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Il ragno compie operazioni che assomigliano a
quelle del tessitore, I’ape fa vergognare molti ar-
chitetti con la costruzione delle sue cellette di
cera. Ma cio che fin da principio distingue il
peggiore architetto dall’ape migliore ¢ il fatto
che egli ha costruito la celletta nella sua testa
prima di costruirla in cera. Alla fine del pro-
cesso lavorativo emerge un risultato che era
gia presente al suo inizio nella idea del lavo-
ratore, che quindi era gia presente idealmente.
Non che egli effettui soltanto un cambiamento
di forma dell’elemento naturale; egli realizza
nell’elemento naturale, allo stesso tempo, il pro-
prio scopo, da lui ben conosciuto, che determina
come legge il modo del suo operare, € al quale
deve subordinare la sua volonta.

K. Marx, Il Capitale, Libro I

In Friuli piove per coprire le lacrime.

Andrea P., comunicazione personale






Abstract

This thesis deals with two quite unrelated subjects in Computer Science: one is the relationship between
algebraic theories and monads, the other one is the study of adhesivity properties of categories.

The first part of the thesis begins by revisiting some basic facts regarding monads. Specifically, we re-
view the correspondence between monads, with rank, on the category of sets and functions, and algebraic
theories in which the operations’ arity is bounded by some regular cardinal.

Next, we move to the heart of this part of the thesis: the extension of this correspondence to the
category Fuz(H) of fuzzy sets. This result is obtained by means of a formal system for fuzzy algebraic
reasoning. We define a sequent calculus based on two types of propositions: those that establish the
equality of terms, and those that assert the membership degree of a term. We establish a sound semantics
for this calculus, and demonstrate the existence of a notion of free model for any theory in the system.
This, in turn, allows us to prove a completeness result: a formula is derivable from a given theory if and
only if it is satisfied by all models of the theory. Moreover, we also prove that, under certain restrictions,
it is possible to recover models of a given theory as Eilenberg-Moore algebras for a monad on Fuz(H).
Finally, leveraging the work of Milius and Urbat, we provide a HSP-like characterization of subcategories
of algebras that are categories of models of specific types of theories.

The second part of the thesis is devoted to the study of adhesivity properties of various categories.
Adbhesive and guasiadhesive categories, and other generalizations such as M, N-adhesive ones, marked a wa-
tershed moment for the algebraic approaches to the rewriting of graph-like structures, since they provide
an abstract framework where many general results (on, e.g., parallelism) could be recast and uniformly
proved. However, often checking that a model satisfies the adhesivity properties is far from immediate.
After having recalled, the basic definitions, we present a new criterion giving a sufficient condition for
M, N-adhesivity.

It is known that in a quasiadhesive category the join of any two regular subobjects is also a regular sub-
object. Conversely, if regular monomorphisms are adbesive, the existence of a regular join for every pair of
regular subobjects implies quasiadhesivity. Furthermore, (quasi)adhesive categories can be embedded in a
Grothendieck topos via a functor that preserves pullbacks and pushouts along (regular) monomorphisms.
In this thesis, we extend these results to M, A-adhesive categories. To achieve this, we introduce the con-
cept of an N-(preJadhesive morphism, which enables us to express M, N-adhesivity as a condition on the
poset of subobjects. Additionally, A-adhesive morphisms allow us to demonstrate how a M, A-adhesive
category can be embedded into a Grothendieck topos, preserving pullbacks and M, A-pushouts.

Finally, we exploit the previous results to establish adhesivity properties of several existing categories
of graph-like structures, including hypergraphs, various kinds of hierarchical graphs (a formalism that is
notoriously difficult to fit in the mould of algebraic approaches to rewriting), and combinations of them.
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Introduction

CHAPTER

This thesis is divided into two distinct halves, the first of which focuses on algebraic theories and monads,
while the second deals with graph rewriting and adhesive categories. Despite the disconnection between
these fields, both are united by the use of category theory as a common framework. This can be seen
as yet another testament to the power and flexibility of Category Theory, which is capable of bridging
diverse areas of Mathematics and Computer Science using shared concepts.

In Part I, the focus is on the study of equations, algebraic theories, and algebraic structures, which are
the fundamental concepts in Universal Algebra [115]. This field has a long-standing tradition in math-
ematics, dating back to the late 19" century [122], and it forms the basis of modern algebra. The ob-
servation that for (almost) every algebraic theory there is a free structure on a given set (a free monoid,
a free group, a free R-module, etc.) establishes a connection between Universal Algebra and Category
Theory. In particular, the construction of a free structure provides a left adjoint to the underlying set
functor. Every adjunction gives rise to a monad, which, in turn, carries its own kind of algebras, called
Eilenberg-Moore algebras. This led naturally to the idea of relating some kind of algebraic structures with
the Eilenberg-Moore algebras of the corresponding monad. It turns out that models of a given algebraic
theory correspond with the Eilenberg-Moore algebras of the induced monads, and vice versa: if a monad
preserves certain kinds of colimits, called x-filtered, then its Eilenberg-Moore algebras are, essentially, the
models of an algebraic theory.

In the sixties, Lawvere and Linton [ 76, 78, 80] proposed a new approach to these problems, focusing on
the concept of Lawvere Theory instead of equations. The key idea is to represent all desired operations and
axioms as a category with natural numbers as objects. Endowing a set with a family of operations is then
equivalent to defining a product-preserving functor from a given Lawvere theory to Set. Interestingly,
this approach is equivalent to the traditional one based on equations: the correspondence between certain
monads and algebraic theories also holds between the same class of monads and Lawvere theories.

This approach is particularly well-suited to introduce algebraic concepts in categories different from
Set and indeed a wide range of different computational and algebraic notions have been accomodated into
this framework [23, 63, 82, 83, 100, 107]. The idea is the following: algebraic structures in a (possibly
enriched) category X correspond to some class of (enriched) monads on it, which, in turn, correspond to
(enriched) Lawvere theories.

On the negative side, this approach does not provide a syntax describing this new kind of algebraic
structures not based on Set, so we can wonder what is the analogous of equations in these new environ-
ment. We propose a solution for the case of the category of fuzzy sets: these are sets equipped with a
function into some frame H and algebraic structures on them are well known and used since the seventies
(see e.g., [¢, 92,98, 111]).

To substitute the traditional calculus of equations we introduce the fuzzy sequent calculus. While classi-
cal equations capture equalities, the membership function’s information is captured using syntactic items
called membership propositions of the form m(h,t), which can be interpreted as “the membership degree




2 1. Introduction

of term ¢ is at least h”. We can then define a notion of fuzzy algebra, which is a fuzzy set endowed with
operations, providing a sound and complete semantics for our calculus.

As in the classical context, there is a notion of free model of a theory A and thus we get an associated
monad. However, the correspondence between fuzzy algebraic theories and monads is not as straightfor-
ward as it is for classical ones. Only for a special class of theories, called basic, does the correspondence
between Eilenberg-Moore algebras for the induced monad and models of a given theory hold. Moreover,
the task of identifying a characterization of the monads that arise from fuzzy algebraic theories, either in
terms of the preservation of certain colimits or by means of left Kan extensions, remains unsolved.

An important line of research in Computer Science since the nineties is given by so-called graph rewrit-
ing [42]: roughly speaking it is the study of how to get a new graph out of an old one according to some
given set of rules. One of the main algebraic approaches to this issue is given by the so called double-pushont
approach [22]: in this approach a rule is given by a pair of monomorphisms ! : K — Landr : K — R.
We can then say that a graph H is obtained by G through an application of the rule (I, ), if we can build
two pushout squares as in the following diagram

L<—K—"=R

f h g

Y Y \

G <o T > H
P q

Informally, T is obtained deleting the image, the match, of L from G and the second pushout “fills” the
resulting hole glueing R in it. This approach involves only categorical concepts such as monomorphisms
and pushouts, we can then apply it to every category. Therefore, it is natural to inquire which properties
a category X should possess in order to have a desirable rewriting system with useful properties, such
as confluence. This leads, in order of increasing generality, to the notions of adbesivity, quasiadbesivity,
Me-adhesivity and M, N-adhesivity [ 13, 43, 73, 104]. Part 11 is devoted to the study of these concepts.

The works of Garner, Johnstone, Lack and Sobocinski [57, 67, 73, 74] provide a link between adhesive
categories and toposes showing that all elementary toposes are adhesive and that all quasiadhesive categories
can be embedded into a Grothendieck topos via a functor which preserves all the relevant categorical
structures. The first issue we tackle in the second half of this thesis is the generalization of this result to the
context of M, N -adhesive categories: we provide conditions guaranteeing that M, N-adhesive category
can be realized as a full subcategory of a topos, closed under the relevant limits and colimits.

Another problem is to actually prove that a given category is M, N -adhesive. In order to do so,
one can take either an ad hoc approach or a modular one. The latter involves constructing categories
of graphs or hypergraphs from other categories using the comma and slice constructions, which under
certain assumptions, preserve the adhesivity properties. This modular approach enables us to establish
the M, N-adhesivity of several interesting (hyper)graphical categories.

Structure of the thesis This thesis is structured into two parts, each containing two technical chapters
and a conclusion. Part I focuses on algebraic theories. Chapter 2 covers the fundamentals of the theory of
monads and demonstrates how monads are related to algebraic theories. In Chapter 3, a syntax for alge-
braic theories in the category of fuzzy sets is introduced and studied. Conclusions and directions for future
work are in Chapter 4 . Part II discusses various concepts related to adhesivity. In the more theoretical
Chapter 5, the concept of M, A-adhesivity is introduced and several results about it are proven. Chap-
ter 6 establishes adhesivity properties for various categories of graphs and hypergraphs. We summarize
our findings in Chapter /. Finally, in Appendix A we collect some useful categorical results.



Notation We end this introduction stipulating some notational conventions which will be used through-
out this thesis.

Given a category X we will not distinguish notationally between X and its class of objects: so that
“X € X” means that X belongs to the class of objects of X.

If 1 is a terminal object in a category X, the unique arrow X — 1 from another object X will be
denoted by !x. Similarly, if 0 is initial in X then ?x will denote the unique arrow 0 — X. When X is Set
and 1 is a singleton, ¢, will denote the arrow 1 — X with value z € X.

Finally, we will use the following notation for some special classes of arrows of a category X:

e A(X) will denote the class of all arrows of X;
e M(X) will denote the class of all monos of X;

e R(X) will denote the class of all regular monos of X.
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Algebraic theories and monads

CHAPTER
Contents

2.1.1 s 8
2.1.2 A
2.1.3 N 4
2.1.4 e 4|
2.2.1 A ¥
2.2.2 S o1
2.2.3 S 4o

The study of monads is one of the pillars of category theory since their invention in the fifties [84] and
the discovery of their relation with adjunctions in the sixties [46, 70]. Also in the sixties, Lawvere and
Linton’s seminal works [ 76, 78] established the connection between monads and algebraic theories which,
since then, has been the backbone of the “category theoretic understanding of universal algebra” [63].

On the other hand, one of the most fruitful and influential lines of research of Logic in Computer
Science is the algebraic study of computation and, after Moggi’s foundational work [97], monads, and their
counterpart given by (enriched) Lawvere theories [69, 100, 110], lie at the heart of it (see also [ 106, 107]).

Our interest in monads stems from this relation between them, algebra and computer science. This
chapter is devoted to recall some well known results of the theory of monads that will be needed in
Chapter 3. There are various textbook accounts of monads which contain all these results (along many
others), we refer the interested reader to [ 12, 20, 29, 85, 89].

Synopsis In Section we will recall the definition of monad and of Eilenberg-Moore algebra; in it
we will show how to compute limits and colimits of algebras and discuss regularity of monadic categories.
Section 2.2 is devoted to the relationship between monads on Set and algebraic theories.

7
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8 2. Algebraic theories and monads

An introduction to monads

This first section is devoted to recall some well known facts of the theory of monads. The main aim of
this section is to prove some basic categorical properties of the categories of Eilenberg-Moore algebras of
a monad, we are in particular interested in the existence and computation of limits and colimits, and in
regularity of such categories.

Monads and their algebras

In this section we will recall the basic notions about monads. We will also recall the concept of Elilenberg-
Moore algebra and of monadic category.

Definition 2.1.1. A monad T on a category X is a triple (T, 7, ) where T : X — X is a functor and
n:idx = T, pu: T oT — T are natural transformations, called #nit and multiplication, such that the
following diagrams commute.

Txp Txn nxT
TolT ol ——ToT T —ToTl <—
H*T\L J/'“‘ idr l’u idr
T

Tol ———T

Example 2.1.2. On the category of Set, the powerset functor P: Set — Set gives rise to a monad P where
the component of unit and multiplication are given by

nx: X - P(X) xw {z} px:P(P(X)) > P(X) Am (B
BeA
For every cardinal k, we can consider the functor P,;: Set — Set sending X to the set of its subset
of cardinality strictly less then k. If, moreover, we assume that & is regular, then the monad structure we
have just defined for P can be restricted to one on Pj.

Example 2.1.3. Let E be an object in a category X with binary coproducts. We can define the exception
monad T taking as T: X — X
X— X+F

£l | F+ide
Yr—Y+FE

Then 7 is just the inclusion X — X + Fand u: X + E+ E — X + F is the arrow induced by idx and
the codiagonal Vg: E+ FE — E.

Example 2.1.4. Let (X, ®, I) be a monoidal category and (P, m, ) a monoid object in it, then the functor
Tp: X — X given by (=) ® P carries the structure of a monad, called the writer monad. 1If p and «
are, respectively, the right unitor and the associator, then the components of 7 and p are given by the
compositions

—1 . « i m
X xer X% xgp (XoP) oP X" Xo(PoP) X Xxqp

We can get back the exception monad taking the monoidal structure given by the coproduct, e to be
the unique arrow from the initial object and m to be Vg .
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A rich (and exhaustive) source of examples is given by adjunctions.

Proposition 2.1.5. Let U: X — Y be a functor with a left adjoint F. Let also 1 and € be the unit and the
countit of the adjunction, then (U o F\n,U * € x F') isa monad on Y.

Proof. The first square is obtained applying U to the naturality square

F(U(ery)))
- 5

FUFUFE®Y)))) FUF(Y)))
fF(U(F(Y)))J/ ifmﬂ
F(U(F(Y))) F(Y)

EFR(Y)
For the two triangles, let us start with the triangular identities of the adjunction:

idF(y) idF‘(Y)

/_M\ /\\

F(Y) S FOFY) o FOY) U(X) 5r URWU(X) o U(X)
Then applying U to the first and instatiating the second with X = F'(Y") we get the thesis. O

Example 2.1.6. Let (X, ®, I) be a symmetric monoidal closed category, and let S be an object in it, then
the adjunction S ® — - [S, —] induces the state monad sending an object X to [S, S ® X].

Example 2.1.7. [71, 94] Let again S be an object of symmetric monoidal closed category (X, ®, I'), then,
since [—, S]: X°? — X isadjoint to its opposite, Proposition gives us a monad, called the continuation
monad, sending an object X to [[X, 5], S].

Another example of monad is given by the Kleene star [ 10, 24, 114].

Example 2.1.8. Given a set X, define a word on X as a function w: n — X with domain n € N. The
domain n will be also called the length of w and the value w(i) at i € n its (i + 1) letter. Let X* be the
set of all words on X, if f: X — Y is a function, then we can define

Xy w fow

obtaining a functor (—)*: Set — Set. We want to endow it with a monad structure.

First of all notice that we can equip X* with a structure of monoid. Givenv: n — X andw: m — X,
since the number n 4 m is also a coproduct of the sets n and m, we can define the concatenation v - w of
v and w as the induced arrow n +m — X. Explicitly,

v(1) 1<n

vew:n+m— X i ’ ]
w(i—n) n<i

Notice that, in particular, for every w: n — X with n # 0, we have

w=[T6we
=1



10 2. Algebraic theories and monads

Since (N, +, 0) is a monoid, we get at once that (X*, -, 7x ) is a monoid too. We want to show that in this
way we get a left adjoint Fyon to Unton : Mon — Set, the forgetful functor from the category of monoids.
We have a function
nx: X — X* T 0y

Now, if (M, -, e) is another monoid and f: X — M is a function we can put

e w="7x
dom(w)

fiX* =M w )
f(w(i))  dom(w) #0

i=

which, by construction, is the unique morphism of Mon fitting in the following diagram.

X nx X*

\ g
f M

Finally, we can notice that f* is the unique morphism (X*,-,7x) — (Y*, -, ?y) such that

nyof=f"onx
and thus we can conclude from Proposition that (—)* = Umon © FMon carries a monad structure.

Definition 2.1.9. Given a monad T on a category X, an Eilenberg-Moore algebra for T is a pair (X, §)
where X is an object of X and £: T'(X) — X such that the following diagrams commute

nx nx

Y T(X) T(T(X)) > T(X)

N

T(X) §—>X

X

A morphism between (X, £1) and (Y, &2) isan arrow f: X — Y such that the following square commutes

x) 29 1y

T(
fli &2
X —Y

!

We will denote with EM(T) the resulting category of Eilenberg-Moore algebras. We will also denote
by Ur the forgetful functor Ur: EM(T) — X which sends (X, £) to X and is the identity on arrows.

Example 2.1.10. Take a monoidal category (X, ®, I) and consider the monad of Example associated
to an internal monoid (P, m, e). A Eilenberg-Moore algebra (X, §) for such monad is given by an arrow
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¢: X ® P — X fitting in the diagrams below.

—1 . «a i m
X xer X% xgp (XoP) P X" Xo(PoP) X xqp
el )
idx 3
X X@P X

13

Thus, the category of Eilenberg-Moore algebras for the writer monads, can be seen as the category of
actions of the internal monoid (P, m, €) on objects of X.

Proposition 2.1.11. Let T be a monad on a category X, then the following are true:

1. Uy reflects isomorphism;

2. for every (X,&1) in EM(T) and isomorphism f: X — Y in X, there exists a unique &: T(Y) — Y
such that (Y, &2) is in EM(T) isomorphic to (X, &1) via f.

Proof. 1. Let f: (X,&) — (Y,&2) is a morphism in EM(T) which is an isomorphism in X, then
[rob=ftofo&oT(f)}

=idx o0& oT(f)™!

=&oT(f)™
proving that f~1 is a morphism (Y, &) — (X, &1) which is the inverse of f in EM(T).

2. Reasoning as before we see that the only possible choice is to define
&= foboT(f)™!
Now, the previous equation entails at once that
LoT(f)=fo&

This, in turn, allows us to build the following diagrams, entailing that (Y, &) is an object of EM(T).

Hy ny

T(T(Y)) ————=T(Y) Y ————=T(Y)
T(T(f~ 1)) T(f™) /Lfl T(f )
T(T(X)) ————T(X) =
T(&2) T(&1) &1 &2 &2
TX)———=X
3
T(f) f
T(Y) Y
&

From point 1 we can deduce that f: (X,&) — (Y,&) is an isomorphism of Eilenberg-Moore
algebras and the thesis follows. O
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The functor Ut has always a left adjoint, which sends an object to the free algebra on it.

Proposition 2.1.12. Ler T be a monad on the category Y, then the forgetful functor Ur: EM(T) — X has a
left adjoint Fr: X — EM(T) which sends X to (T'(X), pux).

Proof. The axioms of monad entail at once that (T'(X), ux) is an Eilenberg-Moore algebra. Let us show
that 7 has the universal property of the unit of an adjunction. Given an Eilenberg-Moore algebra (Y €)
and a morphism f: X — Y of X, we can consider the composition £ o T(f): T(X) — Y. Pasting
together the naturality diagrams of 7), 1 and those in the definition of Eilenberg-Moore algebras we get:

T(T f)) (€)

T(T(Y)) — = 7(v)

X4>

N

T(X) = TO) ——=Y T(X)

T(T(X)) ——=

-
=
<
-
S

T(Y) X

T(f) 3

showing that £ o T'(f) is a morphism (T'(X), ux) — (Y, £) and that Ur( o T(f)) o nx = ¢. We are left
with uniqueness. If g: (T(X), px) — (Y, &) is a morphism in EM(T) such that Ur(g) o nx = f then

T(f)

commutes and thus g = £ o T'(f). O

Remark 2.1.13. It is worth to spell out explicitly the counit e of Fr - Ur. Given and algebra(X, &),
€r,(x,¢) 1s the unique morphism (T'(X), ux) — (X, &) such that
idx = Ur (er,(x.,¢)) © 1x
But then the axioms of Definition immediately entail that € x ¢) = £. In particular, this implies that
pex is the unique morphism (T(T'(X)), up(xy) — (T(X), ux ) satistying
idp(x) = My © N1 (x)

Clearly Uro Fr = T, moreover, whenever a functor U: X — Y hasaleft adjoint F'suchthat UoF =T
we can canonically compare X with EM(T).

Proposition 2.1.14. Let U: X — Y be a functor with a left adjoint F and (T, n, u) the induced monad. Then
there exists a comparison functor K : X — EM(T) which sends an object X to (U(X),Ul(ex)), where € is
the counit of F — U.

Proof. First of all we have to verify that (U(X), U(ex)) is an Eilenberg-Moore algebra. One of the axioms
is just one of the triangular identities, the other is obtained applying U to the naturality square

EF(U(X)>

FUWFU(X)))) — FU(X))
F(U(EX))JJ l
FU(X)) X
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Given f: X — Y in X, if we apply U to the naturality square

FU(f)
_—

F(U(X)) FU(Y))
X5 7 Y

to get that U(f) is an arrow K (X) — K(Y'), we can conclude the proof defining K(f) := U(f). O
Remark 2.1.15. Notice that the comparison functor K is automatically faithful if U is so.

Definition 2.1.16. A functor U: Y — X is (strictly) monadic if it has a left adjoint F' and the comparison
functor of the previous lemma is an equivalence (isomorphism). A category Y will be called (strictly)
monadic over X if there exists a (strictly) monadic functor U : Y — X.

Example 2.1.17. The category CSLat of complete semilattices is the category which has as objects com-
plete posets and functions preserving arbitrary suprema as arrows. We can see that the forgetful functor
Ucsrat: CSLat — Set is (strictly) monadic.

On the one hand, for every set X, (P(X), C) is an object of CSLat and we can consider

nx: X — P(X) z— {x}

If (Q, <) is another element of CSLat and given f: X — Ucsrat(Q, <), we can define

g:P(X)»Q A \/ f(2)

z€A

which clearly preserves suprema, and so it defines g: (P(X),C) — (@, <). Moreover g o nx = f and if
h:(P(X),C) = (Q, <) has the same property, then, for every A € P(X):

h(A) = h (U {x})

z€A

=\ a{«})

z€A

=\ f@

T€EA
= g(4)

which shows that Ucgpa: has a left adjoint Fgpa.

On the other hand, Ucspat © Fespae = P, thus Proposition and Remark yield a faithful
functor K : CSLat — EM(P). Notice that, for every (X, <) € CSLat, the component of the counit of
the adjunction Fcspae - Ucspae is the morphism

€(X7S): (P(X)7 g) — (Xa S) S > SUp(S)
Thus K (X, <) is the Eilenberg-Moore algebra (X, £<) in which
(< P(X)— X S+ sup(S)
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Now, given (X, &) € EM(P), we can define a relation <¢ on X putting x <¢ y if and only if

{z,yh) =y

This relation is actually a partial order:

e reflexivity follows from the first axiom of Eilenberg-Moore algebras: since £ o nx = idx then, for
every x € X, {({z}) = z, which shows z < ;

e for transitivity, let z, y, 2 € X be such that x <¢ y and y < z, using the second axiom of Eilenberg-
Moore algebras we get

§{z, 2}) = E({€{z}),€{y, 2})})
PE){{=z},{y, 21}))
wx

({{z}: {y: 2}1})

§(

§(

&(

{({z,y, 2})

Sux (Hz v} {2}1})
§(

§(

§(

PEO{{z, 4}, {z1})

{€{z,93).€{z1)})
{y,2})

which shows that z < z;
e finally, if z <, y and y <¢ x, then

z=&({y,x})
= f({wvy})
=Y

yielding antisimmetry.
Now let S be a subset of X, we can notice that £(5) is a supremum for it:

e if s € S then we can compute

§({s,€(9)}) = £({&({s}), €(5)})
P& (s}, 51)
px({{s},5}))

{syuS)

S)

&(
&(
&(
&(
&(

and thus £(5) is an upper bound for S;
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e if y is another upper bound for S then, by definition y = £({s, y}) for every s € S, thus

£({€(5),y}) = €({&(5), €({y})})
= &PEUS {y1})
= &nx({S:{y}})

(SU{y})

(bx({{s,y}}ses))

(

(

(

PE)({{s y}}ses))
{€{s:9})}ses)
{v})

£
3
3
3
£
Y

showing £(S) <¢ .
Now let f: (X,&) — (Y,&) be a morphism of EM(P), then, by construction, f defines also a
morphism (X, <¢,) = (Y, <¢,) of CSLat, we can thus define a functor H: EM(P) — CSLat
(X, &) — (X, <)
I ¥
(¥, &) — (¥, <¢,)
It is now enough to show that H is the inverse of K.

o K(H(X,£)) is the Eilenberg-Moore algebra equipped with the arrow P(X) — X which sends a
subset S to its supremum, but we have already shown that this is just £(S), thus K o H = idgpm(p)-

® H(K(X,<)) is the preorder (X, <¢_), and, for every x,y € X we have a chain of equivalences

r<e.y = &<({zy}) =y
> sup({z,y}) =y
— <y
This shows that H o K = idcspa¢.

Given a regular cardinal k, the same argument applies also to x-CSLat: the category of k-complete
semilattices, i.e. posets in which every subset of cardinality strictly less then x has a supremum. It is
monadic over Set and the corresponding monad is (P, 7, 11) defined at the end of Example

Let us now examine a non example.

Example 2.1.18. Let Ab be the category of abelian groups and Div its full subcategory given by the
divisible ones [75]. Then the forgetful functor Up;y,: Div — Set is not monadic. Take the quotient
m: Q = Q/Z and the zero morphism z: Q — Q/Z. If f: G — Q is another morphism such that

zof=rmof
then f(G) must be a divisible subgroup of Z, thus there is an equalizer diagram in Div:
0—>Q—=%Q/zZ
9

Since an equalizer of Upjy (1) and Upiy(2) 1s given by the inclusion Z — Q, this observation shows that
Upiy cannot be a right adjoint.
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Morphisms of monads

We introduce now the notion of morphism between monads on the same category. Our aim is to show that
they corresponds exactly to functors between the categories of Eilenberg-Moore algebras which commutes
with the forgetful functor. Let us start with an elementary observation.

Remark 2.1.19. Let F,G: X = Y be two functors and x a natural transformation ' — G, then, for
every X € X we have a naturality square

GF(X)) —5—> G(G(XY)

so that we can define (x * x)x as the diagonal of the above square. In this way we get a natural transfor-
mation x * x: F o F — G o G which coincides with both (x * G) o (F * x) and (G x x) o (x % F').

Definition 2.1.20. Let T = (T, 5y, ur) and S = (S, s, us) be two monads on a category X, a morphism
of monads T — S is a natural transformation x: 7' — S such that the following diagrams commute:

idy —~ > ToT o7
N lx X*Xl lx

S SoS—8
s

A morphism x: T — S will be called a isomorphism if it is a natural isomorphism T — S.

Example 2.1.21. Take a monoidal category (X, ®, I) and consider two monoid objects (P, m,e) and
(Q,n, f) init. A morphism of monoids is an arrow g: P — @ such that the following diagrams commute.

I PeP-QeQ
P 7 Q P — Q

Such a g induces a morphism x4 between the two associated writer monads. Indeed, if we define x4 x as
idx ® g, then we have the following diagrams witness our claim.

X (XoP)oP- X" Xo@PaP) X2 xop
idxgpP®g
id
Xl alAl Xl (X®P)®Q dx ®(9®0) idx ®g
J/idx(@e idx®fJ/ (idx®g)®iin
X®P o X®Q (X©Q)OQ 5o X8 (QOQ) X8 Q
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Remark 2.1.22. Morphisms of monads compose. Let x1: T — Sand x2: S — R, then we have a diagram

T(x2,x0°x1,x)

T(T(X) ————=T(S(X)) ————T(R(X))
(x1*x1)x
X1,7(X) X1,5(X) X1,R(X)
m\ \L S(xz2,x)
ST(X)) ———— S(SJiX))\ (R(X))
X2%X2)X

X2,T(X) X2,5(X) X2,R(X)

R(T(X)) (5(X)) ——— R(R(X))

R(x2,x0x1,x)
proving the, well known, interchange law

(x2 * x2) o (xa *x1) = (x2 o x1) * (x2 ° x1)

We can now construct the two diagrams below, showing that x2 o x; is a morphism of monads.

(x2#x2)o(X1*X1)
T T T
idx ToT —— So — RoR
nr MR X1¥X1 X2*X2
/ ima\\ MT\L usl lNR
T S R T S R
X1 X2 X1 X2

Remark 2.1.23. Notice thatif y: T — S is an isomorphism of monads, then x ! is a morphism of monad

too. First of all notice that, for every X € X:
(= X_l)x = X;(lx) 8 (xx')
il 0 (SGx) !

= (S(XX) o XT(X))

=(xx)™
and thus we can further compute to get:
XX omsx =Xx oXxonrx XX OXx OHSX = HS.X
= idp(x) © N1, x =psxo(x*x)xo(x 'xxNx
=nN7,X =xxopurxo(x 'xxx

and the thesis now follows since  x is a mono.

Take now a morphism of monads x: T — S, we can define a functor F, : EM(S) — EM(T) in the
following way. Given an object (X, &) of EM(S), we can define &, as the composition
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In this way we get a Eilenberg-Moore algebra for T, as witnessed by the following two diagrams

Xx

Moreover, if f: (X,&1) — (Y, &) is an arrow in EM(S), then we the following diagram shows that the
same f also induces an arrow (X, &1y) — (X, &2,4):

&1,x
100 s B2 x
T(f)l S(f)i lf
T(Y) = S(V) ==V
\/
&1,x

Summing up, we have just built a functor F, : EM(S) — EM(T). We can also notice that this functor
makes the following diagram commutative.

EM(S) i EM(T)
X

Every functor with this property arises in this way, as shown by the following proposition.

Proposition 2.1.24. Ler' T and S be monads on the same category X and let also F': EM(S) — EM(T) bea
functor such that the following diagram commutes

EM(S) i EM(T)
A
X

Then there exists a unique x : T — S such that F\, = F.
Proof. Take an object X of X, by hypothesis we have

Ur(F(Fs(X))) = Us(Fs(X))
— S(X)
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Now, F(Fs(X)) is an object of EM(T) and we have an arrow ng x: X — S(X). Thus there exists a
unique xx : Fr(X) — F(Fs(X)) making the following diagram commutative

X % §(X)
J/ 7
nr,x L '
XX

T(X)

We claim that in this way we get a morphism of monads.
First of all we have to show naturality. Let f: X — Y be an arrow in X. Since S(f) is morphism
Fs(X) — Fs(Y) in EM(S), we can use again the hypothesis on F to get
Ur(F(5(f))) = Us(5(f))
=5(f)
showing that S(f) also defines a morphism F'(F5(X)) — F(Fs(Y)) in EM(T). Thus we have morphisms
S(f)oxx,xy oT(f): Fr(X) = F(Fs(Y)) in EM(T). On the other hand we have a diagram

) T(X)
/ S, X

Xx , / Sy mex |7

S(X) ns.v T(Y)

$ S(Y) —

which shows that
S(f)exxenrx =xy oT(f)onrx
This now implies that
S(f)oxx =xvoT(f)
The first condition for being a morphism of monads is satisfied by construction, let us prove that also

the other holds. Our line of argument is similar to the one used for naturality. We have the following list
of morphisms in EM(T):

Xsx): Fr(S(X)) — F(Fs(S(X)))  ps,x: F(Fs(S(X))) — F(Fs(X))

prx: Fr(T(X)) = Fr(X) xx: Fr(X) = F(Fs(X)) T(xx): Fr(T(X)) = Fr(S(X))
and thus we have, xx o jurx, j1s.x © xs(x) © T(xx): Fr(T(X)) = F(Fs(X)). We also have a diagram:
T(T(X)) < 7(x) T T(T(X))
T(xx) XX
T(S(X)) <29 g(x) T )
xS(X)l y iids(X)
S(S(X)) ———= S(X) T(X)
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which entails

XX O M, X NP, T(X) = XX
= ps,x © Xs(x) ° T'(xx) o nrr(x)

from which we can deduce that x x o i1 x = ps,x o (x * x)x-

We have now to show that F,, = F. The condition on F' implies, in particular, that F' must act
as the identity on arrows, as F. So it is enough to show that they are equal on objects. Let (X, &) be
an object of EM(S) and (X,0) be F(X,&). By the definition of Eilenberg-Moore algebras, we know
that 0 defines a morphism Fr(X) — (X, 6) of EM(T). On the other hand, for the same reason, & also
define a morphism Fs(X) — (X, §) in EM(S) and thus also a morphism F(Fs(X)) — (X, 6) in EM(T).
Precomposing with x x, which by definition is an arrow Fr(X) — F(Fs(X)) we get a pair of parallel
arrows 0, £ o xx: Fr(X) = (X, 0). But now we can compute:

§oxxonrx =&onsx
=idyx
=fonrx

and from this it follows that § = £ o yx, which is what we claimed.

Finally, we must prove uniqueness. Let x': T — S be another morphism of monads such that F' = F),.
For every X € X we have a diagram

T(T(X))

T(5(X)) ——=S(5(X)) S(X)

X/S(x) Hs,x

which shows that x’ is a morphism Fr(X) — F\/(Fs(X)), but, by hypothesis, the codomain of this
arrow in EM(T) is just F(X). On the other hand, we can precompose with 77 x to get

Xx 0T, x =138, x
=Xxonrx
and this now implies that xx = x'y- O
Remark 2.1.25. Notice that Fiy, : EM(T) — EM(T) is the identity functor and that
Fyrox = Fyo Fy
forevery x: T— Sand x': S — R.
The following corollary now follows at once from the previous remark.

Corollary 2.1.26. Two monads'T and S on a category X are isomorphic if and only if there is an isomorphism
F: EM(S) — EM(T) such that the following triangle commutes.

F

EM(S) EM(T)

N
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In general monads on a large category X do not form a category: there can be a proper class of mor-
phisms between them. This can be somewhat solved by the following notion.

Definition 2.1.27. Let J: Y — X be functor,amonad T = (7', 7, u) will be called a J-monad, if (T, idro )
is the left Kan extension of 7' o J along J.

Proposition 2.1.28. Let J: Y — X be a functor with an essentially small domain (i.e. Y is equivalent to a
small category), then there exists a category J-Mnd whose objects are J-monads and whose arrows are morphisms
of monads.

Proof. Since (T, id7o.) is a left Kan extension of T'o .J along J, there is a bijection between X* (T, S) and

XY(T o J, S o .J). Since morphisms of monads are natural transformations, the thesis now follows from
essential smallness of Y. O

Remark 2.1.29. If the codomain of J is cocomplete, then we can use Corollary to get
Yey
T~ / X(J(Y), —) o T(J(Y))

Moreover, by Theorem , for every X € X the component wx y: X(J(Y),X) e T(Y) — T(X)
of the universal cowedge wx can be described explicitly. Given f € J(Y) — X, if vp: T(J(Y)) —
X(J(Y), X) e T(X) is the corresponding coprojection, then T'(f) = wx,y o ¢y.

Limits and colimits in EM(T)

In this section we examine the existence of limits and colimits in categories of Eilenberg-Moore algebras.
In particular we are interested in how to compute limits and colimits in categories monadic over Set.

The situation for limits is quite simple.
Proposition 2.1.30. Let T be a monad on X, the functor Ur: EM(T) — X creates limats.
Proof. Given a functor F: D — EM(T), for every D € D let F(D) be the algebra (Xp,&p). Suppose

also that there exists a limit (L, {{p} pep) of Ur o F. We are looking for an algebra (L, &) which makes
all the Ip arrows of EM(T), so we must have a commutative square

T(L) ——> 1L

TUD)\L lZD

T(Xp) —= Xp
¢

Therefore £ must be the unique arrow T'(L) — L such that

Ipo&=¢&poT(lp)
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Let us check that (L, £) is really an object of EM(T). On the one hand

Ipo§oT(§)=¢poT(lp)oT(§)
=¢poT(lpof)
=¢poT(€poT(lp))
=E&poT({p) o T(T(Ip))
=¢&poux, oT(T(lp))
=¢poT(lp)opur
=lpofoyuy

from which it follows that £ o T'(§) = £ o ur. On the other hand we have a commutative diagram

") —t
lpi T(lD)l

llD
NXp (95}

Xp————T(Xp)————=Xp

L

ide

therefore Ip o (§onr) = Ip and thus £ oy, = idy,.

We are left with the limiting property. Take a cone on F' with vertex (Q, 0) and edges fp: (Q,0) —
(XD,&p), then (@, {fp}pep) is a cone for Ur o F and thus there is a unique f: @ — L in X. If we show
that f defines an arrow of EM(T), then we are done. We have

IpooT(f)=¢EpoT(lp)oT(f)
=¢poT(lpof)
=¢poT(fp)
=fpob
=lpofob

from which it follows that £ o T'(f) = f o 6. O
Corollary 2.1.31. If'T is a monad on a complete catgory X, then EM(T) is complete.

In particular we can specialize the previous result to Set to get the following.
Corollary 2.1.32. EM(T) is complete for every monad T on Set.

The situation for colimits is a bit more complicated.

Proposition 2.1.33. Ler T be a monad on X and F': D — EM(T) a functor such that Uy o F has a colimit
(L,{lp} pep) which is preserved by T and by T o T. Then there exists a unique (L, &) in EM(T) which makes
every lp an arrow of EM(T) and, moreover, ((L,€),{lp}pep) is colimiting for F.

Remark 2.1.34. If T preserves all colimits of a certain shape D, then the preservation of the same kind
of colimits by T" o T' follows for free.
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Proof- By hypothesis (T'(Lp),{T(Ip)}pep) is a colimit for T o Uz o F. Now if Ip is a morphism of
EM(T) then we must have a commutative square

T(Xp) 22> Xp

TUD)\L ilD

T(L) ?- L

and thus £ must be the unique arrow T(L) — L such that { o T(Ip) = Ip 0 {p. As in Proposition
we have to show that (L, £) is in EM(T). On the one hand we have that:

§oT(§) oT(T(lp)) =& T(§oT(Ip))
=§oT(lpoép)
=E¢oT(lp)oT(¢p)
=IpoépoT(p)
=lIpo&popuxy,
={oT(lp)opxp
=&oproT(T(lp))

and, since (T'(T'(L)),{T(T(Ip))} pep) is a colimit for T'oT oUr o F we can deduce that £oT'(€) = o py.
On the other hand the following diagram commutes

idXD

T(XD)—>XD

D D
lDl T(lp)l llp

L T(L) . L

nL

and (L, {lp }pep) 1s colimiting, so & o iy, = id.

The colimiting property is proved as in Proposition : take a cocone on F with vertex (Q,6)
and edges fp: (Xp,&p) — (Q,0), then (Q,{fp}pep) is a cocone for Ur o F which induces a unique
f: L — Q, which is an arrow of EM(T) since we have

OoT(f)oT(lp)=00T(fp)
=fpoép
= folpoép
=fo&oT(lp)

The thesis now follows. O

For an example of a non cocomplete category of Eilenberg-Moore algebras on a cocomplete category
we refer the reader to [7]. In that paper a monad on the category SGraph of simple graphs (see Defi-
nition ) is constructed and it is shown that its category of Eilenberg-Moore algebras does not have
coequalizers.
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Reflexive coequalizers and Linton’s theorem

The remainder of this section is devoted to explore conditions on a monad T, or on its base category,
which can guarantee cocompleteness of EM(T). A pivotal role in this endeavour is played by a particular
kind of coequalizers.

Definition 2.1.35. A pair of parallel arrows f,g: X = Y is reflexive if there exists an arrow s: Y — X
such that
fos=idy gos=idy

A reflexive coequalizer is the coequalizer of a reflexive pair.

Remark 2.1.36. Every reflexive coequalizer in a category X is the colimit on a functor D — X where D
is the category generated by the diagram

and subjected to the equations
fos=idp gos=idg

Notice that s 0 g is not equal to s o f in D.

It is well known [5, 85] that a category with (finite) coproducts and coequalizers admits all (finite)
colimit. Actually coproducts and reflexive coequalizers are enough.

Lemma 2.1.37. A category X with (finite) coproducts and reflexive coequalizers is (finitely) cocomplete.

Proof. Let f,g: X =% Y be parallel arrows in X. We can consider the parallel pair (f,idy), (g,idy): X +
Y =2 Y, which is actually a reflexive pair: the common section to them is simply the inclusion ¢ty : Y —
X + Y. Thus we have a coequalizer diagram

Computing we have that

eof:€O<f,idY>OLX
=eo(g,idy)oux

=ecog

Moreover, if ¢: Y — Z is such that g o f = g o g then

go(f,idy)oux =qof qo (f,idy) oy =qoidy
=qog =qo(g,idy)ouwy
:q0<g,idy>OLX

Thus g o (f,idy) = q o (g,idy) and we can conclude that e is the coequalizer of f and g. O
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We are now ready to prove the following classical result about cocompleteness of categories of Eilenberg-
Moore algebras , due to Linton [/9, Cor. 2].

Theorem 2.1.38. Let T be a monad on a category X with (finite) coproducts , then the following are equivalent:

1. EM(T) is (finitely) cocomplete;

2. EM(T) admits reflexive coequalizers.

Proof. (1 = 2) This is obvious.

(2 = 1) In light of Lemma it is enough to show that EM(T) has (finite) coproducts. Let thus I be
a (finite) set and, for every i € I, suppose that an algebra (X;,&;) is given. Then we have

Fr(X;) = Fr(Ur(X3,&)) Fr(T(X;)) = Fr(Ur(Fr(Ur(X4,&))))

So, if €: Fr o Ur — idgmr) is the counit of Fr 4 Ur, we can take ep,(x,) and Fr(Ur(€(x; ¢,))) to get a
pair of parallel arrows Fr(T'(X;)) = Fr(X;). These palrs are actually reflexive: indeed, by Remark
and the fact that Fr(f) = T(f) for every f: X — Y in X, we have that

€r(x) = €T(X)mx,)  PrUr(ex, ) = Pr(Ur(&))
= HX; = T(fi)

so T'(nx,) is a section for both arrows.

Since X has (finite) coproducts we can define X and X’ as the coproduct of {X; }icr and {T(X;) }icr
respectively. Fr is a left adjoint, so Fr(X) and Fr(X') are the coproduct in EM(T) of { Fr(X;)}ier and
{Fr(T(X;))}ier, therefore we have a parallel pair

Dmx;
i€l

YT

i€l

Fr(X7) Fr(X)

which is still reflexive and so it has a coequalizer e: Fp(X) — (E,¢).
Now, the transposes f,g: X" — T(X) of >, ux, and ), T'(&;) are given by

f="Ur (Z ,UXi> onx:  g="Ur (Z T(&)) onx’

i€l i€l

and, since by construction

eoz:uxi ZEOZT(&:)

i€l i€l

we know that Ur(e) o f = Ur(e) o g or, equivalently, eo f = e o g.
If we take j;: X; — X and k;: T(X;) — X’ to be coprojections in X we can precompose f and g
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with k; to get diagrams
T(j:)

T(X;) & T(T(X;)) &) T(X) % T(X)

\WX”T Tn):/
idp(x;) T(XZ) . X'’ f

3 ki

Xi=— T(X) ——> X'

3 g
nx, l () J{ l"?\
; T — T

T(5:)

where the commutativity of the curved parts is justified because T'(j;): (T'(X;), ux,) — (X, px) and
T(k:i): (T(T(Xy)), pr(x,)) — (T(X'), ux) are coprojections in EM(T) by the left adjointness of Fr.
Thus, from e o f = e o g we can deduce that

eoT(ji) =eofoki

= €0go kz’

eo T(ji) o T(&) o nr(x,)
=coT(ji)onx, o0&
=eonxojio&

Therefore we have a commutative diagram

T(X;) — 20 7(x) 2 p(r(x)) s 1(x)
m \L#x

& T(X) 3

X X T(X)\E\X

Which shows that, for every i € I, h;: X; — E defined as the composition

X, 2l X (X))~ E

is a morphism (X;, &) — (E,&) of EM(T). We claim that the cocone ((E, &), {hi}icr) is actually a
coproduct for {(X;, &) }ier-
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Let (Y, ) be an algebra and a morphism a;: (X;,&) — (Y, «) for every i € I which induces an
a: X — Y. Then T(a) is a morphism (T'(X),pux) — (T'(Y), py) in EM(T) and we can consider
aoT(a): (T(X),ux) — (Y, a). Computing we get that, for every fixed t € T

00T(a)o Y pix, o T(k) = a0 T(a) o T(je) o ix,
icl
— 0o T(a) o px,
=ato&opx,
=a;0&0T(&)
=aoT(a;)oT(&)
=aoT(a)oT(ji)oT(&)
=aoT(a)o)y T(&)oT (k)
iel
which implies that
a0 T(a)o Y px, = aoT(a) o 3 T(E)
iel iel
Thus there exists a unique b: (E,£) — (Y, «) such that bo e = @ o T'(a). Now, for every i € I:
boh; =boeonxojy;
— aoT(a)onx o Ji
=aonyoaoj
=idy oaq;
=qy
We are left with uniqueness: let ¢: (E, &) — (Y, «) another arrow such that co h; = a;, we have that:
coeoT(js) = coeonx ofioks
=h;o¢&
=co&oT(hi)
=aoT(c)oT(h;)
=aoT(a;)
=aoT(a)oT(j;)
and thus ¢ o e = a0 T'(a) which implies ¢ = b. O
Using Proposition , the previous theorem gives us immediately the following result.

Corollary 2.1.39. Let X be a category with (finite) coproducts and T = (T',n, p) a monad on it such that T
preserves reflexive coequalizers. Then EM(T) is (finitely) cocomplete.

2.1.3 Regularity of EM(T)

In the previous sections we showed how to compute limit and colimit in categories of Eilenberg-Moore
algebras. In this one we will examine how regularity of X is inherited by categories monadic over it.
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Factorization systems
Let us start by recalling the notion of a factorization system [32, 68, 113, 119].

Definition 2.1.40. Let X be a category and £, M two classes of arrows, we will say that (£, M) is a
(orthogonal) factorization system if:

1. every isomorphism is in both £ and M;

2. € and M are closed under composition;

3. every arrow f: X — Y of X admits a (€, M)-factorization, i.e. there are arrows ey € & and
my € M with the property that f = myoey;

4. every e € & has the left lifting property with respect to every m € M: for every commutative square

)

l B ﬁm

Y —V

<

with e € € and m € M there exists a unique k: Y — Z such that

mok=f koe=g

A factorization system is proper if every e € & is epi and every m € M is mono; it’s stable if for every
pullback square ast the one below, e € £ implies ¢’ € £.

S

g
e

-~
®

N<— "

~

—_—
f

The following proposition assures us that the factorization of an arrow is unique up to isomorphism.

Proposition 2.1.41. Let (€, M) be a factorization system on a category X. If e: X — Y, e': X — Y’ and
m:Y — Z,m': Y — Z are arrows, respectively, in € and M such that €' o m' = e o m, then there exist a
unique isomorphism f:'Y —'Y such that the following diagram commutes

’

X—2 Y
|
Yy = 1%

Proof. Using the left lifting property we get two commutative diagrams:

/

X —-=Y X—>Y
\L/i , li/l
e m e m
) |

m
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thus

m'ofog=mog  fogoe'=foe mogof=mof gofoe=goe
:m/ :el =m = e

So we have two square

X ——-Y X — =Y
vy >z v~z
and the thesis follows from the uniqueness half of the left lifting property. O

Corollary 2.1.42. Given a factorization system (€, M) on a category X, the following hold:
1 anarrow f: X — Y isin & (in M) if and only if my (ey) is an isomorphisms
2. fe&and f e Mifandonlyif fisan isomorphisms
3. if (€, M) is proper, then g o f isin M (in E) implies f € M (g € E).

Proof. 1. (=) By hypothesis f = idy o f (f = f oidx) is a factorization with idy € M and f € &
(idx € &, f € M), so the thesis follows from Proposition

(<) f = my oey, thus if my (ef) is an isomorphism then we have f is the composition of two
arrows in £ (M) and we can conclude.

2. This follows immediately from the previous point.

. Iractor j an asmys © er and Mmy © €4, 1€L ALSO e e, omy and factor 1 as mp, © €y, SO that we g¢
3. Fact dyg foerand myoey, let also h be e 0 my and factor it that we get

C
/ \
A h B
|~ 2
ef mg
X Y A
f g

Since £ and M are closed under composition we know that ej, o ey € € and m, o my, € M, thus
these arrows gives a (£, M)-factorization of g o f. On the other hand go f € € (g o f € M), thus
point 1 above implies that ej, o ef (m, 0 my,) is an isomorphism. In particular:

(enoep) toe,oes =idx (mg omyp o (mgyomy) ™ =idz)
so ey has a retraction (mg has a section). The thesis now follows since ey is epic (my is mono). [
Definition 2.1.43. Given a set I, a source (sink) is a family { f; }ier of arrows f;: X = Y, (fi: V; — X)

with the same (co)domain. A wide pushout (pullback) is the colimit (limit) of a source (sink). We will use
¢; (pi) to denote the coprojection from Y; (the projection to Y;) and cx to denote the one from X.
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Remark 2.1.44. Given a wide pushout (C,{¢;}icrugx}) on a source {fi}icr with fi: X — Y}, the
coprojection cx is such that, for every i € I, the following diagram commute

X

VN
Ci C

Proposition 2.1.45. For every proper factorization system (€, M) on a category X the following hold:

Yi
1. for every pushout square as the one below, e € € impliesn € £
X
Y

2. if (C, {citicrugxy) is a wide pushout on a source {e;}icr such thate;: X — Y; isin & for everyi € I,
then every coprojection is in € too.

g
—_—

—_—
f

Proof. 1. Take a pushout square
g

|

X
Y

with e in €. By hypothesis n = m,, oe, form,: E - Yin Mande,: V — Ein&. If we
show that m,, is an isomorphism we are done. We can apply again the left lifting property to get
l: E — X which makes the following diagram commute.

N<T<

|

g e
sV s

Y

Therefore we get another diagram
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and thus we can deduce the existence of the dotted k: E — V. On the one hand, computing we get

mpokon=m,oe, mupokof=my,ol
=n :f
and so m,, o k = idy. On the other hand
mnOk‘omn:idyomn k‘omnoen:kon
:mn :en

so the following diagaram commutes

€n

\% E
E——Y

My

and thus k o m,, = idg by the uniqueness clause of the left lifting property. Therefore e,, is an
isomorphism and the thesis now follows from point 1 of Corollary

2. By Remark and point three of Corollary it is enough to show that cy is in £. Since
(€, M) is a factorization system then cx = moe forsomem: F — Cin Mande: X - Fin&
to get, from Remark , a square

X—=V

and the left lifting property provides, for every i € I, the dotted arrow k;: ¥; — e. Let k be the
the induced arrow Z — V. Then

mokoc;, =mok;

= C’i
hence mok = idz. By Corollary m € M thus it is an isomorphism and we can conclude. [

We are now going to show how, given a monad T on a category X, is it possible to lift a factorization
system on X to one on EM(T).

Theorem 2.1.46. Let (£, M) be a proper factorization system on a category X. Let also T = (T,n, 1) be a
monad on X and define

Er={f €EM(T) | Ur(f) €€} Mg = {f € EM(T) | Ur(f) € M}

IfT(e) € € for every e € E then (Er, M) is a proper factorization system on EM(T). Moreover, (E1, M)
is stable if (€, M) is so.
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Proof- First of all, let us notice that, since Uy is faithful, then every element of £7 is epi and every element
of My is mono, thus properness comes for free. Moreover, take a pullbacks square

(P, &) — (X, &)

|
(V&) —5> (2.1)

with f € Er. By Ur is a right adjoint, thus we also have the following pullback square in X:

pPx
— =X

f

S
=
<<

— s 7
g9

with f € £. So, if (£, M) is stable we get that py is in &€ too, from which stability follows.
Let us now verify all the points of Definition

1. If f is an isomorphism in EM(T), then Ur(f) is an isomorphism in X and thus it belongs to both
€ and M.

2. £ and M are closed under composition and thus also £ and M are.

3. Let f: (X,&1) — (Y, &2) be a morphism in EM(T). We know that there exists e: X — [ in £ and
m: I — Y in M such that m o e = f, we want to equip I with a structure of Eilenberg-Moore
algebra which makes them arrows in EM(T). Consider now the following diagram

T(X) X—° o7
T(e)l ¢ m
T(1) o T(Y) Y

By hypothesis T'(e) € £ and m € M, thus we get the wanted {: T'(1) — I. If we show that
(1,€) is really an object of EM(T) we are done: the diagram above witnesses that both m and e are
morphisms of Eilenberg-Moore algebras.

On the one hand we can exploit the naturality of 7 to get

Eonmroe=EoT(e)onx
=eco&onx
=coidyx
=e

:id106

from which it follows that £ o 5y = id; since e is epi.
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On the other hand notice that T(T'(e)) € £ and that we have diagrams

T(T(X)) —* ~7(x)— 2 ) —
T(e)l /
T(T(e)) m
/ m
(T Y
T(T(m)) 3]
T(T(X ¢
Xx /
T(T(e)) T(e)l m
T(m)
&2
T(&2)
T(T(I) Y)) a—

The thesis follows from the uniqueness half of the left lifting property.

4. Let us start with the following squares, one in EM(T) and the other one in X:

(A,€4) —— (B, ¢p) At . p
7 7
(C, fCV)VV 7 (D,¢p) C- | D

Ifm: B— Disin Mande: A — Cisin &, we get a unique k filling the diagram on the right, so,
if we show that such & is actually a morphism of EM(T) we are done. To see this, let us compute:

mokogc=golc
=¢&poT(g)
— ¢poT(m)oT(k)
=mo&poT(k)

and we get the thesis since m is a monomorphism. O
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Regularity of EM(T)
We will start recalling the notion of regularity and some properties of regular categories.

Definition 2.1.47 ([ 19, 56]). We say that a category X is regular if
1. it has finite limits;

2. for every f: X — Y, if the following square

p1
— X

P2 f

<~

P

— Y

f

is a pullback (i.e. (P, p1,p2) is the kernel pair of f) then py,pa: P = X have a coequalizer;

P X
Z Y

if e is a regular epi then ¢’ is a regular epi too.

3. for every pullback square

g
—_—

_—
f

Remark 2.1.48. Let f: X — Y be an arrow of any category X, then its kernel pair p1,po: P = X (if it
exists) is a reflexive pair. Indeed we have a diagram

in which the existence of the dotted s: X — P is guaranteed by the definition of kernel pair.
Example 2.1.49. Every topos X is a regular category. This is a standard fact in topos theory [65, 86, 93]
and its proof relies on two facts:

® every topos is finitely complete and cocomplete (proving items 1 and 2);

e given f: X — Y, the pullback functor f*: X/Y — X/X is a left adjoint (so item 3 follows) (see

also Lemma for this).

Proposition 2.1.50. Lete: X — Y be a regular epi in a category X with a kernel pair p1,p2: P =2 X, then
e is the coequalizer of p1 and ps.
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Proof. By hypothesis there exists a pair f, g: Z = X of which e is the coequalizer, since e o f = e o g we

have a diagram
A N\
\ P X
g
X2 e
X ? Y
and thus there exists the dotted k: Z — P. Let h: Z — V be an arrow such that h o p; = h o ps, then

hof=hopiok
=hopyok
=hog
and thus there exists a unique [: Y — V such that Lo e = h. O

Definition 2.1.51. Let f: X — Y be a morphisms in a category X with kernel pairs. The coequal-
izer of the kernel pair p1,p2: P = X is called the coimage of f. We will denote such coequalizer by
(Coim(f), ef). In particular we have a coequalizer diagram

P e
X 4>*1> y s Coim(f)
P2

Suppose now that f: X — Y has a kernel pair p1,po: P = X and a coimage, ef: X — Coim(f)
then, since f op; = f opy we know that there exists a unique my: Coim(f) — Y such that f = mjsoey.

p1 f
P—=X Y
P2 ; 4
x my
Coim(f)

Proposition 2.1.52. Let p1,p2: P = X be the kernel pair of an arrow f: X — Y. Suppose also that f has
a coimage ey X — Coim(f). Then p1,pa: P = X is the kernel pair of e, too.

Proof. Let q1,q2: @ = X two arrows such that e; 0 g1 = ey o g2, then we have a diagram

Since p1, pa: P = X is a kernel pair for f there exists the unique dotted arrow g and we are done. O
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If X is regular then every f has a coimage, so we can deduce that every f can be decomposed asmyoey
with ey a regular epi. We can say something more about m .

Proposition 2.1.53. If f: X — Y isan arrow in a regular category X, then my is a monomorphism.

Proof. Take the diagram

ay b1

C1

C
"N | I

mg

in which every square is a pullback. This implies the existence of the dotted isomorphism h, therefore
efocyoazoh=epop;
=cfrop2
=efobioaioh

and thus
efocyoay =efobioa

Now, ¢1 and as regular epis because they are pullbacks of regular epis, thus ¢1 o as is epi too and we have
dyocioay =efocyoan
=efobioay
= dl o b2 o aq
=djocioas

hence d; = dy and we can conclude. O

We will now prove some important properties of regular epimorphisms in regular categories.
Lemma 2.1.54. foranarrow f: X — 'Y in a regular category X the following are equivalent

1. f is a regular epi;

2. [ has the left lifting property with respect to any mono (i.e. f is a strong epi).
Proof. (1 = 2) Suppose that f is the coequalizer of g, h: Z = X. Take a diagram

XA
f m
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with m a monomorphism, then:
motog=kofog
=koeoh

=motoh

from which it follows that tog = toh. Since f is the coequalizer of g and h there existsauniqued: ¥ — A
such that d o f = t. Moreover

modo f=mot
:kof

somod= fsince f is epi.
(2=1) Let f =my oey withmy amono and ef: X — Coim(e) its coimage, then we have a square

X—— " Coim(f)
fl k o \L"”f
y o T

idy

Since f is a strong epi and m a mono there exists the dotted k: Y — Coim(f). Now my o k = idy, so
my is a mono with a section k, so my is an isomorphism with inverse k and thus k o f = e implies that
f is a regular epi. O

Corollary 2.1.55. For every regular category X, if € is the class of regular epis and M the class af monos, then
(€, M) is a proper and stable factorization system.
Proof. Let us prove the four points of Definition

1. Every isomorphism is mono and regular epi.

2. We already know that the class of monos is closed under composition. Lete: X — Y ande’: Y —
Z be two regular epi, we are going to show that their composition is a strong epi, Lemma
will then deliver us the thesis. Take a diagram

XxX— 9% oA

B

with m a monomorphism. We have to prove that there is a unique diagonal d that makes the diagram
commute. Indeed, we can consider the diagram

X g A

e m

Y"—/>Z—>B
e
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and deduce the existence of the dotted k: Y — A from Lemma . Next we can use it to
construct another diagram

k
—_—

Y A
4
17
Z- B

—_—

to get, using again Lemma , another d: Z — A as in the diagram. Now, mod = f by
construction, moreover:
doe'oe=koe
=g
and thus we get the thesis.

3. We know that every f: X — Y is the composition of e : X — Coim(f) and my: Coim(f) =Y,
thus the thesis follows from Proposition

4. Given Lemma this is immediate.

Properness and stability follow by construction and from the regularity of X. O

Example 2.1.56. Let Cat be the category of all small categories, and let N, Z/2Z be the 1-object categories
associated to the monoids N and Z/2Z. Let also 2 be the category

idACA ! BDidB

Define F': 2 — N as the functor sending f to 1 and G: N — Z/2Z the one sending n to its congruence
class modulo 2. Notice thar F and G are regular epis:

e Fis the coequalizer of Fi, Fo: 1 = 2 selecting, respectively, A and B;
e G is the coequalizer of G1,G2: 1 =2 N selecting, respectively, 0 and 2.

On the other hand, H := G o F is the functor sending f to 1, which is not a regular epi. To see this,
notice that if H is a regular epi then, by Proposition , H would be the coequalizer of its kernel pair.
Now, the kernel pair of H is given by the two projections Py, Py: P =t 2 where P is the subcategory of
2 X 2 containing all objects and in which the only non identity arrow is (f, f): (A, A) — (B, B). Notice
that

Fo P1 =Fo P2

but the only functor K: Z/2Z — N is the one sending 1 to 0, so K o H # F, showing that H cannot be
the coequalizer of its kernel pair.

Remark 2.1.57. The previous example shows that Cat is not regular.

We are now going to prove that, given a regular category X, asking a form of the axiom of choice,
L.e. that every regular epi has a section, is sufficient to guarantee the regularity of the category EM(T) for
every monad (T, 7, u1).

Definition 2.1.58. A split coequalizer of two parallel arrows f,g: X = Y isane: Y — Z such that:

1. e has a section s;
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2. there exists t: Y — X such that

fot=idy soe=got

The following proposition justifies the name of split coequalizers.
Proposition 2.1.59. If e is a split coequalizers for f,g: X =Y, then it is a coequalizer for them.
Proof. Let h: Y — W be an arrow such that h o f = h o g, then

hosoe=hogot
=hofot
=h

On the other hand, if £: Z — W is another arrow such that k o e = h then

koe=koidgoe
=koeosoe
=hosoe

so, since e is epi, h o s = k. O

Proposition 2.1.60. Let e: Y — Z be a split coequalizer for f,g: X =Y in a category X. Then for every
every functor F': X — 'Y, F(e) is a split coequalizer for F(f) and F(g)

Proof. Let t and s be the sections of f and e, then F(t) and F(s) are sections for F'(f) and F(e) and
F(s)oF(e) =F(soe)

F(got)
F(g)o F(t)

and the thesis now follows at once. O
Kernel pairs provide a way to construct split coequalizers.

Proposition 2.1.61. Letp1,p2: P = X be the kernel pair of an arrow f: X — Y witha coimageey: X —
Coim(f). Suppose that e has a section s, then it is a split coequalizer.

Proof. We have to construct a section t for p; such that s o ef = py o t. We have a diagram

X——" Coim(f)

By Proposition ,P1,p2: P = X is a kernel pair for ey, so the central square is a pullback and thus
the dotted ¢ exists. O



40 2. Algebraic theories and monads

Corollary 2.1.62. Let X be a category with kernel pairs in which every regular epi has a section, then every
regular epi is a split coequalizer. In particular every functor F': X — Y preserves regular epis.

Proof. By hypothesis a regular epi e has a kernel pair which, by Proposition , it coequalizes, so the
thesis follows from Proposition . O

We can now start to apply what we have established about split coequalizers to categories of algebras.

Lemma 2.1.63. Let T be a monad on a category X, and f, g: (X, &) = (Y, &2) two arrows such that Uy (f)
and Ur(g) admit a split coequalizer e: Y — Z in X. Then there exists a unique &: T(Z) — Z such that
(Z,€) e EM(T) and e: (Y,&) — (Z,0) is a coequalizer of f and g.

Proof. Since e is split, by Proposition we know that it is preserved by every functor. In particular
it is preserved by 7" and T' o T, so that we can conclude using Proposition . O

Now we have all the ingredients needed to show the main result of this section.

Theorem 2.1.64. Let X be a regular category such that every regular epi has a section. Then EM(T) is regular
for every monad T.

Proof. Let us prove the three points of Definition
1. EM(T) is finitely complete by Proposition

2. Let p1,p2: (P,0) = (X,&1) be the kernel pair of f: (X,&) — (Y, &), since Ut preserves limits
we know that p1, po: P =% X is a kernel pair for f: X — Y inX. Let ey : X — Coim(f) be their
coequalizer in X, by hypothesis it has a sections s, thus by Proposition it is a split coequalizer
and Lemma allows us to conclude.

3. Lete: (X,&) — (Y,&) be a regular epi in EM(T) and consider a pullback square in EM(T)

(P,) —> (x,6)

(2,&) —— (V&)
Since Ut preserves limits then we also have a pullback diagram in X

f/

P—X
Z —Y
f
and thus ¢’ is a regular epi in X. By Proposition €' 1s the coequalizer of its kernel pair
q1,q2: @ = P. By Proposition there exists a unique 0: T(Q) — Q such that (Q,0) is an
object of EM(T) and ¢1, g2 are arrows g1, g2: (Q,0) = (O,&). By hypothesis €’ has a section, so
Proposition and Lemma entail that ¢’ is the coequalizer of ¢; and ¢o in EM(T). [

We can also completely characterize regular epimorphisms between Eilenberg-Moore algebras.
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Proposition 2.1.65. Let T be a monad on a regular category X in which every regular epi has a section. Then

Ur preserves and reflects regular epi.

Proof- ® Preservation. Lete: (X, &) — (Y, &) be aregular epi, then by Proposition e is the co-

equalizer of its kernel pair p1, pa: (P,0) = (X, &1). Since Ut preserves limits then py, pa: P = X
is the kernel pair of e in X too. Let €': X — Z be the coequalizer of p; and ps in X. By Proposi-
tion e’ is a split coequalizer, so Lemma implies that there exists a unique 6: T(Z) — Z
such that €’: (X,&1) — (Z,6) is a coequalizer for p; and ps in EM(T). Then there exists an iso-

morphism f: (Y,&) — (Z,0) such that
X
Y —m7
f

Since f is an isomorphism also in X it follows that e is regular epi in X too.

e Reflection. Let e: (X, &) — (Y, &2) be a morphism such that e: X — Y is a regular epi. Then e,
by Proposition is the coequalizer of its kernel pair p1,p2: P = X and, since by hypothesis
it has a section, we also know by Proposition that e is a split coequalizer of them. Now, from
Proposition there exists a unique 0: T'(P) — P such that p1,pa: (P,0) = (X, &) is the
kernel pair of e in EM(T) and thus we conclude by Lemma that e is the coequalizer of its

kernel pair also in EM(T).

O

Assuming the axiom of choice (i.e. that every epi has a section), Set satisfies the hypotheses of Theo-

rem and Proposition , therefore we get the following result at once.

Corollary 2.1.66. Let T be a monad on Set, then:
1. EM(T) is regular;
2. anarrow f € EM(T) is a regular epi if and only if Ur(f) is surjective.

A cocompleteness theorem

We end this section showing how the interaction between monad and factorization system can guarantee
cocompleteness for EM(T). We will prove a cocompleteness theorem due to Adamek [?] which encom-

passes and generalizes various other similar results [ 18, 29, 79].

Proposition 2.1.67. Let X be a regular category in which every regular epi has a section. Then X is &-

cowellpowered, where E is the class of regular epis.

Proof. By hypothesis every regular epi e has a (unique) section s., moreover, by Proposition
and Corollary

/
Se0€ =Sz 0€

if and only if e = ¢’. Thus there exists an injective function
E-Quot(X) — X(X, X) [e] — scoe

and the thesis follows since X(X, X) is a set.
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Theorem 2.1.68. Let (£, M) be a proper factorization system on a cocomplete and E-cowellpowered category
X. If T is a monad on X such that T (e) € £ for every e € &, then EM(T) is cocomplete.

Proof. Inlight of Theorem it is enough to show that EM(T) admits all coequalizers. Let f, g: (X, &) =
(Y, &) be a pair of parallel arrows in EM(T). Since X is cowellpowered there exists a set R(Y") of repre-
sentatives for the relation = on Y /&. Define I to be the set of alle: Y — Z, in R(Y') such that, for every

h: (Y, &) — (V. &) satisfying

hof=hog
there exists he: Z — V such that k. o e = h; we have a source given by all these e € I, so that we can
take its wide pushout (C, {c;}ieruqyy)- By Remark we have

Y
I
Aa— C
Moreover, in I there exists e: Y — Z which is a coequalizer for f and g in X, thus
evof=ceoeof
=c.o0€eo0g

=Cy ©g

By Proposition we know that every coprojection ¢p is in &, in particular cy is in £ and, by
hypothesis, T'(cy) € £ too. Take now a pushout square

T(Y) %2, ¢
T(CY)\L \LIM
T(C) —— P

in which ps € & as the pushout of T'(cy ). In particular, since (£, M) is proper, this implies that ps is epi.
Now, let h: (Y, &) — (V,&3) be such that

hof=hog

then for every e € T there exist h, such h, 0o € = h, thus we have a cocone with vertex V and edges
{he}ecr U {h}, so there exists the dotted k as in the diagram

Z

h is a morphism of EM(T), thus
kocyofs=hot&
=& oT(h)
=& 0T(k)oT(cy)
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so that the dotted t: P — V in the following diagram exists

cy o2

C

Therefore we have
h=kocy
=lopocy

This, in turn, implies that there exists e: Y — Z in I such that e = pyoc,, i.e. there exists an isomorphism
p: P — Z such that e = p o py o ¢y, so that

Cy =ccoe
=COpop20cly

which, since cy is epi, implies
idZ =CeOPOP2

and we can conclude from point 2 and 3 of Corollary 2.1.42 that p, is an isomorphism.
Let £: T(C) — C be py ' o p1, by construction

p2ocy o€ =pyoT(cy)

and thus

cy o0& =py ' opioT(ey)
=¢oT(ey)

This equation gives us the commutativity of

cv)) T(T(cy))
/; T(gg\\
TC) TC
o eyl N A

=
8
Q
/
s
Q=<—X
\

which in turn entails

foncocy =cy  LopgoT(T(ey)) =0T (§) o T(T(ey))
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and thus (C, §) is an object of EM(T) since ¢y and T'(T'(cy)) are epi. Now it follows immediately that
v (Y, &) — (C,€) is an arrow of EM(T).
We are left with the coequalizer property. We already proved that ¢y o f = ¢y o g and that for every
morphism h: (Y, &) — (V,&3) such that h o f = h o g there exists a unique k: C — V in X satisfying
koy = h, so it is enough to show that this & is an arrow of EM(T). If we consider the diagram

T(h)

T(cy) m

7(C)

(V)

13
Pyt
ide
C %
k
we get
kofoT(ey) =& o T(k) o T(ey)

and the thesis follows because T'(cy ) is epi. O

IfXisa cocomplete regular category satisfying the same form of the axiom of choice used in The-
orem , i.e. that every regular epi has a section, we can use Corollary , Theorem ,
and Proposition to get the following result (see also [79, Thm. 4.3.5])

Corollary 2.1.69. EM(T) is a cocomplete category for every monad T on a cocomplete regular category X in
which every regular epi has a section,.

