estimates the probability of a sample being real. The framework of StackGAN-v2 has a tree-like
structure, that takes as input the noise vector z ∼ pnoise. The noise z is transformed in hidden
feature layer by layer. The hidden features hi for each generator Gi are calculated by a non-linear
transformation

h0 = F0(z); hi = Fi(hi−1, z), (2.1)

where hi represents hidden features for the ith branch, m is the total number of branches, and Fi are
modeled as neural networks. The noise vector z is concatenated to the hidden features hi−1 as the
inputs of Fi for calculating hi. The generators produce samples at different scales (s0, s1, ..., sm−1)
based on the hidden features at different layers (h0, h1, ..., hm−1).

si = Gi(hi), i = 0, 1, ...,m− 1, (2.2)

where Gi is the generator for the ith branch. Since we are more interested in the conditional case, we
are not reporting the loss function used by the generator and the discriminator in the unconditional
setting, for which more details can be found in [146].
The discriminator Di takes a real image xi or a fake sample si as input and is trained to classify
them as real or fake by minimizing the cross entropy loss:

LDi = −Exi∼pdatai
[logDi(xi)]− Exi∼pGi

[log(1−Di(si))]︸ ︷︷ ︸
unconditional loss

−Exi∼pdatai
[logDi(xi, c)]− Exi∼pGi

[log(1−Di(si, c))]︸ ︷︷ ︸
conditional loss

(2.3)

where xi is an image from the true image distribution pdatai at the ith scale, si is from the model
distribution pGi at the same scale. While StackGAN-v2 [146] follows the approach of Reed et al.
[104] to pre-train a text encoder to extract visually-discriminative text embeddings of the given
description, in our case we use Skip-Thought [60], that works at the sentence level, to generate
the text embeddings (c in the equations 2.3 and 2.4). Sentences that share semantic and syntactic
properties are mapped to corresponding vector representations [60]. The multiple discriminators are
trained in parallel each one for a different scale, while the generator is instead optimized to jointly
approximate multi-scale image distributions pdata0 , pdata1 , ..., pdatam−1 by minimizing the following
loss function:

LG =

m∑
i=1

LGi , LGi = −Esi∼pGi
[logDi(si)]︸ ︷︷ ︸

unconditional loss

−Esi∼pGi
[logDi(si, c)]︸ ︷︷ ︸

conditional loss

(2.4)

where LGi is the loss function for approximating the image distribution at the ith scale. The
unconditional loss is used to determine whether the image is real or fake, while the conditional loss
is used to determine if the image and the condition match.

28



2.4 Experimental Results

In this section, we present the preliminary results of the experiments involving the proposed pipeline.
The Image Captioning Module was trained on the COCO dataset [71], which contains 120, 000
generic images tagged with categories and captioned by five different sentences each. The uncap-
tioned dataset that we considered is the LSUN [141] dataset, which consists in more than 59 million
labeled images. From the LSUN dataset, we first select the ∼ 3, 000, 000 images tagged with the
“bedroom” scene category and from that set a subset of the first 120, 000 images is selected: 80, 000
are then used to train the GAN and 40, 000 as test set. Later on in this paper, the selection of the
∼ 3, 000, 000 images tagged with the “bedroom” scene category is called “LSUN-bedroom”.

A typical metric used to evaluate both the quality and the diversity of generated images is the
Inception Score [113]. Unfortunately, the type of image of the LSUN dataset is very different from
those used by ImageNet [146, 22], therefore it has been shown that the Inception Score is not a
good indicator for the quality of generated images [146]. So we decided not to report the obtained
scores. We performed three experiments over the considered dataset. The first experiment consists
in training the GAN Module on the whole LSUN-bedroom dataset (∼ 3, 000, 000 images). This
is done because of two reasons: first, it serves as a baseline for the next experiment; second, we
compare the results obtained by our computing facilities with the results obtained in [146], since
with our graphics card we are limited to a lower batch size of 16. Figure 2.4 shows some examples
of generated images, and it is possible to see that the quality of the generated images is similar to
those shown in Figure 2.3 [146].

Figure 2.3: Examples of images generated by the StackGAN Module trained on the whole LSUN-
bedroom dataset.

To reproduce the results reported in the paper, we used an NVIDIA GTX 1080 8GB machine. It
took us around one month to train the GAN Module on the whole LSUN dataset. Because of this,
we decided to explore and understand how the GAN Module performs with less training images. In
the second experiment, the training of the GAN Module without conditioning is done on a subset
of LSUN-bedroom, consisting of 120, 000 images. Some of the results obtained in this experiment
are showed in Figure 2.5. Although the quality of the generated images is slightly reduced, it is
possible to see that the semantic content is still clear and defined.

Finally, to test our pipeline, we used the Image Captioning Module to generate captions for the
images contained in the considered subset of the LSUN-bedroom dataset. Then, the GAN Module
was trained on these same images and conditioned by the “machine-generated” captions. About
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Figure 2.4: Examples of images generated by the GAN Module trained on the whole LSUN-bedroom
dataset.

Figure 2.5: Examples of images generated by the GAN Module trained on a part of the LSUN-
bedroom dataset.

the preliminary results that we obtained, some examples are shown in Figure 2.6. We suspect the
problem is due to the similarity of the “machine-generated” captions: the LSUN-bedroom dataset
does not come with captions and thus the Image Captioning Module is trained on a generic dataset
(COCO) and not for that specific dataset. Because of this, the Image Captioning Module is unable
to produce detailed and varied captions for different bedroom images. In addition, usually GANs
used noise vector to generate images which always different from each other [32]. In our experiment,
the noise vector is taken as input by the model and used to generate an image. Then, the captions
are used to yield the embeddings, which are also used as noise by the generator. The fact that the
noise is almost always the same could be the cause of the observed problem. We found that the
scores for the LSUN-bedroom dataset seem to not fully correlate with the quality of the generated
images. As explained in [146], this may be due to the inception score being trained on the inception
dataset, and thus it does not work well on datasets with specific types of images. Also, it has to be
considered that different datasets get inception scores in different ranges. For this reason, inception
scores must not be compared across different datasets.

2.5 Summary

In this chapter, we explored the problem of conditional image generation using Generative Adver-
sarial Networks with machine-generated captions. For this task, we built a pipeline to first generate
captions for uncaptioned datasets and then to use the machine-generated captions to condition a
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Figure 2.6: Examples of images generated by the GAN Module trained on a part of the LSUN-
bedroom dataset and conditioned on “machine-generated” captions.
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GAN. To test our pipeline, we run experiments on the LSUN-bedroom dataset, which is a subset of
the LSUN dataset containing uncaptioned images of bedrooms, and then compare the generated im-
ages in the unconditional setting and in the conditional setting where “machine-generated” captions
are used. The results observed in the experiments do not achieve success in the task of conditioning
with “machine-generated” captions. So we identify, analyze, and propose possible solutions to the
obstacles that need to be overcome.
The Image Captioning Module that we trained on the COCO dataset seems to generate captions
too similar to each other. Moreover, the captions we generated lack details and contain some errors.
This is probably related to the fact that more diverse and detailed captions are needed during train-
ing in order to achieve significant improvements. During a subsequent review of works on captioning,
we found a work from Shetty et al. [115] that promises to generate more different captions, instead
of variations of the same caption. This result is achieved by using GANs for image captioning
instead of other traditional methods. An open question is whether with a bigger dataset the GAN
could learn the image-captions correspondence, even when captions are very similar for each image.
We believe improving the quality of the generated caption is the main challenge for our method.
An hybrid approach could make our proposed method work by making humans write captions on a
subset of the dataset, then use the obtained captions to train a captioning system. For generating
human captions, crowdsourcing platforms like Amazon Mechanical Turk (AMT) could be used. We
are currently working on this idea because it’s likely that it will lead to improvements in the quality
of generated bedroom images, given that AMT could make it possible to have high-quality and
more diverse captions. Moreover, we are also considering the use of the Fréchet Inception distance
[42] to evaluate the generated captions and images.
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Chapter 3

