
Università degli Studi di Udine
Ph. D. Course in Computer Science,

Mathematics and Physics

Fuzzy algebraic theories and
M,N -adhesive categories

Candidate

Davide Castelnovo
Supervisor

Marino Miculan

Cycle XXXV





Il ragno compie operazioni che assomigliano a
quelle del tessitore, l’ape fa vergognare molti ar-
chitetti con la costruzione delle sue cellette di
cera. Ma ciò che fin da principio distingue il
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Non che egli effettui soltanto un cambiamento
di forma dell’elemento naturale; egli realizza
nell’elemento naturale, allo stesso tempo, il pro-
prio scopo, da lui ben conosciuto, che determina
come legge il modo del suo operare, e al quale
deve subordinare la sua volontà.
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Abstract

This thesis deals with two quite unrelated subjects in Computer Science: one is the relationship between
algebraic theories and monads, the other one is the study of adhesivity properties of categories.

The first part of the thesis begins by revisiting some basic facts regarding monads. Specifically, we re-
view the correspondence between monads, with rank, on the category of sets and functions, and algebraic
theories in which the operations’ arity is bounded by some regular cardinal.

Next, we move to the heart of this part of the thesis: the extension of this correspondence to the
category Fuz(H) of fuzzy sets. This result is obtained by means of a formal system for fuzzy algebraic
reasoning. We define a sequent calculus based on two types of propositions: those that establish the
equality of terms, and those that assert the membership degree of a term. We establish a sound semantics
for this calculus, and demonstrate the existence of a notion of free model for any theory in the system.
This, in turn, allows us to prove a completeness result: a formula is derivable from a given theory if and
only if it is satisfied by all models of the theory. Moreover, we also prove that, under certain restrictions,
it is possible to recover models of a given theory as Eilenberg-Moore algebras for a monad on Fuz(H).
Finally, leveraging the work of Milius and Urbat, we provide a HSP-like characterization of subcategories
of algebras that are categories of models of specific types of theories.

The second part of the thesis is devoted to the study of adhesivity properties of various categories.
Adhesive and quasiadhesive categories, and other generalizations such asM,N -adhesive ones, marked a wa-
tershed moment for the algebraic approaches to the rewriting of graph-like structures, since they provide
an abstract framework where many general results (on, e.g., parallelism) could be recast and uniformly
proved. However, often checking that a model satisfies the adhesivity properties is far from immediate.
After having recalled, the basic definitions, we present a new criterion giving a sufficient condition for
M,N -adhesivity.

It is known that in a quasiadhesive category the join of any two regular subobjects is also a regular sub-
object. Conversely, if regular monomorphisms are adhesive, the existence of a regular join for every pair of
regular subobjects implies quasiadhesivity. Furthermore, (quasi)adhesive categories can be embedded in a
Grothendieck topos via a functor that preserves pullbacks and pushouts along (regular) monomorphisms.
In this thesis, we extend these results toM,N -adhesive categories. To achieve this, we introduce the con-
cept of an N -(pre)adhesive morphism, which enables us to express M,N -adhesivity as a condition on the
poset of subobjects. Additionally, N -adhesive morphisms allow us to demonstrate how aM,N -adhesive
category can be embedded into a Grothendieck topos, preserving pullbacks and M,N -pushouts.

Finally, we exploit the previous results to establish adhesivity properties of several existing categories
of graph-like structures, including hypergraphs, various kinds of hierarchical graphs (a formalism that is
notoriously difficult to fit in the mould of algebraic approaches to rewriting), and combinations of them.
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CHAPTER 1Introduction

This thesis is divided into two distinct halves, the first of which focuses on algebraic theories and monads,
while the second deals with graph rewriting and adhesive categories. Despite the disconnection between
these fields, both are united by the use of category theory as a common framework. This can be seen
as yet another testament to the power and flexibility of Category Theory, which is capable of bridging
diverse areas of Mathematics and Computer Science using shared concepts.

In Part I, the focus is on the study of equations, algebraic theories, and algebraic structures, which are
the fundamental concepts in Universal Algebra [115]. This field has a long-standing tradition in math-
ematics, dating back to the late 19th century [122], and it forms the basis of modern algebra. The ob-
servation that for (almost) every algebraic theory there is a free structure on a given set (a free monoid,
a free group, a free R-module, etc.) establishes a connection between Universal Algebra and Category
Theory. In particular, the construction of a free structure provides a left adjoint to the underlying set
functor. Every adjunction gives rise to a monad, which, in turn, carries its own kind of algebras, called
Eilenberg-Moore algebras. This led naturally to the idea of relating some kind of algebraic structures with
the Eilenberg-Moore algebras of the corresponding monad. It turns out that models of a given algebraic
theory correspond with the Eilenberg-Moore algebras of the induced monads, and vice versa: if a monad
preserves certain kinds of colimits, called κ-filtered, then its Eilenberg-Moore algebras are, essentially, the
models of an algebraic theory.

In the sixties, Lawvere and Linton [76, 78, 80] proposed a new approach to these problems, focusing on
the concept of Lawvere Theory instead of equations. The key idea is to represent all desired operations and
axioms as a category with natural numbers as objects. Endowing a set with a family of operations is then
equivalent to defining a product-preserving functor from a given Lawvere theory to Set. Interestingly,
this approach is equivalent to the traditional one based on equations: the correspondence between certain
monads and algebraic theories also holds between the same class of monads and Lawvere theories.

This approach is particularly well-suited to introduce algebraic concepts in categories different from
Set and indeed a wide range of different computational and algebraic notions have been accomodated into
this framework [23, 63, 82, 83, 100, 107]. The idea is the following: algebraic structures in a (possibly
enriched) category X correspond to some class of (enriched) monads on it, which, in turn, correspond to
(enriched) Lawvere theories.

On the negative side, this approach does not provide a syntax describing this new kind of algebraic
structures not based on Set, so we can wonder what is the analogous of equations in these new environ-
ment. We propose a solution for the case of the category of fuzzy sets: these are sets equipped with a
function into some frameH and algebraic structures on them are well known and used since the seventies
(see e.g., [8, 92, 98, 111]).

To substitute the traditional calculus of equations we introduce the fuzzy sequent calculus. While classi-
cal equations capture equalities, the membership function’s information is captured using syntactic items
called membership propositions of the form m(h, t), which can be interpreted as “the membership degree
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2 1. Introduction

of term t is at least h”. We can then define a notion of fuzzy algebra, which is a fuzzy set endowed with
operations, providing a sound and complete semantics for our calculus.

As in the classical context, there is a notion of free model of a theory Λ and thus we get an associated
monad. However, the correspondence between fuzzy algebraic theories and monads is not as straightfor-
ward as it is for classical ones. Only for a special class of theories, called basic, does the correspondence
between Eilenberg-Moore algebras for the induced monad and models of a given theory hold. Moreover,
the task of identifying a characterization of the monads that arise from fuzzy algebraic theories, either in
terms of the preservation of certain colimits or by means of left Kan extensions, remains unsolved.

An important line of research in Computer Science since the nineties is given by so-called graph rewrit-
ing [42]: roughly speaking it is the study of how to get a new graph out of an old one according to some
given set of rules. One of the main algebraic approaches to this issue is given by the so called double-pushout
approach [22]: in this approach a rule is given by a pair of monomorphisms l : K → L and r : K → R.
We can then say that a graphH is obtained by G through an application of the rule (l, r), if we can build
two pushout squares as in the following diagram

L

f

��

K

h

��

loo r // R

g

��
G T

p
oo

q
// H

Informally, T is obtained deleting the image, the match, of L from G and the second pushout “fills” the
resulting hole glueing R in it. This approach involves only categorical concepts such as monomorphisms
and pushouts, we can then apply it to every category. Therefore, it is natural to inquire which properties
a category X should possess in order to have a desirable rewriting system with useful properties, such
as confluence. This leads, in order of increasing generality, to the notions of adhesivity, quasiadhesivity,
M-adhesivity and M,N -adhesivity [13, 43, 73, 104]. Part II is devoted to the study of these concepts.

The works of Garner, Johnstone, Lack and Sobociński [52, 67, 73, 74] provide a link between adhesive
categories and toposes showing that all elementary toposes are adhesive and that all quasiadhesive categories
can be embedded into a Grothendieck topos via a functor which preserves all the relevant categorical
structures. The first issue we tackle in the second half of this thesis is the generalization of this result to the
context of M,N -adhesive categories: we provide conditions guaranteeing that M,N -adhesive category
can be realized as a full subcategory of a topos, closed under the relevant limits and colimits.

Another problem is to actually prove that a given category is M,N -adhesive. In order to do so,
one can take either an ad hoc approach or a modular one. The latter involves constructing categories
of graphs or hypergraphs from other categories using the comma and slice constructions, which under
certain assumptions, preserve the adhesivity properties. This modular approach enables us to establish
the M,N -adhesivity of several interesting (hyper)graphical categories.

Structure of the thesis This thesis is structured into two parts, each containing two technical chapters
and a conclusion. Part I focuses on algebraic theories. Chapter 2 covers the fundamentals of the theory of
monads and demonstrates how monads are related to algebraic theories. In Chapter 3, a syntax for alge-
braic theories in the category of fuzzy sets is introduced and studied. Conclusions and directions for future
work are in Chapter 4 . Part II discusses various concepts related to adhesivity. In the more theoretical
Chapter 5, the concept of M,N -adhesivity is introduced and several results about it are proven. Chap-
ter 6 establishes adhesivity properties for various categories of graphs and hypergraphs. We summarize
our findings in Chapter 7. Finally, in Appendix A we collect some useful categorical results.



3

Notation We end this introduction stipulating some notational conventionswhichwill be used through-
out this thesis.

Given a category X we will not distinguish notationally between X and its class of objects: so that
“X ∈ X” means that X belongs to the class of objects of X.

If 1 is a terminal object in a category X, the unique arrow X → 1 from another object X will be
denoted by !X . Similarly, if 0 is initial in X then ?X will denote the unique arrow 0 → X . When X is Set
and 1 is a singleton, δx will denote the arrow 1 → X with value x ∈ X .

Finally, we will use the following notation for some special classes of arrows of a category X:

• A(X) will denote the class of all arrows of X;

• M(X) will denote the class of all monos of X;

• R(X) will denote the class of all regular monos of X.
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CHAPTER 2Algebraic theories and monads

Contents

2.1 An introduction to monads . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Monads and their algebras . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Limits and colimits in EM(T) . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Regularity of EM(T) . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4 A cocompleteness theorem . . . . . . . . . . . . . . . . . . . . . 41

2.2 Monads on Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Filtered categories, filtered colimits . . . . . . . . . . . . . . . . . . 44
2.2.2 Algebraic theories . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.3 Algebraic theories and monads . . . . . . . . . . . . . . . . . . . 75

The study of monads is one of the pillars of category theory since their invention in the fifties [84] and
the discovery of their relation with adjunctions in the sixties [46, 70]. Also in the sixties, Lawvere and
Linton’s seminal works [76, 78] established the connection between monads and algebraic theories which,
since then, has been the backbone of the “category theoretic understanding of universal algebra” [63].

On the other hand, one of the most fruitful and influential lines of research of Logic in Computer
Science is the algebraic study of computation and, afterMoggi’s foundational work [97], monads, and their
counterpart given by (enriched) Lawvere theories [69, 100, 110], lie at the heart of it (see also [106, 107]).

Our interest in monads stems from this relation between them, algebra and computer science. This
chapter is devoted to recall some well known results of the theory of monads that will be needed in
Chapter 3. There are various textbook accounts of monads which contain all these results (along many
others), we refer the interested reader to [12, 20, 29, 85, 89].

Synopsis In Section 2.1.1 we will recall the definition of monad and of Eilenberg-Moore algebra; in it
we will show how to compute limits and colimits of algebras and discuss regularity of monadic categories.
Section 2.2 is devoted to the relationship between monads on Set and algebraic theories.

7



8 2. Algebraic theories and monads

2.1 An introduction to monads

This first section is devoted to recall some well known facts of the theory of monads. The main aim of
this section is to prove some basic categorical properties of the categories of Eilenberg-Moore algebras of
a monad, we are in particular interested in the existence and computation of limits and colimits, and in
regularity of such categories.

2.1.1 Monads and their algebras

In this section we will recall the basic notions about monads. We will also recall the concept of Elilenberg-
Moore algebra and of monadic category.

Definition 2.1.1. A monad T on a category X is a triple (T, η, µ) where T : X → X is a functor and
η : idX → T , µ : T ◦ T → T are natural transformations, called unit and multiplication, such that the
following diagrams commute.

T ◦ T ◦ T

µ∗T

��

T∗µ // T ◦ T

µ

��

T
T∗η //

idT %%JJ
JJ

JJ
JJ

JJ
J T ◦ T

µ

��

T
η∗Too

idTyyttt
tt
tt
tt
tt

T ◦ T
µ

// T T

Example 2.1.2. On the category of Set, the powerset functorP : Set → Set gives rise to a monad Pwhere
the component of unit and multiplication are given by

ηX : X → P(X) x 7→ {x} µX : P(P(X)) → P(X) A 7→
⋃

B∈A

B

For every cardinal κ, we can consider the functor Pκ : Set → Set sending X to the set of its subset
of cardinality strictly less then κ. If, moreover, we assume that κ is regular, then the monad structure we
have just defined for P can be restricted to one on Pκ.

Example 2.1.3. Let E be an object in a category X with binary coproducts. We can define the exception
monad T taking as T : X → X

Y

f

−
→

X

7−→

7−→

Y + E

−
→ f + idE

X + E

Then η is just the inclusion X → X +E and µ : X +E +E → X +E is the arrow induced by idX and
the codiagonal ∇E : E + E → E.

Example 2.1.4. Let (X,⊗, I) be a monoidal category and (P,m, e) a monoid object in it, then the functor
TP : X → X given by (−) ⊗ P carries the structure of a monad, called the writer monad. If ρ and α
are, respectively, the right unitor and the associator, then the components of η and µ are given by the
compositions

X
ρ−1
X // X ⊗ I

idX⊗e // X ⊗ P (X ⊗ P )⊗ P
αX,P,P // X ⊗ (P ⊗ P )

idX⊗m // X ⊗ P

We can get back the exception monad taking the monoidal structure given by the coproduct, e to be
the unique arrow from the initial object andm to be ∇E .



2.1. An introduction to monads 9

A rich (and exhaustive) source of examples is given by adjunctions.

Proposition 2.1.5. Let U : X → Y be a functor with a left adjoint F . Let also η and ϵ be the unit and the
counit of the adjunction, then (U ◦ F, η, U ∗ ϵ ∗ F ) is a monad on Y.

Proof. The first square is obtained applying U to the naturality square

F (U(F (U(F (Y ))))
F (U(ϵF (Y ))) //

ϵF (U(F (Y )))

��

F (U(F (Y )))

ϵF (Y )

��
F (U(F (Y )))

ϵF (Y )

// F (Y )

For the two triangles, let us start with the triangular identities of the adjunction:

F (Y )

idF (Y )

''

F (ηY )
// F (U(F (Y )))

ϵF (Y )

// F (Y ) U(X)

idF (Y )

''

ηU(X)

// U(F (U(X)))
U(ϵX)

// U(X)

Then applying U to the first and instatiating the second with X = F (Y ) we get the thesis.

Example 2.1.6. Let (X,⊗, I) be a symmetric monoidal closed category, and let S be an object in it, then
the adjunction S ⊗− a [S,−] induces the state monad sending an object X to [S, S ⊗X].

Example 2.1.7. [71, 94] Let again S be an object of symmetric monoidal closed category (X,⊗, I), then,
since [−, S] : Xop → X is adjoint to its opposite, Proposition 2.1.5 gives us amonad, called the continuation
monad, sending an object X to [[X,S], S].

Another example of monad is given by the Kleene star [10, 24, 114].

Example 2.1.8. Given a set X , define a word on X as a function w : n → X with domain n ∈ N. The
domain n will be also called the length of w and the value w(i) at i ∈ n its (i+ 1)th letter. Let X⋆ be the
set of all words on X , if f : X → Y is a function, then we can define

f⋆ : X⋆ → Y ⋆ w 7→ f ◦ w

obtaining a functor (−)⋆ : Set → Set. We want to endow it with a monad structure.
First of all notice that we can equipX⋆ with a structure of monoid. Given v : n→ X andw : m→ X ,

since the number n+m is also a coproduct of the sets n and m, we can define the concatenation v · w of
v and w as the induced arrow n+m→ X . Explicitly,

v · w : n+m→ X i 7→

{
v(i) i ≤ n

w(i− n) n < i

Notice that, in particular, for every w : n→ X with n 6= 0, we have

w =

n∏

i=1

δw(i)
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Since (N,+, 0) is a monoid, we get at once that (X⋆, ·, ?X) is a monoid too. We want to show that in this
way we get a left adjoint FMon to UMon : Mon → Set, the forgetful functor from the category of monoids.

We have a function

ηX : X → X⋆ x 7→ δx

Now, if (M, ·, e) is another monoid and f : X →M is a function we can put

f̂ : X⋆ →M w 7→





e w =?X
dom(w)∏

i=1

f(w(i)) dom(w) 6= 0

which, by construction, is the unique morphism of Mon fitting in the following diagram.

X

f ,,

ηX // X⋆

f̂

��
M

Finally, we can notice that f⋆ is the unique morphism (X⋆, ·, ?X) → (Y ⋆, ·, ?Y ) such that

ηY ◦ f = f⋆ ◦ ηX

and thus we can conclude from Proposition 2.1.5 that (−)⋆ = UMon ◦ FMon carries a monad structure.

Definition 2.1.9. Given a monad T on a category X, an Eilenberg-Moore algebra for T is a pair (X, ξ)
where X is an object of X and ξ : T (X) → X such that the following diagrams commute

X
ηX //

idX !!D
DD

DD
DD

DD
T (X)

ξ

��

T (T (X))
µX //

T (ξ)

��

T (X)

ξ

��
X T (X)

ξ
// X

Amorphism between (X, ξ1) and (Y, ξ2) is an arrow f : X → Y such that the following square commutes

T (X)
T (f) //

ξ1

��

T (Y )

ξ2

��
X

f
// Y

We will denote with EM(T) the resulting category of Eilenberg-Moore algebras. We will also denote
by UT the forgetful functor UT : EM(T) → X which sends (X, ξ) to X and is the identity on arrows.

Example 2.1.10. Take a monoidal category (X,⊗, I) and consider the monad of Example 2.1.4 associated
to an internal monoid (P,m, e). A Eilenberg-Moore algebra (X, ξ) for such monad is given by an arrow
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ξ : X ⊗ P → X fitting in the diagrams below.

X

idX ++

ρ−1
X // X ⊗ I

ρX

��

idX⊗e // X ⊗ P

ξrr

(X ⊗ P )⊗ P

ξ⊗idP
��

αX,P,P // X ⊗ (P ⊗ P )
idX⊗m // X ⊗ P

ξ

��
X X ⊗ P

ξ
// X

Thus, the category of Eilenberg-Moore algebras for the writer monads, can be seen as the category of
actions of the internal monoid (P,m, e) on objects of X.

Proposition 2.1.11. Let T be a monad on a category X, then the following are true:

1. UT reflects isomorphism;

2. for every (X, ξ1) in EM(T) and isomorphism f : X → Y in X, there exists a unique ξ2 : T (Y ) → Y

such that (Y, ξ2) is in EM(T) isomorphic to (X, ξ1) via f .

Proof. 1. Let f : (X, ξ1) → (Y, ξ2) is a morphism in EM(T) which is an isomorphism in X, then

f−1 ◦ ξ2 = f−1 ◦ f ◦ ξ1 ◦ T (f)
−1

= idX ◦ ξ1 ◦ T (f)
−1

= ξ1 ◦ T (f)
−1

proving that f−1 is a morphism (Y, ξ2) → (X, ξ1) which is the inverse of f in EM(T).

2. Reasoning as before we see that the only possible choice is to define

ξ2 := f ◦ ξ1 ◦ T (f)
−1

Now, the previous equation entails at once that

ξ2 ◦ T (f) = f ◦ ξ1

This, in turn, allows us to build the following diagrams, entailing that (Y, ξ2) is an object of EM(T).

T (T (Y ))

T (ξ2)

��

µY //

T (T (f−1))

��

T (Y )

T (f−1)

��

ξ2

��

Y

idY

--

ηY //

f−1

��

T (Y )

T (f−1)

��

ξ2

��

T (T (X))
µX //

T (ξ1)

��

T (X)

ξ1

��

X

f

%%

ηX //

idX
&&MM

MM
MM

MM
MM

MM
MM T (X)

ξ1

��
T (X)

T (f)

��

ξ1

// X

f

��

X

f−1

��
T (Y )

ξ2

// Y Y

From point 1 we can deduce that f : (X, ξ1) → (Y, ξ2) is an isomorphism of Eilenberg-Moore
algebras and the thesis follows.
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The functor UT has always a left adjoint, which sends an object to the free algebra on it.

Proposition 2.1.12. Let T be a monad on the category Y, then the forgetful functor UT : EM(T) → X has a
left adjoint FT : X → EM(T) which sendsX to (T (X), µX).

Proof. The axioms of monad entail at once that (T (X), µX) is an Eilenberg-Moore algebra. Let us show
that η has the universal property of the unit of an adjunction. Given an Eilenberg-Moore algebra (Y, ξ)
and a morphism f : X → Y of X , we can consider the composition ξ ◦ T (f) : T (X) → Y . Pasting
together the naturality diagrams of η, µ and those in the definition of Eilenberg-Moore algebras we get:

X
f //

ηX

��

Y

ηY

��

idY

##F
FF

FF
FF

FF
F T (T (X))

T (T (f)) //

µY

��

T (T (Y ))
T (ξ) //

µX

��

T (Y )

ξ

��
T (X)

T (f)
// T (Y )

ξ
// Y T (X)

T (f)
// T (Y )

ξ
// X

showing that ξ ◦ T (f) is a morphism (T (X), µX) → (Y, ξ) and that UT (ξ ◦ T (f)) ◦ ηX = ϕ. We are left
with uniqueness. If g : (T (X), µX) → (Y, ξ) is a morphism in EM(T) such that UT (g) ◦ ηX = f then

T (X)
T (ηX)

//

idT (X) ))

T (f)

**
T (T (X))

µX

��

T (g)
// T (Y )

ξ

��
T (X)

g
// Y

commutes and thus g = ξ ◦ T (f).

Remark 2.1.13. It is worth to spell out explicitly the counit ϵT of FT a UT. Given and algebra(X, ξ),
ϵT,(X,ξ) is the unique morphism (T (X), µX) → (X, ξ) such that

idX = UT
(
ϵT,(X,ξ)

)
◦ ηX

But then the axioms of Definition 2.1.9 immediately entail that ϵ(X,ξ) = ξ. In particular, this implies that
µX is the unique morphism (T (T (X)), µT (X)) → (T (X), µX) satisfying

idT (X) = µY ◦ ηT (X)

ClearlyUT◦FT = T , moreover, whenever a functorU : X → Y has a left adjointF such thatU◦F = T

we can canonically compare X with EM(T).

Proposition 2.1.14. LetU : X → Y be a functor with a left adjoint F and (T, η, µ) the induced monad. Then
there exists a comparison functor K : X → EM(T) which sends an object X to (U(X), U(ϵX)), where ϵ is
the counit of F a U .

Proof. First of all we have to verify that (U(X), U(ϵX)) is an Eilenberg-Moore algebra. One of the axioms
is just one of the triangular identities, the other is obtained applying U to the naturality square

F (U(F (U(X))))
ϵF (U(X)) //

F (U(ϵX))

��

F (U(X))

ϵX

��
F (U(X))

ϵX
// X
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Given f : X → Y in X, if we apply U to the naturality square

F (U(X))
F (U(f)) //

ϵX

��

F (U(Y ))

ϵY

��
X1

f
// Y

to get that U(f) is an arrow K(X) → K(Y ), we can conclude the proof defining K(f) := U(f).

Remark 2.1.15. Notice that the comparison functor K is automatically faithful if U is so.

Definition 2.1.16. A functor U : Y → X is (strictly) monadic if it has a left adjoint F and the comparison
functor of the previous lemma is an equivalence (isomorphism). A category Y will be called (strictly)
monadic over X if there exists a (strictly) monadic functor U : Y → X.

Example 2.1.17. The category CSLat of complete semilattices is the category which has as objects com-
plete posets and functions preserving arbitrary suprema as arrows. We can see that the forgetful functor
UCSLat : CSLat → Set is (strictly) monadic.

On the one hand, for every set X , (P(X),⊆) is an object of CSLat and we can consider

ηX : X → P(X) x 7→ {x}

If (Q,≤) is another element of CSLat and given f : X → UCSLat(Q,≤), we can define

g : P(X) → Q A 7→
∨

x∈A

f(x)

which clearly preserves suprema, and so it defines g : (P(X),⊆) → (Q,≤). Moreover g ◦ ηX = f and if
h : (P(X),⊆) → (Q,≤) has the same property, then, for every A ∈ P(X):

h(A) = h

(⋃

x∈A

{x}

)

=
∨

x∈A

h({x})

=
∨

x∈A

f(x)

= g(A)

which shows that UCSLat has a left adjoint FCSLat.
On the other hand, UCSLat ◦ FCSLat = P , thus Proposition 2.1.14 and Remark 2.1.15 yield a faithful

functor K : CSLat → EM(P). Notice that, for every (X,≤) ∈ CSLat, the component of the counit of
the adjunction FCSLat a UCSLat is the morphism

ϵ(X,≤) : (P(X),⊆) → (X,≤) S 7→ sup(S)

Thus K(X,≤) is the Eilenberg-Moore algebra (X, ξ≤) in which

ξ≤ : P(X) → X S 7→ sup(S)
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Now, given (X, ξ) ∈ EM(P), we can define a relation ≤ξ on X putting x ≤ξ y if and only if

ξ({x, y}) = y

This relation is actually a partial order:

• reflexivity follows from the first axiom of Eilenberg-Moore algebras: since ξ ◦ ηX = idX then, for
every x ∈ X , ξ({x}) = x, which shows x ≤ξ x;

• for transitivity, let x, y, z ∈ X be such that x ≤ξ y and y ≤ξ z, using the second axiom of Eilenberg-
Moore algebras we get

ξ({x, z}) = ξ({ξ({x}), ξ({y, z})})

= ξ(P(ξ)({{x}, {y, z}}))

= ξ(µX({{x}, {y, z}})

= ξ({x, y, z})

= ξ(µX({{x, y}, {z}}))

= ξ(P(ξ)({{x, y}, {z}}))

= ξ({ξ({x, y}), ξ({z})})

= ξ({y, z})

= z

which shows that x ≤ξ z;

• finally, if x ≤ξ y and y ≤ξ x, then

x = ξ({y, x})

= ξ({x, y})

= y

yielding antisimmetry.

Now let S be a subset of X , we can notice that ξ(S) is a supremum for it:

• if s ∈ S then we can compute

ξ({s, ξ(S)}) = ξ({ξ({s}), ξ(S)})

= ξ(P(ξ)({{s}, S}))

= ξ(µX({{s}, S}))

= ξ({s} ∪ S)

= ξ(S)

and thus ξ(S) is an upper bound for S;
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• if y is another upper bound for S then, by definition y = ξ({s, y}) for every s ∈ S, thus

ξ({ξ(S), y}) = ξ({ξ(S), ξ({y})})

= ξ(P(ξ)({S, {y}}))

= ξ(µX({S, {y}}))

= ξ(S ∪ {y})

= ξ(µX({{s, y}}s∈S))

= ξ(P(ξ)({{s, y}}s∈S))

= ξ({ξ({s, y})}s∈S)

= ξ({y})

= y

showing ξ(S) ≤ξ y.

Now let f : (X, ξ1) → (Y, ξ2) be a morphism of EM(P), then, by construction, f defines also a
morphism (X,≤ξ1) → (Y,≤ξ2) of CSLat, we can thus define a functor H : EM(P) → CSLat

(Y, ξ2)

f

−
→

(X, ξ1)

7−→

7−→

(Y,≤ξ2)

−
→ f

(X,≤ξ1)

It is now enough to show that H is the inverse of K.

• K(H(X, ξ)) is the Eilenberg-Moore algebra equipped with the arrow P(X) → X which sends a
subset S to its supremum, but we have already shown that this is just ξ(S), thus K ◦H = idEM(P).

• H(K(X,≤)) is the preorder (X,≤ξ≤), and, for every x, y ∈ X we have a chain of equivalences

x ≤ξ≤ y ⇐⇒ ξ≤({x, y}) = y

⇐⇒ sup({x, y}) = y

⇐⇒ x ≤ y

This shows that H ◦K = idCSLat.

Given a regular cardinal κ, the same argument applies also to κ-CSLat: the category of κ-complete
semilattices, i.e. posets in which every subset of cardinality strictly less then κ has a supremum. It is
monadic over Set and the corresponding monad is (Pκ, η, µ) defined at the end of Example 2.1.2.

Let us now examine a non example.

Example 2.1.18. Let Ab be the category of abelian groups and Div its full subcategory given by the
divisible ones [75]. Then the forgetful functor UDiv : Div → Set is not monadic. Take the quotient
π : Q → Q/Z and the zero morphism z : Q → Q/Z. If f : G→ Q is another morphism such that

z ◦ f = π ◦ f

then f(G) must be a divisible subgroup of Z, thus there is an equalizer diagram in Div:

0
i // Q

g
//

π // Q/Z

Since an equalizer of UDiv(π) and UDiv(z) is given by the inclusion Z → Q, this observation shows that
UDiv cannot be a right adjoint.
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Morphisms of monads

We introduce now the notion ofmorphism betweenmonads on the same category. Our aim is to show that
they corresponds exactly to functors between the categories of Eilenberg-Moore algebras which commutes
with the forgetful functor. Let us start with an elementary observation.

Remark 2.1.19. Let F,G : X ⇒ Y be two functors and χ a natural transformation F → G, then, for
every X ∈ X we have a naturality square

F (F (X))
F (χX) //

χF (X)

��

F (G(X))

χG(X)

��
G(F (X))

G(χX)
// G(G(X))

so that we can define (χ ∗ χ)X as the diagonal of the above square. In this way we get a natural transfor-
mation χ ∗ χ : F ◦ F → G ◦G which coincides with both (χ ∗G) ◦ (F ∗ χ) and (G ∗ χ) ◦ (χ ∗ F ).

Definition 2.1.20. Let T = (T, ηT , µT ) and S = (S, ηS , µS) be two monads on a categoryX, amorphism
of monads T → S is a natural transformation χ : T → S such that the following diagrams commute:

idX
ηT //

ηS
""E

EE
EE

EE
EE

T

χ

��

T ◦ T
µT //

χ∗χ

��

T

χ

��
S S ◦ S

µS

// S

A morphism χ : T → S will be called a isomorphism if it is a natural isomorphism T → S.

Example 2.1.21. Take a monoidal category (X,⊗, I) and consider two monoid objects (P,m, e) and
(Q,n, f) in it. Amorphism of monoids is an arrow g : P → Q such that the following diagrams commute.

I

e

~~||
||
||
||
|

f

  B
BB

BB
BB

BB
P ⊗ P

g⊗g //

m

��

Q⊗Q

n

��
P

g
// Q P

g
// Q

Such a g induces a morphism χg between the two associated writer monads. Indeed, if we define χg,X as
idX ⊗ g, then we have the following diagrams witness our claim.

X

ρ−1
X

$$J
JJ

JJ
JJ

JJ
J

ρ−1
X

zztt
tt
tt
tt
tt

(X ⊗ P )⊗ P
αX,P,P //

idX⊗P⊗g

��

X ⊗ (P ⊗ P )

idX⊗(g⊗g)

��

idX⊗m // X ⊗ P

idX⊗g

��

X ⊗ I
idX⊗I //

idX⊗e

��

X ⊗ I

idX⊗f

��

(X ⊗ P )⊗Q

(idX⊗g)⊗idQ
��

X ⊗ P
idX⊗g

// X ⊗Q (X ⊗Q)⊗Q
αX,Q,Q

// X ⊗ (Q⊗Q)
idX⊗n

// X ⊗Q
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Remark 2.1.22. Morphisms of monads compose. Let χ1 : T → S and χ2 : S → R, then we have a diagram

T (T (X))
T (χ1,X) //

χ1,T (X)

��

T (χ2,X◦χ1,X)

))

(χ1∗χ1)X

((RR
RRR

RRR
RRR

RR
T (S(X))

T (χ2,X) //

χ1,S(X)

��

T (R(X))

χ1,R(X)

��
S(T (X))

χ2,T (X)

��

S(χ1,X) // S(S(X))
S(χ2,X) //

χ2,S(X)

��

(χ2∗χ2)X

((RR
RRR

RRR
RRR

RR
S(R(X))

χ2,R(X)

��
R(T (X))

R(χ2,X◦χ1,X)

55R(χ1,X)
// R(S(X))

R(χ2,X)
// R(R(X))

proving the, well known, interchange law

(χ2 ∗ χ2) ◦ (χ1 ∗ χ1) = (χ2 ◦ χ1) ∗ (χ2 ◦ χ1)

We can now construct the two diagrams below, showing that χ2 ◦ χ1 is a morphism of monads.

idX
ηR

��

ηT

��
ηR

��

T ◦ T

(χ2∗χ2)◦(χ1∗χ1)

++
χ1∗χ1

//

µT

��

S ◦ S
χ2∗χ2

//

µS

��

R ◦R

µR

��
T

χ1

// S
χ2

// R T
χ1

// S
χ2

// R

Remark 2.1.23. Notice that if χ : T → S is an isomorphism of monads, then χ−1 is a morphism of monad
too. First of all notice that, for every X ∈ X:

(
χ−1 ∗ χ−1

)
X

= χ−1
T (X) ◦ S

(
χ−1
X

)

= χ−1
T (X) ◦ (S(χX))

−1

=
(
S(χX) ◦ χT (X)

)−1

= (χ ∗ χ)−1

and thus we can further compute to get:

χ−1
X ◦ ηS,X = χ−1

X ◦ χX ◦ ηT,X

= idT (X) ◦ ηT,X

= ηT,X

χX ◦ χ−1
X ◦ µS,X = µS,X

= µS,X ◦ (χ ∗ χ)X ◦ (χ−1 ∗ χ−1)X

= χX ◦ µT,X ◦ (χ−1 ∗ χ−1)X

and the thesis now follows since χX is a mono.

Take now a morphism of monads χ : T → S, we can define a functor Fχ : EM(S) → EM(T) in the
following way. Given an object (X, ξ) of EM(S), we can define ξχ as the composition

T (X)
χX // S(X)

ξ // X
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In this way we get a Eilenberg-Moore algebra for T, as witnessed by the following two diagrams

X
ηT,X //

idX

))

ηS,X %%

T (X)

χX

��

T (T (X))

(χ∗χ)X

''PP
PPP

PPP
PPP

P

µT,X //

T (χX)

��
T (ξχ)

��

T (X)

ξχ

��

χX

��
S(X)

ξ

��

T (S(X))
χS(X) //

T (ξ)

��

S(S(X))
µS,X //

S(ξ)

��

S(X)

ξ

��
X T (X)

χX

// S(X)
ξ

// X

Moreover, if f : (X, ξ1) → (Y, ξ2) is an arrow in EM(S), then we the following diagram shows that the
same f also induces an arrow (X, ξ1,χ) → (X, ξ2,χ):

T (X)

T (f)

��

ξ1,χ

&&χX // S(X)

S(f)

��

ξ1 // X

f

��
T (Y )

ξ1,χ

88χY

// S(Y )
ξ2

// Y

Summing up, we have just built a functor Fχ : EM(S) → EM(T). We can also notice that this functor
makes the following diagram commutative.

EM(S)
Fχ //

US ""E
EE

EE
EE

EE
EM(T)

UT||xx
xx
xx
xx
x

X

Every functor with this property arises in this way, as shown by the following proposition.

Proposition 2.1.24. Let T and S be monads on the same category X and let also F : EM(S) → EM(T) be a
functor such that the following diagram commutes

EM(S)
F //

US ""E
EE

EE
EE

EE
EM(T)

UT||xx
xx
xx
xx
x

X

Then there exists a unique χ : T → S such that Fχ = F .

Proof. Take an object X of X, by hypothesis we have

UT(F (FS(X))) = US(FS(X))

= S(X)
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Now, F (FS(X)) is an object of EM(T) and we have an arrow ηS,X : X → S(X). Thus there exists a
unique χX : FT(X) → F (FS(X)) making the following diagram commutative

X
ηS,X //

ηT,X

��

S(X)

T (X)

χX

;;

We claim that in this way we get a morphism of monads.
First of all we have to show naturality. Let f : X → Y be an arrow in X. Since S(f) is morphism

FS(X) → FS(Y ) in EM(S), we can use again the hypothesis on F to get

UT(F (S(f))) = US(S(f))

= S(f)

showing that S(f) also defines a morphism F (FS(X)) → F (FS(Y )) in EM(T). Thus we have morphisms
S(f) ◦ χX , χY ◦ T (f) : FT(X) ⇒ F (FS(Y )) in EM(T). On the other hand we have a diagram

XηT,X

yy

ηT,X

%%
f

��ηS,X

��

T (X)

χX

��

T (X)

T (f)

��
Y

ηS,Y

��

ηT,X

))SSS
SSS

SSS

S(X)

S(f) ,,

T (Y )

χYrrS(Y )

which shows that
S(f) ◦ χX ◦ ηT,X = χY ◦ T (f) ◦ ηT,X

This now implies that
S(f) ◦ χX = χY ◦ T (f)

The first condition for being a morphism of monads is satisfied by construction, let us prove that also
the other holds. Our line of argument is similar to the one used for naturality. We have the following list
of morphisms in EM(T):

χS(X) : FT(S(X)) → F (FS(S(X))) µS,X : F (FS(S(X))) → F (FS(X))

µT,X : FT(T (X)) → FT(X) χX : FT(X) → F (FS(X)) T (χX) : FT(T (X)) → FT(S(X))

and thus we have, χX ◦ µT,X , µS,X ◦ χS(X) ◦ T (χX) : FT(T (X)) ⇒ F (FS(X)). We also have a diagram:

T (T (X))

T (χX)

��

T (X)
ηT,T (X)oo

idT (X)

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

χX

��

ηT,T (X) // T (T (X))

µT (X)

��

T (S(X))

χS(X)

��

S(X)
ηT,S(X)oo

ηS,S(X)

vvnnn
nnn

nnn
nnn

n

idS(X)

��
S(S(X))

µS,X

// S(X) T (X)
χX

oo
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which entails

χX ◦ µT,X ◦ ηT,T (X) = χX

= µS,X ◦ χS(X) ◦ T (χX) ◦ ηT,T (X)

from which we can deduce that χX ◦ µT,X = µS,X ◦ (χ ∗ χ)X .
We have now to show that Fχ = F . The condition on F implies, in particular, that F must act

as the identity on arrows, as Fχ. So it is enough to show that they are equal on objects. Let (X, ξ) be
an object of EM(S) and (X, θ) be F (X, ξ). By the definition of Eilenberg-Moore algebras, we know
that θ defines a morphism FT(X) → (X, θ) of EM(T). On the other hand, for the same reason, ξ also
define a morphism FS(X) → (X, ξ) in EM(S) and thus also a morphism F (FS(X)) → (X, θ) in EM(T).
Precomposing with χX , which by definition is an arrow FT(X) → F (FS(X)) we get a pair of parallel
arrows θ, ξ ◦ χX : FT(X) ⇒ (X, θ). But now we can compute:

ξ ◦ χX ◦ ηT,X = ξ ◦ ηS,X

= idX
= θ ◦ ηT,X

and from this it follows that θ = ξ ◦ χX , which is what we claimed.
Finally, wemust prove uniqueness. Letχ′ : T → S be anothermorphism ofmonads such thatF = Fχ′ .

For every X ∈ X we have a diagram

T (T (X))
µT,X //

(χ′∗χ′)X

&&NN
NNN

NNN
NNN

T (χ′
X)

��

T (X)

χ′
X

��
T (S(X))

χ′
S(X)

// S(S(X))
µS,X

// S(X)

which shows that χ′ is a morphism FT(X) → Fχ′(FS(X)), but, by hypothesis, the codomain of this
arrow in EM(T) is just F (X). On the other hand, we can precompose with ηT,X to get

χ′
X ◦ ηT,X = ηS,X

= χX ◦ ηT,X

and this now implies that χX = χ′
X .

Remark 2.1.25. Notice that FidT : EM(T) → EM(T) is the identity functor and that

Fχ′◦χ = Fχ ◦ Fχ′

for every χ : T → S and χ′ : S → R.

The following corollary now follows at once from the previous remark.

Corollary 2.1.26. Two monads T and S on a categoryX are isomorphic if and only if there is an isomorphism
F : EM(S) → EM(T) such that the following triangle commutes.

EM(S)
F //

US ""E
EE

EE
EE

EE
EM(T)

UT||xx
xx
xx
xx
x

X



2.1. An introduction to monads 21

In general monads on a large category X do not form a category: there can be a proper class of mor-
phisms between them. This can be somewhat solved by the following notion.

Definition 2.1.27. Let J : Y → X be functor, amonadT = (T, η, µ)will be called a J -monad, if (T, idT◦J)
is the left Kan extension of T ◦ J along J .

Proposition 2.1.28. Let J : Y → X be a functor with an essentially small domain (i.e. Y is equivalent to a
small category), then there exists a categoryJ -Mndwhose objects areJ -monads andwhose arrows aremorphisms
of monads.

Proof. Since (T, idT◦J) is a left Kan extension of T ◦J along J , there is a bijection between XX(T, S) and
XY(T ◦ J, S ◦ J). Since morphisms of monads are natural transformations, the thesis now follows from
essential smallness of Y.

Remark 2.1.29. If the codomain of J is cocomplete, then we can use Corollary A.5.13 to get

T '

∫ Y ∈Y

X(J(Y ),−) • T (J(Y ))

Moreover, by Theorem A.5.12, for every X ∈ X the component ωX,Y : X(J(Y ), X) • T (Y ) → T (X)
of the universal cowedge ωX can be described explicitly. Given f ∈ J(Y ) → X , if ιf : T (J(Y )) →
X(J(Y ), X) • T (X) is the corresponding coprojection, then T (f) = ωX,Y ◦ ιf .

2.1.2 Limits and colimits in EM(T)

In this section we examine the existence of limits and colimits in categories of Eilenberg-Moore algebras.
In particular we are interested in how to compute limits and colimits in categories monadic over Set.

The situation for limits is quite simple.

Proposition 2.1.30. Let T be a monad on X, the functor UT : EM(T) → X creates limits.

Proof. Given a functor F : D → EM(T), for every D ∈ D let F (D) be the algebra (XD, ξD). Suppose
also that there exists a limit (L, {lD}D∈D) of UT ◦ F . We are looking for an algebra (L, ξ) which makes
all the lD arrows of EM(T), so we must have a commutative square

T (L)
ξ //

T (lD)

��

L

lD

��
T (XD)

ξD

// XD

Therefore ξ must be the unique arrow T (L) → L such that

lD ◦ ξ = ξD ◦ T (lD)
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Let us check that (L, ξ) is really an object of EM(T). On the one hand

lD ◦ ξ ◦ T (ξ) = ξD ◦ T (lD) ◦ T (ξ)

= ξD ◦ T (lD ◦ ξ)

= ξD ◦ T (ξD ◦ T (lD))

= ξD ◦ T (ξD) ◦ T (T (lD))

= ξD ◦ µXD
◦ T (T (lD))

= ξD ◦ T (lD) ◦ µL

= lD ◦ ξ ◦ µL

from which it follows that ξ ◦ T (ξ) = ξ ◦ µL. On the other hand we have a commutative diagram

L
ηL //

lD

��

T (L)
ξ //

T (lD)

��

L

lD

��
XD

idXD

44
ηXD // T (XD)

ξD // XD

therefore lD ◦ (ξ ◦ ηL) = lD and thus ξ ◦ ηL = idL.
We are left with the limiting property. Take a cone on F with vertex (Q, θ) and edges fD : (Q, θ) →

(XD, ξD), then (Q, {fD}D∈D) is a cone for UT ◦F and thus there is a unique f : Q→ L in X. If we show
that f defines an arrow of EM(T), then we are done. We have

lD ◦ ξ ◦ T (f) = ξD ◦ T (lD) ◦ T (f)

= ξD ◦ T (lD ◦ f)

= ξD ◦ T (fD)

= fD ◦ θ

= lD ◦ f ◦ θ

from which it follows that ξ ◦ T (f) = f ◦ θ.

Corollary 2.1.31. If T is a monad on a complete catgory X, then EM(T) is complete.

In particular we can specialize the previous result to Set to get the following.

Corollary 2.1.32. EM(T) is complete for every monad T on Set.

The situation for colimits is a bit more complicated.

Proposition 2.1.33. Let T be a monad on X and F : D → EM(T) a functor such that UT ◦ F has a colimit
(L, {lD}D∈D)which is preserved by T and by T ◦T . Then there exists a unique (L, ξ) in EM(T)which makes
every lD an arrow of EM(T) and, moreover, ((L, ξ), {lD}D∈D) is colimiting for F .

Remark 2.1.34. If T preserves all colimits of a certain shape D, then the preservation of the same kind
of colimits by T ◦ T follows for free.
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Proof. By hypothesis (T (LD), {T (lD)}D∈D) is a colimit for T ◦ UT ◦ F . Now if lD is a morphism of
EM(T) then we must have a commutative square

T (XD)
ξD //

T (lD)

��

XD

lD

��
T (L)

ξ
// L

and thus ξ must be the unique arrow T (L) → L such that ξ ◦ T (lD) = lD ◦ ξD. As in Proposition 2.1.30
we have to show that (L, ξ) is in EM(T). On the one hand we have that:

ξ ◦ T (ξ) ◦ T (T (lD)) = ξ ◦ T (ξ ◦ T (lD))

= ξ ◦ T (lD ◦ ξD)

= ξ ◦ T (lD) ◦ T (ξD)

= lD ◦ ξD ◦ T (ξD)

= lD ◦ ξD ◦ µXD

= ξ ◦ T (lD) ◦ µXD

= ξ ◦ µL ◦ T (T (lD))

and, since (T (T (L)), {T (T (lD))}D∈D) is a colimit for T ◦T ◦UT ◦F we can deduce that ξ◦T (ξ) = ξ◦µL.
On the other hand the following diagram commutes

XD

lD

��

idXD

**
ηXD

// T (XD)
ξD

//

T (lD)

��

XD

lD

��
L

ηL
// T (L)

ξ
// L

and (L, {lD}D∈D) is colimiting, so ξ ◦ ηL = idL.
The colimiting property is proved as in Proposition 2.1.30: take a cocone on F with vertex (Q, θ)

and edges fD : (XD, ξD) → (Q, θ), then (Q, {fD}D∈D) is a cocone for UT ◦ F which induces a unique
f : L→ Q, which is an arrow of EM(T) since we have

θ ◦ T (f) ◦ T (lD) = θ ◦ T (fD)

= fD ◦ ξD

= f ◦ lD ◦ ξD

= f ◦ ξ ◦ T (lD)

The thesis now follows.