Assuming the axiom of choice the previous corollary can be immediately applied to Set.

Corollary 2.1.70. For every monad (T, n, p) on Set, EM(T) is cocomplete.

Monads on Set

In this section we will explore the relationship between algebraic theories and monads on Set. This
relationship was first developed with the approach of Lawvere theories in [76] and in [78, 80]. However,
we are interested in a more syntactic approach, thus we will recall Lawvere’s and Linton’s results without
using the technology of Lawvere theories.

Filtered categories, filtered colimits

In this section we take a brief detour to introduce the notion of rank of a functor which will be needed in
the subsequent sections. Standard textbook references are [6, 7, 29]. Finally, let us warn the reader that,
for us, a regular cardinal is always infinite.

Definition 2.2.1. Let & be a regular cardinal, we say that a small category D is s-filtered if:

1. D is non empty;
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2. for each collection {D; };er with |I]| < k, there exist an object D and, for every i € I, an arrow
fi: Dz — D;

3. for every pair of objects Dy and D in D, and every family {f;}ic; € D(D1, D3) with |I| < &,
there exists a morphism f: Dy — D such that, for every i,j € I

fofi=Ffol;
A rfiltered colimit is a colimit on a functor F': D — X with D &-filtered.

Remark 2.2.2. Let D be a r-filtered category, then D is also A-filtered for every other regular cardinal A
such that \ < &.

Remark 2.2.3. Let (P, <) be a poset, we can specialize the previous definition to get the notion of &-
filtered (or k-directed) poset. In this context point 3 becomes trivial and we get that (P, <) is x-filtered if
and only if the following hold:

1. P is non empty;

2. every family {p;};cs of cardinality less then  has an upper bound.
Example 2.2.4. Let X be a set and « be any regular cardinal. We can consider the poset (P, (X), Q)

which, since & 1s regular, (P, (X), C) is x-filtered by Remark . Now, P (X) determines a diagram in
Set whose r-filtered colimit is X, with the inclusions as edges of the colimiting cone.

Example 2.2.5. Let X be a cartesian closed category, and (M, m, e) an internal monoid. The writer
monad of Example preserves all colimits since (—) x M is a left adjoint, in particular it is Ro-filtered.

Lemma 2.2.6. Let  be a regular cardinal and D a small category, then the following are equivalent
1. D is k-filtered;

2. every functor F': X — D with domain with strictly less than k arrows, admits a cocone in D.

Remark 2.2.7. Notice that if the set of arrows of X has cardinality less then « then its set of objects has
the same property. A category with this property is said to be k-small. A k-small colimit is a colimit of a
functor with a k-small domain.

Proof. (1 = 2) By the hypothesis on X, the family { F'(X)} xex has cardinality strictly less then &, so by
point 2 of Definition there exists an object D € D with arrows fx: F(X) — D. Given X € X
can define Ix as the set of arrows with domain X and consider the family { f.oq(4) © F/(9)}gerx which is
a subset of D(F(X), D). By point 3 of Definition there exists ex : D — Dx such that for every
g: X —=>Yandh: X - Z
exo fy oF(g) =exo fzoF(h)

We can apply point 2 of the definition to the family { D x } x ex to get an object E withanarrow hx : Dx —
E for every X € X such that, forevery g: X - Y

hy oey o fy o F(g) = hx oex o fx o F(idx)
= hX oex OfX () |dF(X)
=hxoexo fx

showing that (F,{hx oex o fx}xex) is a cocone for F.

(2 = 1) The three point of Definition follow applying 1 to, respectively: the initial functor from the
empty category, the functor from a discrete category associated to the family {D; };¢;, the functor from
the category with two objects and |I| parallel arrows associated to the family { f;}icr. O
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Corollary 2.2.8. Let D be a r-filtered category and D an object in it. Then D /D is r-filtered as well.

Proof. Let X be a k-small category and F': X — D/D a functor. If X is empty there is nothing to show.
Otherwise, let us denote F(X) by gx: D — Dx, we can consider the diagram A in D generated by the
arrows {gx }xex U {F(f)}seax) which, since & is regular, contains less then x arrows. By the previous
lemma there exists a cocone (C, {c4}aca) on A, in particular this implies that, for ever X, Y € X we
have
CDx ©gxX = CDy © gy

Let g be cp, ogx for some X € X. By construction ¢p,, isa morphism gx — g. Moreover,if f: X —» Y
is an arrow in X then, using the cocone property of (C, {ca}aca) we get

CDx :CDYOF(f)

showing that (g, {cpy } ycx) is @ cocone on F as desired. O

r-filtered colimits and limits in Set
We are now going to provide a more abstract characterization of s-filtered categories in term of commu-
tation of limits and colimits of sets.

Remark 2.2.9. Take a functor F': D x X — Y, with Y a complete and cocomplete category, then we can
perform two constructions on it.

¢ Onthe one hand forall D € D we can first take the limit (L(D), {ap x } xex) of F(D,—): X = Y.

This defines a functor L: D — Y
D — L(D)

fl Lz
E s L(E)
where L(f) is the unique arrow such that the following diagram commute

L(f)

L(D) L(E)
F(D,X) i F(E.X)

Then we can take the colimit (C, {ip}pep) of this functor L.

® On the other hand we can first take the colimit (C'(X), {jp,x } pep) of F(—, X): D — Y getting

afunctorC’: X =Y
X — C'(X)

gl Kel®)
Y — C'(Y)
with C’(g) the unique arrows such that

idp .
F(D, x) 2929
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commutes. Then we can define (L, {8x } xex) as the limit of the functor C".

These two construction are related: for every D € D and X € X we can consider the arrow
®p x: L(D) — C'(X) given by the composition

L(D) 2%, F(D, X)

¢'(X)

Now, for every X € X and f: D — E we have

/\

L(f) F(f,ldx)

Therefore we have an induced ®x : C — C’'(X) and, given g: X — Y we get another diagram

. iF('dDm ' (9)

F(E, X)

JE,)Y

showing that (C, {® x } xep) isacone on C, so that there exists a unique comparison morphism ®: C — L’
such that the following diagram commutes

L(D) 2. F(D, x) 12X 2 ¢'(X)
\—'M///

Remark 2.2.10. It is worth to point out explicitly that if @ is an isomorphism, then L’ is the vertex of a
colimiting cocone on L, with coprojection L(D) — L’ induced by the family {jp x o ap x }xex.

We are now going to show that when Y = Set and X is k-small, then s-filteredness of D is equivalent
to this comparison morphism ® being an isomorphism; in short that x-filtered colimits commute with
r-small limits in Set. We start by describing x-filtered colimits of sets.
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Lemma 2.2.11. Let F: D — Set be a functor with a k-filtered domain, and, for every D € D consider
the coprojection ip: F(D) — 3 pcp F(D). In addition, let ~ be the relation on Y, , ., F/(D) defined by
ip,(x) ~ ip,(y) f and only if v € F (D), y € F(D3) and there exists f: D1 — D, g: Dy — D such that

Then the following hold true:
1. ~ is an equivalence relation;
2. if C isthe quotient Y .y F(D)/~and w: ) . F(D) — C is the quotient function, then a colim-

iting cocone for F is given by (C, {jp } pep) where jp := woip.

Proof. 1. Symmetry and reflexivity of ~ follows at once from the definition, We have to show transi-
tivity. Let z € F(Dy),y € F(Da), z € F(D3) be such that ip, (z) ~ ip,(y) and ip, (y) ~ ip,(2).
Then in D we have a diagram

Dy Do D3
N AN A
D D’

F(fi)(x) = F(g1)(y) F(f2)(y) = F(g2)(2)

By Lemma such a diagram admits a cocone, thus there exist morphisms hy1: D — FE and
ho: D' — E such that

such that

h1091=h20f2

But then

F(hiog1)(y)
F(hao f2)(y)
F(hz 0 g2)(2)

F(hyo fi1)(w)

Therefore ip, (z) ~ ip,(z).

2. Let (X, {tp}pep) be a cocone on F. Then we have an arrow ¢: .S — X such that

tp

e T

F(D) 2~ 3" F(D)

DeD 7
o

commutes. Now, if ip, () ~ ip, (y), then there exist f1: D1 — D and f2: Dy — D such that

F(fi)(z) = F(f2)(y)

X
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Thus we have

t(ip, (z)) = tp, ()
= tp(Fp(2))
= tp(F(f2)(y))
=1p,(y)
= 1(ip, (y))
showing the existence of the dotted k. For uniqueness: if &’ is another arrow such that &' o jp = tp

for every D € D, then
Komoip=toip

Hence k' o m = t, therefore k' = k. O

Corollary 2.2.12. Let F': D — Set be a functor with a r-filtered domain, then a cocone (C,{cp}pep) is
colimiting for F if and only if the following hold

1. for every c € C there exists D € D and xp in F(D) such that cp(xp) = ¢

2. ifep, (xp,) = cp, (T D, ), then there exist arrows f: Dy — D and g: Dy — D such that
F(f)(zp,) = F(9)(zD,)

Remark 2.2.13. Now let F be a functor D x X — Y with D k-filtered. Then, using the notation of
Remark , the previous lemma yields a surjection

mx: > F(D,X) - C'(X)
DeD

for every X € X. These surjections form a natural transformation 7: >, . F/(D,—) — C". Indeed,
given an arrow g: X — Y, for every D € D we have a diagram

>~ F(idp.g)
S F(D,x) 2 S F(D,Y)
DeD DeD
| p(D, X) —20 . p(D,y)|™
JiD,x JD,Y
\ |,
(X oy
(X) o (Y)

in which the two inner squares commute, and thus the outer one is commutative too.
The next theorem gives us the promised characterization of r-filtered categories.

Theorem 2.2.14. Let k be a regular cardinal and D be a small category, then the following are equivalent:
1. D is k-filtered;
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2. for every category X with strictly less then r arrows and functor F': D x X — Set, the comparison
morphism @ is an isomorphism.

Proof. Throughout this proof will use the notation of Remark
(1 = 2) As for every limit, the families { 8x } xex and {ap x } xex induces injections

B: L' = [[ ¢'(X)  ap: L(D)— [] F(D,X)
XeX XeX

which have as images, respectively

{(ex)xex € H C'(X) | C'(g)(cx,) = cx, forevery g: X1 — X5}
Xex

{(ax)zex € H F(D,X) | F(idp,g)(ax,) = ax, forevery g: X1 — X5}
Xex

In addition, Lemma provides surjections

T Y LD)=»C  7x: Yy F(D,X)—C'(X)
DeD DeD

These functions fit in the diagram

B

T

C LA 7 C'(X)

[Tow)
g ) XeX
JD,X
iD ap,x Wﬂx T Hﬂ'x

XexX

> L(D) <~ L(D) - [[ 7D, X) == F(D,X) T Y FD,X)<— [[ Y. F(D,X)
DeD XeX DeD XeXDeD

where px, gx and tx are projections, while kp and hp x are coprojections.
We are going to show that the comparison morphism @ is injective and surjective.

e & is injective. Let ¢y, ca € C such that ®(¢;) = ®(c2), since 7 is surjective there exist d; € L(D1)
and dy € L(D;) such that

7(kp,(d1)) =1 7(kp,(ds)) = c2
Now, by the commutativity of the diagram above, we can deduce that, for every X € X, we have
mx (hp, x (Px (ap,(d1)))) = 7x (hp,, x (Px (D, (d2))))
Thus by Lemma we know that there exist f: D1 — D and g: Dy — D such that

F(f,idx)(ap, x(d1)) = F(g,idx)(ap, x(d2))
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but then

ap,x(L(f)(d)) = F(f,idx)(ep, x (d1))
= F(g,idx)(ap, x (d2))
= ap,x(L(9)(d2))
which in turn implies that
ap(L(f)(d1)) = ap(L(g)(dz))
and the thesis now follows from Lemma 2.2.11 and the injectivity of ap.

® is surjective. Let | be an element of L, applying 8 we get an element (8x (1)) xex of C'(X). Now,
for every component X € X there exists an object Dx of D and an element dx € F(Dx, X)such
that

Bx(l) = mx(hpy x(dx))
Since D is k-filtered and X has less then x objects, there exists an object D with arrows fx: Dx — D
for each X € X. Let ex € F(D, X) be the element F(fx,idx)(dx), by Lemma 2.2.11 we have

mx(hpy x(dx)) =7mx(hp x(ex))

Now let g: X7 — X5 be an arrow in X, by Remark 2.2.13

7x, (hDx,, x5 (dx,)) = Bx, (1)
= C'(9)(Bx, (1))
= C'(g9)(mx, (hp x,(ex,)))
= 7x,(hp,x, (F(idp, g)(ex,)))
= 7x, (hp,x, (F(fx,,9)(dx,)))

Applying Lemma 2.2.11 we can deduce the existence of vy, uy: D = D, such that

F(Ug ° fXNg)(Xm) = F(ug ° fX27idX2)(dX2)

Take now the diagram defined by the family {vy, ug}4e x(x,,x,) Which has less then  arrows and
thus there a cone (E, {2, }4ex(x,,x,))- In particular this implies that there exists an arrow z: D —
E satisfying, for every g: X1 — Xa:

F(Z o le7g)(dX1)

F(Zg O Vg Ofxlag)(dxl)
(Zg OUgo szv idXz)(dXz)
(z o fx,,idx,)(dx,)

F
F

This shows that there eists a € L(E) such that

ap(a) = (F(z0 fx,idx)(dx))xex
but then, using again Lemma 2.2.11
Ox(®(ip(a))) = mx (he,x (F(z o fx,idx)(dx)))

=7x(hpy,x(dx))

= Bx(1)
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which implies

and we can conclude since 3 is injective.

(2 = 1) Let us show the three points of Definition

1. D is non empty. Suppose D is empty, we can take X to be the empty category as well. Then
L: D — Y is given by the initial and C’: X — Set are given by the initial functor and thus the
comparison morphism ®: C' — L’ is the unique arrow () — 1 which is not an isomorphism.

2. Let {D;}icra family of objects of D with |I| < & and consider X the discrete category with them
as objects; we can take the functor F': D x X — Set sending a pair (D, D;) to the set D(D;, D).
We have that, for every D; € D, F(—, D;) is simply D(D;, —), so C'(D;) is a singleton. Now,
C’: X — Set is a functor on a discrete category, thus L’ is a product of singletons and therefore it
is non empty. By hypothesis ®: C' — L’ is an isomorphism, hence C' is non empty too. But C'is
the colimit of the functor L: D — Set given by

L(D) = [[D(Di, D)

icl

and since C' is non empty L cannot be the constant functor in (), i.e. there exists a D such that
D(D;, D) # () for every i € I, but this is exactly the thesis.

3. Let {fi}ier a family of arrows D1 — D5 with |I| < k and take as X the subcategory of D generated
by it. We can again define F': D x X°? — Set sending (D, D,) to D(D;, D), where j € {1,2}.
The argument now is similar to the one in the previous point: C’(D1) and C’(D3) are the colimits
of D(D1, —) and D(D3, —) so they are singletons, i.e. C’ is equivalent to the constant functor in
1. This implies that L’ is the singleton too, which, in turn, implies that also |C| = 1. But C'is the
colimit of the functor L which we can compute explicitly, indeed:

L(D) ~{g € D(Ds,D) | go fi = go f; foreveryi,j € I}

Therefore, since C' # (), L cannot be the functor constant in (), and the thesis follows. O

Locally x-presentable categories

To proceed further, we need to introduce the concept of local x-presentability [6, 29, 51, 87].

Definition 2.2.15. Let X and Y be categories, a functor F': X — Y has rank « if preserves s-filtered
colimits. An object X € X is said k-presentable if X(X, —): X — Set has rank x, we will denote by X,
the full subcategory given by s-presentable objects and by J,;: X,; — X the associated inclusion functor.

Remark 2.2.16. Let \ and & be regular cardinals such that A < k. Then Remark implies that a

functor F' with rank A also has rank «; this in turn entails that, in every category X, X, is a subcategory
of X,..

Example 2.2.17. Let (P, <) be a poset and & a regular cardinal, an element p € P is k-compact [ 1, 55] if for
every r-directed subset S of P (i. e. a subset which is x-directed with the induced order) with supremum
s such that p < s, there exists s’ € S such that p < s'. k-compact elements are exactly the x-presentable
objects of the category associated to (P, <).
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Example 2.2.18. For every regular «, let k be the category associated with the (total) order (k, C) we
can consider the diagram I': kK — Set sending ;1 € & to itself and p¢ C A to the inclusion ¢, x: it — A. By
Remark this diagram is x-filtered and we have a colimiting cocone

p—2 s\

ih %

K

in which iy : g — £ is again given by the inclusions. On the other hand, a colimiting cocone for P o I is
given by (Q(k), {j.}uex) where

Qr):=J P

HER

and j,: P(p) — Q(k) is the inclusion, so that we have a diagram

P(w) W

Pep.n) Q(r) ' >P(k)

But the dotted arrow i: Q(k) — P(k) is, again, simply the inclusion, so, since k ¢ Q(k), it follows that
i 1s not an isomorphism and thus that P doesn’t have rank k.

Proposition 2.2.19. Let G: B — X, be a diagram such that B has strictly less then k arrows and suppose that
(X, {cB}BeB) is a colimiting cone for J,, o G. Then X is k-presentable.

Proof- Let (C,{dp}pep) be a colimiting cocone for a functor H: D — X with x-filtered domain. For
simplicity , given D € D and B € B, set

Xp = J.(G(B)) Cp := H(D)
We can define a functor F': D x B°? — Set

(D17 Bl) — X(XB17CD1)

(.0) | LH(f) o (=) 0 J4(G(9))
(D27 BQ) L X(XBz ) CD2)

Now, for every B € B, since X is -presentable, the s-filtered colimit of H(—, B) = X(Xp,—) is
given by X(Xp, C') with coprojections

jDVB:X(XB,CD)%X(XB,C) fl—)dDOf
and we also know that the limit of the functor sending B to X(Xp, C) is X(X, C') with projections

5XX(X,C’)%X(XB,C’) fl—>fOCB
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On the other hand, the limit of H(—, D) is given by X(X, Cp)

ap.g; X(X,Cp) = X(Xp,Ch) frfocan
The thesis now follows from Remark and Theorem . O
Corollary 2.2.20. The representable functor Set(X, —) has rank r if and only if | X | < k.

Proof. (=) By Example (X, {iataep,(x)), whereig: A — X is the inclusion of A € P, (X), isa

r-filtered colimit, thus (Set(X, X),{ia o (=)} aep, (x)) s again colimiting. Lemma now implies
that idx =44 o f forsome A € P,(X) and f: X — A, showing | X| < k.
(<) X =3 1, and 1 represents idse, thus Proposition yields the thesis. O

Example 2.2.21. If S is a set with cardinality less then x then the state monad Set(S, S x —) has rank
k: indeed S X — preserves all colimits since it is a left adjoint, while the previous corollary entails that
Set(S, —) preserves x-filtered colimits.

Before turning to the central concept of this section we need to introduce the notion of generator.

Definition 2.2.22. [78, 31] Let G be a set of objects of a category X. We say that G is a generator, if for
each pair f,g: X = Y with f # g, thereexist G € Gand h: G — X, such that foh = goh. A generator
is called strong (or extremal) provided that, for every mono m: M — X which is not an isomorphism,
there exists g: G — X, with G € G which does not factor through m.

Remark 2.2.23. Let G be a (strong) generator and H be another set of objects fo X. Then if G C H, we
get that H is a (strong) generator too.

Example 2.2.24. The family containing only the terminal object provides a generator for Set and Top,
which is strong only in the first case: any bijection which is not an homeomorphism provides a coun-
terexamples to strongness in the latter case.

In the following we will need to extend a given generator adding to it some colimits. This is done in
the following way: let G be a generator for a cocomplete category X, then, for every cardinal x, we can
construct another set G, adding to G representatives for all k-small colimits, this is done taking

g" = U Gi
ieN
where the family {G; };cn is defined as follows:
® Go := G U {0}, where 0 is an initial object of X;

® G, 11 is the obtained from G; adding a representative for each k-small coproduct and one for each
coequalizer diagram.

Proposition 2.2.25. Let X be a cocomplete category with a (strong) generator G. Then, for every cardinal k,
G" is a (strong) generator.

Proof. First of all we can notice that, by construction, G* is a set: this follows at once since Gy is a set and
Gi+1 1s obtained from G adding a set of new objects. The thesis now follow at once from Remark O

Definition 2.2.26. Let x be a regular cardinal, a category X is locally k-presentable if:
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1. X is cocomplete;
2. there exists a strong generator G for X, such that every object G in G is k-presentable.

Remark 2.2.27. From Remark it follows immediately that if X is locally x-presentable category,
then it is also locally A-presentable for every regular cardinal A greater then &.

Example 2.2.28. The first half of Example entails that Set is locally Ry-presentable.

Example 2.2.29. Let (P, <) be a poset, then cocompletenes is tantamount to asking for the existence of
a supremum for every subset of P, in particular (P, <) must be a complete lattice. On the other hand,
since there are no parallel arrows the notion of generator becomes trivial: every subset of P is a generator.
This is not the case for strongness as shown by the following facts.

® Let G C P be a strong generator, then for every p € P, p is the supremum of the set

Glp:={9€Glg<p}
Indeed, let s be the supremum of this family and suppose s # p, then strongness implies the existence
of g € G with g < p and such that g £ s, which is absurd.

® Let G C P be a set such that, for every p € P there exists S, C G with the property that p is the
supremum of Sy, then G is a strong generator: every ¢ € P with ¢ < p cannot be a upper bound
for S, thus there must exists g € S, such that g £ q.

Summing up, a strong generator for a cocomplete (P, <) is a subset G such that every element of P
is the supremum of a family S, contained in G. On the other hand, Example implies that the
k-presentable objects of (P, <) are exactly its k-compact elements, thus a cocomplete (P, <) is locally x-
presentable if and only if every elements is the supremum of a family of k-compact objects. This is exactly
the notion of k-algebraic lattice [ 1, 55, 109].

We can categorify Example to provide an alternative criterion for local k-presentability.

Lemma 2.2.30. Let k be a regular cardinal, then for every cocomplete category X the following are equivalent:
1. X locally k-presentable;

2. there exists a small subcategory Y of X, which objects are all k-presentable in X and such that for every
object X € X there exists a functor Fx : D — Y with k-filtered domain, with the property that X is the
vertex of a colimiting cocone for I o Fx, where I is the inclusion functor Y — X.

Proof. (1 = 2) Let G be a strong generator, by Proposition G" is a strong generator too. Moreover,
Proposition entails that every object in G* is -presentable. Now, given an object X € X, we can
define G* | X as the category in which:

® objects are pair (G, g) made by an object G € G* and an arrow g: G — X;;

e an arrow (G, g) — (H, h) is an arrow f: G — H such that the following diagram commutes.

f

N A

X

G H
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There is an obvious functor Ux : G* | X — X defined as

(G,9) — G

il Lf

(H,h)— H
We can also notice that Lemma implies that G | X is x-filtered: indeed given a diagram F': D — G*
with a k-small domain, then there exists a colimiting cone (G, {¢p} pep) for Ux o F. Now, let F/(D) be
(Gp,gp) with gp: Gp — X, then for every d: D1 — D4 we have
gD, © F(d) = 9D,
which shows that (X, {gp} pep) is a cocone on Ux o F' and thus there exists g: G — X such that
goCp =9gp

showing that ((G, g), {cp}pep) is a cocone on F. It is now enough to show that X is the vertex of a
colimiting cocone for Ux.

For every (G, g) € G*|X we can defince d(¢ 4): G — X simply as g, by construction this defines a
cocone (X, {d(c,q)}(G,g)cg~ 1 x) on Ux, let also (C, {¢(c,¢) } (c,9)cg= | x ) be a colimiting cocone for such
functor, there exists m: C — X such that

mocG,y =9

If we show that m is an isomorphism we are done. Notice that, every g: G — X with G € G" factors
trhough m, thus, since G" is a strong generator, it is enough to show that m is a monomorphism.
Let p,q: Y = C be two arrows such that m o p = m o q. Since G is a generator, if we show that

pog=4gog

for any arrow g: G — X with domain in G, we can conclude. G is s-presentable, thus there exists
(H,h) € G®and p/,¢': G = G such that the following diagrams commute

, H , H
p q
/ \LC(HW) / lc(HYh)

G—Y ——C G—Y ——C
9 P g a

There is a coequalizer diagram

p/

G—zH—==Q

q/

with @ € G*. My hypothesis we have
hop' =mocgnop
=mopog
=mogqog

= Mo C(H,n) ° q

=hoq
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and thus there exists a unique k: @ — X such that the following square commutes

H—e>Q

C(H,h)l X ik

(@, k) is an object of G" | X and e is an arrow (H, h) — (Q, k), thus

pog=cwnop
=c@amoeoy
= 0eoq
= C(H,h) © q’
=qoyg

(2 = 1) Let G be the set of objects of Y. Let also f, g: X = Y be two parallel arrows, by hypothesis X is
the vertex of a colimiting cocone (X, {¢p}pep) withcp: Xp — X with Xp in Y. If f # g, there must
be a D € D such that f o cp = g o ¢p, proving that G is a generator. For strongness: let m: M — X be
a mono and suppose that every g: G — X with domain in G factors through it. In particular, for every
D € D there exists dp: Xp — M such that m odp = ¢p and thus we have an induced n: X — M with
the property that n o ¢p = dp, therefore

monocp =modp

proving m o n = idx. It follows that m is mono and split epi, hence an isomorphism. O

We can now obtain a characterization for endofunctors with rank x on alocally A-presentable category.
Theorem 2.2.31. Let X be a locally \-presentable category, let also k be a regular cardinal greater or equal
than \. Then for every functor F': X — X, the following are equivalent:

1. F has rank k;

2. (F,idFo.,) is a left Kan extension of F' o J,; along J,.;

3. the following isomorphism hold

Fo /Xexm X(X, ) e F(X)

Proof- (1 = 2) Let us show that (F,idr., ) enjoy the universal property of a left Kan extension. Let
G: X — X be a functor and 7 a natural transformation F' o J, — G o J,,. We are going to construct a
7: F'— G such that y = nx for every X € X,..

Let X be an object of X, by hypothesis X is locally A-presentable so, by Remark , it is locally k-
presentable too, therefore Lemma implies that X is the vertex of a colimiting cocone (X, {¢p} pep)
with D a s-filtered category and every ¢p: Xp — X has adomain lying in X, so (F(X), {F(¢p)}pep 1s
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colimiting too. This implies that there exists a unique 7y : F(X) — G(X) making the following diagram

commute
nxp

F(J(Xp)) —= G(Jx(XD))

F(CD)J/ \LG(CD)

F(X) G(X)

Nx

Notice that, by construction, if X is an object of X,; then fjx = 7x, so we only have to show the
naturality of the family {7y} xex. Take an arrow f: X — Y, then Y is again a vertex of a colimiting
cocone (Y, {dg}pep) with B s-filtered and such that dg: Y5 — Y has a s-presentable domain. Since
X(Xp, —) has rank &, it follows from Lemma that there exists Bp € Band fp: Xp — Yp, such
that the following square commutes.

Xp T2y

CDl idBD

X Y

Since J,; is simply an inclusion, for every D € D we get a commutative diagram in X

F(CD CD)
%D) k
YBD
F
(f)i %BD) ﬂ& %D) Cm \L
YBD

which, by the colimiting property of (F'(X),{F(cp)}pep), shows that

G(f)onx =Ty o F(f)

We are left with uniqueness. If e: ' — G is a natural transformation such that ey = 7y for every
Y € X, then, for every D € D we have

ex o F(ep) =G(ep)oex,
= G(cp) o nx,
= ﬁX o F(CD)
from which the thesis follows using again the fact that (F(X), {F(cp)} pep) is colimiting.
(2 = 3) This follows from the explicit formula for left Kan extensions.

(3=1) (—) @ F(X) is a left adjoint, so it preserves all colimits, X(X, —) preserves x-filtered colimits by
hypothesis. Thus the thesis follows since coends commute with all colimits. O
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Remark 2.2.32. Take as X the category of Set, then for every S € Set (—) @ S, being the left adjoint to
Set (.S, —), coincides, up to isomorphism, with (—) x S. Thus if a functor F': Set — Set has rank x, we
must have the following isomorphism

Y €Set,,
F ~ / Set(Y,—) x F(Y)

Moreover, the coproduct structure T x S is given by
1w: S —=Tx8 s (t,s)
so that we can write the components wx y : Set(Y, X) x F(Y) — F(X) of the initial cowedge wx as
Wy Set(Y, X) x F(Y) = F(X)  (f,) = T(f)(0)

We end this section with a brief discussion of the results obtained applying the notion of rank to
monads.

Definition 2.2.33. Let x be a regular cardinal we will say that a monad T = (7,7, 1) on a category X has
rank k if k is the rank of T'.

Let J,; be the inclusion Set,, — Set, by Remark Remark and , Corollary and The-
orem , monads with rank x are exactly J,;-monad as defined in Definition . Take now two
monads T and S with rank, respectively, x and A and let also 41 be the maximum between them, by Re-
mark they have both rank p, thus we can apply Proposition to get the next result.

Proposition 2.2.34. There exists a category RMnd in which objects are monads T on Set with rank, and
arrows are morphism of monads.

Finally, we point out the following two results .

Proposition 2.2.35. Let L: Y — Xand R: X — Y be functor such that L - R, and suppose that R has rank
k. Then R o L has rank & too.

Proof- This follows at once since L, being a left adjoint, preserves all colimits. O

Corollary 2.2.36. The following are equivalent for a monad T on a cocomplete category X:

1. T has rank k;

2. Ut has rank k.
Proof. (1 = 2) Let F: D — EM(T) be a functor with «-filtered domain, since T" preserves r-filtered
colimits, then the thesis follows applying Proposition and Remark

(2 = 1) This is a consequence of Proposition . O
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Algebraic theories
Let us start recalling the traditional notion of algebraic theory from universal algebra [88, 89, 115].

Definition 2.2.37. Let Card be the class of all cardinals, an algebraic signature ¥ is a pair (Oy, ary), where
Oy is a class of operations and ars, 1s a function Ox; — Card such that, for every cardinal &,

Os, :={0€Ox | arg(0) =k}

is a set, called the set of operations of arity k. Given a regular cardinal x, we will say that ¥ is x-bounded if
Os;,» = 0 for every cardinal A such that A > .

The category Sign, is defined as the category with s-bounded signatures as objects and in which a
morphism f: X; — 3 is a function Oy, — Os, such that the following triangle commutes.

f

&A

Card

Oy,

Oy,

Remark 2.2.38. If ¥ is x-bounded, then Oy; is a set, not a proper class, so that Sign, (31, X2) is a set too,
proving that Sign_ is really a category.

Example 2.2.39. The signature X5 of semigroups is given by (Oxg, arsy) where
Oss ={} arzs()=2
Example 2.2.40. The signature Xy, of monoids is given by (Ox,,, ars,,) where Ox, = {-, e} and
arg, (1) =2 arg,(e) =0
Example 2.2.41. The signature X of groups is (Ox,, ars, ) where Os, = {-,e,(—)"'} and
ars, () =2 arg,(e) =0 arg, ((—)7') =1

Definition 2.2.42. Let ¥ be an algebraic signature, a Y-algebra A is a pair (A, {0*}oc05,) where A is a
set and, for every o € Os;, 0 is a function A°=(®) — A, A Y-homomorphism f: A — B is a function
f: A — B such that, for every o € Oy, the following rectangle commutes

Aors (o) me(O) Bur)j(o)

A——8B

We will denote by X-Alg the category of Y-algebras and ¥-homomorphisms, and by Us; the functor
Y-Alg — Set defined by
(4, {OA}OEOE) — A

£l Lf

(Bv {08}0602) — B
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Now let f: X1 — 32 be a morphism of Sign,. and take a ¥p-algebra A = (A4, {p““}peo22 ), then we
can define a ¥q-algebra on f*(A) = (A, {Of*(A)}OEC)El ) putting, for every o € Oy,

o = (o)
which is well-defined since ary;, (0) = ars, (f(0)). This construction can be easily extended to a functor.

Proposition 2.2.43. For every morphism f: X1 — X of Sign,_ there is a functor f*: ¥o-Alg — ¥;-Alg
sending a 1 -algebra A to f*(A).

Proof. We have to extend the previous contruction to morphism. Let g: A — B be a X3-homomorphism,
then for every p € Oy, we have a commutative rectangle

Acrs(p) L(p). Bor=(p)

N K

A—>B
7
In particular this holds when p = f(0) for some 0 € Oy, which gives us the thesis. O

Remark 2.2.44. Notice that, for every r-bounded signature %, idy; is the identity functor on ¥-Alg.
Moreover, given f: ¥; — Ys and g: X9 — X3, then

(gof) =froyg"

Remark 2.2.45. Given f: 31 — X, the induced f*: ¥o-Alg — ¥;-Alg commutes with the forgetful
functor, i.e. the following diagram is commutative.

Zg-Alg

Zl'Alg

UEZ Uz;
Set

1

The free -algebra

Let us look more closely at the forgetful functor Us;: ¥-Alg — Set. The following results show that the
boundedness of ¥ is encoded into its rank.

Lemma 2.2.46. Let X be a k-bounded signature and F': D — 3-Alg be a functor with a k-filtered domain, let
also (A, {cp} pep) bea colimiting cocone for Us,o F. Then there exists a unigue A in 3-Alg such that Us,(A) =
A, and which makes every cp a Y-homomorphism F(D) — A. Moreover, the cocone (A,{cp}pep) is
colimiting for F.

Proof. Since ars(0) < k for every o € Oy, Corollary entails that (AGFE("),{C%Z(O)}DGD) is
colimiting for the functor (Us,(F(—)))*=(). Let f: D; — Dy be an arrow of D, then F(f) is a X-
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homomorphism, so that we have a diagram

F(Dy)

(Us(F(Dy)))"=) ———U.

F(f)o=) ()

\
(Us(F(Dy)))=() ron UE /

and thus there exists a unique 0*: A°=(°) — A such that

(Us(F(D)))er=@ "2 1(P(D))
C%Z(O)\L \LCD
AOI’E < A

(e}

commutes. Let A be (A, {0*},c0y,) the resulting S-algebra, we are going to show that (A, {cD}Del))
is colimiting for F. Let (B,{dp}p) be another cocone on F, we already know that there is a unique
d: A — B, where B = Ux(B), such that d o ¢cp = dp, if we show that it is a ¥-homomorphism we are

done. Since each dp is an arrow of X-Alg we have

ars; (o)

dootoc F(D)

=docpoo
=dp o of'(P)
:OBOd%E(O)

B ars (o rs(o
=0"od E()OCODZ)

and the thesis follows from the colimiting property of (A=(°), {CQFZ(O) }pep)-

Corollary 2.2.47. Let ¥ be a r-bounded signature for some regular cardinal k, then the following hold
1. 3-Alg has all k-filtered colimits;
2. Us, has rank k.

Our next step is to show that Uy, is a right adjoint whenever ¥ is k-bounded (see, for instance [7,

1)- Thus let 3 be k-bounded. By Remark , Oy, is a set, hence given X € Set we can define

— Z xears(o)

0€O0x

5

which provides us with a functor S: Set — Set. Let  be the category associated with the (total) order
(k, C), we can use S to inductively define a functor Dx : k — Set. We will denote by ¢, x: Dx(n) —

Dx ()) the image of an inequality p < A.

e If A is a limit ordinal, suppose that the functor Dx is defined for all 1 < ), that is to say that we have
adiagram D% : A — Set and we can define Dx (\) and ¢, x: Dx(u) — Dx () as, respectively, the

vertex and the coprojections of a colimiting cocone for D%.
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e If A = p+ 1 is a successor, we can put Dx () :== X + S(Dx (11)). By induction, to construct ¢4 »
for an o < X it is enough to define ¢, x. We have two cases.

- p is a successor too. Then = 8+ 1 for some 3 and Dx(u) = X + S(Dx(8)) and we can
define t,, x asidx + S(tg,.).

- fvis a limit ordinal. Then for every 8 < p we can define ¢3 ) as the composition

t,8+1 idx +S(tg,u)

Dx(B) X + S(Dx(B)) X + S(Dx(p))
Now, for every v € p such that § <+ we have a diagram
Dx(8) tg,5+1 X +5(Dx(8)) idx+S(ts,.)
tg,~y by yt+1 X+ S(Dx(,u))

Dx(v)

by v+t X+ S(DX (7)) idx +S(ty, 1)

which commutes since, by the previous point, ¢, 41 = idx +5(t3,,). But this commutativity
entails that (Dx (), {tg,x}s<,) is a cocone on D% and we get t,, 5 as the induced arrow.

Remark 2.2.48. We shall remark two things about the construction of Dx.
e The first item of the previous induction yields Dx (0) = 0.
® Forevery A, if p < A, then ¢,41, )41 is given by idx + S(t,.2)-
Definition 2.2.49. Given a x-bounded algebraic signature &, the set 7% (X) of X-terms on the set X is the

vertex of a colimiting cocone (7% (X), {jx,a}xrex) for the functor Dx: k — Set defined above. Given
0 € Oy and o: ary(0) = T5 A (X), o(0) will denote the image of (0, o) under the composition

JX,A+1
- >

S(Dx(\) —2> Dx(A+1) Ts(X)

where s is the inclusion S(Dx (A\)) = Dx (A + 1).

Notation. When ars(0) = 0, there is only one arrow 77y | (x): @ — Tx A(X). In such a case we will
write simply o for o(?r, , (x))-

Take an operation 0 € Os, then for every A € & an element of (Dx(\))°=(®) is just a function
o:arg(o) = Dx(\) and
Dx(A+1) = X+ 3 (Dx(1)=
0€0x%

So we can define 0§Z(X): (Dx(N))e=() — Dx (X + 1) simply as the inclusion on the component
given by 0. Now, if & < 3 then

tat1,8+1 =idy + Z tir%(o)
0€0x
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thus the following diagram is commutative

Fx (X)
(Dx(a))er>(?) ——— X + S(Dx(a))
ti’i?ﬁ(”)l lta+1,3+1
(Dx(8))7=) — > X + S(Dx(8))
og

and this implies that (7% (X), {jx r+1 oof\?Z (%) }aex) is a cocone on the composition of DX and (—)2=(°),
Now, from Remark and Corollary it follows that <(T§; (X))Grz(o) , {jf\rE ©) }Ae > is a

colimiting cocone for the composite functor (—)®=(°) o DX therefore there exists a unique function
o= (X) . (T (X))o=(X) — Ty (X) making the following diagram commutes.

Fs (X)
O)\Z

(Dx(A))er=l0) — = Dx(X)

jjfz(ﬂ)l le,A-H

(T (X))o=) Is(X)

oF=(X)

Remark 2.2.50. Since Tx(X) arises as the vertex of a s-filtered colimit and (—)*=(°) has rank & for every
o € Oy, it follows from Lemma that every o: ars(0) = Tx(X) factors through Dx ()) for some
A € k. Moreover, given o ars(0) — Dx(\), then, by definition, o(c) coincides with o>(X) (jx 5 o 7).
Therefore, we can conclude that, for every o: ars(0) = Tx(X)

o=X) (o) = o(0)
Theorem 2.2.51. Let X be a k-bounded algebraic signature, then Us,: ¥-Alg — Set has a left adjoint.

Proof. Let X be aset and define Fx:(X) as (Tx(X), {0"X)},c0,.). By definition Dx (1) = X + S(0), so
we can take g, x : X — Tx(X) as the composition of an inclusion with the coprojection jx 1: D1(X) —
Tx(X). Takealso afunction f: X — A, where A = Us;(A); forevery A € k we are going to use induction
in order to define an arrow fy: Dx(\) — A such that, for every pn < A

otux=fu
and the following rectangle commutes
o= (X)
(Dx(A)e=? ——— Dx (A +1)
f;rz(n)i lfﬂl
Aor):(o) A
A

o

e If ) isalimit ordinal and f,, is defined for all o < X, then (A4, {f,},<)) is a cocone (empty if A = 0)
and we can take f): Dx()\) — A to be the induced arrow.
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® Let A be y1+ 1 for some y, given o € Ox, let also ko1 (Dx (1))?=(®) — Dy (1) be the correspond-
ing coprojection. We can define hy: S(Dx (X)) — A as the unique arrow such that the following
diagram commutes

o

(D (1)=() 2" §(D (1))

ﬁrZ(O)\L lh’\

Aor);(o) A

%)

commutes, and use it to define fy: X + Dx(\) — A as (f, h)). Notice that we get a diagram

Fy (X)
o,l,E

o

(D (1)) 22~ §(Dy (1)) —“—> Dx(N)

ars; (o) i lh"\
1
fa

Aor;:(o) A

so we only need to check that fy ot, x = f, to conclude our induction.
- Suppose p = 8 + 1 is a successor too. Then ¢, x = idx + S(tg,,) and thus
Ixotux=(fihxoS(tsu))

thusif hy0S(tg,,, = h, weare done, but this follows from the commutativity of the following
diagram for each 0 € Os.

kg,o

(Dx(B))=(?) ——— §(Dx(8))
itf[?ﬁ(") ls(tﬂ,u)
Kyeo
T\ Px S(Dx (1)
\ iff[z(") \LhA
AOI’E(O) - A
- If p is a limit, take 8 < p, then we have a diagram
fng(O)
(Dx(B))o=(0) — 2% o (Dy(p))er=(0) £ 5 fors(0)

kﬁ,ol k[l,,ol lo"‘

S(Dx(8)) — 57— S(Dx (1) ——— A
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which shows that iy o S(tg,,) = hsy1. This in turn entails that

(fiha) oidx + S(tp,u) o ts pt1
(fihaoS(tsu)) otsp+1

= (f,hgt1) o tg 41
f

But then we also have

faoturotg, = frotgx
= fuolpu

from which fx ot, x = f, follows at once.
Now, by construction we have a cone (A, { fx}rex) which induces fx .: T (X) — A such that
[= fZ,* oNs, X

Moreover all the internal rectangles and triangles of the diagram below are commutative, so that we can
conclude that fy; . is a ¥-homomorphism Fx(X) — A.

o' (X)
(Ts(X))or=) Ts(X)
oF=(X)
Fom) (Dx(N)e=(0) ——— Dy (A+1) I
% N
Aorg(o) A
A

We are left with uniqueness: let k: F5;,(X) — Asuch that kons, x = f, we can proceed by induction
to show that k o jx \ = fy for every A € k.

® Let A be a limit ordinal, and suppose that k o j, = f, for every < A, then

kon,)\ Oty“’)\ = kon,,u
:fﬂ

= fxxotux

and we can conclude since (Dx (N), {t,,1} <) is a colimiting cocone.



2.2. Monads on Set 67

e If A =y + 1 for some ordinal p, since k is a -homomorphism we get diagrams

f

Dx (1))

/ j;ﬁfo) Jx,A
o= (X) T
—_— >

(
=@ | (Te(X))or=()

\ Lors (o) k

Aors () o A
O'A

where [; and [ are coprojections. Notice that the commutativity of the diagram on the right is

guaranteed by Remark . We can conclude that
froof=X) — ko 00 Lojyyoly = froly
which entail the thesis. O
Let T, be Us; o F';, using Corollary and Proposition we can deduce at once the following.

Corollary 2.2.52. Let X be a k-bounded signature, then the T, has rank k.

The calculus of Y-equations
We have now all the ingredients needed to introduce equations and their calculus.

Definition 2.2.53. Given X be a x-bounded algebraic signature, the set Eq(X) of X-equations (or simply
an equation) is defined as
Eq(E) := ) Tu(N) x Tu())
AEK

For every A € k, the image of (t1,t2) € Tx(\) x Tx()) in Eq(o) will be denoted by A | t; = ¢2 and we
will call A the context of the equation.

For every S C Eq(X), its deductive closure St is the smallest subset of Eq(X) which contains S and it
is closed under the rules of Fig. 2.1, i.e. if all the premises of a rule are in it, then so is the conclusion. An
equation is derivable from S (or simply derivable if S = () if it belongs to S*.

Notation. We will always use 0 to denote () when it appears as a context.

Remark 2.2.54. Let i and X be two cardinals in » such that i < A, so that we can consider the inclusion
tux: o — A Applying SUBST to 75 » © ¢, x we get the following rule

w<A wlts =ty

N T (i) (1) = T (i) () "

which can be interpreted as a form of weakening.



68 2. Algebraic theories and monads

A | tl = tg
REFL —— Svym
A ‘ t=t A | t2 = tl
)\ltlEtg )\|t25t3 Ui)\1—>Tz()\2) )\1|ﬁ15t2
TrANS SuBsT
At =t3 A2 | 05 4(t1) = o5 4 (t2)

o€ Oy o1,02: arg(0) = Tx(A) {M o1(a) = o2(a) }acars (o) Cone
Al o(o1) = o(o2)

Figure 2.1: Derivation rules for the calculus of ¥-equations.

Proposition 2.2.55. Let X be a r-bounded signature, then the following hold:
1. if Sy and S are subsets of Eq(X) and Sy C S, then ST C S ;
2. forevery S C Eq(X), (SF)’_ = 5",

Proof. 1. This follows at once since S, contains Ss.
2. Clearly S € S",s0 S" C (S")F. On the other hand S™ is closed under the rules of our calculus
by definition, so (SF)" C S O

Now let f: X1 — ¥ be a morphism in Sign,_. We wish to have a way to translate a ¥1-equation to
a X equation. Now, if we denote by 7s, x: A = Tx, () and 5, x: A = T, () the components in
X € k of the units of, respectively, the adjunctions Fx,, 4 Uy, and Fx,, 4 Us,, we know that there exists
aunique (1s,\)y, , £, (A) = f*(Fx,(A)) such that the following diagram commutes in Set.

A

7721,/ W, A

Ts, (M) W Ts, (M)

We can use this arrow to extend the construction of equations to a functor.
Proposition 2.2.56. There exists a functor Eq: Sign, — Set sending a signature ¥ to the set of X-equations.

Proof. Let f be a morphism 31 — X5 in Sign_, then we can define
fl’fy,\i Tgl ()\) X TEl ()\) — TEQ ()\) X T22 ()\)

putting try x := (95, ))5, . X (15,05, - 10 get the thesis it is now enough to define the image of f as
the translating function try: Eq(X1) — Eq(X2) given by the sum of the family {trs \}rex. O

Definition 2.2.57. A subset A C Eq(X) is a X-theory (or simply a theory) if A = S" for some S C Eq(X).
An axiom for a X-theory A is simply an element of such an S.

We say that Y-algebra A = (A, {0} o0y, ), satisfies a Y-equation \ | t; = ts if, for every f: A — A,
the induced morphism fx ..: Fx()\) — A satisfies

fou(t1) = fou(ta)
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Finally, the category Mod(A) of models of a 3-theory A is the full subcategory of X-Alg given by
algebras satisfying all the equations in A. We will denote by Up : Mod(A) — Set the restriction of Us..

Lemma 2.2.58. Forevery S-algebra A = (A, {0*} oc0s ), if A satisfies all the premises of a rule of the calculus
of equations, then it satisfies also its conclusion.

Proof. The thesis follows at once for rules RerL, Sym and TRANS, let us examine the other two.

Susst. Take f: Ay — A, then
fE,* OO0y« Oy N\ = fZ],* oo

and thus fs , 0 05« = (fg,« 0 0)y, ,. From this we can compute and get

fes(os(t1)) = (fec00)g, (t1)
= (fsxo0)y, (t2)

)

= fyx (05,4(t2))
Cone. Since A satisfies the family of equations {\ | 01 () = 02() }acar (o) it follows that
fox001 = fux002
for every f: A — A. Now, since fx . is a X-homomorphism, we have a diagram

ary; (0)

(TZ(A))org(o) T S Aorg(o)

OFE(/\)\L iO.A

Ty(\) ——> A

which, by Remark , entails that

fr(olo1) = (V1))

( orz(O) )

(fE % O Jl)
A fo002)

o™ gfi(o)(az))

= f5. (07N (02))
(

o(02))

and we are done. O

Corollary 2.2.59. Let A be a X-theory and S a set of axioms for it, then a Y-algebra is a model of A if and
only if it satisfies every equation in S.
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Notation. In order to improve readability, we will use x, y, z (possibly with a subscript), to denote vari-
ables coming from some A. We will also use infix notation for operations of arity 2. For instance, given a
signature Oy, = {+} with arg(+) = 2, we will write « + y instead of +(752).

Example 2.2.60. The first example of a -theory is the one with empty set of axioms: its models are all
the X-algebras.

Example 2.2.61. Take the signature X5 of Example , the theory Ag of semigroups is the X g-theory
with axiom

3lz-(y-2)=(x-y) -2

The models for this theory are precisely the semigroups.
Example 2.2.62. The theory Ajs of monoids is the X ps-theory given by the axioms
3l (y-2)=(x-y) =z lle-z=x llx-e=x
Taking Mod(A ;) we recover the classical category of monoids and their homomorphisms.

Example 2.2.63. In the signature ¥ of Example , we can define the theory of groups A¢ as the one
generated by the following axioms

llz-z7t=e 1]z t-2=e 1l|lez=z 1|lz-e=x 3|(z-y) 2=2(y-2)
In this case, Mod(Ag) coincides with Grp, the category of groups.
Let us take a closer look to Up : Mod(A) — Set, proving that it preserves some colimits.
Lemma 2.2.64. Let X be a k-bounded algebraic signature and A a X-theory. In addition, let I be the inclusion
Mod(A) — X-Algand F: D — Mod(A) a functor with k-filtered domain. If (A, {cp }pep) is a colimiting
cocone for In o F then A is a model for A.

Proof- Let X | t1 = t5 be an equation in A and f: A — Ux(A). Since A < &, Corollary implies
that there exists D € D and g: A = Us(Ix(F(D))) such that f = ¢p o g. Now

CDOgs«ONsx =CDOY
thus fs, . = ¢p o gs,«. By hypothesis F/(D) is a model of A, so that

fox(t1) = cplgs«(t1))
= cp(gs«(t2))
= fu.(t2)

from which we can deduce that A belongs to Mod(A). O

Corollary 2.2.65. For every k-bounded signature 3 and X-theory A, Up : Mod(A) — Set has rank k.
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The free model of a theory

We have ended the last section by establishing that the forgetful functor Uy : Mod(A) — Set has rank »
whenever A is a theory in a x-bounded signature. We are now going to show that U, has a left adjoint.

Definition 2.2.66. Let A = (A, {0} ,c0y) be a Y-algebra for an algebraic signature Y. A -congruence
(or simply a congruence) is an equivalence relation ~ on A, such that, for every o € Os, and functions
o1,09: ars(0) = A, if 01 (a) ~ o2(a) for every a € ars(0), then 04(ay) ~ 0*(02).

Proposition 2.2.67. Let e: A — B be a X-homomorphism such that Us.(e) is surjective, let also f: A — C
be another X-homomorphism such that f(a1) = f(a2) whenever e(a1) = e(az), then the unique arrow
g: Us(B) — Usx(C) futting in the following diagram is a -homomorphism.

f

UE(A)HUE(C)
4
(sze)i o
Us(B)

Proof. For every o € Os; have the following chain of equalities:
o 0 o13(0)  @5(0) o€ o fors(©)
= foo?
=goeoot

=go OB o eor;:(o)

and the thesis follows since e®=(°) is epi in Set. O

Lemma 2.2.68. Let A = (A, {0"}ocoy.) be a Y-algebra and ~ a congruence on it. Let m: A — B be the
projection on the quotient. Then the following hold:

1. there exists a unique Y-algebra B = (B, {0®},c0y,), called the quotient Y-algebra, which makes the
Sfunction @ a X-homomorphism;

2. if f: A — Cisa X-homomorphism such that f(a1) = f(az) for every ay, ag satisfying w(a1) = w(az),
then the unigue arrow g: B — Usx;(C) is a X-homomorphism.

Proof. 1. Take 0 € Ox and 01, 02 ars(0) = A such that
T OO =T 00,
then for every a € ars(0) we have o1 (a) ~ o2(«), and thus, since ~ is a ¥-congruence
m(0%(01)) = w(0*(02))
By the axiom of choice, 7 has a section, thus 79=(°) is surjective, and the equation above implies

the existence of a unique 0%: B=(°) — B making the following rectangle commutative

A
Aars(e) 4

rors (o) l \LW

Bcrz(o) B
B
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which is precisely what we had to show.

2. This follows from Proposition . O
Definition 2.2.69. Let A be a X-theory for a k-bounded signature . For every cardinal A < &, we define
a relation ~, » on T (\) putting t; ~x x t2 if and only if X | 1 = t2 belongs to A.

Proposition 2.2.70. Given a k-bounded signature 3, X\ < k and a X-theory A, the relation ~,  is a -
congruence on Fx ().

Proof. Rules REFL, Sym and TraNs imply that ~, » is an equivalence relation. To see that it is a con-
gruence, take 0 € Oy, 01,09: ars(0) = Tx()) and suppose that, for every @ € arg(0), the equation
A | o1(a) = 02(a) belongs to A. Then we can apply rule Cong and get

o1,02: ars(o) = Tx(N) A oi(a) = 2(a) Facars (o)

N o(o1) = o(a3) cone
which, by Remark , means exactly that
oFE(’\)(Ul) ~A OFZ(A)(O'Q)
and we can conclude at once. O
Since ~x ) 1s a X-congruence we can use Lemma to obtain, for every A < &, the quotient X-

algebra F)\ (). Equations satisfied by this X-algebra are exactly the ones belonging to A, as shown by the
following proposition.

Proposition 2.2.71. Let X be a r-bounded signature 3, A a 3-theory and \k. Then an equation X | t1 = to
belongs to A if and only if 1t is satisfied by Fa(N).

Notation. We will denote Us;(F (\)) with T (A) and use 75 5 to denote the quotient arrow.

Remark 2.2.72. In particular, the second half of the thesis entails that F (A) is a model for A.

Proof. (=) Take an equation \ | t; = t5 belonging to A and a function f: A — T (). Fix also a section
s: TaA(X) = Tx(X) of 7y, this yields a function s o f: A — Tx (). Notice that

WA,AO(SOf)E,*OWZ,,\ =myos0f
=f
Thus oz 0 (s f)s,« = fx,«. Now, we can apply rule SussT to get
SOf:A—)TE()\) >\|t15t2
Al (so f)mx(tr) = (so fm(t2)

SuBsT

Therefore

fox(ty) = max((so fls(t1))
=max((s0 f)s«(t2))
= fu.x(t2)
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(<) Suppose that A | t1 = ¢ is satisfied by Fa (A) and consider the arrow mp x oz a1 A = Ta(A). Since
A, x 1s a B-homomorphism we have
(TAX OIS A)S« = TAN O (Mn, )5,
= TANC idTE,,\
= TA,X

Thus mp 2 (t1) = ma 2 (t2), which means exactly that A | ¢; = ¢2 belongs to A. O

The second half of the previous proposition allows us to deduce the following completeness result.

Corollary 2.2.73. For every k-bounded signature 3, a Y-equation X | t1 = to is satisfied by all models of A if
and only if it belongs to A.

Now let X be a set, by Example we know that (X, {ia}ep,(x)) is a colimiting cocone. For
every A € P, (X) we can fix a bijection ¢4: |A| — A, and composing with the inclusion i4: A — X
we get another colimiting cocone (X, {ja}aep, (x))- Let ja,p: |A| — |B| be the arrow associated to an
inclusion A C B, given ¢1,t2 € Tx(]A|) such that |A| | {1 = t2 1s in A we can derive

ne g Cdas: Al = Tu(Bl)  |A[ |t =t
|B| | Tx(ja,B)(t1) = Tx(ja,B)(t2)

Thus there exists a unique Th(j4.5): Ta(|A|) = Ta(|B]) such that the following square commutes

SuBsT

Ts(ja,B)
Tx(JA]) —=25 Ty (|B))

7rA.,Al iﬂA,B

Ta(|AD) > Ta(1B)

Since 7y | g|oTx(ja,B) isa E-homomorphism, Lemma assures us that T (ja,g) 1s a X-homomorphism.

T, is a functor and we have equations
JB,c°JjA,B=JAC ja,a =id)4
Hence,there is a diagram in ¥-Alg made by the family {Ta(|A[)}acp, (x) With edges given by all the
functions of the form T (ja,p) for A C B in P, (X). In light of Corollary we can consider a
colimiting cocone (Fp(X),{Th(ja)}aep, (x)) for this diagram and put
Ta(X) := Us(Fa(X))
Now, for every A, B € P,,(X) such that A C B we have
Ta(ip) o ma, Bl © T2(ja,B) = Ta(in) © Ta(ja,B) © TA, 4
= TA(jA) O Y, A|

yielding a cocone (Fa(X),{Ta(ja) © 7a, |} aep, (x)) Which, by Corollary , implies the existence
of a unique ¥-homomorphism 7a x : Fx(X) — F(X) making the following square commutative.

TZ i
To(jA) /22 1y(x)

(

Ta(|A]) o I X)
A(ja)
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Remark 2.2.74. Notice that 7, x is epi in Set, and thus a surjective function. Indeed if f, g: T) (X) = A
are arrows such that f o mp x = g o x, then, for every A € P,,(X) we have

foTa(ja)omaja = fomaxoTs(ja)
=gomax oTx(ja)
=goTx(ja) oma, 4
and we know that every 7, |4 is epi, thus
foTa(ja) =goTa(ja)
from which the thesis follows. Us; is faithful, so 75 x is epi in 3-Alg too.

Theorem 2.2.75. Let X be a k-bounded signature, then the forgetful functor U : Mod(A) — Set has a left
adjoint F : Set — Mod(A) for every X-theory A.

Proof- For every set X, we notice that, by Proposition and Remark , FA(X) arises as a
r-filtered colimit of objects of Mod(A), thus Lemma implies that F5(X) € Mod(A). Define
Na,x : X — Tx(X) as the composition

X 5 T (X) 5 Ty (X)

Take a -algebra C = (C, {0“}oc0y) which is a model for A and a function f: X — C. Then for
every A € P,.(X), we have a ¥-homomorphism Fx;(|]A|) — C given by fx . 0 T (ja). Moreover

fex0Tx(ja)ons,ja = fox0ons,x 0ja
=foja
so that
foxoTu(ja) = (foja)s.
In particular, this identity entails that for every ¢, ts € T5x(|A|) such that |[A| | {1 = t2isin A
fex(Te(ja)(t1)) = fou(T2(ja)(t2))
We can then deduce the existence of a unique g4: Fj(]A]) — C such that
gaomp A = fex0Tx(ja)
Notice that, if B is another element of P, (X) such that A C B, then
g o Ta(ja,B) omaja] = gB o7, B © Tx(ja,B)
= fuxoTx(jB) o T=(ja,B)
= foxoTx(ja)
= gAOTAA|
showing that (C, {ga}acp, (x)) isacocone in £-Alg and entailing the existence of a unique -homomorphism
fas: Fa(X) — C satisfying g4 = fa,« 0 Ta(ja). Therefore
Jasomax oTx(ja) = fax 0 Ta(ja) o Ta 4

= gA O T | A|
= fex0Tx(ja)
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which shows that fy « = fx . o ma x and thus f = fa . ona x.
For uniqueness, let g be a morphism Fy (X) — C such that g o np x = f, then we must have

foja=gomnaxoja
= goomp X OMNs,X ©OJA
=gomaxoTx(ja)ons.a
showing
foxoTx(ja) =gomax oTx(ja)

from which it follows that
fas0TAXx =gomAx

We can now conclude since, by Remark , TA,x 1s an epimorphism. O
Finally, as in the case of Corollary , we can define T : Set — Set as the composition Uy o Fj,
and deduce from Corollary the following result.

Corollary 2.2.76. Let Y be a r-bounded signature then, for every X-theory A, the functor Ta has rank x and

Y €Set,. ALK
Ty ~ / Set(Y,—) x Ta(Y)  Tp =~ / XA X Ta(N)

Proof. This follows from Theorem , Remark , and Corollary . O

Algebraic theories and monads

We have seen in Theorem that, given a k-bounded signature ¥ and a Y-theory A, the forgetful
functor Uy : Mod(A) — Set has a left adjoint Fy. By Proposition we also known that we can equip
Ty = Up o F with a monad structure, obtaining Ty := (Ta, 1A, ta). We are now going to prove that
Up is actually a monadic functor, showing EM(T ) and Mod(A) are equivalent.

Remark 2.2.77. By Corollary , we already know that T has rank &.

Remark 2.2.78. When A is the theory with no axioms, T, is isomorphic, as a monad, to Ty, where
Tys := (Tx, ns, ux) is obtained from the adjunction Fy, - Us.

Let us look more closely at the counit €5 of the adjunction Fy 4 Uy. Given A = (A, {OA}oeoz)

in Mod(A), the component €p 4 is given by (ida)a,«: Fa(A) — A. This observation, together with
Propositions and , allows us to establish the following two things:

e for every set X, pipa x: TaA(TA(X)) — Ta(X) is (idTA(X))A ,» in particular this also entails that
pa,x defines a ¥-homomorphism Fj (Tx (X)) — Fa(X);

e the comparison functor K : Mod(A) — EM(T},) is defined by

A — (A, (idA)A7*)

fl Lf

B — (B, (idg)a.«)
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Our next step is to construct an inverse to K.

Definition 2.2.79. Let A be a ¥-theory, given an Eilenberg-Moore algebra (X, &) for T, its associated
Y-algebra Hy (X, €) = (X, {oHa(X:8) }0602> is defined taking as 0"/2(X:€) the composition

= HFA(X) ¢

(Ta(X))r=) Ta(X) X

Xar:(o)

In order to extend the construction just defined to a functor EM(T,) — Mod(A), the first thing that
we have to prove is that Hp (X, §) is really a model of A. Let us start with a preliminary result.

Proposition 2.2.80. For every X-theory A, with ¥ € Sign,, if (X, &) is an Eilenberg-Moore algebra for T,
then the arrow & itself is a X-homomorphism Fa(X) — H(X, ). Moreover, § = (idx)a -

Proof. The thesis is equivalent to the commutativity of the outside of the diagram:

Xcrg( o) T o X) org(o
garz(o)T T(TA &)=
ars: (0)
My () oFA(TA (X)) T
(Ta(X))or=(0) T2 (T (T (X)))= (@) L2225 Ty (Ty (X)) ———= Ta(X)
\ org(O)i KA, Xi ¢
arss (0) (o
IdTZ(X) X) as(0) o TS TA(X) —> X

But this follows at once since we already know that all the internal subdiagrams commute. We get the
second half from the identity £ o ny x = idx. O

Now we are ready to show that Hx (X, §) is indeed an object of Mod(A).

Lemma 2.2.81. Let X be a r-bounded signature and A a theory in it. Then, for every object (X, &) of EM(T ),
the Y-algebra Hp (X, €) is a model of A.

Proof- Let A | t1 = t2 be an equation in A and let f: A — X be a function. We can notice that

EoTa(f)omaronsa=E0Ta(f) onax
ZfonA,Xof
=idxof
=f

By Proposition , & is a X-homorphism, thus the previous chain of equalities entails that

fow = EoTa(f) o manx

We can now conclude since ma x(t1) and m »(2) are equal. O
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Consider now a morphism f: (X, &) — (Y, &) in EM(T,), then we have a diagram

ars; (0)

xars(o) (TA(X))OI’E(O) oFA(X) TA(X) L X
fers () (Ta ()= l n(f)l /
ars: (o) ars (o)
yors W>(TA(Y)) S — e aY) Y

which is made by commutative rectangles, thus, f is a 3-homomorphism Hj (X, &1) — Ha(Y,&2). In
particular, this allows usto define a functor Hy: EM(T,) — Mod(A)

(X7£1) '_>H(Xv€1)
£l Lf
(Y, &2) w— H(Y,&2)

Theorem 2.2.82. For every object X-theory A, the previously defined functor Hy : EM(Tx) — Mod(A) is
the inverse of the comparison functor K : Mod(A) — EM(T,).

Proof- Hj and K both act on arrows as the identity, so, if we show that they are one the inverse of the
other on objects we get the thesis.
On the one hand, let (X, £) be an Eilenberg-Moore algebra for Ty, by construction

KA(HA(X,€)) = (X, (idx)a,)
and, by Proposition , € = (idx )« so that Ky o Hy = idgm(t,)-
On the other hand, if A = (A, {OA}OEOz) is a model of A, then we have a diagram

ary; (0)

Acrs(o) m‘%“‘_ (TA(A))Org(O) TA(A)

idZE(O) Aors (o) A

o

oFA(A)

which is commutative since K (A) is an object of EM(T,) and (ida)a « is a2 X-homomorphism. In
particular this shows that 04 = ofA(Ka(4) "and thus Hp o Ky = idModA) - O

Corollary 2.2.83. Let ¥ be a r-bounded signature and A a S-theory, then Uy is strictly monadic.

Let Ix: Mod(A) — X-Alg be the inclusion of models of A into the category of X-algebras. By Corol-
lary we know that there is a functor F: EM(Tx) — EM(Ty) fitting in the diagram below

Mod(A X-Alg

\/
/\

EM(Ty) ~> EM(Ty)
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We can also notice that, for every A € Mod(A), (ida)a,« © T, 4 is the unique 3-homomorphism
which makes the following diagram commute

A
N, A ida
\LHA,A
Tol) s Tald) 5
Applying this argument to 15 (Ha (X, €)), and using Proposition we get that F is given by

(Xagl) — (Xagl OWA,X)

£l Lf

(V&) —— (Y& 0mpy)

If we apply Proposition , the previous observations now yield the following result.

Proposition 2.2.84. Given X € Sign,_and a X-theory A, there exists a morphism of monads 7y : T, — T
whose component at X is given by mp x.

We can now exploit the newly established naturality of 75 to prove the following result.

Proposition 2.2.85. For every set X, ¥ € Sign,_and -theory A, the next are equivalent for elements t1, to
OfTA (X)
1. t1 and to are equal;

2. there exist 1 < K, 1, $1 € Tx(u) and a function f: p — X such that
t1 =max(Ts(f)(s1)  to=max(Ts(f)(s2))

and 11 | $1 = s2 belongs to A.

Proof- (1 = 2) By Remark , we know that there exists s}, s5 € Tx(X) such that

ty = ma x(s)) ty = ma,x(85)
Using Example and Corollary we also know that (Tg (X) AT= ()} aep X)) is a colimiting
cocone. Thus , by Lemma , there exist Ay, Ay € Pi.(X), p1 € Te(|A1]), p2 € Tx(]As2|) such that

51 =Ts(ja,)(p1) 85 =Ts(ja,)(p2)

Computing we have

Ta(Ga)(ma a,(p1) = ma,x (T2 (Ga)(p1))  Ta(Gas)(maja,(p2)) = ma,x (T (j4,)(P2))

=7 x(s}) = 7, x(53)
= tl = t2
Using Corollary we can deduce that there exists A € P, (X) containing A; and A such that

Ta(Gar,a)(ma,a,/(P1)) = Ta(jas,a)(TA |4, (P2))
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But then we also have the chain of identities

714l (Ts G a () = Talia,a)(maa,) (1))
= Tx(Jas,4) (A, 45| (P2))
= TAL|A (TE(jszA)(pQ))

)

which, by definition, entails that |A4| | T%(ja,.4)(p1)) = Tx(ja,.a)(p2) is in A. Let s and so be,
respectively Tx(ja, 4)(p1) and T (ja,,4)(p2) and compute:

Ts(ja)(s1) = Ts(ja)(Ts(ia,a(p1)  Tx(ia)(s2) = Tx(ja)(Tx(ja,,4(p2)))

=Tx(jaoja,,a)(p1) =Tx(ja 0 ja,a)(p2)
=Tx(ja,)(p1) =T%(ja,)(p2)
=5 = 8

so the thesis follows taking j4: |A] = X as f.
(2 = 1) Using naturality and the definition of 7, ,, we get

which is precisely our thesis. O

Remark 2.2.86. Examples and show that there exist interesting algebraic structures, like
complete semilattices, which arise as Eilenberg-Moore algebras that cannot be studied using x-bounded
signatures. On the other hand, it can be shown that other useful algebraic structures like complete lattices
and complete boolean algebras do nor arise as Eilenberg-Moore algebras for any monads on Set (see, for
instance, [40, 61, 64, 89]). We will not dwell further in the unbounded case.