Keyphrase Generation using Generative
adversarial model based on Bert
Framework

3.1 Introduction

A Keyphrase (KP) is a piece of text that conveys the main semantic meaning of a document. KPs
can be either present (or extractive) or absent (or abstractive): present KPs are exact substrings of
the document while absent KPs are not. Their automatic prediction is an important challenge for
the community research as KPs are a key component for a wide range of applications such as text
summarization [150], opinion mining [6], document clustering [37], information retrieval [53] and
text categorization [48]. Historically, the first approaches focused on simply extracting substrings
of the text to be used as keyphrases candidates [139, 73, 147]. Recently, the research community
has focused on the broader task of Keyphrase Generation [80, 14, 16]. Keyphrase Generation aims
to produce a set of phrases that summarize the essential information in a given text, as opposed to
simply look for them in the text. This allows for greater flexibility. Several approaches introduced
generative models based on the Encoder-Decoder architecture [80, 14]. This architecture works by
compressing the contents of the input (e.g. the text document) into a hidden representation using
an Encoder module. The same representation is then decompressed using the Decoder module,
which returns the desired output (e.g. a sequence of KPs). The modules are trained jointly to learn
the best intermediate representation to perform this mapping.

More recently, an approach based on GAN (Generative Adversarial Networks [33]) architecture
has been proposed to address the task [118]. Although all these solutions achieved interesting
results, they require a very large amount of data in order to be trained.

Our aim is to improve training efficiency, so that a model can be trained using only small
subsets of the data. We focus our research in the generation of present KPs and we propose a new
conditional GAN architecture for Keyphrase Generation that can be trained with a relatively small
set of samples. The key component of our solution is the Discriminator: a model based on BERT
that is able to distinguish between human and machine-generated Keyphrases leveraging on the
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language modelling information obtained from finetuning in a low-resource scenario.
A Reinforcement Learning (RL) strategy is then used to train the Generator, with rewards

evaluated by the Discriminator. This encourages the model to generate more accurate and relevant
KPs.

Thanks to the characteristics of our architecture, we are able to use only a small subset of
the available data, using less than 1% of them to train our system. Compared to all the previous
approaches that needed to be fully trained on large set of training samples, our architecture greatly
reduces required resources, while still providing competitive results in the generation of present
KPs.

3.2 Related Work

3.2.1 Keyphrase Extraction

Extractive methods aim at identifying Keyphrases in the span of the source text. Most of the
algorithms in this field adopt a two steps pipeline to extract KPs. First, given a document, a
list of candidates phrases is selected using heuristic methods [128, 65]. Secondly, all candidates
are scored against the document. The first step has a considerable impact on the ability of the
whole model to correctly identify all KPs, so selecting a sufficiently high number of candidates is
of utmost importance. The second step can be done either in a supervised or unsupervised manner
[82, 133, 89]. The top-scoring candidates are returned as KPs. Two interesting strategies that
differ from the common pipeline approach have been proposed by [120] and [147]. The first method
employs two statistical language-based models to extract Keyphrases. The latter introduces a model
based on joint layer recurrent neural network to extract Keyphrases from tweets.

3.2.2 Keyphrase Generation

Recently, research has focused on the introduction of methods of text generation to predict Keyphrases.
Most of these approaches rely on Encoder-Decoder framework in which the source text is first
mapped to an encoded representation, and then decoded to the target text, that is the Keyphrases
to predict.

[80] proposed CopyRNN, a RNN-based generative model for KP Generation, which is an Encoder-
Decoder model with copy mechanism. [14] proposed CorrRNN model which is a sequence-to-
sequence architecture for Keyphrase Generation that captures the correlations among Keyphrases.
TG-Net model was introduced by [17] for improving automatic Keyphrase Generation using the
information contained in the title of the document. [16] proposed an integrated approach for
Keyphrase Generation which is a multitask learning framework that jointly learns an extractive
model and a generative model.

Two recurrent generative based models, CatSeq and CatSeqD, were proposed by [143]. One of
their main characteristics is the ability to determine the appropriate number of Keyphrases for each
input document. CatSeq is based on an Encoder-Decoder mechanism, which is used to identify
relevant components of the source text (abstracts) and generate KPs (sequence-to-concatenated
sequences) [143, 12]. It employed the sequence-to-sequence framework combined with an attention
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mechanism and pointer softmax mechanisms in the Decoder. CatSeqD introduces the following
techniques: orthogonal regularization, which prevents the model from predicting the same word
after generating the constant KP separator; semantic coverage, which encodes again the decoded
sequences and uses it as a representation of the target phrases. These representations are employed
as further input during a self-supervised training phase with the aim of improve the semantic content
of the predictions. [12] subsequently proposed a Reinforcement Learning approach with adaptive
rewards to improve CatSeq, CatSeqD, CorrRNN and TG-Net generative models, leading to a new
version for each of them. These versions are called, respectively, CatSeq-2RF1, CatSeqD-2RF1,
CatSeqCorr-2RF1 and CatSeqTG-2RF1.

Recently, [118] proposed a GAN model conditioned on scientific articles for KP Generation. The
author uses a CatSeq model to implement the Generator, conditioning it on abstracts of scientific
articles. The Discriminator is based on a hierarchical attention mechanism consisting of two GRU
layers. The two layers model the relationship between the document and each generated KP to
assess whether the KP is synthetic or human in origin.

To the best of our knowledge, no attempts have been made of either extracting or generating
KPs in a low-resources scenario, in which only a small amount of the available data samples is used
during training. Our proposed architecture, based on a Discriminator that relies on a language
model, requires less than 1% of the available training data to achieve good results.

3.3 The Proposed Approach

To generate KPs in a low-resource scenario we propose an approach based on the GAN Framework
that we call BeGan-KP. It mainly consists of three components: (1) a conditioned Generator model
that produces a set of KPs, (2) a novel BERT Discriminator model that checks if the KPs are
fake (generated) or real (human-curated), and (3) the Reinforcement Learning (RL) module that is
involved in the training process of the system as a whole (see Figure 3.1).