For an example of a non cocomplete category of Eilenberg-Moore algebras on a cocomplete category
we refer the reader to [2]. In that paper a monad on the category SGraph of simple graphs (see Defi-
nition 6.1.2) is constructed and it is shown that its category of Eilenberg-Moore algebras does not have
coequalizers.
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Reflexive coequalizers and Linton’s theorem

The remainder of this section is devoted to explore conditions on a monad T, or on its base category,
which can guarantee cocompleteness of EM(T). A pivotal role in this endeavour is played by a particular
kind of coequalizers.

Definition 2.1.35. A pair of parallel arrows f, g : X ⇒ Y is reflexive if there exists an arrow s : Y → X

such that
f ◦ s = idY g ◦ s = idY

A reflexive coequalizer is the coequalizer of a reflexive pair.

Remark 2.1.36. Every reflexive coequalizer in a category X is the colimit on a functor D → X where D
is the category generated by the diagram

A

g

>>

f

""
B

soo

and subjected to the equations
f ◦ s = idB g ◦ s = idB

Notice that s ◦ g is not equal to s ◦ f in D.

It is well known [5, 85] that a category with (finite) coproducts and coequalizers admits all (finite)
colimit. Actually coproducts and reflexive coequalizers are enough.

Lemma 2.1.37. A category X with (finite) coproducts and reflexive coequalizers is (finitely) cocomplete.

Proof. Let f, g : X ⇒ Y be parallel arrows in X. We can consider the parallel pair 〈f, idY 〉, 〈g, idY 〉 : X +
Y ⇒ Y , which is actually a reflexive pair: the common section to them is simply the inclusion ιY : Y →
X + Y . Thus we have a coequalizer diagram

X + Y
⟨g,idY ⟩

//
⟨f,idY ⟩ //

Y
e // E

Computing we have that

e ◦ f = e ◦ 〈f, idY 〉 ◦ ιX
= e ◦ 〈g, idY 〉 ◦ ιX
= e ◦ g

Moreover, if q : Y → Z is such that q ◦ f = q ◦ g then

q ◦ 〈f, idY 〉 ◦ ιX = q ◦ f

= q ◦ g

= q ◦ 〈g, idY 〉 ◦ ιX

q ◦ 〈f, idY 〉 ◦ ιY = q ◦ idY
= q ◦ 〈g, idY 〉 ◦ ιY

Thus q ◦ 〈f, idY 〉 = q ◦ 〈g, idY 〉 and we can conclude that e is the coequalizer of f and g.
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We are now ready to prove the following classical result about cocompleteness of categories of Eilenberg-
Moore algebras , due to Linton [79, Cor. 2].

Theorem 2.1.38. LetT be amonad on a categoryXwith (finite) coproducts , then the following are equivalent:

1. EM(T) is (finitely) cocomplete;

2. EM(T) admits reflexive coequalizers.

Proof. (1 ⇒ 2) This is obvious.

(2 ⇒ 1) In light of Lemma 2.1.37 it is enough to show that EM(T) has (finite) coproducts. Let thus I be
a (finite) set and, for every i ∈ I , suppose that an algebra (Xi, ξi) is given. Then we have

FT(Xi) = FT(UT(Xi, ξi)) FT(T (Xi)) = FT(UT(FT(UT(Xi, ξi))))

So, if ϵ : FT ◦ UT → idEM(T) is the counit of FT a UT, we can take ϵFT(Xi) and FT(UT(ϵ(Xi,ξi))) to get a
pair of parallel arrows FT(T (Xi)) ⇒ FT(Xi). These pairs are actually reflexive: indeed, by Remark 2.1.13
and the fact that FT(f) = T (f) for every f : X → Y in X, we have that

ϵFT(Xi) = ϵ(T (Xi),µXi
)

= µXi

FT(UT(ϵ(Xi,ξi))) = FT(UT(ξi))

= T (ξi)

so T (ηXi
) is a section for both arrows.

Since X has (finite) coproducts we can define X and X ′ as the coproduct of {Xi}i∈I and {T (Xi)}i∈I
respectively. FT is a left adjoint, so FT(X) and FT(X

′) are the coproduct in EM(T) of {FT(Xi)}i∈I and
{FT(T (Xi))}i∈I , therefore we have a parallel pair

FT(X
′)

∑
i∈I

µXi

//∑
i∈I

T (ξi)

// FT(X)

which is still reflexive and so it has a coequalizer e : FT(X) → (E, ξ).

Now, the transposes f, g : X ′ → T (X) of
∑
i∈I µXi

and
∑
i∈I T (ξi) are given by

f = UT

(∑

i∈I

µXi

)
◦ ηX′ g = UT

(∑

i∈I

T (ξi)

)
◦ ηX′

and, since by construction

e ◦
∑

i∈I

µXi
= e ◦

∑

i∈I

T (ξi)

we know that UT(e) ◦ f = UT(e) ◦ g or, equivalently, e ◦ f = e ◦ g.

If we take ji : Xi → X and ki : T (Xi) → X ′ to be coprojections in X we can precompose f and g
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with ki to get diagrams

T (Xi)

T (ji)

((
T (T (Xi))

µXioo T (ki) // T (X ′)

∑
i∈I µi // T (X)

T (Xi)idT (Xi)

\\
ηT (Xi)

OO

ki

// X ′

ηX′

OO

f

<<

Xi

ηXi

��

T (Xi)
ξioo

ηT (Xi)

��

ki // X ′

ηX′

��

g

""
T (Xi)

T (ji)

66T (T (Xi))
T (ξi)

oo
T (ki)

// T (X ′) ∑
i∈I T (ξi)

// T (X)

where the commutativity of the curved parts is justified because T (ji) : (T (Xi), µXi
) → (X,µX) and

T (ki) : (T (T (Xi)), µT (Xi)) → (T (X ′), µX′) are coprojections in EM(T) by the left adjointness of FT .
Thus, from e ◦ f = e ◦ g we can deduce that

e ◦ T (ji) = e ◦ f ◦ ki

= e ◦ g ◦ ki

= e ◦ T (ji) ◦ T (ξi) ◦ ηT (Xi)

= e ◦ T (ji) ◦ ηXi
◦ ξi

= e ◦ ηX ◦ ji ◦ ξi

Therefore we have a commutative diagram

T (Xi)
T (ji) //

ξi

��

T (X)
T (ηX) //

idT (X) & &MM
MM

MM
MM

MM
T (T (X))

T (e) //

µX

��

T (X)

ξ

��

T (X)

e

&&MM
MM

MM
MM

MM
MM

Xi
ji

// X
ηX

// T (X)
e

// X

Which shows that, for every i ∈ I , hi : Xi → E defined as the composition

Xi

ji // X
ηX // T (X)

e // E

is a morphism (Xi, ξi) → (E, ξ) of EM(T). We claim that the cocone ((E, ξ), {hi}i∈I) is actually a
coproduct for {(Xi, ξi)}i∈I .
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Let (Y, α) be an algebra and a morphism ai : (Xi, ξi) → (Y, α) for every i ∈ I which induces an
a : X → Y . Then T (a) is a morphism (T (X), µX) → (T (Y ), µY ) in EM(T) and we can consider
α ◦ T (a) : (T (X), µX) → (Y, α). Computing we get that, for every fixed t ∈ I

α ◦ T (a) ◦
∑

i∈I

µXi
◦ T (kt) = α ◦ T (a) ◦ T (jt) ◦ µXt

= α ◦ T (at) ◦ µXt

= at ◦ ξt ◦ µXt

= at ◦ ξt ◦ T (ξt)

= α ◦ T (at) ◦ T (ξt)

= α ◦ T (a) ◦ T (jt) ◦ T (ξt)

= α ◦ T (a) ◦
∑

i∈I

T (ξi) ◦ T (kt)

which implies that

α ◦ T (a) ◦
∑

i∈I

µXi
= α ◦ T (a) ◦

∑

i∈I

T (ξi)

Thus there exists a unique b : (E, ξ) → (Y, α) such that b ◦ e = α ◦ T (a). Now, for every i ∈ I :

b ◦ hi = b ◦ e ◦ ηX ◦ ji

= α ◦ T (a) ◦ ηX ◦ ji

= α ◦ ηY ◦ a ◦ ji

= idY ◦ ai

= ai

We are left with uniqueness: let c : (E, ξ) → (Y, α) another arrow such that c ◦ hi = ai, we have that:

c ◦ e ◦ T (ji) = c ◦ e ◦ ηX ◦ ji ◦ ξi

= hi ◦ ξi

= c ◦ ξ ◦ T (hi)

= α ◦ T (c) ◦ T (hi)

= α ◦ T (ai)

= α ◦ T (a) ◦ T (ji)

and thus c ◦ e = α ◦ T (a) which implies c = b.

Using Proposition 2.1.33, the previous theorem gives us immediately the following result.

Corollary 2.1.39. Let X be a category with (finite) coproducts and T = (T, η, µ) a monad on it such that T
preserves reflexive coequalizers. Then EM(T) is (finitely) cocomplete.

2.1.3 Regularity of EM(T)

In the previous sections we showed how to compute limit and colimit in categories of Eilenberg-Moore
algebras. In this one we will examine how regularity of X is inherited by categories monadic over it.
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Factorization systems

Let us start by recalling the notion of a factorization system [32, 68, 113, 119].

Definition 2.1.40. Let X be a category and E , M two classes of arrows, we will say that (E ,M) is a
(orthogonal) factorization system if:

1. every isomorphism is in both E and M;

2. E and M are closed under composition;

3. every arrow f : X → Y of X admits a (E ,M)-factorization, i.e. there are arrows ef ∈ E and
mf ∈ M with the property that f = mf ◦ ef ;

4. every e ∈ E has the left lifting propertywith respect to everym ∈ M: for every commutative square

X
g //

e

��

Z

m

��
Y

f
//

k

>>

V

with e ∈ E andm ∈ M there exists a unique k : Y → Z such that

m ◦ k = f k ◦ e = g

A factorization system is proper if every e ∈ E is epi and everym ∈ M is mono; it’s stable if for every
pullback square ast the one below, e ∈ E implies e′ ∈ E .

P
g //

e′

��

X

e

��
Z

f
// Y

The following proposition assures us that the factorization of an arrow is unique up to isomorphism.

Proposition 2.1.41. Let (E ,M) be a factorization system on a category X. If e : X → Y , e′ : X → Y ′ and
m : Y → Z ,m′ : Y ′ → Z are arrows, respectively, in E and M such that e′ ◦m′ = e ◦m, then there exist a
unique isomorphism f : Y → Y such that the following diagram commutes

X
e′ //

e
��

Y

m′

��
Y

m
//

f
::

V

Proof. Using the left lifting property we get two commutative diagrams:

X
e′ //

e
��

Y ′

m′

��

X

e′

��

e // Y

m
��

Y
m

//

f
::ttttttttt
Z Y ′

m′
//

g
::ttttttttt
Z
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thus

m′ ◦ f ◦ g = m ◦ g

= m′

f ◦ g ◦ e′ = f ◦ e

= e′
m ◦ g ◦ f = m′ ◦ f

= m

g ◦ f ◦ e = g ◦ e′

= e

So we have two square

X
e //

e
��

Y

m
��

X

e′

��

e′ // Y ′

m′

��
Y

m
//

g◦f
::uuuuuuuuu
Z Y ′

m′
//

f◦g
99ttttttttt
Z

and the thesis follows from the uniqueness half of the left lifting property.

Corollary 2.1.42. Given a factorization system (E ,M) on a category X, the following hold:

1. an arrow f : X → Y is in E (inM) if and only ifmf (ef ) is an isomorphism;

2. f ∈ E and f ∈ M if and only if f is an isomorphism;

3. if (E ,M) is proper, then g ◦ f is inM (in E ) implies f ∈ M (g ∈ E ).

Proof. 1. (⇒) By hypothesis f = idY ◦ f (f = f ◦ idX ) is a factorization with idY ∈ M and f ∈ E
( idX ∈ E , f ∈ M), so the thesis follows from Proposition 2.1.41.

(⇐) f = mf ◦ ef , thus if mf (ef ) is an isomorphism then we have f is the composition of two
arrows in E (M) and we can conclude.

2. This follows immediately from the previous point.

3. Factor f and g asmf ◦ ef andmg ◦ eg, let also h be eg ◦mf and factor it asmh ◦ eh so that we get

C

mh

%%KK
KK

KK
KK

KK
K

A

eh

99sssssssssss h //
mf

%%KK
KK

KK
KK

KK
K B

mg

��
X

ef

OO

f
// Y

g
//

eg

99sssssssssss
Z

Since E and M are closed under composition we know that eh ◦ ef ∈ E and mg ◦mh ∈ M, thus
these arrows gives a (E ,M)-factorization of g ◦ f . On the other hand g ◦ f ∈ E (g ◦ f ∈ M), thus
point 1 above implies that eh ◦ ef (mg ◦mh ) is an isomorphism. In particular:

(eh ◦ ef )
−1 ◦ eh ◦ ef = idX (mg ◦mh ◦ (mg ◦mh)

−1 = idZ )

so ef has a retraction (mg has a section). The thesis now follows since ef is epic (mg is mono).

Definition 2.1.43. Given a set I , a source (sink) is a family {fi}i∈I of arrows fi : X → Yi (fi : Yi → X )
with the same (co)domain. A wide pushout (pullback) is the colimit (limit) of a source (sink). We will use
ci (pi ) to denote the coprojection from Yi (the projection to Yi ) and cX to denote the one from X .
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Remark 2.1.44. Given a wide pushout (C, {ci}i∈I∪{X}) on a source {fi}i∈I with fi : X → Yi, the
coprojection cX is such that, for every i ∈ I , the following diagram commute

X

fi

~~~~
~~
~~
~~ cX

��@
@@

@@
@@

@

Yi ci
// C

Proposition 2.1.45. For every proper factorization system (E ,M) on a category X the following hold:

1. for every pushout square as the one below, e ∈ E implies n ∈ E

X
g //

e

��

V

n

��
Y

f
// Z

2. if (C, {ci}i∈I∪{X}) is a wide pushout on a source {ei}i∈I such that ei : X → Yi is in E for every i ∈ I ,
then every coprojection is in E too.

Proof. 1. Take a pushout square

X
g //

e

��

V

n

��
Y

f
// Z

with e in E . By hypothesis n = mn ◦ en for mn : E → Y in M and en : V → E in E . If we
show that mn is an isomorphism we are done. We can apply again the left lifting property to get
l : E → X which makes the following diagram commute.

X

e

��

g // V
en // E

mn

��
Z

l

77nnnnnnnnnnnnnn
f

// Y

Therefore we get another diagram

X

e

��

g // V

en

��

n

��
Z

l 00

f
// Y

k

  
E



2.1. An introduction to monads 31

and thus we can deduce the existence of the dotted k : E → V . On the one hand, computing we get

mn ◦ k ◦ n = mn ◦ en

= n

mn ◦ k ◦ f = mn ◦ l

= f

and somn ◦ k = idY . On the other hand

mn ◦ k ◦mn = idY ◦mn

= mn

k ◦mn ◦ en = k ◦ n

= en

so the following diagaram commutes

V

en

��

en // E

mn

��
E

k◦mn

88qqqqqqqqqqqq
mn

// Y

and thus k ◦ mn = idE by the uniqueness clause of the left lifting property. Therefore en is an
isomorphism and the thesis now follows from point 1 of Corollary 2.1.42.

2. By Remark 2.1.44 and point three of Corollary 2.1.42 it is enough to show that cX is in E . Since
(E ,M) is a factorization system then cX = m ◦ e for some m : E → C in M and e : X → E in E
to get, from Remark 2.1.44, a square

X
e //

ei

��

V

m

��
Yi

ki

??

ci
// Z

and the left lifting property provides, for every i ∈ I , the dotted arrow ki : Yi → e. Let k be the
the induced arrow Z → V . Then

m ◦ k ◦ ci = m ◦ ki

= ci

hencem◦k = idZ . By Corollary 2.1.42m ∈ M thus it is an isomorphism and we can conclude.

We are now going to show how, given a monad T on a category X, is it possible to lift a factorization
system on X to one on EM(T).

Theorem 2.1.46. Let (E ,M) be a proper factorization system on a category X. Let also T = (T, η, µ) be a
monad on X and define

ET := {f ∈ EM(T) | UT(f) ∈ E} MT := {f ∈ EM(T) | UT(f) ∈ M}

If T (e) ∈ E for every e ∈ E then (ET ,MT ) is a proper factorization system on EM(T). Moreover, (ET ,MT )
is stable if (E ,M) is so.
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Proof. First of all, let us notice that, since UT is faithful, then every element of ET is epi and every element
of MT is mono, thus properness comes for free. Moreover, take a pullbacks square

(P, ξ4)
pX //

pY

��

(X, ξ2)

f

��
(Y, ξ3) g

// (Z, ξ1)

with f ∈ ET . By UT is a right adjoint, thus we also have the following pullback square in X:

P
pX //

pY

��

X

f

��
Y

g
// Z

with f ∈ E . So, if (E ,M) is stable we get that pY is in E too, from which stability follows.
Let us now verify all the points of Definition 2.1.40.

1. If f is an isomorphism in EM(T), then UT(f) is an isomorphism in X and thus it belongs to both
E and M.

2. E and M are closed under composition and thus also ET and MT are.

3. Let f : (X, ξ1) → (Y, ξ2) be a morphism in EM(T). We know that there exists e : X → I in E and
m : I → Y in M such that m ◦ e = f , we want to equip I with a structure of Eilenberg-Moore
algebra which makes them arrows in EM(T). Consider now the following diagram

T (X)
ξ1 //

T (e)

��

X
e // I

m

��
T (I)

ξ

55

T (m)
// T (Y )

ξ2

// Y

By hypothesis T (e) ∈ E and m ∈ M, thus we get the wanted ξ : T (I) → I . If we show that
(I, ξ) is really an object of EM(T) we are done: the diagram above witnesses that bothm and e are
morphisms of Eilenberg-Moore algebras.

On the one hand we can exploit the naturality of η to get

ξ ◦ ηI ◦ e = ξ ◦ T (e) ◦ ηX

= e ◦ ξ1 ◦ ηX

= e ◦ idX
= e

= idI ◦ e

from which it follows that ξ ◦ ηI = idI since e is epi.
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On the other hand notice that T (T (e)) ∈ E and that we have diagrams

T (T (X))
µX //

T (T (e))

��

T (X)

T (e)

��

ξ1 // X
e // I

m

��

T (I)

T (m)

''NN
NNN

NNN
NNN

N

ξ

44hhhhhhhhhhhhhhhhhhhhhhhhh

T (T (I))
T (T (m))

//

µI

77nnnnnnnnnnnnn
T (T (Y ))

µY

// T (Y )
ξ2

// Y

T (T (X))

T (ξ1) ''PP
PPP

PPP
PPP

P

µX //

T (T (e))

��

T (X)
ξ1 // X

e // I

m

��

T (X)

T (e)

��

ξ1

77ppppppppppppp

T (I)
T (m) //

ξ

88rrrrrrrrrrrrrrrrrrrrrrrrrrrr
T (Y )

ξ2

%%JJ
JJ

JJ
JJ

JJ
J

T (T (I))
T (T (m))

//

T (ξ)

77nnnnnnnnnnnnn
T (T (Y ))

T (ξ2)

77ppppppppppp

µY

// T (Y )
ξ2

// Y

The thesis follows from the uniqueness half of the left lifting property.

4. Let us start with the following squares, one in EM(T) and the other one in X:

(A, ξA)
f //

e

��

(B, ξB)

m

��

A
f //

e

��

B

m

��
7→

(C, ξC)

k

::

g
// (D, ξD) C

k

@@

g
// D

Ifm : B → D is in M and e : A→ C is in E , we get a unique k filling the diagram on the right, so,
if we show that such κ is actually a morphism of EM(T) we are done. To see this, let us compute:

m ◦ k ◦ ξC = g ◦ ξC

= ξD ◦ T (g)

= ξD ◦ T (m) ◦ T (k)

= m ◦ ξB ◦ T (k)

and we get the thesis sincem is a monomorphism.
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Regularity of EM(T)

We will start recalling the notion of regularity and some properties of regular categories.

Definition 2.1.47 ( [19, 56]). We say that a category X is regular if

1. it has finite limits;

2. for every f : X → Y , if the following square

P
p1 //

p2

��

X

f

��
X

f
// Y

is a pullback (i.e. (P, p1, p2) is the kernel pair of f ) then p1, p2 : P ⇒ X have a coequalizer;

3. for every pullback square

P
g //

e′

��

X

e

��
Z

f
// Y

if e is a regular epi then e′ is a regular epi too.

Remark 2.1.48. Let f : X → Y be an arrow of any category X, then its kernel pair p1, p2 : P ⇒ X (if it
exists) is a reflexive pair. Indeed we have a diagram

X idX

��

idX

%%

s

  
P

p1 //

p2

��

X

f

��
X

f
// Y

in which the existence of the dotted s : X → P is guaranteed by the definition of kernel pair.

Example 2.1.49. Every topos X is a regular category. This is a standard fact in topos theory [65, 86, 93]
and its proof relies on two facts:

• every topos is finitely complete and cocomplete (proving items 1 and 2);

• given f : X → Y , the pullback functor f∗ : X/Y → X/X is a left adjoint (so item 3 follows) (see
also Lemma A.3.13 for this).

Proposition 2.1.50. Let e : X → Y be a regular epi in a categoryX with a kernel pair p1, p2 : P ⇒ X , then
e is the coequalizer of p1 and p2.
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Proof. By hypothesis there exists a pair f, g : Z ⇒ X of which e is the coequalizer, since e ◦ f = e ◦ g we
have a diagram

Z f

��

g

%%

k

  
P

p1 //

p2

��

X

e

��
X

e
// Y

and thus there exists the dotted k : Z → P . Let h : Z → V be an arrow such that h ◦ p1 = h ◦ p2, then

h ◦ f = h ◦ p1 ◦ k

= h ◦ p2 ◦ k

= h ◦ g

and thus there exists a unique l : Y → V such that l ◦ e = h.

Definition 2.1.51. Let f : X → Y be a morphisms in a category X with kernel pairs. The coequal-
izer of the kernel pair p1, p2 : P ⇒ X is called the coimage of f . We will denote such coequalizer by
(Coim(f), ef ). In particular we have a coequalizer diagram

X
p1 //
p2

// Y
ef // Coim(f)

Suppose now that f : X → Y has a kernel pair p1, p2 : P ⇒ X and a coimage, ef : X → Coim(f)
then, since f ◦p1 = f ◦p2 we know that there exists a uniquemf : Coim(f) → Y such that f = mf ◦ ef .

P
p1 //
p2

// X
f //

ef !!C
CC

CC
CC

C Y

Coim(f)

mf

==

Proposition 2.1.52. Let p1, p2 : P ⇒ X be the kernel pair of an arrow f : X → Y . Suppose also that f has
a coimage ef : X → Coim(f). Then p1, p2 : P ⇒ X is the kernel pair of ef , too.

Proof. Let q1, q2 : Q⇒ X two arrows such that ef ◦ q1 = ef ◦ q2, then we have a diagram

Q
q //

q1

((

q2
))

P
p1 //

p2

��

X

ef

��

f

&&
X

ef //

f

66Coim(f)
mf // Y

Since p1, p2 : P ⇒ X is a kernel pair for f there exists the unique dotted arrow q and we are done.
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IfX is regular then every f has a coimage, so we can deduce that every f can be decomposed asmf ◦ef
with ef a regular epi. We can say something more aboutmf .

Proposition 2.1.53. If f : X → Y is an arrow in a regular category X, thenmf is a monomorphism.

Proof. Take the diagram

P
h //

p1

))

p1

''

A
a1 //

a2

��

B

b2

��

b1 // X

f

||

ef

��
C

c2

��

c1 // D

d2

��

d1 // Coim(f)

mf

��
X

f

55ef
// Coim(f)

mf

// Y

in which every square is a pullback. This implies the existence of the dotted isomorphism h, therefore

ef ◦ c2 ◦ a2 ◦ h = ef ◦ p1

= ef ◦ p2

= ef ◦ b1 ◦ a1 ◦ h

and thus
ef ◦ c2 ◦ a2 = ef ◦ b1 ◦ a1

Now, c1 and a2 regular epis because they are pullbacks of regular epis, thus c1 ◦ a2 is epi too and we have

d2 ◦ c1 ◦ a2 = ef ◦ c2 ◦ a2

= ef ◦ b1 ◦ a1

= d1 ◦ b2 ◦ a1

= d1 ◦ c1 ◦ a2

hence d1 = d2 and we can conclude.

We will now prove some important properties of regular epimorphisms in regular categories.

Lemma 2.1.54. for an arrow f : X → Y in a regular category X the following are equivalent

1. f is a regular epi;

2. f has the left lifting property with respect to any mono (i.e. f is a strong epi).

Proof. (1 ⇒ 2) Suppose that f is the coequalizer of g, h : Z ⇒ X . Take a diagram

X
t //

f

��

A

m

��
Y

k
// B
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withm a monomorphism, then:

m ◦ t ◦ g = k ◦ f ◦ g

= k ◦ e ◦ h

= m ◦ t ◦ h

fromwhich it follows that t◦g = t◦h. Since f is the coequalizer of g and h there exists a unique d : Y → A

such that d ◦ f = t. Moreover

m ◦ d ◦ f = m ◦ t

= k ◦ f

som ◦ d = f since f is epi.

(2 ⇒ 1) Let f = mf ◦ ef withmf a mono and ef : X → Coim(e) its coimage, then we have a square

X
ef //

f

��

Coim(f)

mf

��
Y

k

66

idY
// T

Since f is a strong epi and mf a mono there exists the dotted k : Y → Coim(f). Now mf ◦ k = idY , so
mf is a mono with a section k, somf is an isomorphism with inverse k and thus k ◦ f = ef implies that
f is a regular epi.

Corollary 2.1.55. For every regular categoryX, if E is the class of regular epis andM the class af monos, then
(E ,M) is a proper and stable factorization system.

Proof. Let us prove the four points of Definition 2.1.40.

1. Every isomorphism is mono and regular epi.

2. We already know that the class of monos is closed under composition. Let e : X → Y and e′ : Y →
Z be two regular epi, we are going to show that their composition is a strong epi, Lemma 2.1.54
will then deliver us the thesis. Take a diagram

X
g //

e

��

A

m

��

Y

e′

��
Z

f
// B

withm amonomorphism. We have to prove that there is a unique diagonal d that makes the diagram
commute. Indeed, we can consider the diagram

X
g //

e

��

A

m

��
Y

e′
//

k

77

Z
f

// B
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and deduce the existence of the dotted k : Y → A from Lemma 2.1.54. Next we can use it to
construct another diagram

Y
k //

e′

��

A

m

��
Z

d

>>

f
// B

to get, using again Lemma 2.1.54, another d : Z → A as in the diagram. Now, m ◦ d = f by
construction, moreover:

d ◦ e′ ◦ e = k ◦ e

= g

and thus we get the thesis.

3. We know that every f : X → Y is the composition of ef : X → Coim(f) andmf : Coim(f) → Y ,
thus the thesis follows from Proposition 2.1.53.

4. Given Lemma 2.1.54 this is immediate.

Properness and stability follow by construction and from the regularity of X.

Example 2.1.56. LetCat be the category of all small categories, and letN,Z/2Z be the 1-object categories
associated to the monoids N and Z/2Z. Let also 2 be the category

AidA 88
f // B idBff

Define F : 2 → N as the functor sending f to 1 and G : N → Z/2Z the one sending n to its congruence
class modulo 2. Notice thar F and G are regular epis:

• F is the coequalizer of F1, F2 : 1 ⇒ 2 selecting, respectively, A and B;

• G is the coequalizer of G1, G2 : 1 ⇒ N selecting, respectively, 0 and 2.

On the other hand, H := G ◦ F is the functor sending f to 1, which is not a regular epi. To see this,
notice that ifH is a regular epi then, by Proposition 2.1.50,H would be the coequalizer of its kernel pair.
Now, the kernel pair of H is given by the two projections P1, P2 : P ⇒ 2 where P is the subcategory of
2× 2 containing all objects and in which the only non identity arrow is (f, f) : (A,A) → (B,B). Notice
that

F ◦ P1 = F ◦ P2

but the only functorK : Z/2Z → N is the one sending 1 to 0, soK ◦H 6= F , showing that H cannot be
the coequalizer of its kernel pair.

Remark 2.1.57. The previous example shows that Cat is not regular.

We are now going to prove that, given a regular category X, asking a form of the axiom of choice,
i.e. that every regular epi has a section, is sufficient to guarantee the regularity of the category EM(T) for
every monad (T, η, µ).

Definition 2.1.58. A split coequalizer of two parallel arrows f, g : X ⇒ Y is an e : Y → Z such that:

1. e has a section s;
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2. there exists t : Y → X such that

f ◦ t = idY s ◦ e = g ◦ t

The following proposition justifies the name of split coequalizers.

Proposition 2.1.59. If e is a split coequalizers for f, g : X ⇒ Y , then it is a coequalizer for them.

Proof. Let h : Y →W be an arrow such that h ◦ f = h ◦ g, then

h ◦ s ◦ e = h ◦ g ◦ t

= h ◦ f ◦ t

= h

On the other hand, if k : Z →W is another arrow such that k ◦ e = h then

k ◦ e = k ◦ idZ ◦ e

= k ◦ e ◦ s ◦ e

= h ◦ s ◦ e

so, since e is epi, h ◦ s = k.

Proposition 2.1.60. Let e : Y → Z be a split coequalizer for f, g : X ⇒ Y in a category X. Then for every
every functor F : X → Y, F (e) is a split coequalizer for F (f) and F (g)

Proof. Let t and s be the sections of f and e, then F (t) and F (s) are sections for F (f) and F (e) and

F (s) ◦ F (e) = F (s ◦ e)

= F (g ◦ t)

= F (g) ◦ F (t)

and the thesis now follows at once.

Kernel pairs provide a way to construct split coequalizers.

Proposition 2.1.61. Let p1, p2 : P ⇒ X be the kernel pair of an arrow f : X → Y with a coimage ef : X →
Coim(f). Suppose that ef has a section s, then it is a split coequalizer.

Proof. We have to construct a section t for p1 such that s ◦ ef = p2 ◦ t. We have a diagram

X

s◦ef

**

idX

&&
t

((
P

p1 //

p2

��

X

ef

��
X

ef
// Coim(f)

By Proposition 2.1.52 , p1, p2 : P ⇒ X is a kernel pair for ef , so the central square is a pullback and thus
the dotted t exists.
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Corollary 2.1.62. Let X be a category with kernel pairs in which every regular epi has a section, then every
regular epi is a split coequalizer. In particular every functor F : X → Y preserves regular epis.

Proof. By hypothesis a regular epi e has a kernel pair which, by Proposition 2.1.50, it coequalizes, so the
thesis follows from Proposition 2.1.61.

We can now start to apply what we have established about split coequalizers to categories of algebras.

Lemma 2.1.63. Let T be a monad on a category X, and f, g : (X, ξ) ⇒ (Y, ξ2) two arrows such that UT(f)
and UT(g) admit a split coequalizer e : Y → Z in X. Then there exists a unique ξ : T (Z) → Z such that
(Z, ξ) ∈ EM(T) and e : (Y, ξ2) → (Z, θ) is a coequalizer of f and g.

Proof. Since e is split, by Proposition 2.1.60 we know that it is preserved by every functor. In particular
it is preserved by T and T ◦ T , so that we can conclude using Proposition 2.1.33.

Now we have all the ingredients needed to show the main result of this section.

Theorem 2.1.64. LetX be a regular category such that every regular epi has a section. Then EM(T) is regular
for every monad T.

Proof. Let us prove the three points of Definition 2.1.47.

1. EM(T) is finitely complete by Proposition 2.1.30.

2. Let p1, p2 : (P, θ) ⇒ (X, ξ1) be the kernel pair of f : (X, ξ1) → (Y, ξ2), since UT preserves limits
we know that p1, p2 : P ⇒ X is a kernel pair for f : X → Y in X. Let ef : X → Coim(f) be their
coequalizer inX, by hypothesis it has a sections s, thus by Proposition 2.1.61 it is a split coequalizer
and Lemma 2.1.63 allows us to conclude.

3. Let e : (X, ξ1) → (Y, ξ2) be a regular epi in EM(T) and consider a pullback square in EM(T)

(P, ξ)
f ′

//

e′

��

(X, ξ1)

e

��
(Z, ξ3)

f
// (Y ξ2)

Since UT preserves limits then we also have a pullback diagram in X

P
f ′

//

e′

��

X

e

��
Z

f
// Y

and thus e′ is a regular epi in X. By Proposition 2.1.50 e′ is the coequalizer of its kernel pair
q1, q2 : Q ⇒ P . By Proposition 2.1.30 there exists a unique θ : T (Q) → Q such that (Q, θ) is an
object of EM(T) and q1, q2 are arrows q1, q2 : (Q, θ) ⇒ (O, ξ). By hypothesis e′ has a section, so
Proposition 2.1.61 and Lemma 2.1.63 entail that e′ is the coequalizer of q1 and q2 in EM(T).

We can also completely characterize regular epimorphisms between Eilenberg-Moore algebras.
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Proposition 2.1.65. Let T be a monad on a regular categoryX in which every regular epi has a section. Then
UT preserves and reflects regular epi.

Proof. • Preservation. Let e : (X, ξ1) → (Y, ξ2) be a regular epi, then by Proposition 2.1.50 e is the co-
equalizer of its kernel pair p1, p2 : (P, θ) ⇒ (X, ξ1). Since UT preserves limits then p1, p2 : P ⇒ X

is the kernel pair of e in X too. Let e′ : X → Z be the coequalizer of p1 and p2 in X. By Proposi-
tion 2.1.61 e′ is a split coequalizer, so Lemma 2.1.63 implies that there exists a unique θ : T (Z) → Z

such that e′ : (X, ξ1) → (Z, θ) is a coequalizer for p1 and p2 in EM(T). Then there exists an iso-
morphism f : (Y, ξ2) → (Z, θ) such that

X

e

~~~~
~~
~~
~~

e′

  @
@@

@@
@@

@

Y
f

// Z

Since f is an isomorphism also in X it follows that e is regular epi in X too.

• Reflection. Let e : (X, ξ1) → (Y, ξ2) be a morphism such that e : X → Y is a regular epi. Then e,
by Proposition 2.1.50 is the coequalizer of its kernel pair p1, p2 : P ⇒ X and, since by hypothesis
it has a section, we also know by Proposition 2.1.61 that e is a split coequalizer of them. Now, from
Proposition 2.1.30 there exists a unique θ : T (P ) → P such that p1, p2 : (P, θ) ⇒ (X, ξ1) is the
kernel pair of e in EM(T) and thus we conclude by Lemma 2.1.63 that e is the coequalizer of its
kernel pair also in EM(T).

Assuming the axiom of choice (i.e. that every epi has a section), Set satisfies the hypotheses of Theo-
rem 2.1.64 and Proposition 2.1.65, therefore we get the following result at once.

Corollary 2.1.66. Let T be a monad on Set, then:

1. EM(T) is regular;

2. an arrow f ∈ EM(T) is a regular epi if and only if UT(f) is surjective.

2.1.4 A cocompleteness theorem

We end this section showing how the interaction between monad and factorization system can guarantee
cocompleteness for EM(T). We will prove a cocompleteness theorem due to Adámek [2] which encom-
passes and generalizes various other similar results [18, 29, 79].

Proposition 2.1.67. Let X be a regular category in which every regular epi has a section. Then X is E -
cowellpowered, where E is the class of regular epis.

Proof. By hypothesis every regular epi e has a (unique) section se, moreover, by Proposition 2.1.41
and Corollary 2.1.55

se ◦ e = se′ ◦ e
′

if and only if e ≡ e′. Thus there exists an injective function

E -Quot(X) → X(X,X) [e] 7→ se ◦ e

and the thesis follows since X(X,X) is a set.
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Theorem 2.1.68. Let (E ,M) be a proper factorization system on a cocomplete and E -cowellpowered category
X. If T is a monad on X such that T (e) ∈ E for every e ∈ E , then EM(T) is cocomplete.

Proof. In light of Theorem 2.1.38 it is enough to show thatEM(T) admits all coequalizers. Let f, g : (X, ξ1) ⇒
(Y, ξ2) be a pair of parallel arrows in EM(T). Since X is cowellpowered there exists a set R(Y ) of repre-
sentatives for the relation≡ on Y /E . Define I to be the set of all e : Y → Ze in R(Y ) such that, for every
h : (Y, ξ2) → (V, ξ3) satisfying

h ◦ f = h ◦ g

there exists he : Z → V such that he ◦ e = h; we have a source given by all these e ∈ I , so that we can
take its wide pushout (C, {ci}i∈I∪{Y }). By Remark 2.1.44 we have

Y

e

~~}}
}}
}}
}} cY

��?
??

??
??

?

Ze ce
// C

Moreover, in I there exists e : Y → Z which is a coequalizer for f and g in X, thus

cY ◦ f = ce ◦ e ◦ f

= ce ◦ e ◦ g

= cY ◦ g

By Proposition 2.1.45 we know that every coprojection cD is in E , in particular cY is in E and, by
hypothesis, T (cY ) ∈ E too. Take now a pushout square

T (Y )
cY ◦ξ2 //

T (cY )

��

C

p2

��
T (C)

p1
// P

in which p2 ∈ E as the pushout of T (cY ). In particular, since (E ,M) is proper, this implies that p2 is epi.
Now, let h : (Y, ξ2) → (V, ξ3) be such that

h ◦ f = h ◦ g

then for every e ∈ I there exist he such he ◦ e = h, thus we have a cocone with vertex V and edges
{he}e∈I ∪ {h}, so there exists the dotted k as in the diagram

Y

e

��

cY

''OO
OOO

OOO
h

%%
C

k // V

Ze he

99
ce

77ppppppp

h is a morphism of EM(T), thus

k ◦ cY ◦ ξ2 = h ◦ ξ2

= ξ3 ◦ T (h)

= ξ3 ◦ T (k) ◦ T (cY )
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so that the dotted t : P → V in the following diagram exists

T (Y )
cY ◦ξ2 //

T (cY )

��

C

k

��

p2

��
T (C)

ξ3◦T (k) --

p1
// P

t

!!
V

Therefore we have

h = k ◦ cY

= t ◦ p2 ◦ cY

This, in turn, implies that there exists e : Y → Z in I such that e ≡ p2◦cy, i.e. there exists an isomorphism
p : P → Z such that e = p ◦ p2 ◦ cY , so that

cY = ce ◦ e

= ce ◦ p ◦ p2 ◦ cY

which, since cY is epi, implies
idZ = ce ◦ p ◦ p2

and we can conclude from point 2 and 3 of Corollary 2.1.42 that p2 is an isomorphism.
Let ξ : T (C) → C be p−1

2 ◦ p1, by construction

p2 ◦ cY ◦ ξ2 = p1 ◦ T (cY )

and thus

cY ◦ ξ2 = p−1
2 ◦ p1 ◦ T (cY )

= ξ ◦ T (cY )

This equation gives us the commutativity of

T (T (Y ))T (T (cY ))

yy µYyy T (ξ2) %%

T (T (cY ))

''C

ηC

��

Y
cYoo

ηY
��

idY

%%JJ
JJ

JJ
JJ

J

T (T (C))

µC

��

T (Y )

ξ2 $$T (cY )wwppp
ppp

ppp
T (Y )

ξ2zzvvv
vv
vv
v

T (cY ) ''NN
NNN

NNN
N

T (T (C))

T (ξ)
��

T (Y )

T (cY )yyrrr
rrr

rr
ξ2

// Y

cY
��

T (C)

ξ //

Y

cY
��

T (C)

ξoo
T (C)

ξ
// C

C

which in turn entails

ξ ◦ ηC ◦ cY = cY ξ ◦ µC ◦ T (T (cY )) = ξ ◦ T (ξ) ◦ T (T (cY ))
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and thus (C, ξ) is an object of EM(T) since cY and T (T (cY )) are epi. Now it follows immediately that
cY : (Y, ξ2) → (C, ξ) is an arrow of EM(T).

We are left with the coequalizer property. We already proved that cY ◦ f = cY ◦ g and that for every
morphism h : (Y, ξ2) → (V, ξ3) such that h ◦ f = h ◦ g there exists a unique k : C → V in X satisfying
k◦Y = h, so it is enough to show that this k is an arrow of EM(T). If we consider the diagram

T (C)

ξ

��

p1

��

T (Y )

ξ2��

T (cY )oo T (cY ) //

T (h)

''
T (C)

T (k) // T (V )

ξ3

��

Y
cY
�� h

&&

P
p−1
2

��

C
p2oo

idC
ooC

k
// V

we get
k ◦ ξ ◦ T (cY ) = ξ3 ◦ T (k) ◦ T (cY )

and the thesis follows because T (cY ) is epi.

If X is a cocomplete regular category satisfying the same form of the axiom of choice used in The-
orem 2.1.64, i.e. that every regular epi has a section, we can use Corollary 2.1.62, Theorem 2.1.68,
and Proposition 2.1.67 to get the following result (see also [29, Thm. 4.3.5] )

Corollary 2.1.69. EM(T) is a cocomplete category for every monad T on a cocomplete regular category X in
which every regular epi has a section,.

Assuming the axiom of choice the previous corollary can be immediately applied to Set.

Corollary 2.1.70. For every monad (T, η, µ) on Set, EM(T) is cocomplete.

2.2 Monads on Set

In this section we will explore the relationship between algebraic theories and monads on Set. This
relationship was first developed with the approach of Lawvere theories in [76] and in [78, 80]. However,
we are interested in a more syntactic approach, thus we will recall Lawvere’s and Linton’s results without
using the technology of Lawvere theories.

2.2.1 Filtered categories, filtered colimits

In this section we take a brief detour to introduce the notion of rank of a functor which will be needed in
the subsequent sections. Standard textbook references are [6, 7, 29]. Finally, let us warn the reader that,
for us, a regular cardinal is always infinite.

Definition 2.2.1. Let κ be a regular cardinal, we say that a small category D is κ-filtered if:

1. D is non empty;
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2. for each collection {Di}i∈I with |I| < κ, there exist an object D and, for every i ∈ I , an arrow
fi : Di → D;

3. for every pair of objects D1 and D2 in D, and every family {fi}i∈I ⊆ D(D1, D2) with |I| < κ,
there exists a morphism f : D2 → D such that, for every i, j ∈ I

f ◦ fi = f ◦ fj

A κ-filtered colimit is a colimit on a functor F : D → X with D κ-filtered.

Remark 2.2.2. Let D be a κ-filtered category, then D is also λ-filtered for every other regular cardinal λ
such that λ ≤ κ.

Remark 2.2.3. Let (P,≤) be a poset, we can specialize the previous definition to get the notion of κ-
filtered (or κ-directed) poset. In this context point 3 becomes trivial and we get that (P,≤) is κ-filtered if
and only if the following hold:

1. P is non empty;

2. every family {pi}i∈I of cardinality less then κ has an upper bound.

Example 2.2.4. Let X be a set and κ be any regular cardinal. We can consider the poset (Pκ(X),⊆)
which, since κ is regular, (Pκ(X),⊆) is κ-filtered by Remark 2.2.3. Now, Pκ(X) determines a diagram in
Set whose κ-filtered colimit is X , with the inclusions as edges of the colimiting cone.

Example 2.2.5. Let X be a cartesian closed category, and (M,m, e) an internal monoid. The writer
monad of Example 2.1.4 preserves all colimits since (−)×M is a left adjoint, in particular it is ℵ0-filtered.

Lemma 2.2.6. Let κ be a regular cardinal andD a small category, then the following are equivalent

1. D is κ-filtered;

2. every functor F : X → D with domain with strictly less than κ arrows, admits a cocone inD.

Remark 2.2.7. Notice that if the set of arrows of X has cardinality less then κ then its set of objects has
the same property. A category with this property is said to be κ-small. A κ-small colimit is a colimit of a
functor with a κ-small domain.

Proof. (1 ⇒ 2) By the hypothesis on X, the family {F (X)}X∈X has cardinality strictly less then κ, so by
point 2 of Definition 2.2.1 there exists an object D ∈ D with arrows fX : F (X) → D. Given X ∈ X
can define IX as the set of arrows with domain X and consider the family {fcod(g) ◦ F (g)}g∈IX which is
a subset of D(F (X), D). By point 3 of Definition 2.2.1 there exists eX : D → DX such that for every
g : X → Y and h : X → Z

eX ◦ fY ◦ F (g) = eX ◦ fZ ◦ F (h)

We can apply point 2 of the definition to the family {DX}X∈X to get an objectE with an arrowhX : DX →
E for every X ∈ X such that, for every g : X → Y

hY ◦ eY ◦ fY ◦ F (g) = hX ◦ eX ◦ fX ◦ F (idX)

= hX ◦ eX ◦ fX ◦ idF (X)

= hX ◦ eX ◦ fX

showing that (E, {hX ◦ eX ◦ fX}X∈X) is a cocone for F .

(2 ⇒ 1) The three point of Definition 2.2.1 follow applying 1 to, respectively: the initial functor from the
empty category, the functor from a discrete category associated to the family {Di}i∈I , the functor from
the category with two objects and |I| parallel arrows associated to the family {fi}i∈I .
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Corollary 2.2.8. LetD be a κ-filtered category andD an object in it. ThenD/D is κ-filtered as well.