An adjunction between algebraic theories and monads

Let Ta be the monad associated to a X-theory A. By Corollary we know that, if ¥ is in Sign,,
then T has rank &, so that it is an object of RMnd. We can wonder if assigning T to the pair (X, A) is
somehow functorial. To do so, first of all we have to organize algebraic theories into a category.

Definition 2.2.87. The category ATh is the category in which
® objects are pairs (X, A) made by a signature ¥ which is x-bounded for some  and a X-theory A;

e arrows between (21, A1) and (33, A2) are morphisms of monads Ta, — Ta,.

We can now easily define the semantic functor Sem: ATh — RMnd putting

(21, Al) — T‘A1

Y] Ix

(227 Az) — TA2
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Our final aim for this chapter is to show that the functor Sem: ATh — RMnd admits a right adjoint
Syn: RMnd — ATh. This last functor can be thought of as a syntactic functor: it assigns to a monad an
algebraic theory “axiomatising” its category of Eilenberg-moore algebras.

Definition 2.2.88. Let T = (7,7, 1) be a monad in RMnd, and let also x be smallest regular cardinal
such that T has rank r. The algebraic signature Yoy associated to T has as set of operations

Os, ==Y _T(\)
AEK
and, ary,, is the arrow induced by the constant functions
Ia:T(A) — Card T A

Take now a set X, we can endow 7'(X) with a Yr-algebra structure L(X). Given ¢ € T()), there is a
corresponding operation ¢ (t) in Os,, for which we can define ¢ (t)*(X) as

(@) TN T(X) o= ux(T(0)(t))

Since L(X) is a Y-algebra, we know that there exists the unique dotted ¥r-homomorphism mr x : Fy (X) —

L(X) in the diagram below

Ny,
,,,,,,,,,,,, >
Top(X) oy >T(X

Lemma 2.2.89. Given a monad T of rank k, the following hold true:
1. for every set X, ux defines a Xr-homomorphism L(T (X)) — L(X);
2 forevery f: X = Y, T(f) is a Xr-homomorphism L(X) — L(Y);
3. forevery f: X — T(Y) be the following diagram commutes

forp

T (X) ——=T(Y)

WT,X\L

T(X) —— T(T(Y))

4. there exists a natural transformation mr: Tx, — T having r x as component in X;
5. for every set X, mr x is surjective.

Proof. 1. Given A < sk and t € T(\), for every o: A — T(T(X)) we compute to get

px((b\( N T )_/JX(NT(X) o)(1)))
= pux(T(px)(T(o)(1)))

= ux(T(ux oo)(t))

N(px o)

= (ta())"¥
= (i (£) " (ux ()

L,\t

which is precisely our claim.
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2. As before, fix A\ < K and t € T(A), given 0: A — T(X) we have

and we can conclude.
3. Let us compute
pry o T(f) omr x o nup,x = py o T(f) o nx
=py onry)of
=idryyo f
=f
= for o Nrx
The thesis now follows from the previous two points.
4. Given f: X — Y we have
T(f)omrx onrx =T(f)onx
=nyof

=TT,Y ©7IT,Y © f
=mr,x o T(f) onr,x

and the thesis now follows because T'(f) is a ¥r-homomorphism.
5. We know, by Theorem 2.2.31 and Remark 2.2.32, that

T(X) ~ / e Set(Y, X) x T(Y)

In particular, for every s € T'(X), there exists A\ < , f: A — X and ¢t € T'(\) such that

S = UJX)\(f, t)
=T()(t)

where wy is the initial cowedge. Now, take the element (5 (£))"=r ) (Tx, (f) 0 n5,.2) of Tx, (X),
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since 71 x is a Yp-homomorphism and using the previous point we have:

which is what we wished to show.

O

Using the natural transformation mp: T, — T we can now define a set At of X-equations saying

that, for every A strictily less then the rank of T, A | ¢ = 2 1s in At if and only if

mra(t1) = mra(t2)

Proposition 2.2.90. For every T € RMnd, At is a Xr-theory. Moreover, for every X € Set, L(X) is an

object of Mod(Art).

Proof. Closure under rules RerL, Sym and TRANS it’s obvious. Let us show the other two.

SussT. Suppose that A; | t1 = t2 isin At and take 0: Ay — T, (A2). Since 71y, is a Yp-homomorphism

we must have that
(T2 © 0)Spe = TT,2; © Oy

Thus the third point Lemma yields the diagram

A =T, (Vo)

oS *
ner T, Ag

TET(/\l) m) T(/\2)
ﬂ'T,)\li T#Az

T (A1) T(T(A2))

T(‘n'T,>\2 oo)
Therefore we have equalities

TT Ao (O'EL*(tl)) = Mz (T(ﬂ-TvAZ © 0) (ﬂ-T’Al (tl)))
=[x, (T(WT7,\2 o00) (7TT,/\1 (t2)))
=712 (054 (t2))
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Cong. Take t € T'(A\1) and 01,02: A1 = Tx,(A2) and suppose that {A | o1(«) = 02(a)}aex are
contained in AT, then
TT A, © 01 =TT\, O 02

and, since 71y, is a ¥r-homomorphism, we get

i 0 ()(01) = 7,0, ( (0, ()57 (o))

Finally, let A | t; = t2 be an equation in At and f: A — T'(X). By point 3 of Lemma 2.2.89 we have

frs = x o T(f) omr A

so that
for(t) = px (T(f)(mrA(t1)))
—,ux(T(f)( A(t2)))
= fzn* (tQ)
proving the thesis. O

Proposition 2.2.91. Let T be a monad of rank k, then there exists an isomorphism 61: Tp, — T.

Proof. For every set X, by Proposition 2.2.90 we know that there exists 01 x: Fa,.(X) — L(X) such

that the triangle below commutes.
Ty, (X

A
Tpq (X)) oo >T(X

We can immediately notice that this definition gives us a diagram

Nar,x /
/

Ty, (X
Uy 7 \
Ta (X
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On the other hand, given f: X — Y we have

T(f)obrx ona,x =T(f)onx
=nyolf
=0ryonayolf
=01y o Tary (f) o nagy

which, by the second point of Lemma 2.2.89 gives us the equality
T(f)obr,x =bry oTay(f)

Summing up we have constructed a natural transformation ér: Ty, — T such that n = 6y o Mg
By pomt 5 of Lemma 2.2.89 we already know that, for every set X, 6t x is surjective. To see that it is
injective, let 1,82 € TAT( ) be such that

Or x(s1) = Or1,x(s2)

Using Lemma 2.2.11, Example 2.2.4, and Corollary 2.2.76 we can deduce that there are A1, A3 € P (X),
p1 € Ta,(|A1]) and po € Th,(|Az]) satisfying

81 =Tar(Ja) (1) s2=Tprr(ja,)(p2)

Let A be a set in P.(X) containing both A; and Ay and define ¢1,92 € Ta,(JA|) as, respectively,
Tar(jay,a)(p1) amd Tar(ja,,4)(p2). By construction, ¢; and gaare such that

s1=Tas(ja,)(p1) sz = Tas(ja,)(p2)
=Trr(jaoja,,a)(p1) =Tr(ja © ja,,a)(p2)
= Tar(Ja)(Tar(Ga,,a)(p1)) =Ty (Ja)(Tar(Fas,4) (P2))
= Tar(Ga)(a1) = Trr(3a)(q2)

Since, by Remark 2.2.74, each component of the natural transformation 7y, is surjective, there exist
t1,ty € T, (JA|) such that g1 = 75, | 4|(t1) and g2 = 7p, 4/ (t2). A computation now yields

T(ja)(mr,a(t)) = T( (01,14 (TAr, 4/ (t1)))

By hypothesis T has rank «, thus by Lemma 2.2.11 there is B € P,.(X) containing A and such that

T(ja,B)(mr,a/(t1) =T (ja,B) (7T, 4| (t2))
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but 7t 1s a natural transformation, therefore we also have

mr,8(Ts;(Ja,B)(t1)) = m1,8(Tx,(ja,B)(t2))

By definition the previous identity implies that |B| | T, (ja.5)(t1) = T, (ja,B)(t2) is in A and

s1.= Txr(ja)(t1) s2 = T (ja)(t2)
= Ts,(j ©jas)(t1) = Ts,(jB © ja,B)(t2)
=T, (jB)(Tx; (a.8) (1)) =T, (jB)(Tx; (a.8) (t2))
so we can conclude that s; = sg applying Proposition . By point 1 of Proposition and by
Corollary , Us: reflects isomorphisms and so we deduce that 0y is a natural isomorphism.

Finally, for every X € Set, consider the following diagram, which is commutative because, by con-
struction and our previous remarks all the internal subdiagrams commute:

w\

TAT (X)

/y
GT,X\L

Ty (Tar (X)) T(X)
TmWT,x)i nAT o
7] (X)
T, (T(X)) o _ T, ()
k o1, x
T(T(X X)

The commutativity of this whole diagrams yields
px © 01 r(x) © Tar (Or,x) © Nag, 1y, (X) = 01,X © fiAr,X © Mg, Ty (X)

Now, notice that 61 7(x) isa Xr-homomorphism L(T(X)) — Fx,(T(X)) and 61 x isan arrow in Xq-Alg
between Fy(X) and T'(X). Points 1 and 2 of Lemma entail that we also have ¥1-homomorphisms
px: L(T(1X)) = L(X) and Ta, (01 x): Far(Tar (X)) = Fa(T(X)) and we already observed that
Har,x 1s an arrow Fa (Fa (X)) — Fa.(X). We can therefore conclude

px o 01 rx)y © Tag(O1,x) = 01X © iy, x
which entails that 6t is an isomorphism of monads Ty, — T. O
Corollary 2.2.92. The functor Sem: ATh — RMnd has a right adjojnt Syn: RMnd — ATh.
Ty — (31, Ar,)
Xi l&.;zl oxo0or,
Ty — (X1, Ar,)

Proof. By construction, for every T in RMnd we have an isomorphism 601: Ta, — T, so, for every
x: Sem(3,A) = T, GT_l o x is the unique morphism (X, A) — (Xt, At) such that

X =0rofr'ox

But this proves that 0 is the component in T of the counit of an adjunction Sem - Syn. O
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The work of Lawvere [ /6], has inspired the development of various extensions of Lawvere theory, aiming
to connect monads with an increasing number of computational notions [23, 63, 82, 83, 100, 107]. In the
previous chapter, a relationship was established between (ranked) monads on Set and algebraic theories
based on syntactic constructs such as equations. However, Lawvere theories, even enriched ones, are
syntax-free. Therefore, a question naturally arises: what kind of syntactic constructs are suitable for
describing “algebraic structures” on categories that are different from Set?

Recently a framework for guantitative algebraic reasoning has been introduced [ 15, 16, 90, 91]. In
its syntax equations are decorated with a rational number, to be interpreted as the distance between the
two sides of a given equation. This kind of structures have a natural semantics given by quantitative alge-
bras: (extended) metric spaces equipped with operations. Quantitative algebras and quantitative algebraic
theories, in turn, are linked, to metric monads [112] and a correspondence between such monads and
quantitative algebraic theories, similar to the one examined in Chapter 2 can be shown [3, 4].

Along this line of research, in this work we study algebraic reasoning on fuzzy sets. Algebraic structures
on fuzzy sets are well known since the seventies (see e.g., [8, 92, 98, 111]). Fuzzy sets are very important
in computer science, with applications ranging from pattern recognition to decision making, from system
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modeling to artificial intelligence. So, it is natural to ask if it is possible to use an approach similar to the
one above for fuzzy algebraic reasoning.

In this chapter we answer this question positively. We propose a sequent calculus based on two kinds
of propositions, one expressing equality of terms and the other the existence of a term as a member of a
fuzzy set. These sequents have a natural interpretation in categories of fuzzy sets endowed with operations.
This calculus is sound and complete for such a semantics: a formula is satisfied by all the models of a given
theory if and only if it is derivable from it.

It is possible to go further. Both in the classical and in the quantitative settings there is a notion of free
model for a theory; we show that is also true for theories in our formal system for fuzzy sets. In general the
category of models of a given theory will not be equivalent to the category of Eilenberg-Moore algebras
for the induced monad, but we will show that this equivalence holds for theories with sufliciently simple
axioms. Finally we will use the techniques developed in [95] to prove two results analogous to the classical

Birkhoff’s HSP theorem [25].

This chapter is an expanded and revised version of [37].

Synopsis In Section 3.1 we define the category Fuz(H) of fuzzy sets over a frame (H, <) and investigate
some of its categorical properties. Section 3.2 introduces syntax and semantics of fuzzy algebraic theories.
We will show that the proposed calculus is sound and complete. Moreover, we will show in Section

that if a theory is basic then its category of models arose as the category of Eilenberg-Moore algebras for
a monad on Fuz(H). Finally, in Section 3.3 we recall the results of [75] and use them to prove two HSP
theorems for our calculus.

An introduction to fuzzy sets

In chis first section we are going to recall the definition and some well-known properties of the category
of fuzzy sets over a frame H [ 123, 124].
Heyting algebras and frames

To begin, we will review the definitions of Heyting and Boolean algebra and introduce the concept of a
frame (i.e. a complete Heyting algebra [28, 47, 64]).

Definition 3.1.1. A bounded lattice H := (H, <) is a Heyting algebra if for every element h of H the
function (=) A h: (H, <) — (H, <) has a right adjoint h — (), called implication operator.

Remark 3.1.2. In particular, for every two elements h, k of a Heyting algebra (H, <), the unit of the
adjunction (—) A h F h — (=) yields the inequality

(h—=k)ANh<k
Let us prove some properties of implication.

Proposition 3.1.3. Let H = (H, <) be a Heyting algebra, then the following hold true:
1. for every hy,he and k in H, if hy < hg then (hg — k) < (hy — k);
2. forevery h,k € H, h — k is the supremum of the set

Swp={zxe€eH|xANh<k}
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Proof- 1. Using Remark we have

(hz—)k‘)/\hl (h2—>k)/\h2

<
<k

The thesis follows by adjointness.

2. Let us start noticing that, by adjointness, every x € Sy, i, is less or equal than i — k. To conclude
it is enough to notice that Remark entails that b — k belongs to Sj, . O

Definition 3.1.4. Let H = (H, <) be a Heyting algebra. For every element h € H, we define itsnegation
—hash — L. hissaid to be regular if =(=h) = h. (H, <) is a boolean algebra if every h € H is regular.

Remark 3.1.5. By Remark we have the following identities

~hAh=(h— L)Ah
<1

Thus, for every h € H, =h A h = L. In particular we have that

T =-TAT
—1
Remark 3.1.6. Let h and k be elements of a Heyting algebra (H, <) such that ~ < k. Then point
1 of Proposition entails =k < —h. This means that — defines a morphism (H, <) — (H, <),
where (H, <)P is the set H equipped with the reverse order. Take now (H, <) to be boolean, then
=0 = id(g <), and thus — is an isomorphism. In particular, in every boolean algebra the following

equations hold true for every h,k € H:
—(hVE) ==h A=k —(hAk)=—-hV—-k —hVh=T
The previous remark yields at once the following result.

Lemma 3.1.7. Let (H, <) be a boolean algebra, then for every h, k € H we have

h—k=kV-h
Proof. We can start noticing that, using Remark we have
(kV=h)Ah=kV (~hAh)
=kvl
=k

This shows that =h V k is less or equal than h — k. For the other inequality, let = be an element of Sy, 1,
then, using Remark
r=xANT
=z A (hV—h)
=(xAh)V-h
<kV-h

Point 2 of Proposition gives us the thesis. O
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We are now ready to introduce frames.

Definition 3.1.8. A frame or H, is a complete lattice (H, <) such that, for every element h € H and
family {h;};cr C H the following equation hold

hA\ hi=\/(hAh)
iel iel

The next proposition shows that frames are exactly complete Heyting algebras. This result can be seen
as an application of Freyd’s Adjoint Functor Theorem [28, 41, 49, 50, 85]. However, we will still present
a proof for the sake of completeness.

Proposition 3.1.9 ([28]). Let (H, <) be a complete lattice, then the following are equivalent
1. (H,<) is a frame;
2. (H, <) is a Heyting algebra.
Proof. (1 = 2) Given h,k € H, we can consider again the set S}, i, of elements = such that z A h < k. As

h — k we take the supremum of S}, . If k1 < ko then Sy, C Sh. 1, so that we get a monotone function
h— —: (H,<) — (H,<). Let us show that this function is right adjoint to — A h.

® Suppose that k1 A h < ko. Then ky belongs to Sj 1, hence k1 < h — ko

® Suppose that k; < h — ko, then we have

klAhS(h—)k‘Q)/\h
— WA (h— ko)

:h/\\/x

TESh ko

= \/ (hAx)

IGSh,kz

< ks

(2 = 1) This follows from the general fact that left adjoints preserve colimits. O

Example 3.1.10. Let (L, <) be a complete linear order, then (L, <) it is a frame. Indeed, in a linear order
the inequality
h<\/ h;

il
holds if and only if h < h; for some j € I. Thus
h/\\/hi:{h hghjforsomeJ:GI
ot Vierhi hi <hforeveryiel

=\/(h A hi)

icl

In this case we can describe explicitly h — —. Let k € L, we have two cases.
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e h < k. Then T belongs to Sj, i, sothat h - k=T
o k< h.Letl € L, then

In particular this means that every [ € S}, , is less or equal than k. Since h A k < k we deduce that
h — k must be k.

Summing up we have proved that, in a complete linear order the implication operator is given by

T h<k

h‘_>_(L7S)_>(L7§) k
k k<h

Example 3.1.11. Let X be a set. Then (P(X), C) is a frame, in which, forevery A C X, -4 = X \ A.
To see this just notice that S4 ¢ is the set of al subsets which are disjoint from S. In particular, (P(X), C)
is boolean and A — B coincides with (X ~ A) U B.

Example 3.1.12. Consider again a set X. Then every topology © C P(X) is a frame when ordered by the
inclusion. Indeed, suprema are given by arbitrary unions, while finite infima coincide with intersection.
Moreover, given U € © and {U; };er C © we have

vnlJui=Jwnuw)
el i€l

In this setting, for every U € ©, Sy ¢ is the family of opens cointained in X \ U, so that =U is the interior
of the complement of U.

3.1.2 Topological functors

Before going into the concept of fuzzy sets we will introduce some classical result about topological func-
tors [5, Ch. 21] which will be useful in the rest of this section.

Definition 3.1.13. Let U: X — Y be a functor and I be a class, a U-structured source is a (possibly large)
famdy {fi}tier of arrows f;: Y — U(X;). We say that a U-structured source has an inizial lift if there
exist an object X in X and arrows m;: X — Y for every i € I, such that:

1L.UX)=Y;
2. forevery i € I, U(m;) = fi;

3. given arrows g: U(Z) — Y and n;: Z — X; such that, forevery i € I, U(n;) = f; o g, there exists
aunique h: Z — X such that U(h) = g and n; = m; o h.

Z ng n;
\ (S \
h X

U is a topological functor if every U-structured source has an initial lift.
Dually, an U-structured sink is a (large) family {f;};c; of arrows f;: U(X;) — Y and a final lift for it
is given by an object X in X and arrows m;: X; — X, such that:
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L UX)=Y;

2. forevery i € I, U(m;) = fi;

3.given g: Y — U(Z) and n;: X; — Z such that, for every i € I, U(n;) = g o f;, there exists a
unique h: X — Z such that U(h) = g and n; = hom,.

X =X

UX,) Ly
. Y
>
\;\ \)
ni z U U(Z)

A functor U is cotopological if every U-structures sink admits a final lift.

Example 3.1.14. The paradigmatic example of a topological functor is the forgetful functor from the
category of topological spaces to the category of sets.

Remark 3.1.15. If we take I = () in the previous definition, then a U-structured source (sink) is just an
object of Y, and a lift of it is just an object X of X such that U(X) =Y.

Remark 3.1.16. Inital lifts, and thus also final ones, are unique up to isomorphism. Indeed if {m;};er

and {n;} 1 ar two lifting for a U-structured source f;;c; then we have diagrams

X, o X U(X; X, sz

X ) % Y
h1 Yy hg
\: — \ o \*
ng 7 U(ns) Y mi X

Then hy o hy and hy o hy are the unique arrows sent by U to idy such that all the triangles in the following
diagram commute

UX,) Ly X, M.z
hoohq Yy hooh1
m; X U(no) Y n 7z

and this in turn implies that hy = h; "
Proposition 3.1.17. IfU: X — Y is topological, then it is faithful.

Proof- Let f,g: X = V be two arrows such that U(f) = U(g), we can define a (constant) U-structured
source indexed on the class of arrows of X simply defining fj, as U(f): U(X) — U(V) for any arrow
h in X . By hypothesis we have an initial lift for this U-structured source, thus we get a class of arrows
my,: W — V which can be used to define another source putting

— f cod(h)=Wandmpoh=yg
b g otherwise

By construction we have two diagrams:

X— U(X) — e
\ — \«\
E ) iy (x)
W——V Y ——U(V)
mh U(f)



3.1. An introduction to fuzzy sets 93

so, by initiality, we get the dotted k: X — W. In particular this implies that s;, = my, o k and we have
two cases:

e if s, = f, then by definition my, o k = g and thus f = g;
e if s, = g then my o k = g, so s, = f and again we can conclude that f = g. O
The following lemma shows that the property of being topological is autodual.

Lemma 3.1.18. A functor U: X — Y 1s topological if and only if is cotopological.

Proof. (=) Let {fi}icr with f;: U(X;) — Y be a U-structured sink , we must construct a lift of it. Take
H to be the class of all pairs (h, V) such that
eVeXandh: Y = U((V);
e for every i € I, there exists h;: X; — V such that ho f; = U(h;).
Putting g(5,v) := h we geta U-source {g(h_yv) }(}%V)EH which, by hypothesis, has an initial lift {m, v } (n,vyen

with m vy : X — V, in particular we have U(X) = Y. By definition, for every i € I we have the solid
part of the following diagram

X U(X;) U(hs)
-2 Y UWv)
M(h,v) h

from which we can deduce the existence of the dotted a;: X; — X, which provides a lift {a;};er for the
family {fi}icr. We are left with finality of such a lift. Suppose that there exists g: Y — U(Z) and for
every i € I an arrow n;: X; — Z such that the following triangle commutes

UX,) Ly

%*U(Z)

Then (g, Z) belongs to the family H, so there exists m(, zy: X — Z such that U(my z)) = g. By
Proposition we know that such lift of g is unique and so we get the thesis.

(<) U is cotopological if and only if U°? is topological, by the previous point this implies U°? is cotopo-
logical too, so U = (U°P)°P is topological. O

The existence of a topological functor U: X — Y allows us to lift many properties from Y to X.

Proposition 3.1.19. Let U: X — Y be a topological functor, then the following hold:
1. U is a right adjoint;
2. U is a left adjoing;
3. given adiagram F: D — Xand alimiting cone (L, {lp} pep) for UoF, then the initial lift {mp} pep
of {lp} pep induces a limiting cone (X, {mp}pep) for F;
4. given a diagram F: D — X and a colimiting cocone (C,{lp}pep) for U o F, then the final lift
{mp}pep of {I{p}peD induces a colimiting cocone (X, {mp}pep) for F.
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Proof. 1. Forevery Y €Y, let L(Y) be the common domain of a final lift of the empty U-sink with
domain X. By definition U(L(Y')) = Y and for every arrow g: Y — U(Z) there is a unique arrow
h: L(Y) — Z such that U(h) = g, showing that idx is the unit of an adjunction L 4 U.

2. By Lemma U°? is topological, thus the previous point implies the existence of a functor
L: YP — X° which is its left adjoint, therefore L°P is a right adjoint for U.

3. Let f: D1 — D5 be an arrow of D, then

U(mp, o F(f)) =U(mp,) o U(F(f))
=Ip, o U(F([))
—Ip,
=U(mp,)

which shows that (X, {mp}pep) is a cone for F. Now let (Z, {np}pep) be another cone, then
(U(Z),{U(np)}pep) is a cone on U o F, so there exists a ¢ as in the right-hand triangle of the

following diagram
Z - o U(2) U(np)
N = R\

X ——Xp Y ——=U(Xp)
mp fp

and, by initiality, we can deduce the existence and uniqueness of the dotted h.

4. This follows from Lemma and the previous point. O

Corollary 3.1.20. Given a topological functor U : X — Y and an arrow f: X — Y inX, the following facts
hold true:

1. f 1s a monomorphism (epimorphism) if and only if U( f) is mono (epi);
2. [ is a regular monomorphism (regular epimorphism) if and only if U (f) is a regular mono (regular epi)
and m s its initial (final) lift.

Finally, we can show that also factorization systems can be lifted along topological functors.

Definition 3.1.21. Let U: X — Y be a topological functor, and suppose that a proper and stable factor-
ization system (£, M) on Y is given. We define the following four classes of arrows of X:

Ev={eeX|Ule) €&} Erin :={e € X | U(e) € € and e is its final lift}

My :={meX|Um)e M} M, :={meX|U(m) e M and m is its initial lift}
Lemma 3.1.22. IfU: X — Y is a topological functor and (€, M) is a proper and stable factorization system
on'Y then:

1. (Eu, My) is a proper and stable factorization system on X;

2. (Efin, M) is a proper and stable factorization system on X.

Proof. 1. Let us show the four points of Definition
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(a) If f: X = Y is an isomorphism in X, then U(f) lies both in € and M, thus f € Ey. On the
other hand f is also the initial lift of the U-source given by U(f): given a diagram

Z N U(z) U(n)
b N X\
X— sy Y — = U(®Y)
f U(f)

then we can take f =1 on as h.

(b) Closure under composition of &y follows at once. Let f: X — Y and g: Y — Z arrows in
My, then U(g o f) € M. For initiality, take the diagram

U(n)
> \U(f\

U(f) U(g)

The arrow k comes from the initiality of f, while the arrow h comes from the one of g.

(c) For every arrow f: X — Y, thereexist m: C — U(Y)in M ande: U(X) — C in € such
that U(f) = moe. Taken: V — Y to be an initial lift of {m}, then we have a diagram

—
hy

V——>Y C’*>U

which, by initiality, entails the existence of the dotted h: X — V, belonging to &y .
(d) For the left lifting property, let us start with the square on the left in the diagram:

X2z x) 29 (2
R 7
Lm — U(e) k lU(m)
Y ——V ) —=U(V)
f u(f)

By hypothesis in the right-hand square U(m) € M and U(e) € &, so the dotted k exists. By
the initiality of m we can deduce the existence of a unique h: Y — Z such that U(h) = k,

moreover
Ulmok)=U(f)  U(koe)=Ul(g)
thus Proposition entails
mok = f koe=gyg
Stability follows immediately from Proposition and the stability of (£, M).

2. Follows from point 1 and Lemma . O
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The category Fuz(H)
We are now ready to introduce the definition of fuzzy sets [ 123, 124].

Definition 3.1.23. Given a frame H = (H, <), a H-fuzzy set (or simply a fuzzy set) is a pair (X, p1x)
consisting in a set X and a membership degree function jux : X — H. The support of pux is the set

supp(X, px) == {z € X | px(z) # L}
A morphism of H-fuzzy sets f: (X, px) — (Y, py ) is a function f: X — Y such that
px () < py (f(2))
for every « € X. The resulting category of H-fuzzy sets will be denoted by Fuz(H).

We have a forgetful functor Vi : Fuz(H) — Set which simply forgets the membership function. We
are going to show that this functor is topological allowing us to recover many informations on Fuz(H).

Lemma 3.1.24. The functor Viz: Fuz(H) — Set is topological.
Proof. Take a Vig-source { f; }ier with X — Vi (X;, p1x,) and define

px: X = H  xe \ px(fi@)
el

Clearly Vu(X, pux) = X and, for every i € I, f; itself becomes a morphism (X, ux) — (Xi, ux,), let us
prove initiality. Given the solid part of the following diagram

(Zv ILLZV) n; Z ni
PN > m

(X7 ,u) 4]01) (Xithz:

it is enough to prove that g itself is a morphism of Fuz(H). To see this we can compute to get:

pz(z) < px,(ni(2))

= nx,(fi(9(2)))
This now implies that pz(z) < px(g(z)) which is precisely the thesis. O
By Lemma we already know that V is cotopological, for the sake of completeness we will spell

out the explicit construction of final lifts.

Proposition 3.1.25. Let {f;}icr be a Via-structured sink with arrows f;: Vg (X, px,) — Y. For every
element i of I, define a function

pirY = H oy~ \/ px, (x)
wef;l(y)

Then a final lift for { f; }ic1 is given by the collection of arrows f;: (X;, pux,) — (Y, py ) where

py:Y = H  ye \[ m(y)
iel
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Proof- First of all notice that every f;: X; — Y becomes a morphism (X;, ux,) — (Y, uy) of Fuz(H):
every x € X; is in the preimage of f;(z), thus we have

px; (w) < pi(fi(w))
< py (fi(z))
Now let {n;}icr be a family of arrows n;: (X, ux,) — Z such thatn; = go f; forsome g: Y — Z,

we have to show that ¢ defines a morphism of fuzzy sets (Y, uy) = (Z, pz). Foreveryy € Y and i € I,
computing we get

wy =V wx@

xequ_l(y)

<\  uz(n(a)

zefH(y)

\/ rz(9(fi(z)))

zefH(y)

=/ uz(e)

zef(y)

= 1z(9(y)) 0

Now we are ready to exploit the results of the previous section, namely Proposition and Corol-
lary , paired with Proposition , to get the following results at once.

Corollary 3.1.26. Given a frame H, the following hold true:
1. there exist functors Ag, Vi : Set — Fuz(H) such that Vi 4 Via -+ A, moreover, for every set X # ()
the following equalities hold
Vu(X) = (X,c1)  Au(X)=(X,c7)

where ¢, ct: X = H are the functions constant in L and T respectively;
2. anarrow f: (X, ux) — (Y, py) is mono (epi) if and only it Vi (f) is injective (surjective);

3. every diagram F: D — Fuz(H) has a limiting cone ((L, 1), {{p}pep) where (L,{lp}pep) is a
limiting cone for Viy o F and

/LL:L—)H €T +— /\ ,UIF(D)(ZD(f))
DeD

4. given a diagram F: D — Fuz(H), if (C,{cp}pep) is colimiting for Viy o F, F(D) = (Xp, px,)
and for every D € D
pp: C—H  yrw \/ 1xp ()
R0

then F has a colimiting cocone ((C, uc),{cp} pep) where

pe:C—H  y— \/ upy)
DeD
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5. anarrow f: (X, pux) — (Y, py) is a regular mono if and only if Via(f) is injective and

px (@) = py (f(2))
forevery z € X.

Remark 3.1.27. Let F be a functor Fuz(H) — Fuz(H) and e: (X, ux) — (Y, py ) be an epimorphism,
then F'(e) is surjective too. To see this, define G: Set — Set as the composition

Set M. Fuz(H) . Fuz(H) M Set
and notice that

G(Va(e)) = Vu(F(e))

By point 2 of the previous lemma Vi(e) is surjective, thus, assuming the axiom of choice, F'(¢) must be
surjective too.

We can use Example and point 4 of Corollary to get at once the following results.

Corollary 3.1.28. Let (X, ux) be a H-fuzzy sets. Then the following hold true:

1. for every regular cardinal r, (X, pux),{ia}acp, (X)), is a colimiting cocone for the functor sending
A € Pu(X) to (A, px|a), and A C B to the inclusion arrowia p: (A, uix a) — (B, px|5)s

2. (X, px) is the coproduct of the family {(1, 6, (2))} , ¢ x-
We can also further exploit point 4 of Corollary specializing it to the case of x-filtered colimits.

Proposition 3.1.29. Let F': D — Fuz(H) be a functor with a k-filtered domain and with colimiting cocone
((C,uc),{cp}peD), then, for every x € Via(F (D)) the following equality holds

pelep@) =\ pxey, (F()(@)

feD/D

Proof. Let D' be an object of D, and d € F(D’) be an element such that ¢p (d) = ¢p(z), by Lemma
there exist arrows g: D' — D", f: D — D" in D such that F(g)(d) = F(f)(x), therefore

MXD/ (d) S /j’XD” (F(g) (d))
= 1xpn (F(f)(2))

and we can conclude that

pe(ep(x)) = \/ o (cp(z))

D’eD

<V bixy, (F()(@))

feD/D
On the other hand, for every f: D — D’ in D we have cp/(F(f)(z)) = c¢p(x) so that
pxp, (F(f)(2)) < ppr(ep(x))

from which the other inequality follows. O
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In Section 3.3 we will need a description of split epimorphisms which we can easily provide here.

Proposition 3.1.30. An arrow f: (X, pux) — (Y, py) is a split epimorphism if and only if forany y € Y
there exists x, such that f(x,) =y and py (y) = px (xy).

Proof- (=) Let m: (Y,uy) — (X, ux) be the right inverse of f, then uy (y) < px(m(y)) because m is
an arrow of Fuz(H), while

px (m(y)) < py (f(m(y)))
= py (y)

(<) It 1s enough to define
m: (Y,py) = (X, px)  yr—xy

by hypothesis 1y (y) = px (m(y)) and f om = idy. O
We can also instantiate Lemma to get the following

Corollary 3.1.31. There exists a factorization system (€, M) on Fuz(H) where £ and M are, respectively,
the class of all epimorphisms and the one of all regular monomorphisms.

Proof- It is enough to notice that the proof of Lemma entails that a monomorphism f: (X, ux) —
(Y, py) is the initial lift of Vi (f) if and only if

px (x) = py (f(x))
for every x € X and then apply points 2 and 4 of Corollary . O

The next step is showing that Fuz(H) has a notion of exponentials.
Theorem 3.1.32. For every frame H, Fuz(H) is cartesian closed.

Proof. We have already proved that Fuz(H) is complete, so it is enough to show that, for every fuzzy set
(X, px), the functor (—) x (X, px) has a right adjoint (—)X#x), For every (Y, uy ) € Fuz(H), we can
exploit the implication operator of H to define

pyx:YX 5 H o fer N (ux(@) = py (f(@)))
rzeX
Take now the evaluation arrow evx y: YX x X — Y, then for every f € YX and 2/ € X we have

pyx (f) Apx(a') = px (@) A N (ux (@) = py (f(2)))
reX

< pux (@) A (px (@) = py (f(2')))
< py (f(2"))

which shows that evy y is an arrow (X, ux ) X (Y X, iy x) — (Y, py ). Now, take an arrow g: (Z, juz) x
(X, pux) — (Y, py ), then we know that, in Set, there is a unique h: Z — Y such that the diagram

yX o x 25y

lzxide /

Z x X
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commutes. We also know that, for every z € Z
hi(z): X =Y x> g(z, )

If we show that h is actually a morphism (Z, uz) — (Y, iy x ) of Fuz(H) we are done. For every z € Z
we can compute and get

pyx (h(z)) = N (ux() = py(9(z,2)))

zeX

> /\ (ux(x) = (px(x) A pz(z)))
zeX

= N (ux(z) = px (@) A (ux(z) = pz(2)))

zeX

/\ (nx (@) = pz(2))

zeX

> N nz(2)

zeX

= pz(2)
so that we conclude. O

Remark 3.1.33. Let us point out two things:
® an element f € (Y, uyx) is a morphism of fuzzy sets if and only if iy x (f) = T;

o if (X, ux) = Ag(X), then (Y, uy )X#x) is isomorphic to (Y, py)!X!: to see this it is enough to
notice that, for every f: X — Y, the following equalities hold:

pyx(f) = N (nx(x) = py (f(2)))

zeX

N (T =y (f(2)))

zeX

= N\ mwr(f(@))

zeX

Our next problem is to characterize k-presentable objects in Fuz(H). Let us start with the following
preliminary result.

Proposition 3.1.34. Let k be a regular cardinal, if (X, ux) is k-presentable in Fuz(H), then X € Set,.

Proof. This is done as in Corollary : by Corollary we know that (X, px), {ia}acp.(x))
is a k-filtered colimit, thus (Fuz(H)(X, X), {ia o (=)} aep,.(x)) Is again colimiting. Lemma this
implies that id(x ) = a0 f forsome A € P, (X) and f: (X, ux) — (4, px|4), showing | X| < k. O

The following example shows that the converse does not hold.

Example 3.1.35. Let H be ([0, 1], <), for every i € N we can consider (1, dp, ), where
1

1+ 1

hilzl—
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If i < j, then id; defines a morphism (1,d,,) — (17 5hj), thus we get a Ny-filtered diagram in Fuz(H),
which has a colimiting cocone ((1,07), {a;}ien), where a;: (1,0,) — (1,07) is simply the identity.
Take now id(1 5,): (1,c1) — (1,¢7), it does not factor through any of the a;, thus (1,c1) is not No-
presentable.

Lemma 3.1.36. Let k be a regular cardinal then the following are equivalent for an object (X, j1x ) of Fuz(H):
1. (X, px) is k-presentable;
2. |X| < kand px (x) is kK-compact for every x € X.

Proof- (1 = 2) Half of the thesis follows from Proposition . For the other half, fix 2o € X and

suppose that px (xg) < s, where sq is the supremum of a k-directed family S C H. For every s € S we
can define a fuzzy set (X, p15) putting

px(x) @ # o

ps: X > H m»—){
S T = x0

If s < t, then idx defines an arrow (X, p15) — (X, put), thus we have a diagram in Fuz(H) whose colimit
is, by Corollary , given by ((X, ps), {bs}ses) where by = idx and

px(x) @ # w0

us: X - H xl—){
So r = 2o

Now, since px (o) < g, idx defines an arrow (X, ux) — (X, us), since (X, px) is x-presentable there
must exists s’ € S such that idx factors through (X, ps ), showing that px (o) < &'

(2= 1) Let h be an element of H, with a corresponding 5, : 1 — H. By Proposition and the second
point of Corollary it is enough to show that (1, ) is k-presentable whenever h is k-compact. Let
((A,pa),{ap} pep) be a colimiting cocone for a functor F': D — Fuz(H) with k-filtered domain, we are
going to show that (Fuz(H) ((1,84), (A, pa)), {ap o (=)} pep) satisfies both points of Corollary

1. Take a morphism g: (1,0n) — (A, pa), and let € A be the image of () through it. By definition

of morphism h < pa(z), on the other hand Proposition entails that
pa@) =\ ixep, FH®)
feb/D

for some D € D and y € F(D) such that ap(y) = z. The family {NXcod(f) (F(f)(y))}feD/D is

r-filtered: take a subfamily {ux,, ,  (F(fi)(y))}ier for some I with cardinality strictly less than &.
Then by Lemma there exists a cocone on the source {f;}icr, that is arrows b: D — D’ and
b;: cod(f;) — D’ such that the following diagram commutes for every i € I

cod f;
D D'
b

and this, in particular, entails that yux ,, (F'(b)(y)) is an upper bound for {zix ;. , (F'(fi)(y))}ier-
By hypothesis h is k-compact, thus there exists f € D /D such that

h < pxo00) (F(F)(y)
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and thus we have
[ (1,0n) = F(cod(f)) 0+ F(f)(y)

Since acod(fy © F(f) = ap the thesis follows.
2. Let f: (1,05) = F(D1) and g: (1,8,) = F(D2) be arrows such that

Since (A, {ap}pep) is colimiting for Vi o F, Corollary entails that there exist g; : D1 — D3
and g2: Dy — D3 such that

Fg)(f(0)) = F(g2)(9(0))

but this is exactly the thesis. O

We are now ready to prove the following theorem.

Theorem 3.1.37. Let k be a regular cardinal, and H be a frame, then Fuz(H) s locally k-presentable if and
only if H is a k-algebraic lattice.

Proof. (=) Let h be an element of H, by Lemma ((1,0n),{cp}pep) is the colimiting cocone on
some functor F': D — Fuz(H) such that F(D) = (Xp, px,) is k-presentable for every D € D. By
Lemma this means that | Xp| < x and px, (2) is k-compact for every 2 € Xp. Define

spi=\/ nx,(@
x€Xp

By Proposition each sp is k-compact and by Corollary
h = \/ SD

(<) Let Hy, be the set of s-compact elements of H, and define
G :={(1,0,) € Fuz(H) | h € H,}
By Lemma every element of G is k-presentable, let us show that G is a strong generator.

¢ G is a generator. Given two arrows f,g: (X, ux) = (Y, py) such that f # g, there exists z € X
such that f(z) # g(z) and thus 6, : (1,c1) — (X, px) is such that such that

fole #gody

The thesis follows since L is xK-compact for every regular cardinal .

e G isstrong. Let f: (M, upn) — (X, px) be a monomorphism which is not an isomorphism, by
Corollary there exists z € X ~\ f(M), and, by hypothesis, there exists h € H,, such that
h < ux(z), then the morphism d,: (1,d5) — (X, pux) does not factor through f. O

Remark 3.1.38. As shown by the previous theorem, Fuz(H) is locally s-presentable category only in the
case in which H is k-algebraic. Nonetheless, we can still express a fuzzy set over any frame H as a x-filtered
colimit of the family of its subobjects of cardinality less then . Indeed, the first point of Corollary

shows that every (X, pux) is the colimit of the functor D, (x ;) assigning to each A € P, (X) the fuzzy

set (A7 x| A) , where 11x 4 is the restriction of yx to A, and to each inclusion A C B the corresponding

arrow i g (A,,uX|A) — (B7ux‘b).
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For every regular cardinal x, let Fuz;,(H) be the category of fuzzy sets whose underlying set has
cardinality strictly less than x. Let also J,; : Fuz,,(H) — Fuz(H) be the inclusion functor, Remark
allows us to prove an analog of Theorem

Theorem 3.1.39. For every regular cardinal r and for every functor F: Fuz(H) — Fuz(H), the following
are equivalent:

1. for every object (X, jux), the cocone (F (X, pux ), {F(ia)} acp, (x)) is colimiting for F o Dy (x i)
2. (F,idpoy,) is a left Kan extension of F o J,; along J.;
3. the following isomorphism hold

(Y,ny ) €Fuz, (H)
F~ /

Fuz(H)((Y, py ), —) @ F(Y, py)

Proof- (1 = 2) Let us show that (F,idro.., ) enjoys the universal property of a left Kan extension. Take
a functor G: Fuz(H) — Fuz(H) a natural transformation n: F o J, — G o J,;, we need to construct a
7: F — G such that 7y, ., ) = 1y, uy) for every (Y, py) € Fuz, (H).
Take another fuzzy set (X, px), given A, B € P,,(X) such that A C B. Then
G(ZB) [¢] T](B7HB) o F(iA7B) = G(ZB) [e] G(Z'A7B) e} n(A,HA)
=G(ip°ia,B) O N(Aua)
= G(ia) o Mapa)
Therefore we have a cocone (G(X, 11x),{G(ia) © ()} aep, (x)) Which, by hypothesis, entails the
existence of a unique 77y, fitting in the diagram

A px|a)

F(Aa ﬂX|A) —_— G(/L .UX\A)

F(z‘A)l iG(iA)

F(X, ix) o oo GX, pix)

By construction, if | X | <  then 7)(x ) = 7(x,ux)» S0 We only have to show the naturality of the family
{ﬁ(X,MX)}(X,Hx)EFuZ(H)' Now, notice that for every morphism f: (X, ux) = (Y, uy) and A € P (X),
we have f(A) in P, (Y) and, for every x € A:
MX|A(9U) = px ()

< py (f(2))

< prypay (f(@))
Hence, restricting and corestricting f we get a morphism f: (A, HX|A) — (f(A), uy|f(A)> which
makes the following square commutative

(A,,uX‘A) rrrrrrrrr . (f(A)’NYIf(A))

iAi iif(A)

(Ya NY)
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Applying F, this square in turn yields a bigger diagram

A HX|A)
F(ia) F(ia)
F(f) NAnx|a)
F(X, px) F(f Y | FA) ) G(A NX|A) F(X, px)
F(f) (X
M A 1y | (a)) G N o

F(Y, py) G(f Y | £(A) ) G(X, px)

Glifa))

N(y,uy)
G(Y, py)

which, since (F(X, px),{F(ia)}aep,(x)) is colimiting, shows that
G(f) o Mx ux) = Neviuy) © F(f)

We are left with uniqueness. If : F' — G is a natural transformation such that €(y,,,,.) = 7y, for
every (Y, uy) € Fuz,,(H), then, for every A € P,(X) we have

€xux) 0 F(ia) = G(ia) © €Ay )

= G(ZA) °© n(AMX\A)
= ﬁ(X,;Lx) o F(ZA)

from which the thesis follows using again the colomiting property of (F(X, ux), {F(ia)}aep,.(x))-
(2 = 3) This follows from the formula for left Kan extensions.

(3 = 1) As in the proof of Theorem 2.2.31, since (—) @ F(Y, piy) is a left adjoint, it is enough to show
that (Fuz(H)((Y, uy), (X, px)), {ia o (=)} aep,.(x)) is colimiting for Fuz(H)((Y, p1y), =) © Dy (x,ux)

whenever |Y| < k. To see this, let (C, {fA}AePK(X)) be a cocone. Notice that for every g: (Y, uy) —

(X, px), g(Y) belongs to P (X) and there exists a unique ¢': (Y, uy) — <g(Y), uX|g(y)) such that
g =ig(y) © ¢, so that we can define

frFuz(H)((Y, py ), (X, px)) = C g fo(9)

By construction, forevery h: (Y, uy ) — (A, wx |A> we have aunique arrow (Y, uy' ) — (h(Y), wx |h(y)>



3.1. An introduction to fuzzy sets 105

as in the diagram below

(Y, HY) — (Av MX\A)

th(Y),A
R : tA
Y

(h(YV).xiiry) 5 (Xopx)

Th(y)
and therefore
fliaoh) = fu)()
= fa(ineyy,aoh’)
= fa(h)
If & is another function Fuz(H) ((Y, uy ), (X, ux)) — Csuchthat f4 = k(ia0(—)) forevery A € P, (X),

then, since every g: (Y, uy) — (X, px) is equal to i4yy 0 g’, we have

k(9) = foor)(9")

showing uniqueness of f and the thesis. O

On the rank of exponentials

The previous results settle the questions of computing the rank of the functor Fuz(H)((X, px), —), and
of locally x-presentability of Fuz(H). We can also wonder if there is a way to compute the rank of
(—)X#x) | The situation is less clear but we can still provide some positive result.

Proposition 3.1.40. Let H be a frame, and (X, px) an object of Fuz(H). Then the following hold true:
1 if (=) 8X) bas rank k then | X | < ks
2. suppose that | X| < k, given a functor F': D — Fuz(H) with a k-filtered domain, a colimiting cocone

((C,uc),{cp} pep) for it and putting F (D) = (Xp, px,, ), then ((C7 ) onx) {cg(’”X)}D D)
€
is colimiting for (—) 1) o F if and only if, for every f: C' — Xp the following equality holds

V (/\ (nx(2) = pxp (F(g)(f(x))))> = A (ux(x)—> \VAT (F(g)(f(w))))

geD/D \zeX reX geD/D
Proof. 1. We have a commutative diagram
(_)(qux)
Fuz(H) Fuz(H)
VHT \LVH
Set Set
Set(X,—)

which, by hypothesis, implies that Set(X, —) has rank &, so Corollary yields the thesis.
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2. We already know that V4 ((C’7 ,uc)(X’“X)) = CX, thus, by Corollary , (C’X, {Cg}DeD) is
colimiting and the thesis follows from point 4 of Corollary and from Proposition O
Corollary 3.1.41. Let X be a finite set, then:
1. (=24 has yank Ro;
2. ifH is boolean, then (—)X#X) has rank X.

Proof- 1. The equality of Proposition becomes
V </\ [xp (F(g)(f(iﬂ)))> = A ( Vs (F(g)(f(ﬂf))))
geD/D \zeX zeX \geD/D

which holds by the cartesian closedness of H.

2. Let {h;}icr be a family of elements of H and h another element of it. Since H is boolean, we can

use Lemma to get
h—\/hi=-hv\/h

el
=\ (=hVvh)
el
=\ (h— hy)
el

We can apply this equality with cartesian closedness to the setting of Proposition

A | rx@) =\ ux, (F(9)(f(2)) ALV (ex@) = px, (F(9)(f(2))

zeX geD/D z€X \geD/D
=V ( A (ux(z) = px, (F(g)(f(ﬁ))))>
geD/D \zeX
which proves the thesis. O

The crucial property exploited in the proof of the previous corollary has been commutation of col-
imits and finite products, which is guaranteed by cartesian closedness of H. In order to generalize Corol-
lary to other (regular) cardinals we need to introduce the notion of k-continuity, which will guar-
antee commutation of suprema and infima (see [53, 54, 62, 105, 116] for further details).

Definition 3.1.42. Let (P, <) be a poset and k a regular cardinal, a x-ideal I is a subset of P which is
downward closed and k-directed. We will denote by Idl (P, <) the set of k-ideals, which form a poset
when ordered by inclusion.

Remark 3.1.43. If D is a x-directed subset of (P, <), then
ID:={pe P|p<diorsomede D}

is a r-ideal. Clearly it is downward closed. Moreover, if {p; };er €| D is a family with cardinality strictly
less than «, then for every i € I there exists d; € D such that, for every p; < d;, but D is k-directed and
therefore there exists d € D which is a upper bound for {d; };c and thus also for {p; }ics.
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Remark 3.1.44. The arbitrary intersection of a family {Ij } e of ideals of a complete lattice (P, <) is
again an ideal. Let I be such intersection, if ¢ € I and p < ¢, then p € I, for every k € K and thus I is
downward closed. On the other hand, if {p;}:c; is a family with cardinality less than & contained in I,
then for every k € K we have a q;, € I}, which is an upper bound for {p; };cs. Take

=)\
keK
then ¢ is an upperbound for {p; };cs too and it is in I because every I}, is downward closed.

Example 3.1.45. For every p € P and regular cardinal x, the downward closure | p of z is a k-ideal. If
p < g, then | p Cl ¢, thus we have a monotone map |: (P, <) — (Idl.(P, <), C).
Proposition 3.1.46. Let (P, <) be a poset, then the following are equivalent:

1 (P, <) = (Idl.(P, <), C) has a left adjoint sp;

2. every k-directed subset of P has a supremum.

Proof. (1 = 2) Let D be a r-directed subset of P, then its downward closure | D is a -ideal by Re-
mark . We claim that sp({ D) is the supremum for D. On one hand the unit of | sp yields

1D Cl(sp(4D))

so that sp(} D) is an upper bound for D. On the other hand, for every other p € P which is an upper
bound we have | D C|p and so, by adjointness sp({ D) < p.

(2 = 1) Since every ideal is x-directed, we can define

sp: (Idl.(P.<),C) = (P,<) I \/p

Now, if sp(I) < g for some g € P, then every element in I must be below g, showing I C|gq. Vice versa,
if I Clq then g is an upper bound for I and therefore sp(1) < g¢. O

Definition 3.1.47. Given a regular cardinal %, a complete lattice (P, <) is x-continuouns if the function
sp: (IdIx(P,<),C) — (P, <) has a left adjoint |J. A frame H is said to be locally r-compact if it is k-
continuous when regarded as a lattice.

Example 3.1.48. The lattice ([0, 1], <) is Rp-continuous. To see this, for every r € [0, 1], define

s A{r} r#0
M'_{{o} r=0

Clearly |} is downward closed, every finite set F' contained in {7 has an upper bound: this is tautological
if F = (), while we can take the maximum of F if it is non empty. Notice that the supremum of | r
is 7 itself: this is clear if » = 0, if  # 0, let s be the supremum of | 7, clearly 7 is an upper bound for
17 and thus s < 7, on the other hand, if s < r, then the density of ([0, 1], <) entails the existence of
s < t < r, but this is a contradiction. But now, given this observation, it is obvious that{}r C I if and
only if » < sp(I), showing that | sp.

Remark 3.1.49. The terminology of local x-compactness comes from the fact that locally Ro-compact
frames are, up to isomorphism, the topologies of locally compact topological spaces [ 105].
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We are now going to show that in a x-continuous lattice directed suprema , i.e. suprema of directed
sets, distribute over arbitrary infima.

Lemma 3.1.50. Given a complete lattice (P, <) and a regular cardinal k, the following are equivalent:
1. (P, <) is k-continuous;

2. given a family {1;}jc s of k-ideals, we have

V [(Am@]=AlV v

€] s I3 \JEJ JEJ \yY; €L,
where 7 denotes the projection [ [ ;. ; I; — ;.

Remark 3.1.51. Lemma , like Proposition , is an application of the classical Adjoint Functor
Theorem for posets. For the sake of completeness, we will nonetheless provide a full proof of it.

Remark 3.1.52. Let us notice the following: for every fixed » € [, ; I;, let p, be the infimum of the
family {r;(x )}Jej By definition, p, < mj(x) for every j € J, so that pL belongs to [ ; ;. On the
other hand, given y € ;. ; 1, if we consider consider z,, € [[;c; I; defined by y = m;(z,) for every
J € J, then y must coincide with p, . Hence, the family {p, }, well e, Iy is cofinal in () ; /; and therefore

sp mlj = \/pw

jed ZEEHJ-GJIJ‘

V [Am@

],‘EHJ.EJ I;\JjeJ

Proof. (1 = 2) By hypothesis sp is a right adjoint, thus Remark yields
\/ /\ mi(x) | =sp ﬂ I
o€l e, 15 \JEJ JjEJ
= A sp(Z))
jeJ
=A[ Vu
Jj€J \y;€I;

(2 = 1) Let p be an element of P, define
D, :={I eldl,(P,<)|p<sp(I)}

Using Remark we know that Idl,; (P, <) is closed under arbitrary intersections, we can then put

:ﬂ]

IeD,
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Suppose that |} (p) C J for some x-ideal J. Since every k-ideal is downward closed, it follows that

p< \/ sp(D)

IeD,

=sp ﬂ]

IeD,

=sp({(p))
<sp(J)

Vice versa, if p < sp(J) for some J € Idl,,(P, <) then J € D,, so, trivially, we have that { (p) C J. O

Corollary 3.1.53. Let (P, <) be a r-continuous lattice and { D, } jc ; a family of k-directed subsets of P, then

V ([A~@]|=Al V v

z€][];e; D \IEJ JEJ\y;€D;
Proof. This follows at once from Remark and Lemma noticing that D; is cofinal in | D;. O

Corollary 3.1.54. Let {pj a}jctaep beafamily of elements of a k-continuous lattice (P, <) such that |J| < k
and, for every j € J, theset D; := {Pjdtaep s k-directed, then:

V (Ana) = A (Vo)

deD \jeJ jeJ \deD

Proof. As a first step notice that

Al V| = A se(D))

JjeJ ijDj JjeJ
- (V)
j€J \deD
Next, for every d € D, put
Pa = /\ Dj.a
jeJ

Now, for every d € D, there is a unique 24 € [[ .. ; D; such that p; = 7;(x4) showing that

jeJ

{pataep € N\ mi(2)
e z€]];c; Dj
We claim that this inclusion is cofinal. Let = be an element of [];. ; D;, the family {7;(z)} e has
cardinality strictly less then  and it is contained in D;. Therefore, by Lemma , 1t has an upper
bound p; 4 € D;. This shows that

/\ mi(x) < pg

jeJ
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This shows the desired cofinality. The thesis now follows from Corollary . O
Proposition 3.1.55. Let H be a locally k-compact frame, and let X be an object of Set,; then:
1. (=) bas yank k;

2. ifH is boolean then (—)X#X) has rank k.

Proof. In view of Corollaries and it is enough to repeat verbatim the proof of Corollary
1. The equality of Proposition becomes
V </\ 1xp (F(g)(f(x)))> =N V nmxo(Fl9)f(2)
geD/D \zeX z€X \geD/D

which holds since H is locally x-compact.

2. Given a family {h;};c of elements of H, for every other h in it we have already noticed that

h—=\/hi=\/(h = h)

i€l i€l

Thus, usinge the local k-compactness of H we have

A (ux(x)% V wx, (F(g)(f(x)))) = A ( Vo (ex(@) = pxp (F(g)(f(x))))>

zeX geD/D ze€X \geD/D

V (/\ (ux (@) = pxp (F(g)(f(x))))>

geD/D \zeX

and the thesis follows from Proposition . O

Monads on Fuz(H)

In this section we will adapt the work done in Section 2.2 to the setting of fuzzy sets. Our main goal is to
introduce new syntactic constructs, called fuzzy algebraic theories, and provide results similar to Corollar-
ies and , linking them to monads on Fuz(H).

Fuzzy algebraic theories

Let us start introducing the notion of fuzzy signature.

Definition 3.2.1. Let Card(H) be the class of all fuzzy sets whose underlying set is a cardinal. A fuzzy
signature (or simply a signature) X is a triple (Oy, Cs;, ary), where Oy is a class of operations, Cs, a set of
constants and ary; is a function Ox; — Card(H) such that, for every (x, u1,) in Card(H),

O3 (k) = 10 € Ox | ars(0) = (K, ) }

is a set, called the set of operations of arity (k, py;). Given a regular cardinal k, we will say that ¥ is
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* k-bounded if, for every (X, p1x) such that & < X, Ox (i) is empty;
e strongly k-bounded if, for every o € Os;, ars;(0) = An(p) for some p < k;
* r-accessible if (—)°=() has rank  for every o € Os.

The category FSign, is defined as the category with s-bounded fuzzy signatures as objects and in
which a morphism (f, g): £; — X5 is a pair of functions f: Ox, — Ox,, g: Cx, — Cyx, such that the
following triangle commutes.

f

Card(H)

Os, Os,

Remark 3.2.2. Let X be s-bounded, there is only a set of fuzzy sets whose underlying set has cardinality
strictly less then £, so, as in the case of algebraic theories, Oy is a set and FSign,_ is a category.

Remark 3.2.3. By definition and by Proposition strongly x-bounded and k-accessible signatures
are r-bounded, thus they define two full subcategories FSign , and FSign ,  of Sign, . We can point
out some other relation between them.

e Point 1 of Corollary entails that FSigny , is a subcategory of FSign , ,,  while point 2 says
that FSign , , = FSign, whenever H is a complete boolean algebra.

e If H is locally x-compact, then, from Proposition we obtain that, for every regular cardinal
K, FSigng _is a subcategory of FSign , . and that this last category coincides with FSign,_ if H is
also boolean.

Remark 3.2.4. For every a fuzzy signature ¥ we can construct an algebraic signature cri (X) putting
Oci(sy) := Ox + Cx
and, denoting the obvious injections by j1: Os — Ocy(x) and j2: Cx — Oz

Vi (ars(o)) z = j1(o)

Qleri(x) - Ocri(Z) — Card T — {O v =] (C)
— J2

Given a regular cardinal x, this construction extends to a functor cri: FSign,_ — Sign,: for every
(f,9): Os, = Osx, we can define cri(f,g) : Oci(s,) = Oci(sy) as f +9: Os, + Cx, — Ox, + Cyx,. By
construction, we get a morphism of Sign,_.

Example 3.2.5. The signature X pg of fuzzy semigroups is given by
Osps i={}  Czps =10
and in which the arity function is defined putting ars,,.. (-) = Ag(2).
Example 3.2.6. The signature X g of fuzzy groups is defined putting
Osre ={~(=)7"}  Cnpei={e}

and in which
OrEFG(') = AH(2) Arspg ((7)71) = AH(]-)
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We are now ready to introduce X-algebras as in the previous chapter.

Definition 3.2.7. Let X be a fuzzy signature, a fuzzy X-algebra A = ((A, LA, {OA}onz ) {CA}CGCE)
is a triple where (A, p14) 1s a fuzzy set and, for every o € Osx, ¢ € Cy,

ot (A, pa)™=@ = (A pa) e Vu(1) = (4, pa)

A X-homomorphism f: A — B is an arrow f: (A,ua) — (B, pps) such that, for every operation
o € Os, the following diagrams commute

ars; (o)

(A, pa)or= (B, )= VH(1)
(AHMA) 7 (Bqu) (A, :UA) 7 (Ba,uB)

We will denote by 3-FAlg the resulting category and by Vs : X-FAlg — Fuz(H) the forgetful functor.

Remark 3.2.8. Differently from the case of algebraic signatures, in our setting constants cannot be seen
simply as operations of arity ((), 7). For every(A4, ua) we get

(A, a) @) ~ Ap(1)

Thus an operation of arity (0, ? ;7 ) must be interpreted as an arrow Ay (1) — (4, pa), i.e. as an element of
A with membership degree T. However, limiting ourselves to this kind of constants would be too heavy
a restriction for the expressivity of our formalism.

Take a fuzzy signature ¥ and a ¥-algebra A, we know that, for every o € Oy,

Vir (A4, 1)) = Set(Viy (ars(0), 4)
= Set(arqix)(0), A)
— AGrcra(z)(O)
Thus we can define a cri (X)-algebra Wx (A) putting

GWE(A) A Wa(A) . A

This can be immediately extended to a functor Wy : 2-FAlg — cri (X)-Alg:

A— Wz(.A)

£l Lf

B Ws(B)

Remark 3.2.9. It is worth to point out explicitly that a cri (X)-homomorphism f: Wx(A) — Wx(B) is
the image of a X-homomorphism if and only if f: (A, pa) — (B, up) is a morphism of Fuz(H).

Proposition 3.2.10. The following hold true:
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1. for every fuzzy signature ¥, the functor W, has a right adjoint Ax;
2. for every strongly k-bounded signature ¥, W, has a left adjoint Vs;
3. for every morphism (f,g): 1 — X2 of FSign,, there exists a functor (f, g)*: ¥o-FAlg — %;-FAlg

making the following square commute

(f.9)"

ZQ'FAlg by 1 -FAlg
W, l lwzl
cri (X2)-Alg ———— cri(X4)-Alg

cri(f.9)

Proof. 1.Let A= (A, {o*}
arrows of Fuz(H)

veO _(Z>) be a cri (X)-algebra, then for every o € Oy, and ¢ € Cy; we have
o (Au(A)=0) 5 Ag(4)  ¢*: V(1) = Au(A)

and we can define Ay (\A) as the resulting fuzzy -algebra. Notice that Wy (Ag(A)) = A and id 4
has the universal property of a counit for Wy, + Ay:: given a cri (X)-homomorphism f: Wx(B) —
A we have for free that f is an arrow Vs (B) — Ag(A) and thus it defines also a X-homomorphism

2. Notice that, given two sets X and Y, we have that
(Va (X)) = Vg (XY)

Indeed, if f: Y — X is a function, then

pyx (V) = N (ny(y) = px(f()))

yey

= AN (T—=1)

yeYy
=1

Thus, if ¥ is strongly x-bounded, given a cri (X)-algebra A = (A, {0}
a Y-algebra structure Vi (A) on Vi (A) simply using the arrows

we can construct
OEOCV'\(Z) ) ’

oA (Vu(A)=0) 5 vy(4) ¢ Va(l) = Va(4)

To see that in this way we get a left adjoint, consider id4: A — Wx(Vx(A)) and suppose that
a cri(X)-homomorphism f: A — Wx(B) is given, then f also defines a morphism of fuzzy sets
Vu(A) — (B, up) and we can conclude.

3. This is done exactly as in Proposition . Given A = ((A, a), {OA}oeoz, , {CA}CECz, ),
define (f, g)*(A) as the X;-algebra on (4, p4) in which

oA = (fo))A DT = (g(c))A

The action of (f, g)* on morphisms is the identity. O
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We can also recover an analogous of Lemma

Lemma 3.2.11. Let 3 be a k-accessible signature and F: D — Y-FAlg be a functor with a r-filtered domain,
let also (A, pa),{ap}pep) be a colimiting cocone for Vs, o F. Then there exists a unigue A in S-FAlg such
that Vs;(A) = (A, pa), and which makes every ap a X-homomorphism F(D) — A. Moreover, the cocone
(A,{ap}pep) is colimiting for F.

Proof. By definition of k-accessible signature ((A fr4)°m=(0) {agz(o) }D D) is colimiting for the functor
€

(Vs(F (—)))‘“rz . The proof now proceeds in the same way as the one of Lemma : glven an arrow
f: D1 — Do in D, we have diagrams

(Va(F(Dy)))r )~ ) —en
F(f)o=) F(f) (A, pa)
(Va(F(Dy)))er=) o Vs (F(D2)) /DQ’
and thus a unique arrow 0: (A, 114)°=() — (A, pa) such that
(Va(F(D)))=©) <~ V5 (F(D))

| N

(A, pa)"™ ———— (A, pa)
O
commutes. For a constant ¢ € C;, we are forced to define ¢ as ap o ¢F'(P) for any D € D. Notice that
this definition does not depends on the choice of D: if Dy and D5 are objects of D, then there exist arrows

fi: D1 — D3 and fo: Dy — D3 and we have a diagram

D1 aDy
y y\
F(D3)

ap

Vs(F(D3)) —— (A, pa)

DQ)) aDy

and so

ap, OCF(Dl) =ap, oF(fl) OCF(DI)

= aD3 OCF(D3)

=ap, o F(fz) o c"'P%)

= CLD2 o CF(DZ)
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Now let A be ((A, wa), {0«4}0602 , {CA}ceCz)' To show that (A, {ap}pep) is colimiting for F take

another cocone (B, {dp}p), there is a unique d: (A4, pa) — (B, pg), where (B, up) = Vx(B), such that
doap = dp, so it is enough to show that d is an arrow of X-FAlg. Computing we get

dovoa%E(o):doaDooF(D) doc* =doapoct®
=dp o o' =dp ol
=oPfo d%Z(O) =5
B rs(o o
=0 Odaz()OCLGDFE()
from which the thesis follows. O

Corollary 3.2.12. Let k be a regular cardinal and 3 a k-accessible signature, then the following are true

1. X-FAlg has all k-filtered colimits;
2. Vs, has rank k.

The calculus of fuzzy algebraic sequents

We are now going to introduce two syntactic notions that will play the same role played by equations in
the classical setting. Notice that the functor cri: FSign, — Sign,_ allows us to speak of ¥-terms even if
we have not yet built a left adjoint to Vx: this will be done in the next section.

Definition 3.2.13. Let X be a k-bounded fuzzy signature, a X-term is simply a cri (X)-term, i.e. an element
of Ty (X) for some set X. We define the following sets:

e the set Eq(X) of X-equations coincides with the set of cri (¥)-equations, i.e.
Eq(E) = Z Tcri(Z)(/\) X Tcri(E)(A)
AER

We will still denote by A | £ = 5 the image of the pair (t1,%2) € Tein)(A) X Tersy (A) in Eq(X)

and call \ the context of the equation;
e the set MP(X) of membership propositions is defined as

MP(E) = Z H x Tcri(E) (>‘)
AER
By X | m(h,t) wi will denote the image in MP(X) of the pair (h,t) € H X Tgis)(A) and we will
again refer to \ as the context of the proposition;

e the set Form(X, \) of X-formulae in context X is
Form(X,A) := (Tei(s)(A) X Teis) (A)) + (H X Ty (A))
while the set Form(X) of X-formulae is the coproduct ) ., Form(X, A);
e finally, the set Seq(X) of X-sequents is
Seq(X) := Y _ P(Form(X, A)) x Form(%, \)
AER

and we will write A | T’ F 1) to denote the sequent given by the pair (I',¢)) € P(Form(X, \)) x
Form(X, \), as before A will be called context.
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pel AT H® {AMTF olsca ADEY
WEAK Cur
AT AMTUAR AMTHY
)\|F|—t15t2 )\|F|—t15t2 )\‘F}—tht?,
—— RefL Sym TrANS
AMTHt=t AMThHta=t AMTHt =t3
oA\ — Tcr;(z)()\g) A1 | 't (b A ‘ '+ m(h,t)
SupstT ——— INF S ON
Ao | Tlo] F ¢[o] AT Fm(L,t) AT Fm(h" Ah,t)
SCH {AMTEm(h,t)}hes AMTHt=s A T F m(h,t)
Sur UN
A| T F m(sup(S),1) A TFm(h,s)
0€0s  oiarx)(j1(0) = Tuizy(A) AN T'F m(ha, 0()) acor s, (i (o) o

A TEmM ( N\ (Hors (o) (@) = ha) ,jl(o)(cr)>

a€argix) (J1(0))
0€0x  01,02: i) (j1(0)) = Taisy(A) - {M T 01(@) = 02(@) Facaras) (51 (0)) C
AT Eji(o)(o1) = ji(o)(o2)

ONG

Figure 3.1: Derivation rules for the calculus of fuzzy algebraic sequents.