3.3.1 Notations and Problem Definition

The samples available to train the system are pairs (x,y), where x is a document and y =
(y1,y2, . . . ,yM ) is the set of M Keyphrases (True KPs) associated to x. Note that both x and yi

are sequences of words:

x = x1, x2, . . . , xL

yi = yi1, y
i
2, . . . , y

i
Ki

where L and Ki are the number of words of x and of its i-th KP respectively.
The Generator takes as input x and outputs ŷ = (ŷ1, ŷ2, . . . , ŷJ), that is the set of the J

predicted KPs for x (Fake KPs).
The objective is to generate Fake KPs that match exactly the True KPs: ŷ ≡ y.
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3.3.2 Generator

The Generator G takes as input the document x and generates as output the sequence of ŷ (Fake
KPs).

Following the work of [118] we use the CatSeq model as Generator. It consists in an Encoder-
Decoder model in which the Encoder is a bidirectional Gated Recurrent Unit (GRU) and the Decoder
is a forward GRU. It is based on CopyRNN by [80].

We choose this component because it embeds some interesting features. It exploits the copying
mechanism [35] to deal with long-tail words. These are words which are removed from the vocabulary
due to their low frequency but are often topic-specific and therefore good candidates to be KPs. It
also introduces the capability of predicting a variable number of Keyphrases for different documents.
Furthermore it employs a beam-search strategy during the decoding step, meaning that at each time
step the model decodes not just one word (greedy-search) but the top k most probable words. This
allows generating more consistent sequences of words.

3.3.3 Discriminator

The Discriminator D receives as input the document x and a set of Keyphrases. These might be
either the True KPs y or the Fake KPs ŷ. Its task is to judge whether the KPs are True or Fake.

We introduce a novel Discriminator based on the language model BERT [25]. Differently from
the previous literature, our idea is to exploit the strength of the language model characteristics to
classify the quality of the input pair (x,y). This judgement is given as a regression score, which
is lower for Fake KPs and higher for True KPs. In this way the regression score can be easily
interpreted as the reward in the Reinforcement Learning module, giving to the system an inherent
clarity. Moreover, different BERT-based models and reward configurations have been tested at an
early stage, and the choice of a regression model provided the best results.

The language modelling component is able to achieve a better comprehension of the relationship
of the two input sequences, while the robust pretraining allows us to use it efficiently even in a
low-resource scenario.

In particular, the Discriminator model consists of four subcomponents (see Figure 3.2) :

• Input preparation. The input pairs (x,y) are tokenized and the tokens are concatenated
to be compliant with the general pattern [CLS]<x>[SEP]<y1><;>...<;><yn>[SEP]. [CLS] and
[SEP] are special tokens which signal the start of the input and the end of text sequence
respectively, <x> is the sequence of tokens for the document x, <yi> is the sequence of tokens
for the KP yi. Different KPs are separated by semicolon <;>. Note that the [SEP] token in
the center is used to split the input sequence into document and KPs.

• BERT modelling. The input sequence is processed by a pretrained BERT model. It gen-
erates a word embedding of all the tokens and then passes them through 12 Encoder blocks.
As it is basically a positional language model, it returns the last hidden states for each of the
initial tokens.

• Output aggregation. Each of the outputs of the preceding step can be seen as an highly
abstract embedding of the corresponding token. We aggregate the output of all the hidden
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states and evaluate their mean to obtain an embedding for the whole input sequence E =
E(x,y). Note that in this way E is not generated using only the output obtained from
the [CLS] token, but making use of the representations of all the tokens instead. Based on
our preliminary experiments as well as literature references [25], this value is considered to
represent a better summary of the semantic content of the input.

• Regression. E is processed by the regression layer, a fully connected linear classifier, and a
regression score is calculated. This is trained to be high for True KPs (human-curated) and
low for Fake KPs (artificially generated), and is used as the reward in Reinforcement Learning.

The overall output of the Discriminator is therefore a regression score relative to the combination
of input document and the related KPs.

3.3.4 Reinforcement Learning

To overcome the problem of non differentiability of the output layer of our architecture we extend the
Reinforcement Learning strategy proposed by [142] in the domain of KP Generation. In particular,
we consider the Generator G as an agent whose action a at time step t is to generate a word yt,
which is part of the set of predicted KPs ŷ for the document x. In this scenario the Discriminator
D plays the role of the environment that evaluates the actions made by G and gives back a reward.
Agent G acts following a policy

π = π(yt|st,x, θ) (3.1)

that is a function representing the probability distribution of yt given the current state st =
(y1, . . . , yt−1), the sequence of words so far generated. The policy function is differentiable with
respect to the set of parameters θ of G. Once the agent G generates the predictions, the environment
D gives back a reward

rt = f(y1, . . . , yt|x) (3.2)

and moves to the state st+1. The reward is a quality measure of the action made by the
agent G, and depends on the words generated up to the current time step (subset of ŷ) given the
input document x. The agent G acts to maximize the reward, that is to maximize a differentiable
optimization function J(θ) that gives a measure of the performance of G. According to the policy
gradient theorem and the REINFORCE algorithm [132] the gradient of J(θ) can be expressed as:

∇J(θ) = Eπ

[∑
t

rt∇log(π(yt|st,x, θ))

]
(3.3)

where the sum extends to all the time steps needed to generate the complete sequence y.
The expectation Eπ in Equation 3.3 can be approximated using a complete sequence ŷ. In

order to calculate the cumulative rewards of Equation 3.2 we use the regression score of a complete
sequence of generated KPs: r = D(ŷ).
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Considering that maximizing the optimization function J(θ) is equivalent to minimizing its
additive inverse, we can define the loss function of G as L(θ) = −J(θ) and an estimator of its
gradient as:

∇L(θ) ≈ −
∑
t

(r − b)∇log(π(yt|st,x, θ)) (3.4)

where the regularization term b is introduced to reduce the variance of the above ∇L(θ) esti-
mator. It is essentially the cumulative reward r = D(ȳ) where ȳ is a greedy decoded predicted
sequence. The aim is to promote rewards that show effective improvements over greedy sequences
[109].

3.3.5 GAN Training

The first step is to train a first version G0 of the Generator using the Maximum Likelihood Esti-
mation (MLE). G0 is then used to generate the Fake KPs ŷ. ŷ and the ground truth y are used to
train the first version of the Discriminator D0 with Mean Squared Error (MSE) loss:

MSE(x, x̂) =
1

N

N∑
i=0

(xi − x̂i)
2 (3.5)

Starting from Generator G1 training is performed using RL, so the loss is given by L(θ) as shown
in Section 3.3.4. The training of the Discriminator remains the same. After each training iteration
(Gj , Dj), predictions are tested to evaluate the scores F1@M and F1@5.

3.4 Experiments and Evaluation

3.4.1 Datasets and Metrics

We compare our solution with state-of-the-art approaches on five datasets which are commonly used
in literature:

KP20k [80] It consists of 567,830 titles and abstracts from computer science papers. The usual
split consists of 20,000 samples for testing, another 20,000 for validation, while the remaining
527,830 samples are used for training. In our low-resource scenario we only use 2,000 out of
the >500,000 training samples.

Inspec [47] The complete dataset is composed of 2,000 abstracts from Computers and Control,
and Information Technology disciplines. A subset of 500 samples is used for testing.

Krapivin [63] The original released dataset is composed by 500 complete articles belonging to the
domain of computer science. For KP Generation purposes only titles and abstract are used.
The first 400 samples in alphabetical order are selected for testing.