Proof. Let X be a κ-small category and F : X → D/D a functor. If X is empty there is nothing to show.
Otherwise, let us denote F (X) by gX : D → DX , we can consider the diagram A in D generated by the
arrows {gX}X∈X ∪ {F (f)}f∈A(X) which, since κ is regular, contains less then κ arrows. By the previous
lemma there exists a cocone (C, {cA}A∈A) on A, in particular this implies that, for ever X,Y ∈ X we
have

cDX
◦ gX = cDY

◦ gY

Let g be cDX
◦gX for someX ∈ X. By construction cDX

is a morphism gX → g. Moreover, if f : X → Y

is an arrow in X then, using the cocone property of (C, {cA}A∈A) we get

cDX
= cDY

◦ F (f)

showing that (g, {cDX
}X∈X) is a cocone on F as desired.

κ-filtered colimits and limits in Set

We are now going to provide a more abstract characterization of κ-filtered categories in term of commu-
tation of limits and colimits of sets.

Remark 2.2.9. Take a functor F : D×X → Y, with Y a complete and cocomplete category, then we can
perform two constructions on it.

• On the one hand for allD ∈ Dwe can first take the limit (L(D), {αD,X}X∈X) ofF (D,−) : X → Y.
This defines a functor L : D → Y

E

f

−
→

D

7−→

7−→

L(E)

−
→ L(f)

L(D)

where L(f) is the unique arrow such that the following diagram commute

L(D)

αD,X

��

L(f) // L(E)

αD,Y

��
F (D,X)

F (f,idX)
// F (E,X)

Then we can take the colimit (C, {iD}D∈D) of this functor L.

• On the other hand we can first take the colimit (C ′(X), {jD,X}D∈D) of F (−, X) : D → Y getting
a functor C ′ : X → Y

Y

g

−
→

X

7−→

7−→

C ′(Y )

−
→ C ′(g)

C ′(X)

with C ′(g) the unique arrows such that

F (D,X)

jD,X

��

F (idD,g) // F (D,Y )

jD,Y

��
C ′(X)

C′(g)

// C ′(Y )
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commutes. Then we can define (L′, {βX}X∈X) as the limit of the functor C ′.

These two construction are related: for every D ∈ D and X ∈ X we can consider the arrow
ΦD,X : L(D) → C ′(X) given by the composition

L(D)
αD,X // F (D,X)

jD,X // C ′(X)

Now, for every X ∈ X and f : D → E we have

L(D)

ΦD,X

  
L(f)

��

αD,X // F (D,X)

F (f,idX)

��

jD,X

**
C ′(X)

L(E)

ΦE,X

>>

αE,X

// F (E,X)
jE,X

44

Therefore we have an induced ΦX : C → C ′(X) and, given g : X → Y we get another diagram

L(D)

αE,X

!!

ΦD,X

''OO
OO

OO
OO

OO
O

αD,X

��

iD // C

ΦX

��
F (D,X)

jD,X

//

F (idD,g)
��

C ′(X)

C′(g)

��
F (E,X)

jE,Y

/ / C ′(Y )

showing that (C, {ΦX}X∈D) is a cone onC
′, so that there exists a unique comparisonmorphismΦ: C → L′

such that the following diagram commutes

C
ΦX

))

Φ // L′

βX

��
L(D)

ΦD,X

44

iD

OO

αD,X // F (D,X)
jD,X // C ′(X)

Remark 2.2.10. It is worth to point out explicitly that if Φ is an isomorphism, then L′ is the vertex of a
colimiting cocone on L, with coprojection L(D) → L′ induced by the family {jD,X ◦ αD,X}X∈X.

We are now going to show that when Y = Set and X is κ-small, then κ-filteredness of D is equivalent
to this comparison morphism Φ being an isomorphism; in short that κ-filtered colimits commute with
κ-small limits in Set. We start by describing κ-filtered colimits of sets.
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Lemma 2.2.11. Let F : D → Set be a functor with a κ-filtered domain, and, for every D ∈ D consider
the coprojection iD : F (D) →

∑
D∈D F (D). In addition, let ∼ be the relation on

∑
D∈D F (D) defined by

iD1
(x) ∼ iD2

(y) if and only if x ∈ F (D1), y ∈ F (D2) and there exists f : D1 → D, g : D2 → D such that

F (f)(x) = F (g)(y)

Then the following hold true:

1. ∼ is an equivalence relation;

2. if C is the quotient
∑
D∈D F (D)/∼ and π :

∑
D∈D F (D) → C is the quotient function, then a colim-

iting cocone for F is given by (C, {jD}D∈D) where jD := π ◦ iD.

Proof. 1. Symmetry and reflexivity of ∼ follows at once from the definition, We have to show transi-
tivity. Let x ∈ F (D1), y ∈ F (D2), z ∈ F (D3) be such that iD1

(x) ∼ iD2
(y) and iD2

(y) ∼ iD3
(z).

Then in D we have a diagram

D1

f1   A
AA

AA
AA

A
D2

g1~~}}
}}
}}
}}

f2 !!B
BB

BB
BB

D3

g2}}||
||
||
|

D D′

such that
F (f1)(x) = F (g1)(y) F (f2)(y) = F (g2)(z)

By Lemma 2.2.6 such a diagram admits a cocone, thus there exist morphisms h1 : D → E and
h2 : D

′ → E such that
h1 ◦ g1 = h2 ◦ f2

But then

F (h1 ◦ f1)(x) = F (h1 ◦ g1)(y)

= F (h2 ◦ f2)(y)

= F (h2 ◦ g2)(z)

Therefore iD1
(x) ∼ iD3

(z).

2. Let (X, {tD}D∈D) be a cocone on F . Then we have an arrow t : S → X such that

F (D)

jD
**

iD //

tD

&&∑

D∈D

F (D)

π
��

t // X

C
k

??

commutes. Now, if iD1
(x) ∼ iD2

(y), then there exist f1 : D1 → D and f2 : D2 → D such that

F (f1)(x) = F (f2)(y)
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Thus we have

t(iD1(x)) = tD1(x)

= tD(Ff1(x))

= tD(F (f2)(y))

= tD2(y)

= t(iD2(y))

showing the existence of the dotted k. For uniqueness: if k′ is another arrow such that k′ ◦ jD = tD
for every D ∈ D, then

k′ ◦ π ◦ iD = t ◦ iD

Hence k′ ◦ π = t, therefore k′ = k.

Corollary 2.2.12. Let F : D → Set be a functor with a κ-filtered domain, then a cocone (C, {cD}D∈D) is
colimiting for F if and only if the following hold

1. for every c ∈ C there existsD ∈ D and xD in F (D) such that cD(xD) = c;

2. if cD1(xD1) = cD2(xD2), then there exist arrows f : D1 → D and g : D2 → D such that

F (f)(xD1) = F (g)(xD2)

Remark 2.2.13. Now let F be a functor D × X → Y with D κ-filtered. Then, using the notation of
Remark 2.2.9, the previous lemma yields a surjection

πX :
∑

D∈D

F (D,X) → C ′(X)

for every X ∈ X. These surjections form a natural transformation π :
∑
D∈D F (D,−) → C ′. Indeed,

given an arrow g : X → Y , for every D ∈ D we have a diagram

∑

D∈D

F (D,X)

∑
D∈D

F (idD,g)

//

πX

��

∑

D∈D

F (D,Y )

πY

��

F (D,X)

iD,X

OO

jD,X

��

F (idD,g) // F (D,Y )

iD,Y

OO

jD,Y

��
C ′(X)

C′(g)

// C ′(Y )

in which the two inner squares commute, and thus the outer one is commutative too.

The next theorem gives us the promised characterization of κ-filtered categories.

Theorem 2.2.14. Let κ be a regular cardinal andD be a small category, then the following are equivalent:

1. D is κ-filtered;
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2. for every category X with strictly less then κ arrows and functor F : D × X → Set, the comparison
morphism Φ is an isomorphism.

Proof. Throughout this proof will use the notation of Remark 2.2.9.
(1 ⇒ 2) As for every limit, the families {βX}X∈X and {αD,X}X∈X induces injections

β : L′ →
∏

X∈X

C ′(X) αD : L(D) →
∏

X∈X

F (D,X)

which have as images, respectively

{(cX)X∈X ∈
∏

X∈X

C ′(X) | C ′(g)(cX1
) = cX2

for every g : X1 → X2}

{(aX)x∈X ∈
∏

X∈X

F (D,X) | F (idD, g)(aX1
) = aX2

for every g : X1 → X2}

In addition, Lemma 2.2.11 provides surjections

π :
∑

D∈D

L(D) → C πX :
∑

D∈D

F (D,X) → C ′(X)

These functions fit in the diagram

C
Φ // L′ βX //

β

**
C ′(X)

∏

X∈X

C ′(X)
tXoo

∑

D∈D

L(D)

π

22

L(D)
kD

oo

αD,X

''

iD

OO

αD

//
∏

X∈X

F (D,X)
pX

// F (D,X)

jD,X

;;wwwwwwwwwwwww

hD,X

//
∑

D∈D

F (D,X)

πX

OO

∏

X∈X

∑

D∈D

F (D,X)
qX

oo

∏
X∈X

πX

OO

where pX , qX and tX are projections, while kD and hD,X are coprojections.
We are going to show that the comparison morphism Φ is injective and surjective.

• Φ is injective. Let c1, c2 ∈ C such that Φ(c1) = Φ(c2), since π is surjective there exist d1 ∈ L(D1)
and d2 ∈ L(D2) such that

π(kD1
(d1)) = c1 π(kD2

(d2)) = c2

Now, by the commutativity of the diagram above, we can deduce that, for every X ∈ X, we have

πX(hD1,X(pX(αD1(d1)))) = πX(hD2,X(pX(αD2(d2))))

Thus by Lemma 2.2.11 we know that there exist f : D1 → D and g : D2 → D such that

F (f, idX)(αD1,X(d1)) = F (g, idX)(αD2,X(d2))
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but then

αD,X(L(f)(d1)) = F (f, idX)(αD1,X(d1))

= F (g, idX)(αD2,X(d2))

= αD,X(L(g)(d2))

which in turn implies that
αD(L(f)(d1)) = αD(L(g)(d2))

and the thesis now follows from Lemma 2.2.11 and the injectivity of αD.

• Φ is surjective. Let l be an element ofL′, applying β we get an element (βX(l))X∈X ofC ′(X). Now,
for every component X ∈ X there exists an object DX of D and an element dX ∈ F (DX , X)such
that

βX(l) = πX(hDX ,X(dX))

SinceD is κ-filtered andX has less then κ objects, there exists an objectDwith arrows fX : DX → D

for each X ∈ X. Let eX ∈ F (D,X) be the element F (fX , idX)(dX), by Lemma 2.2.11 we have

πX(hDX ,X(dX)) = πX(hD,X(eX))

Now let g : X1 → X2 be an arrow in X, by Remark 2.2.13

πX2
(hDX2

,X2
(dX2

)) = βX2
(l)

= C ′(g)(βX1
(l))

= C ′(g)(πX1
(hD,X1

(eX1
)))

= πX2
(hD,X2

(F (idD, g)(eX1
)))

= πX2
(hD,X2

(F (fX1
, g)(dX1

)))

Applying Lemma 2.2.11 we can deduce the existence of vg, ug : D ⇒ Dg such that

F (vg ◦ fX1
, g)(dX1

) = F (ug ◦ fX2
, idX2

)(dX2
)

Take now the diagram defined by the family {vg, ug}g∈X(X1,X2) which has less then κ arrows and
thus there a cone (E, {zg}g∈X(X1,X2)). In particular this implies that there exists an arrow z : D →
E satisfying, for every g : X1 → X2:

F (z ◦ fX1
, g)(dX1

) = F (zg ◦ vg ◦ fX1
, g)(dX1

)

= F (zg ◦ ug ◦ fX2
, idX2

)(dX2
)

= F (z ◦ fX2
, idX2

)(dX2
)

This shows that there eists a ∈ L(E) such that

αE(a) = (F (z ◦ fX , idX)(dX))X∈X

but then, using again Lemma 2.2.11

βX(Φ(iE(a))) = πX(hE,X(F (z ◦ fX , idX)(dX)))

= πX(hDX ,X(dX))

= βX(l)
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which implies
β(Φ(iE(a))) = β(l)

and we can conclude since β is injective.

(2 ⇒ 1) Let us show the three points of Definition 2.2.1.

1. D is non empty. Suppose D is empty, we can take X to be the empty category as well. Then
L : D → Y is given by the initial and C ′ : X → Set are given by the initial functor and thus the
comparison morphism Φ: C → L′ is the unique arrow ∅ → 1 which is not an isomorphism.

2. Let {Di}i∈Ia family of objects of D with |I| < κ and consider X the discrete category with them
as objects; we can take the functor F : D × X → Set sending a pair (D,Di) to the set D(Di, D).
We have that, for every Di ∈ D, F (−, Di) is simply D(Di,−), so C ′(Di) is a singleton. Now,
C ′ : X → Set is a functor on a discrete category, thus L′ is a product of singletons and therefore it
is non empty. By hypothesis Φ: C → L′ is an isomorphism, hence C is non empty too. But C is
the colimit of the functor L : D → Set given by

L(D) =
∏

i∈I

D(Di, D)

and since C is non empty L cannot be the constant functor in ∅, i.e. there exists a D such that
D(Di, D) 6= ∅ for every i ∈ I , but this is exactly the thesis.

3. Let {fi}i∈I a family of arrowsD1 → D2 with |I| < κ and take asX the subcategory ofD generated
by it. We can again define F : D × Xop → Set sending (D,Dj) to D(Dj , D), where j ∈ {1, 2}.
The argument now is similar to the one in the previous point: C ′(D1) and C ′(D2) are the colimits
of D(D1,−) and D(D2,−) so they are singletons, i.e. C ′ is equivalent to the constant functor in
1. This implies that L′ is the singleton too, which, in turn, implies that also |C| = 1. But C is the
colimit of the functor L which we can compute explicitly, indeed:

L(D) ' {g ∈ D(D2, D) | g ◦ fi = g ◦ fj for every i, j ∈ I}

Therefore, since C 6= ∅, L cannot be the functor constant in ∅, and the thesis follows.

Locally κ-presentable categories

To proceed further, we need to introduce the concept of local κ-presentability [6, 29, 51, 87].

Definition 2.2.15. Let X and Y be categories, a functor F : X → Y has rank κ if preserves κ-filtered
colimits. An object X ∈ X is said κ-presentable if X(X,−) : X → Set has rank κ, we will denote by Xκ
the full subcategory given by κ-presentable objects and by Jκ : Xκ → X the associated inclusion functor.

Remark 2.2.16. Let λ and κ be regular cardinals such that λ ≤ κ. Then Remark 2.2.2 implies that a
functor F with rank λ also has rank κ; this in turn entails that, in every category X, Xλ is a subcategory
of Xκ.

Example 2.2.17. Let (P,≤) be a poset and κ a regular cardinal, an element p ∈ P is κ-compact [1, 55] if for
every κ-directed subset S of P (i. e. a subset which is κ-directed with the induced order) with supremum
s such that p ≤ s, there exists s′ ∈ S such that p ≤ s′. κ-compact elements are exactly the κ-presentable
objects of the category associated to (P,≤).
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Example 2.2.18. For every regular κ, let κ be the category associated with the (total) order (κ,⊆) we
can consider the diagram I : κ → Set sending µ ∈ κ to itself and µ ⊆ λ to the inclusion ιµ,λ : µ→ λ. By
Remark 2.2.3 this diagram is κ-filtered and we have a colimiting cocone

µ
ιµ,λ //

iµ ��>
>>

>>
>>

> λ

iλ����
��
��
��

κ

in which iλ : µ→ κ is again given by the inclusions. On the other hand, a colimiting cocone for P ◦ I is
given by (Q(κ), {jµ}µ∈κ) where

Q(κ) :=
⋃

µ∈κ

P(µ)

and jµ : P(µ) → Q(κ) is the inclusion, so that we have a diagram

P(µ)

P(ιµ,λ)

��

lµ

##F
FF

FF
FF

F P(iµ)

$$
Q(κ)

i // P(κ)

P(λ)

lλ

;;xxxxxxxx
P(κ)

::

But the dotted arrow i : Q(κ) → P(κ) is, again, simply the inclusion, so, since κ /∈ Q(κ), it follows that
i is not an isomorphism and thus that P doesn’t have rank κ.

Proposition 2.2.19. LetG : B → Xκ be a diagram such that B has strictly less then κ arrows and suppose that
(X, {cB}B∈B) is a colimiting cone for Jκ ◦G. ThenX is κ-presentable.

Proof. Let (C, {dD}D∈D) be a colimiting cocone for a functor H : D → X with κ-filtered domain. For
simplicity , given D ∈ D and B ∈ B, set

XB := Jκ(G(B)) CD := H(D)

We can define a functor F : D× Bop → Set

(D2, B2)

(f, g)

−
→

(D1, B1)

7−→

7−→

X(XB2 , CD2)

−
→ H(f) ◦ (−) ◦ Jκ(G(g))

X(XB1
, CD1

)

Now, for every B ∈ B, since XB is κ-presentable, the κ-filtered colimit of H(−, B) = X(XB ,−) is
given by X(XB , C) with coprojections

jD,B : X(XB , CD) → X(XB , C) f 7→ dD ◦ f

and we also know that the limit of the functor sending B to X(XB , C) is X(X,C) with projections

βX : X(X,C) → X(XB , C) f 7→ f ◦ cB
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On the other hand, the limit of H(−, D) is given by X(X,CD)

αD,B ;X(X,CD) → X(XB , CD) f 7→ f ◦ cB

The thesis now follows from Remark 2.2.10 and Theorem 2.2.14.

Corollary 2.2.20. The representable functor Set(X,−) has rank κ if and only if |X| < κ.

Proof. (⇒) By Example 2.2.4 (X, {iA}A∈Pκ(X)), where iA : A → X is the inclusion of A ∈ Pκ(X), is a
κ-filtered colimit, thus (Set(X,X), {iA ◦ (−)}A∈Pκ(X)) is again colimiting. Lemma 2.2.11 now implies
that idX = iA ◦ f for some A ∈ Pκ(X) and f : X → A, showing |X| < κ.

(⇐) X '
∑

|X| 1, and 1 represents idSet, thus Proposition 2.2.19 yields the thesis.

Example 2.2.21. If S is a set with cardinality less then κ then the state monad Set(S, S × −) has rank
κ: indeed S × − preserves all colimits since it is a left adjoint, while the previous corollary entails that
Set(S,−) preserves κ-filtered colimits.

Before turning to the central concept of this section we need to introduce the notion of generator.

Definition 2.2.22. [28, 31] Let G be a set of objects of a category X. We say that G is a generator, if for
each pair f, g : X ⇒ Y with f 6= g, there existG ∈ G and h : G→ X , such that f ◦h = g◦h. A generator
is called strong (or extremal) provided that, for every mono m : M → X which is not an isomorphism,
there exists g : G→ X , with G ∈ G which does not factor throughm.

Remark 2.2.23. Let G be a (strong) generator and H be another set of objects fo X. Then if G ⊆ H, we
get that H is a (strong) generator too.

Example 2.2.24. The family containing only the terminal object provides a generator for Set and Top,
which is strong only in the first case: any bijection which is not an homeomorphism provides a coun-
terexamples to strongness in the latter case.

In the following we will need to extend a given generator adding to it some colimits. This is done in
the following way: let G be a generator for a cocomplete category X, then, for every cardinal κ, we can
construct another set Gκ, adding to G representatives for all κ-small colimits, this is done taking

Gκ :=
⋃

i∈N

Gi

where the family {Gi}i∈N is defined as follows:

• G0 := G ∪ {0}, where 0 is an initial object of X;

• Gi+1 is the obtained from Gi adding a representative for each κ-small coproduct and one for each
coequalizer diagram.

Proposition 2.2.25. Let X be a cocomplete category with a (strong) generator G. Then, for every cardinal κ,
Gκ is a (strong) generator.

Proof. First of all we can notice that, by construction, Gκ is a set: this follows at once since G0 is a set and
Gi+1 is obtained from G adding a set of new objects. The thesis now follow at once fromRemark 2.2.23

Definition 2.2.26. Let κ be a regular cardinal, a category X is locally κ-presentable if:
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1. X is cocomplete;

2. there exists a strong generator G for X, such that every object G in G is κ-presentable.

Remark 2.2.27. From Remark 2.2.16 it follows immediately that if X is locally κ-presentable category,
then it is also locally λ-presentable for every regular cardinal λ greater then κ.

Example 2.2.28. The first half of Example 2.2.24 entails that Set is locally ℵ0-presentable.

Example 2.2.29. Let (P,≤) be a poset, then cocompletenes is tantamount to asking for the existence of
a supremum for every subset of P , in particular (P,≤) must be a complete lattice. On the other hand,
since there are no parallel arrows the notion of generator becomes trivial: every subset of P is a generator.
This is not the case for strongness as shown by the following facts.

• Let G ⊆ P be a strong generator, then for every p ∈ P , p is the supremum of the set

G↓p := {g ∈ G | g ≤ p}

Indeed, let s be the supremumof this family and suppose s 6= p, then strongness implies the existence
of g ∈ G with g ≤ p and such that g ≰ s, which is absurd.

• Let G ⊆ P be a set such that, for every p ∈ P there exists Sp ⊆ G with the property that p is the
supremum of Sp, then G is a strong generator: every q ∈ P with q < p cannot be a upper bound
for Sp, thus there must exists g ∈ Sp such that g ≰ q.

Summing up, a strong generator for a cocomplete (P,≤) is a subset G such that every element of P
is the supremum of a family Sp contained in G. On the other hand, Example 2.2.17 implies that the
κ-presentable objects of (P,≤) are exactly its κ-compact elements, thus a cocomplete (P,≤) is locally κ-
presentable if and only if every elements is the supremum of a family of κ-compact objects. This is exactly
the notion of κ-algebraic lattice [1, 55, 109].

We can categorify Example 2.2.29 to provide an alternative criterion for local κ-presentability.

Lemma 2.2.30. Let κ be a regular cardinal, then for every cocomplete categoryX the following are equivalent:

1. X locally κ-presentable;

2. there exists a small subcategory Y of X, which objects are all κ-presentable in X and such that for every
objectX ∈ X there exists a functor FX : D → Y with κ-filtered domain, with the property thatX is the
vertex of a colimiting cocone for I ◦ FX , where I is the inclusion functor Y → X.

Proof. (1 ⇒ 2) Let G be a strong generator, by Proposition 2.2.25 Gκ is a strong generator too. Moreover,
Proposition 2.2.19 entails that every object in Gκ is κ-presentable. Now, given an object X ∈ X, we can
define Gκ ↓X as the category in which:

• objects are pair (G, g) made by an object G ∈ Gκ and an arrow g : G→ X ;

• an arrow (G, g) → (H,h) is an arrow f : G→ H such that the following diagram commutes.

G
f //

g   @
@@

@@
@@

@ H

h~~}}
}}
}}
}}

X
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There is an obvious functor UX : Gκ ↓X → X defined as

(H,h)

f

−
→

(G, g)

7−→

7−→

H

−
→ f

G

We can also notice that Lemma 2.2.6 implies that Gκ ↓X is κ-filtered: indeed given a diagram F : D → Gκ

with a κ-small domain, then there exists a colimiting cone (G, {cD}D∈D) for UX ◦ F . Now, let F (D) be
(GD, gD) with gD : GD → X , then for every d : D1 → D2 we have

gD2
◦ F (d) = gD1

which shows that (X, {gD}D∈D) is a cocone on UX ◦ F and thus there exists g : G→ X such that

g ◦ cD = gD

showing that ((G, g), {cD}D∈D) is a cocone on F . It is now enough to show that X is the vertex of a
colimiting cocone for UX .

For every (G, g) ∈ Gκ ↓X we can defince d(G,g) : G → X simply as g, by construction this defines a
cocone (X, {d(G,g)}(G,g)∈Gκ ↓X) on UX , let also (C, {c(G,g)}(G,g)∈Gκ ↓X) be a colimiting cocone for such
functor, there existsm : C → X such that

m ◦ c(G,g) = g

If we show that m is an isomorphism we are done. Notice that, every g : G → X with G ∈ Gκ factors
trhoughm, thus, since Gκ is a strong generator, it is enough to show thatm is a monomorphism.

Let p, q : Y ⇒ C be two arrows such thatm ◦ p = m ◦ q. Since G is a generator, if we show that

p ◦ g = q ◦ g

for any arrow g : G → X with domain in G, we can conclude. G is κ-presentable, thus there exists
(H,h) ∈ Gκ and p′, q′ : G⇒ G such that the following diagrams commute

H

c(H,h)

��

H

c(H,h)

��
G

p′
11

g
// Y

p
// C G

g
//

q′
11

Y
q

// C

There is a coequalizer diagram

G
p′ //
q′

// H
e // Q

with Q ∈ Gκ. My hypothesis we have

h ◦ p′ = m ◦ c(H,h) ◦ p
′

= m ◦ p ◦ g

= m ◦ q ◦ g

= m ◦ c(H,h) ◦ q
′

= h ◦ q′
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and thus there exists a unique k : Q→ X such that the following square commutes

H

h

  @
@@

@@
@@

@

c(H,h)

��

e // Q

k

��
C

m
// X

(Q, k) is an object of Gκ ↓X and e is an arrow (H,h) → (Q, k), thus

p ◦ g = c(H,h) ◦ p
′

= c(Q,k) ◦ e ◦ p
′

= c(Q,k) ◦ e ◦ q
′

= c(H,h) ◦ q
′

= q ◦ g

(2 ⇒ 1) Let G be the set of objects of Y. Let also f, g : X ⇒ Y be two parallel arrows, by hypothesisX is
the vertex of a colimiting cocone (X, {cD}D∈D) with cD : XD → X with XD in Y. If f 6= g, there must
be a D ∈ D such that f ◦ cD = g ◦ cD, proving that G is a generator. For strongness: let m : M → X be
a mono and suppose that every g : G → X with domain in G factors through it. In particular, for every
D ∈ D there exists dD : XD →M such thatm ◦ dD = cD and thus we have an induced n : X →M with
the property that n ◦ cD = dD, therefore

m ◦ n ◦ cD = m ◦ dD

= cD

provingm ◦ n = idX . It follows thatm is mono and split epi, hence an isomorphism.

We can now obtain a characterization for endofunctors with rank κ on a locally λ-presentable category.

Theorem 2.2.31. Let X be a locally λ-presentable category, let also κ be a regular cardinal greater or equal
than λ. Then for every functor F : X → X, the following are equivalent:

1. F has rank κ;

2. (F, idF◦Jκ) is a left Kan extension of F ◦ Jκ along Jκ;

3. the following isomorphism hold

F '

∫ X∈Xκ

X(X,−) • F (X)

Proof. (1 ⇒ 2) Let us show that (F, idF◦Jk) enjoy the universal property of a left Kan extension. Let
G : X → X be a functor and η a natural transformation F ◦ Jκ → G ◦ Jκ. We are going to construct a
η : F → G such that ηX = ηX for every X ∈ Xκ.

LetX be an object of X, by hypothesis X is locally λ-presentable so, by Remark 2.2.27, it is locally κ-
presentable too, therefore Lemma 2.2.30 implies thatX is the vertex of a colimiting cocone (X, {cD}D∈D)
withD a κ-filtered category and every cD : XD → X has a domain lying inXκ, so (F (X), {F (cD)}D∈D is
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colimiting too. This implies that there exists a unique ηX : F (X) → G(X)making the following diagram
commute

F (Jκ(XD))
ηXD //

F (cD)

��

G(Jκ(XD))

G(cD)

��
F (X)

ηX

// G(X)

Notice that, by construction, if X is an object of Xκ then η̄X = ηX , so we only have to show the
naturality of the family {ηX}X∈X. Take an arrow f : X → Y , then Y is again a vertex of a colimiting
cocone (Y, {dB}B∈B) with B κ-filtered and such that dB : YB → Y has a κ-presentable domain. Since
X(XD,−) has rank κ, it follows from Lemma 2.2.11 that there exists BD ∈ B and fD : XD → YBD

such
that the following square commutes.

XD

fD //

cD

��

YBD

dBD

��
X

f
// Y

Since Jκ is simply an inclusion, for every D ∈ D we get a commutative diagram in X

F (XD)F (cD)

yy

F (cD)

%%F (fD)||yy
yy
yy
yy

ηXD ""E
EE

EE
EE

E

F (X)

F (f)

��

F (YBD
)

F (dBD
)yyttt

tt
tt
tt

ηYBD ""F
FF

FF
FF

F
G(XD)

G(fD)||yy
yy
yy
yy

G(cD) $$J
JJ

JJ
JJ

JJ
F (X)

ηX

��
F (Y )

ηY --

G(YBD
)

G(dBD
)

��

G(X)

G(f)qqG(Y )

which, by the colimiting property of (F (X), {F (cD)}D∈D), shows that

G(f) ◦ ηX = ηY ◦ F (f)

We are left with uniqueness. If ϵ : F → G is a natural transformation such that ϵY = ηY for every
Y ∈ Xκ, then, for every D ∈ D we have

ϵX ◦ F (cD) = G(cD) ◦ ϵXD

= G(cD) ◦ ηXD

= ηX ◦ F (cD)

from which the thesis follows using again the fact that (F (X), {F (cD)}D∈D) is colimiting.

(2 ⇒ 3) This follows from the explicit formula for left Kan extensions.

(3 ⇒ 1) (−) • F (X) is a left adjoint, so it preserves all colimits, X(X,−) preserves κ-filtered colimits by
hypothesis. Thus the thesis follows since coends commute with all colimits.
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Remark 2.2.32. Take as X the category of Set, then for every S ∈ Set (−) • S, being the left adjoint to
Set(S,−), coincides, up to isomorphism, with (−) × S. Thus if a functor F : Set → Set has rank κ, we
must have the following isomorphism

F '

∫ Y ∈Setκ

Set(Y,−)× F (Y )

Moreover, the coproduct structure T × S is given by

ιt : S → T × S s 7→ (t, s)

so that we can write the components ωX,Y : Set(Y,X)× F (Y ) → F (X) of the initial cowedge ωX as

ωX,Y : Set(Y,X)× F (Y ) → F (X) (f, t) 7→ T (f)(t)

We end this section with a brief discussion of the results obtained applying the notion of rank to
monads.

Definition 2.2.33. Let κ be a regular cardinal we will say that a monad T = (T, η, µ) on a category X has
rank κ if κ is the rank of T .

Let Jκ be the inclusion Setκ → Set, by Remark Remark 2.2.27 and 2.2.28, Corollary 2.2.20 and The-
orem 2.2.31, monads with rank κ are exactly Jκ-monad as defined in Definition 2.1.27. Take now two
monads T and S with rank, respectively, κ and λ and let also µ be the maximum between them, by Re-
mark 2.2.16 they have both rank µ, thus we can apply Proposition 2.1.28 to get the next result.

Proposition 2.2.34. There exists a category RMnd in which objects are monads T on Set with rank, and
arrows are morphism of monads.

Finally, we point out the following two results .

Proposition 2.2.35. Let L : Y → X andR : X → Y be functor such that L a R, and suppose thatR has rank
κ. Then R ◦ L has rank κ too.

Proof. This follows at once since L, being a left adjoint, preserves all colimits.

Corollary 2.2.36. The following are equivalent for a monad T on a cocomplete category X:

1. T has rank κ;

2. UT has rank κ.

Proof. (1 ⇒ 2) Let F : D → EM(T) be a functor with κ-filtered domain, since T preserves κ-filtered
colimits, then the thesis follows applying Proposition 2.1.33 and Remark 2.1.34.

(2 ⇒ 1) This is a consequence of Proposition 2.2.35.
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2.2.2 Algebraic theories

Let us start recalling the traditional notion of algebraic theory from universal algebra [88, 89, 115].

Definition 2.2.37. LetCard be the class of all cardinals, an algebraic signatureΣ is a pair (OΣ, arΣ), where
OΣ is a class of operations and arΣ is a function OΣ → Card such that, for every cardinal κ,

OΣ,κ := {o ∈ OΣ | arΣ(o) = κ}

is a set, called the set of operations of arity κ. Given a regular cardinal κ, we will say that Σ is κ-bounded if
OΣ,λ = ∅ for every cardinal λ such that λ ≥ κ .

The category Signκ is defined as the category with κ-bounded signatures as objects and in which a
morphism f : Σ1 → Σ2 is a function OΣ1

→ OΣ2
such that the following triangle commutes.

OΣ1

f //

arΣ1 ##F
FF

FF
FF

F
OΣ2

arΣ2{{xx
xx
xx
xx

Card

Remark 2.2.38. If Σ is κ-bounded, then OΣ is a set, not a proper class, so that Signκ(Σ1,Σ2) is a set too,
proving that Signκ is really a category.

Example 2.2.39. The signature ΣS of semigroups is given by (OΣS
, arΣS

) where

OΣS
= {·} arΣS

(·) = 2

Example 2.2.40. The signature ΣM of monoids is given by (OΣM
, arΣM

) where OΣG
= {·, e} and

arΣG
(·) = 2 arΣG

(e) = 0

Example 2.2.41. The signature ΣG of groups is (OΣG
, arΣG

) where OΣG
= {·, e, (−)−1} and

arΣG
(·) = 2 arΣG

(e) = 0 arΣG

(
(−)−1

)
= 1

Definition 2.2.42. Let Σ be an algebraic signature, a Σ-algebra A is a pair (A, {oA}o∈OΣ) where A is a
set and, for every o ∈ OΣ, oA is a function AarΣ(o) → A. A Σ-homomorphism f : A → B is a function
f : A→ B such that, for every o ∈ OΣ, the following rectangle commutes

AarΣ(o)

oA

��

farΣ(o)

// BarΣ(o)

oB

��
A

f
// B

We will denote by Σ-Alg the category of Σ-algebras and Σ-homomorphisms, and by UΣ the functor
Σ-Alg → Set defined by

(B, {oB}o∈OΣ
)

f

−
→

(A, {oA}o∈OΣ
)

7−→

7−→

B

−
→ f

A
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Now let f : Σ1 → Σ2 be a morphism of Signκ and take a Σ2-algebra A = (A, {pA}p∈OΣ2
), then we

can define a Σ1-algebra on f∗(A) = (A, {of
∗(A)}o∈OΣ1

) putting, for every o ∈ OΣ1

of
∗(A) := (f(o))A

which is well-defined since arΣ1(o) = arΣ2(f(o)). This construction can be easily extended to a functor.

Proposition 2.2.43. For every morphism f : Σ1 → Σ2 of Signκ there is a functor f∗ : Σ2-Alg → Σ1-Alg
sending a Σ1-algebra A to f∗(A).

Proof. We have to extend the previous contruction to morphism. Let g : A → B be aΣ2-homomorphism,
then for every p ∈ OΣ2

we have a commutative rectangle

AarΣ(p)

pA

��

garΣ(p)

// BarΣ(p)

pB

��
A

g
// B

In particular this holds when p = f(o) for some o ∈ OΣ1
, which gives us the thesis.

Remark 2.2.44. Notice that, for every κ-bounded signature Σ, id∗Σ is the identity functor on Σ-Alg.
Moreover, given f : Σ1 → Σ2 and g : Σ2 → Σ3, then

(g ◦ f)∗ = f∗ ◦ g∗

Remark 2.2.45. Given f : Σ1 → Σ2, the induced f∗ : Σ2-Alg → Σ1-Alg commutes with the forgetful
functor, i.e. the following diagram is commutative.

Σ2-Alg
f∗

//

UΣ2 ##G
GG

GG
GG

G
Σ1-Alg

UΣ1{{ww
ww
ww
ww

Set

The free Σ-algebra

Let us look more closely at the forgetful functor UΣ : Σ-Alg → Set. The following results show that the
boundedness of Σ is encoded into its rank.

Lemma 2.2.46. LetΣ be a κ-bounded signature and F : D → Σ-Alg be a functor with a κ-filtered domain, let
also (A, {cD}D∈D) be a colimiting cocone forUΣ◦F . Then there exists a uniqueA inΣ-Alg such thatUΣ(A) =
A, and which makes every cD a Σ-homomorphism F (D) → A. Moreover, the cocone (A, {cD}D∈D) is
colimiting for F .

Proof. Since arΣ(o) < κ for every o ∈ OΣ, Corollary 2.2.20 entails that (AarΣ(o), {c
arΣ(o)
D }D∈D) is

colimiting for the functor (UΣ(F (−)))arΣ(o). Let f : D1 → D2 be an arrow of D, then F (f) is a Σ-
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homomorphism, so that we have a diagram

(UΣ(F (D1)))
arΣ(o)

F (f)arΣ(o)

��

oF (D1)
// UΣ(F (D1))

F (f)

��

cD1

##
A

(UΣ(F (D2)))
arΣ(o)

oF (D2)

// UΣ(F (D2))
cD2

;;

and thus there exists a unique oA : AarΣ(o) → A such that

(UΣ(F (D)))arΣ(o)

c
arΣ(o)

D

��

oF (D)
// UΣ(F (D))

cD

��
AarΣ

oA
// A

commutes. Let A be (A, {oA}o∈OΣ) the resulting Σ-algebra, we are going to show that (A, {cD}D∈D)
is colimiting for F . Let (B, {dD}D) be another cocone on F , we already know that there is a unique
d : A → B, where B = UΣ(B), such that d ◦ cD = dD, if we show that it is a Σ-homomorphism we are
done. Since each dD is an arrow of Σ-Alg we have

d ◦ oA ◦ c
arΣ(o)
D = d ◦ cD ◦ oF (D)

= dD ◦ oF (D)

= oB ◦ d
arΣ(o)
D

= oB ◦ darΣ(o) ◦ c
arΣ(o)
D

and the thesis follows from the colimiting property of (AarΣ(o), {c
arΣ(o)
D }D∈D).

Corollary 2.2.47. Let Σ be a κ-bounded signature for some regular cardinal κ, then the following hold

1. Σ-Alg has all κ-filtered colimits;

2. UΣ has rank κ.

Our next step is to show that UΣ is a right adjoint whenever Σ is κ-bounded (see, for instance [7, 88,
89]). Thus let Σ be κ-bounded. By Remark 2.2.38, OΣ is a set, hence given X ∈ Set we can define

S(X) :=
∑

o∈OΣ

XarΣ(o)

which provides us with a functor S : Set → Set. Let κ be the category associated with the (total) order
(κ,⊆), we can use S to inductively define a functor DX : κ → Set. We will denote by tµ,λ : DX(µ) →
DX(λ) the image of an inequality µ ≤ λ.

• If λ is a limit ordinal, suppose that the functorDX is defined for all µ < λ, that is to say that we have
a diagramDλ

X : λ → Set and we can defineDX(λ) and tµ,λ : DX(µ) → DX(λ) as, respectively, the
vertex and the coprojections of a colimiting cocone for Dλ

X .
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• If λ = µ+ 1 is a successor, we can put DX(λ) := X + S(DX(µ)). By induction, to construct tα,λ
for an α ≤ λ it is enough to define tµ,λ. We have two cases.

– µ is a successor too. Then µ = β + 1 for some β and DX(µ) = X + S(DX(β)) and we can
define tµ,λ as idX + S(tβ,µ).

– µ is a limit ordinal. Then for every β < µ we can define tβ,λ as the composition

DX(β)
tβ,β+1 // X + S(DX(β))

idX+S(tβ,µ) // X + S(DX(µ))

Now, for every γ ∈ µ such that β ≤ γ we have a diagram

DX(β)

tβ,γ

��

tβ,β+1 // X + S(DX(β))

tγ,γ+1

��

idX+S(tβ,µ)

&&
X + S(DX(µ))

DX(γ)
tγ,γ+1

// X + S(DX(γ)) idX+S(tγ,µ)

88

which commutes since, by the previous point, tγ,γ+1 = idX+S(tβ,γ). But this commutativity
entails that (DX(λ), {tβ,λ}β<µ) is a cocone on D

µ
X and we get tµ,λ as the induced arrow.

Remark 2.2.48. We shall remark two things about the construction of DX .

• The first item of the previous induction yields DX(0) = ∅.

• For every λ, if µ ≤ λ, then tµ+1,λ+1 is given by idX + S(tµ,λ).

Definition 2.2.49. Given a κ-bounded algebraic signature κ, the set TΣ(X) of Σ-terms on the setX is the
vertex of a colimiting cocone (TΣ(X), {jX,λ}λ∈κ) for the functor DX : κ → Set defined above. Given
o ∈ OΣ and σ : arΣ(o) → TΣ,λ(X), o(σ) will denote the image of (o, σ) under the composition

S(DX(λ))
sλ // DX(λ+ 1)

jX,λ+1 // TΣ(X)

where sλ is the inclusion S(DX(λ)) → DX(λ+ 1).

Notation. When arΣ(o) = 0, there is only one arrow ?TΣ,λ(X) : ∅ → TΣ,λ(X). In such a case we will
write simply o for o(?TΣ,λ(X)).

Take an operation o ∈ OΣ, then for every λ ∈ κ an element of (DX(λ))arΣ(o) is just a function
σ : arΣ(o) → DX(λ) and

DX(λ+ 1) = X +
∑

o∈OΣ

(DX(λ))arΣ(o)

So we can define oFΣ(X)
λ : (DX(λ))arΣ(o) → DX(λ + 1) simply as the inclusion on the component

given by o. Now, if α ≤ β then

tα+1,β+1 = idX +
∑

o∈OΣ

t
arΣ(o)
α,β
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thus the following diagram is commutative

(DX(α))arΣ(o)

t
arΣ(o)

α,β

��

o
FΣ(X)
α // X + S(DX(α))

tα+1,β+1

��
(DX(β))arΣ(o)

o
FΣ(X)

β

// X + S(DX(β))

and this implies that (TΣ(X), {jX,λ+1◦o
FΣ(X)
λ }λ∈κ) is a cocone on the composition ofDX and (−)arΣ(o).

Now, from Remark 2.2.3 and Corollary 2.2.20 it follows that

(
(TΣ(X))

arΣ(o)
,
{
j
arΣ(o)
λ

}
λ∈κ

)
is a

colimiting cocone for the composite functor (−)arΣ(o) ◦ DX , therefore there exists a unique function
oFΣ(X) : (TΣ(X))arΣ(X) → TΣ(X) making the following diagram commutes.

(DX(λ))arΣ(o)
o
FΣ(X)

λ //

j
arΣ(o)

i

��

DX(λ)

jX,λ+1

��
(TΣ(X))arΣ(o)

oFΣ(X)

// TΣ(X)

Remark 2.2.50. Since TΣ(X) arises as the vertex of a κ-filtered colimit and (−)arΣ(o) has rank κ for every
o ∈ OΣ, it follows from Lemma 2.2.11 that every σ : arΣ(o) → TΣ(X) factors through DX(λ) for some
λ ∈ κ. Moreover, given σ : arΣ(o) → DX(λ), then, by definition, o(σ) coincides with oFΣ(X)(jX,λ ◦ σ).
Therefore, we can conclude that, for every σ : arΣ(o) → TΣ(X)

oFΣ(X)(σ) = o(σ)

Theorem 2.2.51. Let Σ be a κ-bounded algebraic signature, then UΣ : Σ-Alg → Set has a left adjoint.

Proof. LetX be a set and define FΣ(X) as (TΣ(X), {oFΣ(X)}o∈OΣ
). By definitionDX(1) = X+S(∅), so

we can take ηΣ,X : X → TΣ(X) as the composition of an inclusion with the coprojection jX,1 : D1(X) →
TΣ(X). Take also a function f : X → A, whereA = UΣ(A); for every λ ∈ κwe are going to use induction
in order to define an arrow fλ : DX(λ) → A such that, for every µ ≤ λ

fλ ◦ tµ,λ = fµ

and the following rectangle commutes

(DX(λ))arΣ(o)

f
arΣ(o)

λ
��

o
FΣ(X)

λ // DX(λ+ 1)

fλ+1

��
AarΣ(o)

oA
// A

• If λ is a limit ordinal and fµ is defined for all µ < λ, then (A, {fµ}µ<λ) is a cocone (empty if λ = 0)
and we can take fλ : DX(λ) → A to be the induced arrow.
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• Let λ be µ+1 for some µ, given o ∈ OΣ, let also kµ,o : (DX(µ))arΣ(o) → DX(µ) be the correspond-
ing coprojection. We can define hλ : S(DX(λ)) → A as the unique arrow such that the following
diagram commutes

(DX(µ))arΣ(o)

f
arΣ(o)
µ

��

kµ,o // S(DX(µ))

hλ

��
AarΣ(o)

oA
// A

commutes, and use it to define fλ : X +DX(λ) → A as 〈f, hλ〉. Notice that we get a diagram

(DX(µ))arΣ(o)

o
FΣ(X)
µ

))

f
arΣ(o)
µ

��

kµ,o // S(DX(µ))
sµ //

hλ

��

DX(λ)

fλttAarΣ(o)

oA
// A

so we only need to check that fλ ◦ tµ,λ = fµ to conclude our induction.

– Suppose µ = β + 1 is a successor too. Then tµ,λ = idX + S(tβ,µ) and thus

fλ ◦ tµ,λ = 〈f, hλ ◦ S(tβ,µ)〉

thus if hλ◦S(tβ,µ = hµ we are done, but this follows from the commutativity of the following
diagram for each o ∈ OΣ.

(DX(β))arΣ(o)
kβ,o //

t
arΣ(o)

µ,β

��
f
arΣ(o)

β

##

S(DX(β))

S(tβ,µ)

��
(DX(µ))arΣ(o)

f
arΣ(o)
µ

��

kµ,o // S(DX(µ))

hλ

��
AarΣ(o)

oA
// A

– If µ is a limit, take β < µ, then we have a diagram

(DX(β))arΣ(o)

f
arΣ(o)

β

))

kβ,o

��

t
arΣ(o)

β,µ // (DX(µ))arΣ(o)

kµ,o

��

f
arΣ(o)
µ // AarΣ(o)

oA

��
S(DX(β))

S(tβ,µ)
// S(DX(µ))

hλ

// A
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which shows that hλ ◦ S(tβ,µ) = hβ+1. This in turn entails that

fλ ◦ tβ,λ = 〈f, hλ〉 ◦ idX + S(tβ,µ) ◦ tβ,β+1

= 〈f, hλ ◦ S(tβ,µ)〉 ◦ tβ,β+1

= 〈f, hβ+1〉 ◦ tβ,β+1

= fβ+1 ◦ tβ,β+1

= fβ

But then we also have

fλ ◦ tµ,λ ◦ tβ,µ = fλ ◦ tβ,λ

= fβ

= fµ ◦ tβ,µ

from which fλ ◦ tµ,λ = fµ follows at once.

Now, by construction we have a cone (A, {fλ}λ∈κ) which induces fΣ,∗ : TΣ(X) → A such that

f = fΣ,∗ ◦ ηΣ,X

Moreover all the internal rectangles and triangles of the diagram below are commutative, so that we can
conclude that fΣ,∗ is a Σ-homomorphism FΣ(X) → A.