Remark 3.2.14. As will become clearer in the following, the intended meaning of a membership propo-
sition A | m(h, t) is “the membership degree of the term ¢ is at least h”.

Remark 3.2.15. Let o be an arrow Ay — Tgix)(A2), then we have a homomorphism Fi sy (A1) —
Fliz)(A2). Considering (0ci(s),« X Oci(n)«) + (idg X 0ci(sy,«) we get a function Form(X, \;) —
Form(X, A2). We will denote by ¢[o] the image through it of ¢ € Form(XZ, A1). Similarly, we will de-
note by I'[o] the image of I' C Form(3, A1) under this arrow.

Notation. We will write A | ¢ for A | § = ¢. As in Chapter 2 we will also use 0 to denote () when it
appears as a context.

Definition 3.2.16. Let S be a subset of Seq(X), its deductive closure S is the smallest subset of Seq(X)
which contains S and it is closed under the rules of Fig. 3.1, 1.e. if all the premises of a rule are in it, then
the conclusion is. A sequent is derivable from S (or simply derivable if S = () if it belongs to S

Remark 3.2.17. When ¥ is strongly r-accessible rule Exp becomes

[AS Og g orcri(g)(o) — Tcri(E)()‘) {)\ | '+ m(ha, J(a))}(MEcrm(z)(o)

)\|P}—m( /\hma(a))

Exp

a€argis) (0)
We can now proceed as in the case of algebraic signatures.

Proposition 3.2.18. Let X be a k-bounded signature, then the following hold:
1. if Sy and S are subsets of Seq(X) and Sy C Sa, then ST C Sh ;
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2. forevery S C Seq(X), (S7)" = St
Proof. 1. This follows at once since S contains .

2. Clearly S C S, 50 S" C (S7)". For the other inclusion it is enough to notice that, by definition,
S* is closed under the rules of Fig. 3.1. 0O

Proposition 3.2.19. There exists a functor Sqt: FSign, — Set sending a signature X to the set of X-sequents.

Proof. Let (f,g): ¥1 — X2 be amorphism in FSign_, for every A € x Proposition yields an arrow

h’cri(f,g),)\: Tcri(Zl)()‘) X T21 ()‘) — Tcri(Zz)()‘) X TEz (A)
On the other hand we also have the arrow (7ci(ss),2)cri(m) 5 Ter(s1)(A) = Terigs,) (A), yielding

ide X (Neri(ma), N eri(s) o 0 H X Teisyy(A) = H X T, (A)

These two arrows, in turn, define tr(s ) »: Form(¥1,A) — Form(X2, X). We can now take as the
image of (f, g) the arrow tr(; 4y given by the sum of

Ptrs.g)0) X trgg)a: P(Form(X1, X)) x Form(31, ) = P(Form(X2, X)) x Form(Xz, )
The thesis now follows at once. O

We need a little generalization of the previous construction to settle some technical points in the
following. Let 3; and X5 be objects of FSign _, let also A; and Ay be elements of ~ and, finally, let f be a
tunction Tti(s;, ) (A1) = Tarics,) (A2), then we can define

f(t1) = f(ta) oisty =to

Gy: Form(Z1, A1) = Form(Ey, Ao) W{m(w(m b is m(h,t)

Given a set S of sequents in context A1, we will denote by S the sequent obtained applying G ¢ pointwise:
a sequent is in Sy if and only if it is equal to A2 | {Gf(¢) }yper b G () for some element Ay | T' - ¢ of
S.

Remark 3.2.20. Clearly, tres,),x coincides with CTTI W

Lemma 3.2.21. Given ¥ and %5 in FSign , A1, A2 € kand f: Teis,) (A1) = Doz, (X2), for every set
S the following are true:

1. if a sequent My | T' & ¢ is derivable from S using only rules A, WeAk, Cut, REFL, Sy, TRANS, INF, MON,
Sup, FUN, then Xy | {Gf(¢) }yper F Gy (@) is derivable from Sy,

2. if for every o € Os,, there exists o' € Os,, such that ars,, (0) = ar¥y(0’) and the square

arei(s) (1(0))

Fer 1(0)) _f rics sy (k1 (0’
(Tcri(El)()\l))o @ (1) (Tcri(22)()\2))° (=) (k1(0"))
<ﬁ<o))“ri(21)<h)l l%l(o'))%mz)(*z)

Teis,) (A1) Teis,)(A2)

f

commutes, then the thesis of the previous point holds also adding Exp and CoNG to the list of used rules.
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Notation. In the previous lemma j; and k; denotes the inclusion Os; — Ogi(s,) and Ox, — Ogi(s,)
respectively. Notice that, with this notation, the square above makes sense because

arei(sy)(J1(0)) = Va(ars, (0))
= VH(OI’22 (O/)
= Orcri(Eg)(kl (Ol))

Proof. 1. We proceed by induction on the derivation of A; | ' F ¢ from S.
If A1 |T'F ¢isin S there is nothing to show.

A1 | T ¢ is obtained applying rule A. Then ¢ is in T" so that Gf(¢) € {G(¢)}yer and an
application of the same rule A yields the thesis.

A1 | T'F ¢ is obtained applying rule Weak. Thuse I' = IV U A with Ay | I” I ¢ derivable from S
using only the listed rules. By the inductive hypothesis we can use again WEAK to get

A2 [{Gr()}yer - Gy (9)

o (G (@) per ULG (D)l pea F Grlo) %

A1 | '+ ¢ is obtained applying rule Cut. Thus there exists A\; | ® b ¢ satisfying the lemma such
that, for every ¢ € ® the sequent A\; | I' I ¢ satisfies the lemma too. The thesis now follows by
induction applying

{Xe [{Gr(W)}per F Gr(@)}pes A2 [{Gr(0)}pew - Gr(9)
A2 [ {Gy(¥)}yer F Gr(9)

Cur

A1 | I'F ¢ is obtained applying rule ReFL. Then ¢ must by ¢ = ¢ for some ¢ € T¢yi(x,)(A1) and we
can just apply again rule REFL to obtain Ay | {Gf(¥) }yer F f(t) = f(2).

A1 | I+ ¢ is obtained applying rule Sym. Then ¢ must be t; = t5 for some t1,t3 € Tyi(s,) (A1) and
A1 | Tk 1 =t is derivable from S used only the given rules. We get the thesis considering

X2 [ {G () }yer F f(t1) = f(t2)
A [{Gr(¥)}yer F f(t2) = f(t1)

A1 | T'F ¢ is obtained applying rule TRaNs. Then there exist ¢1,t2,t3 € T, ) (A1) such that ¢ is
t1 =tgand both Ay | T'F ¢ =to, Ay | T I to = t3 both satisfies the hypotheses of our lemma. We
conclude using again TRANS.

A1 | T'F ¢ is obtained applying rule INr. This is immediate.

A1 | T+ ¢ is obtained applying rule MoN. Then ¢ must be m(h' A h,t) and, we can derive from S,
using the admissible rules, the sequent A1 | I' - m(h, t), so that

A2 [ {Gr () }yer - m(h, f(1))
A2 [{Gy(¥)}yer - m(h' AR, f(2))

Mon
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A1 | T+ ¢ is obtained applying rule Sur. As before, we must have a family S C H such that for
every h € S the sequent Ay | I' - m(h, t) satisfies our hypotheses, so that

SCH  {M|LEm(h, f(t)}hes

A2 [{Gr(¥)}yer - m(sup(S), £(1))

A1 | T'F ¢ is obtained applying rule Fun. This implies that we can derive, as always using the listed
rules, the sequent A |T'F ¢ = sand Ay | v F m(h,t), so that

A [{Gr(W)yer Ef() = f(s) X [{Gr (W)} yer F m(h, f(1))
A2 | {Gf(ﬂ))}wer F=m(h, f(s))

2. Let us check the two new rules.

Fun

A1 | ' ¢ is obtained applying rule Exp. Then there must be an operation o € Oy, a function
0 Arein) (71(0)) = Teiesyy (A1) and a family {A | T'F M(ha, 0(@)) acares, ) (1(0) of sequents
satisying our hypotheses. Since we have assumed that f(j1(0)(c0)) and k1(0)(f o o) coincide, the
thesis follows applying again Exp to o' € Osx,, f 0 0: argis,)(k1(0")) = Tiis,)(A2) and to the

family {)‘2 | {Gf(l/’)}w@“ + m(hou f(a(a)))}aeurm(zz)(kl(o/))'

A1 | Tk ¢ is obtained applying rule Cong. The argument is similar as the one above: we must have
0 € Ox,, 01,02 argi(s;) (J1(0)) = Taigsy) (A1) and {A1 | I'F o1(a) = 02(0) Facar s, (71(0))> 20d
we can conclude by the inductive hypothesis applying again rule Cong to o/, f o o1, f 0 03 and to
the family {As | {G(¥)}yer F flo1(a) = fo2()) bacars,) (ki (0)- O

Corollary 3.2.22. Let (f,g): X1 — X2 be a morphism of FSign,.. For every S C Seq(X1), if a sequent is
in S©, then its image undertr (s o 1s in (ir(1,4)(9))".

Proof. Let A | T' - ¢ be a sequent in S". Notice that if a sequent is in S there is nothing to show. By
Lemma the only thing we need to show is that if a sequent is derived from S through an application
of SussT, then we can derive its image from trs ;y(S). Suppose then that a sequent Ay | I'[o] F ¢[o] is
derived from S for some 0: A — Tyi(x,)(A2) and element Ay | T' = ¢ of S™. By the inductive hypothesis

ALt (W) Yoer F 1r(pg)0 (8) ds in (tr(z,6)(S))". Moreover, (ci(s,) s Jeri(sy), © 0 s an arrow
A1 = Teri(s,)(A2) and therefore the sequent

A2 [ {59000 (O (Mericz2) 2o )eri(m1),% © T wer 11,0y a0 (D) [(Neri(22), 00 )eri(s1) % © O]
isin (tr(y,4)(S9))". Now, the diagram

Ucr.(zl) A1 ’ﬂcn(zl) A

C"'(E cr| (21 ) )\1
Ori(s), Meri(22) 21 %.():2) Ao )eri(1),%

crl(Zl T 22) A1

T W:‘(Zl) * /
MNeri(£1), A2
Ao Cn(22 )\2 ((Meri(25), 20 )eri(21) 0T )cri(Sg) ,

Neri(S5), Ao
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shows that

((ncri(Zg),)\z)cri(Zl),* o U)cri(Zz),* o (ncri(Zg),Al)cri(El),* = (ncri(Ez),)\z)cri(Zl),* SN

Therefore Az | {tr(s,¢) 2, (V) [(Neri(22) 230 )cri(s1), © O wer F (1 ) 00 (D) [(Meri(2), 00 )eri(y),+ © 0] coincides
with Az | {tr(s.g),x, (¥[0]) byer F 1r(5,9),0, (¢]0]) and we can conclude. O

Now let ((A, HA), {OA}oeoz ) {CA}c€CE> be a 3-algebra, for every function f: A — A, we have a
cri (¥)-homomorphism feis 41 Feis) () = Wx(A) which, in particular, is a function Tty (A) — A.
So equipped, we are ready to define the notion of theory and introduce satisfability.

Definition 3.2.23. Let x be a regular cardinal and ¥ an object of FSign,, a subset A C Seq(X) is a
Y-theory (or a theory) if A = S" for some S C Seq(X), called a set of axioms for A.

Given a X-formula A | ¢ with context A and a Y-algebra A = ((A7 a), {OA}onz ) {CA}cng) , We
say that A satisfies ¢ with respect to f: A — A and we will write A F¢ ¢ if:

* )| ¢isthe Y-equation A | t1 =t and fei(x 4 (t1) = fai(m,0 (t2);

* \| ¢ is a membership proposition A | m(h,t) and h < pa (feis 0 (t))-

A sequent I' - ¢ with context \ is satisfied by A if, for every f: X — A, AFy ¢ whenever A Fy ¢
for all ¢y € T'. The category Mod(A) of models of a X-theory A is the full subcategory of 2-FAlg given

by algebras satisfying all the sequents in A. The restriction of Vs, : £-FAlg — Fuz(H) to Mod(A) will be
denoted by V : Mod(A) — Fuz(H).

First of all we shall prove that our semantics is sound for the rules of Fig.

Lemma 3.2.24. For every Y-algebra A = ((A, pa), {0““}060Z , {CA}ceCE)’ if A satisfies all the premises

of a rule of the calculus of fuzzy algebraic sequents , then it satisfies also its conclusion.

Proof- Let us proceed rule by rule.
A. This is tautological.

Weak. If f: A — Aissuch that Ay ¢ for every ¢ € I' U A then, a fortiori, A satisfies any formula in T
with respect to f and thus, by hypothesis A F¢ ¢.

Curt. Let f: A — A such that Ay £ for every £ € T, then, since A satisfies A | I' - ¢ for any ¢ € ® we
also have that it satisfies every element of ® with respect to f and this implies A F¢ 1.

RerL. This follows from the reflexivity of equality.

Sym. This follows from the symmetry of equality.

Trans. This follows from the transitivity of equality.

SussT. As above, let us take a function f: A\; — A such that A satisfies every element 1[o] of I'[¢] with

respect to f. Now, we know that
(fcri(Z,*) © U)cri(E,*) = fcri(Z,*) O Ocri(z, )

and, by definition,

wlo] = Ocri(n,0) (1) = Ocign ) (t2)  Pisty =ty
m(hao'cri(z,*)(t)) ( is m(h7t)
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Thus A Fy ¢[olis equivalent to A Fy . oo 9. But then our hypothesis implies that A Fy . oo ¢
and again this means that A £ ¢[o].

Ink. This follows at once from the fact that L is the bottom element of H.
Mon. If A satisfies all the formulae in " with respect to some f: A — A then AF; X | m(h,t), so that

h S HA (fcri(E,*) (t))

Therefore, for every other 2’ in H we also have A ¢ X | m(R' A h, t) since the previous inequality entails
h' AR < NJA(fcri(E,*) (t))

Sup. As before if f is such that A Ff ¢ for every ¢ € T then A F m(h,t) for all h € S, implying that
toa(fei(s, (t)) is an upper bound for S.

Fun. This follows at once since p 4 is a function.

Exp. If AF; ¢ for every ¢ € I, then hq < pua(fuis )0 () for every o € arei(s)(0). Since fei(s,4) isa
homomorphism we have

/\ (Morg(o)(a) — ha> < /\ (ﬂmz(o)(a) - fcri(E,*)(U(O‘m
a€aras) (71(0)) a€ar(s) (71(0))
= [ yoriisy G ) (feri(,0) © 0)
< pa (OA(fcri(E,*) © U))
= (o ("))
= pa(fer(z 0 (0(0)))

A is a function. O

Cona. This follows at once since o
We can provide some examples of theories.

Notation. We will stick with the convention used in Chapter 2: instead of using ordinals, variables will
be denoted by z, y, z, eventually subscripted. We will use infix notation for operations of arity 2.

Example 3.2.25. The most basic examples of a fuzzy Y-theory is the one generated by no axioms. Its
models are all the X-algebras.

Example 3.2.26. Let X g be the signature of Example , we can define four X pg-theories [98].

e The theory of fuzzy semigroups Ag is simply a translation of the theory of semigroups introduced
in . More precisely is the one with the following axiom:

3l(z-y)-z=2-(y-2)
® The theory of left ideals A1 is obtained adding to A pg the axioms:
{21 m(h,y) Fm(h,x-y)bhen
® Similarly the theory Ag; of right ideals is obtained using the axioms (again, one for every h € H):

{2 | m(hax) + m(hvx : y)}hEH
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e We get the theory of (bilateral) ideals A; adding to Ag both kind of previous axioms, i.e. all the
sequents of the form

Example 3.2.27. Now let X p¢ be the signature of Example , there are, at least, two interesting

¥ pg-theories appearing in the literature.

® We can translate the theory of gropus of Example to get the theory Apg of fuzzy groups. It
is the theory with axioms given by

1

llz-z'=e 1]zt -z=e lle-z=z 1|z-e=z 3|(z-y) 2=x-(y-2)

¢ The theory Ay pg of normal fuzzy groups is obtained adding to A p¢ the axioms:
{2 | m(h,x) F m(hvy : (IC : yil))}hGH
Models for the theories Apg and Ay g are exactly the fuzzy groups and normal fuzzy groups de-
scribed in [8, 9, 92, 111].
Proposition 3.2.28. Given a morphism (f,g): ¥1 — o in FSign,, then for every Xo-algebra A, defined
by ((A, Hna), {0““}060E , {CA}CGCE ), the following hold true:
1. for every Xyformula X | ¢ and h: X — A, (f,9)*(A) En ¢ if and only if Ay trp o) A(0);

2. (f,9)" (A) satisfies a sequent X | I' = ¢ if and only if A satisfies X | {tr(5 gy (1) }yper F 11,9y 2(0);

3. if Ay and Ay are, respectively, a ¥y -theory and a Xo-theory such that tr ¢ gy (A1) C Ao and A is a model
Jor Ao then (f, g)* (A) belongs to Mod(A1).

Proof. 1. For every k: A — A, we have a cri(¥3)-homomomorphism ks, +): Feis,)(A) — A
which is also a cri (31)-homomorphism cri(f, g)"(Fuis,) (X)) — cri(f,9)"(A). In particular, this
means that ks, 4) © (ncri(EQ)v)‘)cri(Zl " is the unique arrow of cri (3;)-Alg such that

k= kcri(Xb),* © (ncri(Zg),/\)cri(gl)7* O Neri(S1),A

Now the thesis follows at once noticing that, by construction

(ncri(22)7z\)cri(217*) (tl) = (ncri(zz)’/\)cri(zl,*) (t2) dist; =to
m (ha (ncri(Eg),)\)cri(Zh*) t)) ¢ ism(h,t)

—~

trr,ga (@) = {

2. Let us show the two implications.

(=) Letk: X\ = Asuchthat A Fy, tr(s gy \(¢) for every ) € T, by the previous point (f, g)*(A) Fy
1 and thus A also satisfies ¢ with respect to k. The thesis now follows applying again point 1.

(<) The argument is pretty much the same as before. If k: A — A is such that (f, g)*(A) Fx ¢ for
every element in I, then A Fy, trs gy A (1) and thus (f, g)*(A) also satisfies tr( s 4y 1 (¢) with respect
to k and this in turn entails the thesis.
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3. This follows immediately from the previous two points. O

It is worth noticing that we do not have analogs for Lemma and Corollary , as shown by
the following example.

Example 3.2.29. Let H be ([0, 1], <), ¥ be the empty signature and A the theory with the axiom
2|m(l,z)Fz=y

Since ¥ is the empty signature, 3-FAlg is simply Fuz(H) and T s is idgus (). For every n € N we can

define a constant function n

n+1

and take as A, simply (2, f1,,). By construction, there are no functions 2 — 2 such that A,, E¢ m(1,z),
so, for every n € N, A,, € Mod(A). Now, if n < m, ids defines an arrow f,, ,: A, — A, yielding a
functor F from the No-filtered category induced by (N, <) into Mod(A). This functor F has a colimit in
Mod(A): indeed, if ((C, puc), {cn},en) is a cocone on F), then, for every n € N

MC(CO )) /JC(Cn(fO n)( ))

tn 2 —[0,1] t—

n+1

and therefore 1o (co(0)) = 1.Take now any other ¢ € C and the function f sending 0 to ¢(0) and 1 to
¢, by hypothesis (C, pc) Ey m(1, z), so that ¢ must coincide with ¢(0). This in turn shows that (C, p¢)
must be isomorphic to the terminal fuzzy set (1, d+), which is a model for A and that F" has a colimiting

cocone given by ((17 61), {!(2,un)}neN>‘

On the other hand, if 71 : 2 — [0, 1] is the function costant in 1, by Corollary , VA o F has
(2,71) as colimit. (2,v1) is not a model of A, hence V does not have rank 8.

The free model of a theory

In this section we are going to show that given a k-bounded signature ¥ and a X-theory A, the forgetful
functor Vi : Mod(A) — Fuz(H), similarly to its Set-based analog Uy, has a left adjoint Fj.

Take a k-bounded signature ¥ and a set X. We can add the element of X to ¥ defining another
k-bounded signature ¥ x as

Oy, = 0Ox Cs, =Cs+ X ary, = arg

Notation. Let us fix some notation to avoid confusion between the different roles of elements of X. Let
tx : X = Cx, + X be the coprojection, for every set Y and x € X we have a function

(e (@) =0 1 T (V)
In particular, we will denote the element of T¢(s,)(0) picked out by (¢ X(x))FC”(EX)(m with Z. This

allows us to define a function
L«JXIX*)TC“(EX)(@) T T
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Let ¢y, be the coprojection Cx, — Cyx ., then we have a morphism of signatures (idoy;, tcy): & —
Y x. Moreover, for every set X, we can promote Tc(x(X) to a cri (X x)-algebra Py (X) defining

mPE(X) 1 — Tcri(Z)(X) 0 ncri(Z),X(I)

On the other hand, T¢is)(0) carries a cri (X)-algebra structure obtained by applying cri (idoy, tcy, ) to
Feitz ) (). All these structures can be linked together by canonical morphisms as in the diagram below

Neri(), X

AN

/ m \ \\\
s Y1,Xx 73,X h
Tcri(Z) (X) - Tcri(Ex) (X) T) Tcn(Ex) (Q) - Tcn( )(X)
Ichr\(Z) (X)
where
X = (ncri(EX)’X)cri(E),* Y2,Xx = (wx)cri(Ex),*
VX = (M), xO0%) oy X T (WX

Notice that the last triangle commutes because 3, (x ;. ) is a morphism of cri (¥ x)-algebras.
Finally, let us note that, for every function f: X — Y, we can define an arrow (ido,idcy +
f): ¥x — Xy in FSign_. In particular, we can consider the cri (X x )-homomorphism vy : F s )(0) —

cri(idoy, idey, + f)* (Fei(sy) (0)) given by (ncfi(ZYW)cn(zx) ,» moreover 7y fits in the square:

f
(Z)

W(x, ILX) w(Y/LY)
A@ kw‘\

crl EX (Z) crl Ey (Z)

Lemma 3.2.30. Given . € FSign_ for every set X, 3 isa cri (X)- and cri (X x )-homomorphism with inverse
V4, x. Moreover, for every f: X — 'Y, the following diagram is commutative

REN
Tcri(Zx) (@) g cri(x) (X)

’Yfl iTcr(Z)(f)

Tcri(Ey) ((Z)) W Tcri(E) (Y)
Proof. We already know that v3 x 074, x is the identity on T¢(5)(X). On the other hand, F s )(0) is
the initial cri (¥ x )-algebra, thus 74, x o 3, x must be the identity too. The same observation also shows
the commutativity of the given square. O
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Next, we want to add all the structure of a fuzzy set (X, p1x) to a X-theory.

Definition 3.2.31. Given a X-theory A, with ¥ € Sign, , we define the ¥ x-theory A(x , ), by putting

}_
A = (Mo o) (B) U0 | m(ux (2),8)}acx )

Remark 3.2.32. Every morphism f: (X, ux) — (Y, uy) of Fuz(H) is, in particular, a function f: X —
Y, so that we can consider (idoy,idcy, + f): ¥x — Xy in FSign,_ as before. From the inequality

px(z) < py (f(y))
and from Corollary , we can deduce that tr(d,,_ide, +7)(A(x,ux)) 15 asubset of Ay iy ).

We are especially interested to the case in which (X, ux) = Vu(A) for some cardinal A < £. In this
case we can define the following auxiliary functions:

Gy : Form(cri(X)),A) = Form(cri(Xy),0) ¢ — Y2a(t) = 2a(t2) Pisty =t

m(h,v2,x) () ¢ ism(h,t)
. . v3a(t1) =3 a(te) @isti =t

H,:F ¥),0) —=F ), A — ’ ’ .
a: Form(cri(Xy),0) orm(cri(X), ) 10) (b ) (1) bism(h, 1)
) . Yar(t) = yaa(te) @isty =ty

Ky: F ¥),\)—~F ¥x),0 — ’ ’ .
a: Form(cri(X),A) orm(cri(Xy),0) 10) (e (1)) bism(ht)

Remark 3.2.33. By construction and by Proposition , we have identities

Ky =Gxotridoy iop) o 19Fom(ai(s),n) = Hx 0 K
We can also notice the commutativity of the diagram

?

0 — A
\
Neri(2y).0
Neri(),0 T Tcri(EA)(Q))

ncri(E)/
Y4, X

Teics)(0) T ) L) (N

which shows that 4, o Tii(s;)(?x) coincides with t(idoy, ucy,),0-

Proposition 3.2.34. Let X be in Sign,_ and A a X-theory, then for every X € k the following are true:
1. lf/\ | ko 1sin AVH()\) then 0 | {G)\(w)}wep F GA((,‘b) isin AVH(/\) tooy
2. 0| T F ¢isin Ay, then X | {Hx (V) }yer = Hx(¢) 15 in A;
3 f N T EpisinAthen 0| {Kx(¢)}yer F Ka(¢) belongs to Ay, ().

Proof. 1. This follows at once applying rule SussT.
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2. Let us start showing the thesis for the axioms for Ay, ().

*0|TF¢isO] { Midos, oy,), O(w’)}w - F 1r(idoy, ey, ).0(¢") for some element 0 [ TV = ¢' in A.
/E ’
Since, by Remark t(idoy, ccy),0 1S equal to y4\ 0 Tiix) (72) and H)y o Ky is the identity,
thesequent A | {HA(¢) }yer F HA (¢) must coincide with 0 | T [¢i(s), x07A] F @' [Nerisy, a07 ]
and the thesis follows applying rule SussT.
*0|I'F¢is0| m(L,z) for some p € . Then, by construction, A | {Hx(¢) }yer F Hx(¢) is

Alm (J_, ﬂcri(2)7)\(ﬁb)) which is in A by rule INF.

We can now proceed by induction on a derivation of 0 | T' - ¢ from the axioms of Ay, (). By
Lemma the only case we have to deal with is the application of rule Susst. Suppose then that
0 | T F ¢ is obtained applying SussT, then there exists A\; < &, a function o: Ay — Ty, )(0)
and a sequent \; | © F ¢ in Ay, () such that T' = ©[o] and ¢ = ¢[o]. Now, if Ay = 0, o must
be ?Tcri():)\) , so that 0., ), must be the identity and there is nothing to show. Suppose then that
A1 is not the empty set, so there is a function f: A — A\ which, in particular, defines a morphism
Vu(A) — Vu(A1) and, by Remark an arrow (idoy,idcy + f): ¥x — Xy,. By the same
Remark , we know that the sequent

A1 {fr(idoz,ichJrf),)\l(O‘)}ae(_) F tr(idoy, idoy + )0 (©)

is an element of Ay, (x,). Define

A =1(doy ideg +HM (@) @ =1idoy idey + 0 (P) O = {a}aco

Therefore the sequent Ay | © - @ is in Ag, (). Point 1 and the inductive hypothesis entails that
AL HHN (G (@)} oco B Ha (G, (9)) is in A, so that we get

Yaa oo A = Ty (A) A [ {HA (G, (@)} peo B Hr (G, (9))
A A{HN (G (@) [v3a 001} co B HA (G, (@) [13,0 0 0]

SussT

Now, let v be (Tlcri(le) Al)q@ﬂ.* so that, for any ¥ \-formula § in context A, we have

Y(t) =v(ta) Bisty =to

M (idog, ideg, +£).01 (B) = { (h, E( t)) B is m(h,t)

Then we have a diagram

Tei(5y ),
Tcn EA (Z) cr\(E,\

y
ncr\()])\ A
cr| E,\l

Neri(2), A1 i Wiy lv;;l
-

Tcri(E)()‘) <~ Tcri(E)()‘l) Tcri(EA)((Z])

(’73a>\ oa)cn(E),*

REDN

V3,21
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showing that A | {H., (G, (@) [v3,vu(n) © 0] }aee F Hx, (G, (9)) [13,vu(n) © o] is equal to the
sequent A | {Hx () }yer F Hx(¢) as desired.

3. By Remark Ky = Gyoftr y,» and the thesis follows from point 1. O

idoy;stey

Given a Y-theory A, we can define a relation ~Aixopyy O1 T,i=x)(0) putting #; NAxopy B2 if and

only if 0 [ #; = t5 belongs to A(x ,.x)- Let us look more closely at the properties of ~4 |, .

Proposition 3.2.35. ~ . ,  isacri(Xx)-congruence on Fuis ) (0).

)

Proof. By rules ReFL, Sym and TrANs we have that ~4, , | is an equivalence relation. On the other
hand, given 0 € Ogisy) and 01,02: arein,)(0) = Toisy)(0), if o1 () ~Axoyy 02(Q), for every
@ € argisy)(0) we know that 0 | o1 () = o2() belongs to A(x ;) and thus an application of Cong

yields o(01) ~ax, ., 0(02). O

Let Tax, )t Taisx) (@) — Ta(X, pux) be the quotient map defined by ~4 , ,. By Proposi-
tion and Lemma , for every cri (¥ x)-operation o of arity A, we have a uniquely determined
function op  , : (Ta(X, px))* = Ta(X, px) making TA(xy) @ Cri (Xx)-homomorphism. Our next
goal is to promote this algebra to an object of ¥-FAlg.

)

Lemma 3.2.36. Let X be a k-bounded fuzzy signature and \ a Y-theory, then the following hold true:
1. there exists a function jiy (x,ux): Ta(X, px) — H such that for every t € Teix: (1)), the sequent

O | m('uA7(X)F"X) (TrA(X,p,X)(t)) 7t>

belongs to A (x )

2. there exists a X x -algebra Lix .y, 0N (TA(X, px )5 Ba (X, pux)) Stch that

L ) L .
o AMxpx) — jl(O)A(X,u,X) c Mx,ux) ZJQ(C)A(X,“,X)
where j1 and j are the inclusions of, respectively, O and Cs into Oi(s );
3. forevery o: X = Teis ) (0), LAxs ':”A<X,“X)°U ¢ if and only if 0 | plo] is in A(x )5
4 La iy, samodel of A(x ,uy);
5. the Y-algebra Fy (X, pux) obtained applying (idos,, tos,)* to L, is a model of A.
Proof. 1. Let us start by defining a function
/'L;M(X,Hx): Tcri(ZX)(w) — H t— sup ({h cH ‘ 0 | m(h,t) S A(X,MX)})
If t; and ty € Tis)(0) are such that ¢ ~Axoy B2 then both 0 | ¢; = t2 and 0 | t2 = ¢; belong
t0 A(x ) and thus we have derivations
O‘t]EtQ O\m(h,tl) O|t25t1 O|m(h,t2)
UN
0 | m(hth) 0 ‘ m(hvtl)

UN

showing that

{h cH | 0 ‘ m(h,tl) c A(XMX)} = {h cH | 0 | m(h,tg) c A(X,“X)}
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which implies pi (v, ) (t1) = 11 (x ..\ (t2), therefore inducing pia |, : Ta(X, ux) — H. Ap-
plying rule Sup, it follows that, for every cri (Xx )-term ¢ € T,;(5; ) (?), the membership proposition

0|m (u'A,(X#X) (1), t) belongs to A(x ;) and we can conclude.

2. Let us split the cases between constants and operations.

® j2(€)A(x .., 18 an arrow 1 — T (X, pux) which automatically induces a morphism of fuzzy

sets j2(C)acx.,y 0 Va(1) = (TA(X, UX)zMA(XY“X))-
Now let o be an element of Oy, and recall that
Oeri(sy) (71(0)) = Vi (arsy (0))
= Vi (ars(0))
Hence, an element of (T (X, pux))®=x (°) is just a function o: Vi (arg(0)) — Ta(X, px).
Now, for every 7: Vi (ars(0)) = Teix ) () we know, by the previous point, that the mem-
bership proposition 0 | m (“;\(x ) (T()), T(a)) is an element of A(x ,, ., thus we can apply

rule Exp to get that the sequent

0fm{ A (Homor(@) = Ha(x (7(@))) i 0)(7)
a€Vi(ars(0))

is in A(x ;) too, implying that
A\ (orso)(@) =t (7)) < B (x ) (1(0)(7)
aEVH(arz(o))

Take now o: Vi (ars(0)) = Ta(X, 1x ), assuming the axiom of choice, WXH}EWZ(;))) is surjec-
X

tive, therefore there exists another arrow 7: Vi (ars(0)) = Tyix ) (#) such that
Th(xpg) OT =0

ar

Let p be the membership degree of (TA(X, LX), LLA,(XMX)) E(O), then we have
p) = N\ (Hors(0) (@) = pa (x.ux)(0(@)))
a€Vi(ars(0))

= /\ (/’LOFE(O) (Oé) — HA (X, ux) ((T(-A(X,,LX) (T(Oé))))
a€Vu(ars(0))

= /\ (Morz(o)(a) - MIA,(X,HX)(T(CY)))
a€Vh(ars(0))

<t ) G10)(T))
= HA (X ux) (WAuwx) (71 (0)(T)))

= 'uA7(qu'X) (jl(O)A(XnU'X) (FA(X»HX) °© T>)
= :U'A(x,,LX) (jl (O)A,(X,;Lx) (U))
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and we can conclude that j; (0) is indeed a morphism of Fuz(H).

Ax,ux)

3. Let us start by noticing that, since mp . , , is a cri(¥x)-homomorphism, we have that

o = o) .
(WA(X’“X) U) cri(Sx ), * WA(X’“X> Teri(Zx),x
Now we can split the cases.

* pisty =ty for some ty,ts € Tyimy)(A). Then LA (xy Frnoo @ if and only if

TA X,y (Ucri(EX),* (tl)) = TAxux) (Ucri(Zx),* (t2))

which, by construction is equivalent to the sequent

0 | Ucri(Zx),*(tl) = Ucri(Ex),*(tQ)

being in A(x ,, ), but this is exactly the thesis.
* ¢pism(h,t) for somet € Teyx,)(A) and h € H. Then LA (xy) Frnoo ¢ if and only if

h < N;\7(X,HX)(0-cri(Ex),*(t))
which in turn is equivalent to O | m(h, Ucri(zx)’*(t)) € Ax uy)-

4. Take asequent A [ ' ¢ in A(x ) and let f: A = Th (X, px) be a function such that Ly , | F
1 for every element ¢ € I'. By the axiom of choice there exists a function o: A — T ;(x ) such
that f = m ., © 0, hence, applying the previous point, we get that {0 | ¥[o]}yer C A(x ux)-
Applying Cut and SussT we get the following derivation

O'Z)\—>Tcri(gx)(@) AMTEH¢
0] Yfol} e 0| Tlo] F 9lo]
0| ¢lo]

showing that 0 | ¢[o] is an element of A(x , ). The previous point now yields the thesis.

SuBsT

Cur

5. This follows at once from the previous point, and Proposition applied to (idoy, tey). O
We can deduce a completeness result from the previous lemma.

Corollary 3.2.37. Given a k-bounded signature ¥, a sequent X\ | ¢ is staisfied by all models of a X-theory A if
and only if it belongs to A.

Proof. (=) If X | ¢ is satisfied by every model of A, then it is satisfied by FA (Vi (A)). The diagram
n% Teriesy (N)

A —_— Tcri(E,\)(A) TA(VH(/\))

TAVH(O)

“a Tcri(EvH(/\))( ) WAVH(A)



130 3. Fuzzy algebraic theories

shows that Lag,_,, satisfies A | tr(

idoy. oy ) A (@) With respect to mag () © wa. Now, by Remark

0 [ tr(idoy ey (@) [wa] is just O | Kx(¢) and by the third point of Lemma we know that it is an
element of Ag,(5). The thesis now follows from point 2 of Proposition and from Remark
(«=) This follows at once from Lemma . O

We are now ready to show the main theorem of this section.

Theorem 3.2.38. Let X be a k-bounded signature and A a X-theory, the forgetful functor Vi : Mod(A) —
Fuz(H) has a left adjoint F).

Proof. Let (X, jux) be a fuzzy set and define na (x.ux) 38 T, ) © W(X ux)» SO that, for every z € X,

NA,(X,ux) (@) is the only element in the image TSR TA(X, px). By definition the sequent
0] m(px(x),z)isin Ax ), thus

px () < pn(x ) (Ma,(Xx) (7))

and we get amorphismny (x )¢ (X, px) = (Ta(X, pix), 1o ). Take now amodel A of A with V (A) =
(A, pa) and a morphism f: (X, ux) — (A4, na). We can use f to endow A with a ¥ x-algebra structure
Ay. This is easily done putting

o = o? (Lo () = A (tx ()Y = f(2)

where ¢y, and ¢ x are the coprojections. We want to show that Ay is a model for A(x ,, ).
On the one hand the unique arrow (?4) (s; )« * Tuisx) (0) = A, induced by ?4: § — A, must send
the constant 7 to f(z). Now, since f is a morphism (X, ux) — (A, pa), it follows that

px () < pa(f(z))

But this is the same as saying that A satisfies all the elements of {0 | m(ux (x),T) }rex.
On the other hand, notice that (idoy,, tcy,)*(Ay) = A. Thus Proposition entails that, for every
sequent A | '+ ¢ in A, Ay satisfies

Al {fr(idoE oy (¢)} F 1 (idoy, ioy) (©)

Per

By Lemma we conclude that Ay lies in Mod(A(x,,))-
Now let ¢; and t3 be elements of T¢ (s )(0) such that NAxony 25 then 0 | t; = t2 belongs to
A(x,ux) and thus

(?A)cri(Ex),* (tl) = (?A)cri(Zx),* (t2)

Hence, there exists a unique cri (X x )-homomorphism f . : WgX(LA(MX)) — Wy ((Ay) such that the
following diagram commutes

(P )ei(zx) =

Tuis) (0) —— "> A
ﬂA(&ux)\L

Ta(X,px)
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On the other hand if 0 | m(h, ) isin A(x , ) then

h < HA ((?A)cri(Ex)7*<t))

and thus fa . is actually a ¥ x-homomorphism Ly . , | — Ay, hence, in particular, it is also a morphism
FA(X, px) — Ain Mod(A). Notice, moreover, that fa .(1,(x,ux) (%)) must coincide with f(z) since
the following diagram commutes.

A
11— =7 4

o MK l

TA(Xa ,UX)

I«
Now let g: F5(X, ux) — A be another ¥-homomorphism such that g o 1, (x,,) = [, this means that
the following diagram commutes

A
o f
1] —

A X l
g

Ta(X, px)
i.e. that g is actually a cri (¥ x )-homomorphism. By the initiality of T¢s; ) (9), it follows that

90 MAcx e = (Ta)ei(m)

and therefore g = fa .. O

Notation. Given a X-theory A with ¥ s-bounded, we can define S) as the composition Vi o Fy. In
particular we will use the notation

SAX, pix) = (Ta(X, 1x)s Ba,(X x) )

As before, when A is the theory without axioms, we will denote Sy and F by, respectively, Sy, and
Fs.. Moreover we will use yx; (x ;. ) to denote the membership degree of Sx (X, 1x).

Remark 3.2.39. Let X be a k-bounded fuzzy signature, then we have a diagram

Ws

¥-FAlg cri (X)-Alg
| |-
Fuz(H) " Set
By Corollary and Proposition Vi and Wy, are left adjoints, thus there exists a natural iso-

morphism ©: Wx o Fy — Fisy 0 V. Let Tx be Wy o Fx, then the previous observation means that, for
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every (X, ux) in Fuz(H), there is an isomorphism of cri (¥)-algebras © x ;) : Teiz) (X) = Tx(X, ux)
which, moreover, fits in the triangle below:

X

ncr'(Z% VH(UE,(X,;LX))

Tein)(X) ———Tx(X, px)

OX,ux)
Ts sends f: (X, px) — (Y, py) to Sxu(f), so we can add the following square to the triangle above.

O(X.ux)

Ty (X) ————Ts(X, ux)

Tcrl(E)(f)\L J/SE(f)

TCri(E) (Y) Ty (Ya ;U'Y)

Oviuy)
This last remark allows us to prove the following.

Proposition 3.2.40. Given ¥ € FSign,, for every X-theory A and fuzzy set (X, ux ), there exists a unique
natural transformation wy: Sy, — Sa such that the triangle below commutes.

idpuz(H)

Moreover, each component ma (x .1x): Ss(X,pux) — Sa(X,px) defines a surjective S-homomorphism
FZ(Xa ,LLX) — FA(XaMX)

Proof. For every fuzzy set (X, ux ), FA(X, px) is a X-algebra and we can define 75 (x ,, ) as the unique
Y-homomorphism fitting in the diagram

(Xv MX)
"E%y &um
Se(Xopx) e = 9a(X px)

TTA,(X,ux) 18 @ ri (X)-homomorphism, therefore, using Lemma , we have

_ 1
TA(X,ux) = TAxuy) © V3,Xx SXC)

and this proves its surjectivity.
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For naturality, take f: (X, ux) — (Y, 1y ), then we can construct the diagram

Ne, (X, nx) N, (X,mux)

S5 (X, px) (X, px)

|

(Y, py) Ss(f)

e, (Ypy)
A (Y, my )

Sa(Y, py) Ss(Y, py)

SE(X7 /’LX)

TA(X px) NA, (X, x)

SA(X7 /’LX)

TA (Y my)

Sa(f)

The thesis now follows since Sx(f) and Sa(f) are X-homomorphisms, respectively, Fx (X, ux) —
Fs (Y, py) and FA(X, px) = FA(Y, py). O

Given Corollary , the following result is now immediate.
Proposition 3.2.41. For every k-accessible signature 3, the functor Sx; has rank k.

Corollary 3.2.42. Given a k-accessible signature 3, (Sx,idsy0., ) is a left Kan extension of S, o J,; along
J» where J,; is the inclusion Fuz,,(H) — Fuz(H).

Proof. Immediate from Theorem and Proposition . O

We already know, by virtue of Example , that extending the previous result to arbitrary 3-
theories, to get a full analog of Corollary is impossible. The next example, together with Theo-
rem , show that the situation is even worse: given a ¥-theory A, with ¥ € FSign,, (Sa,ids,0s,) in
general is not the left Kan extension of Sy o J, along J,.

Example 3.2.43. Let H be ([0, 1], <) and take ¥ to be the signature with no operations nor constants.
We can then consider the theory with the following set of axioms:

{2 m(r,z) Fmlry)}cio VA2 [ m(l,2) Fo =y}

A Y-algebra is just a fuzzy set (X, ux) , while there are two kinds of models of A: Ay(1) or fuzzy
sets (X, px) such that px is constant at a value strictly smaller than 1. Given a fuzzy set (X, px), let
5(X, px ) be the supremum of the family {yx ()} e x, and let c5(x ) be the function X — H constant
in s(X, px) then:

AH(].) S(AX7 /Lx) =1

(X, esxx))  s(Xopx) <1

To see this, notice that we have an 75 (x .v): (X, px) = Sa(X, ux) which is the identity (X, ux) —
(X, co(x,ux)) i $(X, px) < Lor!(x .y, otherwise. If(Y, py ) isamodel of Aand f: (X, ux) — (Y, py)
a morphism of Fuz(H), then we have two cases:

® 5(X,pux) is 1, then also s(Y, uy') must be 1, thus Sz (X, px) and ((Y, py), dy,) are both Ag(1)
and the unique morphism between them is the identity;

SA(X, px) :{

e if s(X, ux) < 1, the inequalities

px (x) <py (f(x))
= s(Y, py)

entails that s(X, ux) < s(Y, uy), therefore f itself defines a morphism Sy (X, ux) — (Y, py).
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Given f: (X, ux) — (Y, py), the previous observations entail that

_ vy sVipy) =1
= {f l s(Y,py) <1

Now, take (N, uy) where

' N 0,1
HN —>[7] an‘f'l

Then Sy (N, pun) is (Au(1), while, for any finite set A C N, Sy (A, pja) is simply (A, iy 4). Moreover,
given A C B, Sz(ia p) 1s again the inclusion i 4 5. By Lemma and Theorem , We can now
deduce that Sy is not the left Kan extension of its restriction to Fuzy, (H) along Jx,.

3.2.2 Fuzzy algebraic theories and monads

In the previous section we have proved Theorem , showing that, for every given a k-bounded signa-
ture ¥ and a 3-theory A, the forgetful functor V) : Mod(A) — Fuz(H) has a left adjoint F. As in the
case of ordinary algebraic theories, we can them appeal to Proposition in order to equip the functor
Sp = VaoF) with amonad structure, getting Sp := (S, 74, va). While it is not true that V, is monadic,
we will show that this is true for a class of theories, called basic.

Our strategy will be the same as the one employed in Section , so let us start looking closely to
the comparison functor K : Mod(A) — EM(S,).

Given A = (A, {OA}onz , {CA}ceCE) in Mod(A), the component €j 4 of the counit of F) 4 V

is given by (ida)a «: Fa((A, pa)) — A. Thus, applying Propositions and we get:

* for every fuzzy set (X, ux), va,(x,ux): SA(SA(X, px)) = Sa(X,pux) is (ids,(x)), ,» so that
VA, (X,ux) defines a ¥X-homomorphism Fi (Sa (X, px)) — Fa(X, pix);

e the comparison functor K : Mod(A) — EM(S,) is defined by

A (A, pa), (ideaua)as)
il s
B+— ((Ba/JB), (id(B,uB))A’*)

In order to construct an inverse to K, our first step is to mimic Definition

Definition 3.2.44. Let A be a X-theory, given an Eilenberg-Moore algebra ((X, px), &) for Sa, its asso-
ciated S-algebra Hp (X, &) = ((X, fix), {ofa(X:0) }0602 , {cHAX0) }CEC):) is defined taking as oA (X:€)

and c12 (X8 the compositions
(o) 77;?(;)“)() ©) oFA(Xnx) ¢
(X, px )0 ———— (SA(X, px )™ —————— Sa(X, px) ——— (X, px)
FAXopx) I3
Vi (1) > SA(X, px) > (X, pix)
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Proposition 3.2.45. For every X-theory A, with ¥ € FSign,, if (X, ux ), &) is an Eilenberg-Moore algebra
for Sa, then the arrow & itself is a X-homomorphism Fa(X, pux) — Hx((X, px), ). Moreover

E = (id(X,/LX))Aa*
Proof. By definition, we have that
HAN(Xopx),8) — o Fa(Xpx)
On the other hand, we have already proved that in the following diagram all the inner subdiagrams com-
mute, so that the whole commutes too

ars; (o)
LUNTS 7 oFA(X,nx)

(X, px)=)

(SA(X, px))er=(©) Sa(X, px)

§°*E<°>T T(SA(E))"'E(") sA(@T
ars(o) ) ars(o) OFASACE X)) ¢
(Sa(X, px))o= (SA(SA(X, px )=t —— Sp (SA (X, px))

\) V‘Xﬁgf,)ux)l ”A«x,ux)l
. qars2 (o) r o
gy (X, x) (SA(X, px))or=(©) Sa(X, px) : (X, px)

OFAX 1 x))

The last part of the thesis follows at once from the identity £ o 1y (x ) = id(x,1x)- O

Example 3.2.46. Let H be the frame (2, <) and consider the signature ¥ with no operations and a constant
c. We take now the ¥-theory A with axiom

2|m(l,e)Fax=y
We can compute explicitly Sy. We claim that
SA(Xv :uX) = (Xv :uX) + VH(l)

The coprojection jy,,(1): Vu(1) — (X, px) + Vu(1) equip this fuzzy set Sp (X, ux) with a ¥-algebra
structure which is a model of A. The other coprojection gives us a morphism 7 (x ,y: (X, ux) —
Sa(X, pux) which has the universal property of the unit of F 4 Viy. To see this, let A = ((4, pa),c?)
be a model of A and f: (X,ux) — (A, pa) a morphism of Fuz(H). By the universal property of
coproducts the unique ¥-homomorphism fa .: (Sa(X, 11x), 1) — ((A, 1a), c*) such that

J = Iasonn (X ux)

is the one induced by f and ¢*. We can then conclude that, S, is the exception monad of Example
with VH(1) as E. Sx(Sa (X, px)) is the coproduct of (X, 1 x ) and two copies of VH(1), so that we have

idVH(D

Vu(1) Vu(l)

J’vmn&l iiju)

(X, px)+ Vu(l) + Vu(1) (X, px) + Vu(l)

VA (X,nx)
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idvH(l)

Vh(1) VH(1)

J’vmn,zl iij(n

(X, px)+ Vu(l) + Vu(1) (X, px) + Vu(l)

VAL(X ix)
where jy,(1),1 and jy, (1,2 are the two coprojections with domain Vi (1). Considering the other copro-

jection jix .uy): (X, ux) — Sa(Sa(X, ux)) we also have

id(XMx)

(leiX) (X,,uX)

j(&u;g)l l”/\v(xvux)

(X, pux)+ Vu(l) + V(1) (X, px) + Vu(1)

VA(X,mx)

Now let X = {a,b} be any set with two elements and cx the function X — 2 constant in 1. Then
there are no Y-algebra structures on (X, cx) making it a model of A. On the other hand, we can define
§: Sa(X,cx) — (X, cx) as the arrow induced by id(x cy) and d.: Vu(1) — (X, cx). Clearly £ o
1A, (X,cx) 1s the identity, while we have

§0 VA (X,ex) O J(Xiex) = € O, (X,ex) ©1d(X,ex)
=& oma,(X,ex) ©€ 0 J(X,ex)
= &0 Sr(E) od(xex)

£ 0 VA (X,ex) ©JVn(1),1 = €0 Jvi) ©id(x,cx) £ 0 VA (X,ex) ©TVn(1),2 = & © Jvn(1) ©id(x cy)
= £ 0 jvu() = £ 0 jvu)
=E&0Sr() o jvnyn = &0 5x(&) °Jvn).2

Therefore ((X, cx), &) is an object of EM(S,) which cannot be in the essential image of the comparison
functor K : Mod(A) — EM(SA) and which, moreover, is such that Hx (X, cx),§) is not in Mod(A).

The previous example shows that, in general Hj ((X, px), &) is not a model of A. We can nonetheless
identify a class of theories such that this holds. As in [16, 91] the right class of theories is the one given
by theories axiomatizable by axioms whose premises contains only variables.

Definition 3.2.47. Let X be a s-bounded signature, a X-theory A is basic (or, using the terminology of
[15], simple) if it has a set of axiom S such that, for any sequent A | I' F ¢ in it, all the formulae in T
contain only variables, i.e. elements in the image of 7(x),x-

Example 3.2.48. Fuzzy groups, fuzzy normal groups, fuzzy semigroups and left, right, bilateral ideals
(Examples and ) are all examples of basic theories.

Lemma 3.2.49. Let X be a k-bounded signature. For every basic X-theory A, if (X, ux),§) is an object of
EM(Sy), then Hp (X, ux), &) is a model of A.

Proof. Let S be a set of axiom for A such that for every sequent A | T + ¢ in it, each formula in T’
contains only variables. Let f: A — X be a function, we can notice that, if Hy((X, ux),€) Fy T then
Fa(X,px) E of I' too. To see this, fix a formula ¢ in T, and split the cases:

NA(X 1 x)
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e if Y is x = y, let 2 and y be, respectively 7c(x) (@) and iy A (B) for some a, 5 € X. By
hypothesis

f(Oé) = fcri(E),* (ncri(Z),)\(a))
= fuic=)x (Nericy A (8))
= f(B)

so that we also have

(n(XvILX) ° f) cri(3),* (77 X HX) f)crl(Z) * (775”(2 ( ))
)

= N(xpx) (f(@)
= Nxx) ((B))

= (1xx) © F) sy o (77cn<z A(8))
= (Mxix) © 'f)cn (D),

which is precisely what we claimed;

® if ¢ is m(h, z) for some h € H and & = 1)c;(s;),» () for some a € A, then

h < px (feics),« ()
= px (feis) e (e A (@)
= px(f(a))
< 1) (M, (X ) (F (@)

= [IA,(X,px) ((U(X,px) © ) iy (ncri(E))\(O‘)))
= 1) ( (00%0x) © F) sy 0 ()

and we can conclude again.

Since FA(X, px) is a model for A, we can deduce from the previous observations that Fj (X, 1x)
satisfies ¢ with respect to 75 (x5 © f. Now, by Proposition 3.2.45, £ is a ¥-homomorphism, thus, in
particular, it is also a cri (X)-homomorphism, then

€0 (Ma,(x,ux) © f)cri(z,*) = (§ o ma,(xux) © f)m(z),*
= (id(x ) © f)cri(E),*
= fei(D),*
We have again two cases.

® ¢ist = s, then

fcri(2)7*(t> = f((nA,(X7ux) © f)cri(E),* (t))

= 6((77A,(X’#X) °© f)cri(E),* <5>)
= feri(x),«(5)
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o $is m(h, 1), then
(EINE I ((INEREY) I ()
= Hx (5 (8.1 © f)cri(E),* (t))
= px (fai(z),«(1))
In both cases we can conclude that H (X, ux ), &) Fy ¢ and thus it belongs to Mod(A) O

Consider now a morphism f: (X, &1) — (Y, &) in EM(T},), then we have diagrams

ars: (0)

A (X x) oFA(Xinx) )

3
(SA(X, px))er=0) ————s S\ (X, px) ——— (X, pix)
fers(@) l (Sa(f))er=() l sm‘)l f

(Y, py )or=(?) (S (Y, py))or=(®)

(X, px)=)

Sa(Y,py) ———— (Y, py)

oFA(Yiny) &

| S e (Xox)

Vu(1) Salf) f
m SA(Y, py) (Y, py)

made by commutative rectangles and triangles, therefore f isa X-homomorphism Ha (X, &) — Ha(Y, &2).
This, in turn allows us to define a functor Hy: EM(T,) — Mod(A)

((X7 MX),&I) — HA((X’ MX)vgl)

£l Lf

(Y, py ), &2) = HA((Y, py ), &2)

Theorem 3.2.50. For every ¥ € FSign _ and basic X-theory A, the functor K : Mod(A) — EM(Sy) has
Hp: EM(Sp) — Mod(A) as an inverse.

ars; (0)
A (Y ny)

Proof. Hp and K both act on arrows as the identity, hence it is enough to show that they are mutually
inverse on objects.
On one hand, if ((X, ux), &) be an Eilenberg-Moore algebra for Sy, by construction we have

KA(HA((X, 1x),€)) = (X, (id(x pux) ) A
Proposition entails § = (id(x,;ux))A,« 50 that Ky o Hy = idpms,)-
On the other hand, if A = (A, {0“4}0‘50Z , {CA}ceCE) is a model of A, then we have a diagram

aryy (0)

A(A, 1 4) oFA(Ana)
(A, pua)o=0) ——25 (S (A, 14))°=(0) s Sy (A, p1a)
l(id/ﬁ)ﬁ@ i(idm,um)m
id?’f(”)
A

(A, pa)er=) > (A pa)
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which is commutative since K (A) is an object of EM(T,) and (ida)a « is 2 ¥-homomorphism. In
particular this shows that 0 = 0"A(Ka(4) Now it is enough to notice that we have another diagram

Va(1)

CFV \A

SA(Av/JA) ('d ) (A,NA)
idia,na))y

to conclude that Hj o Kp = idyoeqa)- O
Corollary 3.2.51. Let ¥ be a r-bounded signature and A\ a S-theory, then Vy is strictly monadic.
Let Ip : Mod(A) — X-FAlg be the inclusion of models of A into the category of X-algebras. By

Corollary we know that there is a functor F': EM(Ss) — EM(Syx) fitting in the diagram below
Mod(A I ¥-FAlg
K Fuz Ks
EM(Spy) oo o> EM(Sy)

Moreover, for every A € Mod(A), (id(,,,,))a,« ©7A, 4 is the unique X-homomorphism which makes
the following diagram commutative

(Av ,UA)

NS, (A,ua) id(a,u )
inA‘(AYMA)

Sw (4, 1)) oy Sal(A 1) o= (A 1)
Applying this argument to I (Hp (X, €)), and using Proposition we get that F is given by

(X, px)s &) — (X, px), 10 Ta (X ux))

£l Lf

((K ;U'Y)7£2) — ((YhuY)ngOﬂ'A,(Y,uy))

If we apply Proposition , the previous observations now yield the following result.

Proposition 3.2.52. Given ¥ € Sign,_ and a X-theory A, there exists a morphism of monads ma : Ss; — Sa
whose component at (X, pux ) is given by ma (x ;uix)-

Two HSP theorems for fuzzy algebraic theories

In this section we prove two results for our calculus analogous to the classic HSP theorem [25], applying
the abstract machinery developed by Milius and Urbat [95] to our case.
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Milius and Urbat’s theorem

Let us start recalling the tools introduced in [95], adapted to our situation.

Definition 3.3.1. An object X of a category X is projective with respect to an arrow f: Z — 'Y if for any
h: X — Y thereexistsa k: X — Z such that the following diagram commutes

-7

s

Y

X

h

Let (£, M) be a proper factorization system on X. For every subclass X" of objects of X, we define Ex as
the class of e € € such that for every X € X, X is projective with respect to e.

An MU-structureis atriple (X, (€, M), X') where X is a category, (£, M) a proper factorization system
on it and X a class of objects of X such that

1. X has all (small) products and it is E-cowellpowered;
2. for every object X of X thereexistse: ¥ — X in Ex withY € X.

A full subcategory Y of X will be called a variery if it is closed under €x-quotients, M-subobjects and
small products, 1.e. if:

e if Y €Y, then for every [e] € Ex-Quot(Y), cod(e) belongs to Y;

e if Y €Y, then for every [m] € M-Sub(Y'), dom(e) belongs to Y;

e if I isaset and {Y;};cs a family of objects of Y, then their product in X belongs to Y, too.
Remark 3.3.2. Notice that if X and ) are two subclasses of objects of X with X C ), then &£y, C Ex.

Let us prove some properties of Ex.
Proposition 3.3.3. Ler (X, (£, M), X) be an MU-structure, then the following hold:

1. if f: Z =Y isan isomorphism, then f € Ex;

2 f: X —>Yandg: Y — Z belongto Ex, then go f € Ex roo;

givnf: X >Yandg:Y = Z,ifgof €Extheng€ Ex.

Proof. 1. By point 1 of Definition , f € €. On the other hand, if X € X and h is an arrow
X — Y, then the following diagram witnesses f € Ex.

ftoh A
/ |

2. By point 2 of Definition , go f is an element of &, so we are left with projectivity. Let
h: A — Z be an arrow with domain in X" and consider the following diagram

X———Y
R ko -
k1 o g
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k2 exists applying projectivity of g to h and k; exists applying projectivity of f to ko. We have

(gof)oky=go(foki)
=goks
=h

3. By point 3 of Corollary we know that g € £, so let h: A — Z be an arrow with domain X,
since g o f € Ex we get the solid part of the following diagram

Now let k2 be f o k1, computing we get

goky=go(foki)
:(gof)okl
=h

from which the thesis follows at once O

Definition 3.3.4 ([17]). Let (X, (£, M), X) be an MU-structure, an X-equation is an arrow e € £-Quot(X)
with domain X in X'. We say that an object Y of X satisfies a X-equatione: X — Z, ifforeveryh: X — Y
there exists ¢: Z — Y such that the following diagram commutes

Given a class E of X-equations, we define V(E) as the full subcategory of X given by objects that
satisfy e for every e € E. A full subcategory Y is X-equationally presentable if there exists a class E of
X-equations such that Y = V(E).

Remark 3.3.5. The definition of X-equations and all the machinery involved is given in [95] in more
general terms. However, when applied to the two MU-structures on Fuz(H) in which we are interested,
Milius and Urbat’s definition reduces to ours (cfr. their Remark 3.4 in [95]).

We can now notice that X-equationally presentable subcategories are varieties.

Lemma 3.3.6. Let Y be a X-equationally presentable subcategory of X. Then'Y is a variety.

Proof. Let Y be V(E) for some class E of X-equations, we have to prove the three closure properties.
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® Ex-quotients. Let ¢: Y — @ be an arrow in Ex with Y € Y and fix a X-equatione: X — Z in E.
Let h: X — @ be another arrow, since ¢ € Ex we get the dotted k: X — Yin the diagram

z Fosy
7

[ 7

X - Q

On the other hand, Y € V(E)so there also exists the other dotted arrow k': Z — Y ¥ and the
thesis now follows.

® M-subobjects. Let Y be an object of Y and m: M — Y an arrow in M. As before fix an element
e: X — Z of E and an arrow h: X — M. Since Y € V(F) there exists k: Z — Y making the
solid part of the following diagram commutative

h

X M
7
el k/—‘ m
7 Y
k

Now, e is in € and (£, M) is a factorization system, so there is k’': Z — M witnessing M € V(E).

¢ Small products. Let {Y; }ier be a small family of objects in Y and let e: X — Z be a given element

of E. For every arrow h: X — [],.; Yi, we get the solid part of the following diagram

Sk
A | L

el
@i

Since Y; is an object of Y = V(E)), we get the existence of the dotted ¢;: E — Y such that
gioe=moh
Let ¢ be the induced arrow into the product, then, for every i € I:

Tiogoe=gq;oe

= T; © h
and thus g o e = h as desired. O

Definition 3.3.7. Let (X, (£, M), X) be an MU-structure, a2 X an object of X'. An X-equation over X is
aclass Jx C X /€ of X-equations with the same domain such that:
1. there is a minimum ex € Jx such that ex < ¢’ for every other ¢/ € Tx;

2. foreverye: X - ZinJx,ifq: Z — VisinEx,thenqoe € Jx.
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An object Y satisfies Jx if, for every h: X — Athereise: X — Zin Jx and q: Z — A such that the
following diagram commutes

X4h>Y

LA

A X-equational theory J is a family {Jx } xcx of X-equations over objects of X such that:

1. (substitution invariance) for every arrow h: X — Y between objects of X and e: Y — Z in Jy, if
Meoh © €eon 15 a (€, M)-factorization of e o h, then ecop, 1s in T x;

2. (Ex-completeness) for every e: Y — Z in Jy, there exists another ¢/ : X — Z in Jx which belongs
also to Ex.

An object Y satisfies J if it satisfies all its elements Jx. We will denote by V, (J) the full subcategory of X
given by the objects satisfying J.

Proposition 3.3.8. Let Jx be an equation over an object X with minimum ex, then an object Y satisfies Jx
if an only if it belongs to V({ex }).

Proof. (=) Let h: X — Y be an arrow, by hypothesis there exists ¢ € Jx and ¢ such that goe = h.
Since ex < e, then there is a k such that & o ex = e and the thesis now follows taking ¢ o k.

(<) This is tautological since ex € Jx. O

Corollary 3.3.9. Let T = {Jx } xex bean equational theory, and define E5 to be the collection of the minima
of all the 3 x, then

V. (J) = V(Es)
In particular, this implies that V. (J) is a variety.

X-equational theories are useful, because we can provide a simple criterion criterion to establish if an
object satisfies a given J.

Proposition 3.3.10. Given an MU-structure (X, (£, M), X) and an X -equational theory 3, an object Y
belongs to V..(J) if and only if there exists X € X and e € Jx with codomainY'.

Proof- (=) By point 2 of Definition there is e: X — Y in Ex, with X € X. By hypothesis Y’
satisfies J, thus it satisfies Jx and so thereise’: X — Zin Jx and ¢: Z — Y fitting in the diagram

¢ Vv

17

By the third point of Proposition , ¢ € Ex and the thesis now follows since Jx is closed under
composition with elements of Ex.

(<)Lete: X — Y beanelement of Jx with codomain Y, by £x completeness there is another¢’: Y —
Y in Jy which is also in Ex. Take now any other Z € X and suppose that an arrow X — Y is given.



144 3. Fuzzy algebraic theories

Since €’ € Ex we geta k: Z — Y’ which makes the following diagram commute

Melok
But now, this diagram witnesses that Y satisfies Jz and the thesis now follows. O

Take now a variety Y, then for every X € X we can define Z(Y) x putting
I(Y)x :={e€ X/E | cod(e) € Y}
The following proposition guarantees us that in this way we get an X-equational theory.
Proposition 3.3.11. Let (X, (£, M), X) be an MU-structure, then for every variety Y, the family
T(Y) = {Z(V)x}xex
is an X -equational theory.

Proof. First of all we have to show that, for every X € X, Z(Y) x is an X-equation over X.

1. By definition of MU-structure ,X is £-cowellpowered. Thus there exists aset {¢; };icr € Z(Y) x such
that, for every e € Z(Y) x, e = e; for some ¢ € I. Let X; be the codomain of e;, we have a diagram

X
ef if\
Y — HXZ» —— X,

iel

where f is the arrow induced by {e;}icr and ey, my an (€, M)-factorization of it. ey belongs to
Z(Y)x since Y is a variety and, by construction, ef < e, for every i € I. The thesis now follows
since any element of Z(Y) x is equivalent to one of {¢; };c;.

2.Lete: X -+ ZbeinZ(Y)x, i qg: Z — Z'isin Ex then Z’ belongs to Y and thus g o e € Z(Y) x.

Next, we have to show that Z(Y) enjoys the substitution invariance and €x-completeness properties.
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1. Let h: X — Y be an arrow between two objects of X and let e € Z(Y)y . Factoring e o h we get a
diagram

X "oy

ok

Z/ ﬁ Z
Z isin'Y so, since Y is a variety, Z’ is in Y too and thus e.op, belongs to Z(Y) x.
2. Lete: Y — Z be an element of Jy, by definition of MU-structure there exists ¢': X — Z in Ex
which, by definition, is in Z(Y) x and we are done. O

Lemma 3.3.12. Given an MU-structure (X, (€, M), X), the following hold true:
1. for every variety Y, V.(Z(Y)) = Y;
2. for every X-equational theory 3, Z(V(J)) = J.

Proof- 1. Let us show the two inclusions.

(C) Let Y be an object of V.. (Z(Y)), by Proposition there exists X € X and e € Z(Y) x with
codomain Y and thus Y € Y by definition of Z(Y) x.

(D) By definition of MU-structure, for every Y € Y there exists e: X — Y in Ex with domain in
X. Hence e € Z(Y) x and Proposition yields Y € V. (Z(Y)).

2. As in the previous point, we are going to show the two inclusions

(C) Givene: X = Y in Z(V.(J3))x, we know that Y € V. (7). By Proposition there exists
X' eXande': X' - Y in Jx/. By Ex-completeness we get another ¢”: X" — Y in Jx~ which,
moreover, is in Ex. Take the diagram

. 7)];//
X——=Y

The existence of the dotted h is guaranteed by the projectivity of X with respect to ¢”. We can

factor €’ o h to get a square

X4h>XN

€
ee//ohi \ ie//

Z ——Y

Meriop
By the third point of Proposition , Meron € Ex. By substitution invariance ey, is an object
of Jx, which is closed under composition with arrows in £y, therefore e € Jx too.
(D) Takee: X — Y inJx, thus Y € V,(Jx) by Proposition andsoe € Z(V, (7)) x. O

Corollary 3.3.13 ([95, Th. 3.16]). A full subcategory Y of X is X-equationally presentable if and only if it is
a variety.

Proof. (=) This is the content of Lemma
(<) By Lemma we know that Y = V. (Z(Y)), therefore Corollary yields the thesis. O
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Application to fuzzy algebras

We now want to apply the machinery developed in the previous section to fuzzy Y-algebras for some
k-bounded signature X. In order to do so we are going to define two MU-structures on 3-FAlg.

Lemma 3.3.14. For any k-bounded signature %, there exists a proper factorization system (Ex,, Mx) on
Y-FAlg, where e € Es if and only if Vs (e) is an epimorphism and m € My, if and only if Vs,(m) is a
regular monomorphism.

Proof. This follows from Theorem , Remark , and Corollaries and O

Remark 3.3.15. Notice that, by Proposition and Corollary , My is exactly the class of regular
monos in YX-FAlg.

Next, we define the following two classes of 3-algebras putting
Xo = {Fs(Vua(X)) | X € Set} Xy :={Fs(X,ux) | (X,px) € Fuz(H) and [supp(X, ux)| < k}
The following lemma assures us that in this way we get two MU-structures.
Lemma 3.3.16. With the definitions given above, the following hold true
1 (&) y, = Ess
2. (&), = {e € &s | Va(e) is split};
3. (X-FAlg, (&s, Mx), Xy) and (2-FAlg, (Es, Myx), X)) are MU-structures.

Proof. 1. It is enough to show that every arrow in €y is in (€x),,. Let e: A — B be an arrow in
Ey and let h: Fy, (Vu(X)) — B be any morphism of X-FAlg. By definition e is surjective. So, if
(A, pa) = Vu(A), for any = € X there exists k(z) € A such that

e(k(z)) =h (Uz,vﬂ(x)(x))

This defines a function k: X — A where A is the algebra ((A,;LA)7 {OA}onz , {024602}>' k
is also a morphism k: Vy(X) — (A, pa), therefore, by adjointness, we get a X-homomorphism
ks..: Fx (Va(X)) — A, and computing, we have

(eo /412,*) OMs, vu(X) = €° (k‘z,* S UZ,VH(X))
=eok
=ho s, Vu(X)
Hence, we can deduce that e o ks .. = h.