NUS [89] A set of 211 scientific publications, all used for testing.
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Semeval2010 [58] 288 conference and workshop papers from the ACL Computer Library. 100 are
used for testing.

A brief report of main statistics of the test sets used is given in Table 3.1.

Kp20k Inspec Krapivin Nus Semeval
# % # % # % # % # %

Present KPs 66,267 62.91 3,602 73.59 1,297 55.57 1,191 52.26 612 42.41
Absent KPs 39,076 37.09 1,293 26.41 1,037 44.43 1,088 47.74 831 57.59
Total KPs 105,343 100.00 4,895 100.00 2,334 100.00 2,279 100.00 1,443 100.00
Test samples 20,000 500 400 211 100

Table 3.1: Statistics on test samples for the five datasets.

Model Kp20k Inspec Krapivin Nus Semeval
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeqD [143] - 0.348 - 0.276 - 0.325 - 0.374 - 0.327
catSeqCorr-2RF1 [12] 0.382 0.308 0.291 0.240 0.369 0.286 0.414 0.349 0.322 0.278
catSeqTG-2RF1 [12] 0.386 0.321 0.301 0.253 0.369 0.300 0.433 0.375 0.329 0.287
GAN [118] 0.381 0.300 0.297 0.248 0.370 0.286 0.430 0.368 - -
BeGan-KP (our approach) 0.318 0.309 0.383 0.356 0.332 0.317 0.388 0.366 0.329 0.319

Table 3.2: Results of present keyphrases for five datasets. Our approach is BeGan-KP.

All datasets are preprocessed following [12]: duplicate papers are removed from KP20k, and for
each document the list of KPs is sorted in order of appearance in the document. Digits in the input
texts are replaced with the special token <digit>.

Results are evaluated using F1 score. In particular F1@5 and F1@M are employed: the first is
calculated considering only the top 5 high scoring KPs, the second is computed taking into account
all the predictions.

All sample documents are annotated with human curated KPs. Of the above mentioned datasets,
only KP20k is used for training; all the others are used only for testing and evaluation. Note that
the strength of the language model of our Discriminator allows us to use only a small subset of
the data samples during training: the whole architecture has been trained with a subset of 2,000
samples instead of the >500,000 used by the other state-of-the-art approaches.

3.4.2 Implementation Details

The initial MLE model G0 is trained with a batch size of 12 and Adam optimizer [59]; during RL
training, batch size is 32. The Discriminator is trained with a batch size of 3 and AdamW optimizer
[72]. The pretrained BERT model is the base uncased version, with 12 layers, 12 attention heads,
and hidden size of 768. The maximum input length after tokenization is fixed to 384 tokens. We
use the implementation provided in the python library transformers by huggingface [134]

Training and experiments have been executed on a PC with a GeForce RTX 2080 GPU, 11GB.
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3.4.3 Experimental Results

Our proposed solution BeGan-KP, trained on 2,000 samples, has then been compared with the
following state-of-the-art approaches: CatSeqD [143]; CatSeqCorr-2RF1 and CatSeqTG-2RF1 [12],
and GAN [118]. The results of our tests are shown in Table 3.2.

First, we can note that BeGan-KP achieves results competitive with the best performing tech-
niques, even using a limited set of samples (all the other approaches were trained on the whole
KP20k).

Looking at the results in detail, we obtain by far the best performance for Inspec both in F1@5
and F1@M .

Our approach has other good results in F1@5 metrics, specifically in Krapivin and Semeval2010
where our values are only slightly lower than the best. Since F1@5 is calculated considering the 5
predictions with the highest score, we can say that our model is capable of producing high quality
Keyphrases reliably, and of outperforming or at least matching other best-performing models in this
specific task. This confirms the strength and consistency of our architecture. In addition, we obtain
the best F1@M score for Semeval2010. Note that Semeval2010 is a demanding test dataset as it is
the smallest of the five, and the gross amount of KPs to predict is the lowest (612 present KPs out
of a total of 1,443), leading to a great variance in the output. Finally, consider that in Equation 3.3
the expectation of the policy function is evaluated using only one complete sequence ŷ, inducing a
high variance in the ∇J . This is a general issue of Reinforcement Learning applied to GANs for text
generation and generally leads to unstable training process and slow convergence [142]. Thanks to
the capability of the language model embedded in our architecture, in our experiments the training
process shows a quick convergence in terms of number of training iterations. In fact, the reported
results have been achieved at the second iteration (G2 generator).

3.5 Summary

In this chapter we introduced an approach to the task of extractive Keyphrase Generation in a
low-resources scenario, BeGan-KP. It is based on the GAN framework with a novel BERT based
Discriminator model, trained by mean of the Reinforcement Learning paradigm. It has been tested
on five public datasets showing performances competitive with state-of-the-art approaches while
using less than 1% of the available training data, achieving a great training efficiency.
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Chapter 4

Protein Structure Prediction based on
Generative, Discriminative and Linear
Models

4.1 Introduction

The three-dimensional structure of a protein is determined by its amino acid sequences and it is key
to its functional mechanisms. In addition, its prediction is a major challenge for biologists [2, 112].
In recent years the astonishing success of the AlphaFold prediction systems based on multiple align-
ments and deep learning [54] essentially solved the problem. However, understanding the effect of
single amino acid substitutions on the stability of the structure or on its interactions still remains
a difficult problem. In order to do this, it is important to estimate the effect of each amino acid at
each position on the secondary structure of the central residue.

Here we address the prediction of secondary structure from single sequences to characterize and
compare different approaches. We aim at understanding how the different predictive approaches
leverate this information coming from neighboring amino acids to predict the local structure struc-
ture of the protein.

Protein secondary structure prediction is one of the classical problems in bioinformatics and it
has been addressed extensively using many methods.

The interest in predicting secondary structure stemmed from different reasons:

1. identifying secondary structures provides an idea about overall structural categories;

2. secondary structure plays an important role in determining how proteins fold; [153, 92, 98]

3. since the practical experiments that are used to determine protein structure were and are
costly and time-consuming, it appears convenient to develop prediction methods. In addition,
the number of known sequences is at least 1,000 times bigger than those of examined structures
[138], a fact that calls for predictive methods.
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Although various techniques were introduced for predicting protein secondary structure from
multiple sequence alignments, there have been relatively few attempts to improve the performance
of secondary structure predictions from single sequences. The prediction of secondary structure from
single sequence challenge, as reviewed by Rost and Sander [111], started with Pauling and Corey
in 1951, when they predicted helical and sheet conformations for protein polypeptide backbone.
In addition, they focused on predicting structural properties of proteins like backbone dihedral
angles, leveraging this information for secondary structure prediction [96, 97]. After these early
works, a first generation of prediction methods has been put forward based on local amino acids’
propensities to adopt a particular secondary structure, like e.g. the Chou and Fasman methods
[21]. The second generation of algorithms was based on information theory instead, considering
the effects of amino acids and pairs of amino acids within a window of 11 to 21 adjacent residues.
Among these methods the Garnier-Osguthorpe-Robson method was among the best available ones,
together with its subsequent refinements [30, 31, 29].

Later on, evolutionary information and the introduction of novel neural network architectures
led to an outstanding increase in the accuracy of the predictions [110, 99]. The interested reader
will find details and further references in the papers cited in this work and in recent reviews [121].