(TΣ(X))arΣ(o)
oFΣ (X) //

f
arΣ(o)
∗

��

TΣ(X)

f∗

��

(DX(λ))arΣ(o)

j
arΣ(o)

λ

iiRRRRRRRRRRRRRR

f
arΣ(o)

λuukkkk
kkk

kkk
kkk

kk

o
FΣ(X)

λ // DX(λ+ 1)

jλ+1

77oooooooooooo

fλ+1

''PP
PPP

PPP
PPP

PPP

AarΣ(o)

oA
// A

We are left with uniqueness: let k : FΣ(X) → A such that k ◦ ηΣ,X = f , we can proceed by induction
to show that k ◦ jX,λ = fλ for every λ ∈ κ.

• Let λ be a limit ordinal, and suppose that k ◦ jµ = fµ for every µ < λ, then

k ◦ jX,λ ◦ tµ,λ = k ◦ jX,µ

= fµ

= fX,λ ◦ tµ,λ

and we can conclude since (DX(λ), {tµ,λ}µ<λ) is a colimiting cocone.
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• If λ = µ+ 1 for some ordinal µ, since k is a Σ-homomorphism we get diagrams

(DX(µ))arΣ(o)
o
FΣ(X)
µ //

j
arΣ(o)

X,µ

��
f
arΣ(o)
µ

!!

DX(λ)

jX,λ

��

X

f

''ηΣ,X //

lλ

��

l1

��

TΣ(X)
k // A

(TΣ(X))arΣ(o) oFΣ(X)
//

karΣ(o)

��

TΣ(X)

k

� �

DX(1)

jX,1

>>

t1,λ

��
AarΣ(o)

oA
// A DX(λ)

jX,λ

FF

where l1 and lλ are coprojections. Notice that the commutativity of the diagram on the right is
guaranteed by Remark 2.2.48. We can conclude that

fλ ◦ o
FΣ(X)
µ = k ◦ jX,λ ◦ o

FΣ(X)
µ k ◦ jX,λ ◦ lλ = fλ ◦ lλ

which entail the thesis.

Let TΣ be UΣ◦FΣ, using Corollary 2.2.47 and Proposition 2.2.35 we can deduce at once the following.

Corollary 2.2.52. Let Σ be a κ-bounded signature, then the TΣ has rank κ.

The calculus of Σ-equations

We have now all the ingredients needed to introduce equations and their calculus.

Definition 2.2.53. Given Σ be a κ-bounded algebraic signature, the set Eq(Σ) of Σ-equations (or simply
an equation) is defined as

Eq(Σ) :=
∑

λ∈κ

TΣ(λ)× TΣ(λ)

For every λ ∈ κ, the image of (t1, t2) ∈ TΣ(λ) × TΣ(λ) in Eq(σ) will be denoted by λ | t1 ≡ t2 and we
will call λ the context of the equation.

For every S ⊆ Eq(Σ), its deductive closure S⊢ is the smallest subset of Eq(Σ) which contains S and it
is closed under the rules of Fig. 2.1, i.e. if all the premises of a rule are in it, then so is the conclusion. An
equation is derivable from S (or simply derivable if S = ∅) if it belongs to S⊢.

Notation. We will always use 0 to denote ∅ when it appears as a context.

Remark 2.2.54. Let µ and λ be two cardinals in κ such that µ ≤ λ, so that we can consider the inclusion
ιµ,λ : µ→ λ. Applying Subst to ηΣ,λ ◦ ιµ,λ we get the following rule

µ ≤ λ µ | t1 ≡ t2

λ | TΣ (ιµ,λ) (t1) ≡ TΣ (ιµ,λ) (t2)
Incl

which can be interpreted as a form of weakening.
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λ | t ≡ t
Refl

λ | t1 ≡ t2

λ | t2 ≡ t1
Sym

λ | t1 ≡ t2 λ | t2 ≡ t3

λ | t1 ≡ t3
Trans

σ : λ1 → TΣ(λ2) λ1 | t1 ≡ t2

λ2 | σΣ,∗(t1) ≡ σΣ,∗(t2)
Subst

o ∈ OΣ σ1, σ2 : arΣ(o) ⇒ TΣ(λ) {λ | σ1(α) ≡ σ2(α)}α∈arΣ(o)

λ | o(σ1) ≡ o(σ2)
Cong

Figure 2.1: Derivation rules for the calculus of Σ-equations.

Proposition 2.2.55. Let Σ be a κ-bounded signature, then the following hold:

1. if S1 and S2 are subsets of Eq(Σ) and S1 ⊆ S2, then S⊢
1 ⊆ S⊢

2 ;

2. for every S ⊆ Eq(Σ),
(
S⊢
)
⊢ = S⊢.

Proof. 1. This follows at once since S⊢
2 contains S2.

2. Clearly S ⊆ S⊢, so S⊢ ⊆
(
S⊢
)
⊢. On the other hand S⊢ is closed under the rules of our calculus

by definition, so
(
S⊢
)
⊢ ⊆ S⊢.

Now let f : Σ1 → Σ2 be a morphism in Signκ. We wish to have a way to translate a Σ1-equation to
a Σ2 equation. Now, if we denote by ηΣ1,λ : λ → TΣ1(λ) and ηΣ2,λ : λ → TΣ2(λ) the components in
λ ∈ κ of the units of, respectively, the adjunctions FΣ1

a UΣ1
and FΣ2

a UΣ2
, we know that there exists

a unique (ηΣ2,λ)Σ1,∗
: FΣ1

(λ) → f∗(FΣ2
(λ)) such that the following diagram commutes in Set.

λ
ηΣ1,λ

||yy
yy
yy
yy
y

ηΣ2,λ

""E
EE

EE
EE

EE

TΣ1
(λ)

(ηΣ2,λ)
Σ1,∗

// TΣ2
(λ)

We can use this arrow to extend the construction of equations to a functor.

Proposition 2.2.56. There exists a functor Eq : Signκ → Set sending a signature Σ to the set of Σ-equations.

Proof. Let f be a morphism Σ1 → Σ2 in Signκ, then we can define

trf,λ : TΣ1
(λ)× TΣ1

(λ) → TΣ2
(λ)× TΣ2

(λ)

putting trf,λ := (ηΣ2,λ)Σ1,∗
× (ηΣ2,λ)Σ1,∗

. To get the thesis it is now enough to define the image of f as

the translating function trf : Eq(Σ1) → Eq(Σ2) given by the sum of the family {trf,λ}λ∈κ.

Definition 2.2.57. A subset Λ ⊆ Eq(Σ) is aΣ-theory (or simply a theory) if Λ = S⊢ for some S ⊆ Eq(Σ).
An axiom for a Σ-theory Λ is simply an element of such an S.

We say that Σ-algebra A = (A, {oA}o∈OΣ
), satisfies a Σ-equation λ | t1 ≡ t2 if, for every f : λ → A,

the induced morphism fΣ,∗ : FΣ(λ) → A satisfies

fΣ,∗(t1) = fΣ,∗(t2)
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Finally, the category Mod(Λ) of models of a Σ-theory Λ is the full subcategory of Σ-Alg given by
algebras satisfying all the equations in Λ. We will denote by UΛ : Mod(Λ) → Set the restriction of UΣ.

Lemma 2.2.58. For everyΣ-algebraA = (A, {oA}o∈OΣ), ifA satisfies all the premises of a rule of the calculus
of equations, then it satisfies also its conclusion.

Proof. The thesis follows at once for rules Refl, Sym and Trans, let us examine the other two.

Subst. Take f : λ2 → A, then
fΣ,∗ ◦ σΣ,∗ ◦ ηΣ,λ1

= fΣ,∗ ◦ σ

and thus fΣ,∗ ◦ σΣ,∗ = (fΣ,∗ ◦ σ)Σ,∗. From this we can compute and get

fΣ,∗ (σΣ,∗(t1)) = (fΣ,∗ ◦ σ)Σ,∗ (t1)

= (fΣ,∗ ◦ σ)Σ,∗ (t2)

= fΣ,∗ (σΣ,∗(t2))

Cong. Since A satisfies the family of equations {λ | σ1(α) ≡ σ2(α)}α∈arΣ(o) it follows that

fΣ,∗ ◦ σ1 = fΣ,∗ ◦ σ2

for every f : λ→ A. Now, since fΣ,∗ is a Σ-homomorphism, we have a diagram

(TΣ(λ))
arΣ(o)

f
arΣ(o)

Σ,∗ //

oFΣ(λ)

��

AarΣ(o)

oA

��
TΣ(λ)

fΣ,∗

// A

which, by Remark 2.2.50, entails that

fΣ,∗(o(σ1) = fΣ,∗

(
oFΣ(λ)(σ1)

)

= oA
(
f
arΣ(o)
Σ,∗ (σ1)

)

= oA(fΣ,∗ ◦ σ1)

= oA(fΣ,∗ ◦ σ2)

= oA
(
f
arΣ(o)
Σ,∗ (σ2)

)

= fΣ,∗

(
oFΣ(λ)(σ2)

)

= fΣ,∗(o(σ2))

and we are done.

Corollary 2.2.59. Let Λ be a Σ-theory and S a set of axioms for it, then a Σ-algebra is a model of Λ if and
only if it satisfies every equation in S.
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Notation. In order to improve readability, we will use x, y, z (possibly with a subscript), to denote vari-
ables coming from some λ. We will also use infix notation for operations of arity 2. For instance, given a
signature OΣ = {+} with arΣ(+) = 2, we will write x+ y instead of +(ηΣ,2).

Example 2.2.60. The first example of a Σ-theory is the one with empty set of axioms: its models are all
the Σ-algebras.

Example 2.2.61. Take the signature ΣS of Example 2.2.39, the theory ΛS of semigroups is the ΣS -theory
with axiom

3 | x · (y · z) ≡ (x · y) · z

The models for this theory are precisely the semigroups.

Example 2.2.62. The theory ΛM of monoids is the ΣM -theory given by the axioms

3 | x · (y · z) ≡ (x · y) · z 1 | e · x ≡ x 1 | x · e ≡ x

Taking Mod(ΛM ) we recover the classical category of monoids and their homomorphisms.

Example 2.2.63. In the signature ΣG of Example 2.2.41, we can define the theory of groups ΛG as the one
generated by the following axioms

1 | x · x−1 ≡ e 1 | x−1 · x ≡ e 1 | e · x ≡ x 1 | x · e ≡ x 3 | (x · y) · z ≡ x · (y · z)

In this case, Mod(ΛG) coincides with Grp, the category of groups.

Let us take a closer look to UΛ : Mod(Λ) → Set, proving that it preserves some colimits.

Lemma 2.2.64. LetΣ be a κ-bounded algebraic signature andΛ aΣ-theory. In addition, let IΛ be the inclusion
Mod(Λ) → Σ-Alg and F : D → Mod(Λ) a functor with κ-filtered domain. If (A, {cD}D∈D) is a colimiting
cocone for IΛ ◦ F then A is a model for Λ.

Proof. Let λ | t1 ≡ t2 be an equation in Λ and f : λ → UΣ(A). Since λ < κ, Corollary 2.2.47 implies
that there exists D ∈ D and g : λ→ UΣ(IΛ(F (D))) such that f = cD ◦ g. Now

cD ◦ gΣ,∗ ◦ ηΣ,λ = cD ◦ g

thus fΣ,∗ = cD ◦ gΣ,∗. By hypothesis F (D) is a model of Λ, so that

fΣ,∗(t1) = cD(gΣ,∗(t1))

= cD(gΣ,∗(t2))

= fΣ,∗(t2)

from which we can deduce that A belongs to Mod(Λ).

Corollary 2.2.65. For every κ-bounded signature Σ and Σ-theory Λ, UΛ : Mod(Λ) → Set has rank κ.
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The free model of a theory

We have ended the last section by establishing that the forgetful functor UΛ : Mod(Λ) → Set has rank κ
whenever Λ is a theory in a κ-bounded signature. We are now going to show that UΛ has a left adjoint.

Definition 2.2.66. Let A = (A, {oA}o∈OΣ) be a Σ-algebra for an algebraic signature Σ. A Σ-congruence
(or simply a congruence) is an equivalence relation ∼ on A, such that, for every o ∈ OΣ and functions
σ1, σ2 : arΣ(o) ⇒ A, if σ1(α) ∼ σ2(α) for every α ∈ arΣ(o), then oA(σ1) ∼ oA(σ2).

Proposition 2.2.67. Let e : A → B be a Σ-homomorphism such that UΣ(e) is surjective, let also f : A → C
be another Σ-homomorphism such that f(a1) = f(a2) whenever e(a1) = e(a2), then the unique arrow
g : UΣ(B) → UΣ(C) fitting in the following diagram is a Σ-homomorphism.

UΣ(A)
f //

(UΣ)(e)

��

UΣ(C)

UΣ(B)
g

DD

Proof. For every o ∈ OΣ have the following chain of equalities:

oC ◦ garΣ(o) ◦ earΣ(o) = oC ◦ farΣ(o)

= f ◦ oA

= g ◦ e ◦ oA

= g ◦ oB ◦ earΣ(o)

and the thesis follows since earΣ(o) is epi in Set.

Lemma 2.2.68. Let A = (A, {oA}o∈OΣ) be a Σ-algebra and ∼ a congruence on it. Let π : A → B be the
projection on the quotient. Then the following hold:

1. there exists a unique Σ-algebra B = (B, {oB}o∈OΣ), called the quotient Σ-algebra, which makes the
function π a Σ-homomorphism;

2. if f : A → C is aΣ-homomorphism such that f(a1) = f(a2) for every a1, a2 satisfying π(a1) = π(a2),
then the unique arrow g : B → UΣ(C) is a Σ-homomorphism.

Proof. 1. Take o ∈ OΣ and σ1, σ2 : arΣ(o) ⇒ A such that

π ◦ σ1 = π ◦ σ2

then for every α ∈ arΣ(o) we have σ1(α) ∼ σ2(α), and thus, since ∼ is a Σ-congruence

π(oA(σ1)) = π(oA(σ2))

By the axiom of choice, π has a section, thus πarΣ(o) is surjective, and the equation above implies
the existence of a unique oB : BarΣ(o) → B making the following rectangle commutative

AarΣ(o) oA //

πarΣ(o)

��

A

π

��
BarΣ(o)

oB
// B
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which is precisely what we had to show.

2. This follows from Proposition 2.2.67.

Definition 2.2.69. Let Λ be a Σ-theory for a κ-bounded signature Σ. For every cardinal λ < κ, we define
a relation ∼Λ,λ on TΣ(λ) putting t1 ∼Λ,λ t2 if and only if λ | t1 ≡ t2 belongs to Λ.

Proposition 2.2.70. Given a κ-bounded signature Σ, λ < κ and a Σ-theory Λ, the relation ∼Λ,λ is a Σ-
congruence on FΣ(λ).

Proof. Rules Refl, Sym and Trans imply that ∼Λ,λ is an equivalence relation. To see that it is a con-
gruence, take o ∈ OΣ, σ1, σ2 : arΣ(o) ⇒ TΣ(λ) and suppose that, for every α ∈ arΣ(o), the equation
λ | σ1(α) ≡ σ2(α) belongs to Λ. Then we can apply rule Cong and get

σ1, σ2 : arΣ(o) ⇒ TΣ(λ) {λ | σ1(α) ≡ σ2(α)}α∈arΣ(o)

λ | o(σ1) ≡ o(σ2)
Cong

which, by Remark 2.2.50, means exactly that

oFΣ(λ)(σ1) ∼Λ,λ o
FΣ(λ)(σ2)

and we can conclude at once.

Since ∼Λ,λ is a Σ-congruence we can use Lemma 2.2.68 to obtain, for every λ < κ, the quotient Σ-
algebra FΛ(λ). Equations satisfied by this Σ-algebra are exactly the ones belonging to Λ, as shown by the
following proposition.

Proposition 2.2.71. Let Σ be a κ-bounded signature Σ, Λ a Σ-theory and λκ. Then an equation λ | t1 ≡ t2
belongs to Λ if and only if it is satisfied by FΛ(λ).

Notation. We will denote UΣ(FΛ(λ)) with TΛ(λ) and use πΛ,λ to denote the quotient arrow.

Remark 2.2.72. In particular, the second half of the thesis entails that FΛ(λ) is a model for Λ.

Proof. (⇒) Take an equation λ | t1 ≡ t2 belonging to Λ and a function f : λ→ TΛ(λ). Fix also a section
s : TΛ(λ) → TΣ(λ) of πλ, this yields a function s ◦ f : λ→ TΣ(λ). Notice that

πΛ,λ ◦ (s ◦ f)Σ,∗ ◦ ηΣ,λ = πλ ◦ s ◦ f

= f

Thus πΛ,λ ◦ (s ◦ f)Σ,∗ = fΣ,∗. Now, we can apply rule Subst to get

s ◦ f : λ→ TΣ(λ) λ | t1 ≡ t2

λ | (s ◦ f)Σ,∗(t1) ≡ (s ◦ f)Σ,∗(t2)
Subst

Therefore

fΣ,∗(t1) = πΛ,λ((s ◦ f)Σ,∗(t1))

= πΛ,λ((s ◦ f)Σ,∗(t2))

= fΣ,∗(t2)
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(⇐) Suppose that λ | t1 ≡ t2 is satisfied by FΛ(λ) and consider the arrow πΛ,λ ◦ ηΣ,λ : λ→ TΛ(λ). Since
πΛ,λ is a Σ-homomorphism we have

(πΛ,λ ◦ ηΣ,λ)Σ,∗ = πΛ,λ ◦ (ηΣ,λ)Σ,∗

= πΛ,λ ◦ idTΣ,λ

= πΛ,λ

Thus πΛ,λ(t1) = πΛ,λ(t2), which means exactly that λ | t1 ≡ t2 belongs to Λ.

The second half of the previous proposition allows us to deduce the following completeness result.

Corollary 2.2.73. For every κ-bounded signature Σ, a Σ-equation λ | t1 ≡ t2 is satisfied by all models of Λ if
and only if it belongs to Λ.

Now let X be a set, by Example 2.2.4 we know that
(
X, {iA}A∈Pκ(X)

)
is a colimiting cocone. For

every A ∈ Pκ(X) we can fix a bijection ϕA : |A| → A, and composing with the inclusion iA : A → X

we get another colimiting cocone
(
X, {jA}A∈Pκ(X)

)
. Let jA,B : |A| → |B| be the arrow associated to an

inclusion A ⊆ B, given t1,t2 ∈ TΣ(|A|) such that |A| | t1 ≡ t2 is in Λ we can derive

ηΣ,|B| ◦ jA,B : |A| → TΣ(|B|) |A| | t1 ≡ t2

|B| | TΣ(jA,B)(t1) ≡ TΣ(jA,B)(t2)
Subst

Thus there exists a unique TΛ(jA,B) : TΛ(|A|) → TΛ(|B|) such that the following square commutes

TΣ(|A|)
TΣ(jA,B) //

πΛ,|A|

��

TΣ(|B|)

πΛ,|B|

��
TΛ(|A|)

TΛ(jA,B)
// TΛ(|B|)

Since πΛ,|B|◦TΣ(jA,B) is aΣ-homomorphism, Lemma 2.2.68 assures us thatTΛ(jA,B) is aΣ-homomorphism.
TΣ is a functor and we have equations

jB,C ◦ jA,B = jA,C jA,A = id|A|

Hence,there is a diagram in Σ-Alg made by the family {TΛ(|A|)}A∈Pκ(X) with edges given by all the
functions of the form TΛ(jA,B) for A ⊆ B in Pκ(X). In light of Corollary 2.2.47 we can consider a
colimiting cocone

(
FΛ(X), {TΛ(jA)}A∈Pκ(X)

)
for this diagram and put

TΛ(X) := UΣ(FΛ(X))

Now, for every A, B ∈ Pκ(X) such that A ⊆ B we have

TΛ(jB) ◦ πΛ,|B| ◦ TΣ(jA,B) = TΛ(jB) ◦ TΛ(jA,B) ◦ πΛ,|A|

= TΛ(jA) ◦ πΛ,|A|

yielding a cocone
(
FΛ(X), {TΛ(jA) ◦ πΛ,|A|}A∈Pκ(X)

)
which, by Corollary 2.2.52, implies the existence

of a unique Σ-homomorphism πΛ,X : FΣ(X) → FΛ(X) making the following square commutative.

TΣ(|A|)
TΣ(jA) //

πΛ,|A|

��

TΣ(X)

πΛ,X

��
TΛ(|A|)

TΛ(jA)
// TΛ(X)
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Remark 2.2.74. Notice that πΛ,X is epi in Set, and thus a surjective function. Indeed if f, g : TΛ(X) ⇒ A

are arrows such that f ◦ πΛ,X = g ◦ πΛ,X , then, for every A ∈ Pκ(X) we have

f ◦ TΛ(jA) ◦ πΛ,|A| = f ◦ πΛ,X ◦ TΣ(jA)

= g ◦ πΛ,X ◦ TΣ(jA)

= g ◦ TΛ(jA) ◦ πΛ,|A|

and we know that every πΛ,|A| is epi, thus

f ◦ TΛ(jA) = g ◦ TΛ(jA)

from which the thesis follows. UΣ is faithful, so πΛ,X is epi in Σ-Alg too.

Theorem 2.2.75. Let Σ be a κ-bounded signature, then the forgetful functor UΛ : Mod(Λ) → Set has a left
adjoint FΛ : Set → Mod(Λ) for every Σ-theory Λ.

Proof. For every set X , we notice that, by Proposition 2.2.71 and Remark 2.2.72, FΛ(X) arises as a
κ-filtered colimit of objects of Mod(Λ), thus Lemma 2.2.64 implies that FΛ(X) ∈ Mod(Λ). Define
ηΛ,X : X → TΛ(X) as the composition

X
ηΣ,X / / TΣ(X)

πΛ,X // TΛ(X)

Take a Σ-algebra C =
(
C, {oC}o∈OΣ

)
which is a model for Λ and a function f : X → C. Then for

every A ∈ Pκ(X), we have a Σ-homomorphism FΣ(|A|) → C given by fΣ,∗ ◦ TΣ(jA). Moreover

fΣ,∗ ◦ TΣ(jA) ◦ ηΣ,|A| = fΣ,∗ ◦ ηΣ,X ◦ jA

= f ◦ jA

so that
fΣ,∗ ◦ TΣ(jA) = (f ◦ jA)Σ,∗

In particular, this identity entails that for every t1, t2 ∈ TΣ(|A|) such that |A| | t1 ≡ t2 is in Λ

fΣ,∗(TΣ(jA)(t1)) = fΣ,∗(TΣ(jA)(t2))

We can then deduce the existence of a unique gA : FΛ(|A|) → C such that

gA ◦ πΛ,|A| = fΣ,∗ ◦ TΣ(jA)

Notice that, if B is another element of Pκ(X) such that A ⊆ B, then

gB ◦ TΛ(jA,B) ◦ πΛ,|A| = gB ◦ πΛ,|B| ◦ TΣ(jA,B)

= fΣ,∗ ◦ TΣ(jB) ◦ TΣ(jA,B)

= fΣ,∗ ◦ TΣ(jA)

= gA ◦ πΛ,|A|

showing that
(
C, {gA}A∈Pκ(X)

)
is a cocone inΣ-Alg and entailing the existence of a uniqueΣ-homomorphism

fΛ,∗ : FΛ(X) → C satisfying gA = fΛ,∗ ◦ TΛ(jA). Therefore

fΛ,∗ ◦ πΛ,X ◦ TΣ(jA) = fΛ,∗ ◦ TΛ(jA) ◦ πΛ,|A|

= gA ◦ πΛ,|A|

= fΣ,∗ ◦ TΣ(jA)
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which shows that fΛ,∗ = fΣ,∗ ◦ πΛ,X and thus f = fΛ,∗ ◦ ηΛ,X .
For uniqueness, let g be a morphism FΛ(X) → C such that g ◦ ηΛ,X = f , then we must have

f ◦ jA = g ◦ ηΛ,X ◦ jA

= g ◦ ◦πΛ,X ◦ ηΣ,X ◦ jA

= g ◦ πΛ,X ◦ TΣ(jA) ◦ ηΣ,A

showing
fΣ,∗ ◦ TΣ(jA) = g ◦ πΛ,X ◦ TΣ(jA)

from which it follows that
fΛ,∗ ◦ πΛ,X = g ◦ πΛ,X

We can now conclude since, by Remark 2.2.74, πΛ,X is an epimorphism.

Finally, as in the case of Corollary 2.2.52, we can define TΛ : Set → Set as the composition UΛ ◦ FΛ,
and deduce from Corollary 2.2.65 the following result.

Corollary 2.2.76. Let Σ be a κ-bounded signature then, for every Σ-theory Λ, the functor TΛ has rank κ and

TΛ '

∫ Y ∈Setκ

Set(Y,−)× TΛ(Y ) TΛ '

∫ λ<κ

Xλ × TΛ(λ)

Proof. This follows from Theorem 2.2.31, Remark 2.2.32, and Corollary 2.2.36.

2.2.3 Algebraic theories and monads

We have seen in Theorem 2.2.75 that, given a κ-bounded signature Σ and a Σ-theory Λ, the forgetful
functor UΛ : Mod(Λ) → Set has a left adjoint FΛ. By Proposition 2.1.5 we also known that we can equip
TΛ = UΛ ◦ FΛ with a monad structure, obtaining TΛ := (TΛ, ηΛ, µΛ). We are now going to prove that
UΛ is actually a monadic functor, showing EM(TΛ) and Mod(Λ) are equivalent.

Remark 2.2.77. By Corollary 2.2.76, we already know that TΛ has rank κ.

Remark 2.2.78. When Λ is the theory with no axioms, TΛ is isomorphic, as a monad, to TΣ, where
TΣ := (TΣ, ηΣ, µΣ) is obtained from the adjunction FΣ a UΣ.

Let us look more closely at the counit ϵΛ of the adjunction FΛ a UΛ. Given A =
(
A,
{
oA
}
o∈OΣ

)

in Mod(Λ), the component ϵΛ,A is given by (idA)Λ,∗ : FΛ(A) → A. This observation, together with
Propositions 2.1.5 and 2.1.14, allows us to establish the following two things:

• for every set X , µΛ,X : TΛ(TΛ(X)) → TΛ(X) is
(
idTΛ(X)

)
Λ,∗

, in particular this also entails that

µΛ,X defines a Σ-homomorphism FΛ(TΛ(X)) → FΛ(X);

• the comparison functor KΛ : Mod(Λ) → EM(TΛ) is defined by

B

f

−
→

A

7−→

7−→

(B, (idB)Λ,∗)

−
→ f

(A, (idA)Λ,∗)
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Our next step is to construct an inverse to KΛ.

Definition 2.2.79. Let Λ be a Σ-theory, given an Eilenberg-Moore algebra (X, ξ) for TΛ, its associated

Σ-algebra HΛ(X, ξ) =
(
X,
{
oHΛ(X,ξ)

}
o∈OΣ

)
is defined taking as oHΛ(X,ξ) the composition

XarΣ(o)
η
arΣ(o)

Λ,X // (TΛ(X))arΣ(o) oFΛ(X)
// TΛ(X)

ξ // X

In order to extend the construction just defined to a functor EM(TΛ) → Mod(Λ), the first thing that
we have to prove is that HΛ(X, ξ) is really a model of Λ. Let us start with a preliminary result.

Proposition 2.2.80. For every Σ-theory Λ, with Σ ∈ Signκ, if (X, ξ) is an Eilenberg-Moore algebra for TΛ,
then the arrow ξ itself is a Σ-homomorphism FΛ(X) → H(X, ξ). Moreover, ξ = (idX)Λ,∗.

Proof. The thesis is equivalent to the commutativity of the outside of the diagram:

XarΣ(o)
η
arΣ(o)

Λ,X // (TΛ(X))arΣ(o)
oFΛ(X)

''
(TΛ(X))arΣ(o)

ξarΣ(o)

OO

idarΣ(o)

TΛ(X)
--

η
arΣ(o)

Λ,TΛ(X) // (TΛ(TΛ(X)))arΣ(o)

(TΛ(ξ))arΣ(o)

OO

µ
arΣ(o)

Λ,X

��

oFΛ(TΛ(X))
// TΛ(TΛ(X))

µΛ,X

��

TΛ(ξ) // TΛ(X)

ξ

��
(TΛ(X))arΣ(o)

oFΛ(X)

// TΛ(X)
ξ

// X

But this follows at once since we already know that all the internal subdiagrams commute. We get the
second half from the identity ξ ◦ ηΛ,X = idX .

Now we are ready to show that HΛ(X, ξ) is indeed an object of Mod(Λ).

Lemma 2.2.81. LetΣ be a κ-bounded signature andΛ a theory in it. Then, for every object (X, ξ) ofEM(TΛ),
the Σ-algebraHΛ(X, ξ) is a model of Λ.

Proof. Let λ | t1 ≡ t2 be an equation in Λ and let f : λ→ X be a function. We can notice that

ξ ◦ TΛ(f) ◦ πΛ,λ ◦ ηΣ,λ = ξ ◦ TΛ(f) ◦ ηΛ,λ

= ξ ◦ ηΛ,X ◦ f

= idX ◦ f

= f

By Proposition 2.2.80, ξ is a Σ-homorphism, thus the previous chain of equalities entails that

fΣ,∗ = ξ ◦ TΛ(f) ◦ πΛ,λ

We can now conclude since πΛ,λ(t1) and πΛ,λ(t2) are equal.
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Consider now a morphism f : (X, ξ1) → (Y, ξ2) in EM(TΛ), then we have a diagram

XarΣ(o)
η
arΣ(o)

Λ,X //

farΣ(o)

��

(TΛ(X))arΣ(o) oFΛ(X)
//

(TΛ(f))arΣ(o)

��

TΛ(X)

TΛ(f)

��

ξ1 // X

f

��
Y arΣ(o)

η
arΣ(o)

Λ,Y

// (TΛ(Y ))arΣ(o)

oFΛ(X)

// TΛ(Y )
ξ2

// Y

which is made by commutative rectangles, thus, f is a Σ-homomorphism HΛ(X, ξ1) → HΛ(Y, ξ2). In
particular, this allows usto define a functor HΛ : EM(TΛ) → Mod(Λ)

(Y, ξ2)

f

−
→

(X, ξ1)

7−→

7−→

H(Y, ξ2)

−
→ f

H(X, ξ1)

Theorem 2.2.82. For every object Σ-theory Λ, the previously defined functor HΛ : EM(TΛ) → Mod(Λ) is
the inverse of the comparison functorKΛ : Mod(Λ) → EM(TΛ).

Proof. HΛ and KΛ both act on arrows as the identity, so, if we show that they are one the inverse of the
other on objects we get the thesis.

On the one hand, let (X, ξ) be an Eilenberg-Moore algebra for TΛ, by construction

KΛ(HΛ(X, ξ)) = (X, (idX)Λ,∗)

and, by Proposition 2.2.80, ξ = (idX)Λ,∗ so that KΛ ◦HΛ = idEM(TΛ).

On the other hand, if A =
(
A,
{
oA
}
o∈OΣ

)
is a model of Λ, then we have a diagram

AarΣ(o)
η
arΣ(o)

Λ,A //

idarΣ(o)

A ,,

(TΛ(A))
arΣ(o)

(idA)
arΣ(o)

Λ,∗

��

oFΛ(A)
// TΛ(A)

(idA)Λ,∗

��
AarΣ(o)

oA
// A

which is commutative since KΛ(A) is an object of EM(TΛ) and (idA)Λ,∗ is a Σ-homomorphism. In
particular this shows that oA = oHΛ(KΛ(A)), and thus HΛ ◦KΛ = idMod(Λ).

Corollary 2.2.83. Let Σ be a κ-bounded signature and Λ a Σ-theory, then UΛ is strictly monadic.

Let IΛ : Mod(Λ) → Σ-Alg be the inclusion of models of Λ into the category of Σ-algebras. By Corol-
lary 2.2.83 we know that there is a functor F : EM(TΛ) → EM(TΣ) fitting in the diagram below

Mod(Λ)

KΛ

��

IΛ //

UΛ $$H
HH

HH
HH

HH
Σ-Alg

KΣ

��

UΣzzvvv
vv
vv
vv

Set

EM(TΛ)
F

//

UTΛ

::vvvvvvvvv
EM(TΣ)

UTΣ

ddHHHHHHHHH
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We can also notice that, for every A ∈ Mod(Λ), (idA)Λ,∗ ◦ πΛ,A is the unique Σ-homomorphism
which makes the following diagram commute

A
ηΣ,A

��
ηΛ,A

��

idA

��
TΣ(A) πΛ,A

// TΛ(A)
(idA)∗

// A

Applying this argument to IΛ(HΛ(X, ξ)), and using Proposition 2.2.80 we get that F is given by

(Y, ξ2)

f

−
→

(X, ξ1)

7−→

7−→

(Y, ξ2 ◦ πΛ,Y )
−
→ f

(X, ξ1 ◦ πΛ,X)

If we apply Proposition 2.1.24, the previous observations now yield the following result.

Proposition 2.2.84. Given Σ ∈ Signκ and a Σ-theory Λ, there exists a morphism of monads πΛ : TΣ → TΛ

whose component atX is given by πΛ,X .

We can now exploit the newly established naturality of πΛ to prove the following result.

Proposition 2.2.85. For every set X , Σ ∈ Signκ and Σ-theory Λ, the next are equivalent for elements t1, t2
of TΛ(X):

1. t1 and t2 are equal;

2. there exist µ < κ, s1, s1 ∈ TΣ(µ) and a function f : µ→ X such that

t1 = πΛ,X(TΣ(f)(s1)) t2 = πΛ,X(TΣ(f)(s2))

and µ | s1 ≡ s2 belongs to Λ.

Proof. (1 ⇒ 2) By Remark 2.2.74, we know that there exists s′1, s
′
2 ∈ TΣ(X) such that

t1 = πΛ,X(s′1) t2 = πΛ,X(s′2)

Using Example 2.2.4 and Corollary 2.2.65 we also know that
(
TΣ(X), {TΣ(jA)}A∈Pκ(X)

)
is a colimiting

cocone. Thus , by Lemma 2.2.11, there exist A1, A2 ∈ Pκ(X), p1 ∈ TΣ(|A1|), p2 ∈ TΣ(|A2|) such that

s′1 = TΣ(jA1)(p1) s′2 = TΣ(jA2)(p2)

Computing we have

TΛ(jA1
)(πΛ,|A1|(p1)) = πΛ,X(TΣ(jA1

)(p1))

= πΛ,X(s′1)

= t1

TΛ(jA2
)(πΛ,|A2|(p2)) = πΛ,X(TΣ(jA2

)(p2))

= πΛ,X(s′2)

= t2

Using Corollary 2.2.12 we can deduce that there exists A ∈ Pκ(X) containing A1 and A2 such that

TΛ(jA1,A)(πΛ,|A1|(p1)) = TΛ(jA2,A)(πΛ,|A2|(p2))
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But then we also have the chain of identities

πΛ,|A|(TΣ(jA1,A(p1))) = TΛ(jA1,A)(πΛ,|A1|(p1))

= TΛ(jA2,A)(πΛ,|A2|(p2))

= πΛ,|A|(TΣ(jA2,A)(p2))

which, by definition, entails that |A| | TΣ(jA1,A)(p1)) ≡ TΣ(jA2,A)(p2) is in Λ. Let s1 and s2 be,
respectively TΣ(jA1,A)(p1) and TΣ(jA2,A)(p2) and compute:

TΣ(jA)(s1) = TΣ(jA)(TΣ(jA1,A(p1)))

= TΣ(jA ◦ jA1,A)(p1)

= TΣ(jA1
)(p1)

= s′1

TΣ(jA)(s2) = TΣ(jA)(TΣ(jA2,A(p2)))

= TΣ(jA ◦ jA2,A)(p2)

= TΣ(jA2)(p2)

= s′2

so the thesis follows taking jA : |A| → X as f .

(2 ⇒ 1) Using naturality and the definition of πΛ,µ we get

t1 = πΛ,X(TΣ(f)(s1))

= TΛ(f)(πΛ,µ(s1))

= TΛ(f)(πΛ,µ(s2))

= πΛ,X(TΣ(f)(s2))

= t2

which is precisely our thesis.

Remark 2.2.86. Examples 2.1.17 and 2.2.18 show that there exist interesting algebraic structures, like
complete semilattices, which arise as Eilenberg-Moore algebras that cannot be studied using κ-bounded
signatures. On the other hand, it can be shown that other useful algebraic structures like complete lattices
and complete boolean algebras do not arise as Eilenberg-Moore algebras for any monads on Set (see, for
instance, [40, 61, 64, 89]). We will not dwell further in the unbounded case.

An adjunction between algebraic theories and monads

Let TΛ be the monad associated to a Σ-theory Λ. By Corollary 2.2.76 we know that, if Σ is in Signκ,
then TΛ has rank κ, so that it is an object of RMnd. We can wonder if assigning TΛ to the pair (Σ,Λ) is
somehow functorial. To do so, first of all we have to organize algebraic theories into a category.

Definition 2.2.87. The category ATh is the category in which

• objects are pairs (Σ,Λ) made by a signature Σ which is κ-bounded for some κ and a Σ-theory Λ;

• arrows between (Σ1,Λ1) and (Σ2,Λ2) are morphisms of monads TΛ1 → TΛ2 .

We can now easily define the semantic functor Sem : ATh → RMnd putting

(Σ2,Λ2)

χ

−
→

(Σ1,Λ1)

7−→

7−→

TΛ2

−
→ χ

TΛ1
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Our final aim for this chapter is to show that the functor Sem : ATh → RMnd admits a right adjoint
Syn : RMnd → ATh. This last functor can be thought of as a syntactic functor: it assigns to a monad an
algebraic theory “axiomatising” its category of Eilenberg-moore algebras.

Definition 2.2.88. Let T = (T, η, µ) be a monad in RMnd, and let also κ be smallest regular cardinal
such that T has rank κ. The algebraic signature ΣT associated to T has as set of operations

OΣT
:=
∑

λ∈κ

T (λ)

and, arΣT
is the arrow induced by the constant functions

fλ : T (λ) → Card x 7→ λ

Take now a set X , we can endow T (X) with a ΣT-algebra structure L(X). Given t ∈ T (λ), there is a
corresponding operation ιλ(t) in OΣT

for which we can define ιλ(t)L(X) as

(ιλ(t))
L(X) : T (X)λ → T (X) σ 7→ µX(T (σ)(t))

SinceL(X) is aΣT-algebra, we know that there exists the unique dottedΣT-homomorphism πT,X : FΣT
(X) →

L(X) in the diagram below

X
ηΣT,X

~~||
||
||
|| ηX

��>
>>

>>
>>

TΣT
(X)

πT,X

// T (X)

Lemma 2.2.89. Given a monad T of rank κ, the following hold true:

1. for every setX , µX defines a ΣT-homomorphism L(T (X)) → L(X);

2. for every f : X → Y , T (f) is a ΣT-homomorphism L(X) → L(Y );

3. for every f : X → T (Y ) be the following diagram commutes

TΣT
(X)

fΣT,∗ //

πT,X

��

T (Y )

T (X)
T (f)

// T (T (Y ))

µY

OO

4. there exists a natural transformation πT : TΣT
→ T having πT,X as component inX ;

5. for every setX , πT,X is surjective.

Proof. 1. Given λ < κ and t ∈ T (λ), for every σ : λ→ T (T (X)) we compute to get

µX

(
(ιλ(t))

L(T (X))(σ)
)
= µX

(
µT (X)(T (σ)(t))

)

= µX(T (µX)(T (σ)(t)))

= µX(T (µX ◦ σ)(t))

= (ιλ(t))
L(X)(µX ◦ σ)

= (ιλ(t))
L(X)

(
µλX(σ)

)

which is precisely our claim.
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2. As before, fix λ < κ and t ∈ T (Λ), given σ : λ→ T (X) we have

T (f)
(
(ιλ(t))

L(X)(σ)
)
= T (f)(µX(T (σ)(t)))

= µY(T (T (f))(T (σ)(t)))

= µY (T (T (f) ◦ σ)(t))

= (ιλ(t))
L(Y )(T (f) ◦ σ)

= (ιλ(t))
L(Y )

(
T (f)λ(σ)

)

and we can conclude.

3. Let us compute

µY ◦ T (f) ◦ πT,X ◦ ηΣT,X = µY ◦ T (f) ◦ ηX

= µY ◦ ηT (Y ) ◦ f

= idT (Y ) ◦ f

= f

= fΣT
◦ ηΣT,X

The thesis now follows from the previous two points.

4. Given f : X → Y we have

T (f) ◦ πT,X ◦ ηT,X = T (f) ◦ ηX

= ηY ◦ f

= πT,Y ◦ ηT,Y ◦ f

= πT,X ◦ T (f) ◦ ηT,X

and the thesis now follows because T (f) is a ΣT-homomorphism.

5. We know, by Theorem 2.2.31 and Remark 2.2.32, that

T (X) '

∫ Y ∈Setκ

Set(Y,X)× T (Y )

In particular, for every s ∈ T (X), there exists λ < κ, f : λ→ X and t ∈ T (λ) such that

s = ωX,λ(f, t)

= T (f)(t)

where ωX is the initial cowedge. Now, take the element (jλ(t))
FΣT

(X)(TΣT
(f) ◦ ηΣT,λ) of TΣT

(X),
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since πT,X is a ΣT-homomorphism and using the previous point we have:

πT,X

(
(ιλ(t))

FΣT
(X)(TΣT

(f) ◦ ηΣT,λ)
)
= (ιλ(t))

L(X)
(
πλT,X (TΣT

(f) ◦ ηΣT,λ)
)

= (ιλ(t))
L(X)(πT,X ◦ TΣT

(f) ◦ ηΣT,λ)

= (ιλ(t))
L(X)(T (f) ◦ πT,λ ◦ ηΣT,λ)

= (ιλ(t))
L(X)(T (f) ◦ ηλ)

= (ιλ(t))
L(X)(ηX ◦ f)

= µX(T (ηX ◦ f)(t))

= µX(T (ηX)(T (f)(t)))

= (µX ◦ T (ηX))(T (f)(t))

= idT (X)(T (f)(t))

= T (f)(t)

which is what we wished to show.

Using the natural transformation πT : TΣT
→ T we can now define a set ΛT of ΣT-equations saying

that, for every λ strictily less then the rank of T, λ | t1 ≡ t2 is in ΛT if and only if

πT,λ(t1) = πT,λ(t2)

Proposition 2.2.90. For every T ∈ RMnd, ΛT is a ΣT-theory. Moreover, for every X ∈ Set, L(X) is an
object ofMod(ΛT).

Proof. Closure under rules Refl, Sym and Trans it’s obvious. Let us show the other two.

Subst. Suppose that λ1 | t1 ≡ t2 is in ΛT and take σ : λ1 → TΣT
(λ2). Since πT,λ2

is a ΣT-homomorphism
we must have that

(πT,λ2
◦ σ)ΣT,∗ = πT,λ2

◦ σΣT,∗

Thus the third point Lemma 2.2.89 yields the diagram

λ1
σ //

ηΣT

��

TΣT
(λ2)

πT,λ2

��
TΣT

(λ1)
(πT,λ2

◦σ)ΣT,∗

//

σΣT,∗

66mmmmmmmmmmmmm

πT,λ1

��

T (λ2)

T (λ1)
T (πT,λ2

◦σ)
// T (T (λ2))

µλ2

OO

Therefore we have equalities

πT,λ2
(σΣT,∗(t1)) = µλ2(T (πT,λ2

◦ σ)(πT,λ1
(t1)))

= µλ2(T (πT,λ2
◦ σ)(πT,λ1

(t2)))

= πT,λ2
(σΣT,∗(t2))
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Cong. Take t ∈ T (λ1) and σ1, σ2 : λ1 ⇒ TΣT
(λ2) and suppose that {λ | σ1(α) ≡ σ2(α)}α∈λ are

contained in ΛT, then
πT,λ2

◦ σ1 = πT,λ2
◦ σ2

and, since πT,λ2
is a ΣT-homomorphism, we get

πT,λ2
(ιλ1(t)(σ1)) = πT,λ2

(
(ιλ1(t))

FΣT
(λ2) (σ1)

)

= (ιλ1
(t))

L(λ2) (πT,λ2
◦ σ1)

= (ιλ1
(t))

L(λ2) (πT,λ2
◦ σ2)

= πT,λ2

(
(ιλ1(t))

FΣT
(λ2) (σ2)

)

= πT,λ2
(ιλ1(t)(σ2))

Finally, let λ | t1 ≡ t2 be an equation in ΛT and f : λ→ T (X). By point 3 of Lemma 2.2.89 we have

fΣT,∗ = µX ◦ T (f) ◦ πT,λ

so that

fΣT,∗(t1) = µX(T (f)(πT,λ(t1)))

= µX(T (f)(πT,λ(t2)))

= fΣT,∗(t2)

proving the thesis.

Proposition 2.2.91. Let T be a monad of rank κ, then there exists an isomorphism θT : TΛT
→ T.

Proof. For every set X , by Proposition 2.2.90 we know that there exists θT,X : FΛT
(X) → L(X) such

that the triangle below commutes.