2. Let us show the two inclusions.

(C) Take an element e: A — Bin (£x)x,,, and consider the component in B of the counit e: Fy; 0
Vs — ids.palg of the adjunction Fy, 4 Vx. If (A, ua) and (B, pup) are, respectively, Vs (A) and
Vs (B), we get a diagram:

ko= A

|

Fs(B,pp) —5—>B
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where the dotted & exists since e € (Ex) x,,. Now the thesis follows noticing that

eokons (B.up) = €8 ONL,(B.us)

= id(B,up)

(D) Now lete: A — Bbesuch that Vs (e) is split and let s be a section of it. Given an arrowh: Fx (X, ux) —
B we can consider define k& as the composition

N, (X, nx) s

(XMU‘X) (B’NB)—>(A7/LA)

SE(X7 ,UX)

where, asusual, (A, 14) and (B, pup) are Vs (A) and Vs (B). By adjointness we get a ¥-homomorphism
ks «: Fs(X,pux) — Aand
(e0ks,x) 0 nz (x.ux) = €0 (ks 079, (x ux))
=eo (s oho UE(X,MX))
= (eos)o (hons,ix )
= idBum) © B o1 (X )
= homs, (X,pux)
s0 ks, . is the desired lifting.
3. Let us prove all the conditions of Definition
(a) X-FAlg has all products by Proposition and Corollaries and . Moreover,

Y-FAlg is also Ex-cowellpowered: Vi o Vs : 3-FAlg — Set is faithful, it sends e € A/Ex to a
surjective arrow with domain A and Set is cowellpowered with respect to surjective functions.

(b) Let A be an object of X-FAlg and take (A, p4) to be Vs (A). We can consider two arrows:
ida: Vu(A) — (4, pa) id(A,uA): (A, pa) = (A, pa)

which induce
eo: FE(VH(A))—)A em: FE(A,/J,A)%.A

Now, by construction we have the following two equalities
€0 0 Nx,vy(a) =ida  emonsvya) = ida
showing that e is surjective and ey, is split. O

Remark 3.3.17. We will say that an arrow in (€x) X, is a split Ex;-quotient. Notice that such a morphism
is not a split epimorphism in ¥-FAlg.

We want now to relate formulae of our sequent calculus to Xj- and X)y-equations. Recall that, for every
(X, px) € Fuz(H), Remark entails the existence of a cri (X)-isomorphism O (x ;) : Teri(s) (X) —
T5(X, px). Moreover, fix a bijection j: [ X| — X and take R(x ) to be j=* (supp(X, pux)). Finally,
define the function Z(x . ) Tei(s) (| X|) = T=(X, ux ) as the composition

Teics) (4) O(X,ux)
Teis) (1X]) — > Ty (X) ————— T (X, pux)
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Definition 3.3.18. Let ¥ be a x;1-bounded signature and e: Fx (X, px) — B an Xjy-equation. Let also
k the smallest regular cardinal greater or equal than sup (k1,|X|), so that, in particular, 3 is k-bounded.
We define I' x ,, ) as

Uixpx) = {m(px (5() i), x| (@) YacRox
A sequent | X| | T'(x ) - ¢ will be called a e-sequent if
o (]5 is t1 =to and € (E(X,,u,x)(tl)) =€ (E(X,MX)(tQ));
* ¢ism(h,t)and h < pp (e (Ecx,ux)(1)))-
We define A, as the theory generated by all the e-sequents.

Lemma 3.3.19. Let X be a r-bounded signature and e: Ts,(X, px) — B an Xy-equation such that | X| < k.
Then Mod(A.) = V({e}).

Proof. (C) LetC beamodel of A and h: Fx (X, px) — C a X-homomorphism. Let s; and s; be elements
of T (X, ux) such that

e(s1) = e(sa2)
By Remark , we also have t1,ty € Tis)(| X|) such that
Exux)(t1) =51 E(x,ux)(t2) = 52

In Set we can form a diagram

Neri(),] X | Tcri(E) (|X|) .
- (hons, x07) .
Tericsy (9) -
|X| Neri(2), X Tcri(E)(X)
Jl / l@(x.ﬂx) 1:
4 v
X — 7 (X, pux) c

which shows that
ho E(XvNX) = (h onNs,x © j)cri(E),*
Notice that, for every a € | X| we have
px (§(@)) < po(h(ns x (7 (@))))
= Hc((h ONEX O J) () (ﬂcri(z),m(a)))
Since by hypothesis C is a model of A., we get
h(s1) = h (E(x ) (1))
= (honzx ©J)us). (t1)
= (honzx ©J)us).. (t2)

=h (E(XHMX)(tQ))
= h(s2)
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By Proposition 2.2.67 we get a cri (X)-homomorphism g making the following diagram commutative

TE(X,,U/X) C

h
K4
, g

5o

Now let b be an element of B, since e is surjective there exists t € T(x;)(|X ) such that

€ (E(X,HX)(t)) =b

Using again that C is a model of A, we obtain
ns(0) = ns (€ (Boen (1))
< puc ((h ons, X O])m(g (t ))

= pe (b (Exuxn) (1))

= e (9 (e B (1))

= po(g(b))
So, by Remark 3.2.4 g is a ¥-homomorphism and we can conclude.

(2) Now let C be an object in V({e}) and | X| | I'(x ;) - ¢ an e-sequent. Given a function f: | X| — C
such that

px (j(a)) < pe(f(a))
This implies that g := foj ! isamorphism (X, px) — (C, uc) of Fuz(H) inducing a ¥-homomorphism
go: F5(X, ux) — C. Notice that we have a diagram

-1

Neri(2),] X |

Neri(2), X

X\

Since C is in V({e}) we also have a k: B — C such that g5, . = k o e. Let us split the cases.

® ¢ist; =ty forsome t1,ty € Teisy(|X|). Then we have

=k (e (Ex,ux)
=k (e (Exux)
= g5+ (E(xux) (2
= feri(x),«(t2)
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® ¢ism(h,t) forsome h € H and t € Ts)(|X|). Computing we get

and we can conclude. O

Remark 3.3.20. We can refine the previous construction a little. Let ¥ be a signature, (X, px) a fuzzy
set and & a regular cardinal such that ¥ is x-bounded and |supp(X, ux)| < k. Take also an X\-equation
e: Fy(X,ux) — B. Since ¥ is A-bounded for every regular A greater than | X| we can still consider
an e-sequent [X| | T'(x ) F ¢. Notice also that every term in ¢ is the image of some other term
t € T () (@) for some [supp(X, px)| < a < k. Fix an injection ¢: |supp(X, ux)| — « and a bijection
h: Rix uyy — Isupp(X, ux)|, if i: Rix uy) — |X] is the inclusion we can find fy: |X| — « fitting in
the following diagram

h
Rix ux) — [supp(X, pux)|
R > o
¢

Let us now define oy : [X| = Tqyis) () as the composition

‘X‘ fo o Nei(),a

Tcri(E) (0&)
Define A/, as the theory which has as axioms the sequents of type

| Tixoux) o] F olog]

whenever | X| | T'(x ) b ¢ is an e-sequent. We claim that Mod(A.) = Mod(AY).

(C) This follows since A/, is contained in A.: by definition all the axioms of the former are derivable from
the ones of the latter by an application of rule SussT.

(2) Let A be a model for A, and | X| | I'(x,,,) I ¢ an e-sequent. Let also g: | X| — A be a function such
that, for every § € | X]|

px(7(B)) < nalg(B))

Given such g, we can always find §: o — A such that

g=7gofs
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We can then consider the following commutative diagram

Isupp (X, px)] Rix .ux)

ht i
g
fe
Neri(2),] X |
L
geii(2),* N
[e% _—
g

Tcri(E) (|X|) A

\ TQU(E),*
Teics) (fg)

Tcri(E) (a)

Neri(2), o

By construction A satisfies all elements of ' x ,, , y[04] with respect to g and we can conclude.
This, together with Lemma , shows that V({e}) is the category of models of a theory, which has
a set of axioms whose contexts are all less or equal than .

We want now to go in the other direction: which kinds of sequents allow us to recover an Xj- or an
Xo-equation? The answer is provided by the following definition.

Definition 3.3.21. Let ¥ be a x-bounded signature, a sequent A | I" - ¢ is said to be
® unconditional ([95, App. B.5]) if I is the empty set;
* of type Mif I' = {m(h;, Neri(sy 2 (24)) bier for some family of variables {z;}ic; and {h;}icr C H.

A Y-theory A is said to be unconditional (of type M) if it has a set of axioms made by unconditional
sequents (sequents of type M).

Lemma 3.3.22. Let A | I' = ¢ be a sequent of type M and Ar , the theory with it as a single axiom. Then there
exists a Xy-equation er g such that

MOd(AF’¢) =Y ({61*@})
Moreover, if T' = 0, then ey 4 is an Xy-equation.
Proof. Let a be an element of ), we can define
ux (@) = sup ({h € H | m(hmcri(g)_)(a)) € F})

In this way we get a fuzy set (X, uy). Applying Fa we get the following diagram in Fuz(H).

()‘7 /~L>\)

Wzy miyw\)

SE(AJJ')\) SAF"f’()‘»/J’)\)

AT S, (Apy)

So that we can take 7zr.6 (3 4,) 3S €r,¢-

(C) Let A be an algebra satisfying A | ' - ¢ and h: Fx(A, py) — A a X-homomorphism. We can apply
freenes of Fyr.s (A, p1a) to h o5 (3 4, to get the dotted & in the following diagram, proving the thesis.
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N, (A, uy)

(A,MA) SE()‘MU’A>
77AF,¢,()\,MA)\L e lh
Syrelhim) = ()

(D)If f: X = Aisanarrow such that A F; 1) forevery ¢ € T, then f itself defines an arrow f: (A, py) —
(A, pa). By hypothesis, AisinV ({er 4 }), thuswe getak: Syr.s (A, px) — Aasin the following diagram.

UDNOWTSY)

(A ) —————=S=(X, 1)

WAF‘d),()\,M)\)l N lf"
er’¢\

Sare(hpn) = (A a)

Moreover, recall that, by Remark , we have a cri (¥)-isomorphism © () )1 Tein) (A) = Tu(A, pa)
O(nm)
Tcri(E) ()‘) 2 Til()\a /J/)\>
f(z)\ Fo.o
A

Now, notice that Syr.s (A, 1) satisfies all the formulae in T with respect to mpr.6 (., - Thus it also
satisfies ¢ with respect to it. In particular, since, by construction, e,y = (ar.e,(x 4)) ie this implies
the following two things:

o if (i) is t1 =to then 6F7¢(t1) = 6F7¢(t2);

e if g is m(h,t) then h < ppro (x4, (er,g(t)).

From these two observations the thesis follows at once

To prove the second half of the thesis just notice that p is constant at | whenever I' is empty. [

Corollary 3.3.23. If A is a theory of type M, then there is a class E of Xy-equations such that
Mod(A) = V(E)
If, moreover, A is unconditional then every element of E can be taken to be a Xy-equation.

Putting together Lemmas and with Corollary we get the following result.

Theorem 3.3.24. Let X be a k-bounded fuzzy signature and let Y be a full subcategory of 3-FAlg, then the
Jollowing hold true:

1. Y is closed under Ex.-quotients, (small) products and regular monomorphisms if and only if there exists a
class of type M theories {\; }ic 1 such that A € Y if and only if A € Mod(A;) forall i € I;

2.'Y is closed under split Es,-quotients, (small) products and regular monomorphisms if and only if there
exists a class of unconditional theories {\;}icr such that A € Y if and only if A € Mod(A;) for all
1€ L
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Proof. 1. (=) By Corollary there is a class of E of Xjy-equations such that Y = V(F). The
thesis follows from Lemma
(<) This follows from the first half of Corollary and from Corollary
2. (=) We proceed as in the previous case: by Corollary there is a class of E of Xj-equations
such that Y = V(F), Lemma yields the thesis.
(<) This follows from the second half of Corollary and from Corollary . O

If 3 is x-bounded, then it is A\-bounded for every regular A greater than k, so we can write down
sequents with arbitrarily large contexts and the theorem above makes sense even if F is a proper class.
But, due to the way in which we have defined 3-theories, we cannot put together all the A.’s to form a
unique theory: for us, in fact, the sequents of a theory all have contexts bounded by a regular cardinal.
Luckily, for unconditional theories, this issue disappears.

Corollary 3.3.25. Let X be a k-bounded fuzzy signature and let Y be a full subcategory of ©-FAlg, Y is closed
under Es,-quotients, (small) products and regular monomorphisms if and only if there exists an unconditional
theory A such that Y = Mod(A).

Proof. (=) By Corollary there exists a class E of Xj-equations such that Y = V(E). For every
e € FE, using Remark we can find a theory A, such that V(e) = Mod(A.) and A, is axiomatized
only by sequents with a context smaller then . The thesis now follows taking the theory generated by
all the axioms.

(«<)This follows from Corollary . O
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Conclusions for Part

CHAPTER

The first part of this thesis has explored the topic of algebraic theories, both in their classical form and in
a new version, taylored for the category Fuz(H) of fuzzy sets.

In Chapter 2, we reviewed both the categorical and syntactical approaches to this subject, and demon-
strated how they are related by restating and proving the well-known results of Linton and Lawvere
[76, 78]. In particular, we discussed the notion of monads and analyze the related categories of Eilenberg-
Moore algebras, showing how to compute limits and colimits in them. We then turned our attention to
monads on the category Set of sets and functions, with a focus on those that preserve x-filtered colimits.
These monads are determined by their restriction on the subcategory of sets with cardinality less than &:
if a monad preserves such colimits, then it must be a left Kan extension of its restriction.

We focused on this class of monads because they correspond precisely to algebraic theories. Given a
set of operations with arities bounded by some cardinal k, and a set of equations, we demonstrates how a
monad can be constructed such that its category of Eilenberg-Moore algebras is isomorphic to the category
of models of these equations. Such monad is defined constructing for any set, the free model over it and
this, in turn, allows us to deduce a completeness theorem for the calculus of equations.

Finally, we ended Chapter 2 showing that the construction associating a monad to an algebraic theory,
which can be thought as a functor assigning the semantics to a given syntax, is part of an adjunction.
Specifically, given a monad T, with rank, we were able to extract from it an algebraic theory whose
category of models is isomorphic to EM(T).

In the next chapter, Chapter 3, we have moved from the category Set to Fuz(H), the category of fuzzy
sets. Fuzzy sets are pairs that consist of a set and a function into a given frame H. Such function expresses
the membership degree of an element in the whole set.

To capture the equational aspects of fuzzy sets, we have introduced a fuzzy sequent calculus. While
classical equations capture equalities, the membership function’s information is captured using syntactic
items called membership propositions of the form m(h,t), which can be interpreted as “the membership
degree of term t is at least h”. We have then introduced the concept of fuzzy algebras to provide a sound and
complete semantics for this calculus. Completeness here means that a formula is satisfied by all models of
a given theory if and only if it is derivable from the theory using the rules of our calculus.

As in the classical context, there is a notion of free model of a theory A and thus an associated monad
Sa on the category Fuz(H). In general Eilenberg-Moore algebras for such a monad are not equivalent to
models of A. However we have shown that this equivalence holds if A is basic.

Unfortunately, the correspondence between fuzzy algebraic theories and monads does not hold in the
same way as it does for classical ones. We plan to investigate this phenomenon further in future work.
One possible approach would be to apply the work of Nishizawa and Power [100] to Fuz(H), where
H is a s-algebraic frame and determine if our notion of algebraic theory is related with their notion of
Fuz(H)-Lawvere theory. Another approach could involve characterizing the monads that arise from a
fuzzy algebraic theory.

Finally, using the results provided in [95] we have proved that, given a signature ¥, subcategories of
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Y-FAlg which are closed under products, regular monomorphisms and epimorphic images correspond
precisely to categories of models for unconditional theories, i.e. theories axiomatised by sequents without
premises. Moreover, using the same results, we have also proved that the categories of models of theories
of type M, i.e. those whose axioms’ premises contain only membership propositions involving variables,
are exactly those subcategories closed under products, strong monomorphisms and split epimorphisms.

Our category Fuz(H) of fuzzy sets has crisp arrows and crisp equality: arrows are ordinary functions
between the underlying sets and equalities can be judged to be either true or false. A way to further
“fuzzifying” concepts is to use the topos of H-sets over the frame H introduced in [47]: this is equivalent
to the topos of sheaves over H and contains Fuz(H) as a (non full) subcategory. By construction, equalities
and functions are “fuzzy”. It would be interesting to study an application of our approach to this context.
A promising feature is that, in an H-set, the membership degree function is built-in as simply the equality
relation, so it would not be necessary to distinguish between equations and membership propositions.
Even more generally, we can replace H with an arbitrary quantale Q := (@, <) and consider the category
of sets endowed with a “Q-valued equivalence relation” [27].
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On the axioms of M, N-adhesivity

CHAPTER
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The introduction of adhesive categories marked a watershed moment for the algebraic approaches to the
rewriting of graph-like structures [42, 73]. Until then, key results of the approaches on e.g. parallelism
and confluence had to be proven over and over again for each different formalism at hand, despite the
obvious similarity of the procedure. Differently from previous solutions to such problems, as the one
witnessed by the butterfly lemma for graph rewriting [39, Lemma 3.9.1], the introduction of adhesive
categories provided such a disparate set of formalisms with a common abstract framework where many
of these general results could be recast and uniformly proved once and for all.

Despite the elegance and effectiveness of the framework, proving that a given category satisfies the
conditions for being adhesive can be a daunting task. For this reason, we look for simpler general criteria
implying adhesivity for a class of categories. Similar criteria have already been provided for the core frame-
work of adhesive categories; e.g. every elementary topos is adhesive [ /4], and a category is (quasi)adhesive
if and only if can be suitably embedded in a topos [52, 67]. This covers many useful categories such as sets,
graphs, and so on. On the other hand, there are many categories of interest which are not (quasi)adhesive,
such as directed graphs, posets, and many of their subcategories. In these cases we can try to prove the
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more general M, N-adhesivity [60, 104] for suitable classes M and N. However, so far this has been
achieved only by means of ad hoc arguments. To this end, one of the results of this chapter is a new crite-
rion for M, M-adhesivity, based on the verification of some properties of functors connecting the category
of interest to a family of suitable adhesive categories. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by products, exponents, and
the comma construction. Moreover, this result will be extensively exploited in Chapter 6 in order to show
the M, N of a host of categories of graphs and hypergraphs.

The next result presented here regards the relationship between M, N -adhesivity and the existence of
binary suprema in the poset of subobjects of a given object X . It is well known [67] that in a quasiadhesive
category any two regular subobjects (i.e. subobjects represented by a regular mono) have a join which is
again a regular subobject. Vice versa it is also known [57] that if regular monos are adbesive, then the
existence of a regular join for any pair of regular subobjects entails quasiadhesivity. Generalizing the
approach of [52] we will show that, if M and NV are nice enough, M, N-adhesivity entails the existence
of suprema for some pairs of subobjects and that, vice versa, the existence of these suprema together with
every arrow in M being N -adbesive is enough to guarantee M, N -adhesivity.

The framework of AV-adhesive morphisms, in turn, allows us to generalize also the embedding results
provided in [52, 72]: every (quasi)adhesive category can be embedded in a Grothendieck topos via a
functor preserving pullbacks and pushouts along (regular) monomorphisms. Under some hypotheses on
the classes M and N we will prove that an M, A-adhesive category admits a full and faithful functor into
a Grothendieck topos which preserves pullbacks and M, N-pushouts.

The first section of this chapter is based on the material present in [36]. The remaining part of the
chapter is entirely new and, at the moment, a paper about these new results is submitted to Theoretical
Computer Science for publication.

Synopsis In Section 5.1 after recalling the definition of Van Kampen square and of M, N-adhesive
category, we prove a new criterion for M, A-adhesivity. Section 5.2 is devoted to study the relationship
between M, N -adhesivity and the existence of suprema in the poset of subobjects. Using the results of this
section, in Section 5.3 we will provide a new proof of the adhesivity of elementary toposes and show that,
under some hypotheses on M and NV, every M, N-adhesive category can be embedded in a Grothendieck
topos via a functor preserving pullbacks and M, N-pushouts.

M, N -adhesive categories

In this section we recall some definitions and results about M, A-adhesive categories and provide a new
criterion to prove this property. Intuitively, an adhesive category is one in which pushouts of monomor-
phisms exist and behave more or less as they do in a topos [/3, 74] (see also Section 5.3).

The Van Kampen condition

The key property that M, N-adhesive categories enjoy is given by the so-called Van Kampen condition
[33, 67, 73]. We will recall it and examine some of its consequences. We will end this section with the
definition of M, N-adhesivity and some of its variants.



5.1. M, N -adbesive categories 161

Definition 5.1.1. Let X be a category and consider the two diagrams below

f

A’ B’
; ",
A—— B C’ \L D’ b
d
m n . A |f.p
P P

We say that the left square is a Van Kampen square if:

1. it is a pushout square;

2. whenever the right cube has pullbacks as back and left faces, then its top face is a pushout if and
only if the front and right faces are pullbacks.

Pushout squares which enjoy the “if” half of this condition are called szable.
Let us make two rather technical remarks.

Remark 5.1.2. Take m: X — Y and n: X — Z to be two arrows and consider two pushout squares

X—=>Zz X 27z
Y —0Q Y——P
q2 p2

and let ¢ be the canonical isomorphism @ — P. Take a cube in which the left and back faces are pullbacks

X/ n’ . ZI
iy
Y ————= P/ z

yl z}( p‘L Z
e e

Y ———
P2

We can add ¢! to get a second cube on the first pushout square.

X' L zZ'
m p/l
y! /—g> P /
P\L z
pa P < pm
X — 7

S N

Y q2 Q

x

<
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Now, we can notice the following facts.

e If all the vertical faces in the first cube are pullbacks then, since ¢ is an isomorphism the ones in the
second cube are pullbacks too. Thus if the square

X ==z
ml lQI
Y —

q2

is a stable pushout, also the other one is so.

e If the top face of the cubes is a pushout and the first square is Van Kampen, then all the vertical faces
in the first cube are pullbacks, and this, using again the fact that ¢ is an isomorphism, entails that
the second square is Van Kampen too.

Summing up, if a stable (Van Kampen) pushout square of m along n exists, then every other pushout

square of m along n is stable (Van Kampen).

Remark 5.1.3. Take a pushout square
f

A——2B
C D

and an arrow d: D’ — D. Suppose that two cubes are given, in which all the vertical faces are pullbacks.

—_—
g9

A g B A g" B

" /l

mll
r ’ ,/ ‘ f! '
D b C'—=D

l aAdlLB l aﬁdlLB
Sm e Sm e

C— D C——»

f

The top faces fit together in the following diagram

A 9 B
1 dV
A L_ B
m/’ m/ l ln/ n//
c’ D
@3 ! YD/
ol D’



5.1. M, N -adbesive categories 163

in which ¢1, ¢2 and @3 are canonical isomorphism between pullbacks. It is now clear that the inner square
is a pushout if and only if the outer one is a pushout too. This means that to prove the stabilty of a pushout
square, it is enough to verify it for a cube with chosen pullbacks as vertical faces.

Before proceeding further, we must recall a classical result about pullbacks.

Lemma 5.1.4. Let X be a category, and consider the following diagram in which the right square is a pullback.

f g

— Y >

b

< b
Q<TN

. B—
h k

Then the whole rectangle is a pullback if and only if the left square is one.
Proof. (=) Letq1: @ — Y and ¢2: @ — A be two arrows such that b o g; = h o ga, if we copute we get

cogoqi =koboq
—kohog

and applying the pullback property of the whole rectangle we get the dotted [ in the following diagram

goq1
//’—\
Q7> X—>Y ——>7
l f g
NG
q2

A*>h B*>k c

All we have to prove is that f ol = ¢;. On the one hand we have for free that
gofoel=goq
On the other hand

bofol=hoaol
=hoq
=boq
and we can conclude since the right square in the original diagram is a pullback.
For uniqueness: if I’: @ — X is such that
foll=q  aol'=g
then
gofel'=goq

and we can conclude applying the pullback property of the outer rectangle.
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(<) Take two arrows q1: Q — Z and ¢3: Q — A such that
cogqr=kohogq

We can apply the pullback property of the right square to get the dotted ¢: @ — Y in the following

0 X—Y —Z7
Nk
A——B——C
h k
Now, by construction we have
bog=hogq

and thus, since the left square is a pullback, we get also a unique /: @ — X such that

fol=q aol=q
but then we clearly have
gofol=goq
=qQ
We are left with uniqueness. Let I’: Q@ — X be another arrow such that
@=gofol g=aol
But then we must also have
bofol' =hoaol
=hoq
=bo q
which implies f oI’ = ¢, from which I = I’ follows.
Corollary 5.1.5. Let X be a category and suppose that the solid part of the following cube is given

y —L
q r’
B £ ‘ W //
— = z
’|
Y

(&

A/

S 7

—F0C

b
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If the front face is a pullback then there is a unique ¢/ : Y' — B’ filling the diagram. If, moreover, the other two
vertical faces are also pullbacks, then the following square is a pullback too.

Y/qH/B/

Proof. Let us compute:
COT/Og/:TOZOg/
=rogoy
=kogqoy
Since the front face is a pullback, this guarantees the existence of ¢’. The second half of the thesis follows

applying Lemma to the following rectangle.

’ ’
r'og

Y’ﬁB/Hcl

q K
TR
y*.p_*t.¢
rog

O

We can dualize Lemma to get half of the following.
Lemma 5.1.6. Let X be a category, and consider the following diagram in which the left square is a pushout.

x-tley_ 2.7

bk

A——B——=C
h k

Then the whole rectangle is a pushout if and only if the right square is one.
Moreover, if X has pullbacks and the left square is stable, then stability of the whole rectangle is equivalent
to that of the right square.

Proof. The first half follows from Lemma by duality. Let us show the second one.
(=) Take a cube

Y’LZ’

’d

B’ —k/>cl .
g
b Y J .z
e e
—_—
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in which all the vertical faces are pullbacks. Pulling back y along f and b along h we get the solid part of
another cube

Cx Iy T
P q r’
s e LS
A’ B’ c’ z
" ’}
'k | g
a X — Y - Z
i /7 7
A B C
h k
and Corollary shows that the dotted p’: X’ — A’ exists and that the new square is again a pullback.
By Lemma the whole composite cube has pullbacks as vertical faces and thus the top one is a pushout.

Now the thesis follows from the first half of this lemma.

(<) Take the following cube with pullbacks as vertical faces

X’ i VA
e "
A’ i C’ 2
a x_ 1 Y | A
s /i P

A - B - C

Since X has pullbacks, we can construct the solid part of the cube

!’
_ 9

e
o

(&

Y/

q
.
B
)

Y

I .7

S1 rd

b

in which the three vertical faces are pullbacks. By Corollary we also get the dotted ¢’ and a cube
with pullbacks as vertical faces. By hypothesis this cube has a stable pushout as bottom face. Thus its top
face is a pushout, too. Now,

zos=gofoux cot=kohoa
Thus there exists h': A’ — B’ and f': X’ — Y’ such that

t=k'oh) boh=hoa s=gof wyof =foux
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Moreover,

k/oqloflzrloglof/ boqlofl:qoyofl

=r'os =gqgofoux
=top =hopox
:klohlop/ :hoaopl
— b ° h/ Op/
Therefore we have a diagram
Iy
p q r’
A’/ " B’/ ‘ K C’/ :
T Yy
i/ f b \L Iy
a X Y Z
e a e
A B C
h k
Applying Lemma to the rectangles
m
X —sY —=7 A ~—sB ——=(C
f/ g/ h/ kl
I
XY —~72 A—=B——cC

we get that all the faces of the left cube are pullbacks, and so both halves of the top face are pushouts. [

We can now prove another property of Van Kampen squares.

Proposition 5.1.7. Let m: A — C be a monomorphism in a category X. Then every Van Kampen square
A—2-pB
—D
¢ !
is also a pullback square and n is a monomorphism.
Proof. Take the following cube:
A—" =B

V|,

id
A——>1B idp

ida
n

m A—Q—>B

Vm /o

D
f

C
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By construction the top face of the cube is a pushout and the back one a pullback. The left face is a
pullback because m is mono, thus the Van Kampen property yields that the front and the right faces are
pullbacks too and the thesis follows. 0O

Finally, we can show a kind of left cancellation property for pullbacks.

Lemma 5.1.8. Let X be a category with pullbacks, given the following diagrams:

yi>X2 7y e W s Zo —2s W 2
N T A
Xy ——~R X1 — > R——>0 Xy —>R——>0

if the first square is a stable pushout and the whole rectangles and their left halves are pullbacks, then their
common right half is a pullback too.

Proof. Pulling back ¢ along s we get a square

U—2> Q'
|
R—S>S
Notice that
qowozy =807110X] qOWOoOZy =50T20Ty

Thus we get uy: Z1 — U and ug: Zy — U fitting in the rectangles

wozy woz2
Z1 0 U—=0Q Zo o U—>0@Q
NN
X1 - R——Q Xo = R——Q

which, by hypothesis and Lemma have left halves which are pullbacks. Now,
sorpofi=soryof
Pulling back ¢ along this arrow we get another square

Zy———=Q'

R——=S§
soriofi
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In particular, we obtain the dotted b1 : Z{) — Z; and bo: Z) — Z5 in

t

T T —
2y g U
yl wli hl lq
Y f1 X1 1 R s Q

in which, using again Lemma

t

T T —
27ty = U2 Q)
yl wzi /’Ll lq
Y 2 X2 o R s Q

, all of the squares on the bottom rows are pullbacks.

We are going to construct another row above these two rectangles. By hypothesis

qow =S8or

Thus there exists a unique g: W — U such that
r=hog
Moreover, we also have that
hogozi =roz
=T10T1
=hou
and
Uogoz =woz

= UoUp

which together show that
gozi=1u

W=1uog

hogozy =702
=T20T2

=hous

UO GOz =WO 29

= UO U

gozg = Uz

Summing up, we can depict all the arrows we have constucted so far in the following diagrams

2Nz W e
idzli idzll gl lid@
Ay ALYy S,
RN
Y — X1 > R——Q

If we show that g is an isomorphism we are done. Consider the cubes

b2

Zé bo Zs z2 WY Q/
idzli idzzl gl lidQ,
Zé b2 Zs u2 U u Q/
yi Izl hl lq
Y Xy R 0
fa To s
7 2 . 7
1 u2
/ ‘ . /
71— U F;(b)
g
o
; Y —|— Xy
/ /2
X1 R

T1

169
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in which the vertical faces are pullbacks. Since the bottom face is a stable pushout we can deduce that

zZt -2 7, zt -2 7,
T
Zy—=W Zi——>U

are pushout squares too. The arrow g fits in the following diagram

ba
Zhy — Zy

|
by 22

Zl?‘w

\g\\
ui

U

and thus it is an isomorphism. O

Definition of M, A/-adhesivity

In this section we will define the notion of M, N-adhesivity and explore some of the consequence of such
a property. Let us start fixing some terminology.

Definition 5.1.9. Let X be a category and A, B two classes of arrows, we say that A is

® stable under pushouts (pullbacks) if for every pushout (pullbacks) square

A%f>B

ifme A e A)thenn € A(m € A);
e closed under composition if g, f € A implies g o f € A whenever g and f are composable;
® closed under B-decomposition if go f € Aand g € B implies f € A;
* closed under decomposition if it is closed under A-decomposition.

Remark 5.1.10. Clearly, “decomposition” corresponds to “left cancellation”, but we prefer to stick to the
name commonly used in literature (see e.g. [60]).

Example 5.1.11. In every category X, split monomorphism (i.e. those arrows which have a left inverse)
are stable under pushouts. Indeed, take a square

A*f>

B
m \L \L n
D

C ——
g
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with m a split monomorphism. Let 7: C' — A be a left inverse of m, then

forom= foidy

9
X\ \\ 1
A B

Lemma 5.1.12. Let M be a class of monos in a category X which is stable under pullbacks and contains all
isomorphisms. If pushouts along arrows in M exist and are Van Kampen and every split mono is contained in

M, then M is closed under pushouts.

Proof. Take two pushout squares

X —7 X ——Y
'
Y —=Q Y——=P

with m € M. p and ¢ are split monomorphisms: indeed by the universal property of pushouts there
exists the dotted arrow t: P — Y in the following diagram

By hypothesis p and ¢ are in M, we can then consider the following cube, in which the top, left, front
and back faces are pushouts.
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Notice that the right face commutes too: the following rectangles are pushouts by Lemma

p q

X ">y —=P X —=Y —P
N
Z——Q—A Z——0Q—=A
and, by construction,
pom=qom
and this entails that
son=ron
By hypothesis all the square beside the right one are Van Kampen, thus, by Proposition are also
pullbacks. Since the bottom and top squares are pushouts this entails that the front faces are pullbacks.
Now, r is split mono by Example , thus it is in M, but this now entails that n is in M too. O
We are now ready to give the definition of M, N-adhesive category
Definition 5.1.13 ([60, 104]). Let X be a category, M C M(X) and N' C A(X), we say that the pair

(M, N) is a preadhesive structure on X if the following conditions hold.
1. M and V contain all isomorphisms and are closed under composition and decomposition;
2. NV is closed under M-decomposition;
3. M and N are stable under pullbacks and pushouts.
Given a preadhesive structure (M, N), we say that X is M, N -adhesive if
1. forevery m: X - Y in Mand g: Z — Y, a pullback square

_Pox

m

N<—— "

—Y
9
exists, such pullbacks will be called M-pullbacks;

2. foreverym: X - Y in Mandn: X — Z in NV, a pushout square

X s

m

<Q<TN

Y ——
p

exists, such pushouts will be called M, N -pushouts;
3. M, N-pushouts are Van Kampen squares.
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Remark 5.1.14. Our notion of M, N-adhesivity is slightly different from the one of [60]: in that paper,
M, N-pushouts are required to satisfy a Van Kampen condition which is weaker then ours. More precisely,
in [60] a pushout square

"o B

m

f

Q=—n

oD
g

is Van Kampen square if, for every cube as the one below, with b, ¢ and d in M and pullbacks as back and
left faces, then its top face is a pushout if and only if the front and right faces are pullbacks.

Remark 5.1.15. A list of examples of M, N -adhesive categories will be provided in Chapter 6.
Proposition yields at once the following fact.

Proposition 5.1.16. If X is an M, N -adhesive category, then M, N -pushouts are also pullback squares.

Relation with M-adhesivity

We will end this section proving that, under suitable hypothesis, M, A'-adhesivity subsumes M-adhesivity
as defined in [13].

Definition 5.1.17. Let X be a category, a stable system of monos is a class M of monomorphisms closed
under composition, containing all isomorphisms and stable under pullbacks.

Lemma 5.1.18. Let a stable system of monos M on a category X and let also f: X — Y be an arrow in X.
For everymonom: Y — Z,if mo f € Mthen f € M.

Proof. Take the diagram

oy Wy

X
Idxl idy m
X

—Y —=7
f m

Since m is mono the right square is a pullback, the thesis now follows from Lemma . O

Definition 5.1.19 ([ 13]). Let M be stable system of monos on a category X. X is M-adbesive if
1. it has M-pullbacks;
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2. for every m: X — Y in M and for any arrow f: X — Z, a pushout square

f

X ——

m

(Q(TN

Y ——
g

exists and it is and it is a Van Kampen square.

Remark 5.1.20. We will stick to the notion of M-adhesivity as defined in [ 13], as noted in Remark ,
other authors have introduced weaker notions of M-adhesivity, where the Van Kampen condition is
required to hold only for some cubes; see, e.g. [22, 42, 43, 45, 118], where our M-adhesive categories are
called adhesive HLR categories.

On the other hand, in [ 13] no requirement about the existence of pullbacks or M-pullbacks is made,
while in [52, 67, 73] adhesive and quasiadhesive categories are required to have all pullbacks. Mimicking
the definition of (M, N)-adhesivity, for us an M-adhesive category must have M-pullbacks, .

Proposition 5.1.21. Let X be an M-adhesive category and suppose that every split mono is in M, then M is
stable under pushouts.

Proof. This follows at once from Lemma . O

Example 5.1.22. The first, and fundamental, example is when M is the class of all monomorphisms: in
this case M-adhesivity is simply called adbesivity.

One would weaken the previous example using regular monos instead of ordinary monomorphisms.
The problem is that R(X) is not in general closed under composition (see Example ). This problem
is solved by the following proposition.

Proposition 5.1.23. Let X be a category with R(X)-pullbacks, then the following are equivalent:
1. R(X) s a stable system of monos and X is R(X)-adhesive;

2. pushouts along regular monos exists and are Van Kampen.

Proof. (1 = 2) This is tautological.

(2 = 1) We only have to show that show that R(X) is closed under composition. If m: X — Y hasa
left inverse r then m is the equalizer of idy and m o . On the one hand we have

morom=moidx

=m
On the other hand if z: Z — Y is such that
moroz=z

then 7 o z is the unique arrow Z — X satisfying the previous equation. Thus R(X) contains every split
mono, and, by Lemma , we can deduce that it is also stable under pushouts. Now, it m: X — Y
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and n: Y — Z are in R(X), the previous observation allows are to construct the following diagram, in
which all squares are pushouts along regular monos:

X2y "s
Y

A
SR,
. p_*.

q

By Proposition all the inner squares are also pullbacks, by Lemma the outer square is a pullback
too, but this entails that n o m is the equalizer of v o t and w o s. O

Remark 5.1.24. A category with pullbacks and pushouts along regular monos and in which such pushouts
are Van Kampen is what in the literature is usually called a guasiadbesive category, a notable exception is
[52], in which rm-adbesive is used.

Lemma 5.1.25. Let M be a stable system of monos in a category X which s also stable under pushouts, then
the following are equivalent:

1. X is M-adhesive;

2. X is (M, A(X))-adbesive.
Proof- (1 = 2) Since the axioms of (M, A(X))-adhesivity are exactly those of M-adhesivity, the only
thing to verify is that (M, A(X)) is a preadhesive structure (Definition )-

1. Closure under composition and decomposition of A(X) doesn’t need to be proved, and surely it
contains all isomorphisms. Closure under decomposition of M follows from Lemma

2. This is obvious.

3. A(X) is clearly stable under pullbacks and pushouts, while stability of M is one of the hypotheses.

(2= 1) This is clear. O

We can apply Proposition to obtain the following corollary at once.

Corollary 5.1.26. Let M be a stable system of monos in a category X and suppose that it contains all split
monomorphisms., then the following are equivalent:
1. X is M-adhesive;

2. X 1s (M, A(X))-adbesive.
If we specialize the previous results to the classes of monos and regular monos we get the following.

Corollary 5.1.27. A category X is adbesive if an only if it is (M(X), A(X))-adbesive and it is guasiadbesive
if and only if it is (R(X), A(X))-adbesive).
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A criterion for M, N -adhesivity

In this section we present a criterion which allows us to deduce M, N-adhesivity from the existence of a
family of functors with sufliciently nice properties. We will start adapting Definition

Definition 5.1.28. Let G: D — X be a diagram and J a setz. Given a family F' = {F}};c; of functors
F;: X = Y; we say that it:

1. jointly preserves (co)limits of G if given a (co)limiting (co)cone (L, {lp} pep) for G, for every j € J,
the (co)cone (F;(L),{F;(Ip)}pep) is (co)limiting for F; o G;

2. jointly reflects (co)limits of G if a (co)cone (L, {lp}pep) is (co)limiting for G whenever for every
j€J, (F;(L),{F;(lp)}pep) is (co)limiting for F} o G;
3. jointly creates (co)limits of G if G has a (co)limit in X whenever F}; o G has one for every j € J, and

F jointly preserves and reflects (co)limits along G.

Remark 5.1.29. Joint preservation, reflection or creation of (co)limits of for a family of functors F;: X —
Y, is equivalent to the usual preservation, reflection or creation of (co)limits for the functor

X [[Y;
jeJ
induced by the family F' = {F;};c.
Remark 5.1.30. We can unpack a bit the definition of jointly creation of limits. If G: D — Y is a functor
and F' = {F}}c afamily of functors creating limits of G. Suppose that, for every j € J, a limiting cone

(Lj,{lp,;} pep) for F; o G is given. Then in X there exists a cone (L, {{p } pep) which is limiting for G
and, moreover, there exists a unique isomorphism ¢; : F;(L) — L; fitting in the following diagram

F;(L) ~ L
ij A
F;(G(D))

Theorem 5.1.31. Let (M, N') be a preadhesive structure on a category X, and let F' be a non-empty family of
functors Fj: X — Y such that for every j € J,Y; is M, Nj-adhesive. Then the followings are true:

1. if every F; preserves pullbacks, F;(M) C M and F;(N') C N for every j € J, F jointly preserves
M, N -pushouts, and jointly reflects pushout squares

—_—
Fi(g)

withm,n € Mand [ € N, then M, N -pushouts in X are stable. Moreover, if, in addition, F jointly
reflects M-pullbacks and N -pullbacks, then M, N -pushouts are Van Kampen squares;
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2. if F satisfies the assumptions of the previous points and jointly creates both M-pullbacks and N -pullbacks,
then X is M, N-adhesive;

3. if F jointly creates all pushouts and all pullbacks, then X is M g, N'p-adbesive, where
Mp :={m e X | F;j(m)e M, foreveryj € J} Np:={neX|F;(n)eN;foreveryjc J}

Proof. 1. Take a cube in which the bottom face is an M, N-pushout and all the vertical faces are
pullbacks, as the one below on the left. Applying each F; € F we get another cube in Y as the one
below on the right.

f/

Al B’ Fj(A") Fj(B')
m/ n’/ Fj(m) Fi(n')
, g ., ,/ ‘ Fi(g) ,/
C/'——=D b F;(C") —————= F;(D") Fj(b)
a F; (‘U\L
J’ i BN
g A—ro|——=B F Fi(4) —— F;(B)
Su A A A
c 7 D F;(C) o) (D)

By hypothesis the bottom face of the right cube is an M, N;-pushout and the vertical faces are
pullbacks, thus the top face of it is a pushout. Now m/,n’ € M and f’ € N since they are the
pullbacks of m, n and f, respectively, therefore the thesis follows from the hypothesis on F'.

Suppose now that F jointly reflects M-pullbacks and A-pullbacks. We have to show that the front
faces of the first cube above are pullbacks if the top one is a pushout. In the second cube, the bottom
and top face are M j, N;-pushouts and the back faces are pullbacks, thus the front faces are pullbacks
too by M, Nj-adhesivity. Now, notice that f € M and g € N (since M and N are closed under
pushouts). Since F jointly reflects pullbacks along arrows in M or in A we get the thesis.

2. The first thing to check is that Mp is a class of monos. Let m: X — Y be an arrow in M, by
hypothesis, for every j € J, F;(m) is a mono in X, thus we have a pullback square

idr; (x)

F(X) F(X)
idFj(X)l lF]‘(m)
Fy(X) —— F(Y)

Fj(m)

Since F jointly creates pullbacks we can deduce that the following square

is a pullback in X and this implies m being a monomorphism.
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Next, we have to show the three properties defining M, N-adhesivity.

Existence of M-pullbacks. Let m: B — D be an arrow in M and g: C' — D any other arrow.
Take j € J, since Y; is M, Nj-adhesive and F;(m) € M, we get a pullback square

pj

b F;(B)
le le(m)
F(C) —= Fy(D)

Since F jointly creates M-pullbacks we can conclude.

Existence of M, N-pushouts. if m: A — Cisin M and n: A — B in N, we get an M, N;-
pushout square

Fj(n)
Fj(A) —— F;(B)

F.;’(m)l \LPJ

i(C) —— @

in each Y; and we can conclude because F jointly creates M, N-pushouts.

M, N-pushouts are Van Kampen square. This follows at once from the second half of point 1.

. By the previous point it is enough to show that (Mg, Np) is a preadhesive structure.

1. If f € X is an isomorphism then so is F}j(f) for every F; € F. Thus F;(f) belongs to M; and
N for every j € J, which implies that f is in Mp and in Np. The parts regarding composition
and decomposition follow immediately by functoriality of each F; € F.

2. Suppose that g o f € Ny, with g € M. Then for every j € F,
Fj(go f) =F;(g) o F;(f)

isin NV and F(g) € M;, thus F;(f) € Nj and so f € Np.

3. Take a pullback square with n € Mg (Np)

A*f>B

then applying any F; € F we get that F;(m) is the pullback of F;(n) along F}(g), since F;(n) is
in M; (in N;), which implies that F;(m) € M; (N).

For pushouts the argument is the same: given a pushout square with m € Mp (Np)

A*f>

B
'Hll in
D

C——
9
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then F;(n) € M; (N;) since it is the pushout of F;(m) and the thesis follows. O

Applying the previous theorem to the families given by, respectively, projections, evaluations and the
inclusion we get immediately the following three corollaries (cf. [42, Thm. 4.15]).

Corollary 5.1.32. Let {X;}ic1 bea non-empry family of categories such that each X; is M, N;-adbesive. Then
the product category [ ], Xi is [[;c; M, [ 1,1 Ni-adhesive, where

HMi = {m e A (HX1> | mi(m) € M, foreveryi € I}

iel iel
HM = {n cA (HXZ> | mi(n) € N; for every i € I}
icl i€l

where mt;: [],c; Xi — X is the projection functor.

Proof. Limits and colimits in ], ; X; are computed componentwise. Thus, {m;}ics jointly creates all
limits and colimits, and the thesis follows from point 3 of Theorem . O

Corollary 5.1.33. Let X be an M, N -adhesive category. Then for every category Y, the category of functors
XY is MY, NY-adbesive, where

MY = {ne A(XY) | ny € M forevery object Y of Y}

NY = {ne A(XY) | ny €N forevery object Y of Y}

Proof. This is proved as in the case of products since in a functor category limits and colimits are, again,
computed componentwise. O

Corollary 5.1.34. Let X be a full subcategory of an M, N -adhesive category Y. Let also (M',N") be a
preadhesive structure on X such that M C M and N' C N.. Suppose that X is closed in Y under pullbacks
and M, N'-pushouts. Then X is M, N"-adhesive.

Proof. A full and faithful functor reflects limits and colimits, and the hypotheses entail that the inclusion
functor creates pullbacks and M’, N’-pushouts. O

Application to comma categories

In this section we will show how to apply Theorem to the comma construction in order to guarantee
some adhesivity properties under suitable hypotheses. Our starting point is the following result relating
limits and colimits in the comma category L | R with those preserved by L: A — X or R: B — X.

Lemma 5.1.35. Let L: A — X and R: B — X be functors and F: D — LR be a diagram such that L
preserves colimits along Uy, o F. Then the family {Uy,, Ur} (see Appendix A.2) jointly creates colimits of F'.

Proof. Suppose that Uy, o F and Ug o F' have colimiting cocones (A4, {ap}pep) and (B, {bp}pep) re-
spectively. By hypothesis (L(A),{L (ap)}pep) is colimiting for L o Uy, o F. Now, if we define

F(D) = (Ap, Bp, fp)
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then we have arrows R(a;) o fp: L(Ap) — R(B) that forms a cocone on Lo U, o F: if d: D — D' is
an arrow in D then F(d) is an arrow in L|R and so

R (bpr) o fpr o L(UL(F(d))) =

L(Ap) L(A)
fDl lf
R(Bp) W (B)

Notice that f is the unique arrow in X wich makes (ap,bp) an arrow (Ap, Bp, fp) — (4,B, f) of
L|R. If we show that ((A, B, f),{(ap,bp)} pep) is colimiting for F’ we are done.
First of all, let us show that it is a cocone. Given d: D — D’ in D we have:
(aps,bpr) o F(d) = (ap:,bpr) o (UL(F(d)), Ur(F(d)))
= (ap o UL(F(d)),bp o Ur(F(d)))
= (ap,bp)
For the colimiting property, let ((X,Y,9),{(zp,yp)}pep) be another cocone on F. In particular
(X, {zp} pep) and (Y, {yp} pep) are cocones on Uy, o F and Uy o F respectively, so we have uniquely
determined arrows z: A — X and y: B — Y such that
roap =Ip yobp =yp
Let us show that (z,y) is an arrow of L|R. Given D € D we have
R(y)o foL(ap)=R(y) o R(bp)o fp
=R(yobp)o fp
= R(yp)o fp
=goL(zp)
=goL(zoap)
=goL(z)oL(ap)

from which it follows that the following diagram commutes.

L(A)
|

R(B)

This shows that ((4, B, f),{(ap,bp)} pep) is colimiting for F' and the thesis follows. O

L(x)

’"<:<T><

R(y)
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Proposition and Lemma now yields the following.

Corollary 5.1.36. The family {Uy,, Ur} jointly creates limits along every diagram F: D — LR such that
R preserves the limit of U o 1.

We can use Corollary to characterize monos in comma categories.

Corollary 5.1.37. If R preserves pullbacks then an arrow (h, k) in LR is mono if and only if both h and k
are monomorphisms.

Proof. (=) 1 (h,k): (A, B, f) — (A’, B’, g) is a mono then the following square is a pullback in LR

ida,B.)

(A, B, f) ———— (4, B, [)

(hsk)

(A, B, qg)

&

hS

W

=
-
-

(h,k)

Using Corollary we deduce that the following two squares are pullbacks in A and B.

|2

W<~

d
ap B

ik

A

h idp

/

A

— s A —_
h k

From which it follows that h and k are monos.

(<) Since h and k are monos then we have two pullback squares

IdA A IdB B

A B
R
A—> A B—— B
h k
By Corollary this implies that
idea, B,
(4B, ) —=—= (4,5, ])
id(A,B,nJ/ J/(h’k)
/ !
(A, B, f) — o (4. Byg)
is a pullback in L | R and we are done. O

Applying Theorem and Corollary we get at once the following result.
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Theorem 5.1.38 ([22]). Let A and B be respectively M, N -adhesive and M’ , N'-adhesive categories, L: A —
X a functor that preserves M, N -pushouts, and R: B — X a pullback preserving one. Then LR is M | M’ N [N'-
adhesive, where
MIM :={(h,k) € A(LLR) | he M,k e M’}
NIN :={(h,k) e A(LLR) |h e N,k e N}
Take now L to be idx and dx : 1 — X the functor which picks an object X. It is now obvious to notice

that d x preserves all pullbacks, (actually all connected limits [ 35, 103]) thus, applying Theorem (and
Proposition ) we get the following.

Corollary 5.1.39. Let X be M, N -adhesive, then for every object X € X, theslice categoryX /X is M/ X, N/ X -
adpesive, where

M/X ={me AX/X)|me M}
N/ X ={ne AX/X)|neN}

M, N -unions and M, N -adhesivity

Johnstone, Lack and Sobocinski [6/] and Garner [52] have provided a criterion to establish quasiadhesiv-
ity, involving the closure of regular monos under unions. The aim of this section is to adapt their results
to the setting of M, M-adhesivity.

N -(pre)adhesive morphisms
The first step that we need to take is to generalize the notion of (preJadhesive morphism provided in [57].
Definition 5.2.1. Given a class N of arrows of a category X, we say that N is a matching class if

1. it contains all isomorphisms;
2. 1s closed under composition and decomposition;
3. is stable under pullbacks and pushouts.

Given a matching class NV, a morphism m: X — Y in X is N-preadhesive if for every n: X — Z in
N, a stable pushout square

X =7
m lp

exists and it is also a pullback of p along ¢. m will be called N-adhesive if for every pullback square as the
one below, n is N-preadhesive.

A

w

We will denote by NV, and by N the classes of, respectively, N-preadhesive and N -adhesive morphisms.

g
—_—

b

-~
3

~

_—

f
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Notation. Instead of “A(X)-(pre)adhesive” we will use “(pre)adhesive”.

Example 5.2.2. If X is an M, N-adhesive category then A is a matching class. Moreover, M, N-pushouts
are Van Kampen squares, so every m € M is preadhesive. Since M is closed under pullback this implies
that every arrow in M is also adhesive.

The following proposition collects some useful facts about N-(pre)adhesive morphisms.
Proposition 5.2.3. Let N be a matching class on a category X, then the following hold true:

1. if m is N-adbesive then it is N-preadhesive;
. every isomorphism is N -adbesive;
. if n € N is N-preadhesive then it is a regular mono;

. the class Ny s closed under composition;
. N is stable under pullbacks;
6. 1if X has pullbacks along N -adhesive arrows, then Ny s closed under composition.

A R VCRE S

Proof. 1. This follows at once noticing that the following square is a pullback.

‘i

Y —Y

id Y

2. Isomorphisms are closed under pullbacks, thus it is enough to show that every isomorphism m: X —
Y is N-preadhesive. Let n: X — Z be an element of AV, we have a pushout square

X n Z
Ik
Y —>X—>Z

Given f: W — Z and g: W — Y such that
f=nomlog
we can notice that m~! o f is the unique arrow such that
g=mo (mog)

and from the commutativity of the following diagram we can deduce that the pushout square above

is also a pullback.
!
W= -y "X " Z
 k
\>Y X z
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For stability, take f: Z’ — Z such that the following pullback square exists

prlsz
gl !
Then by Lemma in the following cube all the vertical faces are pullbacks
P h —7
idp 7
g
P 9 p h 7z
| s
9| X g f
Idf lﬂdx
X X s Z
W\L % IdZ
Y X7
and we can conclude from Remarks and that the pushouts of m along n are stable.

3. Since n is in NV and N-preadhesive we can consider its pushout along itself
L, 7

which, is also a pullback. Thus n is the equalizer of f,g: Y = Z.

g

4. Let n: X — Z be an element of N, and m: X — Y, k: Y — Z two N-preadhesive morphisms,
since V is stable under pushouts, we get the following two pushout squares, which are also pullbacks

X "s7 y 2. p

R

Y——P Z ——Q
P2 q2

By Lemmas and , pasting them together gives us a pushout square for n along m' o m
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which is also a pullback. For stability, Take an arrow p: P’ — P, we have a cube

’

n 7

’ X/
Yy’ y ‘ Ph /

P/ P/l

Z qz Q
in which all the vertical squares are pullbacks. Thus the two halves of the top face are pushouts and
by Lemma also the whole top face is one. The thesis follows from Remark
5. Let m: X — Y be N-adhesive, and consider the the following rectangle in which both squares are

pullbacks

ALz 25X

ql nl "
By Lemma the outer rectangle is a pullback and thus ¢ is N-preadhesive, proving that n is
N-adhesive.

6. Let my: X — Y and me: Y — Z be N-adhesive arrows, then for every n: N — Z in N we can
consider the following diagram, in which the squares are pullbacks

Q q1 P P1 N

42l PQ\L ln
X*>ml Y*>m2 Z

By Lemma the whole rectangle is a pullback and both p; and ¢; are N-preadhesive, therefore
the thesis follows from point 4. O

Corollary 5.2.4. In any category X, A(X), C R(X).
Corollary 5.2.5. Let N be a matching class on a category X with pullbacks, then:
1. No N M(X) is a stable system of monos;
2. if Nog N M(X) is stable under pushouts, then (N N M(X), N') is a preadhesive structure

Proof- 1. By point 2 of Proposition every isomorphism is in NV;NM (X), stability under pullbacks
follows from point 5 while closure under composition is entailed by point 6.

2. This follows at once from the previous point and Lemma . O
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In general we cannot guarantee closure of A, under all pushouts, nonetheless we can still establish
some result along this line.

Lemma 5.2.6. Let N be a matching class in a category X with pullbacks and consider the following pushout

X—=2>7Z

mll mo

withn € N. If my is mono and N -adbesive, then:
1. my 1s mono;
2. my is N-preadhesive;
3. mao is N-adbesive.

Proof- 1. Since X has pullbacks, we have a diagram

in which the square is a pullback, so that the dotted h exists because of its universal property. We
can then build a cube

X—h>P

Idy
X # Z q ‘/
idx i Tax|
ma
my X D7 m L)
By point 1 of Proposition the bottom and front faces are stable pushouts and pullbacks because
my is M-adhesive, and the left squares are pullbacks by hypothesis. Lemma entails that the
rectangles
/"—.\\ //M\
X——P — Z X——=P — Z
| o] s
D X "7 W
\w/ V

gomg gomy
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are pullbacks, thus the same lemma shows that also the back faces of the two cubes are pullbacks
too. By stability of the bottom faces it follows that

h

X ——P X —P
idxl ip idxl iq
X——2Z X—17Z

are pushouts and thus p and ¢ are isomorphisms.

. Let k: Z — Q be another arrow in N and consider the diagram

XL>Z*’€>Q

S
V

t

in which the left square and the external rectangle are stable pushouts and pullbacks. Since
fokon=tom

the universal property of the left square yields the dotted s. By Lemma the square so obtained

is a stable pushout. Thus we are left with showing that it is a pullback. Given the solid part of the
diagram

we have

foli=somgoly

= [okomy
By the previous point, f is mono, and thus the following rectangle is a pullback

k

Q

!

idz

N<—"N
~

mao s
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The thesis now follows applying the previous point and Lemma to the following diagrams.
X—"sz X—">z7-*.0 797 7 k.0
S T e S S G S
Y — w Y — W——=S5§ Z — W——S5§

3. Take an arrow w: W' — W and consider the following cube, in which the solid faces are pullbacks

X —r =7
AP
Y \L w’ 2
Y X ]
Al AZ
Y 7 w
By Corollary the arrow m/ : X’ — Y” exists and the added face is a pullback. Since the bottom
face is a stable pushout then the top face is a pushout too. By point 5 of Proposition , mh is
N-adhesive and, since AV is matching, n’ is in /. The previous point of this lemma implies that m
is NV-preadhesive and we can conclude. 0O

Corollary 5.2.7. If X is a category with pullbacks then (A(X)q, A(X)) is a preadbesive structure.

Proof. By Corollary we know that A(X), € M(X), by Lemma this implies that A(X), is
stable under pushout and we can conclude appealing to Corollary . O

Finally, NV-adhesivity allows us to compute suprema of certain pairs of subobjects.

Proposition 5.2.8. Let N be a matching class in a category X with pullbacks. Given an N -adhesive mono
m: M — X and another monon: N — X in N, consider the diagram

i

H

H

in which the outer boundary form a pullback and the inner square a pushout. Then the dotted arrowu: U — X
is a monomorphism and, in (Sub(X), <)

Remark 5.2.9. Notice that the ps and p; are both monos, moreover, ps is N-preadhesive while p; € N,
as the pullback of n. Thus the inner pushout exists.
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Proof. Consider the following two pullback squares

q1 w1

Q-1 N W M
q2l/ \Ln WQ\L i"n
U——=X U——=X
By construction we have the following equalities
n=uou m = uouy
UOUQ2OP = MODP1 UOUI OP1 =N OPy
=nop =mop,

which give us the arrows fi: N — Q, fa: P = Q, g1: M — W, go: P — W making the following
diagrams commute

idn P2 idas P1
N—Q—>N P—s@Q——N M—W —M P—sW —M
fi q1 f2 q1 91 w1 92 w1
ile qz\L \Ln Pll qzl ln idM\L wzl lm P2 wzl m
N-Y M. x M2y~ x MU %s X N-Y. py_“.x

Their outer edges are pullbacks, thus in the following cubes, the vertical faces are pullbacks

P ‘d”f P P—"N
P2 2 I g1
/ . / F/ B / l
N——Q p1 P———W idas
idpjl idpi
qz‘/ p1 v p1
idn P— | — M p2 P — M
s s Lo s
N ™ U N ™ U

p2 is N-preadhesive, so the top faces are pushouts and therefore f1, and g1 are isomorphisms with inverses
given by ¢1 and w;. But then, since

up = qa 0 fi Uy = W2 O g1

we can further deduce that the squares below are both pullbacks.

NN M 6
UI\L in U2i m
U—— U——X

u
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We have three diagrams

p1 u idu idy

P2 M Ny Yy Moy vy
| L P A
No= X N U MU X
and we have just proved that the rectangles are pullbacks. Thus we can apply Lemma to deduce that
Uy
U——=X

is a pullback, but this means exactly that u is a mono.
For the second half: suppose that k: K — X is an upper bound for m and n, thus there exists
ki: M — K and ky: N — K such that

m==kok n==~koks
But then
kokiopy =mop
=nop,
=kokzops
Since k is mono, this implies that there exists a unique A: U — K such that
kgihoul klzhoul
and we have

kohou; =kokg kohouy=kok;
=N =m

= UOo Uy = UO U

showing that u = ko h, i.e. u < k. O

From M, N\ -unions to M, N -adhesivity

Given a preadhesive structure (M, N') and suppose that M C N, in this section we will show how to
deduce M, N-adhesivity from the closure of M under some kind of unions.

Definition 5.2.10. Let (M, N) be a preadhesive structure. A monomorphism u: U — X is an M, N~
union if there exist m € M and n € M NN such that, in the poset (Sub(X), <),

[u] = [m] V [n]

We will say that M is closed under M, N-unions, if it contains all such monos.
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We will need a technical lemma involving kernel pairs. Take a category X with pullbacks endowed
with a preadhesive structure (M, N'), and take also the following M, N-pushout square
X "sZz
|k
Pulling back n and ¢ along themselves, we get two diagrams

X

T Tn

A

z { Y1
K, —=X K,——=Y
idX
le \Ln N\ yzl \Lq
\

with the dotted arrows v,,: Z — K, and v,: Y — K. Moreover, we have

gomozx; =ponozx
=ponoum

=gqomoumr;

Thus we have an arrow k: K,, — K, as in the following squares.

KHL)X KTL&X

' v

K,——Y K,——Y
Y1 Y2

We can also construct another commutative square. From the following chains of equalities

y1oygom=idy om Y2 07g0m =idy om
=m =m
=moidy =moidx
=MmMOox10Yn =MOX20n
— gy 00kon, — yyo0ko,

we can deduce the commutativity of the square below.

X "s K,
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Lemma 5.2.11. Let (M, N') be a preadhesive structure on a category X with pullbacks such that M C N,
MNN contains every split mono and M is closed under M, N -unions. Then given an M, N -pushout square

X—=2s7Z
b

all the squares in the following diagrams, constructed as above, are stable pushouts and pullbacks.

X "o K, -2ex-"s7 X" K, -2.x-"s7

o I N A

Y K Y 1174 Y K, Y 1474
Yq 4y q Yq 4y q

Proof. The rightmost square in both diagrams is a pushout by hypothesis, since it is an M, A-pushout

and m is N-adhesive. Now, by Lemma the rectangles
K, 2sx-"sVv K, —>X-"-Y
T
X Y W X——>Y W
are pullbacks. But then also the following rectangles are pullbacks.
moxs moxy
/W\
K, —K,——>Y K, —K,——Y
k Y2 k Y1
1 \L Y1 i iq T2 \L Y2 i iq
X m v q W X m Y q W
pon pon

Therefore their left halves, which are the central squares of the original diagrams, are pullbacks, too. In
particular this shows that & belongs to M, and thus, it is A'-adhesive. We can now consider the following
two cubes in which all faces are pullbacks

Ky X K, X
K / ‘ Y1 Y/l / Y2 YTy .
q
“| :
X — Z wn —_— Z

Yo
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which prove that the two central squares in the original diagram are also pushouts.

We are left with the last square. We can deduce that it is a pullback applying Lemma to the
rectangle
idx
N

By construction, 7, is a split mono, thus it is in M. By hypothesis, m € M is N-adhesive, and we can
build the following diagram in which the inner square is a pushout.

x K,
m ipl\\\

Y ——F

We already know that the outer edges form a pullback square. The arrow 7, is in N because it is a split
mono, and k is A-adhesive,. Thus, by Proposition , we get a mono e: E — K, filling the diagram
and such that

[e] = [K] V [7q]
Since 7, is also in M, e is an M, N-union, and thus, it belongs to M. Now, by construction we have
idyom=m

=moidx

=moxy o,

thus there exists an h: E — Y filling the diagram

Y —F >Y
idy
In this diagram the left square and the whole rectangle are pushouts. Thus by Lemma the right

square is a pushout too. Now, z1 € N as it is the pullback of n, and thus, h belongs to A too. On the
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other hand we have already proved that in the diagram

/M\

Ki——F—K
Ty

p1
lyl
Y

o |=

e
h

-

X m ldY

{

the whole rectangle is a pushout. Hence, using again Lemma , it follows that its right half

E—€>Kq

l J»

Y — =Y

1dy

is a pushout too. By hypothesis, e is N-adhesive, and thus, the previous square is also a pullback, showing
that e is an isomorphism.

We are left with stability: n € A by hypothesis, 7, is in N because it is a split mono and z; and x5
belongs to N as they are pullbacks of n. Since we have proved that m and k& are in M we know that they
are N-adhesive and we can conclude. O

We are now going to prove that if M is composed of A -adhesive morphism then three quarters of the
Van Kampen condition are satisfied. In order to do so we need the following technical lemma.

Lemma 5.2.12. Let X be a category with pullbacks and consider the following cube in which the left, back,
bottom and top faces are pullbacks.

/

X' zZ'
AP
Y ——— W' z
z\L .

y X L 7
S e

Y w

q

Suppose that p and p' are monos and that the top face is a stable pushout. Then the right face is a pullback.
Proof- Since p is a mono, by Lemma , the rectangle

idz

7 sz 2o 7

o)

Z' —=Z—>W
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is a pullback. Take now the following three diagrams

noa .
X"z X 7 ——7Z 77 —>1
I A T S e S O
g p— 7w W 7 Pow W
q \35;/ \;J;/

By hypothesis the first square is a stable pushout and the left half of the first rectangle is a pullback. Since
also the bottom face is a pullback by hypothesis, it follows that the whole first rectangle is a pullback too.
By the previous observation, the whole second rectangle is a pullback and, since p’ is a mono, its first half
is a pullback square. We can then apply Lemma to get the thesis. O

Corollary 5.2.13. Let (M, N) be a preadhesive structure on a category X with pullbacks, and suppose that
every arrow in M is N-adbesive. For every m € M, n € N and cube

/

X' A
m/ ‘ ) p/
Y’ w’ z
z\L .
Yy X ELENSy/A
s e
Y 7 w

if the top and bottom faces are pushouts and the left and back ones are pullbacks, then the right face is a pullback.

Proof- M and N are closed under pullbacks, thus the top face is an M, N -pushout, and so it is stable be-
cause m’ is N-adhesive. Since m’ and m are N-adhesive, the top and bottom faces are also pullbacks. The
arrows p and p’ are in M as they are the pushouts of, respectively, m and m’. Thus they are monomor-
phisms and the thesis now follows from Lemma . O

We are now ready to prove the main theorem of this section.

Theorem 5.2.14. Let (M, N') be a preadhesive structure on a category X with pullbacks and suppose that
every split mono is in M NN, M C N, and M is closed under M, N -unions. Then X is M, N -adhesive.

Proof. Every elements of M is adhesive. Thus we already know that for any n € A and every € M a
stable pushout square

X—=2-7Z
ml \LP
Y

— W
exists. Since X has all pullbacks by hypothesis, all that we have to show is the remaining half of the Van
Kampen condition. Take a cube in which the top and bottom faces are pushout and the left and back ones
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are pullbacks

Then m’ and n’ belong to, respectively, M and V. Thus the top face is a stable pushout square, which is
also a pullback. By Corollary we already know that the right face is a pullback, let us prove that
the other one is a pullback, too.

By Lemma , in the following diagrams all squares are stable pushouts and pullbacks.
X Tn Kn 1 X n 7 X Tn Kn T2 X n A
S T T I I
Y K Y W Y K, Y w
Ya 7 q Ya 7y q
X/ Yn! K., ) b d n' A X! Vn! K., ) & n’ VA
m'l k/l m/l \Lpl m/l k'l m/i J{P’
Yy’ Ky Y W Y Ky Y W
Vq! Ui q Vq' yé q
By Corollary , there exist t1: K,y — K, and t3: K, — K, fitting in the following diagrams
K, —* o x K, —" oy
t1 x t? Yy
s 1 / Y1 /
K, ——— n' g —— 4
7 g
n q B
T2 X — |27 Y2 Y —— q—)W’
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and the left face of the first cube is a pullback square. We compute to obtain

TLotiogy =T 0Ty 0Ny y1otaoyy =yoyiovy  yrotaok’ =yoyok
=zoidx: =yoidy =yom ox)
=idyox =idy oy =mozxox)

T10Yp 0 =Yy oY, 0y =moxy0ot
=yiokot;

L0t 0y =L OTHO Yy YoOta oYy =Yoys07y  ypotaok’ =yoyyof
=goidy =yoidy: =yom' ol
=idxox =idy oy =moxoux)
=209, 0 = 1209, 0y =moxyoty

=ysokoty

Therefore the following three squares commute

XK, Y K, Ky 2> K,
RERNE
X — > Kn Y — K Kn —= Ky
The first one of the squares above is a pullback: this follows applying Lemma to the rectangle below.
id s

XK, -2-X
V
idx

X' T Y’

’Yn//‘

k!