More recently novel deep learning methods have been applied to the problem of single sequence
prediction of secondary structure.

Heffernan et al. [39] proposed LSTM-BRNNs (SPIDER3-Single), a single-sequence-based model
using long short-term memory bidirectional recurrent neural networks to solve the task. The model
can predict multiple one-dimensional (1D) structural properties with relatively high accuracy, es-
pecially for non homologous sequences.

The ProteinUnet architecture has been introduced as an alternative way to SPIDER3-Single
for sequence-based prediction of protein secondary structure. The model is based on the U-NET
architecture which consists of blocks placed symmetrically as contracting and expanding paths [61].

The deep neural network architectures described above learn patterns from protein sequences
and succeed in giving more accurate predictions than traditional methods. Still, the way this is
done is hidden in the connections and parameters of the network, which acts as a black box. It is
somehow frustrating that the learning machine uses the patterns in the sequences in the best ways,
but does not disclose this information to the user.

In recent years several methods have been developed to relate the predictions of the model
architecture to its input features (e.g. DeepLIFT [116]), making it possible to assess the interplay
of input variables in determining the output. These input-output relationships may be compared
in principle with the mutual information of input variables and/or pairs of input variables and
the output, and with linear models thus providing a glimpse of how the network is using input
information.

Here we use different approaches to the task of predicting protein secondary structure from
protein single sequences:

i) a linear model solved exactly for coefficients minimizing the mean square prediction error;

ii) a linear model implemented as a single-layer feedforward neural network;

iii) a neural network based on Bidirectional Long Short-Term Memory (Bi-LSTM) architecture;
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iv) a neural network based on the Transformer framework with a novel BERT-based model;

v) a neural network based on the Encoder-Decoder framework, utilizing a T5 model.

Using different predictive models, based on really different and recent architectures gives us
the opportunity to compare extensively performances and understanding how the single position
information is linked to the output.

We compare the different predictive approaches in terms of the feature importance. This is
identified with the absolute magnitude of the coefficients for the linear models, whereas for neural
networks it is assessed by propagating activation differences in the protein single-sequence with
respect to a reference activation, using the DeepLIFT (Deep Learning Important FeaTures) [116]
method.

The comparison of the models among themselves and with the mutual information may help
in rationalizing the way deep neural network architectures use the information coded in protein
single-sequences.

4.2 Materials and methods

4.2.1 Datasets and Metrics

The dataset of structures used in this work was obtained by downloading non-redundant sequences
(at less than 40% identity) from the culling server Pisces [127] with resolution of < 4.0A and R-factor
< 1.0. The set entails 27,316 sequences. Additionally splitting sequences at breaks in connectivity
of the corresponding PDB file, resulted in 35,964 sequences with maximum length of 2,166 amino
acids.

This dataset was split into a Training set (TR33964) consisting of 33,964 different chains and
a test dataset (TS2000) consisting of 2,000 different chains. Each subsequence with no breaks was
divided in subsequences of length 17, centered around the position for which we aim to predict the
secondary structure (see Figure 4.1). This results in 5,672,821 samples for the Training set and
490,612 samples for the Test set, where each sample consists in a subsequence of 17 amino acids (8
preceding and 8 following the central residue) and a label indicating the secondary structure of the
protein at the position of the central residue.

Note that the dataset we use in this work is larger than the ones used in the papers describing
SPIDER3-Single and ProteinUnet. This does not influence the overall performance of the models,
as preliminary experiments showed that the same model developed on TR33964/TS2000 or on the
SPIDER3-Single dataset reached the same classification accuracy. At the same time, a larger dataset
enables us to perform a more in-depth analysis of the models’ predictions.

The secondary structure of the central residue was assigned using the DSSP databank, [122]
which outputs for each residue one of eight possible states [55]. The eight states were further
clustered in three main classes as detailed in the following section.
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• the mutual information of each pair of position and state;

• the three-variable mutual information for each pair of positions and the secondary structure
state.

Entropy and mutual information are defined as follows.
Each position in the 17-residue window may assume 21 possible values: 20 amino acids plus

the “absence of amino acids”, used as padding for the initial and final positions in the sequence.
The central position can only assume 20 values, as we require the presence of central amino acid
associated to a secondary structure state. The latter can be one of three possible states.

In the following equations, we reserve index 0 for the secondary structure state variable and
indices 1 to 17 for amino acid position variable.

The entropy of each variable xi is estimated from {niℓ}, that is the counts of occurrences of its
possible values {vℓ}:

Ŝ(xi) = −
∑

ℓ=1,...,nsi

niℓ∑
ℓ=1,...,nsi

niℓ
log

(
niℓ∑

ℓ=1,...,nsi
niℓ

)
(4.1)

where nsi is the number of possible values (states) of variable xi.

The joint entropy of two variables is computed as:

Ŝ(xi, xj) = −
∑

ℓ=1,...,nsi
m=1,...,nsj

nij;ℓm∑
ℓ=1,...,nsi
m=1,...,nsj

nij;ℓm
log

 nij;ℓm∑
ℓ=1,...,nsi
m=1,...,nsj

nij;ℓm

 (4.2)

where nij;ℓm is the count of simultaneous occurrences of value i assuming the value vℓ and
variable j assuming the value vm.

The mutual information between two variables is estimated as:

M̂I(xi, xj) = Ŝ(xi) + Ŝ(xj)− Ŝ(xi, xj) (4.3)

Note that
M̂I(xi, xi) = Ŝ(xi) (4.4)

In order to quantify also the effect of pairs of positions on the secondary structure state we consider
the three-variable joint entropy and mutual information. The joint entropy of three variables is
defined similarly as above:

Ŝ(xi, xj , xk) = −
∑

ℓ=1,...,nsi
m=1,...,nsj
n=1,...,nsk

nijk;ℓmn∑
ℓ=1,...,nsi
m=1,...,nsj
n=1,...,nsk

nijk;ℓmn
log

 nijk;ℓmn∑
ℓ=1,...,nsi
m=1,...,nsj
n=1,...,nsk

nijk;ℓmn

 (4.5)
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vectors of the subsequence, and the output was a one-hot vector of size 3. The model was trained
on the whole Training set for 50 epochs, with stochastic gradient descent, using a batch size of 128
samples, a learning rate of 1e-3 and Mean Square Error as a loss function.

Figure 4.2 shows a schema of both the LIN and FFN model.

4.2.5 Bi-LSTM neural network (LSTM)

A Bidirectional LSTM (Bi-LSTM) is a variant of the LSTM model [43] which scans the input
sequence in both directions: forward, from the start to the end of the sequence, using a Forward
LSTM layer made of forward cells (Figure 4.3, light blue layer); and backwards, from the end to
the start of the sequence, using a Backward LSTM layer made of backward cells (Figure 4.3, red
layer). At time t, a Bi-LSTM has two different active cells: a forward cell −→c and a backward cell←−c .
The forward cell uses the current input −→xt and the state of the previous cell (−−→ct−1) to calculate its
internal cell state (−→ct ), and hidden state (

−→
ht). In Figure 4.3, the cell states flow left-to-right, while

the hidden states are output from the bottom of the cells. At the same time, the backward cell
uses its current input ←−xt and the state of the previous backward cell (←−−ct−1) to calculate its internal
cell state (←−ct ), and its hidden state (

←−
ht). Cells states of the Backward LSTM flow from right-to-

left, while hidden states are output from the bottom of the cells. The choice of using a Bi-LSTM
instead of a simple LSTM network to predict the secondary structure is justified by the fact that
such typology of neural network has achieved promising results while also beating the performance
obtained with simple LSTMs, as shown in [39]. This is due to the ability of the Bi-LSTM to use
more contextual information, as is it able to read the sequence both ways.