TΣT
(X)

πΛT,X

{{ww
ww
ww
ww πT,X

""E
EE

EE
EE

E

TΛT
(X)

θT,X

// T (X)

We can immediately notice that this definition gives us a diagram

X

ηΣT,X

��
ηX


 


ηΛT,X

��

TΣT
(X)

πΛT,X

{{ww
ww
ww
ww πT,X

""E
EE

EE
EE

E

TΛT
(X)

θT,X

// T (X)
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On the other hand, given f : X → Y we have

T (f) ◦ θT,X ◦ ηΛT,X = T (f) ◦ ηX

= ηY ◦ f

= θT,Y ◦ ηΛT,Y ◦ f

= θT,Y ◦ TΛT,Y (f) ◦ ηΛT,Y

which, by the second point of Lemma 2.2.89 gives us the equality

T (f) ◦ θT,X = θT,Y ◦ TΛT,Y (f)

Summing up we have constructed a natural transformation θT : TΛT
→ T such that η = θT ◦ ηΛT

.
By point 5 of Lemma 2.2.89 we already know that, for every set X , θT,X is surjective. To see that it is
injective, let s1, s2 ∈ TΛT

(X) be such that

θT,X(s1) = θT,X(s2)

Using Lemma 2.2.11, Example 2.2.4, and Corollary 2.2.76 we can deduce that there are A1, A2 ∈ Pκ(X),
p1 ∈ TΛT

(|A1|) and p2 ∈ TΛT
(|A2|) satisfying

s1 = TΛT
(jA1

)(p1) s2 = TΛT
(jA2

)(p2)

Let A be a set in Pκ(X) containing both A1 and A2 and define q1, q2 ∈ TΛT
(|A|) as, respectively,

TΛT
(jA1,A)(p1) amd TΛT

(jA2,A)(p2). By construction, q1 and q2are such that

s1 = TΛT
(jA1)(p1)

= TΛT
(jA ◦ jA1,A)(p1)

= TΛT
(jA)(TΛT

(jA1,A)(p1))

= TΛT
(jA)(q1)

s2 = TΛT
(jA2)(p2)

= TΛT
(jA ◦ jA2,A)(p2)

= TΛT
(jA)(TΛT

(jA2,A)(p2))

= TΛT
(jA)(q2)

Since, by Remark 2.2.74, each component of the natural transformation πΛT
is surjective, there exist

t1, t2 ∈ TΣT
(|A|) such that q1 = πΛT,|A|(t1) and q2 = πΛT,|A|(t2). A computation now yields

T (jA)(πT,|A|(t1)) = T (jA)(θT,|A|(πΛT,|A|(t1)))

= T (jA)(θT,|A|(q1))

= θT,X(TΛT
(jA)(q1))

= θT,X(s1)

= θT,X(s2)

= θT,X(TΛT
(jA)(q2))

= T (jA)(θT,|A|(q2))

= T (jA)(θT,|A|(πΛT,|A|(t2)))

= T (jA)(πT,|A|(t2))

By hypothesis T has rank κ, thus by Lemma 2.2.11 there is B ∈ Pκ(X) containing A and such that

T (jA,B)(πT,|A|(t1)) = T (jA,B)(πT,|A|(t2))
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but πT is a natural transformation, therefore we also have

πT,B(TΣT
(jA,B)(t1)) = πT,B(TΣT

(jA,B)(t2))

By definition the previous identity implies that |B| | TΣT
(jA,B)(t1) ≡ TΣT

(jA,B)(t2) is in ΛT and

s1 = TΣT
(jA)(t1)

= TΣT
(jB ◦ jA,B)(t1)

= TΣT
(jB)(TΣT

(jA,B)(t1))

s2 = TΣT
(jA)(t2)

= TΣT
(jB ◦ jA,B)(t2)

= TΣT
(jB)(TΣT

(jA,B)(t2))

so we can conclude that s1 = s2 applying Proposition 2.2.85. By point 1 of Proposition 2.1.11 and by
Corollary 2.2.83, UΣ reflects isomorphisms and so we deduce that θT is a natural isomorphism.

Finally, for every X ∈ Set, consider the following diagram, which is commutative because, by con-
struction and our previous remarks all the internal subdiagrams commute:

TΛT
(X)

ηΛT,TΛT
(X)

vv

ηΛT,TΛT
(X)

((
θT,X

��

idTΛT
(X)

((

TΛT
(TΛT

(X))

TΛT
(θT,X)

��

T (X)

idT (X)

��6
66

66
66

66
66

66
66

6

ηT (X)

����
��
��
��
��
��
��
��
�ηΛT,T (X)

tthhhhh
hhhh

hhhh
hhhh

hhhh
h TΛT

(TΛT
(X))

µΛT,X

��
TΛT

(T (X))

θT,T (X) ))

TΛT
(X)

θT,Xuu
T (T (X))

µX

// T (X)

The commutativity of this whole diagrams yields

µX ◦ θT,T (X) ◦ TΛT
(θT,X) ◦ ηΛT,TΛT

(X) = θT,X ◦ µΛT,X ◦ ηΛT,TΛT
(X)

Now, notice that θT,T (X) is aΣT-homomorphismL(T (X)) → FΛT
(T (X)) and θT,X is an arrow inΣT-Alg

between FΛT
(X) and T (X). Points 1 and 2 of Lemma 2.2.89 entail that we also haveΣT-homomorphisms

µX : L(T (1X)) → L(X) and TΛT
(θT,X) : FΛT

(TΛT
(X)) → FΛT

(T (X)) and we already observed that
µΛT,X is an arrow FΛT

(FΛT
(X)) → FΛT

(X). We can therefore conclude

µX ◦ θT,T (X) ◦ TΛT
(θT,X) = θT,X ◦ µΛT,X

which entails that θT is an isomorphism of monads TΛT
→ T.

Corollary 2.2.92. The functor Sem : ATh → RMnd has a right adjojnt Syn : RMnd → ATh.

T2

χ

−
→

T1

7−→

7−→

(ΣT2
,ΛT2

)

−
→ θ−1

T2
◦ χ ◦ θT1

(ΣT1
,ΛT1

)

Proof. By construction, for every T in RMnd we have an isomorphism θT : TΛT
→ T, so, for every

χ : Sem(Σ,Λ) → T, θ−1
T ◦ χ is the unique morphism (Σ,Λ) → (ΣT,ΛT) such that

χ = θT ◦ θ−1
T ◦ χ

But this proves that θT is the component in T of the counit of an adjunction Sem a Syn.
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The work of Lawvere [76], has inspired the development of various extensions of Lawvere theory, aiming
to connect monads with an increasing number of computational notions [23, 63, 82, 83, 100, 107]. In the
previous chapter, a relationship was established between (ranked) monads on Set and algebraic theories
based on syntactic constructs such as equations. However, Lawvere theories, even enriched ones, are
syntax-free. Therefore, a question naturally arises: what kind of syntactic constructs are suitable for
describing “algebraic structures” on categories that are different from Set?

Recently a framework for quantitative algebraic reasoning has been introduced [15, 16, 90, 91]. In
its syntax equations are decorated with a rational number, to be interpreted as the distance between the
two sides of a given equation. This kind of structures have a natural semantics given by quantitative alge-
bras: (extended) metric spaces equipped with operations. Quantitative algebras and quantitative algebraic
theories, in turn, are linked, to metric monads [112] and a correspondence between such monads and
quantitative algebraic theories, similar to the one examined in Chapter 2 can be shown [3, 4].

Along this line of research, in this work we study algebraic reasoning on fuzzy sets. Algebraic structures
on fuzzy sets are well known since the seventies (see e.g., [8, 92, 98, 111]). Fuzzy sets are very important
in computer science, with applications ranging from pattern recognition to decision making, from system
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modeling to artificial intelligence. So, it is natural to ask if it is possible to use an approach similar to the
one above for fuzzy algebraic reasoning.

In this chapter we answer this question positively. We propose a sequent calculus based on two kinds
of propositions, one expressing equality of terms and the other the existence of a term as a member of a
fuzzy set. These sequents have a natural interpretation in categories of fuzzy sets endowedwith operations.
This calculus is sound and complete for such a semantics: a formula is satisfied by all the models of a given
theory if and only if it is derivable from it.

It is possible to go further. Both in the classical and in the quantitative settings there is a notion of free
model for a theory; we show that is also true for theories in our formal system for fuzzy sets. In general the
category of models of a given theory will not be equivalent to the category of Eilenberg-Moore algebras
for the induced monad, but we will show that this equivalence holds for theories with sufficiently simple
axioms. Finally we will use the techniques developed in [95] to prove two results analogous to the classical
Birkhoff’s HSP theorem [25].

This chapter is an expanded and revised version of [37].

Synopsis In Section 3.1 we define the category Fuz(H) of fuzzy sets over a frame (H,≤) and investigate
some of its categorical properties. Section 3.2 introduces syntax and semantics of fuzzy algebraic theories.
We will show that the proposed calculus is sound and complete. Moreover, we will show in Section 3.2.2
that if a theory is basic then its category of models arose as the category of Eilenberg-Moore algebras for
a monad on Fuz(H). Finally, in Section 3.3 we recall the results of [95] and use them to prove two HSP
theorems for our calculus.

3.1 An introduction to fuzzy sets

In this first section we are going to recall the definition and some well-known properties of the category
of fuzzy sets over a frame H [123, 124].

3.1.1 Heyting algebras and frames

To begin, we will review the definitions of Heyting and Boolean algebra and introduce the concept of a
frame (i.e. a complete Heyting algebra [28, 47, 64]).

Definition 3.1.1. A bounded lattice H := (H,≤) is a Heyting algebra if for every element h of H the
function (−) ∧ h : (H,≤) → (H,≤) has a right adjoint h→ (−), called implication operator.

Remark 3.1.2. In particular, for every two elements h, k of a Heyting algebra (H,≤), the unit of the
adjunction (−) ∧ h ` h→ (−) yields the inequality

(h→ k) ∧ h ≤ k

Let us prove some properties of implication.

Proposition 3.1.3. LetH = (H,≤) be a Heyting algebra, then the following hold true:

1. for every h1, h2 and k inH , if h1 ≤ h2 then (h2 → k) ≤ (h1 → k);

2. for every h, k ∈ H , h→ k is the supremum of the set

Sh,k := {x ∈ H | x ∧ h ≤ k}
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Proof. 1. Using Remark 3.1.2 we have

(h2 → k) ∧ h1 ≤ (h2 → k) ∧ h2

≤ k

The thesis follows by adjointness.

2. Let us start noticing that, by adjointness, every x ∈ Sh,k is less or equal than h → k. To conclude
it is enough to notice that Remark 3.1.2 entails that h→ k belongs to Sh,k.

Definition 3.1.4. LetH = (H,≤) be a Heyting algebra. For every element h ∈ H , we define itsnegation
¬h as h→ ⊥. h is said to be regular if ¬(¬h) = h. (H,≤) is a boolean algebra if every h ∈ H is regular.

Remark 3.1.5. By Remark 3.1.2 we have the following identities

¬h ∧ h = (h→ ⊥) ∧ h

≤ ⊥

Thus, for every h ∈ H , ¬h ∧ h = ⊥. In particular we have that

¬> = ¬> ∧ >

= ⊥

Remark 3.1.6. Let h and k be elements of a Heyting algebra (H,≤) such that h ≤ k. Then point
1 of Proposition 3.1.3 entails ¬k ≤ ¬h. This means that ¬ defines a morphism (H,≤) → (H,≤)op,
where (H,≤)op is the set H equipped with the reverse order. Take now (H,≤) to be boolean, then
¬ ◦ ¬ = id(H,≤), and thus ¬ is an isomorphism. In particular, in every boolean algebra the following
equations hold true for every h, k ∈ H :

¬(h ∨ k) = ¬h ∧ ¬k ¬(h ∧ k) = ¬h ∨ ¬k ¬h ∨ h = >

The previous remark yields at once the following result.

Lemma 3.1.7. Let (H,≤) be a boolean algebra, then for every h, k ∈ H we have

h→ k = k ∨ ¬h

Proof. We can start noticing that, using Remark 3.1.5 we have

(k ∨ ¬h) ∧ h = k ∨ (¬h ∧ h)

= k ∨ ⊥

= k

This shows that ¬h ∨ k is less or equal than h→ k. For the other inequality, let x be an element of Sh,k,
then, using Remark 3.1.6

x = x ∧ >

= x ∧ (h ∨ ¬h)

= (x ∧ h) ∨ ¬h

≤ k ∨ ¬h

Point 2 of Proposition 3.1.3 gives us the thesis.
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We are now ready to introduce frames.

Definition 3.1.8. A frame or H, is a complete lattice (H,≤) such that, for every element h ∈ H and
family {hi}i∈I ⊆ H the following equation hold

h ∧
∨

i∈I

hi =
∨

i∈I

(h ∧ hi)

The next proposition shows that frames are exactly complete Heyting algebras. This result can be seen
as an application of Freyd’s Adjoint Functor Theorem [28, 41, 49, 50, 85]. However, we will still present
a proof for the sake of completeness.

Proposition 3.1.9 ( [28]). Let (H,≤) be a complete lattice, then the following are equivalent

1. (H,≤) is a frame;

2. (H,≤) is a Heyting algebra.

Proof. (1 ⇒ 2) Given h, k ∈ H , we can consider again the set Sh,k of elements x such that x∧ h ≤ k. As
h→ k we take the supremum of Sh,k. If k1 ≤ k2 then Sh,k1 ⊆ Sh,k2 so that we get a monotone function
h→ − : (H,≤) → (H,≤). Let us show that this function is right adjoint to − ∧ h.

• Suppose that k1 ∧ h ≤ k2. Then k1 belongs to Sh,k2 , hence k1 ≤ h→ k2

• Suppose that k1 ≤ h→ k2, then we have

k1 ∧ h ≤ (h→ k2) ∧ h

= h ∧ (h→ k2)

= h ∧
∨

x∈Sh,k2

x

=
∨

x∈Sh,k2

(h ∧ x)

≤ k2

(2 ⇒ 1) This follows from the general fact that left adjoints preserve colimits.

Example 3.1.10. Let (L,≤) be a complete linear order, then (L,≤) it is a frame. Indeed, in a linear order
the inequality

h ≤
∨

i∈I

hi

holds if and only if h ≤ hj for some j ∈ I . Thus

h ∧
∨

i∈I

hi =

{
h h ≤ hj for some j ∈ I∨
i∈I hi hi < h for every i ∈ I

=
∨

i∈I

(h ∧ hi)

In this case we can describe explicitly h→ −. Let k ∈ L, we have two cases.
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• h ≤ k. Then > belongs to Sh,k, so that h→ k = >.

• k < h. Let l ∈ L, then

l ∧ h =

{
h h ≤ l

l l < h

In particular this means that every l ∈ Sh,k is less or equal than k. Since h ∧ k ≤ k we deduce that
h→ k must be k.

Summing up we have proved that, in a complete linear order the implication operator is given by

h→ − : (L,≤) → (L,≤) k 7→

{
> h ≤ k

k k < h

Example 3.1.11. Let X be a set. Then (P(X),⊆) is a frame, in which, for every A ⊆ X , ¬A = X ∖ A.
To see this just notice that SA,∅ is the set of al subsets which are disjoint from S. In particular, (P(X),⊆)
is boolean and A→ B coincides with (X ∖A) ∪B.

Example 3.1.12. Consider again a setX . Then every topologyΘ ⊆ P(X) is a frame when ordered by the
inclusion. Indeed, suprema are given by arbitrary unions, while finite infima coincide with intersection.
Moreover, given U ∈ Θ and {Ui}i∈I ⊆ Θ we have

U ∩
⋃

i∈I

Ui =
⋃

i∈I

(U ∩ Ui)

In this setting, for every U ∈ Θ, SU,∅ is the family of opens cointained inX∖U , so that ¬U is the interior
of the complement of U .

3.1.2 Topological functors

Before going into the concept of fuzzy sets we will introduce some classical result about topological func-
tors [5, Ch. 21] which will be useful in the rest of this section.

Definition 3.1.13. Let U : X → Y be a functor and I be a class, a U -structured source is a (possibly large)
family {fi}i∈I of arrows fi : Y → U(Xi). We say that a U -structured source has an initial lift if there
exist an object X in X and arrowsmi : X → Yi for every i ∈ I , such that:

1. U(X) = Y ;

2. for every i ∈ I , U(mi) = fi;

3. given arrows g : U(Z) → Y and ni : Z → Xi such that, for every i ∈ I , U(ni) = fi ◦ g, there exists
a unique h : Z → X such that U(h) = g and ni = mi ◦ h.

Z ni

!!h ��

U(Z) U(ni)

$$g ""D
DD

DD
D

7→

X
mi

// Xi Y
fi

// U(Xi)

U is a topological functor if every U -structured source has an initial lift.
Dually, an U -structured sink is a (large) family {fi}i∈I of arrows fi : U(Xi) → Y and a final lift for it

is given by an object X in X and arrowsmi : Xi → X , such that:
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1. U(X) = Y ;

2. for every i ∈ I , U(mi) = fi;

3. given g : Y → U(Z) and ni : Xi → Z such that, for every i ∈ I , U(ni) = g ◦ fi, there exists a
unique h : X → Z such that U(h) = g and ni = h ◦mi.

Xi
mi //

ni ..

X
h

��

U(Xi)

U(ni) ..

fi // Y
g

""D
DD

DD
D

7→

Z U(Z)

A functor U is cotopological if every U -structures sink admits a final lift.

Example 3.1.14. The paradigmatic example of a topological functor is the forgetful functor from the
category of topological spaces to the category of sets.

Remark 3.1.15. If we take I = ∅ in the previous definition, then a U -structured source (sink) is just an
object of Y, and a lift of it is just an object X of X such that U(X) = Y .

Remark 3.1.16. Inital lifts, and thus also final ones, are unique up to isomorphism. Indeed if {mi}i∈I
and {ni}฀∈I ar two lifting for a U -structured source fii∈I then we have diagrams

Xi
mi //

ni ..

X
h1

��

U(Xi)

U(ni) ..

fi // Y
idY

��?
??

??
Xi

ni //

mi ..

Z
h2

��7→ 7→

Z Y X

Then h2 ◦h1 and h1 ◦h2 are the unique arrows sent by U to idY such that all the triangles in the following
diagram commute

Xi
mi //

mi ..

X
h2◦h1

  

U(Xi)

U(ni) ..

fi // Y
idY

��?
??

??
Xi

ni //

ni ..

Z
h2◦h1

��7→ 7→

X Y Z

and this in turn implies that h2 = h−1
1 .

Proposition 3.1.17. If U : X → Y is topological, then it is faithful.

Proof. Let f, g : X ⇒ V be two arrows such that U(f) = U(g), we can define a (constant) U -structured
source indexed on the class of arrows of X simply defining fh as U(f) : U(X) → U(V ) for any arrow
h in X . By hypothesis we have an initial lift for this U -structured source, thus we get a class of arrows
mh : W → V which can be used to define another source putting

sh :=

{
f cod(h) =W andmh ◦ h = g

g otherwise

By construction we have two diagrams:

X sh

!!k ��

U(X) U(sh)

$$idU(X) ""E
EE

EE
E

7→

W
mh

// V Y
U(f)

// U(V )
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so, by initiality, we get the dotted k : X → W . In particular this implies that sk = mk ◦ k and we have
two cases:

• if sk = f , then by definitionmk ◦ k = g and thus f = g;

• if sk = g thenmk ◦ k = g, so sk = f and again we can conclude that f = g.

The following lemma shows that the property of being topological is autodual.

Lemma 3.1.18. A functor U : X → Y is topological if and only if is cotopological.

Proof. (⇒) Let {fi}i∈I with fi : U(Xi) → Y be a U -structured sink , we must construct a lift of it. Take
H to be the class of all pairs (h, V ) such that

• V ∈ X and h : Y → U(V );

• for every i ∈ I , there exists hi : Xi → V such that h ◦ fi = U(hi).

Putting g(h,V ) := hwe get aU -source
{
g(h,V )

}
(h,V )∈H

which, by hypothesis, has an initial lift {m(h,V )}(h,V )∈H

withm(h,V ) : X → V , in particular we have U(X) = Y . By definition, for every i ∈ I we have the solid
part of the following diagram

Xi hi

%%ai ##

U(Xi) U(hi)

''fi %%KK
KK

KK
KK

7→

X
m(h,V )

// V Y
h

// U(V )

from which we can deduce the existence of the dotted ai : Xi → X , which provides a lift {ai}i∈I for the
family {fi}i∈I . We are left with finality of such a lift. Suppose that there exists g : Y → U(Z) and for
every i ∈ I an arrow ni : Xi → Z such that the following triangle commutes

U(Xi)

U(ni) ..

fi // Y
g

##G
GG

GG

U(Z)

Then (g, Z) belongs to the family H , so there exists m(g,Z) : X → Z such that U(m(g,Z)) = g. By
Proposition 3.1.17 we know that such lift of g is unique and so we get the thesis.

(⇐) U is cotopological if and only if Uop is topological, by the previous point this implies Uop is cotopo-
logical too, so U = (Uop)op is topological.

The existence of a topological functor U : X → Y allows us to lift many properties from Y to X.

Proposition 3.1.19. Let U : X → Y be a topological functor, then the following hold:

1. U is a right adjoint;

2. U is a left adjoint;

3. given a diagramF : D → X and a limiting cone (L, {lD}D∈D) forU ◦F , then the initial lift {mD}D∈D

of {lD}D∈D induces a limiting cone (X, {mD}D∈D) for F ;

4. given a diagram F : D → X and a colimiting cocone (C, {lD}D∈D) for U ◦ F , then the final lift
{mD}D∈D of {lD}D∈D induces a colimiting cocone (X, {mD}D∈D) for F .
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Proof. 1. For every Y ∈ Y, let L(Y ) be the common domain of a final lift of the empty U -sink with
domainX . By definition U(L(Y )) = Y and for every arrow g : Y → U(Z) there is a unique arrow
h : L(Y ) → Z such that U(h) = g, showing that idX is the unit of an adjunction L a U .

2. By Lemma 3.1.18 Uop is topological, thus the previous point implies the existence of a functor
L : Yop → Xop which is its left adjoint, therefore Lop is a right adjoint for U .

3. Let f : D1 → D2 be an arrow of D, then

U(mD2
◦ F (f)) = U(mD2

) ◦ U(F (f))

= lD2
◦ U(F (f))

= lD1

= U(mD1
)

which shows that (X, {mD}D∈D) is a cone for F . Now let (Z, {nD}D∈D) be another cone, then
(U(Z), {U(nD)}D∈D) is a cone on U ◦ F , so there exists a g as in the right-hand triangle of the
following diagram

Z nD

""h ��

U(Z) U(nD)

$$g ""D
DD

DD
D

7→

X
mD

// XD Y
fD

// U(XD)

and, by initiality, we can deduce the existence and uniqueness of the dotted h.

4. This follows from Lemma 3.1.18 and the previous point.

Corollary 3.1.20. Given a topological functorU : X → Y and an arrow f : X → Y inX, the following facts
hold true:

1. f is a monomorphism (epimorphism) if and only if U(f) is mono (epi);

2. f is a regular monomorphism (regular epimorphism) if and only if U(f) is a regular mono (regular epi)
andm is its initial (final) lift.

Finally, we can show that also factorization systems can be lifted along topological functors.

Definition 3.1.21. Let U : X → Y be a topological functor, and suppose that a proper and stable factor-
ization system (E ,M) on Y is given. We define the following four classes of arrows of X:

EU := {e ∈ X | U(e) ∈ E}

MU := {m ∈ X | U(m) ∈ M}

Efin := {e ∈ X | U(e) ∈ E and e is its final lift}

Min := {m ∈ X | U(m) ∈ M andm is its initial lift}

Lemma 3.1.22. If U : X → Y is a topological functor and (E ,M) is a proper and stable factorization system
on Y then:

1. (EU ,Min) is a proper and stable factorization system on X;

2. (Efin,MU ) is a proper and stable factorization system on X.

Proof. 1. Let us show the four points of Definition 2.1.40.



3.1. An introduction to fuzzy sets 95

(a) If f : X → Y is an isomorphism in X, then U(f) lies both in E and M, thus f ∈ EU . On the
other hand f is also the initial lift of the U -source given by U(f): given a diagram

Z
n

��h ��

U(Z) U(n)

""g   A
AA

AA
AA

7→

X
f

// Y Y
U(f)

// U(Y )

then we can take f−1 ◦ n as h.

(b) Closure under composition of EU follows at once. Let f : X → Y and g : Y → Z arrows in
Min, then U(g ◦ f) ∈ M. For initiality, take the diagram

V

k

$$

n

&&
h ��

U(V )

U(f)◦u
&&

U(n)

((
u

!!D
DD

DD
DD

7→

X
f

// Y
g

// Z Y
U(f)

// U(Y )
U(g)

// U(Z)

The arrow k comes from the initiality of f , while the arrow h comes from the one of g.

(c) For every arrow f : X → Y , there exist m : C → U(Y ) in M and e : U(X) → C in E such
that U(f) = m ◦ e. Take n : V → Y to be an initial lift of {m}, then we have a diagram

X
f

��h ��

U(X) U(f)

""e
  A

AA
AA

AA

7→

V
n

// Y C
m

// U(Y )

which, by initiality, entails the existence of the dotted h : X → V , belonging to EU .

(d) For the left lifting property, let us start with the square on the left in the diagram:

X
g //

e

��

Z

m

��

U(X)
U(g) //

U(e)

��

U(Z)

U(m)

��
7→

Y
f

//

h

AA

V U(Y )
U(f)

//

k

<<

U(V )

By hypothesis in the right-hand square U(m) ∈ M and U(e) ∈ E , so the dotted k exists. By
the initiality of m we can deduce the existence of a unique h : Y → Z such that U(h) = k,
moreover

U(m ◦ k) = U(f) U(k ◦ e) = U(g)

thus Proposition 3.1.17 entails

m ◦ k = f k ◦ e = g

Stability follows immediately from Proposition 3.1.19 and the stability of (E ,M).

2. Follows from point 1 and Lemma 3.1.18.
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3.1.3 The category Fuz(H)

We are now ready to introduce the definition of fuzzy sets [123, 124].

Definition 3.1.23. Given a frame H = (H,≤), a H-fuzzy set (or simply a fuzzy set) is a pair (X,µX)
consisting in a set X and a membership degree function µX : X → H . The support of µX is the set

supp(X,µX) := {x ∈ X | µX(x) 6= ⊥}

A morphism ofH-fuzzy sets f : (X,µX) → (Y, µY ) is a function f : X → Y such that

µX(x) ≤ µY (f(x))

for every x ∈ X . The resulting category of H-fuzzy sets will be denoted by Fuz(H).

We have a forgetful functor VH : Fuz(H) → Set which simply forgets the membership function. We
are going to show that this functor is topological allowing us to recover many informations on Fuz(H).

Lemma 3.1.24. The functor VH : Fuz(H) → Set is topological.

Proof. Take a VH-source {fi}i∈I with X → VH(Xi, µXi
) and define

µX : X → H x 7→
∧

i∈I

µXi
(fi(x))

Clearly VH(X,µX) = X and, for every i ∈ I , fi itself becomes a morphism (X,µX) → (Xi, µXi
), let us

prove initiality. Given the solid part of the following diagram

(Z, µZ) ni

&&g $$

Z
ni

��g
��:

::
::

:

7→

(X,µ)
fi

// (Xi, µXi
) Y

fi

// Xi

it is enough to prove that g itself is a morphism of Fuz(H). To see this we can compute to get:

µZ(z) ≤ µXi
(ni(z))

= µXi
(fi(g(z)))

This now implies that µZ(z) ≤ µX(g(z)) which is precisely the thesis.

By Lemma 3.1.18 we already know that VH is cotopological, for the sake of completeness we will spell
out the explicit construction of final lifts.

Proposition 3.1.25. Let {fi}i∈I be a VH-structured sink with arrows fi : VH(Xi, µXi
) → Y . For every

element i of I , define a function

µi : Y → H y 7→
∨

x∈f−1
i (y)

µXi
(x)

Then a final lift for {fi}i∈I is given by the collection of arrows fi : (Xi, µXi
) → (Y, µY ) where

µY : Y → H y 7→
∨

i∈I

µi(y)
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Proof. First of all notice that every fi : Xi → Y becomes a morphism (Xi, µXi
) → (Y, µY ) of Fuz(H):

every x ∈ Xi is in the preimage of fi(x), thus we have

µXi
(x) ≤ µi(fi(x))

≤ µY (fi(x))

Now let {ni}i∈I be a family of arrows ni : (Xi, µXi
) → Z such that ni = g ◦ fi for some g : Y → Z,

we have to show that g defines a morphism of fuzzy sets (Y, µY ) → (Z, µZ). For every y ∈ Y and i ∈ I ,
computing we get

µi(y) =
∨

x∈f−1
i (y)

µXi
(x)

≤
∨

x∈f−1
i (y)

µZ(ni(x))

=
∨

x∈f−1
i (y)

µZ(g(fi(x)))

=
∨

x∈f−1
i (y)

µZ(g(y))

= µZ(g(y))

Now we are ready to exploit the results of the previous section, namely Proposition 3.1.19 and Corol-
lary 3.1.20, paired with Proposition 3.1.25, to get the following results at once.

Corollary 3.1.26. Given a frameH, the following hold true:

1. there exist functors∆H,∇H : Set → Fuz(H) such that∇H a VH a ∆H, moreover, for every setX 6= ∅
the following equalities hold

∇H(X) = (X, c⊥) ∆H(X) = (X, c⊤)

where c⊥, c⊤ : X ⇒ H are the functions constant in ⊥ and > respectively;

2. an arrow f : (X,µX) → (Y, µY ) is mono (epi) if and only it VH(f) is injective (surjective);

3. every diagram F : D → Fuz(H) has a limiting cone ((L, µL), {lD}D∈D) where (L, {lD}D∈D) is a
limiting cone for VH ◦ F and

µL : L→ H x 7→
∧

D∈D

µF (D)(lD(x))

4. given a diagram F : D → Fuz(H), if (C, {cD}D∈D) is colimiting for VH ◦ F , F (D) = (XD, µXD
)

and for everyD ∈ D

µD : C → H y 7→
∨

x∈c−1
D

(y)

µXD
(x)

then F has a colimiting cocone ((C, µC), {cD}D∈D) where

µC : C → H y 7→
∨

D∈D

µD(y)
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5. an arrow f : (X,µX) → (Y, µY ) is a regular mono if and only if VH(f) is injective and

µX(x) = µY (f(x))

for every x ∈ X .

Remark 3.1.27. Let F be a functor Fuz(H) → Fuz(H) and e : (X,µX) → (Y, µY ) be an epimorphism,
then F (e) is surjective too. To see this, define G : Set → Set as the composition

Set
∆H // Fuz(H)

F // Fuz(H)
VH // Set

and notice that
G(VH(e)) = VH(F (e))

By point 2 of the previous lemma VH(e) is surjective, thus, assuming the axiom of choice, F (e) must be
surjective too.

We can use Example 2.2.4 and point 4 of Corollary 3.1.26 to get at once the following results.

Corollary 3.1.28. Let (X,µX) be aH-fuzzy sets. Then the following hold true:

1. for every regular cardinal κ, ((X,µX), {iA}A∈Pκ
(X)), is a colimiting cocone for the functor sending

A ∈ Pκ(X) to (A,µX |A), and A ⊆ B to the inclusion arrow iA,B : (A,µX |A) → (B,µX |B);

2. (X,µX) is the coproduct of the family
{(
1, δµX(x)

)}
x∈X

.

We can also further exploit point 4 of Corollary 3.1.26 specializing it to the case of κ-filtered colimits.

Proposition 3.1.29. Let F : D → Fuz(H) be a functor with a κ-filtered domain and with colimiting cocone
((C, µC), {cD}D∈D), then, for every x ∈ VH(F (D)) the following equality holds

µC(cD(x)) =
∨

f∈D/D

µXcod(f)
(F (f)(x))

Proof. LetD′ be an object ofD, and d ∈ F (D′) be an element such that cD′(d) = cD(x), by Lemma 2.2.11
there exist arrows g : D′ → D′′, f : D → D′′ in D such that F (g)(d) = F (f)(x), therefore

µXD′ (d) ≤ µXD′′ (F (g)(d))

= µXD′′ (F (f)(x))

and we can conclude that

µC(cD(x)) =
∨

D′∈D

µD′(cD(x))

≤
∨

f∈D/D

µXcod(f)
(F (f)(x))

On the other hand, for every f : D → D′ in D we have cD′(F (f)(x)) = cD(x) so that

µXD′ (F (f)(x)) ≤ µD′(cD(x))

from which the other inequality follows.
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In Section 3.3 we will need a description of split epimorphisms which we can easily provide here.

Proposition 3.1.30. An arrow f : (X,µX) → (Y, µY ) is a split epimorphism if and only if for any y ∈ Y

there exists xy such that f(xy) = y and µY (y) = µX(xy).

Proof. (⇒) Let m : (Y, µY ) → (X,µX) be the right inverse of f , then µY (y) ≤ µX(m(y)) because m is
an arrow of Fuz(H), while

µX(m(y)) ≤ µY (f(m(y)))

= µY (y)

(⇐) It is enough to define
m : (Y, µY ) → (X,µX) y 7→ xy

by hypothesis µY (y) = µX(m(y)) and f ◦m = idY .

We can also instantiate Lemma 3.1.22 to get the following

Corollary 3.1.31. There exists a factorization system (E ,M) on Fuz(H) where E and M are, respectively,
the class of all epimorphisms and the one of all regular monomorphisms.

Proof. It is enough to notice that the proof of Lemma 3.1.24 entails that a monomorphism f : (X,µX) →
(Y, µY ) is the initial lift of VH(f) if and only if

µX(x) = µY (f(x))

for every x ∈ X and then apply points 2 and 4 of Corollary 3.1.26.

The next step is showing that Fuz(H) has a notion of exponentials.

Theorem 3.1.32. For every frameH, Fuz(H) is cartesian closed.

Proof. We have already proved that Fuz(H) is complete, so it is enough to show that, for every fuzzy set
(X,µX), the functor (−)× (X,µX) has a right adjoint (−)(X,µX). For every (Y, µY ) ∈ Fuz(H), we can
exploit the implication operator of H to define

µY X : Y X → H f 7→
∧

x∈X

(µX(x) → µY (f(x)))

Take now the evaluation arrow evX,Y : Y X ×X → Y , then for every f ∈ Y X and x′ ∈ X we have

µY X (f) ∧ µX(x′) = µX(x′) ∧
∧

x∈X

(µX(x) → µY (f(x)))

≤ µX(x′) ∧ (µX(x′) → µY (f(x
′)))

≤ µY (f(x
′))

which shows that evX,Y is an arrow (X,µX)× (Y X , µY X ) → (Y, µY ). Now, take an arrow g : (Z, µZ)×
(X,µX) → (Y, µY ), then we know that, in Set, there is a unique h : Z → Y X such that the diagram

Y X ×X
evX,Y // Y

Z ×X

g

::tttttttttt
h×idX

OO
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commutes. We also know that, for every z ∈ Z

h(z) : X → Y x 7→ g(z, x)

If we show that h is actually a morphism (Z, µZ) → (Y X , µY X ) of Fuz(H)we are done. For every z ∈ Z

we can compute and get

µY X (h(z)) =
∧

x∈X

(µX(x) → µY (g(z, x)))

≥
∧

x∈X

(µX(x) → (µX(x) ∧ µZ(z)))

=
∧

x∈X

((µX(x) → µX(x)) ∧ (µX(x) → µZ(z)))

=
∧

x∈X

(µX(x) → µZ(z))

≥
∧

x∈X

µZ(z)

= µZ(z)

so that we conclude.

Remark 3.1.33. Let us point out two things:

• an element f ∈ (Y X , µY X ) is a morphism of fuzzy sets if and only if µY X (f) = >;

• if (X,µX) = ∆H(X), then (Y, µY )
(X,µX) is isomorphic to (Y, µY )

|X|: to see this it is enough to
notice that, for every f : X → Y , the following equalities hold:

µY X (f) =
∧

x∈X

(µX(x) → µY (f(x)))

=
∧

x∈X

(> → µY (f(x)))

=
∧

x∈X

µY (f(x))

Our next problem is to characterize κ-presentable objects in Fuz(H). Let us start with the following
preliminary result.

Proposition 3.1.34. Let κ be a regular cardinal, if (X,µX) is κ-presentable in Fuz(H), thenX ∈ Setκ.

Proof. This is done as in Corollary 2.2.20: by Corollary 3.1.28 we know that ((X,µX), {iA}A∈Pκ(X))
is a κ-filtered colimit, thus (Fuz(H)(X,X), {iA ◦ (−)}A∈Pκ(X)) is again colimiting. Lemma 2.2.11 this
implies that id(X,µX) = iA ◦f for someA ∈ Pκ(X) and f : (X,µX) → (A,µX |A), showing |X| < κ.

The following example shows that the converse does not hold.

Example 3.1.35. Let H be ([0, 1],≤), for every i ∈ N we can consider (1, δhi
), where

hi := 1−
1

i+ 1
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If i ≤ j, then id1 defines a morphism (1, δhi
) →

(
1, δhj

)
, thus we get a ℵ0-filtered diagram in Fuz(H),

which has a colimiting cocone ((1, δ⊤) , {ai}i∈N), where ai : (1, δhi
) → (1, δ⊤) is simply the identity.

Take now id(1,δ⊤) : (1, c⊤) → (1, c⊤), it does not factor through any of the ai, thus (1, c⊤) is not ℵ0-
presentable.

Lemma 3.1.36. Let κ be a regular cardinal then the following are equivalent for an object (X,µX) ofFuz(H):

1. (X,µX) is κ-presentable;

2. |X| < κ and µX(x) is κ-compact for every x ∈ X .

Proof. (1 ⇒ 2) Half of the thesis follows from Proposition 3.1.34. For the other half, fix x0 ∈ X and
suppose that µX(x0) ≤ s0, where s0 is the supremum of a κ-directed family S ⊆ H . For every s ∈ S we
can define a fuzzy set (X,µs) putting

µs : X → H x 7→

{
µX(x) x 6= x0

s x = x0

If s ≤ t, then idX defines an arrow (X,µs) → (X,µt), thus we have a diagram in Fuz(H) whose colimit
is, by Corollary 3.1.26, given by ((X,µS), {bs}s∈S) where bs = idX and

µS : X → H x 7→

{
µX(x) x 6= x0

s0 x = x0

Now, since µX(x0) ≤ s0, idX defines an arrow (X,µX) → (X,µS), since (X,µX) is κ-presentable there
must exists s′ ∈ S such that idX factors through (X,µs′), showing that µX(x0) ≤ s′.

(2 ⇒ 1) Let h be an element ofH , with a corresponding δh : 1 → H . By Proposition 2.2.19 and the second
point of Corollary 3.1.28 it is enough to show that (1, δh) is κ-presentable whenever h is κ-compact. Let
((A,µA), {aD}D∈D) be a colimiting cocone for a functor F : D → Fuz(H)with κ-filtered domain, we are
going to show that (Fuz(H) ((1, δh) , (A,µA)) , {aD ◦ (−)}D∈D) satisfies both points of Corollary 2.2.12.

1. Take a morphism g : (1, δh) → (A,µA), and let x ∈ A be the image of ∅ through it. By definition
of morphism h ≤ µA(x), on the other hand Proposition 3.1.29 entails that

µA(x) =
∨

f∈D/D

µXcod(f)
(F (f)(y))

for some D ∈ D and y ∈ F (D) such that aD(y) = x. The family
{
µXcod(f)

(F (f)(y))
}
f∈D/D

is

κ-filtered: take a subfamily {µXcod(fi)
(F (fi)(y))}i∈I for some I with cardinality strictly less than κ.

Then by Lemma 2.2.6 there exists a cocone on the source {fi}i∈I , that is arrows b : D → D′ and
bi : cod(fi) → D′ such that the following diagram commutes for every i ∈ I

codfi
bi

""E
EE

EE
EE

E

D

fi

<<zzzzzzzz

b
// D′

and this, in particular, entails that µXD′ (F (b)(y)) is an upper bound for {µXcod(fi)
(F (fi)(y))}i∈I .

By hypothesis h is κ-compact, thus there exists f ∈ D/D such that

h ≤ µXcod(f)(F (f)(y))
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and thus we have
f ′ : (1, δh) → F (cod(f)) ∅ 7→ F (f)(y)

Since acod(f) ◦ F (f) = aD the thesis follows.

2. Let f : (1, δh) → F (D1) and g : (1, δh) → F (D2) be arrows such that

aD1 ◦ f = aD2 ◦ g

Since (A, {aD}D∈D) is colimiting for VH ◦F , Corollary 2.2.12 entails that there exist g1 : D1 → D3

and g2 : D2 → D3 such that
F (g1)(f(∅)) = F (g2)(g(∅))

but this is exactly the thesis.

We are now ready to prove the following theorem.

Theorem 3.1.37. Let κ be a regular cardinal, and H be a frame, then Fuz(H) is locally κ-presentable if and
only ifH is a κ-algebraic lattice.

Proof. (⇒) Let h be an element of H , by Lemma 2.2.30 ((1, δh), {cD}D∈D) is the colimiting cocone on
some functor F : D → Fuz(H) such that F (D) = (XD, µXD

) is κ-presentable for every D ∈ D. By
Lemma 3.1.36 this means that |XD| < κ and µXD

(x) is κ-compact for every x ∈ XD. Define

sD :=
∨

x∈XD

µXD
(x)

By Proposition 2.2.19 each sD is κ-compact and by Corollary 3.1.26

h =
∨

D∈D

sD

(⇐) Let Hκ be the set of κ-compact elements of H, and define

G := {(1, δh) ∈ Fuz(H) | h ∈ Hκ}

By Lemma 3.1.36 every element of G is κ-presentable, let us show that G is a strong generator.

• G is a generator. Given two arrows f, g : (X,µX) ⇒ (Y, µY ) such that f 6= g, there exists x ∈ X

such that f(x) 6= g(x) and thus δx : (1, c⊥) → (X,µX) is such that such that

f ◦ δx 6= g ◦ δx

The thesis follows since ⊥ is κ-compact for every regular cardinal κ.

• G is strong. Let f : (M,µM ) → (X,µX) be a monomorphism which is not an isomorphism, by
Corollary 3.1.26 there exists x ∈ X ∖ f(M), and, by hypothesis, there exists h ∈ Hκ such that
h ≤ µX(x), then the morphism δx : (1, δh) → (X,µX) does not factor through f .

Remark 3.1.38. As shown by the previous theorem, Fuz(H) is locally κ-presentable category only in the
case in whichH is κ-algebraic. Nonetheless, we can still express a fuzzy set over any frameH as a κ-filtered
colimit of the family of its subobjects of cardinality less then κ. Indeed, the first point of Corollary 3.1.28
shows that every (X,µX) is the colimit of the functorDκ,(X,µX) assigning to each A ∈ Pκ(X) the fuzzy

set
(
A,µX |A

)
, where µX |A is the restriction of µX to A, and to each inclusion A ⊆ B the corresponding

arrow iA,B :
(
A,µX |A

)
→
(
B,µX |b

)
.
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For every regular cardinal κ, let Fuzk(H) be the category of fuzzy sets whose underlying set has
cardinality strictly less than κ. Let also Jκ : Fuzκ(H) → Fuz(H) be the inclusion functor, Remark 3.1.38
allows us to prove an analog of Theorem 2.2.31.

Theorem 3.1.39. For every regular cardinal κ and for every functor F : Fuz(H) → Fuz(H), the following
are equivalent:

1. for every object (X,µX), the cocone
(
F (X,µX), {F (iA)}A∈Pκ(X)

)
is colimiting for F ◦Dκ,(X,µX);

2. (F, idF◦Jκ) is a left Kan extension of F ◦ Jκ along Jκ;

3. the following isomorphism hold

F '

∫ (Y,µY )∈Fuzκ(H)

Fuz(H)((Y, µY ),−) • F (Y, µY )

Proof. (1 ⇒ 2) Let us show that (F, idF◦Jk) enjoys the universal property of a left Kan extension. Take
a functor G : Fuz(H) → Fuz(H) a natural transformation η : F ◦ Jκ → G ◦ Jκ, we need to construct a
η : F → G such that η(Y,µY ) = η(Y,µY ) for every (Y, µY ) ∈ Fuzκ(H).

Take another fuzzy set (X,µX), given A,B ∈ Pκ(X) such that A ⊆ B. Then

G(iB) ◦ η(B,µB) ◦ F (iA,B) = G(iB) ◦G(iA,B) ◦ η(A,µA)

= G(iB ◦ iA,B) ◦ η(A,µA)

= G(iA) ◦ η(A,µA)

Therefore we have a cocone
(
G(X,µX), {G(iA) ◦ η(A,µA)}A∈Pκ(X)

)
which, by hypothesis, entails the

existence of a unique η(X,µX) fitting in the diagram

F
(
A,µX |A

)

F (iA)

��

η(A,µX |A)

// G
(
A,µX |A

)

G(iA)

��
F (X,µX)

η(X,µX )

// G(X,µX)

By construction, if |X| < κ then η̄(X,µX) = η(X,µX), so we only have to show the naturality of the family
{η(X,µX)}(X,µX)∈Fuz(H). Now, notice that for every morphism f : (X,µX) → (Y, µY ) and A ∈ Pκ(X),
we have f(A) in Pκ(Y ) and, for every x ∈ A:

µX |A(x) = µX(x)

≤ µY (f(x))

≤ µY |f(A)(f(x))

Hence, restricting and corestricting f we get a morphism f ′ :
(
A,µX |A

)
→
(
f(A), µY |f(A)

)
which

makes the following square commutative

(
A,µX |A

)

iA

��

f ′

//
(
f(A), µY |f(A)

)

if(A)

��
(X,µX)

f
// (Y, µY )
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Applying F , this square in turn yields a bigger diagram

F
(
A,µX |A

)

F (iA)

ww

F (iA)

&&

F (f ′)

zzuuu
uu
uu
uu
uu
uu
uu

η(A,µX |A)

##F
FF

FF
FF

FF
FF

FF
F

F (X,µX)

F (f)

��

F
(
f(A), µY |f(A)

)

F (if(A))

zzuu
uu
uu
uu
uu
uu
uu
uu

η(f(A),µY |f(A))

$$I
II

II
II

II
II

II
II

G
(
A,µX |A

)

G(f ′)

||xx
xx
xx
xx
xx
xx
x

G(iA)

""E
EE

EE
EE

EE
EE

EE
EE

F (X,µX)

η(X,µX )

��
F (Y, µY )

η(Y,µY )

,,

G
(
f(A), µY |f(A)

)

G(if(A))

��

G(X,µX)

G(f)

rr
G(Y, µY )

which, since
(
F (X,µX), {F (iA)}A∈Pκ(X)

)
is colimiting, shows that

G(f) ◦ η(X,µX) = η(Y,µY ) ◦ F (f)

We are left with uniqueness. If ϵ : F → G is a natural transformation such that ϵ(Y,µY ) = η(Y,µY ) for
every (Y, µY ) ∈ Fuzκ(H), then, for every A ∈ Pκ(X) we have

ϵ(X,µX) ◦ F (iA) = G(iA) ◦ ϵ(A,µX |A)

= G(iA) ◦ η(A,µX |A)

= η(X,µX) ◦ F (iA)

from which the thesis follows using again the colomiting property of
(
F (X,µX), {F (iA)}A∈Pκ(X)

)
.

(2 ⇒ 3) This follows from the formula for left Kan extensions.