Knl q Yy
mi N
t1 X LN Y
e e
K, K,

which has pullbacks as left and back faces and stable pushouts as top and bottom ones. The morphisms
7q and 7y, are split monos, thus by Lemma the right face is a pullback. Switching 7,, and m we get
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another cube

to which we can apply Corollary to get again that the right face is a pullback. Now, by Lemma
the following rectangle is a pullback

’
z m’
K, — X' Y’

Thus we can apply Lemma to the diagrams
idys m’ox]
n /’”‘"‘“"“\ /‘_’_‘*\
.Xv$>]:(n Y/T>Kq/ *,>Y/ K, T>Kq/*l>yl
a Yo Y2
o T TN A N N
Y — > K, Yy s K, -2y K,—f > K,~2sY
a
idy moxy

to deduce that the square below is a pullback, too.

’
Y
Kq/ HQ- Y/

Kq ’
Y2

This in turn also entails that the following rectangle is a pullback.

ta Y1
Kq/ — Kq — >

N

ViG>V —>W
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We can now notice that the diagrams

y10t2 mox

X "z Ky =Y —2Y X~ -y —2Y
Y1 m
I T T
Y ——= W v Lo w YW A e
q
qoy poz
satisfy the hypothesis of Lemma , and this yields the thesis. O

The previous theorem yields at once the following two corollaries

Corollary 5.2.15. Let X be a category with pullbacks, then
1. f M(X) C A(X), then X is adhesive;
2. f R(X) C A(X)q and it is closed under binary joins then X is quasiadhesive.

Proof. 1. By Corollary (A(X)q, A(X)q) is a preadhesive structure, which, by Corollary ,
coincides with (M(X), A(X)). The thesis now follows from Corollary and Theorem

2. As before, Corollaries and entails that (R(X), A(X)) is a preadhesive structure on X to
which we can apply Theorem and get the thesis appealing to Corollary . O

Corollary 5.2.16. Let M be a stable system of monos in a category X with pullbacks. Suppose that M is stable
under pushouts, it contains all split monos, it is closed under binary joins and M C A(X)q. Then X is an
M-adhesive category.

Proof. This follows at once from Corollary and Theorem . O

Remark 5.2.17. In Corollaries and , closure under joins means that, given m: M — X,
n: N = X in R(X) or in M, any representative of [m] V [n], which exists by virtue of Proposition ,
is again in R(X) or in M.

From M, N -adhesivity to M, A/-unions

In the previous section we deduced M, N-adhesivity from the closure of M under some kinds of unions.
In this section we will go in the opposite direction.

Definition 5.2.18. Let f: X — Y be an arrow in a category X such that the pushout square below exists.

f

X——Y
f llh

Y Y2 f
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The codiagonal vs: Q¢ — Y is the unique arrow fitting in the following diagram.

X *f> Y

l N\
f Y1\
Y

Given a preadhesive structure (M, N'), an M, N-codiagonal is the codiagonal of an arrow n € MNN.
Let us list some useful properties of codiagonals.

Lemma 5.2.19. Let f: X — Y be a morphism in a category X and suppose that [ admits a codiagonal
v Qf =Y, then the following hold true:
1. vy is the coequalizer of the pair of coprojections y1,y2: Y = Qy;

2. if a pullback of y. along ys exists, then the pair y1,y2: Y = Qy has an equalizer e: E — Y and,
moreover, the following square is a pullback
E X
I~
X

€
_

—_
Y2

[y

Proof. 1. Let z: Qy — Z be such that

Z0Yr = Z0Yg

Then
zoylovfoylzzoyloidy zoylovoy2:zoyloidy
=zouy =zouy
=202

and we can consider the following commutative diagram

Y1

Y%‘QfLZ
Y2

| ]

Y Y1 Qf

Uniqueness follows from the fact that vy is a split epi.
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2. First of all we can notice that in every square, not necessarily a pullback one, as the one in the
diagram below, the existence of the codiagonal implies p1 = p>

p-".x

AN
P2 AN

X Y2 Qf

By hypothesis, y1 has a pullback along 5 as in the following diagram

E X
el lyl
X Y2 f

€
_

Thus, if z: Z — X is an arrows such that
yr1oz=1ys0z

then the universal property of pullback yields a unique g: Z — E such that z = e o g. O

The following lemma is a generalization of [52, Prop. 4.4].

Lemma 5.2.20. Let (M, N) be a preadhesive structure on a category X with pullbacks and w: U — X an
M, N-union. Suppose that M C Ny, that M NN contains all split monomorphisms and that N contains all
M, N -codiagonals. Then:

1. wadmits pushouts along itself (i.e. it has a cokernel pair);

2. there exists an epi e, : M — Ey, and an element m,: E, — X of M NN such that u = m,, o e,.

Remark 5.2.21. Notice that, if M C N, then for every n € M NN a pushout square

N—"sX

X —= @n

of n along itself exists, and thus there also exists the codiagonal v,,.

Proof. 1.Letm: M - XinMandn: N — X in M NN be arrows such that
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By Proposition 5.2.8, we can consider the following diagram in which the outer edges form a pull-
back and the inner square is a pushout.

— M
lu\

m
uq U
\) \

Pulling back m along v,,, we obtain a pullback square

P2

<~

=

HM

S

QHHX
Now, we have identities
moidy =m moidy =m
=idx om =idxom
=vp,oniom =wv,0ngom

and thus there exist I1,lo: M = T as in the following diagram

By Lemma 5.1.4, the following are pullback squares

M ——

Tk

X —=Qn X ——Qn

M ——



5.2. M, N -unions and M, N -adhesiviry 203

Therefore, since n is N-adhesive, the top face of the following cube is a pushout.

p__ " oy

Py ll/
‘ lo

M —T m
P2
t
m N i 2 X
Vv s
X no Q”

Now, t; is the pullback of an M, N-codiagonal. Thus, it is in N, while ¢ is in A since it is the
pullback of m. Therefore the pushout square below exists.

7

ta
Qn 0
Suppose now that the solid part of the next diagram is given

t1
e

q2

U “ X

X = Qn—>0Q

Precomposing with u; and ug we get the following identities

Z210M =21 0CUO U2 210N =21 0UO UL
= 2Z20UO Uy = 2Z20UO U1
=Z20m = ZzZ20MN

The second chain of the equalities above allows us to deduce the existence of the dotted w: @, — Z.

N
X

n
_

AN

X
2

HQ

na n
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We compute to obtain

wotyolyg =wongom

zZ20MmMm

zrom
=woniom

=wotgoly

By construction and by our previous observations, t; is a codiagonal for p;. Thus the first point of

Lemma implies the existence of a unique k: M — Z making the following diagram commu-
tative
T M

]

|

which, in turn, implies the existence of the dotted z. Computing further we have

Z1 =wony Z9 = W O Ny

= Z0(@g20o0MnN] = Z20(@2°oMnNy

Moreover, if 2’: Q — Z is such that

!
21:Z/OQQOTL1 29 = Z O0(@20MN3
then we also have
Zoqgpon, =n Zoqrong =z
= wony = W O Ny

which shows that w = 2’ o go. On the other hand

Zogqoti =2 ogoty

=w oty

and so we also have that 2’ o ¢; = k, allowing us to conclude that z = 2z’. We can now deduce that

the following square is a pushout

_ %o X

g20n1

<

q20mn2 Q

2. By the previous point u has pushout along itself. Therefore there exists a codiagonal v,,: Q@ — U.
In particular, g2 0o n; and go o 1y are split monos and thus elements of M NA. By the second point
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of Lemma , they have an equalizer m,,: F,, — X which, since M and N are stable under
pullback, is also an element of M NN Since, by construction we have

q20M10U=(g20N20U

we also get an arrow e,,: U — E, such that u = m,, o e,,. To show that this arrow is epi, start with
the equalities
m = 10 Uy n =10 Uy
= My O €y O U = MMy O €y O Uy
Since M and N are closed under decomposition and M-decomposition we can deduce that e,, o ug
belongs to M and that e,, o u; is an element of M NN
Now let b: B — E,, be another mono such that

boby =e,ou boby = ey, 0us
for some b;: N — Band by: M — B. Then

bobiopy =e,ouops
= €4, %U2 0P
=bobyop;
which, since b is a mono, entails
by opy =byopy

Thus there exists b: U — B such that

blii)o’ul b2:80u2
By computing further we get
bo[}oulzbobl bolA)ouQZbObg
= €y O U7 = €y O U2

which shows that [e,] < [b], implying that e, is a union of e, o uz and e, o uy. By the previous

point and point 2 of Lemma , there exist a diagram in which the outer edges form a pushout,
the inner square is a pullback and c is the equalizer of ¢; and cs.

e
CJ/ \ch
€y

Eu—>Q

The existence of e: U — C' can then be inferred from the universal property of pullbacks. If we
show that c is invertible, then we are done. Notice that ¢; and ¢g are in M N A since they are split
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monos. Thus ¢ € M NN too. Suppose that the solid part of the following diagram is given.

C%EULX

70

E, Z Q@n
/ \\
z2
c . \LQQ
X —7Qn——>0Q

Then we have
210U = 21 0 My, O €y

=z 0myocoe

=z2p0omyocoe

= 29 0My O €y

=zoo0u
and thus there exists z: Q — Z such that

zi=zoqom  Z=z0ga0mny

Uniqueness of such a z follows at once since g2 o nq and g2 o no are the coprojections of a pushout.
Thus we can conclude that the square below is a pushout.

M4, 0C

U X

muocl \Lq’zonl

X—=Q

q20mn2

Now, M and N are closed under composition. Thus m,, o ¢ is in M NN and, since M C N,

it follows from the third point of Proposition that m,, o ¢ is a regular mono. The dual of
Proposition thus entails that m,, o ¢ is the equalizer of g3 0 ny and g2 o ng, and therefore ¢
must be an isomorphism. O

We are now ready to prove the main theorem of this section (see [67, Thm. 19]).

Theorem 5.2.22. Let X be an M, N -adhesive category with pullbacks. If MINN contains all split monomor-
phisms and N contains all M, N-codiagonals, then M is closed under M, N -unions.

Proof. Let u: U — X be the M,N-unionof m: M - X in Mandn: N - X in MNN. By
Example and Proposition , we know that these arrows fit in a diagram

P M
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in which the outer edges form a pullback and the inner square is a pushout. Notice that po € M and
p1 € N. Thus, by Proposition , the inner square is also a pullback. By Lemma , we also know
that w = my, o e, for someepie,: Y — E, and m,: E, — X in M NN. As we have noticed before,
the decomposition properties of M and A imply that e, o us € M and e, o u; € M NN. Our strategy
to prove the theorem consists in showing that e,, is an isomorphism.

First of all notice that e, is a mono because u = m,, o e,,. Thus in the following diagram every square
is a pullback and, applying Lemma , we can deduce that the composite square is a pullback too.

P1 id s
—_—

S

s M
U2 iuz
— U ——U
u1 idu
idy leu

P
y

N
N

N

S=—C=<—

—_ — s F
u €

S

Next, since the arrow 7 is in M, p; is in M as it is its pullback and u; € M since it is the pushout of p;.

We can then build the following two pushout squares, which, by Proposition , are also pullbacks.
N €, 0U1 Eu N €, 0U1 Eu
euO'UIll iel u1l \Lal
Ey —— Qe,ou U—7Fp—A

Notice that he solid part of the following diagram is commutative. Thus the dotted arrow a exists and,
by Lemma , the bottom rectangle is a pushout.

N-“sU—>.F,

U1l l ay \L
U a2 A e1
| J/
Eu € Qeuoul

Moreover, since u1 € M and e, o uy is in N, the upper half of the square above is also a pullback.
Now, ez is the pushout of e,,0u;. Thusitis in M, and so it is a mono. This, together with Lemma ,
entails that the following rectangle is a pullback.

€y ‘dEu
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The arrow as is in M as it is the pushout of e, o u1. Thus we can apply Lemma to the diagrams

€4, 0U1 1

E.

N N-"2>U U
ull lal euoull azl J/€2 idUl
U A U

Ey ——
az ai

SN

to get that also the following square is a pullback.

az

Eu € > Qeu ouy

On the other hand, the arrow p;: P — M 1s in MNN as it is the pullback of n. Thus we can consider
the following pushout of p; along itself.

P oM

M —> Qp,

We can then construct the solid part of the rightmost rectangle in the diagram below, inducing the dotted

b: Qp, — A. Notice that the first rectangle is a pushout by Lemma so that the right half of the
second diagram also is a pushout, again because of Lemma , and since b belongs to M.
ey ousops
PN MLy p, PmEu
T
M——>U — A M L)\QCL,ZJ//; A
azous

We can compose with the codiagonal vy, : Q,, — M to obtain the solid diagram

ML)UgEu

[ =

{
idar tXQpl A | ide,

i
f
H

-

M?U?Eu




5.2. M, N -unions and M, N -adhesiviry 209

Since the upper half of the square above is a pushout, the dotted r: A — Q. ou, exists. Moreover, since
the outer edges make a pushout square, the lower half is a pushout too, by Lemma . The codiagonal
vp, belongs to N, therefore Proposition allows us to conclude that the bottom rectangle of the
previous diagram is also a pullback.

We can now notice that for every z1: Z — M and 2z2: Z — E,, such that

M O 21 = My, O 2o
we have the following chain of equalities
My 0 €y, OU O 2] = UO U O 21
=moz
= My, © 22
which, since m,, is mono, entails
29 = €4 0U20 21

This, in turn, can be rephrased by saying that the square below is a pullback

idas

M—M

euouzi lm

E,——X

My,

In particular, we can now apply Lemma to the following M, N-pushout square

€y 0U1

N = R,

€,0U7 lel

Eu e Qeuoul
and to the pullback rectangles
id]v[ idlw
M=—"_">Q, — M M="_">Q, — M
euouz aobl m euous aobi m
eo Veyouq My el Veqoug Moy,
My, Moy

to show that the outer rectangle in the diagram below is a pullback, so that, in particular, a 0 b € M. We

can also apply Lemma to deduce that the left half of the rectangle is a pullback, too.
Qpl Upy M idas M
aob\L €y ou2 i lm
Qeous E, X

Vey ouy My
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We compute to obtain

Ve, ouy ocagob= €y © U2 O Up, Ve, ouy ©A0A1 = Ve, ou; ©€1
=rob =idg,
=Troa

Therefore 1 = v, 0u, © a. We can then apply Lemma 5.1.4 to the following rectangle, showing that its

left half is a pullback

ide Upy

Qpl Qm M

bl aobi leuoug

a Veyouy
A7 Qv 5 B

T

Suppose now that the solid part of the diagram below is given

b
Qpl I A $ Qeuoul

\\
Upy Veqo0uq \
\

We want to show that the inner rectangle is a pushout. Uniqueness of the dotted z: E,, — Z is guaranteed
by the fact that v, oy, is an epimorphism. So it is enough to construct an arrow fitting in the diagram.
First of all we can notice that

Z10€10€,0U] =21 0€20€, 01U
while we also have

210€1 06, 0U =210Q0G] O€,0Uy
=z10ao0bomy
zzzovploml
=z 0idyy
= 2207Up, ©M2
=z10aobomy
= 2Z10a90az %Uur
= 21 0€2 0€, 01Ul
which implies that
210€10€y, = 21 0€2 0 €y

which, since e, is an epimorphism, allows us to conclude that

Z10€1 = Z1 0€2
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So equipped, we can now compute:

21061 0Ve,0u, ©€1 =210€10idg, 21061 0Ve,0nu, ©€2 =210€10idg,
=ZzZ10€¢€1 =ZzZ10€¢€1
= Z10e€2

showing
Z1 = 21 0 €1 0 Ve, ou,

Moreover, computing again we obtain

Zg0vUp, =z10a00b
=z o0idg,caobd
= 21061 0Veou;, 0AOD
= ZzZ10¢€1 OGHOU,QO’UP1
and vy, is an epimorphism, thus
Z9 = Z10€10€y OU2

Summing up, 21 o e; fills our original diagram, thus its inner rectangle is indeed a pushout.
We are now ready to collect all our arrows in the following cube

Qpl Upy M
b A
idQ U
P1 % s
A r E,
L ‘ o, idy
Qpl - M

Qeuoul Eu

Veyoug

This cube has an M, N-pushout as top and bottom face and all faces beside the frontal one are pullbacks,
hence, by M, N-adhesivity it follows that also this last face is a pullback. By Lemma the rectangle

Uv—= A L B,
Tk
Eu es Qeuoul ﬁ) Eu
is a pullback. Thus e, is an isomorphism as it is the pullback of idg, . O

Corollary 5.2.23. Let X be a category with pullbacks and M a stables system of monos on it. If X is M-
adhesive, then for every object X and every [m| and [n] in M-Sub(X), their supremum in (Sub(X), <) exists
and it belongs to M-Sub(X).
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Combining Theorem with Theorem we obtain also the following results.

Corollary 5.2.24. Let (M, N') be a preadhesive structure on a category X with pullbacks. If M NN contains
every split mono and every M, N -codiagonal is in N, then the following are equivalent:

1. M C Ny and M is closed under M, N -unions;
2. X is M, N -adbesive.

Finally Proposition and Corollaries and yield the result below.

Corollary 5.2.25. Let M be a stable system of monos on a category X with pullbacks and suppose thar M
contains all split monos. Then the following are equivalent:

1. X is M-adbesive;

2. every M-pushout square is Van Kampen and for every object X, every pair [m], [n] € M-Sub(X) bas
a supremum in (Sub(X), <) belonging to M-Sub(X);

3. M is stable under pushouts, M C A(X)q and for every object X, every pair [m], [n] € M-Sub(X) has
a supremum in (Sub(X), <) which is again in M-Sub(X).

Remark 5.2.26. Notice that, in items 2 and 3 of the previous corollary, the existence of a supremum in
(Sub(X), <) for [m], [n] € M-Sub(X) is guaranteed by the hypothesis that every arrow in M is adhesive
and by Proposition

M, N -adhesivity and toposes

In this section we will examine the relationship between M, N-adhesivity and (elementary) toposes. In
the first part we will provide a new proof of the fact, first shown in [74], that (elementary) toposes
are adhesive. In the second section we will generalize the results of [52] showing that, under suitable
hypotheses, an M, N-adhesive category admits a full and faithful embedding into a Grothendieck topos.

Some facts about toposes

Let us recall briefly the definition of a topos and some properties of toposes. The main references about
topos theory are [30, 66, 86, 93].

Definition 5.3.1. Let X be a finitely complete category. A subobject classifier is a mono t: 1 — € such
that, for every monomorphisms m: M — X, there is a unique X,,,: X — € such that the square below
is a pullback

A topos is a finitely complete, cartesian closed category X which has a subobject classifier.
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Remark 5.3.2. Subobject classifiers are unique up to isomorphism. Indeed, if t: 1 — Qand f: 1 — Q are
two subobjects classifiers, then we have the two diagrams below, in which every square is a pullback

ENEEN

By Lemma the whole rectangles are pullbacks, showing

{Q><)—>—l

idgzx;oxf idQ:)OO)G

Going deep into topos theory will lead us astray, so we rather assume the reader has at least a basic
knowledge of the following facts.

Fact 5.3.3. ([65, Sec. A2.2] and [86, Ch. IV, Sec. 5]) If X is a topos, then it is finitely cocomplete.

Fact 5.3.4. ([48, 65, Sec. A2.3], and [26, Ch. IV, Sec. 7]) If X is an object of a topos X, then the slice
category X/X over X is a topos too.

Fact , the so called “fundamental theorem of topos theory”, in particular entails that a topos X is
locally cartesian closed. We can therefore apply Corollary obtaining the corollary below.

Corollary 5.3.5. Let f: X =Y bea morphism in a topos X, then pb;: X/Y — X/ X has a right adjoint.

We will also assume familiarity with the notions of coverage, Grothendieck topology, sheaves and
Grothendieck topos ([66, Sec. C2.1] and [86, Ch. 3]).

Fact 5.3.6. Every Grothendieck topos is a topos.
Assuming these facts, in the next section, we will nonetheless prove some less known properties of

toposes needed to show their adhesivity. The proofs of all these properties are adapted from [65, Ch. A2].

Toposes are adhesive

Our strategy to show that toposes are adhesive is to use Corollary , proving that the class of monos
is closed under pushouts and consists of adhesive morphisms.

Proposition 5.3.7. In a topos X all pushout squares are stable.
Proof. Suppose that the following pushout square is given

Xf
|
Z

_—

@T’<

e
h
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dg: 1 — X trivially preserves pushouts, so Lemma and Proposition entails that the square
f
kof—t -k
|
h — idg

is a pushout in X/Q. By hypothesis X is a topos. Thus, Corollary , forevery ¢: Q' — @ the functor
pb,: X/Q — X/Q' is a left adjoint .Therefore it preserves colimits and the square

pb,(f)
pb, (ko f) ———pb, (k)

pbq(g)l lpbq(k)

pbq(h) W pbq(idQ)
is a square in X/Q'. Clearly idg: = pb,(idg) and we know from Lemma that the functor

domg: X/Q" — X is a left adjoint, so that we have another pushout square

pb (/)
pb, (X) ——pb, (Y)

pbq(g)l lpr(k)

pb, (Z) EYOR Q'

We can now construct a cube as the one below, in which all faces are pullbacks

pb,(f)

pb, (X) ————————pb, (V)
pb,(9) pb (k)
/ ‘ pby(h) , /
pb, (Z) Q @

e
S A

Z Q

h

q2

and we already know that the top faces is a pushout, so that Remark now yields the thesis. O

Let m: X — Y and f: X — Z be two arrows in a topos X, and suppose that m is a mono. Then,
since m = wy o (m, f), it follows that (m, f) is a mono X — Y X Z, and thus, it is classified by
X(m,f): Y X Z — Q, which, in turn, can be transposed to get "X ()1 Y — Q7. In particular, when
m and f are both idx, we will denote by {—} x the arrow "xa, 1 X — QX.

Proposition 5.3.8. Let X be a topos. Then for every f: X —'Y, the following identity holds true

"Xadx.p) ={-tvof
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Proof- Let us take the solid part in the diagram below

\ . Y
92 \\
\\ (idx,f) Ay
XxY Y xY

f><idy

Consider the projections 7x: X x Y — X, my: X x T — Y and take as g the arrow 7x o go. If
m1,m2: Y =2 Y are the other projections, then we have

fog=fomxog
=m o (f xidy)oge
=moAyog
=idyogr
=91

On the other hand, we also have

Ty 0 gz = idy o Ty © go
=myo (f xidy)oge
=moAyoq
=idy og
=0

Therefore we can deduce
(ldX7f) °cg= (ldX Og7ng)
=(9,f29)

= (Tx 0 g2, Ty © g2)
g2

Thus g fits in the given diagram. (idx, f) is mono because wx o (idx, f) is the identity, thus the previous
equalities show that the square below is a pullback.

!

X——Y

(idx,f)i \LAY

XXY —>Y XY

fxidy
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We can now use Lemma to deduce that the whole rectangle
x
X— vy T

1
f ly
(idx,f)l Ayi \Lt
id — id

X xy Iy oy I oy oy Q

is a pullback. Hence we have

X(idx.f) = evy,0 o ({—}y xidy) o (f xidy)
=evyoo (({—}yof) xidy)

and the thesis now follows. O

Lemma5.3.9. Letm: X — Yand f: X — Z bearrows in a topos X and suppose that m is a monomorphism,
then the following hold true:

1. the square
f

X———7
1 e
Y —— 0%
X(m. )
commutes and it is a pullback;
2. if the square
x-1.z
. i
Y —

q2

is a pushout, then q1 is a mono and the square is also a pullback.
Proof- 1. Let us start showing that the given square commutes. We can observe that the square

X9y

(idx,f)i l(maf)

XX —>YXxZ

mXidz

is a pullback. Indeed, let m1: X X Z — X, m0: X x Z = Z,71: Y X Z =Y and7h: Y X Z = Z
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be projections and suppose that the solid part of the diagram below is given,

\ ; X L—X
g2 \\ i l
h (idx,f) (m.f)
\
XXZ—Y xZ
mXidz
Then we get the following two chains of equalities
momogy=m omxidzog Te0ge =idzomog
=mo(m, f)og =mhom X idz o go
=meg =m0 (m, f)og

=foq
which, since m is a mono, entail that
g2 = (91, fog1)

showing that g; is the unique arrow which can fill the dotted part of the diagram above. We can
combine this observation with Lemma 5.1.4 to conclude that the rectangle

(idx,f)l (m,f)l it
XX7— Y xZ 0
mXxidz X(m,f)

is a pullback, allowing us to conclude that
X(idx.f) = X(m,p) © (m x idz)
Thanks to this identity, we can build the diagram below
(Xr(m’f)ﬂom) Xidz

/\
XXxZT— Y xZ 0% x Z

mxidz Xr(myf)ﬂXidZ
m %
X(idx,f) Q

"X(idx,f) | = X (m, )1 0mM

which shows that

On the other hand, we know by Proposition 5.3.8 that

"Xadx.p) ={-}tzof
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and therefore, we obtain the wanted equality

Xr(m,pynom={-}zof

To prove the last half of the thesis, suppose that the solid part of the diagram below is given

X ——

Z
i{}z

Y ——= 07

"X(m, )"
Since m is a mono it is enough to show that the dotted g: @ — X exists. Computing we get

X(m.f) © (92, 91) = evza o ("X(m,p) ' X idz) o (g2, 91)
=evza0 ("X(m.p) ' ©92,91)
=evzao({-}z0291,91)
=evzoo({—}z xidz)o (g1, 91)
=Xa,°(91,91)
=Xa,0lz0q
=tolzoq
=tolg

Thus we get g: @ — X fitting in the diagram below:

Q !

\

1
N (m,f) if
Ny
YXZ——s0Q
X(m,f)

(92,91)

///
,/
pd
/ @
o
i

The commutativity of the left triangle entails
gp=mog  g1=fog

as desired.
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2. Let us use the previous point to obtain a diagram as the one below
!
X —Z
m \Lq
Y ——
q2

"X(m. " 0%

The universal property of pushouts yields the dotted g: @ — QZ. {—}z is a monomorphism
because

Az =evzgo{-}z

and thus ¢; is a mono too. Too see that the original square is a pullback, take h1: Q@ — Z and
ho: @ — Y such that

q1oh1=gqz0hs
Composing the two sides othe equation above with g, gives us
{-}zohi=goqoMh
=gogyoho
="X(m,f) ' © h2
Therefore, applying point 1 again, we get a unique h: @ — X such that

hy=foh ha =moh

which is precisely the thesis. O
A topos X is finitely cocomplete by Fact . Thus it has all pushouts and from Proposition
and Lemma we can deduce the following result.

Corollary 5.3.10. In a topos X, every mono is adhesive.
We can now apply Corollary and Lemma together with Remark to get our result.

Corollary 5.3.11. Every topos is an adhbesive category.

An embedding theorem

Definition 5.3.12. Let (M, /) be a preadhesive structure for a category X. A jq ar-covering family for
an object X is a set {p,q} of arrows p: Z — X and q: Y — X such that there exist m: N — Y in M
andn: N — Z in N making the following square a pushout

N—=2>7

o]

We will define j g a7 (X) as the set of j g ar-covering families for X.
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Proposition 5.3.13. Let X be a category with pullbacks, for every preadhesive structure (M, N) such that
M C NG, the family {jpm n(X)} xex defines a coverage jp nr on X.

Proof. Take p,qinjpma(Y) and f: X — Y. By definition of j v a(Y), there exists a pushout square

N 's>7
)

withm € M andn € N. By Remark , we know that it is stable. We can use Corollary to build
the following cube in which all faces are pullbacks

The arrows m and n belong to M and N, respectively. Thus m’ € M and n’ € N. The bottom face is
stable, therefore the top face witnesses {p’, ¢’} € jaa/(X). On the other hand we have squares

W =W A
S R
X— Y X——v
from which we can deduce the thesis. O
Remark 5.3.14. The coverage ja v is a cd-structure in the sense of [ 120, 121].

Our next step is to characterize sheaves for the site (X, j v p)-

Lemma 5.3.15. Let (M, N) be a preadhesive structure for a category X with pullbacks and suppose that every
element in M is N-adhesive. Then the following are equivalent for a presheaf F: X°P — Set:

1. Fisin Sh(X,jmn);
2. given the following two squares, the first of which is an M, N -pushout and the other two are pullbacks,

Y1

N-—"s7Z K,—=Y
ml J{P yzi lq
Y ——= X Y —=X

q q
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if the solid part of the diagram below is given, then there exists a unique f: S — F(X) fitting in it.

Proof- (1 = 2) Let us start showing that, for every s € S, the family {f1(s), f2(s)} is matching for the
imn-cover {p,q}. Given three commutative squares as the ones below

Ay B- ",y -z
BEREN
Z—>X Y —>X Z—>X

p 1s the pushout of m. Thus it belongs to M and so is a mono, which implies that
c1 = ca F(c1)o fo=F(c2)o fo

Moreover, m € N, and n € N. Thus in the following diagrams the two inner squares are pullbacks,
giving us the dotted arrows a: A — N and b: B — K.

B -

N—2>7

ay l by
N p
N\

Computing we get the following chains of identities

Flar)o fi=F(a)o F(m)o fi  F(bi)o fi = F(b)o F(y1)o fr
Fa)o F(n)o fa =F®)oF(y)o fi
:F(GQ)OfQ :F(bQ)Ofl

which imply that, for every s € S, {f1(s), f2(s)} is a matching family for {p, q}. Since F is a sheaf we
can define f: S — F(X) taking as f(s) the unique amalgamation of {f1(s), f2(s)}, by construction

fi=Fp)of  fa=F(g)of
For uniqueness it is enough to notice that, if g: S — F(X) is another arrow such that

fi=F(p)og fa=F(q)og
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then g(s) is an amalgamation for {f1(s), f2(s)}.
(2= 1) Let {p, q} be a ja n-cover of X. By definition there exists an M, N-pushout square

N -

. )l(

Y ——>
q

Take a matching family {s1, s2} for {p,q} with s; € F(Y) and so € F(Z). Applying the matching
property to the two squares below

n Y1

N ——7 K, ——Y
m lp y2i lq
Y —X Y X

—_—
q q

we obtain the following identities:
E(m)(s1) = F(n)(s2)  F(y1)(s1) = F(y2)(s1)

Thus, if §5,: 1 — F(Y) and d5,: 1 — F(Z) pick s1 and sa, respectively, then we have the solid part of
the following commutative diagram and, by hypothesis, also the dotted §: 1 — F(X).

1—,

F(Z)

\LF(Tﬂ)

F(y1)
F(K,) =—— F(Y) —— F(N)
F(ya) F(n)

Now let s be the element of F'(X) picked by . Then, by construction s is an amalgamation for {s1, s2}.
On the other hand, if s’ is another amalgamation, then

s, = F(p) o 6 s, = F(p) 0 0
and so 0 = d,/, showing that s = ¢/, i.e. that F is a sheaf. O
We can now combine the previous lemma with Lemma to obtain the following.

Lemma 5.3.16. Let (M, N') be a preadhesive structure on a category X with pullbacks such that M C N,
M NN contains every split mono and M is closed under M, N -unions. Then for a presheaf F': X°P — Set
the following are equivalent:

1. Fisin Sh(X,jmn);
2. F sends M, N -pushouts to pullbacks.
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Proof. (1 = 2) Given the following two squares, the first of which is an M, N-pushout, while the second
is a pullback

N——Z7 K, ——= N
N
Y — X N — Y
Lemma gives the following diagrams, in which the common square on the left is an M, N-pushout.

In particular, this implies that {k, 4} is a j pmq ar-covering family of X

Tn ni

N K, N7 N K, N—"s7
ml kl ml lp ml ki ml \LP
Y K, Y X Y K, Y X
Ya a8 q Ya Y2 q

The arrow k is in M since it is the pushout of M. Thus, k and ~, are both mono, so that Lemma
now implies that the square below is a pullback.

On the one hand we have at once that

F(yg) o F(y1) o Y1 ovq)

(
(idy) o
(
(

Y2 © 'Yq)

F
F
F
F’Yq)OF(y2) 1
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while, on the other hand, we also have

F(k)o F(y1)o fi = F(y10k)

= F(k)o F(y2) o f1
and we can deduce that F(y;) o f1 = F(y2) o fi. Lemma now entails the thesis.
(2 = 1) This follows at once from Lemma . O
We are now ready to deduce our main theorem.

Theorem 5.3.17. Let (M, N') be a preadhesive structure on a category X with pullbacks such that M C N,
M NN contains every split mono and M is closed under M, N -unions. Then the following hold true:

1. the Yoneda embedding ¥ x: X — SetX”” factors through a full and faithful functor Xy : X — Sh(X,jmn);
2. X preserves pullbacks and sends M, N -pushouts to pushouts.

Proof 1. Since Sh(X,jaq.v) is a full subcategory of Set™ ", it is enough to show that, for every X € X,
the functor X(—, X) is a sheaf, but this follows at once from Lemma , since any representable
presheaf sends pushouts to pullbacks.

2. The inclusion Sh (X, jr ) — Set™  creates limits and Xx sends pullbacks to pullbacks. There-
fore & preserves pullbacks, too. Take now an M, A-pushout

X7z

m) |

Since Sh (X, jm.n) is a full subcategory of Set™ ", for every sheaf F, the Yoneda Lemma yields a

natural isomorphism y: Sh (X,jr ) (£x(=), F) — F, so that we obtain a diagram

(=)o Kx(a)
Sh (X, jmn) (£x(Q), F)

F(Q) —%- F(2Z)
(=)o Kx(p) F(p) F(n

/

X JMN) (J:/ (Z)’F)

/
\

Sh (X, imw) (£x(X), F)
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The functor F is a sheaf. Hence, the inner square is a pullback by Lemma , and, thus, the
outer one is a pullback, too, proving that &% sends M, A-pushouts to pushouts. O

Corollary 5.3.18. Let X be an M, N -adhesive category with pullbacks such that M N N contains all split
monomorphisms and N contains all M, N -codiagonals. Then there exists a full and faithful functor from X
into a topos. Moroever, such a functor preserves all pullbacks and M, N -pushouts.

Proof. Apply Theorem and the previous theorem. O
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In the previous chapter we have introduced and examined the notion of M, N-adhesivity and provided a
criterion, namely Theorem , allowing us to deduce some adhesivity result for a category X from the
existence of a family of functors with suitable properties. This chapter is devoted to exploit this criterion
to establish M, N-adhesivity of various categories.

It is well-known that categorical properties are often prescriptive, indicating abstractly the presence
of some good behaviour of the modelled system. Adhesivity is one such property, as it is highly sought
after when it comes to rewriting theories. Thus, our criterion for proving M, A-adhesivity can be seen
also as a “litmus test” for the given category. This is the precisely the case of our first important example:
hierarchical graphs. We roughly can find two alternative proposals for this kind of structures: on the one
hand, algebraic formalisms where the edges have some algebraic structures, so that the nesting is a side
effect of the term construction; on the other hand, combinatorial approaches where the topology of a

227
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standard graph is enriched by some partial order, either on the nodes or on the edges, where the order
relation indicates the presence of nesting. By applying our Theorem , we can show that the latter
approach yields indeed an M, A-adhesive category, confirming and overcoming the limitations of some
previous approaches to hierarchical graphs [99, 101, 102], which we briefly recall next.

The more straightforward proposal is by Palacz [102], using a poset of edges instead of just a set;
however, the class of rules has to be restricted in order to apply the approach, which in any case predates
the introduction of adhesive categories. Our work allows to rephrase in terms of adhesive properties
and generalise Palacz’s proposal, dropping the constraint on rules. Another attempt are Mylonakis and
Orejas’ graphs with layers [99], for which M-adhesivity is proved for a class of monomorphisms in the
category of symbolic graphs; however, nodes between edges at different layers cannot be shared. Padberg
[101] goes for a coalgebraic presentation via a peculiar “superpower set” functor; this gives immediately
M-adhesivity provided that this superpower set functor is well-behaved with respect to limits. However,
albeit quite general, the approach is rather ad hoc, not modular and not very natural for actual modelling.

As a next step, we leverage on the modularity of Theorem to deal with hypergraphs and some
variants of them. In this way we are able to introduce hierarchical hypergraphs, i.e. hypergraphs in which
the edges are organized in some structure, like a tree, a simple graph, or a directed acyclic graph. This, in
turn allows us to study two other examples.

The first one is given by a a recently introduced (hyper)graphical formalism for the representation
of the internal language of monoidal closed categories. In [11] the authors define a category of labelled
hierarchical hypergraphs and use them to represent arrows of a given monoidal closed category. Identities
provided by the axioms of a monoidal closed structure are then formalized as rewriting rules. We show
that the category of these hypergraphs is M, M-adhesive for a class M of monos which contains the
morphisms appearing in the rules proposed in [11].

Our second hypergraphical examples is given by term graphs [3¢, 108]. These are elements of a par-
ticular class of hypergraphs, whose use has been advocated in the past years as a tool for the optimal
implementation of terms, with the intuition that the graphical counterpart of trees can allow for the shar-
ing of sub-terms [ 108]. As a preliminary step we show that two presentations of term graphs appearing in
the literature yields isomorphic categories. Next, we provide a new proof of the fact, first proved in [3¢]
with a brute-force approach, that the category of term graphs is quasiadhesive. Our strategy to do so, will
be prove that term graphs forms a full subcategory of the category of hypergraphs which is closed under
pullbacks and pushouts along regular monos.

This chapter, as the previous one, draws on material previously published in [36]. An extended version
of it, including the comparison with the formalism introduced in [ 1] for monoidal closed categories and
the correspondence between the two presentations of term graphs appearing in the literature has been
submitted to Theoretical Computer Science for publication.

Synopsis In Section 6.1 we apply the results of Chapter 5 to various categories, such as simple graphs,
directed graphs, trees and hierarchical graphs. In Section 6.2 we move to hypergraphs, where an edge
may join two subsets of nodes, and we investigate the adhesivity of the category of (algebraically) labelled
hierarchical graphs. Section 6.3 is devoted to the introduction and study of a category whose objects
provide a representation for arrows in monoidal closed categories. Finally, in Section 6.4 we discuss term
graphs, which are seen as the standard formalism for the implementation of functional programs.
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M, N -adhesivity of some categories of graphs

In this section we apply the results provided in Chapter 5, to some important categories of graphs, such as

directed (acyclic) graphs and hierarchical graphs. These examples have been chosen for their importance

in graph rewriting, and because we can recover their M, N-adhesivity in a uniform and systematic way.

In fact, in the case of hierarchical graphs we give the first proof of M, N-adhesivity, to our knowledge.
As a preliminary step, let us prove some properties of pushouts in Set.

Lemma 6.1.1. Let the following square be a pushout in Set

X
d
Z

then the following are true:
1. the induced arrow (q1,q2): Y + Z — Q is surjective;
2. If z1 and z5 are two distinct elements of Z which do not belong to g(X), then q2(z1) # q2(21);

3. if g is injective then, given z € Z andy € Y, we have q1(z) = q2(y) if and only if there exists a unique
x € X suchthaty = f(x) and z = g(z).

Proof. 1. In any category with binary coproducts the following diagram is a coequalizer

ty © (q1,92)
X—=Y+7——Q
Lz0g

where ty: Y =Y + Zand vz: Z — Y + Z are the coprojections. The thesis now follows since
epimorphisms in Set are surjective.

2. Consider the functions hy: Z — 2 which sends g(X) U {z1} to 0O and z2 to 1 and hy: Y — 2
constant in 0. Then

hiof=hyog
and so there exists h: Q — 2 such that
hi=hoq ho =hoqs
In particular we have that

hga(21)) = ha(z1)  h(ga(22)) = ha(22)
=0 =1

showing that ¢2(21) and ¢2(z2) must be different.
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3. (=) By hypothesis ¢1(z) = ¢1(y), thus we have the solid part of the diagram below

§ ;

5 X —Y
20
but Set is adhesive, thus, by Proposition , the given square is also a pullback and so there is a
unique dotted §: 1 — X. Now it is enough to take as = the element picked by this arrow.
(<) Obvious. O

6.1.1 Directed (acyclic) graphs

Among visual formalisms, directed simple graphs represent one of the most-used paradigms, since they
adhere to the classical view of graphs as relations included in the cartesian product of vertices. It is also
well-known that directed graphs are not quasiadhesive [6/], not even in their acyclic variant. In this section
we are going to exploit Corollary to show that these categories of (acyclic) graphs have nevertheless
adhesivity properties.

Definition 6.1.2. A directed graph G is a 4-tuple (Eg, Vg, sg, tg) where Eg and Vg are sets, called the set
of edges and nodes respectively, and sg,tg: Eg = Vg are functions, called source and targer. An edge e is
berween v and w if
v=sg(e) w=tg(e)
G (v, w) will denote the set of edges between v and w.
A morphism G — H is a pair (f, g) of functions f: Eg — FE3, g: Vg — V3 such that the squares
below commute. We will denote the category so defined by Graph

By —S >V By —2 vy,

fl lg fl lg

EH e VH EH —— VH
SH ty

A directed simple graph is a directed graph in which there is at most one edge between two nodes, SGraph
will denote the full subcategory of Graph made by directed simple graphs.
A path {e;}!_, in G is a finite and non empty family of edges such that, forall 1 <i<n —1

tg(ei) = sg(eiv1)

A path will be called a cycle if
tg(en) = sg(er)

A directed acyclic graph is a directed simple graph without cycles. Directed acyclic graphs form a full
subcategory DAG of SGraph and Graph.
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Remark 6.1.3. Let (f,g): G — H be an arrow in SGraph with H € DAG, then G is in DAG too. Given
acycle {e;}"_; in G we have

ty(f(ei)) = gltg(ei)) ty(f(e1)) = gltg(er))
= g(sg(eit1)) = g(sg(en))
=ty (f(eit1)) =ty (f(en))

so that {f(e;)}?_; is a cycle in H.
Proposition 6.1.4. Ler prod be the functor Set — Set defined as

X— X xX

fl Lrxr
Y+— Y XY

Then Graph is isomorphic to idge Jprod
Proof. Define F': Graph — idse; |prod and G': idse; Lprod — Graph putting

(Eg, Vg, sg,tg) — (Eg, Vg, (sg,tg)) (Eg,Vg,pg) — (Eg,Vg,m1 0pg, 20 pg)
(f.9)] X)) (f.9)] [(.9)
(B, Vag sms ta) — (B, Vi, (s3, 1) (B3, Vag, o) = (B, Vag, m1 0 pay, m2 0 pu)
It is now immediate to see that " and G are mutually inverses. O

Corollary 6.1.5. The following hold true:

1. the functors Wraph, Ugraph : Graph = Set sending a graph to its set of edges and of nodes, respectively,
jointly creates all limits and colimits;

2. anarrow (f,9): G — H is a mono Graph if and only if both f and g are injective;
3. Graph is an adbesive category.

Proof. Products commute with limits, thus prod is continuous and the thesis now follows at once from
Lemma , Corollaries and , and Theorem . O

Remark 6.1.6. Graph is also equivalent to the category of presheaves on 0 = 1, the category with just
two objects and only two parallel arrows between them (besides the identities).

Remark 6.1.7. As a consequence of point 2 of the previous corollary, if (f,g): G — H is a mono with
codomain in SGraph, then G also belongs to SGraph.

We can also apply Proposition deducing the following.
Corollary 6.1.8. The forgetful functor Ugraph: Graph — Set has a left adjoint Agraph : Set — Graph.

X — (@,X,?X,?X)
rl L (idg, 1)
Y

— (®7 Y7 ?Yv ?Y)
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Let us now establish some properties of SGraph that will be useful in the following.
Proposition 6.1.9. I (f,g): G — H is an arrow in SGraph with g injective, then [ is injective too.

Proof. Let e1,e5 € Eg be nodes such that f(e;) = f(e2), then

g(sg(e2)) = su(flez))  gltg(ea)) = ta(f(e2))

= SH(f(el)) = t?-i(f(el))
= 9(sg(e1)) = g(tg(e1))
so that
sg(e1) = sgle2)  tg(er) =tg(e2)
and the thesis follows since # is simple. O

Let G = (Eg, Vg, sg,tg) be a directed graph. Define a relation ~ on Eg putting e; ~ e if and only if

sgle1) = sgle2)  tgler) =tg(e2)

It is immediate to see that ~ is an equivalence relation. If 7g: Eg — E,gy denotes the quotient projec-
tion, there are two unique functions sy,(g), t(g): Er(g) = Vg such that

Sg:SL(g)Oﬂ'G tg:tL(g)Oﬂ'G
We can then consider the graph L(G) given by (Ey(g), Vg, $1(g), tL(g)) Which, by construction is simple.
Proposition 6.1.10. The inclusion functor I : SGraph — Graph has a left adjoint L: Graph — SGraph.

Proof. For every G in Graph, there is an arrow (ng,idv;): G — I(L(G)). Let H be a simple graph and
(f,9) anarrow G — I(H). Since H is simple, we have that f(e1) = f(e2) whenever e; ~ ey, thus there
exists a unique f: Ep gy — Ey suchthat f = f o mg. Moreover

spofomg=syof tyofomg=tyof
=gosg =gotg
=gospg) °Tg =gotrg omg

and, since g is surjective, this shows that (f, g) is the unique morphism L(G) — H such that

(mg,idvg)

g 1(L(9))

(% 4

1(H)

commutes, therefore (g, idy, ) is the unit of L - I. O

Remark 6.1.11. (7g,idy; ) provides also the component at G of the counit L o I — idsgraph, 50 We can
conclude that L oI is isomorphic to the identity functor. Notice that this is an instance of the general fact
that the counit of an adjunction F' - G is an isomorphism if and only if G is full and faithful.
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We have proved that I is a full and faithful right adjoint , thus it reflects and preserves monomorphisms,
therefore, using Proposition , we can deduce the following result.

Corollary 6.1.12. Given a morphism (f,g): G — H in SGraph, the following are equivalent
1. (f,g) is a mono in SGraph;
2. f and g are injective;
3. g is injective.

Corollary 6.1.13. The functor L preserves monomorphisms.

Proof. Let (f,g): G — H be a monomorphism in Graph, then L(f,g) = (f,g) where f is the unique
arrow Ep(g) — Ef ) fitting in the diagram

Erg) 2> Eren

By point 2 of Corollary g is injective and Corollary yields the thesis. O
Corollary 6.1.14. Let D: D — SGraph bea diagram and (C,{(fp, 9p)} pep) 4 colimiting cocone for [oD,
then (L(C’)7 {L(fp,9p) o (v5",idv,) }DeD) is colimiting for D. In particular, SGraph is cocomplete.

Proof. L is a left adjoint, thus it preserves colimits and therefore (L(C),{L(fp,9p)}pep) is colimiting
for L o I o D which, by Remark is naturally isomorphic to D through 7« D. O

Proposition 6.1.15. The forgetful functor Usgyaph obtained restricting Ugraph bas both a left adjoint AgGyraph
and a right adjoint VsGraph.

Proof. For the left adjoint just compose L and Agraph. To see that Usgraph has a right adjoint, define
VsGraph(X) as (X x X, X, 71, m2). For every set X we have idx : UsGraph (VSGraph(X)) — X. Moreover,
if a function g: Usgraph(G) — X is given, then we can take (gosg, gotg): Eg — X x X. By construction
((gosg,gotg),yg) is the unique arrow G — VsGraph(X) such that

g = idx o Usgraph ((9 © 56,90 tg) , 9)
and we can conclude. O
Corollary 6.1.16. M (SGraph) is stable under pushouts.
Proof- Take a pushout square with (f1, g1) in M(SGraph)

(f2,92)

(p1,91)

H
(fhﬁ)l
g

V=<=—2a

R —
(p1,92)
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By Proposition the following square, obtained applying Usgraph is a pushout in Set

Vy LK

g g2

By Corollary g1 1s injective, so ¢ is injective too because Set is adhesive, thus, using again Corol-
lary we can conclude that (p1, g1) is mono. O

Our next step is to characterize regular monos of SGraph.

Definition 6.1.17. An arrow (f, g) : G — H in Graph reflects the edges if, for every e € H(g(v1), g(v2))
there exists ¢’ € G(vy,v2) — H(g(v1), g(v2)) such that e = f(¢).

Remark 6.1.18. If (f,g): G — H is an arrow of SGraph, then it reflects the edges if and only if G(v1, v2)
is non empty whenever H(g(v1), g(v2)) # 0. Indeed, since H is simple, if ¢’ belongs to G(vy, v2), then
necessarily we must have e = f(¢’).

Proposition 6.1.19. Anarrow (f,g): G — H of SGraph is a regular monomorphism if and only if it reflects
the edges and g is injective.

Proof. (=) Suppose that (f, g) is the equalizer of (f1, g1), (f2,92): H = K, since I preserves limits, (f, g)
is the equalizer of (f1,¢1) and (f2, g2) in Graph. Let G’ be the graph where

By i={e€ Ex | file) = fole)} Vo= {v € Vi | v (w) = vp(w)}

and sg, tg: are the restrictions of sy and t4. Then, by Corollary theinclusionsi: Eg: — Ey,j: Vg —
Vy provide an equalizer (i, j): G — H of (f1, 1) and (f2, g2) in Graph. By Remark , G’ is an object
of SGraph. I preserves limits so there exists an isomorphism (¢, 1): G — G’ such that

(f,9) oy
N
g/

commutes. If we show that (7, j) is edge-reflecting we are done. For every e € H(i(v1),4(v2)) we have

g
(¢

sc(fi(e)) = gi(su(e))  tx(file)) = gi(tule))
= g1(i(v1)) = g1(i(v1))
= g2(i(v1)) = g2(i(v1))
= ga(sn(e)) = g2(twu(e))
= sic(fa(e)) = tc(f2(e))

Thus e is an element of Eg because K is simple.

(<) Take the set
V=V + (Vi N g(Vg))

and define E C V x V putting (v,v’) € E if and only if one of the following is true
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v =7iy(w), v =i (w') and H(w,w’) # 0;
® v =is(w), v =is(w') and H(w,w") # 0;
v =7iy(w), v =iz(w') and H(w,w’) # B;
v =1is(w), v =iy (w') and H(w,w’) # 0;

where i1 and iz are the inclusion of V3 and V3 \ ¢(V5) into V. Restricting the projections, we get two
arrow s,t: E =V, let K be the directed graph (E,V, s, t), which by construction is simple. Now, take

frEg =V e (i(sule)) ir(tu(e)))

coupled with 41 : V3 — V it induces a morphism (f,41): H — K. On the other hand, define

and
(i1 (53(), in(tn(0)) sm(©). () € 9(Ve)
. L asnte ialtn(@) - sule).tle) ¢ 9(V)
FrBn = B e G (@) inltn(@)) smle) € 9(Ve)
(ia(s59()), in(t(0)) tra(e) € a(Ve)

Define the set A C Ey as
A= {e€ By | syle),tule) € g(Vg)}

with inclusion i: A — Ey;. Let also j be the inclusion g(V3;) — V3;. By construction there are arrows
s,t: A = g(Vy) such that the following diagrams commute:

A*i>EH A*i>E7.L
sl iS’H tJ/ ltﬂ
9(Vg) T>V’H 9(Vg) ?VH

Putting G' := (A, g(Vg),s,t) we get a (simple) graph, with an inclusion (¢,7): G’ — G which is the
equalizer in Graph of (f, 1) and (f’,).

Now, g = j o ¢ for some ¢: Vg — ¢(Vg) and, since (f, g) is a morphism of SGraph, f = i o ¢ for
some 1: B3 — A. We have the following two chains of identities

jogosg=gosa jogotg=gota
=syof =tyof
=spo0ior =lyoio
=josoy =jotoy

Since j is injective, we obtain a morphism (¢, ¢): G — G’. Moreover, by construction ¢ is surjective
and g is injective by hypothesis, thus also ¢ is injective and, by Corollary , we can deduce that
is injective too. Let us show that 4 is also surjective. Given e € A, then e € H(g(v1), g(v2)) for some
v1,v2 € Vg, thus there exists ¢’ € G(v1,v2) and, necessarily, f(e’) = e, but this means that ¢)(¢/) = e. O
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Example 6.1.20. In [6/] it is shown that SGraph is not quasiadhesive. Too see this, using Corollary ,
it is enough to notice that the union of regular monos in SGraph is not a regular mono. Take

g = (15 {Oa 1}750761) M = (Q)a 17 ?1571)

Then we have morphisms (71, d), (?1,01): M = G which, by Proposition , are regular monos.
Their supremum in Sub(G) is the inclusion of (0, {0, 1}, 7o, ?1) into G which, again by Proposition ,
is not a regular monomorphism.

Definition 6.1.21. A monomorphism (f,g): G — H in Graph is said to be downward closed if, for all
e € Ey, e € f(Eg) whenever t4,(e) € g(Vg). We denote by dcl, dcls and dcly the classes of downward
closed morphisms in Graph, SGraph and DAG respectively.

Proposition 6.1.22. Every downward closed morphism in SGraph is a regular mono.

Proof. Let (f,9): G — M be an element of dcls, we only have to check that it is edge-reflecting. Given
e € H(g(v1),g(ve)), since (f,g) is downward closed there exists ¢’ such that f(e’) = e. But then

g(sg(e)) =sule)  gltg(e')) = twle)
= g(v1) = g(v2)

and, since g is injective, it follows that ¢’ € G(v1,v3). O

Remark 6.1.23. The converse of the previous proposition does not hold. A counterexample is given by
the arrow (?17 (51) : (@, 1, ?1, ?1) — (]., {0, 1}, (S()7 (51)

Proposition 6.1.24. Take an arrow (f,g): G — H in Graph and consider the functor L: Graph —
SGraph left adjoint to the inclusion, then the following hold true:

1. if (f,g) isin dcl then L(f, g) is in dcly;

2. if (f, g) reflects the edges then L(f, g) reflects the edges too.

Proof. 1. Take an element (f,g): G — H of dcl and let L(f,g) be (f,g) as in Corollary LIt
tra) (mx(e)) is equal to g(v) for some v € Vg then we also have

so that there exists ¢/ € Eg such that f(e’) = e. But then

fmg(e')) = mu(f(€'))

= mu(e)

which is what we need to conclude.

2. As before, let L(f, g) be (f, g) and suppose that 7¢(€) be an edge between g(v) and g(v') in L(H).
Then e is an edge in H(g(v), g(v")) and thus there exists ¢’ € G(v,v’) such that e = f(e’), but this,

by construction, entails f(e) = e. O

Corollary 6.1.25. R(SGraph) is stable under pushouts.
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Proof- Let (f1,91): H — G be a regular mono in SGraph. Given another (f2.g2): H — K we can
consider the following two diagrams, the first of which is a pushout square in Graph, while the second
one is a pushout in SGraph by Corollary

(f2,92) (f2,92)

H———K H K
J/ g ldvg
(f1.91) (p1.q1)  (f1.91) L(I(K))
J/L(PLQI
— P — = LI L(P
(p2,92) g (ﬂgl,idvg) ( (g)) L(p2,92) ( )

Since Graph is adhesive, we already know that (p1, ¢1) 2 monomorphism, thus if we show that it reflects
the edges we get the thesis using Corollary and Propositions and

By Corollary we also know that the squares below are pushouts in Set and that sp, tp: Ep = Vp
are the arrows induced by g2 o sk, g1 0 sg and by g2 o ¢, q1 © tx respectively.

Ey LN Ex Vi —2> Vi
fli lpl gll \Lth
Eg T> Ep Vg T VP

Let us take an edge e € P (g1 (v), q1(v")). If e = p1(€’) for some ¢’ € E then

pi(e)  alte(e) = tp(pi(e)

q1(sk(e )):SP 1
e) =tp(e)

(
(

showing that ¢’ is an edge between v and v as wanted. On the other hand, if e = py(¢’) for some ¢’ € Eg,
then

ga(sg(e’)) = sp(p2(€)) (tg(e)) = tp(p2(e))
= sp(e) = tple
= q1(v) =q(v)
and by Lemma this means that there are hy, ha in Vi such that

sg(e) = fi(h1) v = fa(h1) tg(e') = fi(ha) o' = fa(ha)

Since (f1, g1) reflects the edges we get € € Fy; such that f1(€) = ¢’ and so

p1(f2(€)) = p2(f1(€))
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In particular this means that

@1 (sx(f2(e))) = sp

(p1
= sp(e) =tp(e)
=q(v) =q (V)
showing that f;(€) belongs to (v, v’). O

We are now ready to show some closure properties of DAG and SGraph in Graph.

Lemma 6.1.26. The following are true:
1. SGraph and DAG are closed in Graph under pullbacks;
2. SGraph is closed in Graph under R(SGraph), M (SGraph)-pushouts;
3. DAG is closed in Graph under dcly, M (DAG)-pushouts.

Proof. 1. By Corollary , we can construct the pullback P of (f1,91): G — H along the arrow
(f2,92): K — H using the pullbacks

Ep s By Vp — s Vi

pzl J/f2 q2i iqz

Eg —— Ey Vg ——Vu
f1 91

and defining sp,tp: Ep = Vp as the arrows induced by si o p1, sg o p2 and by tx o p1, tg o pa.
The colimiting cone is then given by (p1,¢1) and (p2, ¢2). Now, suppose that G and K are simple,
then if there are e, ¢’ € Ep with

we also have

showing that
pi(e) =pi(e)  pae) =pa(e)
and so we can conlude that e = €’. In particular, SGraph is closed in Graph under pullbacks. On

the other hand, if G or H is in DAG, then Remark entails that P is also in DAG and thus also
DAG is closed in Graph under pullbacks.
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2. Using again Corollary , we see that, given (f1,91): H — Gand (f2, g2): H — K, their pushout
P is defined taking the two pushout squares

Ey L Ex Vi —2> Vi
fll lpl gll \qu
Eg ? Ep Vg T> Vp

with the arrow induced by g3 o sic and g1 o sg as sp, while ¢p is the one coming from gz o tx,
q10tg. Suppose now that (f1, g1) is in R(SGraph) and ( f2, g2) in M(SGraph). By Corollary

and Propositions and we know that fi, f2, g1 and go are injective. Since Set is adhesive
this implies that p1, p2, 1 and g2 are injective too. Take now two elements e; and e of P(v,v’),
we can use point 1 of Lemma to split the cases.

e Ife; = p1(€}) and e3 = p1(ef) for some e, e, € Ex. Then

qi(sc(eh) = sp(pi(er))  aute(er)) = tp(pr(er))

= sp(e1) =tp(e1)
= sp(e2) =tp(e2)
= sp(p1(ey)) = tp(p1(eh))
= q1(sk(ey)) = q(tx(ey))

By the injectivity of ¢; is injective we get
sc(eh) =sk(ey)  trle)) = t(es)

therefore, since K is simple, we know that ¢] = ¢/, and thus e; = es.
e Similarly, if e; = pa(e)) and ea = pa(e}) for some €], e, € Eg we can compute again to get

@2(skc(€)) = sp(p2(e1))  aalti(er)) = tp(pa(er))

= sp(e1) =tp(e1)
= 873(62) = tp(eg)
= sp(p2(e3)) = tp(p2(e3))
= q2(sx(€3)) = q2(txc(e3))

and the thesis now follows using the injectivity of go.
® ¢; =pi(e)) and eo = pa(eh) for some €] € K and €}, € Eg. Therefore we have

pi(s(ey)) = v pi(t(ey)) =0
= pa(sg(es)) = pa(tg(es))
Thus by Lemma there exist wy and we € Vy such that

gr(w1) = sg(es), ga(wi) =s(er) gi(wa2) =tg(er), ga(wa) = ti(es)
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Hence €] € G(g1(w1), g1(w2)), but (f1, 1) is regular, so Proposition entails the exis-
tence of e € H(w1,ws). Now, f1(e) = €}, while

sk(fa(e)) = g2(sule))  tx(fa(e)) = ga(ta(e))

(w1) = ga(w1)
r(er) = txc(e])

g2
g2
s

and thus fo(e) = e}. We conclude that e; = e5 in Ep

® ¢; = py(e}) and e3 = pi(e}) for some €] € G and €, € Ex. This is done exactly as in the
previous point swapping the roles of ¢} and 5.

3. Now let (f1,91) and (f2, g2) be, respectively, a downward closed morphism and a mono in DAG,
we are going to use agin the explicit construction pushouts in Graph. Suppose that a cycle {e; },
in P is given. We split again the cases using Lemma

® Forevery 1 <i <mn,e; =p;(e;) for e, € Ex. Then

q1(sxc(ey)) = sp(e1) qi(tx(ef)) = tp(es)
=tp(en) = sp(€i+1)
= q(tx(ey,)) = qi(tx(eiry))

As before, g1 1s injective because is the pushout of an injective function, thus {€;}"_, isa cycle
in KC, which is absurd.

® Forevery 1 <i <n,e; = pa(e}) for ¢ € Eg. Then

g2(sg(€})) = sp(er) ga(tg(e})) = tp(es)
= tp(en) = sp(€i+1)
= qa(tg(ey,)) = qa(tg(eitr))

We can conclude again appealing to the injectivity of ¢s.

® To deal with the other cases we can reason in the following way. Take e = p;(e’) for some
¢’ € E) and suppose that there exists a = ps(a’) for some @’ € Eg such that sp(e) = tp(a).
By Lemma there exists v € V3 such that

32(91(v)) = tp(a)
= ¢2(pa(a’))

go is injective, thus g1 (v) = pa(a’). Since (f1,91) € dcly there exists b € FEy such that
f1(b) = d’. Thus a = p1(f2(b)) belongs to p1 (Ex).

Let us apply this argument to our cycle {e;}7 ;. By Lemma and the second point above,
there must be an index j such that e; € pi(Ex). Now, if j > 1 the previous argument
shows that e;_; € p1(Ex) too, thus surely e; € pi(Ex). But, since {e;}/; is a cycle, the
same argument shows that e,, € p;(Ex) and this implies that every e; € p1(Ex) for every
1 < i < n, but we already know that this is absurd. O

In particular, this implies that the inclusion DAG — Graph preserves monomorphisms, since it is a
full inclusion we get an analog of Corollary
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Corollary 6.1.27. Given a morphism (f,g): G — H in DAG, the following are equivalent
1. (f,g) is a mono;
2. f and g are injective;
3. g is injective.
We can also establish another result, regarding pushouts in DAG.

Proposition 6.1.28. Let J be the inclusion DAG — SGraph, given a diagram F : D — DAG, the following
are equivalent:

1. F has a colimit;

2. J o F has a colimiting cocone (C,{(cp,dp)}pep) with C acyclic.

Proof- (1 = 2) Let (A, {(ap,bp)}pep) be a colimiting cocone for F' in DAG. By Corollary we
know that J o F also has a colimiting cocone (C, {(cp,dp)}pep) - (J(A),{J(ap,bp)}pep) is a cocone
on J o D and thus there exists an arrow (a,b): C — A and the thesis follows from Remark

(2 = 1) This follows from the fact that .J is full and faithful and thus it creates colimits. O

Corollary 6.1.29. The inclusion J: DAG — SGraph preserves colimits.

Proof. Let F': D — DAG be a diagram with colimiting cocone (A, {(ap,bp)} pep), by Proposition

in SGraph there exists a colimiting cocone (C, {(¢p,dp)pep}) for J o F with C acyclic. Since J is full
and faithful we get that (C, {(¢p,dp)pen}) is colimiting for F too and thus there is an isomorphism
(¢,9): C — Ain DAG such that

(ap,bp) = (¢, ) o (cp,dp)
and this now implies that (J(A), {J(ap,bp)} pep) is colimiting for J o F O
Corollary 6.1.30. M(DAG) is stable under pushouts.

Proof. Let (f1,91): H — G be a mono in DAG and take a pushout square

H (f2,92) K
(thl)\L i(phth)
g (p2,92) &
By Corollary the same square is a pushout in SGraph, and, by Corollaries and s (f1.01)
is a mono in SGraph too, so Corollary entails that (p1,¢1) € M(SGraph) and we conclude using
again Corollaries and . O

Our next step is to establish some kind of stability also for downward-closed morphisms of DAG.
Proposition 6.1.31. The class dcly is stable under pullbacks and pushouts.

Proof. Let us show the two halves of the thesis separately
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e dcly is stable under pullbacks. Take pullback square as the one below with (f, g) € dclq

P
(pl,lh)l
g

(p2,92)
s

(f2,92)

E<~—

[

(f1,91)

Let e; € Fg be an edge such that

for some v € Vp. We have

By hypothesis, (f2,g2) € dclg, and so there exist ea € Ex such that
fale2) = fi(er)
But, since Ep is a pullback, this implies the existence of e € Ep such that
er =pi(e) ez = p2(e)

In particular, we get that (p1, q1) is an element of dcly.

e dcly is stable under pushouts. Take a pushout square in SGraph with (f1, ¢1) in dcly.

K
J/ (P1,91)
P

/

(f2,92)

H
(fhgl)l
g

(P5.45)

By Corollary 6.1.29 the square above is a pushout in SGraph too, which, Corollary 6.1.14, must fit
in a diagram

X (f2,92) K

(mt,id
(flvgl)l (PL‘H)\L w
(

G p L(I(K))

(
(wgtidv,) ,
\v@v m i(L(p'l,qi))

Lu@) (L(p3,92)) L)

(p1,92)
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where the outer edges form a pushout in Graph and (¢,): P’ — L(P) is an isomorphism. If we
show that (p1, ¢1) is in dcl, Proposition yields the thesis.

Suppose that e € Ep is such that for some v € Vic

tp(e) = q1(v)

If e € p1(Ex) there is nothing to show. Otherwise, by Lemma we know that there exists
e’ € Eg such that pa(e’) = e, but then

q1(v) =tp(e)
= qa(tg(e"))

Thus, again by Lemma there exists w € Vj such that

which shows that e is in the image of p; as claimed. O

We can now deduce the following results from Theorem and Lemma

Corollary 6.1.32. The following are true
1. SGraph is R(SGraph), M (SGraph)-adhesive
2. SGraph is M(SGraph), R(SGraph)-adhesive
3. DAG is dclq, M (DAG)-adbesive.

Proof. We only have to show that the pairs (R(SGraph), M (SGraph)), (M (SGraph), R(SGraph)) are
preadhesive structures on SGraph and that (dcly, M(DAG)) is a preadhesive structure on DAG. We
already know by Corollaries , and and Proposition that all these classes are
stable under pullbacks and pushouts and clearly they contains all isomorphisms and are closed under
composition. For the decomposition properties: M (X) is closed under decomposition, and R (X) is closed
under M (X)-decomposition for every category X, so M (SGraph), R(SGraph) and R(DAG) are closed
under decomposition, R(SGraph) under M (SGraph)-decomposition, M (SGraph) under R(SGraph)-
decomposition and, finally, the class M(DAG) under dcly-decomposition. O
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Tree orders

In this section we present trees as partial orders and show that the resulting category is equivalent to a

topos of presheaves, and thus, by Corollary , adhesive. This fact will be exploited in Sections
and to construct two categories of hierarchical graphs, where the hierarchy between edges is modelled
by trees.

Definition 6.1.33. A tree order is a partial order (E, <) such that for every e € F, the set
le:i={e €eE|e <e}

is a finite set totally ordered by the restriction of <. Since Je is a finite chain we can define the immediate
predecessor function

pg: EFE—FE+1

max(le ~ {e}) lJe# {e}
e {J_ le={e}

For any k € N we can define the & predecessor function by induction as follows:

k—1 k—1
ek
DB S ELl e AP (py '(e)) pkE_l(e)
1 Py (e) =1
We extend this definition to k € A taking p% to be the inclusion tp: E — E + 1.
Given a monotone map f: (E, <) — (F, <) and its extension f, : E+1 — F + 1 sending L to L,
we say that f is strict if the following diagram commutes

E-2.F+1
fl J/ﬁ‘
F——F+1

Tree will denote the subcategory of the category of posets Pos given by tree orders and strict morphisms.
Utree Will denote the functor Tree — Set obtained restricting the forgetful functor from Pos to Set.

Remark 6.1.34. Clearly pl, = pg and it holds that p%,(e) = L if and only if |e| < k. In this case an easy
induction shows that ||p%(e)| = |le| — k.

Example 6.1.35. A strict morphisms is simply a monotone function that preserves immediate predeces-
sors (and thus every predecessor). For instance the function {0} — {0, 1} sending 0 to 1 and where we
endow the codomain with the order 0 < 1, is not a strict morphism.

Let (E, <) be an object of Tree, for every n € N we can put
E(n):={ec E||le~{e}| =n}
Given another m € N such that n < m, we can define a function

~ ~

Prmt E(m) = E(n) e pi"(e)
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which is well defined since |le| > m — n so that
NP~ "(e)] = el —m +n
=m+1l—-—m+n
=n+1
Notice, moreover that if m = n, pj;~ " (e) is the identity, while for any & < n < m we have
Piem (P () = 5" (PE " (€))
— p%—k—&-m—n(e)
=p " (e)
= pip"(e)
Thus, taking the category associates to the ordinal w = (N, <) we get a presheaf E': w — Set.
Proposition 6.1.36. Let f: (E,<) — (F,<) be an arrow in Tree, for everyn € N, if e € E(n) then
f(e) € F(n). Moreover, the following equation holds
f1 (P (e)) = P (f (¢))
Proof- Let us prove by induction the first half of the proposition.
e If n = 0 then
pr(f(e)) = fir(pr(e))
=1

so that | f(e) = 0 and thus f(e) € F(0).