We implemented a Bi-LSTM model with a hidden state size of 64. The last hidden states of
the forward and backward LSTMs are concatenated (size 128) and passed to a small postprocessing
network to project them to the output space. The postprocessing network is formed by a linear
layer (128x32), a ReLU activation function [117], and another linear layer (32x3). A schema of
the network is shown in Figure 4.3. The input of the LSTM is a sequence of 17 one-hot vectors
representing the amino acids, while the output is a one-hot vector of size 3. Similarly to the FFN
model, LSTM was trained on the whole Training dataset for 50 epochs with stochastic gradient
descent, using a batch size of 128, learning rate of 1e-1 and Mean Square Error as a loss function.

4.2.6 BERT-based neural network (BERT)

BERT [26] (Bidirectional Encoder Representations from Transformers) is a Transformers-based
architecture that has revolutionized many tasks in the Natural Language Understanding field. It is
a large language model, composed of a series of stacked encoder blocks, aimed at creating deeply
contextualized word embeddings. Each encoder processes the whole input sequence and transforms
it into an embedding sequence that can be either used for inference or fed into another encoder
block for further processing. This model is commonly used in the following way:

• A domain of interest is chosen, together with a large corpus that can be used to train the
model.
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4.3 Results and discussion

4.3.1 Mutual information

The mutual information was computed as described in the Methods section.

Entropy The single variable entropy was almost identical for all of the 17 positions, with the
exception of a slight increase towards the ends. The cause of the increased entropy for the tails
of the sequence is that the terminal residues can also assume the value “absence of amino acid”.
Although the “absence of amino acid” occurs with a low frequency, this additional value is never
present at the central position, and increasingly more frequent moving towards the end of the
sequence. This leads the entropy to increase in a similar pattern, from 2.89 (central position) to
2.94 at the tails of the distribution, in a logarithmic fashion.

Two-variable Mutual Information (position-position) When considering pairs of positions,
the two-variable mutual information is dominated by the correlation of the absence of amino acid
for windows entailing terminal residues, e.g. because the absence of amino acids at a position before
the central one implies the absence of amino acids at all preceding positions.

Two-variable Mutual Information (position-state) The most interesting result obtained
with two-variable mutual information is the one calculated between each input position and the
predicted state. We computed it taking into account all possible states and considering only one
state at the time, i.e. categorizing for example Helix and non-Helix states. The position-state
mutual information for each position is reported in Figure 4.6.

-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8

Helix

-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8

Coil

-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8

Extended

-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8
0.00

0.01

0.02

0.03

0.04
All

MI

Figure 4.6: Two-variable Mutual information (position-state) of each position along the 17-residue
window around the position for which secondary structure is considered. From left to right: mutual
information obtained categorizing Helix states, Coil states, Extended states, and the overall Mutual
Information.

The mutual information highlights the direct influence each position has on the secondary struc-
ture state. As expected, the mutual information is bell-shaped around the central position (the
position for which the secondary structure is considered). When the single states, Helix, Coil and
Extended are considered, some differences are apparent. For Helices the curve has a larger width
than for Coils and Extended structures, consistent with the spread in local interactions. Another
interesting feature is that for Coils there is a peak at the central position (as expected), but also at
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the following one, consistent with the disruptive effect some amino acids have on other secondary
structures. For Extended structures the mutual information appears less consistent with the non-
local interactions that stabilize this secondary structure element. However, the interpretation of
the plot is not straightforward: as stated before, we compute the mutual information comparing
Extended and non-Extended samples. Because of this, the mutual information implicitly takes into
account the characteristics of Helices and Coils too (grouped together in the non-Extended class),
and the plot highlights which positions are more important to distinguish between these two groups.

The position-state mutual information should provide a good reference for linear models which,
albeit only additively, take into account the effect that each amino acid at each position has on the
secondary structure of the central positions.

Three-variable Mutual Information (position-position-state) Another piece of information
which is not caught by linear models is the additional effect of pairs of positions. This is captured
by the three-variable (position, position, secondary structure) mutual information, computed as
described in Methods section. This three-variable mutual information is directly related to how
much information is gained by knowing the residue at two position simultaneously with respect
to knowing them separately. Contrary to the two-variable mutual information, the three-variable
mutual information can be positive (if the pieces of information provided by the two variables on
the third one are not independent) or negative (when the two variables are cooperative or anti-
cooperative). The corresponding heatmaps for all the states together and for the separate state are
reported in Figure 4.7.

Helix Coil Extended All

Figure 4.7: Three variable mutual information for each pair of positions and the secondary structure
state of the central residue. The information along the diagonal corresponds to the information
reported in Figure 4.6 and has been set to zero, for better readability of the maps. Heatmaps refer
to: Helices, Coils, Extended structures and all secondary structures.

As for the two-variable mutual information, the heatmaps for the single states are calculated
considering a single state (e.g., Helix vs non-Helix), so they also implicitly contain information
from other states. Although interpretation is not obvious, patterns are different among different
secondary structure elements, such as the negative peak at (0,-4) for Helices, or the interactions
parallel to the diagonal for Coils, showing that there are (albeit small) cooperative effects which
involve a large number of pairs of positions.

In order to provide an illustration of this important point we consider only Helix and Extended
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Helix vs Extended

Figure 4.8: Three variable mutual information for each pair of positions and the secondary structure
state of the central residue with only Helix and Extended structures are considered. The information
along the diagonal has been set to zero, for better readability of the maps.

structures. The three variable mutual information is reported in Figure 4.8 and displays negative
(informative) values along diagonals running parallel to the main diagonal, in particular at distances
±1, ±3, and ±4. The map is thus reporting about features determining both Helix and Extended
structures as said above.

It is clear that the information reported in these heatmaps (resulting from the joint effect of
pairs of positions) is not modelled by linear models, whereas neural networks should be able to
reproduce even complex dependencies of secondary structures on pairs of amino acids. The mutual
information computed here offers a convenient way to compare predictive methods.

4.3.2 Linear models

Multilinear regression (LIN)

A linear model has been implemented as a set of 136,000 overdetermined equations in 340 variables
(17 positions times 20 elements of the 1-hot vector for each position), which has been solved to
find the solution leading to minimum sum of square errors by pseudoinversion as detailed in the
Methods section.

In order to compare the results with the mutual information results, the 340 coefficients were
grouped 20 by 20, and we calculated the average of the absolute value of the 20 coefficients as a
measure of the overall importance of that position.

The results are reported in Figure 4.9 where the different profiles for Helix, Coil and Extended
structures are apparent, together with the silhouette of the mutual information, represented by the
dashed line.