(3 ⇒ 1) As in the proof of Theorem 2.2.31, since (−) • F (Y, µY ) is a left adjoint, it is enough to show
that

(
Fuz(H)((Y, µY ), (X,µX)), {iA ◦ (−)}A∈Pκ(X)

)
is colimiting for Fuz(H)((Y, µY ),−) ◦Dκ,(X,µX)

whenever |Y | < κ. To see this, let
(
C, {fA}A∈Pκ(X)

)
be a cocone. Notice that for every g : (Y, µY ) →

(X,µX), g(Y ) belongs to Pκ(X) and there exists a unique g′ : (Y, µY ) →
(
g(Y ), µX |g(Y )

)
such that

g = ig(Y ) ◦ g
′, so that we can define

f : Fuz(H)((Y, µY ), (X,µX)) → C g 7→ fg(Y )(g
′)

By construction, for everyh : (Y, µY ) →
(
A,µX |A

)
wehave a unique arrow (Y, µY ) →

(
h(Y ), µX |h(Y )

)
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as in the diagram below

(Y, µY )
h //

h′

��

(
A,µX |A

)

iA

��(
h(Y ), µX |h(Y )

)
ih(Y )

//

ih(Y ),A

66nnnnnnnnnnnn

(X,µX)

and therefore

f(iA ◦ h) = fh(Y )(h
′)

= fA(ih(Y ),A ◦ h′)

= fA(h)

If k is another functionFuz(H)((Y, µY ), (X,µX)) → C such that fA = k(iA◦(−)) for everyA ∈ Pκ(X),
then, since every g : (Y, µY ) → (X,µX) is equal to ig(Y ) ◦ g

′, we have

k(g) = fg(Y )(g
′)

showing uniqueness of f and the thesis.

On the rank of exponentials

The previous results settle the questions of computing the rank of the functor Fuz(H)((X,µX),−), and
of locally κ-presentability of Fuz(H). We can also wonder if there is a way to compute the rank of
(−)(X,µX). The situation is less clear but we can still provide some positive result.

Proposition 3.1.40. LetH be a frame, and (X,µX) an object of Fuz(H). Then the following hold true:

1. if (−)(X,µX) has rank κ then |X| < κ;

2. suppose that |X| < κ, given a functor F : D → Fuz(H) with a κ-filtered domain, a colimiting cocone

((C, µC), {cD}D∈D) for it and puttingF (D) = (XD, µXD
), then

(
(C, µC)

(X,µX),
{
c
(X,µX)
D

}
D∈D

)

is colimiting for (−)(X,µX) ◦ F if and only if, for every f : C → XD the following equality holds

∨

g∈D/D

( ∧

x∈X

(µX(x) → µXD
(F (g)(f(x))))

)
=
∧

x∈X


µX(x) →

∨

g∈D/D

µXD
(F (g)(f(x)))




Proof. 1. We have a commutative diagram

Fuz(H)
(−)(X,µX )

// Fuz(H)

VH

��
Set

Set(X,−)
//

∇H

OO

Set

which, by hypothesis, implies that Set(X,−) has rank κ, so Corollary 2.2.20 yields the thesis.
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2. We already know that VH
(
(C, µC)

(X,µX)
)
= CX , thus, by Corollary 2.2.20,

(
CX , {cXD}D∈D

)
is

colimiting and the thesis follows from point 4 of Corollary 3.1.26 and from Proposition 3.1.29.

Corollary 3.1.41. LetX be a finite set, then:

1. (−)∆H(X) has rank ℵ0;

2. ifH is boolean, then (−)(X,µX) has rank ℵ0.

Proof. 1. The equality of Proposition 3.1.40 becomes

∨

g∈D/D

( ∧

x∈X

µXD
(F (g)(f(x)))

)
=
∧

x∈X


 ∨

g∈D/D

µXD
(F (g)(f(x)))




which holds by the cartesian closedness of H.

2. Let {hi}i∈I be a family of elements of H and h another element of it. Since H is boolean, we can
use Lemma 3.1.7 to get

h→
∨

i∈I

hi = ¬h ∨
∨
hi

=
∨

i∈I

(¬h ∨ hi)

=
∨

i∈I

(h→ hi)

We can apply this equality with cartesian closedness to the setting of Proposition 3.1.40:

∧

x∈X


µX(x) →

∨

g∈D/D

µXD
(F (g)(f(x)))


 =

∧

x∈X


 ∨

g∈D/D

(µX(x) → µXD
(F (g)(f(x))))




=
∨

g∈D/D

( ∧

x∈X

(µX(x) → µXD
(F (g)(f(x))))

)

which proves the thesis.

The crucial property exploited in the proof of the previous corollary has been commutation of col-
imits and finite products, which is guaranteed by cartesian closedness of H. In order to generalize Corol-
lary 3.1.41 to other (regular) cardinals we need to introduce the notion of κ-continuity, which will guar-
antee commutation of suprema and infima (see [53, 54, 62, 105, 116] for further details).

Definition 3.1.42. Let (P,≤) be a poset and κ a regular cardinal, a κ-ideal I is a subset of P which is
downward closed and κ-directed. We will denote by Idlκ(P,≤) the set of κ-ideals, which form a poset
when ordered by inclusion.

Remark 3.1.43. If D is a κ-directed subset of (P,≤), then

↓D := {p ∈ P | p ≤ d for some d ∈ D}

is a κ-ideal. Clearly it is downward closed. Moreover, if {pi}i∈I ⊆↓D is a family with cardinality strictly
less than κ, then for every i ∈ I there exists di ∈ D such that, for every pi ≤ di, but D is κ-directed and
therefore there exists d ∈ D which is a upper bound for {di}i∈I and thus also for {pi}i∈I .
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Remark 3.1.44. The arbitrary intersection of a family {Ik}k∈K of ideals of a complete lattice (P,≤) is
again an ideal. Let I be such intersection, if q ∈ I and p ≤ q, then p ∈ Ik for every k ∈ K and thus I is
downward closed. On the other hand, if {pi}i∈I is a family with cardinality less than κ contained in I ,
then for every k ∈ K we have a qk ∈ Ik which is an upper bound for {pi}i∈I . Take

q :=
∧

k∈K

qk

then q is an upperbound for {pi}i∈I too and it is in I because every Ik is downward closed.

Example 3.1.45. For every p ∈ P and regular cardinal κ, the downward closure ↓ p of x is a κ-ideal. If
p ≤ q, then ↓p ⊆↓q, thus we have a monotone map ↓ : (P,≤) → (Idlκ(P,≤),⊆).

Proposition 3.1.46. Let (P,≤) be a poset, then the following are equivalent:

1. ↓ : (P,≤) → (Idlκ(P,≤),⊆) has a left adjoint sp;

2. every κ-directed subset of P has a supremum.

Proof. (1 ⇒ 2) Let D be a κ-directed subset of P , then its downward closure ↓ D is a κ-ideal by Re-
mark 3.1.43. We claim that sp(↓D) is the supremum for D. On one hand the unit of ↓a sp yields

↓D ⊆↓(sp(↓D))

so that sp(↓D) is an upper bound for D. On the other hand, for every other p ∈ P which is an upper
bound we have ↓D ⊆↓p and so, by adjointness sp(↓D) ≤ p.

(2 ⇒ 1) Since every ideal is κ-directed, we can define

sp : (Idlκ(P,≤),⊆) → (P,≤) I 7→
∨

p∈I

p

Now, if sp(I) ≤ q for some q ∈ P , then every element in I must be below q, showing I ⊆↓q. Vice versa,
if I ⊆↓q then q is an upper bound for I and therefore sp(I) ≤ q.

Definition 3.1.47. Given a regular cardinal κ, a complete lattice (P,≤) is κ-continuous if the function
sp : (Idlκ(P,≤),⊆) → (P,≤) has a left adjoint ⇓. A frame H is said to be locally κ-compact if it is κ-
continuous when regarded as a lattice.

Example 3.1.48. The lattice ([0, 1],≤) is ℵ0-continuous. To see this, for every r ∈ [0, 1], define

⇓r :=

{
↓r ∖ {r} r 6= 0

{0} r = 0

Clearly ⇓r is downward closed, every finite set F contained in ⇓r has an upper bound: this is tautological
if F = ∅, while we can take the maximum of F if it is non empty. Notice that the supremum of ⇓ r
is r itself: this is clear if r = 0, if r 6= 0, let s be the supremum of ↓ r, clearly r is an upper bound for
↓ r and thus s ≤ r, on the other hand, if s < r, then the density of ([0, 1],≤) entails the existence of
s < t < r, but this is a contradiction. But now, given this observation, it is obvious that⇓ r ⊆ I if and
only if r ≤ sp(I), showing that ⇓a sp.

Remark 3.1.49. The terminology of local κ-compactness comes from the fact that locally ℵ0-compact
frames are, up to isomorphism, the topologies of locally compact topological spaces [105].
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We are now going to show that in a κ-continuous lattice directed suprema , i.e. suprema of directed
sets, distribute over arbitrary infima.

Lemma 3.1.50. Given a complete lattice (P,≤) and a regular cardinal κ, the following are equivalent:

1. (P,≤) is κ-continuous;

2. given a family {Ij}j∈J of κ-ideals, we have

∨

x∈
∏

j∈J Ij


∧

j∈J

πj(x)


 =

∧

j∈J


 ∨

yj∈Ij

yj




where πj denotes the projection
∏
j∈J Ij → Ij .

Remark 3.1.51. Lemma 3.1.50, like Proposition 3.1.9, is an application of the classical Adjoint Functor
Theorem for posets. For the sake of completeness, we will nonetheless provide a full proof of it.

Remark 3.1.52. Let us notice the following: for every fixed x ∈
∏
j∈J Ij , let px be the infimum of the

family {πj(x)}j∈J . By definition, px ≤ πj(x) for every j ∈ J , so that px belongs to
⋂
j∈J IJ . On the

other hand, given y ∈
⋂
j∈J IJ , if we consider consider xy ∈

∏
j∈J Ij defined by y = πj(xy) for every

j ∈ J , then ymust coincide with pxy
. Hence, the family {px}x∈

∏
j∈J Ij

is cofinal in
⋂
j∈J Ij and therefore

sp


⋂

j∈J

Ij


 =

∨

x∈
∏

j∈J Ij

px

=
∨

x∈
∏

j∈J Ij


∧

j∈J

πj(x)




Proof. (1 ⇒ 2) By hypothesis sp is a right adjoint, thus Remark 3.1.52 yields

∨

x∈
∏

j∈J Ij


∧

j∈J

πj(x)


 = sp


⋂

j∈J

Ij




=
∧

j∈J

sp(Ij)

=
∧

j∈J


 ∨

yj∈Ij

yj




(2 ⇒ 1) Let p be an element of P , define

Dp := {I ∈ Idlκ(P,≤) | p ≤ sp(I)}

Using Remark 3.1.44 we know that Idlκ(P,≤) is closed under arbitrary intersections, we can then put

⇓(p) :=
⋂

I∈Dp

I
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Suppose that ⇓(p) ⊆ J for some κ-ideal J . Since every κ-ideal is downward closed, it follows that

p ≤
∨

I∈Dp

sp(I)

= sp


 ⋂

I∈Dp

I




= sp(⇓(p))

≤ sp(J)

Vice versa, if p ≤ sp(J) for some J ∈ Idlκ(P,≤) then J ∈ Dp, so, trivially, we have that ⇓(p) ⊆ J .

Corollary 3.1.53. Let (P,≤) be a κ-continuous lattice and {Dj}j∈J a family of κ-directed subsets of P , then

∨

x∈
∏

j∈J Dj


∧

j∈J

πj(x)


 =

∧

j∈J


 ∨

yj∈Dj

yj




Proof. This follows at once from Remark 3.1.43 and Lemma 3.1.50 noticing thatDj is cofinal in ↓Dj .

Corollary 3.1.54. Let {pj,d}j∈J,d∈D be a family of elements of a κ-continuous lattice (P,≤) such that |J | < κ

and, for every j ∈ J , the setDj := {pj,d}d∈D is κ-directed, then:

∨

d∈D


∧

j∈J

pj,d


 =

∧

j∈J

(∨

d∈D

pj,d

)

Proof. As a first step notice that

∧

j∈J


 ∨

yj∈Dj

yj


 =

∧

j∈J

sp(Dj)

=
∧

j∈J

(∨

d∈D

pj,d

)

Next, for every d ∈ D, put

pd :=
∧

j∈J

pj,d

Now, for every d ∈ D, there is a unique xd ∈
∏
j∈J Dj such that pd = πj(xd) showing that

{pd}d∈D ⊆




∧

j∈J

πj(x)




x∈

∏
j∈J Dj

We claim that this inclusion is cofinal. Let x be an element of
∏
j∈J Dj , the family {πj(x)}j∈J has

cardinality strictly less then κ and it is contained in Dj . Therefore, by Lemma 2.2.6, it has an upper
bound pj,d ∈ Dj . This shows that ∧

j∈J

πj(x) ≤ pd
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This shows the desired cofinality.The thesis now follows from Corollary 3.1.53.

Proposition 3.1.55. LetH be a locally κ-compact frame, and letX be an object of Setκ then:

1. (−)∆H(X) has rank κ;

2. ifH is boolean then (−)(X,µX) has rank κ.

Proof. In view of Corollaries 2.2.8 and 3.1.54 it is enough to repeat verbatim the proof of Corollary 3.1.41.

1. The equality of Proposition 3.1.40 becomes

∨

g∈D/D

( ∧

x∈X

µXD
(F (g)(f(x)))

)
=
∧

x∈X


 ∨

g∈D/D

µXD
(F (g)(f(x)))




which holds since H is locally κ-compact.

2. Given a family {hi}i∈I of elements of H , for every other h in it we have already noticed that

h→
∨

i∈I

hi =
∨

i∈I

(h→ hi)

Thus, usinge the local κ-compactness of H we have

∧

x∈X


µX(x) →

∨

g∈D/D

µXD
(F (g)(f(x)))


 =

∧

x∈X


 ∨

g∈D/D

(µX(x) → µXD
(F (g)(f(x))))




=
∨

g∈D/D

( ∧

x∈X

(µX(x) → µXD
(F (g)(f(x))))

)

and the thesis follows from Proposition 3.1.40.

3.2 Monads on Fuz(H)

In this section we will adapt the work done in Section 2.2 to the setting of fuzzy sets. Our main goal is to
introduce new syntactic constructs, called fuzzy algebraic theories, and provide results similar to Corollar-
ies 2.2.83 and 2.2.92, linking them to monads on Fuz(H).

3.2.1 Fuzzy algebraic theories

Let us start introducing the notion of fuzzy signature.

Definition 3.2.1. Let Card(H) be the class of all fuzzy sets whose underlying set is a cardinal. A fuzzy
signature (or simply a signature) Σ is a triple (OΣ, CΣ, arΣ), where OΣ is a class of operations, CΣ a set of
constants and arΣ is a function OΣ → Card(H) such that, for every (κ, µκ) in Card(H),

OΣ,(κ,µκ) := {o ∈ OΣ | arΣ(o) = (κ, µκ)}

is a set, called the set of operations of arity (κ, µκ). Given a regular cardinal κ, we will say that Σ is
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• κ-bounded if, for every (λ, µλ) such that κ ≤ λ, OΣ,(λ,µλ) is empty;

• strongly κ-bounded if, for every o ∈ OΣ, arΣ(o) = ∆H(µ) for some µ < κ;

• κ-accessible if (−)arΣ(o) has rank κ for every o ∈ OΣ.

The category FSignκ is defined as the category with κ-bounded fuzzy signatures as objects and in
which a morphism (f, g) : Σ1 → Σ2 is a pair of functions f : OΣ1 → OΣ2 , g : CΣ1 → CΣ2 such that the
following triangle commutes.

OΣ1

f //

arΣ1 $$I
II

II
II

II
OΣ2

arΣ2zzuuu
uu
uu
uu

Card(H)

Remark 3.2.2. Let Σ be κ-bounded, there is only a set of fuzzy sets whose underlying set has cardinality
strictly less then κ, so, as in the case of algebraic theories, OΣ is a set and FSignκ is a category.

Remark 3.2.3. By definition and by Proposition 3.1.40 strongly κ-bounded and κ-accessible signatures
are κ-bounded, thus they define two full subcategories FSignS,κ and FSignA,κ of Signκ. We can point
out some other relation between them.

• Point 1 of Corollary 3.1.41 entails that FSignS,ℵ0
is a subcategory of FSignA,ℵ0

while point 2 says
that FSignA,ℵ0

= FSignℵ0
whenever H is a complete boolean algebra.

• If H is locally κ-compact, then, from Proposition 3.1.55 we obtain that, for every regular cardinal
κ, FSignS,κ is a subcategory of FSignA,κ and that this last category coincides with FSignκ if H is
also boolean.

Remark 3.2.4. For every a fuzzy signature Σ we can construct an algebraic signature cri (Σ) putting

Ocri(Σ) := OΣ + CΣ

and, denoting the obvious injections by j1 : OΣ → Ocri(Σ) and j2 : CΣ → Ocri(Σ):

arcri(Σ) : Ocri(Σ) → Card x 7→

{
VH(arΣ(o)) x = j1(o)

0 x = j2(c)

Given a regular cardinal κ, this construction extends to a functor cri : FSignκ → Signκ: for every
(f, g) : OΣ1

→ OΣ2
we can define cri (f, g) : Ocri(Σ1) → Ocri(Σ2) as f + g : OΣ1

+CΣ1
→ OΣ2

+CΣ2
. By

construction, we get a morphism of Signκ.

Example 3.2.5. The signature ΣFS of fuzzy semigroups is given by

OΣFS
:= {·} CΣFS

= ∅

and in which the arity function is defined putting arΣFS
(·) = ∆H(2).

Example 3.2.6. The signature ΣFG of fuzzy groups is defined putting

OΣFG
:=
{
·, (−)−1

}
CΣFG

:= {e}

and in which
arΣFG

(·) = ∆H(2) arΣFG

(
(−)−1

)
= ∆H(1)
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We are now ready to introduce Σ-algebras as in the previous chapter.

Definition 3.2.7. Let Σ be a fuzzy signature, a fuzzy Σ-algebra A =
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)

is a triple where (A,µA) is a fuzzy set and, for every o ∈ OΣ, c ∈ CΣ,

oA : (A,µA)
arΣ(o) → (A,µA) cA : ∇H(1) → (A,µA)

A Σ-homomorphism f : A → B is an arrow f : (A,µA) → (B,µB) such that, for every operation
o ∈ OΣ, the following diagrams commute

(A,µA)
arΣ(o)

oA

��

farΣ(o)

// (B,µB)arΣ(o)

oB

��

∇H(1)

cA

||yy
yy
yy
yy cB

""F
FF

FF
FF

F

(A,µA)
f

// (B,µB) (A,µA)
f

// (B,µB)

We will denote by Σ-FAlg the resulting category and by VΣ : Σ-FAlg → Fuz(H) the forgetful functor.

Remark 3.2.8. Differently from the case of algebraic signatures, in our setting constants cannot be seen
simply as operations of arity (∅, ?H). For every(A,µA) we get

(A,µA)
(∅,?H) ' ∆H(1)

Thus an operation of arity (∅, ?H)must be interpreted as an arrow∆H(1) → (A,µA), i.e. as an element of
A with membership degree >. However, limiting ourselves to this kind of constants would be too heavy
a restriction for the expressivity of our formalism.

Take a fuzzy signature Σ and a Σ-algebra A, we know that, for every o ∈ OΣ

VH

(
(A,µA)

arΣ(o)
)
= Set(VH(arΣ(o)), A)

= Set(arcri(Σ)(o), A)

= Aarcri(Σ)(o)

Thus we can define a cri (Σ)-algebraWΣ(A) putting

oWΣ(A) := oA cWΣ(A) := cA

This can be immediately extended to a functorWΣ : Σ-FAlg → cri (Σ)-Alg:

B

f

−
→

A

7−→

7−→

WΣ(B)

−
→ f

WΣ(A)

Remark 3.2.9. It is worth to point out explicitly that a cri (Σ)-homomorphism f : WΣ(A) → WΣ(B) is
the image of a Σ-homomorphism if and only if f : (A,µA) → (B,µB) is a morphism of Fuz(H).

Proposition 3.2.10. The following hold true:
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1. for every fuzzy signature Σ, the functorWΣ has a right adjoint∆Σ;

2. for every strongly κ-bounded signature Σ,WΣ has a left adjoint∇Σ;

3. for every morphism (f, g) : Σ1 → Σ2 of FSignκ, there exists a functor (f, g)
∗ : Σ2-FAlg → Σ1-FAlg

making the following square commute

Σ2-FAlg
(f,g)∗ //

WΣ2

��

Σ1-FAlg

WΣ1

��
cri (Σ2)-Alg

cri(f,g)∗
// cri (Σ1)-Alg

Proof. 1. Let A =
(
A,
{
oA
}
o∈Ocri(Σ)

)
be a cri (Σ)-algebra, then for every o ∈ OΣ and c ∈ CΣ we have

arrows of Fuz(H)

oA : (∆H(A))
arΣ(o) → ∆H(A) cA : ∇H(1) → ∆H(A)

and we can define ∆Σ(A) as the resulting fuzzy Σ-algebra. Notice thatWΣ(∆Σ(A)) = A and idA
has the universal property of a counit forWΣ a ∆Σ: given a cri (Σ)-homomorphism f : WΣ(B) →
A we have for free that f is an arrow VΣ(B) → ∆H(A) and thus it defines also a Σ-homomorphism
B → ∆H(A).

2. Notice that, given two sets X and Y , we have that

(∇H(X))∆H(Y ) = ∇H

(
XY

)

Indeed, if f : Y → X is a function, then

µY X (Y ) =
∧

y∈Y

(µY (y) → µX(f(y)))

=
∧

y∈Y

(> → ⊥)

= ⊥

Thus, if Σ is strongly κ-bounded, given a cri (Σ)-algebra A =
(
A,
{
oA
}
o∈Ocri(Σ)

)
, we can construct

a Σ-algebra structure ∇Σ(A) on ∇H(A) simply using the arrows

oA : (∇H(A))
arΣ(o) → ∇H(A) cA : ∇H(1) → ∇H(A)

To see that in this way we get a left adjoint, consider idA : A → WΣ(∇Σ(A)) and suppose that
a cri (Σ)-homomorphism f : A → WΣ(B) is given, then f also defines a morphism of fuzzy sets
∇H(A) → (B,µB) and we can conclude.

3. This is done exactly as in Proposition 2.2.43. Given A =
(
(A,µA),

{
oA
}
o∈OΣ2

,
{
cA
}
c∈CΣ2

)
,

define (f, g)∗(A) as the Σ1-algebra on (A,µA) in which

o(f,g)
∗(A) := (f(o))A c(f,g)

∗(A) := (g(c))A

The action of (f, g)∗ on morphisms is the identity.
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We can also recover an analogous of Lemma 2.2.46.

Lemma 3.2.11. Let Σ be a κ-accessible signature and F : D → Σ-FAlg be a functor with a κ-filtered domain,
let also ((A,µA), {aD}D∈D) be a colimiting cocone for VΣ ◦ F . Then there exists a uniqueA in Σ-FAlg such
that VΣ(A) = (A,µA), and which makes every aD a Σ-homomorphism F (D) → A. Moreover, the cocone
(A, {aD}D∈D) is colimiting for F .

Proof. By definition of κ-accessible signature

(
(A,µA)

arΣ(o),
{
a
arΣ(o)
D

}
D∈D

)
is colimiting for the functor

(VΣ(F (−)))arΣ(o). The proof now proceeds in the same way as the one of Lemma 2.2.46: given an arrow
f : D1 → D2 in D, we have diagrams

(VΣ(F (D1)))
arΣ(o)

F (f)arΣ(o)

��

oF (D1)
// VΣ(F (D1))

F (f)

��

aD1

%%
(A,µA)

(VΣ(F (D2)))
arΣ(o)

oF (D2)

// VΣ(F (D2))
aD2

99

and thus a unique arrow oA : (A,µA)
arΣ(o) → (A,µA) such that

(VΣ(F (D)))arΣ(o)

c
arΣ(o)

D

��

oF (D)
// VΣ(F (D))

cD

��
(A,µA)

arΣ
oA

// (A,µA)

commutes. For a constant c ∈ CΣ, we are forced to define cA as aD ◦ cF (D) for any D ∈ D. Notice that
this definition does not depends on the choice ofD: ifD1 andD2 are objects ofD, then there exist arrows
f1 : D1 → D3 and f2 : D2 → D3 and we have a diagram

VΣ(F (D1))

F (f1)

''OO
OOO

OOO
OOO

aD1

%%
∇H(1)

cF (D3)
//

cF (D1)
88rrrrrrrrrr

cF (D3) &&LL
LL

LL
LL

LL
VΣ(F (D3))

aD2 // (A,µA)

VΣ(F (D2))

F (f2)

77ooooooooooo
aD2

99

and so

aD1
◦ cF (D1) = aD3

◦ F (f1) ◦ c
F (D1)

= aD3 ◦ c
F (D3)

= aD3
◦ F (f2) ◦ c

F (D3)

= aD2 ◦ c
F (D2)
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Now let A be
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
. To show that (A, {aD}D∈D) is colimiting for F take

another cocone (B, {dD}D), there is a unique d : (A,µA) → (B,µB), where (B,µB) = VΣ(B), such that
d ◦ aD = dD, so it is enough to show that d is an arrow of Σ-FAlg. Computing we get

d ◦ oA ◦ a
arΣ(o)
D = d ◦ aD ◦ oF (D)

= dD ◦ oF (D)

= oB ◦ d
arΣ(o)
D

= oB ◦ darΣ(o) ◦ a
arΣ(o)
D

d ◦ cA = d ◦ aD ◦ cF (D)

= dD ◦ cF (D)

= cB

from which the thesis follows.

Corollary 3.2.12. Let κ be a regular cardinal and Σ a κ-accessible signature, then the following are true

1. Σ-FAlg has all κ-filtered colimits;

2. VΣ has rank κ.

The calculus of fuzzy algebraic sequents

We are now going to introduce two syntactic notions that will play the same role played by equations in
the classical setting. Notice that the functor cri : FSignκ → Signκ allows us to speak of Σ-terms even if
we have not yet built a left adjoint to VΣ: this will be done in the next section.

Definition 3.2.13. LetΣ be a κ-bounded fuzzy signature, aΣ-term is simply a cri (Σ)-term, i.e. an element
of Tcri(Σ)(X) for some set X . We define the following sets:

• the set Eq(Σ) of Σ-equations coincides with the set of cri (Σ)-equations, i.e.

Eq(Σ) :=
∑

λ∈κ

Tcri(Σ)(λ)× Tcri(Σ)(λ)

We will still denote by λ | t1 ≡ t2 the image of the pair (t1, t2) ∈ Tcri(Σ)(λ) × Tcri(Σ)(λ) in Eq(Σ)
and call λ the context of the equation;

• the set MP(Σ) of membership propositions is defined as

MP(Σ) :=
∑

λ∈κ

H × Tcri(Σ)(λ)

By λ | m(h, t) wi will denote the image in MP(Σ) of the pair (h, t) ∈ H × Tcri(Σ)(λ) and we will
again refer to λ as the context of the proposition;

• the set Form(Σ, λ) of Σ-formulae in context λ is

Form(Σ, λ) := (Tcri(Σ)(λ)× Tcri(Σ)(λ)) + (H × Tcri(Σ)(λ))

while the set Form(Σ) of Σ-formulae is the coproduct
∑
λ∈κ Form(Σ, λ);

• finally, the set Seq(Σ) of Σ-sequents is

Seq(Σ) :=
∑

λ∈κ

P(Form(Σ, λ))× Form(Σ, λ)

and we will write λ | Γ ` ψ to denote the sequent given by the pair (Γ, ψ) ∈ P(Form(Σ, λ)) ×
Form(Σ, λ), as before λ will be called context.
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ϕ ∈ Γ

λ | Γ ` ϕ
A

λ | Γ ` ϕ

λ | Γ ∪∆ ` ϕ
Weak

{λ | Γ ` ϕ}ϕ∈Φ λ | Φ ` ψ

λ | Γ ` ψ
Cut

λ | Γ ` t ≡ t
Refl

λ | Γ ` t1 ≡ t2

λ | Γ ` t2 ≡ t1
Sym

λ | Γ ` t1 ≡ t2 λ | Γ ` t2 ≡ t3

λ | Γ ` t1 ≡ t3
Trans

σ : λ1 → Tcri(Σ)(λ2) λ1 | Γ ` ϕ

λ2 | Γ[σ] ` ϕ[σ]
Subst

λ | Γ ` m(⊥, t)
Inf

λ | Γ ` m(h, t)

λ | Γ ` m(h′ ∧ h, t)
Mon

S ⊆ H {λ | Γ ` m(h, t)}h∈S

λ | Γ ` m(sup(S), t)
Sup

λ | Γ ` t ≡ s λ | Γ ` m(h, t)

λ | Γ ` m(h, s)
Fun

o ∈ OΣ σ : arcri(Σ)(j1(o)) → Tcri(Σ)(λ) {λ | Γ ` m(hα, σ(α))}α∈arcri(Σ)(j1(o))

λ | Γ ` m


 ∧

α∈arcri(Σ)(j1(o))

(
µarΣ(o)(α) → hα

)
, j1(o)(σ)




Exp

o ∈ OΣ σ1, σ2 : arcri(Σ)(j1(o)) ⇒ Tcri(Σ)(λ) {λ | Γ ` σ1(α) ≡ σ2(α)}α∈arcri(Σ)(j1(o))

λ | Γ ` j1(o)(σ1) ≡ j1(o)(σ2)
Cong

Figure 3.1: Derivation rules for the calculus of fuzzy algebraic sequents.

Remark 3.2.14. As will become clearer in the following, the intended meaning of a membership propo-
sition λ | m(h, t) is “the membership degree of the term t is at least h”.

Remark 3.2.15. Let σ be an arrow λ1 → Tcri(Σ)(λ2), then we have a homomorphism Fcri(Σ)(λ1) →
Fcri(Σ)(λ2). Considering (σcri(Σ),∗ × σcri(Σ),∗) + (idH × σcri(Σ),∗) we get a function Form(Σ, λ1) →
Form(Σ, λ2). We will denote by ϕ[σ] the image through it of ϕ ∈ Form(Σ, λ1). Similarly, we will de-
note by Γ[σ] the image of Γ ⊆ Form(Σ, λ1) under this arrow.

Notation. We will write λ | ϕ for λ | ∅ ` ϕ. As in Chapter 2 we will also use 0 to denote ∅ when it
appears as a context.

Definition 3.2.16. Let S be a subset of Seq(Σ), its deductive closure S⊢ is the smallest subset of Seq(Σ)
which contains S and it is closed under the rules of Fig. 3.1, i.e. if all the premises of a rule are in it, then
the conclusion is. A sequent is derivable from S (or simply derivable if S = ∅) if it belongs to S⊢.

Remark 3.2.17. When Σ is strongly κ-accessible rule Exp becomes

o ∈ OΣ σ : arcri(Σ)(o) → Tcri(Σ)(λ) {λ | Γ ` m(hα, σ(α))}α∈arcri(Σ)(o)

λ | Γ ` m


 ∧

α∈arcri(Σ)(o)

hα, o(σ)




Exp

We can now proceed as in the case of algebraic signatures.

Proposition 3.2.18. Let Σ be a κ-bounded signature, then the following hold:

1. if S1 and S2 are subsets of Seq(Σ) and S1 ⊆ S2, then S⊢
1 ⊆ S⊢

2 ;
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2. for every S ⊆ Seq(Σ), (S⊢)⊢ = S⊢.

Proof. 1. This follows at once since S⊢
2 contains S2.

2. Clearly S ⊆ S⊢, so S⊢ ⊆ (S⊢)⊢. For the other inclusion it is enough to notice that, by definition,
S⊢ is closed under the rules of Fig. 3.1.

Proposition 3.2.19. There exists a functor Sqt : FSignκ → Set sending a signature Σ to the set of Σ-sequents.

Proof. Let (f, g) : Σ1 → Σ2 be a morphism in FSignκ, for every λ ∈ κ Proposition 2.2.56 yields an arrow

trcri(f,g),λ : Tcri(Σ1)(λ)× TΣ1
(λ) → Tcri(Σ2)(λ)× TΣ2

(λ)

On the other hand we also have the arrow (ηcri(Σ2),λ)cri(Σ),∗ : Tcri(Σ1)(λ) → Tcri(Σ2)(λ), yielding

idH × (ηcri(Σ2),λ)cri(Σ),∗ : H × Tcri(Σ1)(λ) → H × Tcri(Σ2)(λ)

These two arrows, in turn, define tr(f,g),λ : Form(Σ1, λ) → Form(Σ2, λ). We can now take as the
image of (f, g) the arrow tr(f,g) given by the sum of

P(tr(f,g),λ)× tr(f,g),λ : P(Form(Σ1, λ))× Form(Σ1, λ) → P(Form(Σ2, λ))× Form(Σ2, λ)

The thesis now follows at once.

We need a little generalization of the previous construction to settle some technical points in the
following. Let Σ1 and Σ2 be objects of FSignκ, let also λ1 and λ2 be elements of κ and, finally, let f be a
function Tcri(Σ1)(λ1) → Tcri(Σ2)(λ2), then we can define

Gf : Form(Σ1, λ1) → Form(Σ2, λ2) ϕ 7→

{
f(t1) ≡ f(t2) ϕ is t1 ≡ t2

m(h, f(t)) ϕ is m(h, t)

Given a set S of sequents in context λ1, we will denote by Sf the sequent obtained applyingGf pointwise:
a sequent is in Sf if and only if it is equal to λ2 | {Gf (ψ)}ψ∈Γ ` Gf (ϕ) for some element λ1 | Γ ` ϕ of
S.

Remark 3.2.20. Clearly, trcri(f,g),λ coincides with G(ηcri(Σ2),λ)cri(Σ),∗
.

Lemma 3.2.21. Given Σ1 and Σ2 in FSignκ, λ1, λ2 ∈ κ and f : Tcri(Σ1)(λ1) → Tcri(Σ2)(λ2), for every set
S the following are true:

1. if a sequent λ1 | Γ ` ϕ is derivable from S using only rules A, Weak, Cut, Refl, Sym, Trans, Inf, Mon,

Sup, Fun, then λ2 | {Gf (ψ)}ψ∈Γ ` Gf (ϕ) is derivable from Sf ;

2. if for every o ∈ OΣ1 there exists o
′ ∈ OΣ2 such that arΣ1(o) = arΣ2(o

′) and the square

(
Tcri(Σ1)(λ1)

)arcri(Σ1)(j1(o))

(j1(o))
Fcri(Σ1)(λ1)

��

f
arcri(Σ1)(j1(o))

//
(
Tcri(Σ2)(λ2)

)arcri(Σ1)(k1(o
′))

(k1(o
′))

Fcri(Σ2)(λ2)

��
Tcri(Σ1)(λ1) f

// Tcri(Σ2)(λ2)

commutes, then the thesis of the previous point holds also adding Exp and Cong to the list of used rules.
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Notation. In the previous lemma j1 and k1 denotes the inclusion OΣ1 → Ocri(Σ1) and OΣ2 → Ocri(Σ2)

respectively. Notice that, with this notation, the square above makes sense because

arcri(Σ1)(j1(o)) = VH(arΣ1
(o))

= VH(arΣ2
(o′))

= arcri(Σ2)(k1(o
′))

Proof. 1. We proceed by induction on the derivation of λ1 | Γ ` ϕ from S.

If λ1 | Γ ` ϕ is in S there is nothing to show.

λ1 | Γ ` ϕ is obtained applying rule A. Then ϕ is in Γ so that Gf (ϕ) ∈ {Gf (ψ)}ψ∈Γ and an
application of the same rule A yields the thesis.

λ1 | Γ ` ϕ is obtained applying rule Weak. Thuse Γ = Γ′ ∪∆ with λ1 | Γ′ ` ϕ derivable from S

using only the listed rules. By the inductive hypothesis we can use again Weak to get

λ2 | {Gf (ψ)}ψ∈Γ′ ` Gf (ϕ)

λ2 | {Gf (ψ)}ψ∈Γ′ ∪ {Gf (φ)}φ∈∆ ` Gf (ϕ)
Weak

λ1 | Γ ` ϕ is obtained applying rule Cut. Thus there exists λ1 | Φ ` ϕ satisfying the lemma such
that, for every φ ∈ Φ the sequent λ1 | Γ ` φ satisfies the lemma too. The thesis now follows by
induction applying

{λ2 | {Gf (ψ)}ψ∈Γ ` Gf (φ)}φ∈Φ λ2 | {Gf (φ)}φ∈Ψ ` Gf (ϕ)

λ2 | {Gf (ψ)}ψ∈Γ ` Gf (ϕ)
Cut

λ1 | Γ ` ϕ is obtained applying rule Refl. Then ϕ must by t ≡ t for some t ∈ Tcri(Σ1)(λ1) and we
can just apply again rule Refl to obtain λ2 | {Gf (ψ)}ψ∈Γ ` f(t) ≡ f(t).

λ1 | Γ ` ϕ is obtained applying rule Sym. Then ϕmust be t1 ≡ t2 for some t1, t2 ∈ Tcri(Σ1)(λ1) and
λ1 | Γ ` t1 ≡ t2 is derivable from S used only the given rules. We get the thesis considering

λ2 | {Gf (ψ)}ψ∈Γ ` f(t1) ≡ f(t2)

λ2 | {Gf (ψ)}ψ∈Γ ` f(t2) ≡ f(t1)
Sym

λ1 | Γ ` ϕ is obtained applying rule Trans. Then there exist t1, t2, t3 ∈ Tcri(Σ1)(λ1) such that ϕ is
t1 ≡ t3 and both λ1 | Γ ` t1 ≡ t2, λ1 | Γ ` t2 ≡ t3 both satisfies the hypotheses of our lemma. We
conclude using again Trans.

λ1 | Γ ` ϕ is obtained applying rule Inf. This is immediate.

λ1 | Γ ` ϕ is obtained applying ruleMon. Then ϕmust be m(h′ ∧ h, t) and, we can derive from S,
using the admissible rules, the sequent λ1 | Γ ` m(h, t), so that

λ2 | {Gf (ψ)}ψ∈Γ ` m(h, f(t))

λ2 | {Gf (ψ)}ψ∈Γ ` m(h′ ∧ h, f(t))
Mon
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λ1 | Γ ` ϕ is obtained applying rule Sup. As before, we must have a family S ⊆ H such that for
every h ∈ S the sequent λ1 | Γ ` m(h, t) satisfies our hypotheses, so that

S ⊆ H {λ2 | Γ ` m(h, f(t))}h∈S

λ2 | {Gf (ψ)}ψ∈Γ ` m(sup(S), f(t))
Sup

λ1 | Γ ` ϕ is obtained applying rule Fun. This implies that we can derive, as always using the listed
rules, the sequent λ1 | Γ ` t ≡ s and λ1 | γ ` m(h, t), so that

λ2 | {Gf (ψ)}ψ∈Γ ` f(t) ≡ f(s) λ2 | {Gf (ψ)}ψ∈Γ ` m(h, f(t))

λ2 | {Gf (ψ)}ψ∈Γ ` m(h, f(s))
Fun

2. Let us check the two new rules.

λ1 | Γ ` ϕ is obtained applying rule Exp. Then there must be an operation o ∈ OΣ1
, a function

σ : arcri(Σ1)(j1(o)) → Tcri(Σ1)(λ1) and a family {λ1 | Γ ` m(hα, σ(α))}α∈arcri(Σ1)(j1(o)) of sequents

satisying our hypotheses. Since we have assumed that f(j1(o)(σ)) and k1(o)(f ◦ σ) coincide, the
thesis follows applying again Exp to o′ ∈ OΣ2 , f ◦ σ : arcri(Σ2)(k1(o

′)) → Tcri(Σ2)(λ2) and to the
family {λ2 | {Gf (ψ)}ψ∈Γ ` m(hα, f(σ(α)))}α∈arcri(Σ2)(k1(o′)).

λ1 | Γ ` ϕ is obtained applying ruleCong. The argument is similar as the one above: we must have
o ∈ OΣ1

, σ1, σ2 : arcri(Σ1)(j1(o)) ⇒ Tcri(Σ1)(λ1) and {λ1 | Γ ` σ1(α) ≡ σ2(α)}α∈arcri(Σ1)(j1(o)), and

we can conclude by the inductive hypothesis applying again rule Cong to o′, f ◦ σ1, f ◦ σ2 and to
the family {λ2 | {Gf (ψ)}ψ∈Γ ` f(σ1(α)) ≡ f(σ2(α))}α∈arcri(Σ2)(k1(o)).

Corollary 3.2.22. Let (f, g) : Σ1 → Σ2 be a morphism of FSignκ. For every S ⊆ Seq(Σ1), if a sequent is
in S⊢, then its image undertr(f,g) is in (tr(f,g)(S))⊢.

Proof. Let λ | Γ ` ϕ be a sequent in S⊢. Notice that if a sequent is in S there is nothing to show. By
Lemma 3.2.21 the only thing we need to show is that if a sequent is derived from S through an application
of Subst, then we can derive its image from tr(f,g)(S). Suppose then that a sequent λ2 | Γ[σ] ` ϕ[σ] is
derived from S for some σ : λ1 → Tcri(Σ1)(λ2) and element λ1 | Γ ` ϕ of S⊢. By the inductive hypothesis
λ1 | {tr(f,g),λ1

(ψ)}ψ∈Γ ` tr(f,g),λ1
(ϕ) is in (tr(f,g)(S))⊢. Moreover, (ηcri(Σ2),λ2

)cri(Σ1),∗ ◦ σ is an arrow
λ1 → Tcri(Σ2)(λ2) and therefore the sequent

λ2 | {tr(f,g),λ1
(ψ)[(ηcri(Σ2),λ2

)cri(Σ1),∗ ◦ σ]}ψ∈Γ ` tr(f,g),λ1
(ϕ)[(ηcri(Σ2),λ2

)cri(Σ1),∗ ◦ σ]

is in (tr(f,g)(S))⊢. Now, the diagram

λ1ηcri(Σ1),λ1

vv

ηcri(Σ1),λ1

((

σ

uu
ηcri(Σ2),λ1

))

Tcri(Σ1)(λ1)

σcri(Σ1),∗

��

Tcri(Σ1)(λ1)

(ηcri(Σ2),λ2
)cri(Σ1),∗

��
Tcri(Σ1)(λ2)

(ηcri(Σ2),λ2
)cri(Σ1),∗

**UUU
UUUU

UUUU
UU

Tcri(Σ2)(λ1)

((ηcri(Σ2),λ2
)cri(Σ1),∗◦σ)cri(Σ2),∗ooλ2 ηcri(Σ2),λ2

//

ηcri(Σ1),λ2

OO

Tcri(Σ2)(λ2)



120 3. Fuzzy algebraic theories

shows that

((ηcri(Σ2),λ2
)cri(Σ1),∗ ◦ σ)cri(Σ2),∗ ◦ (ηcri(Σ2),λ1

)cri(Σ1),∗ = (ηcri(Σ2),λ2
)cri(Σ1),∗ ◦ σ

Therefore λ2 | {tr(f,g),λ1
(ψ)[(ηcri(Σ2),λ2

)cri(Σ1),∗ ◦ σ]}ψ∈Γ ` tr(f,g),λ1
(ϕ)[(ηcri(Σ2),λ2

)cri(Σ1),∗ ◦ σ] coincides
with λ2 | {tr(f,g),λ1

(ψ[σ])}ψ∈Γ ` tr(f,g),λ1
(ϕ[σ]) and we can conclude.

Now let
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
be a Σ-algebra, for every function f : λ → A, we have a

cri (Σ)-homomorphism fcri(Σ,∗) : Fcri(Σ)(λ) → WΣ(A) which, in particular, is a function Tcri(Σ)(λ) → A.
So equipped, we are ready to define the notion of theory and introduce satisfability.

Definition 3.2.23. Let κ be a regular cardinal and Σ an object of FSignκ, a subset Λ ⊆ Seq(Σ) is a
Σ-theory (or a theory) if Λ = S⊢ for some S ⊆ Seq(Σ), called a set of axioms for Λ.

Given a Σ-formula λ | ϕ with context λ and a Σ-algebra A =
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
, we

say that A satisfies ϕ with respect to f : λ→ A and we will write A ⊨f ϕ if:

• λ | ϕ is the Σ-equation λ | t1 ≡ t2 and fcri(Σ,∗)(t1) = fcri(Σ,∗)(t2);

• λ | ϕ is a membership proposition λ | m(h, t) and h ≤ µA
(
fcri(Σ,∗)(t)

)
.

A sequent Γ ` ϕ with context λ is satisfied by A if, for every f : λ → A, A ⊨f ϕ whenever A ⊨f ψ

for all ψ ∈ Γ. The category Mod(Λ) of models of a Σ-theory Λ is the full subcategory of Σ-FAlg given
by algebras satisfying all the sequents in Λ. The restriction of VΣ : Σ-FAlg → Fuz(H) toMod(Λ) will be
denoted by VΛ : Mod(Λ) → Fuz(H).

First of all we shall prove that our semantics is sound for the rules of Fig. 3.1.

Lemma 3.2.24. For every Σ-algebra A =
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
, if A satisfies all the premises

of a rule of the calculus of fuzzy algebraic sequents , then it satisfies also its conclusion.

Proof. Let us proceed rule by rule.

A. This is tautological.

Weak. If f : λ→ A is such that A ⊨f ψ for every ψ ∈ Γ∪∆ then, a fortiori, A satisfies any formula in Γ
with respect to f and thus, by hypothesis A ⊨f ϕ.

Cut. Let f : λ→ A such that A ⊨f ξ for every ξ ∈ Γ, then, since A satisfies λ | Γ ` ϕ for any ϕ ∈ Φ we
also have that it satisfies every element of Φ with respect to f and this implies A ⊨f ψ.

Refl. This follows from the reflexivity of equality.

Sym. This follows from the symmetry of equality.

Trans. This follows from the transitivity of equality.

Subst. As above, let us take a function f : λ1 → A such that A satisfies every element ψ[σ] of Γ[σ] with
respect to f . Now, we know that

(fcri(Σ,∗) ◦ σ)cri(Σ,∗) = fcri(Σ,∗) ◦ σcri(Σ,∗)

and, by definition,

ψ[σ] =

{
σcri(Σ,∗)(t1) ≡ σcri(Σ,∗)(t2) ψ is t1 ≡ t2

m
(
h, σcri(Σ,∗)(t)

)
ψ is m(h, t)
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Thus A ⊨f ψ[σ]is equivalent to A ⊨fcri(Σ,∗)◦σ ψ. But then our hypothesis implies that A ⊨fcri(Σ,∗)◦σ ϕ

and again this means that A ⊨f ϕ[σ].