~

e If n > 1since e € E(n), then pr(e) € E(n — 1) and, by the inductive hypothesis, f(pz(e)) €

~

F(n — 1), therefore
fpe(e)) = fL(pe(e))
=pr(f(e))
so pr(f(e)) € F(n—1) and thus f(e) € F(n).
For the second half we use again induction.

e Suppose that n = 0, then
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and we get the thesis. O
We can now prove the main result of this section.
Theorem 6.1.37. There exists an equivalence of categories (/—\): Tree — Set””” sending (E, <) to E.
Proof- By Proposition ,given f: (E, <) — (F, <) in Tree we can define
fao: F(n) = G(n) e f(e)
We have to chek naturality. Let n < m and e € E(m), then, using Proposition
T (Prim(€) = £ (P (€))
=f1 (PE n(e))
=pp "(f(e)
=l (Fa(©)
Thus we have a functor (/5): Tree — Set””, we want to show that it is an equivalence. Since every

elements e of E belongs E(n) for some n € N we can deduce that (/—\) is faithful. For fullness, take
a: E — F, and define

3 (B,<) > (FS) e apa(e)

To see that @ s strict, notice that, whenever |le| = 1 we have e € E(O), thus ag(e) € ﬁ(O), so that
_ & (L) el =1
ulpe() = {aum(e)| \pe(e) el > 2

1 [le] =1

ajel-2(pe(e)) |lef >2

23 [e| =1

Qfpe|-2 P\¢e| 1se|—2(€ )) el > 2

{
e
{p el =1
ke

P\¢e| 1,/le|—2 Oélie\ 1(e )) el > 2

Hel =1
Oéue| 1( lle] > 2

Finally, given F': w®? — Set we define F as the poset in which

® the underlying set is given by >, _ F/(k);

® if 1), is the coprojecton F'(k) — >, . F'(k), we put t,(2) < s (y) whenever
n<m T = fn,m(y)

where f,, m: F(m) — F(n) is the function corresponding to n < m.
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Given i, (€e) € > 1oy F(E) it holds that

bim(e :{xEZF | 2=ty (fr,m(€)) forsomengm}

keN
and so [}t (e)] = m + 1. On the other hand if n < k and

z=tn(fam(e)) Yy =u(femle)
then
frnm(€) = fr(frm(e))
showing = < y. Thus J.,,(e) is totally ordered and F is an object of Tree. By construction we have
tn(e) N nle)l  prn(e)) = frnin
and this shows that F is sent by (—) to F. O
Corollary 6.1.38. Tree is adbesive and the forgetful functor Uryee: Tree — Set preserves all colimits.

Proof. Let (—) be the equivalence constructed in the previous theorem, and define 5: Set” — Set as

F'—>ZneN (n)

O‘l lZnewa
Gr— 3 ,enG(n)

since colimits are computed component-wise in Set”” and coproducts in Set commute with colimits we
get that S is cocontinuous. Morover the triangle commutes

Tree —> Set””

A/

commutes and the thesis follows. O

Hierarchical graphs

We can use trees to produce a category of hierarchical graphs [ 102], which, in addition, can be equipped
with an interface, modelled by a function into the set of nodes.

Definition 6.1.39. A hierarchical graphs G is a 4-uple ((Eg, <), Vg, sg, tg) made by a tree order (Eg, <),
aset Vg and functions sg, tg: Eg = Vg. A morphism G — H is a pair (f, g) with f: (E, <) = (F, <) in
Tree and g: Vg — V3, in Set such that the following squares commute

Sg tg
Eg —_— Vg Eg —_— Vg
UTree(f)i ig UTree(f)i lg
Eg ——Vn Eg ——Vu

This data, with componentwise composition, form a category HGraph.
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We can give an analog of Proposition
Proposition 6.1.40. HGraph is isomorphic to Uryee | prod
Proof. Define F': HGraph — Uryee Lprod as
((Egv S)a ng 56, tg) — ((Egv S)a ng (ng tg))

(f.9) ] L(,9)

((E'H7 S)a V'H7 8H7t'H> — ((E'H7 S)a V'H7 (S'H7tﬂ))
and G: Uryee {prod — HGraph
((Eg,<),Vg,pg) — ((Eg,<),Vg,m1 0pg,m2 0 pg)

(f.9) | L (.9

(B, <), Va, o) = (B, <), Vi, 10 pr, T2 0 pay)
The thesis follows at once. O
Applying Theorem and Corollary we get the following result.
Corollary 6.1.41. HGraph is an adbesive category.

Given a hierarchical graph G , we can model an interface as a function between a set X and the set of
nodes V. We are then lead to the following definition.

Definition 6.1.42. The category HIGraph of hierarchical graphs with interface is defined in the following
way. Objects are triples (G, X, f) made by a hierarchical graph G, a set X and a function f: X — V5. A
morphism (G, X, f) — (H,Y,g) is atriple (h, k,1) with h: (E, <) — (F, <) in Tree, g: Vg — V3 and
I: X = Y in Set such that the following squares commute

Eg —5> Vg Eg — >V x Loy
Ume(h)l \Lk Ume(h)l ik ll lk
EQ?VH EQ?VH YT>V'H
Now, Utree: Tree — Set preserves the initial objects by Corollary , thus, Proposition

implies that the forgetful functor HGraph — Set, which only remembers the set of nodes, has a left
adjoint Aygraph Which sends X to ((0, <), X, ?x, ?x). In particular we get the following.

Proposition 6.1.43. The category HIGraph is isomorphic to AyGraph LidHGraph-

Proof. Define F': HIGraph — Apgraph |idHGraph and G': AgGraph VidHGraph — HIGraph putting

(g)X?f)'—>(X7g7(?Xﬂf)) (Xaga(?)ﬁf))}—)(g,Xaf)
(h, k1) | L@ (k) (1, (h, k) | L (k1)
(H7Y7g) — (Y,H,(?y,g)) (KHv(?ngD — (Hvyvg)
which, by inspection, are mutual inverses. O

Corollary 6.1.44. HIGraph is an adbesive category.
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M, N -adhesivity of some categories of hypergraphs

In this section we will move from the world of graphs to the one of hypergraphs allowing an edge to join
two arbitrary subsets of nodes. Even in this case, leveraging the modularity provided by Theorem ,
it is possible to combine sufficiently adhesive categories of preorders or graphs (modelling the hierarchy
between the edges) while retaining suitable adhesivity properties. It is worth noticing that, beside hyper-
graphs or interfaces, this methodology can be extended easily to other settings like Petri nets (see [44]).

An introduction to hypergraphs

We will start this section with the definition of (directed) hypergraph and we will see how label them
with an algebraic signature. A pivotal role will be played by the Kleene star (—)* the functor Set — Set
introduced in Example

Definition 6.2.1. A hypergraph is a 4-uple G := (Eg, Vg, sg, tg) made by two sets Eg and Vg, whose ele-
ments are called respectively hyperedges and nodes, plus a pair of source and target functions sg,tg: Eg =
V. A hypergraph morphism (Eg, Vg, sg,tg) — (Ep, Vi, S, ty) is a pair (h, k) of functions h: Eg —
Ey, k: Vg — Vi such that the following diagrams commute.

Bg —2> Vg Eg —2> Vg
hl \Lk* }L\L J/k*
Eg ——V}, Bg —Vj,

We define Hyp to be the resulting category.

Let prod” be the composition prod o (—)*, then we can prove the following result analogous to Propo-
sitions and

Proposition 6.2.2. Hyp is isomorphic to idse Lprod”

Proof. Thisis done exactly as in Propositions and . Define two functors F': Hyp — idse; Jprod”
and G': idge¢ Lprod”™ — Hyp as follows
(Eg,Vg,sg,tg) +— (Eg, Vg, (sg,tg)) (Eg,Vg,pg) — (Eg,Vg,m 0pg,ms 0 pg)
(f.9)] [(r9 (f.9)] [(t9)
(B3, Vi, 535 tr) — (B, Vg, (s34, 1) (B3, Vi, o) — (B, Vi, 1 0 pay, ™2 © pa)
Now it is enough to notice that they are one the inverse of the other. 0O

We can show that the Kleene star preserves pullbacks (see also [35, Sec. 3] and [/7, Ch.4] for details
and a deeper and more conceptual approach).

Proposition 6.2.3. The functor (—)* preserves pullbacks.

Proof. Suppose that a pullbacks square as the one below is given.

p-"ox

N
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and consider the solid part of the following diagram.

Y*g*)Z*
g

For every z € Z we have arrows ¢1(z): n — X and t2(z): m — Y such that

frta(x) = g (t2(2))

In particular this entails that n = m and that there is ¢(z): n — P as in the diagram below

n t1(2)
| \t(j)
P2 x
tQ(Z)
PQ\L f
Y —=7
g

But this is equivalent to say that the dotted ¢: Z — P exists, while its uniqueness follows at once from
the universal property of the pullback with which we started. O

Remark 6.2.4. Preservation of pullbacks implies that (—)* sends monos to monos.

Corollary 6.2.5. Hyp is an adbesive category.

Proof. (—)* preserves pullbacks by Proposition , while prod is continuous by definition, thus the
thesis follows from This follows from Theorem and Proposition . O
Propositions and allows us to deduce immediately the following.

Proposition 6.2.6. The forgetful functor Unyp: Hyp — Set which sends an hypergraph G to its set of nodes
has a left adjoint Apyp.

Remark 6.2.7. Since the initial object of Set is the empty set, Apyp(X) is the hypergraph which has X
as set of nodes and ) as set of hyperedges and ?x as both source and target function.

Hypergraphs, can be represented graphically. We will use dots to denote nodes and squares to denote
hyperedges, the name of a node or of an hyperedge will be put near the corresponding dot or square.
Sources and targets are represented by lines between dots and squares: the lines from the sources of an
hyperedge will have an arrowhead in the middle pointing towards the hyperedge, while the lines to the
targets will have arrowheads pointing to the target nodes. We will decorate the arrow corresponding to
the i*" letter (i.e. its value at i — 1) of a target or a source with a label i.
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Example 6.2.8. Take V5 to be be {v1,v2,v3,v4,v5} and Eg to be {h1, ha, h3}. Sources and targets are
given by:

0—w 0w
Sg(hl)i 2=V 1'_)1}; Sg(hz): 2=V lei Sg(h3):1—)Vg 0 vs
0 vs

tg(hl)t 2= Vg 1 vy tg(hg): 2—=Vg 0—uvs tg(hg):O—)Vg f,g(hg) :?Vg

We can draw the resulting G as follows:

Example 6.2.9. Let Vg be as in the previous example and Eg = {h1, ho, hg}. Then we define

0—w 00—
Sg(hl)l 0— Vg Sg(h1) :?Vg Sg(hg): 2 — Vg 1 ’U; Sg(hg,): 2 — Vg 1 Uzll
tg(h1): 1 = Vg 00— tg(ha): 1= Vg 0 w3 tg(hs): 1= Vg 1+ v

Now we can depict G as
hl (%1

ho

Example 6.2.10. Let & = (Os, ary) be an algebraic signature, we can construct the hypergraph G* taking
Vg= and Egs to be respectively the singleton {©} and the set Ox;. We put

sgu: Op = {OF 0637 g Oy = {OF 0 o

For instance let ¢ be the signature of groups of Example , then G¥¢ is depicted as:
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Hyp as a topos of presheaves By Corollary we already know that Hyp has all pullbacks and
by Corollary we know that it is adhesive. Actually more can be proved about it: we can realize Hyp
as a topos of presheaves [26].

Definition 6.2.11. Let H be the category in which:
o the set of objects is given by (N x N) U {e}

e arrows are given by the identities idy ; and ide and exactly k+1 arrows f;: (k,1) — e, where i ranges
fromOto k+1—1;

® composition is defined simply putting, for every f;: (k,l) — e:
fi=fioidey  fi=ideo f;
Now, given F': H — Set we can define

Ep:= Y F(kl)

k,lEN
For every element z of F'(k,) we can put
sia(@)ik = F(o) i F(fi)(w)  th,(x): L= F(e) i~ F(firr)(x)
obtaining sp, tp: Ep = F(e)*. Let G be the resulting hypergraph. Now, every : F' — H in Set' has

components 1 ;: F(k,l) — H(k,l), ne: F(e) — H(e), thus it induces a function 7: Er — Epy such
that the following squares commute

Ef — Pl Ef - FGr
EHTH>H(°>* EH?H(O)*

This is equivalent to say that 7 induces a morphism (7}, 7 ) : G — Gpr. It is now clear that sending F
to Gr and 7 to (7}, 7,) defines a faithful functor G_: Set™ — Hyp.

Proposition 6.2.12. Hyp is equivalent to the category Set™.

Proof. Let X be a set, for every n € N define
X, :={w € X* | dom(w) = n}
In particular, if F: H — Set then the image of the coprojection ¢, : F/(k,l) — EF is the intersection
spe (F(o)r) Ntz (F(o))

We are now ready to that G_ is full and essentially surjective.
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® For fullness, let (f,9): Gr — Gu be a morphism of hypergraphs and define fi; to be f o ¢, the
composition of h with Now, if z € F(k,[) then

su(fea(@) =so (f (a(2)  ta(fra(@) = s (f (ki (2)))
= g* (sr (th,(2))) = g" (tr (tha(2)))

Therefore there exists ny;: F'(k,1) — H(k,!) fitting in the diagram below

Lsz
F(k‘,l) — EF

Nk, 1 \Lfk,z
\
H(k, l) _—> EH

H
Lhyt

Define 7, : F'(¢) — H (o) simply as g*, then the collection of all the 7, ; and of 7, defines a natural
transformation 1: F' — H. Indeed, if f;: (k,1) — o we have:

F(k) > Ep — = F(o)*  F(k])— > Ep — = F(e)"
nkzl Lglfkll s lg* ﬂk,li LkH}fkll t J/g*
H(k,l) ——= Eyg —=> H(e)* H(k,l) ——= Eyg —=> H(e)*
\_/ \T/
Thus if ¢ < k then
ne(F'(fi)(@)) = g(F(fi)(z))
= g(sk(2)(0))
= 9" (stu(2)) (i)
= s (M () (4)
= F(fi)(a(2))
while, if k <i<k+1-1
ne(F(fi)(x)) = g(F(fi)(z))
= g(ti(=)(9))
= g* (ti,(2)) (0)
=t (e (@) (4)
= F(fi)(nk1(x))

Finally, by contruction it is clear that (7}, 7s) = (f, 9)-
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¢ Given an hypergraph G = (Eg, Vg, sg,tg) we can define
Fo(k,l) :=sg" (Vi) Ntg (V)  Fg(e):=Vg
Given f;: (k,1) — e we put

sg(x)(7) i<k

Fg(fi): Fo(k,1) = Fg(s) xH{tg(x)(ik) i<k<k+l—1

Fg so defined is a functor H — Set and for every h € Eg there exists a unique pair (k, ) such that
h € Fg(k,l), namely the pair (dom(sg)(h),dom(tg)(h))thus

> Fgkl)~E
k,lEN
Moreover, by construction sp, = s and tg, = t, from which the thesis follows. O

As a corollary we get immediately the following.

Corollary 6.2.13. Hyp is a complete category.

Labelled hypergraphs

We will end this section examining two different kinds of labelings for hypergraphs. We need the first one
in Section 6.3, while the second one will be used in Section 6.4 for term graphs.

Labeling edges and nodes

Let us start with labeling both edges and nodes. In order to do so we will fix two sets Lg and Ly ). Their
elements will be the labels for the edges and for the nodes respectively. Notice that Set/Lg and Set/Ly
are adhesive thanks to Corollary . We have two forgettul functors

Ug: Set/LE%Set Uy : Set/LV%Set
which, by Lemma and since Set is complete, preserve pullbacks.

Definition 6.2.14. A labelled hypergraph G is a 6-uple (Xg,Yg,lg g, lv,g, SE,g,tE,g) made by: two sets
Xg and Yg, labelling functions g g: Xg — Lgandly.g: Yg — Ly, and, finally source and target functions
sg,tg: X5 = Y. A morphism (h,k): G — H is given by f: hg — X3 and k: Yg — Y3 such that the
following diagrams commute.

Xg —2>Yg XQHY Xg—" Xy Yy—t Yy
I . \ / \ /
Xy —— Y3, Xn —— YH

Remark 6.2.15. Notice that there is a forgetful functor Urpy, : LHyp — Hyp:

(Xg,Yg,leg:lvg,seg teg) — (Xg,Yg, s6,1g)
(h.k) | )

(X6,Y5,lp,6.lvg,sE,6,tE,6) — (X9, Yoy, S, tw)
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Now, consider the functor lprod: Set/Ly — Set given by the composition prod™ o Uy, on the one
hand we can define a functor LHyp — Ug Jlprod:

(Xg,Yg,lp g, lvg,sEg teg) — (lgg,lvg,(sg,tg))
(h.k) | L (n, k)

(Xg,Yg,lp g, lvg.seg.teg) — (lea v, (s, ty))

while, on the other hand, we can define

(ZE,Q7ZV,vag) — (XQ,YQ,IE7Q,ZV7Q,771 o pg, T2 Opg)
(h,k) | )

(e, v pn) — (X6, Yg, .6, lv,g, T1 © Py, 72 © py)
By inspection these two functors are one the inverse of the other, thus we have just proved the following.
Proposition 6.2.16. LHyp and Ug |lprod are isomorpbhic.
Noticing that Ug preserves pushouts we get at once an adhesivity result.

Corollary 6.2.17. LHyp is adhesive.

Labelling hypergraph with an algebraic signature

Let ¥ = (Os, ary) be an algebraic signature, we are going to use the hypergraph G* of Example in
order to label hyperedges with operations.

Definition 6.2.18. Let ¥ = (O, ar) be an algebraic signature, the category Hypy, of algebraically labelled
hypergraphs is the slice category Hyp/G*.

Corollary and Corollary give us immediately an adhesivity result for Hypy, and a char-
acterization of monomorphisms in it.

Proposition 6.2.19. For every algebraic signature 3, Hyps, is an adhesive category. Moreover a morphism
(h, k) between two object of Hypsy, is a mono if and only if h and k are injective functions.

Remark 6.2.20. Let H = (E, V., s,t) be an hypergraph, since Uny,(G*) is the singleton an arrow H —
G*, is determined by a function h: E3 — Os such that, for every e € Ey,

ars(h(e)) = snu(e)

On the other hand, if H has an hyperedge e such that ¢+ (e) has a length different from 1, then there
is no morphism H — G*. Indeed, if such a morphism (h, !v,,): H — G exists, then, for every e € Ey
we have

[ (tu(h)) = tg=(f(h))

— 6o

and so dom(ty (h)) = 1.
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Hyps., as any slice category, has a forgetful functor Us;: Hypy, — Set which sends (h, k): H — G* to
Uttyp(H). Now, Unyp(G™) = {v} thus, for every set X, there is only one arrow X — Unyp(G*). Define
As(X): Anyp(X) — G* to be the transpose of this arrow.

Proposition 6.2.21. Us, has a left adjoint As,.

Proof. Let (h,!y,,): H — G be an object of Hypy., and suppose that there exists f: X — Us;(H). Since
Us (M) = Unyp(H) and idsec is the unit of Apy, 4 Upyp, there exists a unique morphism (k, f): Apyp(X) —
M of Hyp. Since the set of hyperedges of Apy,(X) is empty, k must be ?g,, and the commutativity of
each of the two triangles below is equivalent to that of the other

Py f) f
AHYP(X) —_—H UHyp(AHyp (X)) UHYP(X)
AE(X)\\ (ha!VH) Unyp (Ax(X)) %
g* Unyp (G%)
But the triangle on the right commutes because Uptyp(G*) is terminal. O

We will extend our graphical notation of hypergraphs to labeled ones putting the label of an hyperedge
h inside its corresponding square.

Example 6.2.22. The simplest example is given by the identity idgs : G¥ — G*. If . is the signature of
groups Lgwe get

Example 6.2.23. Take again 3¢ the signature of groups, then the hypergraph G of Example can be
labeled defining

e= f(h1) -=f(h2) -= f(hs)

In this case we get the following picture

hl 1 U1
(f——eo—1
ha
1
V2
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Remark 6.2.24. There is a colored (or typed) version of these last constructions. Start with a colored
algebraic signature: this is a triple (C, O, ar) where C is the set of colors, O is the set of operations and
ar: O — C* x C* assigns to every operations [ an arity and a coarity given by strings of colors. We
can still construct an hypergraph G with C as set of nodes using the operations as hyperedges. In this
context an object in the slice Hyp/G* is an hypergraph in which both the hyperedges and the nodes are
labeled, the formers with an elemento of O and the latters with an element of C [26].

Hierarchical hypergraphs

We can leverage on the modularity of Theorem and Theorem to give hypergraphical variants
for Corollaries and . This is done replacing the set Eg of hyperedges with a tree order (Eg, <)
and ids; with the forgetful functor Uryee : Tree — Set.

Definition 6.2.25. A hierarchical hypergraph G is a triple ((Eg, <), Vg, sg,tg) where (Eg, <) is a tree

order, Vg a set and sg,tg: Eg = Vg two functions. A morphism G — H is a pair (h, k) made by
h: (Eg,<) = (Ey,<) in Tree and by k: V' — W in Set such that the following squares commute

Bg —2> Vg Bg —> Vg
UTree(h)l ik/* UTree(h)l ik/*

Taking componentwise composition we get a category HHGraph.
Proposition 6.2.26. HHGraph is isomorphic to Urgee Lprod”
Proof. Define F': HHGraph — Uy Lprod”

((Eg,<),Vg,s6,tg) +— ((Eg,<), Vg, (s¢,tg))

(hk) | )

((EHa S)a VHa 8’Hvt7‘i) — ((EHa S)a VHa (SH7t7‘i))
and G': Upyee prod” — HHGraph as
((Eg,<),Vg,pg) — ((Eg,<),Vg,m 0pg,m2 0pg)

(f.9) | L (.9

(B, <), Vs pu) — (B, <), Vi, 1 0 pag, ma 0 py)
The thesis follows immediately. O

Corollary 6.2.27. HHGRaph is adhesive. Moreover, the functor HHGraph — Set, which sends a hierar-
chical hypergraph to its set of nodes, has a left adjoint AgpGraph-

Proof- The first half of the thesis follows from Theorem and Proposition , while the second
one is entailed by Proposition . O

Remark 6.2.28. Appygraph sends a set X to the hierarchical hypergraph ((0, <), X, ?x+, 7x+).
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To add interface we proceed exactly as in Section , using the previous corollary.

Definition 6.2.29. The category HHIGraph of hierarchical hypergraphs with interface is the category in
which objects are triples (G, X, f) made by a hierarchical hypergraph G = ((Eg, <), Vg, sg,tg), aset X
and a function f: X — V5. A morphism (G, X, f) — (H,Y,g) is a triple (h, k,1) with h: (Eg, <) —
(Ew,<)inTree, k: Vg — Vg and [: X — Y in Set such that the following squares commute.

Bg —2- Vg Bg -y x Loy,
Umc(h)l J/k:* Uncc(h)J/ ik lL lk

Remark 6.2.30. This category of hypergraphs whose edges form a tree order, corresponds to Milner’s
(pure) bigraphs [96], with possibly infinite edges'.

Proposition 6.2.31. The category HHIGraph is isomorphic to Agpgraph +idmyp
Proof. Define F': HHIGraph — AygGraph +idayp and G': AppGraph idny, — HHIGraph putting

(G, X, f)— (X,G,(?x, f)) (X,G,(?x, ) — (G, X, f)
(h,k,1) | L@ (n, k) (1, (h, k) | L (h k)
(H,Y,g9) — (Y, H,(?v,9)) Y, H,(?v.9)) — (H,Y,9)
The thesis now follows at once. O

Corollary 6.2.32. HHIGraph is adbesive.
SGraph and DAG-hypergraphs

We can consider more general relations between edges, besides tree orders. An interesting case is when
edges form a directed acyclic graph, yielding the category of DAG-hypergraphs; this corresponds to (pos-
sibly infinite) bigraphs with sharing, where an edge can have more than one parent, as in [11/] (see also
Fig. 6.1, left). Even more generally, we can consider any relation between edges, i.e., the edges form a
generic directed graph possibly with cycles, yielding the category of SGraph-hypergraphs. These can be
seen as “recursive bigraphs”, i.e., bigraphs which allow for cyclic dependencies between controls, like in
recursive processes; an example is in Fig. 6.1 (right).

Definition 6.2.33. A SGraph-hypergraph (respectively DAG-hypergraphs) is a triple (G, V, s, t) where G
is in SGraph (in DAG), V is a set and s,t functions Vg = V*. A morphism of SGraph-hypergraph
(DAG-hypergraphs) is a pair ((h1, he), k): (G,V,s,t) = (H, W, s',t') with (h1,h2): G — H in SGraph
(in DAG) and k: V — W in Set such that the following squares commute

Vg —=>V* Vg —=V*
R
Vi — W* Vi — W

These data give rise to the categories SHGraph and DAGHGraph respectively.

!In bigraph terminology, “controls” and “edges” correspond to our edges and nodes.
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Figure 6.1: A DAG-hypergraph (left) and a SGraph-hypergraph corresponding to the CCS process P =
a(z).b(zy).P (right). The red arrows denotes the graph structure of the edges.

SHGraph and DAGHGraph isomorphic to, respectively Usraph {prod” and Upag Lprod”. This is
easily proved considering the four functors:

Fy: SHGraph — UsgGyaph Jprod” G1: UsGraph lprod* — SHGraph
(G, V,s,t) — (G,V,(s,1)) (G.V.p) +— (G,V,mop,mop)
((h1, ko), k) | L(sho) k) (B ho) B) | L (b))
(H W, 8", ') — (H, W, (s, 1)) (R, W, p') — (H,W,m op',ma0p)
F»: DAGHGraph — Upag Jprod* G2 : Uppg Lprod” — DAGHGraph
(G, V,s,t) — (G, V. (s,1)) (G, Vip) = (G,V,mop,ma0p)
((h1,h2), k) | L o) k) (B o) k) | [ ((h1,h2), k)
(H, W, 8", 1) — (H, W, (s, 1)) (H,W,p') — (H,W,m10p',m30p')

Theorem 6.2.34. SHGraph is M, N -adhesive with respect to the classes

M :={((h1, h2), k) € A(SHGraph) | (h1, h2) € R(SGraph), k € M(Set)}
N = {((h1, ha), k) € A(SHGraph) | (hy, h2) € M(SGraph)}

while DAGHGraph is adhesive with respect to the classes

{((h1, h2), k) € A(DAGHGraph) | (1, hs) € dcly, k € M(Set)}
{((h1, h2), k) € A(DAGHGraph) | (h1, h2) € M(DAG)}

Moreover, the functors DHGraph — Set and DAGHGraph — Set, which assign to an hypergraph its
set of nodes, have left adjoints AppiGraph 47d ApAGHGraph-

Remark 6.2.35. Let Z be the initial object of Graph, i.e. (0,0, idg, idg). Z is both in SGraph and in DAG,
thus it is initial in these categories too. Thus Appgraph and ApaGHGraph assign to a set X the DAG and
SGraph-hypergraph (Z, X, 7 x+«, 7 x+).

As in Sections and , we can exploit these two last corollaries to add interfaces.

Definition 6.2.36. The category SHIGraph (DAGIHGraph) of SGraph-hypergraphs (resp. of DAG-
hypergraphs) with interfaces has as objects triples ((G,V, s,t), X, f) made by a SGraph-hypergraph (a
DAG-hypergraph) (G,V, s,t) and a function f: X — V. An arrow between ((G,V,s,t), X, f) and
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(H,w,s',t"),Y, g) is atriple ((h1, h2), k,1) made by a morphism ((h1, h2),k): G — H in SHGraph (in
DAGHGraph), and a function I: X — Y in Set such that the following squares commute

Vg —S sV Vo — v xt.ov
hzl \Lk* hzl J{k* ll lk

As before we can consider functors

Fy: SHIGraph — AgyGraph 1idsHGraph
((G.V,s,1), X, f) — (X,(G,V,s,1),(%g,[))
((h, ha), k.0 | L@ ((ha, ), k)
(H,W. ', 1), Y, g) — (Y, (H, W, s, t), (T3, 9))
G1: AsHGraph +1dsHGraph — SHIGraph
(X,(G,V,5,1),(%g, f)) — ((G,V,s,1),X,f)

(17((h15h2)7k))l l((hlah2)7kvl)
Y, (R, W, s, '), (P31, 9)) — (H, W, ', 1), Y, g)

showing that SHIGRaph and Agpgraph idsHGraph are isomorphic.
We have another pair of functors (defined in the same way):
Fy: DAGHIGraph — ApagHGraph {1 dDAGHGraph
(G, Vis,0), X, f) — (X,(G,V.5,1), (%, f))

((h1, ha), k1) | L@ ((hy, ), k)

(H, W, s",1),Y, g) — (Y, (H, W, s",1), ("1, 9))
Ga: ApAGHGraph HIDAGHGraph — DAGHIGraph
(X, (9, V,5,1),(7g, f)) — ((G,V:s,1), X, )

(1, ((h1,h2), k)) | L ((ha, ), k1)
(Y7 (Ha Wa Slat/)a (?'Hag)) — ((%7 VV? 5/7t/)7Y7g)

which shows that and DAGHIGraph is isomorphic to ApaGHGraph HIDAGHGraph-
Summing up we can get a last adhesivity result.

Theorem 6.2.37. SHIGraph is M, N -adhesive with respect to the classes

M :={((h1, h2),k,1) € A(SHIGraph) | (hy, h2) € R(SGraph), k,l € M(Set)}
N :={((h1,h2),k,1) € A(SHIGraph) | (h1,hs) € M(SGraph)}

while DAGIHGraph is M, N-adhesive with respect to the classes

M :={((h1, h2),k,1) € A(DAGHIGraph) | (hy, ho) € dclg, k,1 € M(Set)}
N :={((h1,h2),k,1) € A(DAGHIGraph) | (hy, h2) € M(DAG)}
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6.3 A graphical formalism for monoidal closed categories

In [11], the authors use a kind of hierarchical graphs to implement rewriting of arrows in a monoidal
closed categories in terms of the double pushout approach. In this section we will prove some adhesivity
property of this category of hierarchical graphs

6.3.1 The category HHG and labelled DAG-hypergraphs

In this section we will start introducing the objects used in [11]. We will also show that the category
so obtained can be realized fully and faithfully embedded into a category of labelled DAG-hypergraphs ot
which we know some adhesivity properties.

Definition 6.3.1 ([ 11, Def. 16]). We define the category HHG in the following way.

® Objects are 8-uples G := (Eg, Vs, s, tc. lp,G, lv,6, PE,G: Pv,c) Where (Eg, Vs, 56, tG, .6, lv,c)
is an object of LHyp such that Eg and V are finite, pg ¢ is a function Eg — Eg + 1 and py, one
V — Eg + 1. Moreover we ask that:

Lifu: Ec = Eg +1,t2: 1 = Eg + 1 are the coprojections and pj, o B +1 — Eg + 1is
the unique arrow fitting in the diagram

EG PE.G
x
Eg+1 i >FEz+1
/
1 .

then for every e € Eg there exists a natural number & > 1 such that

v Ak
L= (pkc) (ule)
where L is the element picked by t2: 1 — Eg + 1;
2. for every v € Vg, if v is in the image of sg(e) or in that of {g(e) for some e € Eg then

pv,c(v) =pecle)
Given an object G of HHG, we will define the sets
Sp.c = {e € Eg | there exists Dy () € Eg such that pp(e) = t1(Prcle))}
Sy.c = {v € Vs | there exists T)V,G('U) € Eg such that pyg(v) = ¢4 (ﬁv7e(v))}

By construction, there are b g Sp.c — Eg and py: Sy,c — Eg fitting in the diagrams below

PE.G Pv,.c
SE,G —FEG SV,G —FEg

Ec 4>PE,G Ec+1 Eg 4>PE,G Ec+1
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whereipc: Spc — Eg, iv,c: Sv,c = Eg are inclusions. We are now ready to define arrows of HHG.

* Anarrow (h,k): (Eg, Vs, 56,tG,le,G,lv.e) = (B, Vi, 81, th, L 1, lv,n) of LHyp is a morphism
G — Hif thereare h: S — Sgnand k: Sy, — Syn which fit in the diagrams below.

Es SEG Eg Vo Sv.e Eg
hl E J{h kl 3 \Lk
Y Y
Eqy<—SgH— Ey Vi <— Syn — Ejy
1EH PEH 1V,H PvH
As in Section , we will use Ly and Ly for the set of labels for edges and the one for nodes.

k
Notation. The exponential (p*EG) appearing in the first point of the definition of the objects of HHG
means the composition of p; 5 with itself k times.

The request on pg ¢ suggest some kind of relationship between HHG and a category of hierarchical
graphs in which the hierarchy is given by a directed acyclic graph. First of all we have to adapt the results
of Section in order to equip DAGHGraph with labels.

First of all we can notice the following.

Proposition 6.3.2. Upag: DAG — Set preserves limits and dcly, M(DAG)-pushouts.
Proof. This follows at once since Apag - Upag and from Corollary and Lemma . O
We are now ready to define a category of labelled DAG-hypergraphs.

Definition 6.3.3. The category of labelled DAG-hypergraphs LDAGHGraph is the category in which
object are 6-uples (G, X, s,t,lx,lg) made a G € DAG, a set X, labelling functions Ix: X — Ly,
lg: Vg = Lg+1 and source and target functions s,¢: Vg = X* and . A morphism (G, X, s,t,1x,lg) —
(H,Y,s',t',ly,ly) 1s a pair ((h1, ha), k) where (hq1, ha) is a morphism G — H of DAG and k a function
X — Y such that the following diagrams commute

Vg —> = X*  Vg—t X Vg e Ve X—F oy
Vp———=Y* Wy Y* Lp+1 Ly

s t’

Notation. We will denote by k. ,, and by k4 the coprojections Lg — Lg+1and1 — Lg+1. Moreover,
we will use & for the element of Lg + 1 picked by ka.

We want now to show that the category LDAGHGraph has some adhesivity property. We can define
a continuous functor ps: Set — Set putting
Xr— (Lp+1)x X*x X*

fl J/idLE+1 X f*x f*
Y — (Lp+1) xY* x Y*
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Proposition 6.3.4. LDAGHGtraph is isomorphic to Upag Lps o Uy, where Uy is the forgetful functor
Uy : SCt/LV — Set.

Proof. In one direction, define G;: LDAGHGraph — Upag Jps o Uy putting

(gvXa S,t,lx,lg) — (gle7 (lg,S,t))

(k1 ho), k) | L, h2) k)
(H, Y, st ly, ly) — (H, ly, (ZH, s, t/))

In the other direction we can take G2 : Upag {ps o Uy — LDAGHGraph as

(G,1,p) — (G,dom(l),m 0p,m30p,l,m 0p)
((hsh2) k) | L (s h2), k)

(Hal/7p/) 7 (H,dom(l/),ﬂgop/77l'3 op/7ll7ﬂ-1 Op/)
It is now immediate to see that these functors give the thesis. O
From Proposition now we can obtain the following result.

Corollary 6.3.5. LDAGHGraph is M, N-adhesive with respect to the classes

M :={((h1, h2), k) € A(LDAGHGraph) | (h1, h2) € dclg, k € M(Set)}
N = {((h1, h2), k) € A(LDAGHGraph) | (h1, h2) € M(DAG), k € M(Set)}

Take now an object G of HHG, we can use pg g and py, g to define a labelled DAG-hypergraph F(G).
First of all we need to define a directed acyclic graph G of edges. Define two sets

EY = {(e,¢') € Eg x Eg | ui(e) =ppcle)} Eg :={(e,v) € Eg x V5 | t1(e) = pv,c(v)}
and notice that they come with the restrictions of the projections
s¢: BE; —» Eg  (e,€)—e sg: B3 — Ec  (e,v) —e
tb:Eé—)EG (e,e) —¢€ té:Eé%VG (e,v) » v
Take Eg and Vg to be, respectively, E} + E} and Eg + Vg, then we can define sg, tg: Eg = Vg as
sg == sb—i—sé tg ::té—i—té
Notation. We will denote be j§ and jg the coprojections E; — Eg, EZ — Eg, while jg g and jy,g will
denote those Fg — Vg, Vo — V.
Remark 6.3.6. Let us notice two facts:
L. if (e, e’) belongs to Ef; then e’ € Sg g, similarly, if (e, v) is an element of EZ then v is in Sp g;
2. the image of sg is contained into the image of jg g.

Proposition 6.3.7. The graph G = (Eg, Vg, sg, tg) is an object of DAG.

Proof. First of all let us show that G is simple. Take v € V5 and x1, 22 € G(w1,w2), we have four cases.
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* 21 = jb(er,el) and 2o = ji(e2, €h) for some (e1,€]) and (e2, €5) € Ef. Thus

)
jegler) =jpg(sgler,el))  jegle)) =tler,eh)
-1

= Sg( g(e )) =tg (j (e1, 61))
= sg(z1) = tg(z1)
= sg(z2) = tg(z2)
= 5 (jg(e2, €h)) = tg (j§ (2, ¢5))
:ng(s (e2,€5)) =Jjrg(

g
=jrg(e2) =jr.gl(
and thus 21 = z».

* 21 = j&(e1,v1) and g = jG(ea, v2) for some (eq,v1) and (ez,v2) € EZ.

jegler) =jeg(sgler,v1))  jpg(vi) =tg(er,v1)
= sg (dg(er, vm)) = tg (jg(er,v1))
= Sg(xl) =tg(z1)
= wq = w2
= sg(z2) =tg(z2)
= 56 (jg (e, v2)) = tg (jg(e2, v2))
:]Eg(S e2,02)) =JEG (%(62,?}2))
=jeg(e2) =Jjp,g(v2)

Hence, even in this case we can conclude that 1 = x»

* 21 = jiler,e)) and 23 = jZ(e2,v2) for some (e1,¢}) € EF and (e2,v2) € EZ. This case is
impossible: indeed we must have

wy = tg(z1)) wy = tg(z2))
=tg(jg(e1,e})) = tg (j&(e2,v2))
= jp.g(t5(er,el)) = jv,g (tg(ea, v2))
= jeglel) = jv,g(v2)

but the images of jg g and jy, g are disjoint.

* 21 = jg(e1,v1) and 2o = jZ(ez,eh) for some (e1,v1) € B} and (e2,€5) € EZ. Swapping x1 and
xo we fall back in the previous case.

Next, suppose that {z;}7_; is a cycle in G, we have two cases.

o For every 1 < i < n there exists (e;, /) € EL such that
Yy % g
g
T; = ]g(eia 62)

The cycle condition implies that, for very 1 <i < n

! / .
€, =e1 €ir1 = €
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and we know by definition that
vi(e;) =prcle;)

k
In particular, this implies that, for every k£ > 1 we have (pJ*E,G> (t1(€})) in the image of ¢1, which

contradicts Definition

® There exists an index j such that z; = jZ(e;, v;) for some (e;,v;) € EZ. This is impossible: indeed,
if this were the case, the cycle condition would imply that

) sg(x; j#En
Jv.g(v;) = o(zsn1) J
sgler)  j=n
and this is absurd by Remark and the fact that the images of jv g and jg g are disjoint. L.

Remark 6.3.8. Notice that the i images of tgo jg and tg o jg are contained in, respectively, jp.¢ (Sk,c)
and jy,g (Sy.g). Since jg g is injective and G is simple, in particulat implies that, for every e € Eg, if
JE.g(e) = tg(z) for some x € Eg then e € Sg ¢ and

= jg(Ppcle)e)
Similarly, for every v € Vg, if jy,g(v) = tg(y) for some y € Eg, then v € Sy, and
y = j§Bv.cv),v)

Next, we have to define source and targets spG),tpc): Vo = V3. To do so it is enough to take
the arrows induced by, respectively, s and ¢, paired with the unit 7y, : Vo — V{ coming from Exam-
ple

Eg s Eg '
jEx ]E& .
SF(G) F(G)
Vg """""""""" > Vé Vg """""""""" vz
jv% jvy
A% UMY,
Vo ¢ Vo ©

Finally to label nodes and edges, we can take as Iy, : Vo — Ly simply the function Iy, while as
lg: Vg — L + 1 we take the function induced by lg ¢ and the constant function in #.

EGHLE\

> Lp+1

//
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Let us define F(G) as (G, VG, 5r(G), tr(G): lvs: lg). We have no to extend this construction to mor-
phisms. Take an arrow (h, k): G — H in HHG, by definition k is a function Vi — V4 such that

ZVHOk:lV,HOk
=lve

Moreover, we can define hy: Vg — V3 as the coproduct of h and k, so that we have a diagram

JE.G Jiv,g

Eg —"5Vg<—"—Vg

hl ha l lk}

EH - VH - VG
JE,H IV, H

To get a morphism (h1,h2): G — H of DAG we have to define another function hy: Eg — E3;. Now,
given (¢, ¢’) € E} and (e,v) € EZ we have

h(e) = h(pec(e)  h(e) = h(pve(v))
= pen(h(e)) = pv,u(k(v))

so that we can put
hi: By — Ej  (e,e’) — (h(e),h(e')) hi: B — E3  (e,v) — (h(e), k(v))
and define h; as the coproduct of these two functions. Moreover, we can check that

su(h (jg(e,€))) = su (G (Ma(e,€)) s (h(G(ev))) = s

# (v (hi(e,v)))

= sy, (hile,€")) s3, (h3(e,v))

= s3,(h(e), h(e")) = s3,(h(e), k(v))

= h(e) = h(e)

= h(sg(e,€)) = h(sg(e,v))

= h2(jp.g (s5(e;¢))) = h2(jp.g (s5(e,v)))

= ha (56 (g (e, €))) = ha (sg (j§(e,v)))
tr (h1 (Gg (e €)) = tu (o (hile€))  ta(h (§G(e,v))) = ta (v (hi(e,v)))

=t} (hile,€)) =13, (hi(e,v))

= t3,(h(e), h(e)) = t3,(h(e), k(v))

= h(e’) = k(v)

= htg(e,e)) = k(t3(e,v))

= ha(je.g (t5(e.€))) = ha (jv.g (t5(ev)))

= ha(tg (jg(e,¢"))) = ha (tg (j§(e,v)))
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and we can therefore conclude that (hq, ho) is really a morphism G — H of DAG. We claim now that
((h1,h2), k) is a morphism of LDAGHGtaph, so that sending (h, k) to it we get a functor F': HHG —
LDAGHGraph. We already know that Iy, = ly;, o k, while the other three equalities follow at once from
the definition of Vg and from the computations below.

k*ospc)ojeg =k"osc k* o spc) 0 jvg = k" ony,
=syoh =ny, ok
=SFMH) O JEHOD =SpH) O Jvu ok
=spmH)oh20jEg =spH)yoh20Jv,g
k*otpyojrg =k ots k*otpc) o jv,g = k™ ony;,
=tyoh =ny ok
=trpHyoJEmOh =tpHyojvuok
=tpmoh20jEg =tpmyoh20jvg
lyyohsojrg=Ilyojegnoh lyyohosojvg=1lyojvuok
=kry,olgnok = kqoly, ok
=k, olgc = kaolyg
=lgojeg =lgojvga

We are now ready to prove the first properties of F' in which we are interested.
Proposition 6.3.9. The functor F: HHG — LDAGHGraph defined above is full and faithful.
Proof. For faithfulness: if (h, k), (b, k’): G = H are arrows of HHG and suppose that

F(hk) = ((ha, ha), k) F(W',K') = ((hh, 1), k)

are equal. By definition of F' we have this entails at once that £ = %’. On the other hand, by hypothesis
ho = hb, thus

jepoh=haojpg
= hy00)mg
=jeuohl

and, since jg % 1s mono, we can conclude that h = A'.
Let us prove fullness. Let ((h1, h2), k) be an arrow F(G) — F(H). By construction

lyohyojpg=1IgojEg
=krgyolpc

Since the images of k1., and k4 are disjoint, this shows that there exists unique h: Eg — Exand f: Vg —
V4 as in the diagram below.

JE.g Jv.g
EGL>VQ<V—VG

h ihz f
\ \
EH - V?—[ D VH
JE,H IV, H
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Moreover, computing we get

nvyof=srmyojvuof
=spMH) 2 h20jvg
=k*o SF(G) °Jjv,g
=k*onyg
=nwyok

which entalis that f = k and that h; is the coproduct of h and k. This in turn implies that

SHOhlthOSg t'HOhlthOtg
— (h+k) o (sh+53) — (h+ K)o (th+13)
:(hosé—kkosé) :(hot(lj—i—koté)

But then for every (e,¢’) € E} and (€,v) € EZ we have

s (h (jg(e.€))) = jea (h(sglee)))  tau(ha(igle,e))) = jpa (h(tg(e )
= jen(h(e)) =] )

su (h (758 0))) = g (b (s

@)t (5@ ) = vy (k(t5(Ev)))
= je.u(h(e) =]

— QN

The previous identities, together with Remark 6.3.8 and the injectivity of j}, and j%, entail that h(e’) is
an element of Sg 1, k(v) belongs to Sy 1 and

Pen(h(e)) = h(e) Pvn(k(v)) = h(€)
=h (ﬁE,G(@/» =h (ﬁV,G(U))

Moreover, the same identities show that h; is the coproduct of
hi: E; — E},  (e,e’) — (h(e), h(e')) hi: EZ — E3,  (e,v) — (h(e), k(v))

Given the previous remarks, if we show that (h, k) is an arrow G — H we are done. The only thing
left to show is that (h, k) is an arrow of labelled hypergraphs between (Eg, Vs, sc. tc, lg.c,lv,c) and
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(En, Vi, st, tr, Lg 1, lv,p). By construction we have diagrams

SG te

JE,G JE,G
hl h2l lk* hi hzl k*

JEH SF(H) JEH trh)
il W =W

SH

Eeg\
~

hJ ho LE+1%LE

lgH

and the thesis follows since k., is a monomorphism. O

6.3.2 Adhesivity properties of HHG

We ended the last section proving that we have a full and faithful functor F: HHG — LDAGHGraph.
We are now going to characterize the essential image of F' and show that it is closed in LDAGHGraph
under pullbacks and some kinds of pushouts, allowing us to deduce an adhesivity result regarding HHG.

Proposition 6.3.10. Let G be an object of HHG, then F(G) has the following properties:
(a) Vg and Eg are finite;
(b) tg is injective;
(c) for every v in Vi there is a unique va € Vg such that

lg(va) =W 0, =spcG)(va) Oy =trc)(va)

moreover, for every x € Vg, if lg(x) = @& then © = vg for some v € Vi;
(d) for every v € Vi, va does not belong to the image of sg;
(e) for every v € Vi, and x € Vg such that v is in the image of s p(c) () or tp(c) () the following are true:

(e1) if there is y € Eg with tg(y) = va then there exists y' € Eg such that
sg(y) =sg(y)  x=tg(y)

(es) if there is y € Eg such that x = tg(y) then there exists y' € Eg such that
sg(y') =sg(y)  va=tg(y))

Proof.  (a) By definition Vg is Eg + Vg and so it is finite. On the other hand Eg is the coproduct of E
and Eé, but they are subsets of, respectively, Eg x Eg and Eg x V.
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(b) Let (e1,¢}), (e2,€5) in E} and (€1, v1), (€2, v2) in EZ such that
tgler,eh) =tglea, en)  tg(er,v) = tg(e2, v2)
then, by definition we have
er1 =ppcle]) ex=ppcley) e =¢ vi=vy @ =pyc(v) & =pyc(va)
and so t§; and tZ are injectives. The thesis now follows since tg = t§ + t3.
(c) For existence, take jy.g(v), then lg(jv,g(v)) = # and:
dy = v (V) dv = v (v)
= sr(c) (Jv.g(v)) =trc)(ivg(v))
On the other hand if z € Vj; is such that ig(z) = & then there must exists v € Vg such that
z = jvg(v)

and this proves uniqueness of v4 and the last half of the thesis.
(d) This follows from the previous point and Remark

(e) Let us prove (e1) and (e2).
(e1) Let y be an edge in G with target vq4, by point (c) above we know that
tg(y) = jv.g(v)
thus, by Remark we can further deduce that v € Sy ¢ and that
y= 35 (T)V,G(’U)v ’U)
We have now two cases.
o If = jy,g(w) for some w € Vg then
§w = SF(G) (I‘) 5w = SF(G) (:c)

so that w = v and we can take as 3’ the y with which we have started.

* If, instead, z = jg g(e) for some e € Eg, then, by hypothesis and by the definition of s () ()
and, () (x) we know that v must be in the image of sg(e) or in that of tg(e). Therefore, by
point 2 of Definition we also know that

pecle) =pve(v)

In particular this implies that e € Sg  and that (Py, g (v), €) is an element of E} and the thesis
follows taking as y/' its image through j;.

(e2) Let us split the cases as in the proof of (e1).
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® As before, if z = jy,g(w) for some w € Vs then w must coincide con z. Moreover, by
Remark this implies that v € Sy, and that

Y= jé(ﬁV,G(U)a v)

In particular we can take as 3’ the same y.

® Suppose that © = jg g(e) for some e € Eg, this implies that v is a letter of sg(e) or of tg(e),
then the second point of Definition entails that

pec(e) =pve(v)

By hypothesis there is y € Eg such that

tg(y) = jeg(e)

and so, again by Remark , we can conclude that e € Sg g and that v € Sy, therefore as
y' we can take j& (Py.g(v), v). O

Lemma 6.3.11. An object (G, X, s,t,1x,lg) of LDAGHGtaph is in the essential image of F if and only if
(a) the sets of nodes and edges of G are both finite;
(b) tg is injective;
(c) for every x in X there is a unique x4 € Vg such that

lg(za) =& 0z =s(za) 0o =1t(za)

moreover, for every v € Vg, if lg(v) = @ then v = x4 for some x € X;
(d) for every e € Eg and x € X, sg(e) # xa;
(e) for every x € X, and v € Vg such that x: is in the image of s(v) or t(v) the following are true:

(e1) if there is e € Eg with tg(e) = x4 then there exists €' € Eg such that

sg(e) =sgle)  v=tg(e)

(es) if there is e € Eg such that v = tg(e) then there exists € € Eg such that
sg(e') =sgle) x4 =tg(e)

Remark 6.3.12. Point (c), in particular, entails that for every v € Vg, if s(v) # t(v) then lg(v) # #.

Proof. (=). It is immediate to notice that all the properties (a)-(e) are invariant under isomorphisms, so
this implication follows from Proposition

(<). Start defining
V=X Eg:={veVg|lg(v) # &}
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As source and target functions sg,tc: Eg = VZ we can take the restrictions of s and ¢. For labelings,
use lx as ly,g and take [ ¢ as the unique arrow such that the square below commutes

lg.c

EG """ e LE

g

where i: Eg — Vg is the inclusion function.
Now, property (b) entails that for every v € Vj there exists at most one e such that

v =tg(e)

while points (c) and (d) imply that the source of such an e must be in Eg, so that we can put:

t1(sg(e)) there exists e € Eg such that tg(e) = v

tEg = Ec+1 v = i
PEG: £G G {J_ otherwise

pV’G:VgﬁEGJrl X —

t1(sg(e)) there exists e € Eg such that tg(e) = za
otherwise

We have to prove that these data satisfies the two points of Definition

1. Suppose that there exists vg € Eg such that, for every natural k greater or equal than 1

L # (p6)" (ta(v0)

thus for every such k there must be v, € Eg such that

(o) = (06) (1 (v))

In this way we get a succession {v; };cn of elements of Eg which, by point (a) is finite so that there
must be h, k € N with b < k such that v, = v;. Notice that every v; is in Sg  and

Vit1 = Dp,c(vi)
and that, by definition of pg g, for every index i > 1 there is ¢; € G(v;,v;—1), thus {ex—; f;lh is a
cycle in G, which is absurd.

2. Let x € Vg and v € Eg be such that v is in the image of sg(v) or in that of tg(v). Notice that, by
definition

sg(v) = s(v) te(v) =t(v)

thus we can use property (e) to see the following two facts

* Ifx € Spthenv € Sy and
Pec(v) =Dyc()
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The definition of py ¢ implies that there is e € Eg such that tg(e) = x4 so that we can use
property (e1) to obtain another edge ¢’ € Ejg satisfying

sg(e) =sgle)  v=tg(e)

Then an easy computation shows

which is precisely what we need to conclude.
® Ifve Sggthenz € Sy and
Pec(v) =Dyc()
By hypothesis there exists e € Eg such that tg(e) = v, then, by (e2) there is ¢’ € Eg such that
sg(e') =sgle)  za=tg(e)

As before these two equalities now entail

>
=
®
—
=
Il
~
—
—
vl
Q

and we are done.

Now it is immediate to see that py.g(z) = pg c(v) as wanted.

Thus we have constructed an object G of HHG, let us show that its image

F(G) = (g/7 X7 SF(G)»SF(G)» lX) lg’)
through F is isomorphic to the original object (G, X, s,¢,1g,lx) of LDAGHGraph.
On the one hand, consider the inclusion function i: Eg — Vg and
(—)a: Vo = {zateex x> 74
Notice that property (c) implies that Vg = Eg U {z 4 }+cx and, because of Remark , the images of
i and (—) g are disjoint, so that the induced function¢: Eg + Vi — Vg is a bijection Vg — V.
On the other hand we have
Bg = {(v,v') € Vg x Vg | lg(v) # #,1g(v") # &, v = pp(v')}
EZ ={(v,z) € Vg x X | lg(v) # v =pyc(z)}
Now, by the definitions of pg ¢ and py.¢ and by hypothesis (b), for every (v,v’) € Eé/ and (w,z) € Eé/
there exist unique 11 (v, v’) and Y2 (w, z) in Eg such that

v = 5g(¢1(v,v')) v = tg(%(v,v/)) w = Sg(i/)g(w,$)) Ta = tg(ﬁ’z(wvx))

This allows us to define functions ¥1: EY — Eg, ¥2: E§ — Eg which, in turn, induce an arrow
Y: Eg:r — Eg, which, by construction, is a morphism G’ — G of DAG, which, by Corollary is a
mono and thus v is injective. On the other hand if e is in Eg we have two cases:



274 6. A 200 of M, N -adbesive categories

e if tg(e) isin Eg then (sg(e), tg(e)) is an element of E}, sent by 1 to ¢;
e if there exists # € X such that tg(¢) = x4 then (sg(e), z) isin EZ, and e = 15(sg(e), x)
This shows that 1 is a bijection and thus that G and G’ are isomorphic. Notice, moreover, that
lgogojrg =lgoi
= kLE e} ZE,G
= lg/ O jE,g/
while, by point (c),
lgogojvg =lgo(—)a

is the constant function in #, so we can conclude that Ig: = g o ¢
To conclude it is now enough to check that ((¢, ¢),idx) is really a morphism of LDAGHGraph. In
particular, the only equalities left to us to prove are

Sp@G)=50¢  tre =tog
To see this, notice that property (c) entails, in particular that
nx=so(—)a  nx=to(-)a

so that, remembering that X = Vi, we can compute to get

so0¢pojpg =801 togojpg =tot
— SG = tG
= Sp(G) ° JE,G' =1ip@G)°JEg
sopojyg =s50(—)a togojyg =to(—)a
= SF(G) ° v’ =tr(G) °Jv.g
and we are done. O

So equipped we can establish that the essential image of F is closed under pullbacks.

Proposition 6.3.13. Given a pullback square in LDAGHGraph

a1,b1),p1)

(P, Ps,t,Up, Ip) F(H)
((ﬂ2,b2)-ﬁ2)i lF(h%kz)
F(K) F(G)

(P, P, s,t,lp,lp) is in the essential image of F.
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Proof. Let F(G) = (G, G, sa.ta,la,lg), F(H) = (H,H, s, ta, la,ln), F(K) = (K, K, sk, tk, Ik, lx),

by Proposition we know that in Set we have three pullback squares
ay by p1
Ep E, Vp Vi P "™ g
R
az fa ba Lg+1 92 P2 Ly ko
T N
B ——F—F Tk 7 Vo K———>C

plus four other diagrams defining the remaining of the structure of (P, P, s,t,lp,lp):

bl bl

Vp Vi Vp

s V ¢ V

E’PLE’H

Y Y
bo az \L ifz g2 bo az \L i’fZ g2
Ex —— Eg Ex —— Eg
f1 f1
Vi g1 Vg Vi g1 Vg
P i H* p* i H*
VP L) VH V'p i> VH
28 b2 \L \th k3 28 ba i/ i/92 k3
Vi o Vg Vi o Vg
K* G* K* G*
K} ki

We are now going to show that (P, P, s,t,lp, Ip) satisfies conditions (a)-(e) of Lemma
(a) Vy, Vi, B3y and Exc are finite, so Ep and Vp are finite.

(b) Let e, e’ € Ep such that tp(e) = tp(e'), then

tu(ai(e)) = bi(tp(e)) tic(az(e)) = ba(tp(e))
= by (tp(€)) = by(tp(e))
= tu(ai(e)) = tx(az(e’))

hence a1(e) = ai(e’) and az(e) = az(e’) and thus e = ¢’
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(c) Given p € P, we can consider p1(p)a € V3 and p2(p)a € Vic. Then
fa(pr(P)a) = ka(p1(p)) s
= k1(p2(p)) s
= fi(p2(p)a)

thus there exists pa € Vp such that

pi(p)a =bi(pa)  p2(p)a = b2(Pa)

Now, we have identities

s (bi(pa)) =p1(p) sk(b2(pa)) = p2(p) tu(bi(pa)) =p1(p) tx(b2(pa)) = p2(p)

so that both s(pa) and t(pa) are equal to 6,. Moreover,

lp(pa) = lc(b1(pa))
=
For uniqueness, suppose that € Vp is such that
op=s(x) Op=t(x) lp(z)=6
then, we must have

bi(z) =pi(p)a  b2(z) = p2(p)a
and thus y = pa. Finally, if x € Vp is such that Ip(z) = #, then

by(bi(z)) =lp(z)  lc(bz(z)) = lp(2)
—a —a

so that, since F'(H) and F'(K) saisfy property (c) of Proposition we must have
ha =b1(x) ka = ba(z)
for some h € H and k € K. In particular, this means that
6 =tu(b1(z)) Ok =tx(ba(z))
so that

Oky(n) = k2 0 0n
= k3(dn)
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and thus we can deduce that k2 (h) = k1 (k), therefore there exists p € P such that

h=pi(p)  k=pap)
On the other hand we have

p1os(z) = pi(s(z)) p2 o s(z) = p3(s(z))
= sp(bi(z)) = s (b2(2))
=0y =0

p1ot(z) = pi(t(z)) p2 o t(x) = p5(t(z))
=ty (b (z)) =t (ba(z))
= 0p, =0

showing that dom(¢(z)) = 1 and that ¢t = §,, which now implies = pa.
(d) Let e € Ep such that exists sp(e) = pa for some p € P, then,

I (sa(ai(e))) = b (br(sp(e)))
= l3¢(b1(pa))
=lp(pa)
=&
which, by point (c) and (d) of Proposition applied to F(H) is absurd.
(e) Fix an element p of P and a vertex v € Vp such that p is in the image of s(v) or ¢(v). Notice that

p1(p) must then be in the image of sy (b1(v)) or in that of t5 (b1 (v)) and, similarly p2(p) or is a
letter of sx (b2(v)) or one of ti (b2 (v)).

(e1) Suppose that there is e € Ep be such that tp(e) = pa, then

I (tn(ai(e))) = lu(bi(tp(e)))  Ic(telaz(e))) = lc(b2(tp(e)))
= l3(b1(pa)) = I (b2(pa))
= lp(pa) =lp(pa)
- & =&
su(tulai(e))) = su(bi(tp(e)))  sk(tc(az(e))) = sk (ba2(tp(e)))
= sn(bi(pa)) = sk (b2(pa))
= pi(s(pa)) = p3(s(pa))
= pi(0p) = p5(dp)
=p1 00, =py09,
= Opi(p) = 51)2(1))
tu(tu(ai(e))) =tu(bi(tp(e))  tr(tc(az(e))) =tk (b2(tp(e)))
=tu(bi(pa)) = ti(b2(pa))
= pi(t(ra)) = p5(t(pa))
= pi(dp) = p5(dp)
=p1od, =p0d,

p1(p) = Op2(p)
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and thus we must have

pi(p)a =tular(e))  pa(p)a = tx(az(e))

We know from Proposition 6.3.10 that F/(H) and F'(K) satisfy property (e1), so there exist ey € Ey
and e € Ex with the property that

sulen) = su(ai(e)) sklex) = sclaz(e)) tulew)="01(v) tx(ex)=b2(v)

Now, if we compute we have

and we know that g is injective, so that
falen) = filex)
This equality in turn implies the existence of ¢’ € Ep such that
e = ai(e’) ex = as(e’)

To see that sp(e’) = sp(e) and tp(e’) = v it is enough to compute:

bi(sp(e)) = sulai(€))  bi(tp(e’)) = tu(ar(€))
= sylen) =twn(en)
= su(ai(e)) = b1(v)
= bi(sp(e))

ba(sp(€))) = skc(az(e’))  ba(tp(e)) = tr(az(e))
= sk(ex =tk (ex)
= sk(az(e = ba(v)
= ba(sp(e))

(e2) Take e € Ep such that tp(e) = v, then a;(e) and as(e) are such that
tu(ar(e)) = bi(v)  tr(az(e’)) = b2(v)
hence there are ey € Ey and e € Ex such that

sulen) = su(ai(e)) sk(ex) = sclaa(e’) tulenw)=pi(p)a tx(en) =p2(p)a
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We can proceed as in the proof of (e1): a computation yields

e = ai(e’) ex = as(e’)
so that
bi(sp(e)) = sulai(€)  ba(sp(e’)) = sk(az(e))
= sylen) =sk(ex
= su(a1(e)) = sk (az(e))
= bl(Sp(e) = bQ(S'P(e))

By the proof of point (c) we know that

pi(p)a = bi(pa)  pP2(p)a = b2(Pa)

therefore identities implies that sp(e) = sp(€’) andtp(e') = pa. O

Proposition 6.3.14. Suppose that a pushout square in LDAGHGraph

F(G) F(h2,k2) F(H)
F(h1,k1) l((cladl),lh)
F(K
( ) m (Q7Qa57t7lQ,l73)

is given. Suppose also that

F(hi, k1) = ((f1,91), k1) F(ha, k2) = ((f2,92), k2)

with ki and ko injective and (f1, g1), (f2, 92) € dcly. Then (Q, Q, s,t,1q,lo) is in the essential image of F.
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Proof. Asin the proof of Proposition Vet F(G) = (G, G, sayta,la,lg), F(H) = (H, H, spta, g, ln),
F(K) = (K, K, sk,tk,lKk,lx), so that we have three pushout squares in Set

Bo—" g, Vs g2 Vi G k2 H
N N
f1 c1 g1 Lg+1 dy k1 Ly q
Ex ——— Eo Vic - Vo K—a—
We also have four other diagrams
Vg 92 VH Vg 92 VH
N NG
f2 f2
Eg e Eq.[ Eg e EH
g1 fll \LC1 d g1 fll’ \Lq d1
Ex —> Eqo Ex —> Eqo
Vic s Vo Vi a Vg
k3 k3
G* H* G* H*
NOL o P,
Vg —"=Vy Vg ——> Vi
kI QI\L l/dl q7 kI gl\L i/dl q7
V;C —_— VQ V]C —_— VQ
dg d2
K* - Q* K* " Q*
a2 a2

It is now enough to show that (Q, @, s,t,1g, lo) satisfies the conditions of Lemma
(a) Vi, Vi, B3y and Exc are finite, so Ep and Vp are finite.

(b) Let e, e’ € Eg such that tg(e) = tg(e’), by Lemma we have four cases.

® ¢ =cy(h)and ¢’ = ¢1(I') for some h,h' € Ey. Then
di(t(h)) = to(ci(h))
= to(e)
=tg(e)
=to(cr())
= di(tu(h))

d; 1s the pushout of g; and so it is injective, therefore we get h = A/,
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® ¢ =cy(k) and ¢’ = ¢;(K') for some k, k' € Ex. This is done as in the previous point:

and dj is injective, so that k = &'
® ¢ =cy(h) and €' = c3(k) for some h € V3; and k € Vi, thus

By Lemma there exists w € Vg such that g1 (w) = tx(k) and go2(w) = t3(h). Since
(f1,91) is downward closed there exists g € Eg such that f1(g) = k, and so

91(tg(9)) = tx(f1(9))

g1 is injective by hypothesis therefore we have tg(g) = w. Therefore

tu(f2(9)) = g2(tg(9))
= g2(w)
=tu(h)

from which it follows that f2(g) = h and thate = ¢'.

o If e = co(k) and ¢’ = ¢1(h) for some k € Vic and h € V4 it is enough to swap e with ¢’ and
apply the previous point.

(c) Let g be an element of @, by Lemma we have two cases.

® g = q1(h) for some h € H. If we start from hg, on the one hand we obtain

lo(di(ha)) = l3(ha)
— 4

while on the other we have

s(di(ha)) = qi(su(ha))  t(di(ha)) = i (tr(ha))

= lﬁ@h) = QT(5h)
=q1 00 =qp 00
= g, () = 0g, ()
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and so we can take d;(ha) as ga. For uniqueness, suppose that y € Eg is such that

d=1Ilo(y) qg=3sy) q=s(y)
We have again two cases.

- If y = dy (1) for some other h’ € V3, then

so that A’ = x4 for some z € H. On the other hand we have

0gi(z) = q1 00y
= ¢; (02q; (tu ("))
=t(dy(h))
=t(y)
= 5(1
= Oqy (n)

Thus g1 (z) = q1(h), but ¢y is injective as it is pushout of k1, so 2 = h and ' = hg.
- y = da(k) for some other k € V.. Then

Ik (k) = lo(d2(k))
=lo(y)
=&

and therefore k = x4 for some z € K. Notice, moreover, that

Ogo(ax) = 42 © Oz
= ¢5(0)
= q5(tx (k)
= t(da(k))
= t(y)
=3,

Thus g2(z) = ¢1(h) and then, by Lemma , there exists g € G such that
z=ki(g)  h=k(g)
Now, notice that,

Ic(91(9a) =lg(ga)  1n(g2(9a) = lg(ga)
— & =&
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sk (91(ga)) = ki(sc(9a))  su(92(9a)) = k5(sc(ga))

= k7 (dy) = k3(dy)
=kjo 59 =kio 59
= Oki(g) = Oks(g)
=46, = 0n

tr(91(9e)) = ki(tc(ga))  tx(92(94)) = K5(tc(ga))

= kf((sg) = kg(ég)
=kl od, =k5 04,
= Ok, (g) = Oka(g)

=0, =0y

so that
e =g1(9a)  ha =92(98)
and this in turn implies that dz (k) = di(ha).

e If g = q2(k) for some k € K we can repeat almost verbatim the same argument to obtain that
da(ka) 1s the unique g4 we wanted. Clearly

lo(da(ka)) = lc(ka)
—a

and

s(dz(ka)) = ¢2(sx (ka))  t(d2(ka)) = @2 (x (Ka))

= q3(k) = q5(6x)
=200 =q20 0
= Oga(k) = g (k)
=4 — Oq

To prove uniqueness, take again y € Eg such that
®=lo(y) a=s(y) a=s)

and split the cases.

- If y = da(k') for some other k' € Vi then
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thus &’ = x4 for some z € K, but then:

Ogo(x) = G2 ° Oz
= 45(0x)
= g3 (tx (K))
= t(d2 (k"))
= t(y)
= 6q
= 0ga()

As above, since gs is injective this impliws © = k and k' = kq,.
- y =d;(h) for some h € V. Then

I (h) = lo(di(h))
=lo(y)
=&

therefore there is some x € H such that h = z4. Computing we get

Ogy(x) = 410 0z
= ¢i (o)
= qi(tu(h))
= t(d1(h))
= t(y)
= 6q
entailing ¢2(k) = ¢1(z) and the existence of g € G such that

k=ki(g) x=ka(g)

We can observe again that,

Ic(g1(9a) =lg(9a)  13(92(9a) = lg(g9a)

— & =&
sk (91(9a)) = ki (sc(ga)) s (g2(9a)) = k5(sc(gm))
= ki (dy) = k3(dy)
=kl od, =Fk3 04,4
= 5k1(g) = 5k2(9)
= 5k = 6@
tr(g1(9a)) = ki(tc(ga))  tx(92(94)) = k3(tc(ga))
= k7(dg) = k3(dy)
= ki od, = k3 00,
= 0k, (g) = Oka(g)
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Therefore we have identities

ko =91(98) & =92(98)
from which it follows that d; (h) = da(ka)-

We are left with the last half of the thesis. Take v € Vg and suppose that io(v) = #. We have:

~ Jlo(di(h)) v =di(h)for some h € Vy
N lo(d2(k)) v =da(k) for some k € Vi

(
(

) Ix(h) v=di(h)forsomeh € Vy
( v = da(k) for some k € Vic

So v is equal to di(x4) or to da(ya) for some x € H or y € K and the thesis now follows.