The plots have a bell shape, which is wider for Helices and Extended structures than for Coil
structures. Similarly to what is seen in the mutual information, the bell shape for the Extended
structures is less defined and noisier.

The distribution of the linear coefficients broadly parallels that of the mutual information (re-
ported in Figure 4.6), although the difference between the central peak and the tails is more accen-
tuated. The linear correlation of −c̄jlog(c̄j) of the former quantity with the mutual information of
each position with the secondary structure of the central residue is 0.90.
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Figure 4.9: Weights of LIN for each position in the 17-amino acid window, for the three output
states (Helix, Coil, Extended) and their average. For each position we plot the average of the
absolute values of the 20 coefficients that encode the amino acid.

Feedforward network (FFN)

The linear model implemented using neural networks was analyzed in two ways: considering its
weights, similarly to what was done for the LIN model, and using the DeepLIFT algorithm to
determine the attribution scores of each input position.

Figure 4.10 displays both plots for the three output classes. We observe that the weight distribu-
tion is more similar to the mutual information than to the other linear model (LIN). It is interesting
to observe such a huge difference in the weights of the model, since FFN was trained without using
any weight normalization. We assume that the weight distribution of FFN is largely due to its
weight initialization and some characteristics of the training samples. In particular, the weights
of the neural network are first initialized to random values, sampled from a continuous uniform
distribution between − 1√

340
≈ −0.054 and 1√

340
≈ 0.054, and then adjusted during training. We

can see that 0.05 (after absolute value) is also the pivotal number to distinguish informative and
non-informative positions in Figure 4.10 top. This is likely because the model’s weights are modified
only if they contribute to a wrong prediction, while they are left unchanged if they do not impact
the prediction negatively. Since most of the values in the tail positions have low impact on the
model’s output (see mutual information), the model initially lowers their weights during the first
epochs, but then only focuses on updating the weights related to the central region, which contain
more information and bring greater gains in accuracy. This explains why most of the tail positions
have weights close to 0.05: they have low impact on the model’s accuracy, so their values remain
similar to the ones set during the random initialization.

The bell-shaped curve for the Coil class is wider for the FFN model, and it displays two peaks
around position -2 and 1. This behaviour loosely imitates the shifted peak of the mutual information,
but the presence of a double peak is probably an effect of the stochastic nature of the training
algorithm.

We can also note that the weights and DeepLIFT attributions of the FFN model create remark-
ably similar representations, showing that the DeepLIFT representations computed for the following
neural networks can be used to draw similarities between the models.
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Figure 4.10: Weights and DeepLIFT attributions of the FFN model for each position in the 17-
amino acid window, for the three output states (Helix, Coil, Extended) and their average. Top:
weights of the FFN, for each position we plot the average of the absolute values of the 20 coefficients
that encode the amino acid. Bottom: DeepLIFT attributions for each position.

4.3.3 Bi-LSTM neural network (LSTM)

For the LSTM neural network, we report the attributions calculated with the DeepLIFT algorithm
for the samples belonging to the three output classes (Figure 4.11).

Comparing the attribution scores with the mutual information in Figure 4.6, we see that the
bell curves are even more similar than the ones produced by the two linear models. In particular,
the LSTM attribution score distribution for the Extended class resembles the mutual information
scores very closely, and the distribution for the Helices peaks at position 1 (same as the mutual
information).

It is surprising that a model containing non-linearities is better at replicating the mutual infor-
mation patterns than the two linear models previously considered. This reflects the fact that linear
models poorly reproduce the single-position state mutual information, and additionally that the
average absolute value of the 20 coefficients (instead of e.g. the root mean square, or its logarithm)
at each of the 17 positions might be not the best quantity to compare with mutual information.

4.3.4 BERT-based neural network (BERT)

Figure 4.12 reports the attributions scores of our BERT-based implementation on the three states.
In this case, the shapes of curves for the three output classes are very similar to each other: they
all have a strong peak at position 0, and the attribution score gradually decrease on both sides in
a mostly symmetrical way.

Compared with the mutual information, the attributions scores are more evenly distributed
among the positions. This can be explained by the densely connected structure of the stacked
encoder blocks, which encourages the even spread of information along all positions of the sequence.
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Figure 4.11: DeepLIFT attributions of the LSTM model for each position in the 17-amino acid
window, for the three output states (Helix, Coil, Extended) and their average.

It is also interesting to note that the attributions for Extended structures are generally higher than
the ones of Coils, which is significantly different from the behaviour of all the previous models. This
might indicate a better ability in recognizing Extended patterns, which leads to stronger activations.
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Figure 4.12: DeepLIFT attributions of the BERT model for each position in the 17-amino acid
window, for the three output states (Helix, Coil, Extended) and their average.

4.3.5 T5 neural network (T5)

Finally, Figure 4.13 reports the DeepLIFT attributions for the T5 model. The shapes of the at-
tribution plots are very similar among each other, and behave similarly to what was seen for the
BERT model, descending symmetrically on both sides. They all have a central peak at position 0-1,
which is more pronounced for the coil class. Contrary to BERT, the attributions scores are high for
all classes.
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Figure 4.13: DeepLIFT attributions of the T5 model for each position in the 17-amino acid window,
for the three output states (Helix, Coil, Extended) and their average.

58



4.3.6 Comparison of input features effects

After we separately analyzed the way the models use their input features, we perform a quantitative
evaluation of their similarity using the Pearson ansd Spearman Correlation Coefficient [5, 87] , which
measures the linear correlation between two sets of data.

We calculated the correlation between the weights/attribution scores of each pair of models and
the position-state mutual information. For each pair of models we compare the concatenation of the
three sets of 17 values computed for each of the output classes, in order to measure the similarities
between how to the models treat each output state.

Figure 4.14 shows the correlation matrix between all the models and the mutual information.
The Pearson Correlation Coefficient confirms some of our previous observations: the models that
most closely resemble the score distribution of the mutual information are the LSTM and T5,
followed by the FFN, BERT and finally LIN.

The linear model LIN is the least similar to the other models, due to the large difference in
magnitude between the central peak and the tails, and also the high value of the peak for the Coil
class (see Figure 4.9). However, it still has a high pearson correlation with the mutual information
(0.72) and the other linear model (0.60 FFN). In addition, It has high spearman correlation with
the mutual information (0.783 ) and the other linear model (0.78 FFN).

In general, the attribution scores of all the neural networks have high correlation (over 0.63)
among each other, and T5 has a very high correlation with all the other models.
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Figure 4.14: Pearson Correlation coefficient between the models
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4.3.7 Performance and comparison of the predictive models

We compare the performance of all the classification models on both the train and test datasets.
The performance is computed using accuracy (percentage of samples with the correct predicted

secondary structure), but we also report the confusion matrices on the test set for a more in-depth
analysis.

Train Test
LIN 62.62% 62.09%
FFN 62.72% 62.25%

LSTM 69.88% 69.15%
BERT 70.24% 70.15%

T5 69.04% 68.35%

Table 4.1: Performance evaluation of the analyzed models for protein secondary structure prediction.

Looking at Table 4.1 we can observe that, for each model, train and test accuracy are really
close. This indicates great generalization capabilities for all classifiers and no signs of overfitting.