Inf. This follows at once from the fact that ⊥ is the bottom element of H.

Mon. If A satisfies all the formulae in Γ with respect to some f : λ→ A then A ⊨f λ | m(h, t), so that

h ≤ µA
(
fcri(Σ,∗)(t)

)

Therefore, for every other h′ inHwe also haveA ⊨f λ | m(h′ ∧ h, t) since the previous inequality entails

h′ ∧ h ≤ µA
(
fcri(Σ,∗)(t)

)

Sup. As before if f is such that A ⊨f ϕ for every ϕ ∈ Γ then A ⊨f m(h, t) for all h ∈ S, implying that
µA
(
fcri(Σ,∗)(t)

)
is an upper bound for S.

Fun. This follows at once since µA is a function.

Exp. If A ⊨f ϕ for every ϕ ∈ Γ, then hα ≤ µA
(
fcri(Σ,∗)σ(α)

)
for every α ∈ arcri(Σ)(o). Since fcri(Σ,∗) is a

homomorphism we have

∧

α∈arcri(Σ)(j1(o))

(
µarΣ(o)(α) → hα

)
≤

∧

α∈arcri(Σ)(j1(o))

(
µarΣ(o)(α) → fcri(Σ,∗)(σ(α))

)

= µ
A

arcri(Σ)(j1(o))(fcri(Σ,∗) ◦ σ)

≤ µA
(
oA(fcri(Σ,∗) ◦ σ)

)

= µA

(
oA
(
f
arcri(Σ)(j1(o))

cri(Σ,∗) (σ)
))

= µA(fcri(Σ,∗)(o(σ)))

Cong. This follows at once since oA is a function.

We can provide some examples of theories.

Notation. We will stick with the convention used in Chapter 2: instead of using ordinals, variables will
be denoted by x, y, z, eventually subscripted. We will use infix notation for operations of arity 2.

Example 3.2.25. The most basic examples of a fuzzy Σ-theory is the one generated by no axioms. Its
models are all the Σ-algebras.

Example 3.2.26. Let ΣFS be the signature of Example 3.2.5, we can define four ΣFS -theories [98].

• The theory of fuzzy semigroups ΛS is simply a translation of the theory of semigroups introduced
in 2.2.39. More precisely is the one with the following axiom:

3 | (x · y) · z ≡ x · (y · z)

• The theory of left ideals ΛLI is obtained adding to ΛFS the axioms:

{2 | m(h, y) ` m(h, x · y)}h∈H

• Similarly the theory ΛRI of right ideals is obtained using the axioms (again, one for every h ∈ H ):

{2 | m(h, x) ` m(h, x · y)}h∈H



122 3. Fuzzy algebraic theories

• We get the theory of (bilateral) ideals ΛI adding to ΛS both kind of previous axioms, i.e. all the
sequents of the form

2 | m(h, y) ` m(h, x · y) 2 | m(h, x) ` m(h, x · y)

Example 3.2.27. Now let ΣFG be the signature of Example 3.2.6, there are, at least, two interesting
ΣFG-theories appearing in the literature.

• We can translate the theory of gropus of Example 2.2.63 to get the theory ΛFG of fuzzy groups. It
is the theory with axioms given by

1 | x · x−1 ≡ e 1 | x−1 · x ≡ e 1 | e · x ≡ x 1 | x · e ≡ x 3 | (x · y) · z ≡ x · (y · z)

• The theory ΛNFG of normal fuzzy groups is obtained adding to ΛFG the axioms:

{2 | m(h, x) ` m
(
h, y · (x · y−1)

)
}h∈H

Models for the theories ΛFG and ΛNFG are exactly the fuzzy groups and normal fuzzy groups de-
scribed in [8, 9, 92, 111].

Proposition 3.2.28. Given a morphism (f, g) : Σ1 → Σ2 in FSignκ, then for every Σ2-algebra A, defined

by
(
(A,µA),

{
oA
}
o∈OΣ2

,
{
cA
}
c∈CΣ2

)
, the following hold true:

1. for every Σ1-formula λ | ϕ and h : λ→ A, (f, g)∗(A) ⊨h ϕ if and only if A ⊨h tr(f,g),λ(ϕ);

2. (f, g)∗(A) satisfies a sequent λ | Γ ` ϕ if and only if A satisfies λ | {tr(f,g),λ(ψ)}ψ∈Γ ` tr(f,g),λ(ϕ);

3. if Λ1 and Λ2 are, respectively, a Σ1-theory and a Σ2-theory such that tr(f,g)(Λ1) ⊆ Λ2 andA is a model
for Λ2 then (f, g)∗(A) belongs toMod(Λ1).

Proof. 1. For every k : λ → A, we have a cri (Σ2)-homomomorphism kcri(Σ2,∗) : Fcri(Σ2)(λ) → A

which is also a cri (Σ1)-homomorphism cri (f, g)∗
(
Fcri(Σ2)(λ)

)
→ cri (f, g)∗(A). In particular, this

means that kcri(Σ2,∗) ◦
(
ηcri(Σ2),λ

)
cri(Σ1,∗)

is the unique arrow of cri (Σ1)-Alg such that

k = kcri(Σ2),∗ ◦
(
ηcri(Σ2),λ

)
cri(Σ1),∗

◦ ηcri(Σ1),λ

Now the thesis follows at once noticing that, by construction

tr(f,g),λ(ϕ) =





(
ηcri(Σ2),λ

)
cri(Σ1,∗)

(t1) ≡
(
ηcri(Σ2),λ

)
cri(Σ1,∗)

(t2) ϕ is t1 ≡ t2

m
(
h,
(
ηcri(Σ2),λ

)
cri(Σ1,∗)

(t)
)

ϕ is m(h, t)

2. Let us show the two implications.

(⇒) Let k : λ→ A such thatA ⊨k tr(f,g),λ(ψ) for every ψ ∈ Γ, by the previous point (f, g)∗(A) ⊨k
ψ and thus A also satisfies ϕ with respect to k. The thesis now follows applying again point 1.

(⇐) The argument is pretty much the same as before. If k : λ→ A is such that (f, g)∗(A) ⊨k ψ for
every element in Γ, thenA ⊨k tr(f,g),λ(ψ) and thus (f, g)∗(A) also satisfies tr(f,g),λ(ϕ) with respect
to k and this in turn entails the thesis.
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3. This follows immediately from the previous two points.

It is worth noticing that we do not have analogs for Lemma 2.2.64 and Corollary 2.2.65, as shown by
the following example.

Example 3.2.29. Let H be ([0, 1],≤), Σ be the empty signature and Λ the theory with the axiom

2 | m(1, x) ` x ≡ y

Since Σ is the empty signature, Σ-FAlg is simply Fuz(H) and Tcri(Σ) is idFuz(H). For every n ∈ N we can
define a constant function

µn : 2 → [0, 1] t 7→
n

n+ 1

and take as An simply (2, µn). By construction, there are no functions 2 → 2 such that An ⊨f m(1, x),
so, for every n ∈ N , An ∈ Mod(Λ). Now, if n ≤ m, id2 defines an arrow fn,m : An → Am yielding a
functor F from the ℵ0-filtered category induced by (N,≤) into Mod(Λ). This functor F has a colimit in
Mod(Λ): indeed, if

(
(C, µC), {cn}n∈N

)
is a cocone on F , then, for every n ∈ N

µC(c0(0)) = µC(cn(f0,n)(0))

= µC(cn(0))

≥ µn(0)

=
n

n+ 1

and therefore µC(c0(0)) = 1.Take now any other c ∈ C and the function f sending 0 to c0(0) and 1 to
c, by hypothesis (C, µC) ⊨f m(1, x), so that cmust coincide with c0(0). This in turn shows that (C, µC)
must be isomorphic to the terminal fuzzy set (1, δ⊤), which is a model for Λ and that F has a colimiting

cocone given by
(
(1, δ⊤),

{
!(2,µn)

}
n∈N

)
.

On the other hand, if γ1 : 2 → [0, 1] is the function costant in 1, by Corollary 3.1.26, VΛ ◦ F has
(2, γ1) as colimit. (2, γ1) is not a model of Λ, hence VΛ does not have rank ℵ0.

The free model of a theory

In this section we are going to show that given a κ-bounded signature Σ and a Σ-theory Λ, the forgetful
functor VΛ : Mod(Λ) → Fuz(H), similarly to its Set-based analog UΛ, has a left adjoint FΛ.

Take a κ-bounded signature Σ and a set X . We can add the element of X to Σ defining another
κ-bounded signature ΣX as

OΣX
:= OΣ CΣX

:= CΣ +X arΣX
:= arΣ

Notation. Let us fix some notation to avoid confusion between the different roles of elements of X . Let
ιX : X → CΣ +X be the coprojection, for every set Y and x ∈ X we have a function

(ιX(x))
Fcri(ΣX)(Y )

: 1 → Tcri(ΣX)(Y )

In particular, we will denote the element of Tcri(ΣX)(∅) picked out by (ιX(x))
Fcri(ΣX)(∅) with x̂. This

allows us to define a function
ωX : X → Tcri(ΣX)(∅) x 7→ x̂
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Let ιCΣ be the coprojection CΣ → CΣX
, then we have a morphism of signatures (idOΣ , ιCΣ) : Σ →

ΣX . Moreover, for every set X , we can promote Tcri(Σ)(X) to a cri (ΣX)-algebra PΣ(X) defining

xPΣ(X) : 1 → Tcri(Σ)(X) ∅ 7→ ηcri(Σ),X(x)

On the other hand, Tcri(ΣX)(∅) carries a cri (Σ)-algebra structure obtained by applying cri (idOΣ
, ιCΣ

)
∗ to

Fcri(ΣX)(∅). All these structures can be linked together by canonical morphisms as in the diagram below

X
ηcri(Σ),X

��

ηcri(ΣX),X

��

ωX

��

ηcri(Σ),X

��
Tcri(Σ)(X)

γ1,X //

γ4,X

**

idTcri(Σ)(X)

33Tcri(ΣX)(X)
γ2,X

// Tcri(ΣX)(∅)
γ3,X // Tcri(Σ)(X)

where

γ1,X =
(
ηcri(ΣX),X

)
cri(Σ),∗

γ3,X =
(
ηcri(Σ),X◦?X

)
cri(ΣX),∗

γ2,X = (ωX)cri(ΣX),∗

γ4,X = (ωX)cri(Σ),∗

Notice that the last triangle commutes because γ3,(X,µX) is a morphism of cri (ΣX)-algebras.
Finally, let us note that, for every function f : X → Y , we can define an arrow (idOΣ

, idCΣ
+

f) : ΣX → ΣY in FSignκ. In particular, we can consider the cri (ΣX)-homomorphism γf : Fcri(ΣX)(∅) →

cri (idOΣ
, idCΣ

+ f)
∗ (
Fcri(ΣY )(∅)

)
given by

(
ηcri(ΣY ),∅

)
cri(ΣX),∗

, moreover γf fits in the square:

X

ω(X,µX )

��

f

**∅
?Y

//
?X

oo

ηcri(ΣY ),∅
%%JJ

JJ
JJ

JJ
JJ

JJ
J

ηcri(ΣX),∅
yyttt

tt
tt
tt
tt
tt

Y

ω(Y,µY )

��
Tcri(ΣX)(∅) γf

// Tcri(ΣY )(∅)

Lemma 3.2.30. GivenΣ ∈ FSignκ for every setX , γ3 is a cri (Σ)- and cri (ΣX)-homomorphismwith inverse
γ4,X . Moreover, for every f : X → Y , the following diagram is commutative

Tcri(ΣX)(∅)

γf

��

γ3,X // Tcri(Σ)(X)

Tcri(Σ)(f)

��
Tcri(ΣY )(∅) γ3,Y

// Tcri(Σ)(Y )

Proof. We already know that γ3,X ◦ γ4,X is the identity on Tcri(Σ)(X). On the other hand, Fcri(ΣX)(∅) is
the initial cri (ΣX)-algebra, thus γ4,X ◦ γ3,X must be the identity too. The same observation also shows
the commutativity of the given square.
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Next, we want to add all the structure of a fuzzy set (X,µX) to a Σ-theory.

Definition 3.2.31. Given a Σ-theory Λ, with Σ ∈ Signκ, we define the ΣX -theory Λ(X,µX), by putting

Λ(X,µX) :=
(
tr(idOΣ

,ιCΣ
)(Λ) ∪ {0 | m(µX(x), x̂)}x∈X

)⊢

Remark 3.2.32. Every morphism f : (X,µX) → (Y, µY ) of Fuz(H) is, in particular, a function f : X →
Y , so that we can consider (idOΣ , idCΣ + f) : ΣX → ΣY in FSignκ as before. From the inequality

µX(x) ≤ µY (f(y))

and from Corollary 3.2.22, we can deduce that tr(idOΣ
,idCΣ

+f)(Λ(X,µX)) is a subset of Λ(Y,µY ).

We are especially interested to the case in which (X,µX) = ∇H(λ) for some cardinal λ < κ. In this
case we can define the following auxiliary functions:

Gλ : Form(cri (Σλ) , λ) → Form(cri (Σλ) , 0) ϕ 7→

{
γ2,λ(t1) ≡ γ2,λ(t2) ϕ is t1 ≡ t2

m(h, γ2,λ) (t) ϕ is m(h, t)

Hλ : Form(cri (Σλ) , 0) → Form(cri (Σ) , λ) ϕ 7→

{
γ3,λ(t1) ≡ γ3,λ(t2) ϕ is t1 ≡ t2

m(h, γ3,λ) (t) ϕ is m(h, t)

Kλ : Form(cri (Σ) , λ) → Form(cri (Σλ) , 0) ϕ 7→

{
γ4,λ(t1) ≡ γ4,λ(t2) ϕ is t1 ≡ t2

m(h, γ4,λ(t)) ϕ is m(h, t)

Remark 3.2.33. By construction and by Proposition 2.1.11, we have identities

Kλ = Gλ ◦ tr(idOΣ
,ιCΣ

),λ idForm(cri(Σ),λ) = Hλ ◦Kλ

We can also notice the commutativity of the diagram

∅

ηcri(Σλ),∅

//ηcri(Σ),∅

��

?λ // λ

ηcri(Σ),λ

��

ωλ

!!
Tcri(Σλ)(∅)

Tcri(Σ)(∅)
Tcri(Σ)(?λ)

// Tcri(Σ)(λ)
γ4,λ

AA

which shows that γ4,λ ◦ Tcri(Σ)(?λ) coincides with tr(idOΣ
,ιCΣ

),0.

Proposition 3.2.34. Let Σ be in Signκ and Λ a Σ-theory, then for every λ ∈ κ the following are true:

1. if λ | Γ ` ϕ is in Λ∇H(λ) then 0 | {Gλ(ψ)}ψ∈Γ ` Gλ(ϕ) is in Λ∇H(λ) too;

2. if 0 | Γ ` ϕ is in Λ∇H(λ) then λ | {Hλ(ψ)}ψ∈Γ ` Hλ(ϕ) is in Λ;

3. if λ | Γ ` ϕ is in Λ then 0 | {Kλ(ψ)}ψ∈Γ ` Kλ(ϕ) belongs to Λ∇H(λ).

Proof. 1. This follows at once applying rule Subst.
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2. Let us start showing the thesis for the axioms for Λ∇H(λ).

• 0 | Γ ` ϕ is 0 |
{
tr(idOΣ

,ιCΣ
),0(ψ

′)
}
ψ′∈Γ′

` tr(idOΣ
,ιCΣ

),0(ϕ
′) for some element 0 | Γ′ ` ϕ′ inΛ.

Since, by Remark 3.2.33 tr(idOΣ
,ιCΣ

),0 is equal to γ4,λ ◦Tcri(Σ)(?λ) andHλ ◦Kλ is the identity,
the sequent λ | {Hλ(ψ)}ψ∈Γ ` Hλ(ϕ)must coincide with 0 | Γ′[ηcri(Σ),λ◦?λ] ` ϕ

′[ηcri(Σ),λ◦?λ]
and the thesis follows applying rule Subst.

• 0 | Γ ` ϕ is 0 | m(⊥, µ̂) for some µ ∈ λ. Then, by construction, λ | {Hλ(ψ)}ψ∈Γ ` Hλ(ϕ) is
λ | m

(
⊥, ηcri(Σ),λ(µ)

)
which is in Λ by rule Inf.

We can now proceed by induction on a derivation of 0 | Γ ` ϕ from the axioms of Λ∇H(λ). By
Lemma 3.2.21 the only case we have to deal with is the application of rule Subst. Suppose then that
0 | Γ ` ϕ is obtained applying Subst, then there exists λ1 < κ, a function σ : λ1 → Tcri(Σλ)(∅)
and a sequent λ1 | Θ ` φ in Λ∇H(λ) such that Γ = Θ[σ] and ϕ = φ[σ]. Now, if λ1 = 0, σ must
be ?Tcri(Σλ)

, so that σcri(Σλ),∗ must be the identity and there is nothing to show. Suppose then that

λ1 is not the empty set, so there is a function f : λ → λ1 which, in particular, defines a morphism
∇H(λ) → ∇H(λ1) and, by Remark 3.2.32 an arrow (idOΣ , idCΣ + f) : Σλ → Σλ1 . By the same
Remark 3.2.32, we know that the sequent

λ1 |
{
tr(idOΣ

,idCΣ
+f),λ1

(α)
}
α∈Θ

` tr(idOΣ
,idCΣ

+f),λ1
(φ)

is an element of Λ∇H(λ1). Define

ᾱ = tr(idOΣ
,idCΣ

+f),λ1
(α) φ̄ = tr(idOΣ

,idCΣ
+f),λ1

(φ) Θ̄ = {ᾱ}α∈Θ

Therefore the sequent λ1 | Θ̄ ` φ̄ is in Λ∇H(λ1). Point 1 and the inductive hypothesis entails that
λ1 | {Hλ1

(Gλ1
(ᾱ))}α∈Θ ` Hλ1

(Gλ1
(φ̄)) is in Λ, so that we get

γ3,λ ◦ σ : λ1 → Tcri(Σ)(λ) λ1 | {Hλ1(Gλ1(ᾱ))}α∈Θ ` Hλ1(Gλ1(φ̄))

λ | {Hλ1
(Gλ1

(ᾱ)) [γ3,λ ◦ σ]}α∈Θ ` Hλ1
(Gλ1

(φ̄)) [γ3,λ ◦ σ]
Subst

Now, let γ be
(
ηcri(Σλ1),λ1

)
cri(Σλ),∗

so that, for any Σλ-formula β in context λ1, we have

tr(idOΣ
,idCΣ

+f),λ1
(β) =

{
γ(t1) ≡ γ(t2) β is t1 ≡ t2

m(h, γ(t)) β is m(h, t)

Then we have a diagram

Tcri(Σλ)(∅)

γ3,λ

��

Tcri(Σλ)(λ1)

γ

��

σcri(Σλ),∗oo

λ1

ηcri(Σ),λ1

��

ωλ1

++

σ

iiSSSSSSSSSSSSSSSSSS ηcri(Σλ),λ1 //

ηcri(Σλ),λ1

33

Tcri(Σλ1)
(λ1)

γ2,λ1

��
Tcri(Σ)(λ) Tcri(Σ)(λ1)

(γ3,λ◦σ)cri(Σ),∗

oo Tcri(Σλ)(∅)γ3,λ1

oo
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showing that λ |
{
Hλ1(Gλ1(ᾱ))

[
γ3,∇H(λ) ◦ σ

]}
α∈Θ

` Hλ1(Gλ1 (φ̄))
[
γ3,∇H(λ) ◦ σ

]
is equal to the

sequent λ | {Hλ(ψ)}ψ∈Γ ` Hλ(ϕ) as desired.

3. By Remark 3.2.33 Kλ = Gλ ◦ tr(idOΣ
,ιCΣ

),λ and the thesis follows from point 1.

Given a Σ-theory Λ, we can define a relation ∼Λ(X,µX )
on Tcri(ΣX)(∅) putting t1 ∼Λ(X,µX )

t2 if and
only if 0 | t1 ≡ t2 belongs to Λ(X,µX). Let us look more closely at the properties of ∼Λ(X,µX )

.

Proposition 3.2.35. ∼Λ(X,µX )
is a cri (ΣX)-congruence on Fcri(ΣX)(∅).

Proof. By rules Refl, Sym and Trans we have that ∼Λ(X,µX )
is an equivalence relation. On the other

hand, given o ∈ Ocri(ΣX) and σ1, σ2 : arcri(ΣX)(o) ⇒ Tcri(ΣX)(∅), if σ1(α) ∼Λ(X,µX )
σ2(α), for every

α ∈ arcri(ΣX)(o) we know that 0 | σ1(α) ≡ σ2(α) belongs to Λ(X,µX) and thus an application of Cong
yields o(σ1) ∼Λ(X,µX )

o(σ2).

Let πΛ(X,µX )
: Tcri(ΣX)(∅) → TΛ(X,µX) be the quotient map defined by ∼Λ(X,µX )

. By Proposi-
tion 3.2.35 and Lemma 2.2.68, for every cri (ΣX)-operation o of arity λ, we have a uniquely determined
function oΛ(X,µX )

: (TΛ(X,µX))λ → TΛ(X,µX)making πΛ(X,µX )
a cri (ΣX)-homomorphism. Our next

goal is to promote this algebra to an object of Σ-FAlg.

Lemma 3.2.36. Let Σ be a κ-bounded fuzzy signature and Λ a Σ-theory, then the following hold true:

1. there exists a function µΛ,(X,µX) : TΛ(X,µX) → H such that for every t ∈ Tcri(ΣX)(∅), the sequent

0 | m
(
µΛ,(X,µX)

(
πΛ(X,µX )

(t)
)
, t
)

belongs to Λ(X,µX);

2. there exists a ΣX -algebra LΛ(X,µX )
on
(
TΛ(X,µX), µΛ,(X,µX)

)
such that

o
LΛ(X,µX ) = j1(o)Λ(X,µX )

c
LΛ(X,µX ) = j2(c)Λ(X,µX )

where j1 and j2 are the inclusions of, respectively, OΣX
and CΣX

into Ocri(ΣX);

3. for every σ : λ→ Tcri(ΣX)(∅), LΛ(X,µX )
⊨πΛ(X,µX )

◦σ ϕ if and only if 0 | ϕ[σ] is in Λ(X,µX);

4. LΛ(X,µX )
is a model of Λ(X,µX);

5. the Σ-algebra FΛ(X,µX) obtained applying (idOΣ
, ιCΣ

)∗ to LΛ(X,µX )
is a model of Λ.

Proof. 1. Let us start by defining a function

µ′
Λ,(X,µX) : Tcri(ΣX)(∅) → H t 7→ sup

(
{h ∈ H | 0 | m(h, t) ∈ Λ(X,µX)}

)

If t1 and t2 ∈ Tcri(ΣX)(∅) are such that t1 ∼Λ(X,µX )
t2 then both 0 | t1 ≡ t2 and 0 | t2 ≡ t1 belong

to Λ(X,µX) and thus we have derivations

0 | t1 ≡ t2 0 | m(h, t1)

0 | m(h, t2)
Fun

0 | t2 ≡ t1 0 | m(h, t2)

0 | m(h, t1)
Fun

showing that

{h ∈ H | 0 | m(h, t1) ∈ Λ(X,µX)} = {h ∈ H | 0 | m(h, t2) ∈ Λ(X,µX)}
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which implies µ′
Λ,(X,µX)(t1) = µ′

Λ,(X,µX)(t2), therefore inducing µΛ(X,µX )
: TΛ(X,µX) → H . Ap-

plying rule Sup, it follows that, for every cri (ΣX)-term t ∈ Tcri(ΣX)(∅), the membership proposition

0 | m
(
µ′
Λ,(X,µX)(t), t

)
belongs to Λ(X,µX) and we can conclude.

2. Let us split the cases between constants and operations.

• j2(c)Λ(X,µX )
is an arrow 1 → TΛ(X,µX) which automatically induces a morphism of fuzzy

sets j2(c)Λ(X,µX )
: ∇H(1) →

(
TΛ(X,µX), µΛ(X,µX )

)
.

• Now let o be an element of OΣX
, and recall that

arcri(ΣX)(j1(o)) = VH (arΣX
(o))

= VH (arΣ(o))

Hence, an element of (TΛ(X,µX))arΣX
(o) is just a function σ : VH (arΣ(o)) → TΛ(X,µX).

Now, for every τ : VH (arΣ(o)) → Tcri(ΣX)(∅) we know, by the previous point, that the mem-

bership proposition 0 | m
(
µ′
Λ(X,µX )

(τ(α)), τ(α)
)
is an element ofΛ(X,µX), thus we can apply

rule Exp to get that the sequent

0 | m


 ∧

α∈VH(arΣ(o))

(
µarΣ(o)(α) → µ′

Λ,(X,µX)(τ(α))
)
, j1(o)(τ)




is in Λ(X,µX) too, implying that

∧

α∈VH(arΣ(o))

(
µarΣ(o)(α) → µ′

Λ(X,µX )
(τ(α))

)
≤ µ′

Λ,(X,µX) (j1(o)(τ))

Take now σ : VH (arΣ(o)) → TΛ(X,µX), assuming the axiom of choice, πVH(arΣ(o))
Λ(X,µX )

is surjec-

tive, therefore there exists another arrow τ : VH (arΣ(o)) → Tcri(ΣX)(∅) such that

πΛ(X,µX )
◦ τ = σ

Let µ be the membership degree of
(
TΛ(X,µX), µΛ,(X,µX)

)arΣ(o)
, then we have

µ(σ) =
∧

α∈VH(arΣ(o))

(µarΣ(o)(α) → µΛ,(X,µX)(σ(α)))

=
∧

α∈VH(arΣ(o))

(µarΣ(o)(α) → µΛ,(X,µX)((πΛ(X,µX )
(τ(α))))

=
∧

α∈VH(arΣ(o))

(µarΣ(o)(α) → µ′
Λ,(X,µX)(τ(α)))

≤ µ′
Λ,(X,µX) (j1(o)(τ))

= µΛ,(X,µX)

(
πΛ(X,µX )

(j1(o)(τ))
)

= µΛ,(X,µX)

(
j1(o)Λ(X,µX )

(
πΛ(X,µX )

◦ τ
))

= µΛ(X,µX )

(
j1(o)Λ,(X,µX) (σ)

)
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and we can conclude that j1(o)Λ(X,µX )
is indeed a morphism of Fuz(H).

3. Let us start by noticing that, since πΛ(X,µX )
is a cri (ΣX)-homomorphism, we have that

(
πΛ(X,µX )

◦ σ
)
cri(ΣX),∗

= πΛ(X,µX )
◦ σcri(ΣX),∗

Now we can split the cases.

• ϕ is t1 ≡ t2 for some t1, t2 ∈ Tcri(ΣX)(λ). Then LΛ(X,µX )
⊨πΛ◦σ ϕ if and only if

πΛ(X,µX )

(
σcri(ΣX),∗(t1)

)
= πΛ(X,µX )

(
σcri(ΣX),∗(t2)

)

which, by construction is equivalent to the sequent

0 | σcri(ΣX),∗(t1) ≡ σcri(ΣX),∗(t2)

being in Λ(X,µX), but this is exactly the thesis.

• ϕ is m(h, t) for some t ∈ Tcri(ΣX)(λ) and h ∈ H . Then LΛ(X,µX )
⊨πΛ◦σ ϕ if and only if

h ≤ µ′
Λ,(X,µX)

(
σcri(ΣX),∗(t)

)

which in turn is equivalent to 0 | m
(
h, σcri(ΣX),∗(t)

)
∈ Λ(X,µX).

4. Take a sequent λ | Γ ` ϕ in Λ(X,µX) and let f : λ→ TΛ(X,µX) be a function such that LΛ(X,µX )
⊨

ψ for every element ψ ∈ Γ. By the axiom of choice there exists a function σ : λ → Tcri(ΣX) such
that f = πΛ(X,µX )

◦ σ, hence, applying the previous point, we get that {0 | ψ[σ]}ψ∈Γ ⊆ Λ(X,µX).
Applying Cut and Subst we get the following derivation

{0 | ψ[σ]}ψ∈Γ

σ : λ→ Tcri(ΣX)(∅) λ | Γ ` ϕ

0 | Γ[σ] ` ϕ[σ]
Subst

0 | ϕ[σ]
Cut

showing that 0 | ϕ[σ] is an element of Λ(X,µX). The previous point now yields the thesis.

5. This follows at once from the previous point, and Proposition 3.2.28 applied to (idOΣ
, ιCΣ

).

We can deduce a completeness result from the previous lemma.

Corollary 3.2.37. Given a κ-bounded signature Σ, a sequent λ | ϕ is staisfied by all models of a Σ-theory Λ if
and only if it belongs to Λ.

Proof. (⇒) If λ | ϕ is satisfied by every model of Λ, then it is satisfied by FΛ(∇H(λ)). The diagram

Tcri(Σ)(λ)
πΛ∇H(λ)

%%

γ4,λ

{{

γ1,λ

��
λ

ωλ --

ηcri(Σ),λ //

ηcri(Σλ),λ // Tcri(Σλ)(λ)

γ2,λ

��

(
πΛ∇H(λ)

◦ωλ

)
cri(Σλ),∗ // TΛ(∇H(λ))

Tcri(Σ∇H(λ))(∅)
πΛ∇H(λ)

99
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shows that LΛ∇H(λ)
satisfies λ | tr(idOΣ

,ιCΣ
),λ(ϕ) with respect to πΛ∇H(λ)

◦ ωλ. Now, by Remark 3.2.33
0 | tr(idOΣ

,ιCΣ
),λ(ϕ)[ωλ] is just 0 | Kλ(ϕ) and by the third point of Lemma 3.2.36 we know that it is an

element of Λ∇H(λ). The thesis now follows from point 2 of Proposition 3.2.34 and from Remark 3.2.33.

(⇐) This follows at once from Lemma 3.2.24.

We are now ready to show the main theorem of this section.

Theorem 3.2.38. Let Σ be a κ-bounded signature and Λ a Σ-theory, the forgetful functor VΛ : Mod(Λ) →
Fuz(H) has a left adjoint FΛ.

Proof. Let (X,µX) be a fuzzy set and define ηΛ,(X,µX) as πΛ(X,µX )
◦ ω(X,µX), so that, for every x ∈ X ,

ηΛ,(X,µX)(x) is the only element in the image x
LΛ(X,µX ) : 1 → TΛ(X,µX). By definition the sequent

0 | m(µX(x), x̂) is in Λ(X,µX), thus

µX(x) ≤ µΛ,(X,µX)

(
ηΛ,(X,µX)(x)

)

andwe get amorphism ηΛ,(X,µX) : (X,µX) → (TΛ(X,µX), µΛ). Take now amodelA ofΛwithVΛ(A) =
(A,µA) and a morphism f : (X,µX) → (A,µA). We can use f to endow A with a ΣX -algebra structure
Af . This is easily done putting

oAf := oA (ιCΣ(c))
Af := A (ιX(x))Af := f(x)

where ιCΣ and ιX are the coprojections. We want to show that Af is a model for Λ(X,µX).
On the one hand the unique arrow (?A)cri(ΣX),∗ : Tcri(ΣX)(∅) → A, induced by ?A : ∅ → A, must send

the constant x̂ to f(x). Now, since f is a morphism (X,µX) → (A,µA), it follows that

µX(x) ≤ µA(f(x))

But this is the same as saying that A satisfies all the elements of {0 | m(µX(x), x̂)}x∈X .
On the other hand, notice that (idOΣ

, ιCΣ
)∗(Af ) = A. Thus Proposition 3.2.28 entails that, for every

sequent λ | Γ ` ϕ in Λ, Af satisfies

λ |
{
tr(idOΣ

,ιCΣ
)(ψ)

}
ψ∈Γ

` tr(idOΣ
,ιCΣ

)(ϕ)

By Lemma 3.2.24 we conclude that Af lies in Mod
(
Λ(X,µX)

)
.

Now let t1 and t2 be elements of Tcri(ΣX)(∅) such that t1 ∼Λ(X,µX )
t2, then 0 | t1 ≡ t2 belongs to

Λ(X,µX) and thus
(?A)cri(ΣX),∗ (t1) = (?A)cri(ΣX),∗ (t2)

Hence, there exists a unique cri (ΣX)-homomorphism fΛ,∗ : WΣX

(
LΛ(X,µX )

)
→WΣX

(Af ) such that the

following diagram commutes

Tcri(ΣX)(∅)

πΛ(X,µX )

��

(?A)cri(ΣX),∗ // A

TΛ(X,µX)
fΛ,∗

<<
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On the other hand if 0 | m(h, t) is in Λ(X,µX) then

h ≤ µA
(
(?A)cri(ΣX),∗(t)

)

and thus fΛ,∗ is actually aΣX -homomorphism LΛ(X,µX )
→ Af , hence, in particular, it is also a morphism

FΛ(X,µX) → A in Mod(Λ). Notice, moreover, that fΛ,∗(ηΛ,(X,µX)(x)) must coincide with f(x) since
the following diagram commutes.

1

x
LΛ(X,µX )

��

x
Af // A

TΛ(X,µX)
fΛ,∗

@@

Now let g : FΛ(X,µX) → A be another Σ-homomorphism such that g ◦ ηΛ,(X,µX) = f , this means that
the following diagram commutes

1

x
LΛ(X,µX )

��

x
Af // A

TΛ(X,µX)

g

@@

i.e. that g is actually a cri (ΣX)-homomorphism. By the initiality of Tcri(ΣX)(∅), it follows that

g ◦ πΛ(X,µX )
= (?A)cri(ΣX),∗

and therefore g = fΛ,∗.

Notation. Given a Σ-theory Λ with Σ κ-bounded, we can define SΛ as the composition VΛ ◦ FΛ. In
particular we will use the notation

SΛ(X,µX) =
(
TΛ(X,µX), µΛ,(X,µX)

)

As before, when Λ is the theory without axioms, we will denote SΛ and FΛ by, respectively, SΣ and
FΣ. Moreover we will use µΣ,(X,µX) to denote the membership degree of SΣ(X,µX).

Remark 3.2.39. Let Σ be a κ-bounded fuzzy signature, then we have a diagram

Σ-FAlg
WΣ //

VΣ

��

cri (Σ)-Alg

Ucri(Σ)

��
Fuz(H)

VH

// Set

By Corollary 3.1.26 and Proposition 3.2.10 VH and WΣ are left adjoints, thus there exists a natural iso-
morphismΘ: WΣ ◦FΣ → Fcri(Σ) ◦VH. Let TΣ beWΣ ◦FΣ, then the previous observation means that, for
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every (X,µX) in Fuz(H), there is an isomorphism of cri (Σ)-algebrasΘ(X,µX) : Tcri(Σ)(X) → TΣ(X,µX)
which, moreover, fits in the triangle below:

X
VH(ηΣ,(X,µX ))

""E
EE

EE
EE

EE
ηcri(Σ),X

||zz
zz
zz
zz

Tcri(Σ)(X)
Θ(X,µX )

// TΣ(X,µX)

TΣ sends f : (X,µX) → (Y, µY ) to SΣ(f), so we can add the following square to the triangle above.

Tcri(Σ)(X)

Tcri(Σ)(f)

��

Θ(X,µX ) // TΣ(X,µX)

SΣ(f)

��
Tcri(Σ)(Y )

Θ(Y,µY )

// TΣ(Y, µY )

This last remark allows us to prove the following.

Proposition 3.2.40. Given Σ ∈ FSignκ, for every Σ-theory Λ and fuzzy set (X,µX), there exists a unique
natural transformation πλ : SΣ → SΛ such that the triangle below commutes.

idFuz(H)

ηΛ

  B
BB

BB
BBηΣ

~~||
||
||
|

SΣ πΛ

// SΛ

Moreover, each component πΛ,(X,µX) : SΣ(X,µX) → SΛ(X,µX) defines a surjective Σ-homomorphism
FΣ(X,µX) → FΛ(X,µX).

Proof. For every fuzzy set (X,µX), FΛ(X,µX) is a Σ-algebra and we can define πΛ,(X,µX) as the unique
Σ-homomorphism fitting in the diagram

(X,µX)
ηΛ,(X,µX )

%%J
JJ

JJ
JJ

JJ
ηΣ,(X,µX )

yyttt
tt
tt
tt

SΣ(X,µX)
πΛ,(X,µX )

// SΛ(X,µX)

πΛ,(X,µX) is a cri (Σ)-homomorphism, therefore, using Lemma 3.2.30, we have

πΛ,(X,µX) = πΛ(X,µX )
◦ γ−1

3,X ◦Θ−1
(X,µX)

and this proves its surjectivity.
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For naturality, take f : (X,µX) → (Y, µY ), then we can construct the diagram

SΣ(X,µX)

πΛ,(X,µX )

��

(X,µX)

ηΛ,(X,µX )

xx

f

��

ηΣ,(X,µX ) //
ηΣ,(X,µX )oo SΣ(X,µX)

SΣ(f)

��

(Y, µY )

ηΛ,(Y,µY )

��

ηΣ,(Y,µY )

((RR
RRR

RRR
RRR

RR

SΛ(X,µX)
SΛ(f)

// SΛ(Y, µY ) SΣ(Y, µY )πΛ,(Y,µY )

oo

The thesis now follows since SΣ(f) and SΛ(f) are Σ-homomorphisms, respectively, FΣ(X,µX) →
FΣ(Y, µY ) and FΛ(X,µX) → FΛ(Y, µY ).

Given Corollary 3.2.12, the following result is now immediate.

Proposition 3.2.41. For every κ-accessible signature Σ, the functor SΣ has rank κ.

Corollary 3.2.42. Given a κ-accessible signature Σ, (SΣ, idSΣ◦Jκ) is a left Kan extension of SΣ ◦ Jκ along
Jκ, where Jκ is the inclusion Fuzκ(H) → Fuz(H).

Proof. Immediate from Theorem 3.1.39 and Proposition 3.2.41.

We already know, by virtue of Example 3.2.29, that extending the previous result to arbitrary Σ-
theories, to get a full analog of Corollary 2.2.65 is impossible. The next example, together with Theo-
rem 3.1.39, show that the situation is even worse: given a Σ-theory Λ, with Σ ∈ FSignκ, (SΛ, idSΛ◦Jκ) in
general is not the left Kan extension of SΛ ◦ Jκ along Jκ.

Example 3.2.43. Let H be ([0, 1],≤) and take Σ to be the signature with no operations nor constants.
We can then consider the theory with the following set of axioms:

{2 | m(r, x) ` m(r, y)}r∈[0,1] ∪ {2 | m(1, x) ` x = y}

A Σ-algebra is just a fuzzy set (X,µX) , while there are two kinds of models of Λ: ∆H(1) or fuzzy
sets (X,µX) such that µX is constant at a value strictly smaller than 1. Given a fuzzy set (X,µX), let
s(X,µX) be the supremum of the family {µX(x)}x∈X , and let cs(X,µX) be the functionX → H constant
in s(X,µX) then:

SΛ(X,µX) =

{
∆H(1) s(X,µX) = 1(
X, cs(X,µX)

)
s(X,µX) < 1

To see this, notice that we have an ηΛ,(X,µX) : (X,µX) → SΛ(X,µX) which is the identity (X,µX) →(
X, cs(X,µX)

)
if s(X,µX) < 1 or !(X,µX), otherwise. If(Y, µY ) is a model ofΛ and f : (X,µX) → (Y, µY )

a morphism of Fuz(H), then we have two cases:

• s(X,µX) is 1, then also s(Y, µY ) must be 1 , thus SΛ(X,µX) and ((Y, µY ), δy0) are both ∆H(1)
and the unique morphism between them is the identity;

• if s(X,µX) < 1, the inequalities

µX(x) ≤µY (f(x))

= s(Y, µY )

entails that s(X,µX) ≤ s(Y, µY ), therefore f itself defines a morphism SΛ(X,µX) → (Y, µY ).
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Given f : (X,µX) → (Y, µY ), the previous observations entail that

SΛ(f) =

{
!(Y,µY ) s(Y, µY ) = 1

f s(Y, µY ) < 1

Now, take (N, µN) where

µN : N → [0, 1] n 7→
n

n+ 1

Then SΛ(N, µN) is (∆H(1), while, for any finite set A ⊆ N, SΛ(A,µN|A) is simply (A,µN|A). Moreover,
given A ⊆ B, SΛ(iA,B) is again the inclusion iA,B . By Lemma 2.2.89 and Theorem 3.1.39, we can now
deduce that SΛ is not the left Kan extension of its restriction to Fuzℵ0

(H) along Jℵ0
.

3.2.2 Fuzzy algebraic theories and monads

In the previous section we have proved Theorem 3.2.38, showing that, for every given a κ-bounded signa-
ture Σ and a Σ-theory Λ, the forgetful functor VΛ : Mod(Λ) → Fuz(H) has a left adjoint FΛ. As in the
case of ordinary algebraic theories, we can them appeal to Proposition 2.1.5 in order to equip the functor
SΛ = VΛ◦FΛ with a monad structure, getting SΛ := (SΛ, ηΛ, νΛ). While it is not true that VΛ is monadic,
we will show that this is true for a class of theories, called basic.

Our strategy will be the same as the one employed in Section 2.2.3, so let us start looking closely to
the comparison functor KΛ : Mod(Λ) → EM(SΛ).

Given A =
(
A,
{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
in Mod(Λ), the component ϵΛ,A of the counit of FΛ a VΛ

is given by (idA)Λ,∗ : FΛ((A,µA)) → A. Thus, applying Propositions 2.1.5 and 2.1.14 we get:

• for every fuzzy set (X,µX), νΛ,(X,µX) : SΛ(SΛ(X,µX)) → SΛ(X,µX) is
(
idSΛ(X)

)
Λ,∗

, so that

νΛ,(X,µX) defines a Σ-homomorphism FΛ(SΛ(X,µX)) → FΛ(X,µX);

• the comparison functor KΛ : Mod(Λ) → EM(SΛ) is defined by

B

f

−
→

A

7−→

7−→

(
(B,µB), (id(B,µB))Λ,∗

)

−
→ f

(
(A,µA), (id(A,µA))Λ,∗

)

In order to construct an inverse to KΛ, our first step is to mimic Definition 2.2.79

Definition 3.2.44. Let Λ be a Σ-theory, given an Eilenberg-Moore algebra ((X,µX), ξ) for SΛ, its asso-

ciated Σ-algebraHΛ(X, ξ) =
(
(X,µX),

{
oHΛ(X,ξ)

}
o∈OΣ

,
{
cHΛ(X,ξ)

}
c∈CΣ

)
is defined taking as oHΛ(X,ξ)

and cHΛ(X,ξ) the compositions

(X,µX)arΣ(o)
η
arΣ(o)

Λ,(X,µX ) // (SΛ(X,µX))arΣ(o) oFΛ(X,µX )
// SΛ(X,µX)

ξ // (X,µX)

∇H(1)
cFΛ(X,µX )

// SΛ(X,µX)
ξ // (X,µX)
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Proposition 3.2.45. For every Σ-theory Λ, with Σ ∈ FSignκ, if ((X,µX), ξ) is an Eilenberg-Moore algebra
for SΛ, then the arrow ξ itself is a Σ-homomorphism FΛ(X,µX) → HΛ((X,µX), ξ). Moreover

ξ = (id(X,µX))Λ,∗

Proof. By definition, we have that

cHΛ((X,µX),ξ) = ξ ◦ cFΛ(X,µX)

On the other hand, we have already proved that in the following diagram all the inner subdiagrams com-
mute, so that the whole commutes too

(X,µX)arΣ(o)
η
arΣ(o)

Λ,(X,µX ) // (SΛ(X,µX))arΣ(o) oFΛ(X,µX )
// SΛ(X,µX)

ξ

��

(SΛ(X,µX))arΣ(o)

ξarΣ(o)

OO

idarΣ(o)

SΛ(X,µX )
--

η
arΣ(o)

Λ,SΛ(X,µX ) // (SΛ(SΛ(X,µX)))arΣ(o)

(SΛ(ξ))arΣ(o)

OO

ν
arΣ(o)

Λ,(X,µX )

��

oFΛ(SΛ(X,µX ))
// SΛ(SΛ(X,µX))

νΛ,(X,µX )

��

SΛ(ξ)

OO

(SΛ(X,µX))arΣ(o)

oFΛ((X,µX ))

// SΛ(X,µX)
ξ

// (X,µX)

The last part of the thesis follows at once from the identity ξ ◦ ηΛ,(X,µX) = id(X,µX).