(d) It is worth to notice explicitly that the proof of the previous point entails that, for every h € H and
ke K:

di(ha) = a(h)a da(ka) = g2(K)a
Take now e € Fg such that sg(e) = ga for some g € Q, using Lemma we have four cases.

® ¢ =ci(ey)and g = q1(h) for some ey € F3 and h € H. Then

di(ha) = q1(h)a
=da
= sg(e)
= so(cilen))
= di(snlen))
and, since d; is injective, this entail sy;(ey) = ha, which is absurd.
® ¢ =cy(ex) and ¢ = qa(k) for some ex € Ex and k € K. We proceed as above:

da(ka) = q2(k)a
=de
= sg(e)
= so(c2(ex))
= da(sk(ex))
The injectivity of dy implies sy (ex) = ka.-
® ¢ =ci(ey)and g = g2(k) for some ey € Ey; and k € K. Let w be sy (sy(en)), then

8q = s(qm

([
»

=

»

©
—~ o~ =
o

N

I
»

Il
<
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Thus w is a function 1 — H such that ¢; o w = §,. This implies that there exists h € H such
that ¢1 (k) = ¢ and we fall back in the first point.

® ¢ = cy(ex) and ¢ = q1(h) for some ex € Ex and h € H. This is proved as in the previous
point. If w is s1.(sxc(ex)), then
dg=s

=S

I
»

I
K ®»
K% D%~ ——~ —~ —
=8
)
—
»
e
®
=

Hence there exists k € K such that g2(k) = ¢, bringing us back to the second point.

(e) Let ¢ € Q and v € Vg such that q is a letter of s(v) or ¢(v). We can make some preliminary
observations.

e If v =d;(vyg) and g = q1(h) for some vy € V3y and h € H, then:
s(v) = s(di(va)) t(v) = t(di(vm))
=qi(su(vm)) =qi(tu(vm))
therefore, by the injectivity of q1, h must be a in the image of sy (vy) or of tgy (vey).
e Similarly, if there are vi € Vic and k € K such that
v=dy(vk)  q=qa(k)
then we have
s(v) = s(d2(vk)) t(v) = t(d2(vK))
= ¢ (sk(vK)) = q3(tx (vk))

and the injectivity of g2 entails that & has to be a letter of sk (vk) or of tx (vk).
e Suppose that v = d; (vg) and ¢ = g2(k) for some vy € V3 and k € K, then, as before:

s5(v) = s(di(vm)) t(v) = t(di(vm))
=qi(su(vm)) =qi (tu(vm))

So, since g is a letter of s(v) or of t(v), there must be a, unique, letter h of sy (vy) orof t gy (vgy)
such that ¢; (h) = ¢. By Lemma , this implies that there exists g € G such that

k=Fki(g)  h=kg)
e Simmetrically, if v = d; (vk) and ¢ = ¢1(h) for some vk € Vi and h € H from
s(v) = s(dz2(vk)) t(v) = t(d2(vK))
= ¢3(sk(vK)) =3 (tx (vK))

we can deduce that there is a letter k of sk (v ) or of t x (vi ) such that g2 (k) = ¢ and, therefore
there also is a ¢ € G such that
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We are now ready to prove properties (e1) and (ez).

(e1) Let e be an element of Eg such that tg(e) = ga, we have eight cases.

*c=c(ey),q=q(h)and v = dy(vy) for some ey € By, h € H and vy € V3. We have
already noticed that
di(ha) = q1(h)a

hence we have a chain of equalities:

and d; is injective, showing that
ha =ty (eH)
We also know that h is a letter of s (vy) or of t g (vp), so that there is ¢}, € Ey such that
su(ey) =sulen)  tuley) =vu

Now it is enough to take ¢ (€/;) and compute:

® c=cy(ek),q = qa(k)and v = da(vg) for some ey € Ex, k € K and vg € V. This is done
as in the previous point. Start with

so that we can conclude that
ka = tx(ex)
Since k is a letter of sk (v ) or of t i (vi), there is €} € Ej such that

sk(e) = sk(ex) tic(€x) = vk

and the thesis now follows considering cs (€ ).
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*e=ciley),q=q(h)and v = dy(vK) for some ey € Ey, h € H and vi € Vic. Notice that

di(ha) =qi1(h)a
®
to(e)
to(ci(en))
di(tw(en))

thus t3(err) = ha. On the other hand, we already know that sk (vik) or ¢t (vk ) must have
a letter k € K such that

q
q

k=ki(g)  h=kag)
for some g € G, so that ¢ = g2(k). Moreover

l(92(9a)) = lg(g9a)
=4

and

sr(g2(9a)) = k3(sc(ga))  tu(g2(9a)) = k3(tc(gm))

= kx2 (0g) = k*2 (dy)
= kiQ o (Sg = k‘Q o (Sq
= Oks (o) = Oks (o)
=0y =0y

showing thar g2(ga) = ha. Since (f2, g2) is downward closed, we can deduce the existence of
eg € Eg such that fo(eg) = ey. This in turn implies that

e = ca(fi(e))

so that we fall back to the previous point.
e =ca(ex), ¢ = q2(k) and v = dy (vy) for some ex € Ex, k € K and vy € V3. As in the
point above, we know that da(ka) = da(tx(ex)), so that

tx(ex) = ka

We also know that there are g € G and h € H such that h is in the image of sy (vy) or of
ty(vy) and

k=klg)  h=kg)
In turn this implies that g1 (ga) = ka and (f1, 1) is in dclg, thus there is e € Eg such that
f1(ec) = ek and the thesis now follows from the first point.
e =ci(en), ¢ = q2(k) and v = dy(vg) for some ey € Fy, k € K and vy € V3. We have
remarked at the beginning of this proof that our hypotheses entails the existence of g € G
such that

k=ki(g) q = q1(k2(g))

Hence we can conclude using the first point.
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e =colex), ¢ = qi(h) and v = da(vk) for some ex € Ex, h € H and vk € Vi. This is
done as before noticing that there must be g € G such that

q=q2(k1(9)) h = ka(g)

allowing us to appeal to the second point of this list.
* c=ci(en), q=q2(k) and v = da(vk) for some ey € Fy, k € K and vk € Vic. We have

a1 (tu (tn(en))) = t(di(tr(en)))
=t(to(ci(en)))
=t(ta(e))
= t(qa)
= 6q
This implies that ¢ is in the image of ¢; and the thesis follows from the third item of this list.
* c=cy(ex),q=qi(h)andv = dy(vy) forsomeex € Ex, h € Handvy € V. Computing:

0 (ti(te(ex))) = tda(te(ex)))
= t(to(ca(ex)))
=t(to(e))

= t(qm)

=4,

Thus g is in the image of g and the thesis now follows from the fourth point.

(e2) Suppose now that there exists e € Eg with tg(e) = v. We have eight other cases to examine.
e c=ci(ey),q=qi(h) and v = d;(vy) for some ey € Ey, h € H and vy € V. Then
d1 (UH) =7
= to(e)
= to(ci(en))
= di(tn(en))

and d; is injective, so tﬂ(?}l) = vp. Since we know h is in the image sy (vgy) or of ty(vpy),
we conclude that there exists ¢}, € Fy; such that

sulen) = suley)  ha =tu(ey)
therefore ¢1 (e/;) satisfies
so(c1(ey)) = di(sn(ely))  tola(ey)) = di(tn(ey))
= di(sn(en)) = di(ha)
= sg(ci(en)) =q(h)a
=sg(e) = da

and we can conclude.
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e = ca(ex), ¢ = q2(k) and v = da(v) for some € € Ex, k € K and v € V. As above
we have

do(vg) =
=tole)
=to(ca(ex))
= da(tx(ex))

implying tx(ex) = vk and the existence of e}, € Ex such that

sulex) = scle) ko =txlek)

We can conclude considering ca (€’ ).
e=ci(en), q=qi(h) and v = da(vk) for some ey € Ey, h € H and v € Vi. Since

we know that v is in the image of d; and we can appeal to the first point.
e =ca(ex), g = g2(k) and v = dy (vy) for some ex € Exc, k € K and vy € V. As above

V= tg(e)
= to(cz(ex))
= da(tx(ex))

shows that v is in the image of da so that we fall back to the second point.
e=cilen),q = g2(k) and v = di(vy) for some ey € Ey, k € K and vy € V. We have

s(v) = s(d(vm))
= qi(su(vm))
=qosy(vm)
By hypothesis ¢ is in the image of s(v), thus it is also in the image of ¢1 0 sy (vgr). In particular
this implies that ¢ = ¢1(h) for some h € H, so the first point applies.
e =ca(ex), g = q1(h) and v = dy(vk) for some e € Exc, h € H and v € V. Since

s(v) = s(da(vk))
= ¢5(sk(vK))
= q2 0 5K (V)
q 1s in the image of g2 and we can conclude.

e =ci(en), g = q2(k) and v = da(vk) for some ey € Ey, k € K and v € Vic. This point
is proved appealing to the fifth item of this list and noticing that

v=to(ci(en))
= di(ty(en))
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® e=cylex),q=q(h) and v =d;(vy) for some ex € Ex, h € H and vy € V. Then
v =to(ca(ex))
= da(tx(ex))
and the sixth item of this list applies. O
We know by Corollary that LDAGHGraph is M, NV-adhesive with respect to the classes
M = {((hl, hg), k’) S A(LDAGHGraph) | (hl, hg) S dC'd, ke M(Set)}
N :={((h1,h2), k) € A(LDAGHGraph) | (h1, h2) € M(DAG), k € M(Set)}

In particular, since M is a subclass of N/, we know that LDAGHGraph is also an M, M-adhesive category.
Applying point 3 of Theorem together with Propositions and we get the following.

Corollary 6.3.15. HHG is M', M'-adbesive, where
M :={(h,k) e HHG | F(h, k) € M}

Term graphs

A brute force proof of quasiadhesivity of the category of term graphs was given in [38]. In this section
we will present the category of term graphs as a subcategory of labelled hypergraphs. First of all we will
prove that this presentation is equivalent to the traditional one. Next, we will recoverthe result of [3¢] by
means of our Theorem

Two categories of term graphs
Let us start using labelled hypergraphs to define term graphs.

Definition 6.4.1. Let ¥ be an algebraic signature, a labelled hypergraph (I,!y,): G — G¥ is a term graph
if tg is injective. We define TGy, to be the full subcategory of Hypy, and denote by I5; the inclusion.
Restricting Us. : Hypy, — Set we get a forgetful functor Urg,, : TGy, — Set.

Remark 6.4.2. Notice that, by Remark ,if G is a term graph then tg(h) is a word of length 1.
Example 6.4.3. Of the examples of Section , only Example is a term graph.
In the literature there are two definitions of term graphs: Definition is different from the classical

one that was adopted in [38], and it is in turn more in tune with the current interests in string diagrams.
The aim of this section is to prove that the categories arising from the two definitions are in fact equivalent.

Definition 6.4.4. Let ¥ = (Ox, ary) be an algebraic signature. The category TeGry is defined as follows:

® an object is a triple (V, [, s) where V is a set of nodes, I: V' — Ox, s: V' — V* are partial functions
such that dom(l) = dom(s) and, for each v € dom(l)

ars(l(v)) = dom(s(v))

e A morphism (V,I,s) — (W, p,r) is a function f: V — W such that, for every v € dom(l), f(v)
belongs to dom(p) and
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A node v not in dom(!) is called empty

We can define a functor from G: TeGrys — TGg. Given (V,1,s) in TeGrs, the set of nodes of
G(V,1,5)isV, while the set of edges is dom(s). If i: dom(s) — V isthe inclusion, we obtain sg(v,1,s), tg(v,,s) : dom(s) =
V* putting

SG(Vils) =800l =NV 0l
where 7) is the natural transformation idsee — (—)* defined in Example . Now dom(s) = dom(l)
and computing we have
sgs((v)) = 632

_ 5g?om(s(v))

=1y (s(v))

=¥ (sg(vi1.s)(v))
thus (I, !y) defines an algebraic labelled hypergraph G(V,1,s): G(V,1,s) — G*. .
Proposition 6.4.5. For every (V,1,s) in TeGrs, G(V,1,5): G(V,1,s) — G is a term graph.

Proof. This follows at once since 7y and i are injective. O

We have now to define the action of G on arrows of TeGryx. Given f: (V,1,s) — (W, p,r) we know
by definition that f(v) € dom(r) for every v € dom(l), therefore we can restrict f: V — W to a function
g: dom(s) = dom(r). If we compute we get:

(tg,s (W) = fody (v () = f*(s(v))
= 0f(v) =7(f(v))
= dg(v) = sgw,p,r) (9(v))
= tgwpr)(9(v))

thus (g, f) defines a morphism of hypergraphs G(V, 1, s) — G(W, p, 7). Moreover, for every v € dom(l)

p(g(v)) = p(f(v))
l(v)

and so(g, f) is a morphism in the category in Hypy..
Theorem 6.4.6. The functor G: TeGry. — TGy, defined above is an equivalence.

Proof. Faithfulness of G follows immediately from the definition. For fullness, let (g, f) be a morphism
between G(V,1,s) — G(W,p,r), then, for every v € dom(s), we must have

towpr) () = [ (tgvis) (V)
= f*(dv)
=fod,
=dy(v)
= tgwp,r) (f(v))
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Since tg(w,p,r) is injective, this shows that g: dom(s) — dom(r) must coincide with the restriction of
f, so it’s now enough to show that f: V' — W is a morphism of TeGry.. Take v € dom(s), since, by
definition

G(Vva l7 S) = (la 'V) G(Wap? T) = (pa 'W)

the fact that (g, f) is a morphism of Hypy, entails at once the identity

for every v € dom(s). On the other hand

r(f(v)) = sgw,pr (9(v))
= f*(Sg(w,s) (v))
= ["(s(v))
Thus we are left with essential surjectivity of G. Let (h,!v,): G — G* be a term graph, we can define
an object of TeGry; as follows.
e The set of nodes is V.

¢ Given v be in Vg, by definition there is at most one e € Fg such that tg(e) = 8, so we can define

h(e) there exists e such that tg(e) = 6,

:V =0 —
> v undefined otherwise

.V — v s sg(e) there exists e such that tg(e) = 4,
undefined otherwise

By construction dom(l) = dom(s) and ars(I(v)) = dom(s(v)), so that (Vg, 1, s) is an object of TeGrs.
We have to show that G(Vg,, s) is isomorphic to (h,!y,). For every e € Eg there is exactly one
¢(e) € dom(s) such that tg(e) = dy(c), thus we get a bijection ¢: Eg — dom(s). Now, we have

tov,i,s)(@(e)) = dg(e) sg(vi,s) (@(€)) = sgvi,s)(tg(e))
=tg(e) = s(tg(e))
= sg(e)

so that (¢, idy, ) is an isomorphism from G to G(Vg, 1, s). Moreover [ sends ¢(e) to h(e) by construction,
thus (¢, idy, ) lies in Hypy, and we are done. O

TGy is quasiadhesive

We are now going back to examine the properties of TGy, with the purpose of proving its quasidhesivity.
Proposition 6.4.7. The forgetful functor Urgy, : TGy, — Set has a left adjoint Arg,,.

Proof. This follows at once noticing that, for every set X, Ax(X) is a term graph. O
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Take now a mono (i,5): H — G between (I,!y,): ¢ — G* and () H — G* in Hyps.. In
particular we have a commutative square

tg
Eg —— Vg*

*
Eg/ Htg/ Vg/

By Proposition i and j are injective, thus if tg is injective then tg is injective too. This show
that if (', lv;) is a term graph then (,!y; ) belongs to TGy too. We can apply this argument when (i, j)
is the equalizer in Hypy, of two parallel arrows between term graphs to get the following.

Proposition 6.4.8. TGs; has equalizers and Iy creates them.
We have a similar result also for binary products.
Proposition 6.4.9. TGs; has binary products and I, creates them.

Proof. Let (I,!y,): G — G¥ and (I, !y,,): H — G* be two term graphs, their product in Hypy; is given
by (p,v,,): P — G*, where the square below is a pullback in Hyp and (p, !, ) is the diagonal filling it.

(rE,pV)
—_—

(qE,ev)

g
l(lv!Vg)

gZ

<~

x

vy

By Proposition we have two pullback square in Set:

Ep 22> Eg Vp s Vg

Moreover tp fits in the following diagram.

Pt

~ <

E'ppHEEg

Vp

Vg
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If we show that P is a term graph we are done. Take hy, ho € Ep with the same image through ¢p, then
we get the following chains of equalities

tg(pe(h1)) = py(tp(h1))  tulge(h)) = ¢ (tp(h1))
= py (tp(h2)) = qy (tp(h2))
= tg(pe(hz)) = tn(qe(h2))

since tg and t; are injective we get

pe(h1) = pe(h2) qe(h1) = qe(he)

which, in turn, imply hy = ho. O

Since pullbacks can be computed from products and equalizers we also get the following.
Corollary 6.4.10. TGy, has pullbacks and they are created by I.

Remark 6.4.11. TGy in general does not have terminal objects. Since Urg,, preserves limits, if a terminal
object exists it must have the singleton as set of nodes, therefore the set of hyperedges must be empty or
a singleton {h}. Now take as signature the one given by two operations a and b, both of arity 0; we have
three term graphs with only one node v: Agys({v}), (Lo, vy ): Go — G¥ and (I, Iy, ): Gy — G*.

h h
? ?
V@ v v

There are no morphisms in TGy, between the last two and from the last two to the first one, therefore
none of them can be terminal.

Remark 6.4.12. TGy, is not an adhesive category. In particular it does not have pushouts along all
monomorphisms. Take the three term graphs of the previous remark, we have two arrows (71,3, id(,1) : Argy ({v}) —
(lay'vg, ) and (?qpy,idgey): Argy ({v}) = (I, vy, ) which cannot be completed to a square. Indeed if

(¢,'v;,): H — G* is another term graph with (9, gv): (la,vg) = (¢,v;,) and (kp, kv): (Lo, lv,) —

(g,v,,) such that

(9m,9v) o (Yqny,idgwy) = (g, kv) o (?(ny,idguy)

then gy = ky and

tn(ge(h)) = g7 (tg(h))
= gv(0)
= kv (0v)
= ki (tg(h))

I
~
Ry
3
5|
>
~
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so that we also have g = kg, but then

Definition 6.4.13. Given a labelled hypergraph (I, 1y, ): G — G*, we will say that v € Vg is an input
node if 6, does not belong to the image of tg.

Proposition 6.4.14. Let (I,!v,,): H — G* be a term graph and (f,g): G — H an arrow of Hyp sending
input nodes to input nodes. For every h € Ey, if ty(h) = 64y for somev € Vg then h € f(Eg).

Proof. Take v € Vg such that 64,y = t3(h), since (f, g) sends input nodes to input nodes, d,, must be in
the image of ¢g, thus there exists a k € Fg such that tg(k) = 6,. Now,

tu(f(k)) = g*(tg(k))
= g*((Sv)
=go 51}
= Og(v)
=ty (h)

Buy H is a term graph, therefore we can conclude that f(k) = h. O

We are now ready to show that regular monos are exactly monos sending input nodes to input nodes.

Lemma 6.4.15. A mono (i, j) between two term graphs (I,'v,): G — G¥ and (I',v,,): H — G is regular
if and only if it sends input nodes to input nodes.

Proof. (=). If (4,7) is a regular mono in TGy, then, by Proposition it is so also in Hypy,. By
Corollaries and if (f1,91) and (f2,g2) are arrows from (I, ly,,) to (k,!v;.): K — G¥ in
Hyps,, then their equalizer (e, !y, ): € — G is such that the two diagrams below are equalizer in Set.

LB f1 w g1
FEs ——= Fy —< Ex Ve —= V3 —= Vi
fa 92

Moreover, the target function of & fits into the diagram

s fi
Ee —— FEy —Z Fx
: f2
te tﬁl
v 91

* * — > Y%
VS o VH — VIC
v 92
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and the arrow (tg,tv): (e,lve) = (I',!v,,) 1s given by the inclusions. In particular, if v € Vg is such that
O,y (v) 1s the target of h € H, then
tic(f1(h)) = g1 (ts)
= gf((va(v))
=01° 5Lv(1))
=4
= g2y (v)
=92° 6Lv(’0)
= g; (6LV(U))
=t (f2(h))
thus f1(h) = fa(h) and h = tg(h’) for some b’ € E¢. By construction
1y (te(h')) =ty (ee(h))
= ty(h)

= 51,\/ (v)
=1y (0v)

thus, by Remark , te(h') = &y, showing that (1, ¢/) sends input nodes to input nodes.
(«<). Take V and F to be, respectively, Va; + (Vi \ j(Vg)) and Ey + (Ey \ i(Eg)), with inclusions

j12V7.[—)V jQIVH\j(Vg)—)V i1: By - F iQIEH\i(Eg)—)E

g1 (v (v))

Now, we are going to use another auxiliary function

Jiv) wvej(Vg)
J2(v) v ¢ j(Vg)

which is clearly injective. We can now define s,¢: E = V* as the functions induced by

rVy -V v»—>{

S1: EH - V* h— jf(SH(h)) t1: EH — V* h— jf(tﬂ(h))
s9: By Ni(Eg) = V* h—=r*(sy(h)) to: By Ni(Eg) = V*  hw— r*(ty(h))

We have just constructed an hypergraph K := (E, V, s, ), which we can label taking (¢, !v/): K — G=,
where ¢: E — Oy is the morphism induced by I': E3, — Oy and its restriction to Ey \ i(Eg). We
have now to check that (¢,!v): K — G is actually a term graph, i.e. that ¢ is injective. Suppose that
t(h1) = t(ha), we have four cases.

® hy =i1(h) and he = i1 (k) for some h, k in E;. Then
Ji (b (h)) = t(ir(h))
= t(h1)
= t(h)
= t(i1(k))
= Ji (twn(k))

But j} is injective so t3,(h) = t3,(k) and the thesis follows since (I’,!y,,): H — G* is a term graph.
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® hy =ia(h) and he = iz(k) for some h, k in Ey; \ i(Eg). As before we can compute to get

and thus, exploiting Remark , hi = ho.

® hy = i1(h) and hy = is(k) for some h € Ey, k in Ey ~\ i(Eg). By the definition of ¢, this can
happen only if t4;(k) € j(Vg), therefore, using Proposition , k must be an element of i(Eg),
which is absurd.

® hy = iz(h) and hy = i1(k) for some h € Ey, k in By \ i(Eg). This is done as in the previous
point, switching the roles of hy and hs.

Now, by construction (i1, j1) defines an arrow H — K, which is also a morphism (I',1y,,) — (g,!v) of
TGy. On the other hand we can construct another arrow (f, r) parallel to it defining

ir(h) hei(Eg)

f:Ey—FE hH{h(h) hé i(Eg)

and noticing that

5 _ Jsi(h) hei(Eg) _ Jum) nei(Eg)
) {s2<h> b () 1) {mm h ¢ i(Ee)
_ {J'T(SH h € i(Eg) _ {jf(ty(h h € i(Eg)
r*(su(h)) h¢i(Eg) r*(ty(h)) h ¢ i(Eg)
= r"(sn(h)) = r*(t(h))

By construction we have
q(f(h)) =1 (h)

thus (f,r) is a morphism in TGx. Now, (¢,7)G — H is the equalizer of (f,7), (i,7): H = K in Hyp,
thus it is also the equalizer of (f,7), (4,7): (I';!v;,) = (¢,!vi) in Hypy.. The thesis follows from Propo-
sition . 0

Lemma 6.4.16. Let (lo,!v,): G — G=, (I1,v;,): H — G¥ and (ls, v, ): K — G be term graphs. Given

(f1,91): (o, ') = (I, tv)s (f2,92): (Lo, Wg) — (2, i), of (f1,91) is a regular mono in TGy, then
their pushout (p, v, ): P — G in Hypy, is a term graph too.
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Proof. Hypy, is isomorphic to iduyp |dg=, and dg= preserves pushouts. In particular this implies that P
is a pushout of (f1,¢1) along (f2,g2) in Hyp, equipped with the labeling induced by I; and l5. More
precisely, we have pushout squares in Setu

Eg —> By Vo —=> Vi
RN
Eq.[ —— Ep VH —— V)C
hg hy
And diagrams
1% % Ve Vg % Ve
Eg —2> Ex Eg —2> Ex Eg —2> Ex
91 fl\L lkE kg fll \Lk}z k3, fl‘L \LkE
l
EH‘>E7J EHHEP E;L[‘>E7) ’
hg hg hE
2N TN N,
Vi " Vi Vi h; Vs h Ox

Notice that kv and kg are injective as they are the pushout of injective arrows, hence by Remark
we know that k§, is injective too. Suppose now that there exists k1, ho € Ep such that tp(hy) = tp(hsa),
by Remark we know that there must be v € Vp such that

8, =tp(hy) 6y =tp(hs)

Using Lemma we can split the cases.

® hy = kg(k1) and he = kg(ke) for some k1 and ko € Ejc. Then we have

Kk}, and tx are injective, thus ky = ko and so hy = ho.

® hy = kg(k) and ho = hg(h') for some k € Exc and ' € Ey. Let wy € Vic and wy € V3 be the
nodes such that

5101 = t)C(k) 671}2 = t'H(h/)



300 6. A 200 of M, N -adbesive categories

then we have

6kv(w1) = kV o 6w1
= ki (0w,)

- 5hv(w2)
and thus we can deduce that
ky (w1) = hy (ws)
By the third point of Lemma 6.1.1 there must be a w3 € Vg such that
w1 = gz(ws) W2 = 91(w3)

Proposition 6.4.14 and Lemma 6.4.15 now entail that there exists e € &g such that b’ = fi(e).
Notice that

and so

But then we also have
tic(f2(e)) = g5(tg(e))
= g; (61113)
=g20 5w3

= 6!]2(11)3)
= 671}1

=t (k)
Since (I2, v ): K — G is a term graph this entails that

fa(k) =k

and we can conclude that hy = h..
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® hy = hg(h') and hy = kg (k) for some k € Ex and i/ € Ey. This is done as in the previous case
swapping the role of hq and hs.

® hy = hg(h}) and hy = hg(h}) for some b} and by € Ey,;. Let 1 and x2 be the unique elements of
V4 such that
02y = tu( 1) 02y = tru( /2)

Then it must be that

= hy (8z,)

= hi (te(h}))

=tp(h1)

= tp(h2)

= hi (ta(h3))

= hy(9z,)

= hV o 5£2

= Ohy (22)
showing that hy (1) = hy (22). By the second point of Lemma we know that at least one
between 1 or zo must belong to g1(Vg). Without loss of generality we can suppose that it is 21
(otherwise just swap it with x2). Using Proposition and Lemma we know that h] is

in the image of f1, i.e. that there exists e € Fg such that b} = f(e), but then

ke(f2(e)) = he(fi(e))

= hp(hh)
= h’l
so we fall back to the third case and we can conclude. O
Corollary and Lemmas and allow us to recover the following result, previously

proved by direct computation in [38, Thm. 4.2].

Corollary 6.4.17. The category TGy, is quasiadhesive.
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Conclusions for Part

CHAPTER

The second part of the thesis is devoted to the study of M, N -adbesivity, a crucial property in the algebraic
treatment of rewriting theories.

In Chapter 5, we have first provided a brief definition and some fundamental properties of M, N-
adhesive categories. Then, we presented a novel criterion for verifying M, N-adhesivity, which involves
analyzing certain properties of functors that connect the category of interest to a family of categories
possessing suitable adhesive properties. This criterion can be seen as a distilled abstraction of several ad
hoc proofs of adhesivity found in the literature. By using this criterion, we were able to systematically and
uniformly establish some results concerning the adhesivity of categories formed by products, exponents,
and comma constructions.

Next, we have proceeded to generalize three well-known results from the theory of (guasi)adhesive
categories to the M, N-adhesive setting, adapting the techniques developed in [57].

The first result pertains to binary suprema in the poset of subobjects of an M, M -adhesive category.
We have demonstrated that given a mono in M and one in M NN, then their supremum, called a M, N-
union, exists and it is computed as the pushout of the pullbacks of the two given monos.

We have then proved a kind of converse of the previous result: in the presence of M, A-unions, we
can guarantee M, N -adhesivity if we know that M is contained in the class of A-adhesive morphisms.
This enables us to reduce the proof of the Van Kampen condition to demonstrating the stability of some
squares and that some pullbacks are pushouts. As an example, adhesivity of toposes can be easily proven
using this method.

Finally, we showed that under some mild hypotheses about M and N, an M, N-adhesive category can
be embedded in a Grothendieck topos via a functor that preserves all relevant structure (i.e. pullbacks and
M, N-pushouts). Therefore, the slogan “an adhesive category is one whose pushouts of monomorphisms
exist and behave more or less as they do in a topos” holds true even for M, N-adhesive categories.

In Chapter 6, we have applied the criterion established in Chapter 5 to various significant examples,
such as term graphs and directed (acyclic) graphs. Furthermore, due to the modularity of our approach, we
could easily establish appropriate adhesivity properties for categories formed by combining simpler ones.
In particular, we tackled the adhesivity issue for several categories of hierarchical (hyper)graphs, including
Milner’s bigraphs, bigraphs with sharing, and a new version of bigraphs with recursion. Additionally, we
proved an adhesivity property for a category of hierarchical hypergraphs employed in [11] to provide a
graphical semantics for monoidal closed categories.

As future work, we plan to analyse other categories of graph-like objects using our criterion; an in-
teresting case is that of directed bigraphs [14, 34, 57, 58]. Moreover, it is worth to verify whether the
M, N-adhesivity that we obtain from the results of this thesis is suited for modelling specific rewriting
systems, e.g. based on the double pushout approach. As an example, TGy, is quasiadhesive yet the left-
hand side of rules typically adopted in applications is often a non regular mono, thus questioning the
relative usefulness of the adhesivity property [3¢].

Our discussion on a criterion for adhesivity begs the question of its meaning for a rewriting system
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at hand. Namely, which is the right notion of M, N-adhesivity, given a set of rewriting rules? More
specifically, given some set of rewriting rules, the question of devising the right kind of adhesivity prop-
erties that should be proven is still open and an ongoing subject of work. In particular, we are planning
to investigate if the presence of conditions [21, 43, 59] in a rewriting system can suggest some canonical
choice of M and NV for which M, N-adhesivity can be proved.

One may also notice that, if a category is M, N-adhesive, then M must be contained in the class
of N-adhesive morphisms. In particular, in the M-adhesive case, M must be a subclass of the class of
adhesive morphisms. Hence, the preadhesive structures for which X is M, A/-adhesive form a bounded
family in the poset of all preadhesive structures. This suggests to study such poset, in order to characterize
the largest preadhesive structure, suited for the specific problem, for which X is M, M -adhesive.
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APPENDIX

Contents
Al G {015
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A.5.1 NG 24 O

The aim of this appendix is to prove some basic results of category theory which we used throughout
all this thesis. Doing so we also fix some notation. The material contained in Appendices to

is standard and can be found in any textbook on category theory [5, 12, 85, 93]. While the standard
references for Appendix A.5 are [81, 85].

Remarks on limits and colimits

Let us start pointing out some results about limits and colimits.

Definition A.1.1. [5] Let G: D — X be a diagram, given a functor F': X — Y we we say that F":

1. preserves (collimits of G if given a (co)limiting (co)cone (L, {Ip}pep) for G, (F(L),{F(lp)}pepn)
is (co)limiting for F' o G;

2. reflects (co)limits of G if a (co)cone (L, {lp}pep) is (co)limiting for the functor G whenever the
(co)cone (F(L),{F(Ip)}pep) is (co)limiting for F o G

3. creates (co)limits of G if G has a (co)limit in X whenever F o G has one, and F’ preserves and reflects
(co)limits along G.

Remark A.1.2. Notice that our notion of creation is laxer than, e.g., [85, Def. V.1].
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Proposition A.1.3. Let G: D — X be a diagram and F: X — Y a functor. The following are equivalent:
1. F creates (co)limits along G;

2. given a (co)limiting (co)cone (L,{lp}pep) for F o G, there exists a (co)cone (X, {xp}pep) which
is (co)limiting for G and such that (F(X),{F(xp)}pep) s (collimiting for F o G. Moreover, for
every other (co)cone (Y,{yp} pep) such that (F(Y),{F(yp)}pep) is (collimiting, there is a (unigue)
isomorphism f: X — Y such that, for every D € D:

Txp=ypof

Proof. We prove the thesis for limits, the case of colimits follows by duality.

(1 = 2) By hypothesis F' o G has a limit, thus there exists a limiting cone (X, {zp} pep) for G. Since F
preserves limits of G we know that (F'(X), {F(zp)} pep) is alimit cone. If (Y, {yp } pep) is another cone
such that (F(Y),{F(yp)} pep) is a limit, then, by reflection, it is limiting and thus the thesis follows.

(2= 1) Let (L, {Ip} pep) be a limiting cone for F'o G, by hypothesis, we can pick a cone (X, {xp}pep)
in X which is limiting for G. Since (F'(X),{F(2p)} pep) is a limit, we get also an isomorphism h: F(X) —
L such that, for every D € D

F(l‘d) = lD oh

Take now a limiting cone (Y, {yp} pep) on G, then there exists an isomorphism g: ¥ — X such that
Yp =Zpog
Thus h o F(g) is an isomorphism F(Y) — L such that
F(yp) = F(zp o g)
= F(zp) o Fl(g)
=lpohoF(g)

showing that (F(Y),{F(yp)}pep) is limiting, so that F preserves limits along G.
For reflection: suppose that (Y, {yp} pep) is a cone on G such that (F(Y),{F(yp)}pep) is limiting.
By hypothesis we have an isomorphism f: Y — Y such that

tp=ypof
and the thesis now follows because we already know that (X, {zp} pep) is a limit. O
Proposition A.1.4. If F: X = Y is a full and faithful functor then it reflects all limits and colimits.

Proof. Fix a diagram G: D — X and suppose that a cone (L, {Ip } pep) for G is given with the property
that (F(L),{F;(Ip)}pep) is limiting for F o G. Let (X, {zp}pep) be another cone in X, by hypothesis
we have a unique arrow f: F(X) — F(L) such that, for every D € D

F(zp)=F(lp)o f
Since F' is full and faithful, f is equal to F'(z) for a unique z: X — L. Faithfulness also implies that
zp =Ilpox

Moreover, if ’': X — L is another arrow such that Ip o 2’ is equal to zp, then F(z') must be f, proving
that 2’ = z and thus that (L, {{p} pep) is limiting for G.
The thesis for colimits follows by duality. O
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We end this section recalling a classical construction of basic category theory. Let X be a category
with arbitrary coproducts, then for every object X and set S we can construct the coproduct S e X of
the family {X;}ses, where Xy = X for every s € S. Now, if 15: X — S e X is the coprojection
corresponding to s € S, then we have a function

ng: S = X(X,SeX) S Lg
On the other hand, for every function f: S — X(X,Y), there exists a unique f:SeX —Y such that

f(s):foLs

In particular, this means that we have a commutative triangle

55 X(X,5 e X)

S

X(X,Y)
Thus we have showed the following.

Proposition A.1.5. If X is a category with coproducts, then, for every X € X, the representable functor
X(X,—): X — Set has a left adjoint (—) o X.

Colimits in Set
We will now recall a general recipe to compute colimits in the category of sets and functions.

Lemma A.1.6. Let F': D — Set be a functor with a small domain, for every D € D consider the coprojection
ip: F(D) = Y pep F(D). Let also ~ be the relation on ) , ., F(D) defined by ip, (x) ~ ip,(y) if and
only if there exists n € N and families { E;}7_ o, {G YA {3708, {ei} o, {gi} 12y such that:

e every E; and every G; is an object of D, moreover e; € F(E;) and g; € F(G;);

® Go = D1, Gpy1 = Do, go = z and gany1 = Y5

o {f: ?2(4{1 is a family of arrows of D such that fo;i1: Ey — Giy1 and fo;: E; — F;, moreover the

Jfollowing equations hold
F(fa)(ed) =g9i  F(fair1)(ei) = gina
Then the following hold true:
1. ~ is an equivalence relation;
2. if C is the quotient Y, ., F(D)/ ~ and 7: Y pcp F(D) — C is the quotient function, then a

colimiting cocone for F' is given by (C,{jp } pep) where jp := T oip.

Proof- 1. Let z be an element of F(D) and puttaken = 0, Ey = D, fo = f1 = idp, thenip(z) ~ ipz,
proving reflexivity. For simmetry, let {E;}1 o {Gi}12 {fi}2mdt, {ei}to, {9:}12y be families
witnessing ip, (z) ~ ip,(y), then we can define

!

/ / ! /
E, =FE,; e =epn1 Gy =GCGnii—i G = 0Gnti—i J[i:= font1—i
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and these families witness ip, (y) ~ ip, (z). We are left with transitivity: take {E;}7_o,{G;}72
{fiyeh {eitice, 9o, {BD o AGIHSY! {320, {ei} o, {91}/’ which witness , re-

spectively, ip, (z) ~ ip,(y) and ip,(y) ~ ip,(z), then we get ip, (z) ~ ip,(z) putting:

E — E; 1<n o e €; 1 <n
' E_,, n+l1<i<n4m ' € oy n+1<i<n+4+m
Q" .= Gi t<n+1 g{/.: 9i 1<n+1
UG, n+2<i<n4+m+1 7 itne1 n+2<i<n+m+1
1—n—1 9i—n-1

, [ oi<om+n

O m+2<i<2(n+m)

2. First of all we have to prove that (C, {jp}pep) is a cocone. Given f: D; — D5 in D, we can put
EO = D1 GO = D1 Gl = Dg fo = F(ile) fl = F(f)

which witness that, for every = € F(D;), ip,(z) ~ ip,(f(z)), and so jp, o F(f) = jp,-

Let (A, {cp}pep) be another cocone, there is a unique arrow ¢: Y, cp F(D) — A making the
following diagram commutative.

¥
> F(D) . A

DeD

Take now x € F(D;) and y € F(Ds) such that ip,(z) ~ ip,(y) and let {E;}1 o, {G:}1)
{fiy2mdt {eidi g, 19: 172 be families witnessing it, then

C(iDl (‘T)) = CpD, .CE)

By induction this argument entails
c(ip, (%)) = c(ip,(y))
therefore we can conclude that there exists a unique g: C' — A such that g o 7 = ¢, but then

gojp=gqomoip
=coip
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On the other hand, if k: C' — A is another arrow such that k o jp = ¢p then
komoip =cp
for every D € D, thus x o m = ¢ and we can conclude that & = g. O

Corollary A.1.7. Let Dy be an object of a small category D, then (1,{'p(p,,p)} peD) s a colimiting cocone
forD(Dy, —): D — Set, where p(p,, py is the unique arrow D(Dy, D) — 1.

Proof. For every f € D(Dy, D) we can take

. D i=0 fooi=0 fooi=0
EZ:D Z:d GiZ: i = G 1=
0= Ho corm b {DO i=1 Y {idDO i1/ {iolD0 i=1

and we have

D(Dy, f)(idp,) = f D(Dy, idp,)(idp,) = idp,

showing that ip (f) ~ ip, (idp, ), from which the thesis follows. O

e A.2 Comma categories

In this section we will briefly recall the definition of the comma category associated to two functors and
some of its properties.

Definition A.2.1. Let L: A — X and R: B — X be two functors with the same codomain, the comma
category L | R is the category in which

e objects are triples (A, B, f) with A € A, B € B,and f: L(A) — R(B);

e amorphism (A, B, f) — (A, B’,g) isapair (h,k) withh: A — A'inAandk: B — B’ in Bsuch

that the following diagram commutes

L(A) = o

R(B) R(B')

_—
R(k)

We have two forgetful functors U : LR — A and Ug: L|R — B given, respectively by

(A,B,f) — A (A,B,f) — B
(h.k) | L (h,k) | Lk
(A", B’ g) —s A’ (A",B',g) —s B’

Given L: A — X and R: B — X, we can also consider their duals L°P: A°? — X°? and R°P: B? —
X%, Anarrow f: L(A) — R(B) in X is the same ting as an arrow f: R°?(B) — L°?(A) in X°?, thus



—A.3

310 A. Categorical preliminaries

(L} R) and R°P | L°P have the same objects. Moreover, the commutativity in X of the square

£(4) = ran

| |

R(B) —o= R(B')

is tantamount to the commutativity in X°? of the square

R(k)
—_—

L(A) > L(A)

Summing up we have just proved the following fact.
Proposition A.2.2. (L|R)? is equal to R°P | L°P, moreover U;" = Upor and Uy} = Ugos.

We can notice another useful fact, showing that in some cases we can guarantee the existence of a left
adjoint to Ug.

Proposition A.2.3. If A has initial objects and L preserves them then the forgetful functor Ug: LR — B
has a left adjoint A.

Proof. For an object B € B we can define A(B) as (0, B, ?), where 0 is an initial object in A and ?(p)
is the unique arrow L(0) — R(B). Consider idg: B — Ur(A(B)) be the identity, and suppose that a
k: B — Ugr(A, B’, f) in B is given. By initiality of 0, there is only one arrow 7 4: 0 — A in A and, since
L preserves initial objects, the following square commutes.

L) 28

)
?R(B)J/ J{f

R(B) R(B')

R(k)

Thus (h, k) is the unique morphism A(B) — (A, B, f) such that Ug(h, k) = k. O
Dualizing we get immediately the following.

Corollary A.2.4. If B has terminal objects preserved by R then Ur,: LLR — A has a right adjoint.

Slice categories

This section is devoted to recall some basic facts about the so called slice categories.

Definition A.3.1. Let X be an object of a category X, we will define the following two categories.
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e The slice category over X is the category X/ X which has as objects arrows f: ¥ — X and in which
anarrow h: f — gish: Y — Y’ in X such that the following triangle commutes.

y —" oy

N S

¢ Dually, the slice category under X is the category X /X in which objects are arrows f: X — Y with
domain X and a morphism h: f — g is an arrow of X fitting in a triangle as the one below.

/N

Y—>Y’

Remark A.3.2. Forevery X € X we have forgetful functors

domx: X/X - X cody: X/X =X
f— dom(f) f > cod(f)

W ol

g — dom(g) g — cod(g)

Lemma A.3.3. Forevery f: Y — X the categories (X/X)/f and XY are the same category.

Proof. Given g: Z — X, an object of (X/X)/f is an arrow h: Z — Y in X thus, in particular, it is an
object of X/Y. On the other hand, any object k: Z — Y defines an arrow f ok — fin (X/X)/f,
showing that the two categories have the same objects. Take an arrow k: A — I’ in (X/X)/f with
h: Z —Y and h': Z' — Y, by definition it is an arrow of Z — Z’ in X such that h = h/ o k, that is

(X/X)/f) (h, W) = (X/Y) (h, )
and the thesis follows. O
Remark A.3.4. In this situation, the functor domy: (X/X)/f — X/X becomes fo(—): X/Y — X/X

h— foh

h+— foh
We can realize the slice over and under an object X € X as comma categories.

Proposition A.3.5. For every object X in a category X, if 6x : 1 — X is the constant functor of value X from
the category with only one object *, then X/ X and X /X are isomorphic to, respectively, idx |0 x and dx lidx
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Proof. Define functors Fi : idx Jdx — X/X and G1: X/X — idx |dx as follows

(Yo%, f) = f f = (dom(f), . f)
(h,id.) | lhon] L (n,id.)
9

(Y %,9)—g + (dom(g), *, 9)
Similarly, we have Fy: dx Jidx — X /X and Gy: X /X — §x Jidx

Y, f) — f [ (x,cod(f), f)
(ida, ) | lhon] | (id., )

(Y, g)— g g — (*,cod(g),9)
It is now obvious to see that F1, G and Fy, G are pairs of inverses. O
A straightforward application of Corollary now yields the following.

Corollary A.3.6. If X has pullbacks, then for every object X, the slice X/ X has pullbacks too.
Let us turn to products.

Proposition A.3.7. Let f: Y — X and g: Z — X be two arrow in a category X with a common codomain,
then f has a pullback along g if and only if f and g have a product in X/ X.

Proof- (=) Take a pullback square as the one below and define p: P — X as its diagonal.
P-—"sy
"~
[ ——
g

X

Then p; and py are arrows p — f and p — g. Moreover, for every other ¢: W — Xwith arrows
wi: q— fand ws: ¢ — g, it must be that

fow =gq

= fows
thus there exists a unique w: Z — P such that
wyp =prow W2 =p2ow
so that

pow=fopiow
= fouw

=q

and so w is a morphism of X/X and (p, p1, p2) is a product of f and g.
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(<) Let p: P — X with projections p1: P — Y and pa: P — Z be the product of f and g, then we

must have a square
P1
—_—
\\p{
_ >
9

To see that this is a pullback square, let wy: W — Y and wo: W — Z such that

Y

P2

N<—"

X

gows = fow

then w; and wy are, respectively, arrows f ow; — f and gowy — g in X/ X. By hypothesis the domains
of these arrows are the same, therefore there exists a unique w: f o w; — p such that

w1 =prow W = P2 oW

Such a w is, in particular, an arrow W — P, thus we only have to check is uniqueness in X. Now, if
w': W — P is such that

=piow wy =pgow
then
pow' = foprow
=fou
thus w’ defines a morphism f o w; — p and it must therefore coincide with w. O

Notation. Given two arrows f: X — Y and g: X — Y, we will denote by pb,(g) : pb;(G) — X any
choosen representative of the pullback of g along f. Dually, given f: Y — X andg: Y — Z, we will use
po(g) to denote any representative of the pushout of g along g.

Proposition A.3.8. Let X be a category with pullbacks. Given an arrow f: X — Y there exists a functor
pbs: X/Y — X/ X sending g to pb (g).

Proof. Let k: G — H be an arrow between g: G — Y and h: H — Y, then in X we have a diagram

pbf(k)

= pby ()

pm Aﬁ

P lf q
Y

/ \
k

pbf
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in which the two diagonal inner trapezoids are pullbacks. Now,
hokop=gop
= fopb f (9)
so that we can guarantee the existence of the dotted arrow pb; (k). Clearly
pby (idg) = idgb (g

while, on the other hand, given another s: h — t in X/Y’, the diagram

pb (k) b 1(s)
pb ; (G) ———— pb , (H) . pb (T)
pbf(g) — D X
p q f u
g —zY
G H T
k s

witness pb (s 0 k) = pb(¢) o pb (k) and the thesis now follows.

We can dualize this to get the following.

Proposition A.3.9. Let X be a category with pushouts. For every arrow f: X — Y there exists a functor

po;: X/X — X/Y sending g to po;(g).

Let X be an object in a category X binary products, for any other object Y in X we can consider the
second projection Lx (Y): Y x X — X as an object of X/X. The following lemma guarantees that in

this way we get a right adjoint Lx : X — X/X to domx.

Lemma A.3.10. Let X be a category with binary product. For every object X there exists a functor Lx : X —
X/ X, sending an object Y to the second projection Y x X — X, such that domx - Lx.

Proof. By definition given, for every object Y € X

domx(Lx(Y)) =Y xX

and we could define €y : domx(Lx(Y)) — Y simply as the first projection. Given f € X/X and

g: domx (f) — Y we have a diagram in X as below

YxX—2 vy

LX(Y)\L w Tg

X<—fdomx(f)



A.3. Slice categories 315

Clearly (g, f) defines an arrow f — Lx(Y) such that
g = ey odomx(g, f)
Viceversa, if z: f — Lx(Y) is such that
g = ey odomx(2)
then it must coincide with (g, f), showing that ey is the component of the counit of domy 4 Lx. O

Remark A.3.11. More explicitly, if f: Z — Y is an arrow in X, then Lx(f) is the transpose of f o
€z: Z x X =Y, thatis Lx(f) := f x idx.

Take now an arrow f: X — Y in a category X with pullbacks. Then, by Proposition the
slice X/Y has all products so that Lemma gives us a functor Ly: X/Y — (X/Y)/f. Now, the
codomain of Ly is X/X by Lemma . Using again Proposition it is immediate to see that Ly
must coincide with pb , therefore we have just established the following result.

Corollary A.3.12. If X is a category with pullbacks, then for every f: X —Y
fo(=)-pb f
If we now take X to be cartesian closed we can prove the existence of another adjunction Lx 4 Rx.

Notation. Let us fix some notation. Given f: Y x X — Z in a cartesian closed category X, we will
denote by " f7 the transpose Y — ZX. If evy is the counit of (=) x X - (=)%, " f7 is the unique
morphism who fits in the diagram below

Y xX
ZXX X ———> 7
evx, z

In particular, and with a slight abuse of notation, every f: X — X induces " f7: 1 — X* which is the
unique one fitting in the diagram

IxX "o X

rf’Xidx\L lf

XX x X ——=X
evx, x

Lemma A.3.13. Given a cartesian closed category X with pullbacks, for every X € X there exists a functor
Rx : X/ X — X which is right adjoint to Lx.

Proof. Given f:Y — X, we can consider the following pullback square
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If we apply (=) x X and paste with the naturality square of evx, we get

pxidx evx,y

Rx(f) x X Y¥XxX ——— VY

!Rme‘dXJ/ fXxidxl lf

Fidx "xidx evx, x

R ——
TX

We can now notice that

Lx(Rx(f)) =Tx O (!Rx(f) X idx)
so that evyx y o (p X idx) defines an arrow Lx (Rx(f)) — f in X/X. To show that in this way we get a
counit for Lx - Rx, take Z € Xand h: Lx(Z) — f. In particular, i is an arrow Z x X — Y, so that
it has a transpose "h7': Z — Y X. First of all, let us notice that the diagram below commutes.

Zxx X0

!LX(Z)Xidxi TeVX,X

IxX — XX xX

Fidx "xidx

On the other hand, we know that Lx (Z) = f o h, thus we can build:

X fXXidX X
) Y4¥9x X —— X*x X
Th7Xidx
/ leVX,Y levx,x
Z x X Y X

h G
\ evx,xT
L x (2)Xidx IxX —— > XX x X

Tidx Txidx

showing that
fX 0] Fh“! = I—idX—lO!LX(Z)

so that we get a unique k: Z — Rx (f) such that
W =pok
and thus
evy,y o (pxidx)oLx(k)=evxy o(pxidx)o(kxidx)

—evyy o ((pok) x idx)
=evxyo("hT xidx)
=h

On the other hand, if ¥': Z — Rx(f) is such that

h=evxy o (pxidx) o Lx (k)

then p o &’ must coincide with "h7, implying k = k' O
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Take now X to be locally cartesian closed: that is a category such that X/ X is cartesian closed for every
object X. Notice that by Proposition this implies that X has all pullbacks, thus Corollary
entails that every slice X/X also has pullbacks. Take now an arrow f: X — Y, by Lemmas
and we have functors: domy, Ry: (X/Y)/f = X/Y, Ly: X/Y — (X/Y)/f such that

domf B Lf - Rf
We have already noticed that L coincides with pb , thus we can deduce at once the following

Corollary A.3.14. If f: X — Y is a morphism in a locally cartesian closed category X, then the pullback
functor pb ; is both a left and a right adjoint.

Subobjects and quotients

We are now going to recall the notion of guotients and of subobjects, in order to fix a uniform notation.

Definition A.4.1. Let X be a category and M C M (X)) a class of monomorphisms. Ff m: M — X and
m’: M’ — X are two elements of M with the same codomain, then we say that m < m’ if and only if
there exists a, necessarily unique h: M — M’ such that the following diagram commute

Moot o N
X

We define m = m/ if and only if m < m’ and m’ < m. This is an equivalence relation on the class
M/X ={m e M| cod(m) = X}

A M-subobject of X is an equivalence class [m] with respect to the relation =, we will denote by
M-Sub(X) the class of M-subobjects. X is M-wellpowered if, for every object X, M-Sub(X) is a set.

Dually, if £ aclassof episin X, and e: X — Y, e’: X — Y’ are two elements of it, we say thate < ¢’
if and only if there exists a, necessarily unique, h: Y — Y such that the following diagram commute

X
h

Y

We put e = ¢’ if and only if e < ¢’ and ¢’ < e, getting an equivalence relation on the class
X/E ={eec&|dom(e) = X}

A E-quotient of X is an equivalence class [e] with respect to the relation = and we will denote by
E-Quot(X) the class of £-quotients. X is E-cowellpowered if, for every object X, E-Quot(X) is a set.

Notation. We will drop the prefixes “M-” and “E-” when considering the classes of all monomorphisms
or of all epimorphisms.
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Remark A.4.2. M-Sub(X) and £-Quot(X) can be naturally equipped with orders putting, respectively
[m] < [m/] if and only if m < m/ and [e] < [¢/] if and only if e < e. the class of idx is a maximum in
M-Sub(X), while it is a minimum in £-Quot(X). Notice, moreover, that m = m’ if and only if there is
a isomorphism h such that m’ o h = m and, similarly, e = ¢’ if and only if there exists an isomorphism h
suchthat hoe =¢'.

Remark A.4.3. If X is an object of a M-wellpowered category X, then, assuming the axiom of choice for
classes, there exists a set R(X) C M /X of representatives for =. Similarly, if X is £-cowellpowered, we
can find a set of representatives in X /& for =.

Notation. Let m: M — X and f: Y — X be arrows, we will denote by pb,(m) : pb; (M) — Y any
representative of the pullback of m along f. Dually, given e: X — Eand g: X — Y, we will use po, (e)
to denote any representative of the pushout of e along g.

Proposition A.4.4. Let X be a category and M be a class of monos closed under pullbacks: i.e. for every
m: M — X initand f: Y — X, pb(m) belongs to M. Then the following hold true:

L ifm: M — X andn: N — X are elements of M /X such that m < n, then
pb(m) < pb;(n)

Joreveryarrow f: Y — X;
2. if X is wellpowered then there exists a functor M-Sub: X°? — Pos.

Proof- 1. By definition, there exists h: M — N such that n o h = m, thus we have the solid part of
the following diagram

This implies the existence of the dotted & and the thesis follows.

2. Given f: Y — X we can define a function
Pby: M-Sub(X) — M-Sub(Y) [m] = [pb; (m)]
By the previous point this is a well-defined and monotone function and, for every other g: Z — Y
pbi, (m) =m  pby,,(m) = pb, (pby(m))
from which the thesis follows. O
Dualizing we get the following corollary.

Corollary A.4.5. Let X be a category and € be a class of epis closed under pushouts: i.e. for everye: X — E
initand g: X =Y, po, (e) belongs to &, then the following hold true:
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1. ife: X = Eand f: X — F are elements of X | such that e < f, then

pogy (€) < po, (f)
Jorevery arrow g: X = Y;
2. if X is cowellpowered then there exists a functor £-Quot: X — Pos.
In the presence of limits, we can easily compute infima in the poset of subobjects.

Proposition A.4.6. Let {[m;]|}icr be a subset of Sub(X), and suppose that the diagram defined by the arrows
{m;}icr admits a wide pullback. Then {[m;)}icr has an infimum.

Proof. By definition of limit, for every i € I we have a triangle

Mt
X

where (M, {l;}ier U {m}) is a limiting cone. Notice that m is monic, indeed if f,g: A = M are such
that
mof=mog

then, for every i € I we have an equality
m;ol;of =m;ol;og
which, since every m; is a mono, allows us to deduce that
liof=liog

and therefore f = g. Clearly [m] < [m;] for every i. Let [n] be another lower bound, withn: N — X,
then there must be k;: N — M; such that, for every i € I, m; o k; = n and thus there exists ¢: N — M
such that [; o ¢ = k;. Composing with any m; we get m o ¢ = n, i.e. [n] < [m]. O

A crash course on coends and Kan extensions

We are now going to briefly introduce the concept of coends and the notion of left Kan extension.

Definition A.5.1. Let F': A’ x A — B be a functor, a cowedge w for F is a (large) family {wa}aca
formed by arrows w4 : F(A, A) — B with a common codomain B and such that , for every f: A’ — A
the following square commutes

F(AA)
F(AA) B
F(fidar) /

F(A, A
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A cowedge w with codomain [ A p (A, A) is initial, or a coend for F, if for every other cowedge «’,
with codomain B, there exists a unique f: | AA p (A, A) — B fitting in the diagram below.

FW F(A, A) W'y
) wA\L \
f

FAA)  [**F@aa) b sB

\
\\ wA/T
F(f,idar) F(A/’A’) Wy

Remark A.5.2. Cowedges for a functor F': A’ x A — B form a category cwd(F') in which a morphism
between w = {wa}aca and W' = {w/s} aca 1s an arrow f: B — B’ sucht that, for every A € A, the

diagram below is commutative.
F(A, A)
B B’
!

A coend for F is then an initial object in cwd(F') and thus it is unique up to a unique isomorphisms.

Left Kan extensions

Definition A.5.3. Let F: A — Band G: A — C be two functors with common domain. A left Kan
extension of F along G is a pair (lang(F'), nr) given by functor lang(F): C — B and a natural transfor-
mation np: F' — lang(F') o G such that, for every other H: C — Band A\: ' — H o G, there exists a
unique A: lang(F) — H such that A = (A« F) o np.

Remark A.5.4. The uniqueness clause entails at once that left Kan extensions are unique up to a unique
isomorphisms. More precisely, if (L, nr) and (L', n%) enjoy the universal property of lang (F) a left Kan
extension then there exists a unique isomorphism A: L — L’ such that nf; = (A * G) o np.

We can restate the universal property of a left Kan extension (lang(F),nr) requesting, for every
functor H: C — B, the bijectivity of the function

BC(lang(F),H) - BMF,HoG) A= (AxQ)onp

The previous condition strongly resembles an adjunction. Indeed, if G: A — C is a functor, we can
consider its associate precomposition functor (—) o G: B¢ — B®. Now for every F: A — B, the
universal property of (lang(F), nr) amounts exactly to np: F — lang(F) o G being the component in
F of the unit of an adjunction, therefore we have just proved the following result.

Proposition A.5.5. Given G: A — C, let (—) 0 G: B¢ — B be the precomposition functor. Then (—) o G
has a left adjoint if and only if a left Kan extension (lang (F), ng) exists for every F': A — B.

Take now two functors G: A — Cand H: C — D with the property that left Kan extension along
them always exists. Since left adjoints compose, by the previous proposition we get that a left Kan exten-
sion of F': A — B along H o G exists and it is given by (lany (lang(F)), (ane (r) * G) 0 nr). We can
give a slightly more general result.
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Lemma A.5.6. Let G: A — C, H: C — Dand F: A — B be three functors such that both the left Kan ex-

tensions (lang (F), ng) and (lang (lang (F)), Mane (7)) exist. Then (lang (lang (F)), (Mane () * G) © nF)
is a left Kan extension of F along H o G.

Proof. Given K : D — B, by hypothesis we have a bijection
BP (lany (lang (F)), K) — B¢(lang(F), K o H) o= (o H) 0 Mang ()
On the other hand, we also have another bijection
B¢(lang(F),K o H) »BAF,Ho (HoG)) v (vxG)onp
Composing then we get a third bijection
B®(lany (lang(F)), K) = BMEF,Ho (HoG)) A= (A (HoG)) o (1hang(r) * G) o nr
which proves the thesis. O

We are now going to show how to compute left Kan extensions via colimits.

Definition A.5.7. Let G: A — C be a functor. For every C' € C, the category G/C has as objects pairs
(A,g) madeby A € A and g: G(A) — C, while an arrow h: (A,g) — (A4’,¢’) is an arrow h: A — A’
in A such that the triangle below commutes.

G(h)

GA) — 2 G(AY)
N,

Remark A.5.8. Let 6c: 1 — C the functor picking the object C, as in Proposition , we can define
functors F': Gléc — G/C and G: G/C — G ¢ as follows.

Yox, f) — f f = (dom(f),*, f)
(h,id.) | lhon] L (n,id.)
g

(Y, 9) — g — (dom(g), *,9)
giving us an isomorphism between G [d¢ and G/C.
Now, we have a forgetful functor Vo: G/C' — A defined by
(A,g) — A

h L

(A g) — A
If F: A — B is any other functor, we will denote by V¢ ¢ the composition F o V.

Proposition A.5.9. Let F': A — Band G: A — C be two functors such that Vo g has a colimiting cocone
(BC, {icag} (A q)eG/C> for every C € C. Then F has a left Kan extension along G, such that

lang(F)(C) = Bc nrA = j(Aidea)
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Proof- Let f: C — C’ be an arrow of C. Then we can define lang (F)(f): Bc — Ber as the unique

arrow fitting in the diagram below
J(y KMOQ)

7 lanG F)(f
Clearly lang (F)(fid¢) = id ., moreover, if f': C' — C”

lang(F)(f o f) 0 jiag) = Jca.profog)
=lang(F)(f') © j(a, fog)
= lang(F)(f") olang(F)(f) 0 j(a,g)

showing that we have built a functor lang (F'): C — B. Moreover, given f: A — A’, if we take np 4 to
be J(Ajdaca)s then we have

lang (F)(G(f)) o nr,a = lang (F)(G(f)) © j(adeay)
= JA,G(f)oide(a
=J(a,G6()
= J(Aidgary) © F(f)
=nra o F(f)

showing the existence of np: F' — lang(F') o G. Now let A be any other natural transformation F' —
HoG. Forevery (4, g) in G/C we can define an arrow F'(A) — H(C) taking the composition H(g)o\ 4.
Given h: (4,9) = (A, ¢") we have

H(g"YoAar o F(h)=H(g')o H{G(h)) o Aa
(9" 0 G(h))oAa

H
H(g)oAa

showing that (H(C), {H(g) o )‘A}(A,g)eG/C) is a cocone on V¢ . Let A¢ be the induced arrow Bo —
H(C). Given f: C — C', for every (4, g) € G/C we have

H(f)oAcojag =H(f)oH(g)oXa
=H(fog)oAa
= Ac’ 0 j(a,fog)
= Acv o lang(F)(f)j(a )

and thus we have a natural transformation A: lang(F) — H. By construction, we also have

AG(a) © JAiden = H(ida(ay) 0 Aa
=\
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On the other hand, if 7 is another natural transformation lang (F) — H such that
A4 =7G(A) © JA,idaa)
then, for every object (4, g) of G/C, we must have

Ve © Ja,g) = Ve o lang(F)(9) © j(aidgay)
= H(9) ©YG(4) © JAideia)

= H(g)oAa
= A0 j(ag)
Therefore we can conclude that v = ), from which the thesis follows. O
Remark and Proposition now yield at once the following result.

Corollary A.5.10. Let F: A — Band G: A — C be two functors. If A is essentially small and B is cocom-

plete, then for every object C of C, (lang(F) (C),{lang (F)(g) o np,at 4 g)eG/C) is a colimiting cocone for
the functor Vo p: G/C — B.

Let F: A — B be a functor with a cocomplete codomain, and suppose that G: A — C is another
functor such that a left Kan extension (lang(F), nr) exists. For every C' € C we can define a functor
Tc: A? x A — B in the following way. A pair (A, A’) is sent to C(G(A),C) @ F(A’), while the image
of fi: Ay — Ay and fo: Ay — A} is the unique arrow fitting in the diagram below.

F(f2
F(Ay) ) F(A})

Lq L/
. 90G(f1)

C(G(A1),C)  F(A2)- et C(G(4)),C)  F(4)

where ¢y: F(Az) - C(G(A;1),C) e F(As) and L’goG(fl): F(AL) — C(G(A)),C) e F(AL) are the copro-

jections corresponding to, respectively, g: G(4;) — C and go G(f1): G(A}) — C.
Using Proposition we can now establish a link between left Kan extension and coends.

Theorem A.5.11. Let F': A — Band G: A — C be two functors and suppose that B is cocomplete. If
a coend w for Tc exists, then (fAGA Tc (A4, A), {wA o k(a,g) }(A 0)eG/C is a colimiting cocone for Ve, p,

where k4, g) is the coprojection F(A) — Tc(A, A). In particular, there is a left Kan extension of F' along G
such that

A€cA
lan (F)(C) = / C(G(A),C) o F(A) s =wa o Kasion

Proof- Let us start showing that (fAEA T (A4, A), {wA o k(A,g)}(A g)eG/C) is a cocone on V¢ p. This
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follows at once noticing that, for every h: (4’,¢")

C(G(A), F(A')
kcar,gn
// Te(hyid4r)

AGA

) = (4, g), we have a commutative diagram

Now let (Bv {b(ag) }(A,g)eG(C)) be another cocone, then for every A € A we can definew’; : C(G(A),C)e
F(A) as the unique arrow such that
ba,g) = wi © k(ag)

To see that {w/; } aca 1s indeed a cowedge w’ for T¢ it is enough to notice that the diagram below commutes

/7 F(f\
), C) e F'(A')
k(A
me Te(ida, f)

’

’
UJA/

AcA

Then we know that there exists a unique f: [* " Te:(A, A) — B such that

fowA Ok(A,g) = wf4 o k(A,g)
= bag)
which is precisely the thesis. 0
We want to proceed in the other direction. Take F' and G as before and suppose that a left Kan

extension (lang(F'),np) of F along G exists. Using 7 we can build a cowedge on T¢: for every A € A,
definewa: Te(A, A) — lang(F)(C') as the unique arrow filling the diagram

F(A) f9 (@A), C) 0 F(A)
nNr,A l VwA
lanc(F)(G(A)) — = lana (F)(€)

To see that in this way we get a cowedge, let f be an arrow A’ — A in A, then it is enough to notice that,
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for every g: G(A) — C the following diagram commutes.

C(G(A),C) o F(A") kar gociry F(f) ),C) e F(A")
To(£idur) lang (F)(G(A")) F(A Te(daf)
W)(Gm) / WA
C(G(A'),C) » F(A) lang (F)(G(A)) C(G(A),C

lang (F)(goG(f)) lanG V
W lanG

Theorem A.5.12. Let F': A — B be a functor with a cocomplete codomain, if G: A — C is any functor such
that a left Kan extension (lang (F), np) exists, then for every C' € C the cowedge {wa} aca defined above is a
coend for the functor Tc.

Proof- We have to show that {wa}aea is initial in cwd(T¢). Let {w/y}aca be a cowedge for T and
denote by B the common codomain of each w/;. Now, given a morphism h: (4’,¢') — (A,9) in G/C,
if k(4,4 1s the coprojection F'(A) — T(A, A), then we have a diagram

C(G(A),C) o F(A)

kargn Wl

p Tc(h,idA/)T \\

F(A") ——=C(G(A),C) e F(A') B
a Y

/
F(h)l Tc(idA,h)\L /
oy

F(A) —= C(G(A),C) o F(A)

kg

which shows that (B, {w;‘ ok(a,g) }(A,g)GG(C’)) is a cocone on Vi . By Corollary A.5.10, there exists
a unique f: lang(F)(C) — B such that

Wi okag) = folang(F)(g) o nr.a
=fowaoky
and the thesis now follows. O
We can sum up the results contained in Theorem A.5.12 and Theorem A.5.11 to get the following.

Corollary A.5.13. Let A bean essentially small category and B a cocomplete one. Given rwo funcrors F: A —
Band G: A — C, if (lang(F), nr) is a left Kan extension of F along G, then

A€A
lanG(F)z/ C(G(A), —) e F(A)
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factorization system, 28
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- degree function, 96
- proposition, 115
model, 68, 120
free -, see free, - model
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- from an adjunction, 9, 12
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- morphism, 16-21
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exception -, 8
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path, 230
poset
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pullback
- functor, 34, 313
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wide -, 29, 319
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- square, 160
Van Kampen -, see Van Kampen square

wide -, 29
quotient
Ex-, 140

rank
- of a functor, 52
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- of exponentials, 105-110
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- of a X-equation, 141
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- of an X-equational theory, 143
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sequent, 115
e, 148
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- of type M, 151
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- associated to a monad, 80
- of fuzzy groups, 111
- of fuzzy semigroups, 111
- of groups, 60

- of monoids, 60

- of semigroups, 60

algebraic -, 60, 255

fuzzy -, 110

fuzzy - extended by a set, 123

strongly k-bounded fuzzy -, 110
sink, 29

U-structured -, 91
source, 29

U-structured -, 91
stability

- under pullbacks, 170

- under pushouts, 170
stable system of monos, 173
strict morphism, 244
structure

ed-, 220

MU-, 140

preadhesive -, 172
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M-, 140
subobject classifier, 212
substitution invariance, 143
support, 96

term, 63, 115
term graph, 291
theory, 68, 120
- associated to a monad, 82
- extended by a fuzzy set, 125
- of fuzzy groups, 122
- of fuzzy semigroups, 121
- of groups, 70
- of ideals, 122
- of left ideals, 121
- of monoids, 70
- of normal fuzzy groups, 122
- of righti deals, 121
- of semigroups, 70
- of type M, 151
basic -, 136
empty -, 70, 121
unconditional -, 151
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