Comparing the linear models (LIN and FFN) with the non-linear ones (LSTM, BERT, T5), we
can see that the latter consistently outperform the former ones. The non-linear models surpass the
linear ones of up to 8 points in train and test accuracy. In particular, BERT proves to be the most
accurate model, with a test accuracy of 70.15%, while the best linear model reaches 62.25%.

Interestingly, the test accuracy of the non-linear models is inversely correlated to their Pearson
Coefficient with mutual information (bottom row in Figure 4.14). For example, BERT has the
highest test accuracy, but its attribution scores were the least correlated ones with the mutual
information. On the other hand, T5 had the highest correlation with mutual information, but
it has the worst performance on the test set. This is probably because deep neural networks gain
performance by capturing complex non-linear relationships between pair of amino acids (or patterns
in even higher dimensions), which leads to their attributions scores to look different from the two-
variable mutual information, which only captures linear dependencies between a single amino acid
and the output. As we observed in Figure 4.7 with the three-variable mutual information, the
information gained from pairs of positions is not negligible, so it is reasonable for non-linear models
to exploit them for more accurate predictions.

To sum it up:

• we can infer how accurate a linear model is based on how much their attribution score dis-
tribution resembles the mutual information. This is because the more they are similar to the
mutual information, the more they are exploiting all linear dependencies between input and
output.

• we can infer how accurate a non-linear model is based on how much their attribution score
distribution differs from the mutual information. This is because the weights of the model need
to deviate from that distribution to focus on higher-dimension correlations between different
input positions. If the attributions of a non-linear model resemble mutual information, they
are probably not making the most out of the data.
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Looking at the the confusion matrices in Figure 4.15, we can see that the main difference in
predictive power between linear and non-linear models comes from the classification of Extended
structures.

The confusion matrices of LIN and FFN show that only 35-37% of the Extended structures are
correctly identified as such (lower right corner). The non-linear models improve their identification
by 20 points reaching 54.87% with T5. This shows that neural networks containing non-linearities
are better-suited to encode the non-local interactions needed to identify Extended structures and
distinguish them from Helices.
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Figure 4.15: Confusion matrices of the analyzed models.

4.4 Summary

In this chapter, we introduce an analysis and comparison between T5 generative model, discrimina-
tive models and liner models for the task of predicting protein structure. We aim at understanding
how the single-sequence secondary structure prediction of a residue is influenced by the residues
surrounding it, in a window of 17 residues. We also investigate how different prediction methods
use single-sequence information to output the predicted state.
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Chapter 5

Conclusion and Future Work

The aim of the thesis was to explore the capabilities of deep generative models in a wide range of
downstream tasks, generating different kinds of data, including computer vision tasks, such as visual
content generation [69, 93, 137] and object recognition [49, 83, 126]; natural language processing
tasks, such as keyphrase generation [81, 149, 13]; and generation tasks based on biological sequences
[52, 1, 114].

During my PhD, I worked on several topics concerning generative models. The contributions
presented in this thesis are based on the following two deep generative models: the GAN framework
and the Transformer based architecture. I summarize the thesis contributions in the following list:

1. Building a new pipeline to solve a text to image synthesis task for unlabeled datasets by
applying the CGA framework. The pipeline is able to first generate captions for unlabeled
datasets, and then to use the “machine-generated” captions to train CGAN. The proposed
framework introduces possible solutions to the obstacles of the text to image translation task
for uncaptioned dataset, that still need to be overcome.

2. Introducing an approach to the task of present keyphrase generation in a low-resources sce-
nario. The proposed BeGan-KP is based on the GAN framework and Transformer based
architectures. It is composed of a CGAN framework combined with a novel BERT-based
Discriminator model, trained by mean of the Reinforcement Learning paradigm. It has been
tested on five public datasets showing performances competitive with state-of-the-art ap-
proaches while using less than 1% of the available training data, achieving a great training
efficiency.

3. Proposing and analyzing five different frameworks for the task of protein structure predictions
from their single sequence alignment. Several models have been analyzed, including generative
models, discriminative deep neural networks and linear models. Our findings suggest that
the linear model might be more suited than non-linear ones to model the single position
mutual information with the secondary structure of the central residue. However, non-linear
models will always perform better than linear ones in accuracy, because they can exploit more
information.
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Here I conclude by briefly summarizing in points the the main accomplishments of my PhD
work:

• I worked on task of applying CGAN in text to image synthesis for achieving the goal of
generating images conditioned on “machine-generated captions” . We introduced a pipeline
composed by a captioning system and GAN. First, real images are given as input to a caption-
ing system, which outputs multiple captions for each image. The generated captions together
with images are then fed to the GAN that learns to generate images conditioned on textual
descriptions. By feeding the GAN with multiple captions for each image, the GAN can bet-
ter learn the correspondence between images and captions. For the experiments we used the
COCO dataset and the LSUN-bedroom dataset.

• I presented a system for Keyphrase Generation using the GAN architecture with Reinforce-
ment Learning. Thanks to the characteristics of our approach, I have been able to train the
system in a data-efficient way using only a small fraction of the available data. I tested it on
five baseline datasets, achieving results that are competitive with some state-of-the-art gener-
ative models. At the best of my knowledge, this is the first attempt to train such a complex
architecture for the demanding task of Keyphrase Generation in an scenario in which only a
small amount of data is available.

• I compared five models (a generative Transformer based model, T5, two discriminative deep
learning models and two linear models) on the task protein structure prediction. The task
aims to improve the analysis of the positional effect on the predicted structure state. The
Generative Transformer based model T5 is a text to text Transformer that has shown com-
petitive results in dealing with sequential data. In this work we have considered the prediction
of secondary structure from a single sequence without using evolutionary information. The
mutual information analysis shows that single positions and several pairs of positions can
help determine the secondary structure of the central residue. The information that can be
gained from single positions has a dominant role, however the effect of pairs of positions is
often non-negligible. In particular, the three-variable mutual information analysis showed
that clear information gains can be achieved by considering pairs of residues jointly, instead
of separately.

• As I worked on structural bioinformatics, I also worked in Generalized Born (GB) radii using
linear models and neural networks. The key to an efficient use of implicit solvent models is
the computation of GB radii, which is accomplished by algorithms based on the electrostatics
of in homogeneous dielectric media. The speed and accuracy of such computations is still an
issue especially for their intensive use in classical molecular dynamics[130]. In the approach I
worked on, we propose an alternative approach that encodes the physics of the phenomena and
the chemical structure of the molecules in model parameters which are learned from examples.
Here I presented the application of multilinear regression and neural networks model for the
computation of GB radii. Overall the two models described here [75], provide an alternative
to approaches based on the physics of solvation, optimized to reproduce accurately GB radii,
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and can thus be used for implementing fast calculation of GB radii and their derivatives and
provide a useful reference for other alternative methods.

As future work, I introduce a few potential research directions. As generative models, and more
generally, deep learning, is an exciting field to study in, with lots of various tasks. It would be
interesting to study the application of various generative models for the fast generation of new,
viable protein structures for use in protein design applications and to investigate protein disorder.
Also, Protein-Protein interaction. I want to study the possibility of using generative models to
generate Proteins interaction.
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