Example 3.2.46. LetH be the frame (2,≤) and consider the signatureΣwith no operations and a constant
c. We take now the Σ-theory Λ with axiom

2 | m(1, c) ` x = y

We can compute explicitly SΛ. We claim that

SΛ(X,µX) = (X,µX) +∇H(1)

The coprojection j∇H(1) : ∇H(1) → (X,µX) +∇H(1) equip this fuzzy set SΛ(X,µX) with a Σ-algebra
structure which is a model of Λ. The other coprojection gives us a morphism ηΛ,(X,µX) : (X,µX) →
SΛ(X,µX) which has the universal property of the unit of FΛ a VΛ. To see this, let A = ((A,µA), c

A)
be a model of Λ and f : (X,µX) → (A,µA) a morphism of Fuz(H). By the universal property of
coproducts the unique Σ-homomorphism fΛ,∗ : (SΛ(X,µX), j1) → ((A,µA), c

A) such that

f = fΛ,∗ ◦ ηΛ,(X,µX)

is the one induced by f and cA. We can then conclude that, SΛ is the exception monad of Example 2.1.3
with∇H(1) as E. SΛ(SΛ(X,µX)) is the coproduct of (X,µX) and two copies of∇H(1), so that we have

∇H(1)

j∇H(1),1

��

id∇H(1) // ∇H(1)

j∇H(1)

��
(X,µX) +∇H(1) +∇H(1) νΛ,(X,µX )

// (X,µX) +∇H(1)
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∇H(1)

j∇H(1),2

��

id∇H(1) // ∇H(1)

j∇H(1)

��
(X,µX) +∇H(1) +∇H(1) νΛ,(X,µX )

// (X,µX) +∇H(1)

where j∇H(1),1 and j∇H(1),2 are the two coprojections with domain∇H(1). Considering the other copro-
jection j(X,µX) : (X,µX) → SΛ(SΛ(X,µX)) we also have

(X,µX)

j(X,µX )

��

id(X,µX ) // (X,µX)

ηΛ,(X,µX )

��
(X,µX) +∇H(1) +∇H(1) νΛ,(X,µX )

// (X,µX) +∇H(1)

Now let X = {a, b} be any set with two elements and cX the function X → 2 constant in 1. Then
there are no Σ-algebra structures on (X, cX) making it a model of Λ. On the other hand, we can define
ξ : SΛ(X, cX) → (X, cX) as the arrow induced by id(X,cX) and δa : ∇H(1) → (X, cX). Clearly ξ ◦
ηΛ,(X,cX) is the identity, while we have

ξ ◦ νΛ,(X,cX) ◦ j(X,cX) = ξ ◦ ηΛ,(X,cX) ◦ id(X,cX)

= ξ ◦ ηΛ,(X,cX) ◦ ξ ◦ j(X,cX)

= ξ ◦ SΛ(ξ) ◦ j(X,cX)

ξ ◦ νΛ,(X,cX) ◦ j∇H(1),1 = ξ ◦ j∇H(1) ◦ id(X,cX)

= ξ ◦ j∇H(1)

= ξ ◦ SΛ(ξ) ◦ j∇H(1),1

ξ ◦ νΛ,(X,cX) ◦ j∇H(1),2 = ξ ◦ j∇H(1) ◦ id(X,cX)

= ξ ◦ j∇H(1)

= ξ ◦ SΛ(ξ) ◦ j∇H(1),2

Therefore ((X, cX), ξ) is an object of EM(SΛ) which cannot be in the essential image of the comparison
functor KΛ : Mod(Λ) → EM(SΛ) and which, moreover, is such that HΛ((X, cX), ξ) is not in Mod(Λ).

The previous example shows that, in generalHΛ((X,µX), ξ) is not a model of Λ. We can nonetheless
identify a class of theories such that this holds. As in [16, 91] the right class of theories is the one given
by theories axiomatizable by axioms whose premises contains only variables.

Definition 3.2.47. Let Σ be a κ-bounded signature, a Σ-theory Λ is basic (or, using the terminology of
[15], simple) if it has a set of axiom S such that, for any sequent λ | Γ ` ϕ in it, all the formulae in Γ
contain only variables, i.e. elements in the image of ηcri(Σ),λ.

Example 3.2.48. Fuzzy groups, fuzzy normal groups, fuzzy semigroups and left, right, bilateral ideals
(Examples 3.2.27 and 3.2.26) are all examples of basic theories.

Lemma 3.2.49. Let Σ be a κ-bounded signature. For every basic Σ-theory Λ, if ((X,µX), ξ) is an object of
EM(SΛ), thenHΛ((X,µX), ξ) is a model of Λ.

Proof. Let S be a set of axiom for Λ such that for every sequent λ | Γ ` ϕ in it, each formula in Γ
contains only variables. Let f : λ → X be a function, we can notice that, if HΛ((X,µX), ξ) ⊨f Γ then
FΛ(X,µX) ⊨ηΛ,(X,µX )◦f Γ too. To see this, fix a formula ψ in Γ, and split the cases:
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• if ψ is x ≡ y, let x and y be, respectively ηcri(Σ),λ(α) and ηcri(Σ),λ(β) for some α, β ∈ λ. By
hypothesis

f(α) = fcri(Σ),∗

(
ηcri(Σ),λ(α)

)

= fcri(Σ),∗

(
ηcri(Σ),λ(β)

)

= f(β)

so that we also have
(
η(X,µX) ◦ f

)
cri(Σ),∗

(x) =
(
η(X,µX) ◦ f

)
cri(Σ),∗

(
ηcri(Σ),λ(α)

)

= η(X,µX)(f(α))

= η(X,µX)(f(β))

=
(
η(X,µX) ◦ f

)
cri(Σ),∗

(
ηcri(Σ),λ(β)

)

=
(
η(X,µX) ◦ f

)
cri(Σ),∗

(y)

which is precisely what we claimed;

• if ψ is m(h, x) for some h ∈ H and x = ηcri(Σ),λ(α) for some α ∈ λ, then

h ≤ µX
(
fcri(Σ),∗(x)

)

= µX
(
fcri(Σ),∗

(
ηcri(Σ),λ(α)

))

= µX(f(α))

≤ µΛ,(X,µX)

(
ηΛ,(X,µX)(f(α))

)

= µΛ,(X,µX)

((
η(X,µX) ◦ f

)
cri(Σ),∗

(
ηcri(Σ),λ(α)

))

= µΛ,(X,µX)

((
η(X,µX) ◦ f

)
cri(Σ),∗

(x)
)

and we can conclude again.

Since FΛ(X,µX) is a model for Λ, we can deduce from the previous observations that FΛ(X,µX)
satisfies ϕ with respect to ηΛ,(X,µX) ◦ f . Now, by Proposition 3.2.45, ξ is a Σ-homomorphism, thus, in
particular, it is also a cri (Σ)-homomorphism, then

ξ ◦
(
ηΛ,(X,µX) ◦ f

)
cri(Σ,∗) =

(
ξ ◦ ηΛ,(X,µX) ◦ f

)
cri(Σ),∗

=
(
id(X,µX) ◦ f

)
cri(Σ),∗

= fcri(Σ),∗

We have again two cases.

• ϕ is t ≡ s, then

fcri(Σ),∗(t) = ξ
((
ηΛ,(X,µX) ◦ f

)
cri(Σ),∗

(t)
)

= ξ
((
ηΛ,(X,µX) ◦ f

)
cri(Σ),∗

(s)
)

= fcri(Σ),∗(s)
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• ϕ is m(h, t), then

h ≤ µΛ,(X,µX)

((
ηΛ,(X,µX) ◦ f

)
cri(Σ),∗

(t)
)

= µX

(
ξ
(
ηΛ,(X,µX) ◦ f

)
cri(Σ),∗

(t)
)

= µX(fcri(Σ),∗(t))

In both cases we can conclude that HΛ((X,µX), ξ) ⊨f ϕ and thus it belongs to Mod(Λ)

Consider now a morphism f : (X, ξ1) → (Y, ξ2) in EM(TΛ), then we have diagrams

(X,µX)arΣ(o)

farΣ(o)

��

η
arΣ(o)

Λ,(X,µX ) // (SΛ(X,µX))arΣ(o)

(SΛ(f))arΣ(o)

��

oFΛ(X,µX )
// SΛ(X,µX)

SΛ(f)

��

ξ1 // (X,µX)

f

��
(Y, µY )

arΣ(o)

η
arΣ(o)

Λ,(Y,µY )

// (SΛ(Y, µY ))
arΣ(o)

oFΛ(Y,µY )

// SΛ(Y, µY )
ξ2

// (Y, µY )

SΛ(X,µX)
ξ1 //

SΛ(f)

��

(X,µX)

f

��

∇H(1)

cFΛ(X,µX ) 00

cFΛ(Y,µY ) .. SΛ(Y, µY )
ξ2 // (Y, µY )

made by commutative rectangles and triangles, therefore f is aΣ-homomorphismHΛ(X, ξ1) → HΛ(Y, ξ2).
This, in turn allows us to define a functor HΛ : EM(TΛ) → Mod(Λ)

((Y, µY ), ξ2)

f

−
→

((X,µX), ξ1)

7−→

7−→

HΛ((Y, µY ), ξ2)

−
→ f

HΛ((X,µX), ξ1)

Theorem 3.2.50. For every Σ ∈ FSignκ and basic Σ-theory Λ, the functor KΛ : Mod(Λ) → EM(SΛ) has
HΛ : EM(SΛ) → Mod(Λ) as an inverse.

Proof. HΛ and KΛ both act on arrows as the identity, hence it is enough to show that they are mutually
inverse on objects.

On one hand, if ((X,µX), ξ) be an Eilenberg-Moore algebra for SΛ, by construction we have

KΛ(HΛ((X,µX), ξ)) = (X, (id(X,µX))Λ,∗)

Proposition 3.2.45 entails ξ = (id(X,µX))Λ,∗ so that KΛ ◦HΛ = idEM(SΛ).

On the other hand, if A =
(
A,
{
oA
}
o∈OΣ

,
{
cA
}
c∈CΣ

)
is a model of Λ, then we have a diagram

(A,µA)
arΣ(o)

η
arΣ(o)

Λ,(A,µA) //

idarΣ(o)

(A,µA) ++

(SΛ(A,µA))
arΣ(o)

(idA)
arΣ(o)

Λ,∗

��

oFΛ(A,µA)
// SΛ(A,µA)

(id(A,µA))Λ,∗

��
(A,µA)

arΣ(o)

oA
// (A,µA)
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which is commutative since KΛ(A) is an object of EM(TΛ) and (idA)Λ,∗ is a Σ-homomorphism. In
particular this shows that oA = oHΛ(KΛ(A)). Now it is enough to notice that we have another diagram

∇H(1)
cFΛ(A,µA)

��

cA

��
SΛ(A,µA)

(id(A,µA))Λ,∗

// (A,µA)

to conclude that HΛ ◦KΛ = idMod(Λ).

Corollary 3.2.51. Let Σ be a κ-bounded signature and Λ a Σ-theory, then VΛ is strictly monadic.

Let IΛ : Mod(Λ) → Σ-FAlg be the inclusion of models of Λ into the category of Σ-algebras. By
Corollary 3.2.51 we know that there is a functor F : EM(SΛ) → EM(SΣ) fitting in the diagram below

Mod(Λ)

KΛ

��

IΛ //

VΛ &&NN
NN

NN
NN

Σ-FAlg

KΣ

��

VΣxxppp
pp
pp
p

Fuz(H)

EM(SΛ)
F

//

USΛ
77pppppppp

EM(SΣ)

UTΣ
ggNNNNNNNN

Moreover, for everyA ∈ Mod(Λ), (id(A,µA))Λ,∗ ◦πΛ,A is the unique Σ-homomorphism which makes
the following diagram commutative

(A,µA)ηΣ,(A,µA)

{{
ηΛ,(A,µA)

��

id(A,µA)

""
SΣ((A,µA)) πΛ,(A,µA)

// SΛ((A,µA))
(id(A,µA))∗

// (A,µA)

Applying this argument to IΛ(HΛ(X, ξ)), and using Proposition 2.2.80 we get that F is given by

((Y, µY ), ξ2)

f

−
→

((X,µX), ξ1)

7−→

7−→

((Y, µY ), ξ2 ◦ πΛ,(Y,µY ))

−
→ f

((X,µX), ξ1 ◦ πΛ,(X,µX))

If we apply Proposition 2.1.24, the previous observations now yield the following result.

Proposition 3.2.52. Given Σ ∈ Signκ and a Σ-theory Λ, there exists a morphism of monads πΛ : SΣ → SΛ
whose component at (X,µX) is given by πΛ,(X,µX).

3.3 Two HSP theorems for fuzzy algebraic theories

In this section we prove two results for our calculus analogous to the classic HSP theorem [25], applying
the abstract machinery developed by Milius and Urbat [95] to our case.
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3.3.1 Milius and Urbat’s theorem

Let us start recalling the tools introduced in [95], adapted to our situation.

Definition 3.3.1. An object X of a category X is projective with respect to an arrow f : Z → Y if for any
h : X → Y there exists a k : X → Z such that the following diagram commutes

Z

f

��
X

k
00

h
// Y

Let (E ,M) be a proper factorization system on X. For every subclass X of objects of X, we define EX as
the class of e ∈ E such that for every X ∈ X , X is projective with respect to e.

AnMU-structure is a triple (X, (E ,M),X )whereX is a category, (E ,M) a proper factorization system
on it and X a class of objects of X such that

1. X has all (small) products and it is E -cowellpowered;

2. for every object X of X there exists e : Y → X in EX with Y ∈ X .

A full subcategory Y of X will be called a variety if it is closed under EX -quotients,M-subobjects and
small products, i.e. if:

• if Y ∈ Y, then for every [e] ∈ EX -Quot(Y ), cod(e) belongs to Y;

• if Y ∈ Y, then for every [m] ∈ M-Sub(Y ), dom(e) belongs to Y;

• if I is a set and {Yi}i∈I a family of objects of Y, then their product in X belongs to Y, too.

Remark 3.3.2. Notice that if X and Y are two subclasses of objects of X with X ⊆ Y , then EY ⊆ EX .

Let us prove some properties of EX .

Proposition 3.3.3. Let (X, (E ,M),X ) be an MU-structure, then the following hold:

1. if f : Z → Y is an isomorphism, then f ∈ EX ;

2. if f : X → Y and g : Y → Z belong to EX , then g ◦ f ∈ EX too;

3. given f : X → Y and g : Y → Z , if g ◦ f ∈ EX then g ∈ EX .

Proof. 1. By point 1 of Definition 2.1.40, f ∈ E . On the other hand, if X ∈ X and h is an arrow
X → Y , then the following diagram witnesses f ∈ EX .

Z

f

��
X

f−1◦h
00

h
// Y

2. By point 2 of Definition 2.1.40, g ◦ f is an element of E , so we are left with projectivity. Let
h : A→ Z be an arrow with domain in X and consider the following diagram

X
f // Y

g

��
A

k2

::

k1

OO

h
// Z



3.3. Two HSP theorems for fuzzy algebraic theories 141

k2 exists applying projectivity of g to h and k1 exists applying projectivity of f to k2. We have

(g ◦ f) ◦ k1 = g ◦ (f ◦ k1)

= g ◦ k2

= h

3. By point 3 of Corollary 2.1.42 we know that g ∈ E , so let h : A→ Z be an arrow with domain X ,
since g ◦ f ∈ EX we get the solid part of the following diagram

X
f // Y

g

��
A

k2

::

k1

OO

h
// Z

Now let k2 be f ◦ k1, computing we get

g ◦ k2 = g ◦ (f ◦ k1)

= (g ◦ f) ◦ k1

= h

from which the thesis follows at once

Definition 3.3.4 ( [17]). Let (X, (E ,M),X ) be anMU-structure, anX -equation is an arrow e ∈ E -Quot(X)
with domainX inX . We say that an object Y ofX satisfies aX -equation e : X → Z, if for every h : X → Y

there exists q : Z → Y such that the following diagram commutes

X

e

��

h // Y

Z
q

GG

Given a class E of X -equations, we define V(E) as the full subcategory of X given by objects that
satisfy e for every e ∈ E. A full subcategory Y is X -equationally presentable if there exists a class E of
X -equations such that Y = V(E).

Remark 3.3.5. The definition of X -equations and all the machinery involved is given in [95] in more
general terms. However, when applied to the two MU-structures on Fuz(H) in which we are interested,
Milius and Urbat’s definition reduces to ours (cfr. their Remark 3.4 in [95]).

We can now notice that X -equationally presentable subcategories are varieties.

Lemma 3.3.6. Let Y be a X-equationally presentable subcategory of X. Then Y is a variety.

Proof. Let Y be V(E) for some class E of X -equations, we have to prove the three closure properties.
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• EX -quotients. Let q : Y → Q be an arrow in EX with Y ∈ Y and fix a X -equation e : X → Z in E.
Let h : X → Q be another arrow, since q ∈ EX we get the dotted k : X → Y in the diagram

Z
k′ // Y

q

��
X

e

OO
k

::

h
// Q

On the other hand, Y ∈ V(E)so there also exists the other dotted arrow k′ : Z → Y ÿ and the
thesis now follows.

• M-subobjects. Let Y be an object of Y and m : M → Y an arrow in M. As before fix an element
e : X → Z of E and an arrow h : X → M . Since Y ∈ V(E) there exists k : Z → Y making the
solid part of the following diagram commutative

X
h //

e

��

M

m

��
Z

k′
::

k
// Y

Now, e is in E and (E ,M) is a factorization system, so there is k′ : Z →M witnessingM ∈ V(E).

• Small products. Let {Yi}i∈I be a small family of objects in Y and let e : X → Z be a given element
of E. For every arrow h : X →

∏
i∈I Yi, we get the solid part of the following diagram

X
e

��
h
��

Z
q //

qi

88
∏

i∈I

Yi
πi // Yi

Since Yi is an object of Y = V(E), we get the existence of the dotted qi : E → Yi such that

qi ◦ e = πi ◦ h

Let q be the induced arrow into the product, then, for every i ∈ I :

πi ◦ q ◦ e = qi ◦ e

= πi ◦ h

and thus q ◦ e = h as desired.

Definition 3.3.7. Let (X, (E ,M),X ) be an MU-structure, a X an object of X . An X -equation overX is
a class IX ⊆ X/E of X -equations with the same domain such that:

1. there is a minimum eX ∈ IX such that eX ≤ e′ for every other e′ ∈ IX ;

2. for every e : X → Z in IX , if q : Z → V is in EX , then q ◦ e ∈ IX .
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An object Y satisfies IX if, for every h : X → A there is e : X → Z in IX and q : Z → A such that the
following diagram commutes

X

e

��

h // Y

Z
q

GG

A X -equational theory I is a family {IX}X∈X of X -equations over objects of X such that:

1. (substitution invariance) for every arrow h : X → Y between objects of X and e : Y → Z in IY , if
me◦h ◦ ee◦h is a (E ,M)-factorization of e ◦ h, then ee◦h is in IX ;

2. (EX -completeness) for every e : Y → Z in IY , there exists another e′ : X → Z in IX which belongs
also to EX .

An object Y satisfies I if it satisfies all its elements IX . We will denote by V∗(I) the full subcategory of X
given by the objects satisfying I.

Proposition 3.3.8. Let IX be an equation over an objectX with minimum eX , then an object Y satisfies IX
if an only if it belongs to V({eX}).

Proof. (⇒) Let h : X → Y be an arrow, by hypothesis there exists e ∈ IX and q such that q ◦ e = h.
Since eX ≤ e, then there is a k such that k ◦ eX = e and the thesis now follows taking q ◦ k.

(⇐) This is tautological since eX ∈ IX .

Corollary 3.3.9. Let I = {IX}X∈X be an equational theory, and defineEI to be the collection of the minima
of all the IX , then

V∗(I) = V(EI)

In particular, this implies that V∗(I) is a variety.

X -equational theories are useful, because we can provide a simple criterion criterion to establish if an
object satisfies a given I.

Proposition 3.3.10. Given an MU-structure (X, (E ,M),X ) and an X -equational theory I, an object Y
belongs to V∗(I) if and only if there existsX ∈ X and e ∈ IX with codomain Y .

Proof. (⇒) By point 2 of Definition 3.3.1 there is e : X → Y in EX , with X ∈ X . By hypothesis Y
satisfies I, thus it satisfies IX and so there is e′ : X → Z in IX and q : Z → Y fitting in the diagram

X

e′

��

e // Y

Z
q

GG

By the third point of Proposition 3.3.3, q ∈ EX and the thesis now follows since IX is closed under
composition with elements of EX .

(⇐) Let e : X → Y be an element of IX with codomain Y , by EX completeness there is another e′ : Y ′ →
Y in IY ′ which is also in EX . Take now any other Z ∈ X and suppose that an arrow X → Y is given.
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Since e′ ∈ EX we get a k : Z → Y ′ which makes the following diagram commute

Z

h ��@
@@

@@
@@

@
k // Y ′

e′~~}}
}}
}}
}}

Y

If we factor e′ ◦ k asme′◦k ◦ ee′◦k, by substitution invariance we have that ee′◦k ∈ IZ , getting

Z

ee′◦k

��

h

$$JJ
JJ

JJ
JJ

JJ
J

k // Y ′

e′

��
Z ′

me′◦k

// Y

But now, this diagram witnesses that Y satisfies IZ and the thesis now follows.

Take now a variety Y, then for every X ∈ X we can define I(Y)X putting

I(Y)X := {e ∈ X/E | cod(e) ∈ Y}

The following proposition guarantees us that in this way we get an X -equational theory.

Proposition 3.3.11. Let (X, (E ,M),X ) be an MU-structure, then for every variety Y, the family

I(Y) := {I(Y)X}X∈X

is an X -equational theory.

Proof. First of all we have to show that, for every X ∈ X , I(Y)X is an X -equation over X .

1. By definition of MU-structure ,X is E -cowellpowered. Thus there exists a set {ei}i∈I ⊆ I(Y)X such
that, for every e ∈ I(Y)X , e ≡ ei for some i ∈ I . LetXi be the codomain of ei, we have a diagram

X

ei

$$I
II

II
II

II
II

I

ef

{{vv
vv
vv
vv
vv
vv

f

��

Y
mf

//
∏

i∈I

Xi πi

// XI

where f is the arrow induced by {ei}i∈I and ef , mf an (E ,M)-factorization of it. ef belongs to
I(Y)X since Y is a variety and, by construction, ef ≤ ei for every i ∈ I . The thesis now follows
since any element of I(Y)X is equivalent to one of {ei}i∈I .

2. Let e : X → Z be in I(Y)X , if q : Z → Z ′ is in EX then Z ′ belongs to Y and thus q ◦ e ∈ I(Y)X .

Next, we have to show that I(Y) enjoys the substitution invariance and EX -completeness properties.
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1. Let h : X → Y be an arrow between two objects of X and let e ∈ I(Y)Y . Factoring e ◦ h we get a
diagram

X
h //

ee◦h

��

Y

e

��
Z ′

me◦h

// Z

Z is in Y so, since Y is a variety, Z ′ is in Y too and thus ee◦h belongs to I(Y)X .

2. Let e : Y → Z be an element of IY , by definition of MU-structure there exists e′ : X → Z in EX
which, by definition, is in I(Y)X and we are done.

Lemma 3.3.12. Given an MU-structure (X, (E ,M),X ), the following hold true:

1. for every variety Y, V∗(I(Y)) = Y;

2. for every X -equational theory I, I(V∗(I)) = I.

Proof. 1. Let us show the two inclusions.

(⊆) Let Y be an object of V∗(I(Y)), by Proposition 3.3.10 there existsX ∈ X and e ∈ I(Y)X with
codomain Y and thus Y ∈ Y by definition of I(Y)X .

(⊇) By definition of MU-structure, for every Y ∈ Y there exists e : X → Y in EX with domain in
X . Hence e ∈ I(Y)X and Proposition 3.3.10 yields Y ∈ V∗(I(Y)).

2. As in the previous point, we are going to show the two inclusions

(⊆) Given e : X → Y in I(V∗(I))X , we know that Y ∈ V∗(I). By Proposition 3.3.10 there exists
X ′ ∈ X and e′ : X ′ → Y in IX′ . By EX -completeness we get another e′′ : X ′′ → Y in IX′′ which,
moreover, is in EX . Take the diagram

X ′′

e′′

��
X

h
55

e
// Y

The existence of the dotted h is guaranteed by the projectivity of X with respect to e′′. We can
factor e′′ ◦ h to get a square

X
h //

ee′′◦h

��

e

%%JJ
JJ

JJ
JJ

JJ
J X ′′

e′′

��
Z

me′′◦h

// Y

By the third point of Proposition 3.3.3,me′′◦h ∈ EX . By substitution invariance ee′′◦h is an object
of IX , which is closed under composition with arrows in EX , therefore e ∈ IX too.

(⊇) Take e : X → Y in IX , thus Y ∈ V∗(IX) by Proposition 3.3.10 and so e ∈ I(V∗(I))X .

Corollary 3.3.13 ( [95, Th. 3.16]). A full subcategory Y of X is X -equationally presentable if and only if it is
a variety.

Proof. (⇒) This is the content of Lemma 3.3.6.

(⇐) By Lemma 3.3.12 we know that Y = V∗(I(Y)), therefore Corollary 3.3.9 yields the thesis.
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3.3.2 Application to fuzzy algebras

We now want to apply the machinery developed in the previous section to fuzzy Σ-algebras for some
κ-bounded signature Σ. In order to do so we are going to define two MU-structures on Σ-FAlg.

Lemma 3.3.14. For any κ-bounded signature Σ, there exists a proper factorization system (EΣ,MΣ) on
Σ-FAlg, where e ∈ EΣ if and only if VΣ(e) is an epimorphism and m ∈ MΣ if and only if VΣ(m) is a
regular monomorphism.

Proof. This follows from Theorem 2.1.46, Remark 3.1.27, and Corollaries 3.1.31 and 3.2.51

Remark 3.3.15. Notice that, by Proposition 2.1.30 andCorollary 3.2.51,MΣ is exactly the class of regular
monos in Σ-FAlg.

Next, we define the following two classes of Σ-algebras putting

X0 := {FΣ(∇H(X)) | X ∈ Set} XM := {FΣ(X,µX) | (X,µX) ∈ Fuz(H) and |supp(X,µX)| < κ}

The following lemma assures us that in this way we get two MU-structures.

Lemma 3.3.16. With the definitions given above, the following hold true

1. (EΣ)X0
= EΣ;

2. (EΣ)XM
= {e ∈ EΣ | VΣ(e) is split};

3. (Σ-FAlg, (EΣ,MΣ),X0) and (Σ-FAlg, (EΣ,MΣ),XM) are MU-structures.

Proof. 1. It is enough to show that every arrow in EΣ is in (EΣ)X0
. Let e : A → B be an arrow in

EΣ and let h : FΣ (∇H(X)) → B be any morphism of Σ-FAlg. By definition e is surjective. So, if
(A,µA) = VΣ(A), for any x ∈ X there exists k(x) ∈ A such that

e(k(x)) = h
(
ηΣ,∇H(X)(x)

)

This defines a function k : X → A where A is the algebra
(
(A,µA),

{
oA
}
o∈OΣ

,
{
cAc∈CΣ

})
. k

is also a morphism k : ∇H(X) → (A,µA), therefore, by adjointness, we get a Σ-homomorphism
kΣ,∗ : FΣ (∇H(X)) → A, and computing, we have

(e ◦ kΣ,∗) ◦ ηΣ,∇H(X) = e ◦ (kΣ,∗ ◦ ηΣ,∇H(X))

= e ◦ k

= h ◦ ηΣ,∇H(X)

Hence, we can deduce that e ◦ kΣ,∗ = h.

2. Let us show the two inclusions.

(⊆) Take an element e : A → B in (EΣ)XM
, and consider the component in B of the counit ϵ : FΣ ◦

VΣ → idΣ-FAlg of the adjunction FΣ a VΣ. If (A,µA) and (B,µB) are, respectively, VΣ(A) and
VΣ(B), we get a diagram:

A

e

��
FΣ(B,µB)

k
/ /

ϵB
// B
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where the dotted κ exists since e ∈ (EΣ)XM . Now the thesis follows noticing that

e ◦ k ◦ ηΣ,(B,µB) = ϵB ◦ ηΣ,(B,µB)

= id(B,µB)

(⊇)Now let e : A → B be such thatVΣ(e) is split and let s be a section of it. Given an arrowh : FΣ(X,µX) →
B we can consider define k as the composition

(X,µX)
ηΣ,(X,µX ) // SΣ(X,µX)

h // (B,µB)
s // (A,µA)

where, as usual, (A,µA) and (B,µB) areVΣ(A) andVΣ(B). By adjointness we get aΣ-homomorphism
kΣ,∗ : FΣ(X,µX) → A and

(e ◦ kΣ,∗) ◦ ηΣ,(X,µX) = e ◦
(
kΣ,∗ ◦ ηΣ,(X,µX)

)

= e ◦
(
s ◦ h ◦ ηΣ(X,µX)

)

= (e ◦ s) ◦
(
h ◦ ηΣ,(X,µX)

)

= id(B,µB) ◦ h ◦ ηΣ,(X,µX)

= h ◦ ηΣ,(X,µX)

so kΣ,∗ is the desired lifting.

3. Let us prove all the conditions of Definition 3.3.1.

(a) Σ-FAlg has all products by Proposition 2.1.30 and Corollaries 3.1.26 and 3.2.51. Moreover,
Σ-FAlg is also EΣ-cowellpowered: VH ◦ VΣ : Σ-FAlg → Set is faithful, it sends e ∈ A/EΣ to a
surjective arrow with domainA and Set is cowellpowered with respect to surjective functions.

(b) Let A be an object of Σ-FAlg and take (A,µA) to be VΣ(A). We can consider two arrows:

idA : ∇H(A) → (A,µA) id(A,µA) : (A,µA) → (A,µA)

which induce
e0 : FΣ(∇H(A)) → A eM : FΣ(A,µA) → A

Now, by construction we have the following two equalities

e0 ◦ ηΣ,∇H(A) = idA eM ◦ ηΣ,∇H(A) = idA

showing that e0 is surjective and eM is split.

Remark 3.3.17. We will say that an arrow in (EΣ)XM
is a split EΣ-quotient. Notice that such a morphism

is not a split epimorphism in Σ-FAlg.

Wewant now to relate formulae of our sequent calculus toX0- andXM-equations. Recall that, for every
(X,µX) ∈ Fuz(H), Remark 3.2.39 entails the existence of a cri (Σ)-isomorphismΘ(X,µX) : Tcri(Σ)(X) →
TΣ(X,µX). Moreover, fix a bijection j : |X| → X and take R(X,µX) to be j−1 (supp(X,µX)). Finally,
define the function Ξ(X,µX) : Tcri(Σ)(|X|) → TΣ(X,µX) as the composition

Tcri(Σ)(|X|)
Tcri(Σ)(j) // Tcri(Σ)(X)

Θ(X,µX ) // TΣ(X,µX)
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Definition 3.3.18. Let Σ be a κ1-bounded signature and e : FΣ(X,µX) → B an XM-equation. Let also
κ the smallest regular cardinal greater or equal than sup (κ1, |X|), so that, in particular, Σ is κ-bounded.
We define Γ(X,µX) as

Γ(X,µX) := {m
(
µX(j(α)), ηcri(Σ),|X|(α)

)
}α∈R(X,µX )

A sequent |X| | Γ(X,µX) ` ϕ will be called a e-sequent if

• ϕ is t1 ≡ t2 and e
(
Ξ(X,µX)(t1)

)
= e

(
Ξ(X,µX)(t2)

)
;

• ϕ is m(h, t) and h ≤ µB
(
e
(
Ξ(X,µX)(t)

))
.

We define Λe as the theory generated by all the e-sequents.

Lemma 3.3.19. Let Σ be a κ-bounded signature and e : TΣ(X,µX) → B an XM-equation such that |X| < κ.
ThenMod(Λe) = V({e}).

Proof. (⊆) Let C be amodel ofΛe and h : FΣ(X,µX) → C aΣ-homomorphism. Let s1 and s2 be elements
of TΣ(X,µX) such that

e(s1) = e(s2)

By Remark 3.2.39, we also have t1, t2 ∈ Tcri(Σ)(|X|) such that

Ξ(X,µX)(t1) = s1 Ξ(X,µX)(t2) = s2

In Set we can form a diagram

Tcri(Σ)(|X|)

Tcri(Σ)(j)

��

(h◦ηΣ,X◦j)cri(Σ),∗

��

|X|

j

��

ηcri(Σ),|X|
33

Tcri(Σ)(X)

Θ(X,µX )

��
X

ηcri(Σ),X
22

ηΣ,X

// TΣ(X,µX)
h

// C

which shows that
h ◦ Ξ(X,µX) = (h ◦ ηΣ,X ◦ j)cri(Σ),∗

Notice that, for every α ∈ |X| we have

µX (j(α)) ≤ µC(h(ηΣ,X (j (α))))

= µC

(
(h ◦ ηΣ,X ◦ j)cri(Σ),∗

(
ηcri(Σ),|X|(α)

))

Since by hypothesis C is a model of Λe, we get

h(s1) = h
(
Ξ(X,µX)(t1)

)

= (h ◦ ηΣ,X ◦ j)cri(Σ),∗ (t1)

= (h ◦ ηΣ,X ◦ j)cri(Σ),∗ (t2)

= h
(
Ξ(X,µX)(t2)

)

= h(s2)
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By Proposition 2.2.67 we get a cri (Σ)-homomorphism g making the following diagram commutative

TΣ(X,µX)
h //

e

��

C

B
g

@@

Now let b be an element of B, since e is surjective there exists t ∈ Tcri(Σ)(|X|) such that

e
(
Ξ(X,µX)(t)

)
= b

Using again that C is a model of Λe, we obtain

µB(b) = µB
(
e
(
Ξ(X,µX)(t)

))

≤ µC

(
(h ◦ ηΣ,X ◦ j)cri(Σ),∗ (t)

)

= µC
(
h
(
Ξ(X,µX)(t)

))

= µC
(
g
(
e
(
Ξ(X,µX)(t)

)))

= µC(g(b))

So, by Remark 3.2.4 g is a Σ-homomorphism and we can conclude.

(⊇)Now let C be an object in V({e}) and |X| | Γ(X,µX) ` ϕ an e-sequent. Given a function f : |X| → C

such that
µX(j(α)) ≤ µC(f(α))

This implies that g := f◦j−1 is a morphism (X,µX) → (C, µC) ofFuz(H) inducing aΣ-homomorphism
g◦ : FΣ(X,µX) → C. Notice that we have a diagram

Tcri(Σ)(|X|)

Ξ(X,µX )

vv

Tcri(Σ)(j)

xxqqq
qq
qq
qq
q

fcri(Σ),∗

rr

|X|

f
00

j

%%KK
KK

KK
KK

KK
K

ηcri(Σ),|X| ..

Tcri(Σ)(X)

gcri(Σ),∗

xx

Θ(X,µX )

��
X

g

''PP
PPP

PPP
PPP

PPP
P

ηcri(Σ),X
11

ηΣ,X // TΣ(X,µX)

gΣ,∗

��
C

Since C is in V({e}) we also have a k : B → C such that gΣ,∗ = k ◦ e. Let us split the cases.

• ϕ is t1 ≡ t2 for some t1, t2 ∈ Tcri(Σ)(|X|). Then we have

fcri(Σ),∗(t1) = gΣ,∗
(
Ξ(X,µX)(t1)

)

= k
(
e
(
Ξ(X,µX)(t1)

))

= k
(
e
(
Ξ(X,µX)(t2)

))

= gΣ,∗
(
Ξ(X,µX)(t2)

)

= fcri(Σ),∗(t2)
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• ϕ is m(h, t) for some h ∈ H and t ∈ Tcri(Σ)(|X|). Computing we get

h ≤ µB
(
e
(
Ξ(X,µX)(t)

))

≤ µC
(
k
(
e
(
Ξ(X,µX)(t)

)))

= µC
(
gΣ,∗

(
Ξ(X,µX)(t)

))

= µC
(
fcri(Σ),∗(t)

)

and we can conclude.

Remark 3.3.20. We can refine the previous construction a little. Let Σ be a signature, (X,µX) a fuzzy
set and κ a regular cardinal such that Σ is κ-bounded and |supp(X,µX)| < κ. Take also an XM-equation
e : FΣ(X,µX) → B. Since Σ is λ-bounded for every regular λ greater than |X| we can still consider
an e-sequent |X| | Γ(X,µX) ` ϕ. Notice also that every term in ϕ is the image of some other term
t ∈ Tcri (Σ) (α) for some |supp(X,µX)| ≤ α < κ. Fix an injection ι : |supp(X,µX)| → α and a bijection
h : R(X,µX) → |supp(X,µX)|, if i : R(X,µX) → |X| is the inclusion we can find fϕ : |X| → α fitting in
the following diagram

R(X,µX)

i

��

h // |supp(X,µX)|

ι

��
|X|

fϕ

// α

Let us now define σϕ : |X| → Tcri(Σ)(α) as the composition

|X|
fϕ // α

ηcri(Σ),α // Tcri(Σ)(α)

Define Λ′
e as the theory which has as axioms the sequents of type

µ | Γ(X,µX)[σϕ] ` ϕ[σϕ]

whenever |X| | Γ(X,µX) ` ϕ is an e-sequent. We claim that Mod(Λe) = Mod(Λ′
e).

(⊆) This follows since Λ′
e is contained in Λe: by definition all the axioms of the former are derivable from

the ones of the latter by an application of rule Subst.

(⊇) LetA be a model for Λ′
e and |X| | Γ(X,µX) ` ϕ an e-sequent. Let also g : |X| → A be a function such

that, for every β ∈ |X|

µX(j(β)) ≤ µA(g(β))

Given such g, we can always find g : α→ A such that

g = g ◦ fϕ
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We can then consider the following commutative diagram

|supp(X,µX)|

ι

((

h−1
// R(X,µX)

i // |X|

fϕ

yysss
ss
ss
ss
ss
ss
ss g

��

ηcri(Σ),|X|

��
α

ηcri(Σ),α 11

g

88Tcri(Σ)(|X|)
gcri(Σ),∗ //

LLL
L

Tcri(Σ)(fϕ) &&LL
LLL

LLL

A

Tcri(Σ)(α)

gcri(Σ),∗

OO

By construction A satisfies all elements of Γ(X,µX)[σϕ] with respect to g and we can conclude.
This, together with Lemma 3.3.19, shows that V({e}) is the category of models of a theory, which has

a set of axioms whose contexts are all less or equal than κ.

We want now to go in the other direction: which kinds of sequents allow us to recover an XM- or an
X0-equation? The answer is provided by the following definition.

Definition 3.3.21. Let Σ be a κ-bounded signature, a sequent λ | Γ ` ϕ is said to be

• unconditional ( [95, App. B.5]) if Γ is the empty set;

• of typeM if Γ = {m
(
hi, ηcri(Σ),λ(xi)

)
}i∈I for some family of variables {xi}i∈I and {hi}i∈I ⊆ H .

A Σ-theory Λ is said to be unconditional (of type M) if it has a set of axioms made by unconditional
sequents (sequents of type M).

Lemma 3.3.22. Let λ | Γ ` ϕ be a sequent of typeM and ΛΓ,ϕ the theory with it as a single axiom. Then there
exists a XM-equation eΓ,ϕ such that

Mod
(
ΛΓ,ϕ

)
= V ({eΓ,ϕ})

Moreover, if Γ = ∅, then e∅,ϕ is an X0-equation.

Proof. Let α be an element of λ, we can define

µλ(α) := sup
(
{h ∈ H | m

(
h, ηcri(Σ),λ(α)

)
∈ Γ}

)

In this way we get a fuzy set (λ, µλ). Applying FΛ we get the following diagram in Fuz(H).

(λ, µλ)
ηΣ,(λ,µλ)

yysss
ss
ss
ss
s η

ΛΓ,ϕ,(λ,µλ)

&&MM
MM

MM
MM

MM

SΣ(λ, µλ) π
ΛΓ,ϕ,(λ,µλ)

// SΛΓ,ϕ(λ, µλ)

So that we can take πΛΓ,ϕ,(λ,µλ) as eΓ,ϕ.

(⊆) Let A be an algebra satisfying λ | Γ ` ϕ and h : FΣ(λ, µλ) → A a Σ-homomorphism. We can apply
freenes of FΛΓ,ϕ(λ, µλ) to h ◦ ηΣ,(λ,µλ) to get the dotted k in the following diagram, proving the thesis.
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(λ, µλ)
ηΣ,(λ,µλ) //

η
ΛΓ,ϕ,(λ,µλ)

��

SΣ(λ, µλ)

eΓ,ϕ

wwooo
ooo

ooo
ooo

oo

h

��
SΛΓ,ϕ(λ, µλ)

k
// (A,µA)

(⊇) If f : λ→ A is an arrow such thatA ⊨f ψ for everyψ ∈ Γ, then f itself defines an arrow f : (λ, µλ) →
(A,µA). By hypothesis,A is inV ({eΓ,ϕ}), thus we get a k : SΛΓ,ϕ(λ, µλ) → A as in the following diagram.

(λ, µλ)

OOO
OOO

O
f

''OO
OOO

OO

ηΣ,(λ,µλ) //

η
ΛΓ,ϕ,(λ,µλ)

��

SΣ(λ, µλ)

eΓ,ϕwwooo
ooo

ooo
ooo

oo

f◦

��
SΛΓ,ϕ(λ, µλ)

k
// (A,µA)

Moreover, recall that, by Remark 3.2.39, we have a cri (Σ)-isomorphism Θ(λ,µλ) : Tcri(Σ)(λ) → TΣ(λ, µλ)

Tcri(Σ)(λ)
Θ(λ,µλ) //

fcri(Σ),∗
##H

HH
HH

HH
HH

TΣ(λ, µλ)

fΣ,∗
zzvv
vv
vv
vv
v

A

Now, notice that SΛΓ,ϕ(λ, µλ) satisfies all the formulae in Γ with respect to ηΛΓ,ϕ,(λ,µλ). Thus it also

satisfies ϕ with respect to it. In particular, since, by construction, eΓ,ϕ =
(
ηΛΓ,ϕ,(λ,µλ)

)
fΣ,∗

this implies

the following two things:

• if ϕ is t1 ≡ t2 then eΓ,ϕ(t1) = eΓ,ϕ(t2);

• if ϕ is m(h, t) then h ≤ µΛΓ,ϕ,(λ,µλ) (eΓ,ϕ(t)).

From these two observations the thesis follows at once
To prove the second half of the thesis just notice that µλ is constant at ⊥ whenever Γ is empty.

Corollary 3.3.23. If Λ is a theory of typeM, then there is a class E of XM-equations such that

Mod(Λ) = V(E)

If, moreover, Λ is unconditional then every element of E can be taken to be a X0-equation.

Putting together Lemmas 3.3.19 and 3.3.22 with Corollary 3.3.13 we get the following result.

Theorem 3.3.24. Let Σ be a κ-bounded fuzzy signature and let Y be a full subcategory of Σ-FAlg, then the
following hold true:

1. Y is closed under EΣ-quotients, (small) products and regular monomorphisms if and only if there exists a
class of typeM theories {Λi}i∈I such that A ∈ Y if and only if A ∈ Mod(Λi) for all i ∈ I ;

2. Y is closed under split EΣ-quotients, (small) products and regular monomorphisms if and only if there
exists a class of unconditional theories {Λi}i∈I such that A ∈ Y if and only if A ∈ Mod(Λi) for all
i ∈ I .
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Proof. 1. (⇒) By Corollary 3.3.13 there is a class of E of XM-equations such that Y = V(E). The
thesis follows from Lemma 3.3.19.

(⇐) This follows from the first half of Corollary 3.3.23 and from Corollary 3.3.13.

2. (⇒) We proceed as in the previous case: by Corollary 3.3.13 there is a class of E of X0-equations
such that Y = V(E), Lemma 3.3.19 yields the thesis.

(⇐) This follows from the second half of Corollary 3.3.23 and from Corollary 3.3.13.

If Σ is κ-bounded, then it is λ-bounded for every regular λ greater than κ, so we can write down
sequents with arbitrarily large contexts and the theorem above makes sense even if E is a proper class.
But, due to the way in which we have defined Σ-theories, we cannot put together all the Λe’s to form a
unique theory: for us, in fact, the sequents of a theory all have contexts bounded by a regular cardinal.
Luckily, for unconditional theories, this issue disappears.

Corollary 3.3.25. Let Σ be a κ-bounded fuzzy signature and let Y be a full subcategory of Σ-FAlg, Y is closed
under EΣ-quotients, (small) products and regular monomorphisms if and only if there exists an unconditional
theory Λ such that Y = Mod(Λ).

Proof. (⇒) By Corollary 3.3.13 there exists a class E of X0-equations such that Y = V(E). For every
e ∈ E, using Remark 3.3.20 we can find a theory Λe such that V(e) = Mod(Λe) and Λe is axiomatized
only by sequents with a context smaller then κ. The thesis now follows taking the theory generated by
all the axioms.

(⇐)This follows from Corollary 3.3.23.
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CHAPTER 4Conclusions for Part I

The first part of this thesis has explored the topic of algebraic theories, both in their classical form and in
a new version, taylored for the category Fuz(H) of fuzzy sets.

In Chapter 2, we reviewed both the categorical and syntactical approaches to this subject, and demon-
strated how they are related by restating and proving the well-known results of Linton and Lawvere
[76, 78]. In particular, we discussed the notion of monads and analyze the related categories of Eilenberg-
Moore algebras, showing how to compute limits and colimits in them. We then turned our attention to
monads on the category Set of sets and functions, with a focus on those that preserve κ-filtered colimits.
These monads are determined by their restriction on the subcategory of sets with cardinality less than κ:
if a monad preserves such colimits, then it must be a left Kan extension of its restriction.

We focused on this class of monads because they correspond precisely to algebraic theories. Given a
set of operations with arities bounded by some cardinal κ, and a set of equations, we demonstrates how a
monad can be constructed such that its category of Eilenberg-Moore algebras is isomorphic to the category
of models of these equations. Such monad is defined constructing for any set, the free model over it and
this, in turn, allows us to deduce a completeness theorem for the calculus of equations.

Finally, we ended Chapter 2 showing that the construction associating a monad to an algebraic theory,
which can be thought as a functor assigning the semantics to a given syntax, is part of an adjunction.
Specifically, given a monad T, with rank, we were able to extract from it an algebraic theory whose
category of models is isomorphic to EM(T).

In the next chapter, Chapter 3, we have moved from the category Set to Fuz(H), the category of fuzzy
sets. Fuzzy sets are pairs that consist of a set and a function into a given frameH. Such function expresses
the membership degree of an element in the whole set.

To capture the equational aspects of fuzzy sets, we have introduced a fuzzy sequent calculus. While
classical equations capture equalities, the membership function’s information is captured using syntactic
items called membership propositions of the form m(h, t), which can be interpreted as “the membership
degree of term t is at least h”. We have then introduced the concept of fuzzy algebras to provide a sound and
complete semantics for this calculus. Completeness here means that a formula is satisfied by all models of
a given theory if and only if it is derivable from the theory using the rules of our calculus.

As in the classical context, there is a notion of free model of a theory Λ and thus an associated monad
SΛ on the category Fuz(H). In general Eilenberg-Moore algebras for such a monad are not equivalent to
models of Λ. However we have shown that this equivalence holds if Λ is basic.

Unfortunately, the correspondence between fuzzy algebraic theories and monads does not hold in the
same way as it does for classical ones. We plan to investigate this phenomenon further in future work.
One possible approach would be to apply the work of Nishizawa and Power [100] to Fuz(H), where
H is a κ-algebraic frame and determine if our notion of algebraic theory is related with their notion of
Fuz(H)-Lawvere theory. Another approach could involve characterizing the monads that arise from a
fuzzy algebraic theory.

Finally, using the results provided in [95] we have proved that, given a signature Σ, subcategories of
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Σ-FAlg which are closed under products, regular monomorphisms and epimorphic images correspond
precisely to categories of models for unconditional theories, i.e. theories axiomatised by sequents without
premises. Moreover, using the same results, we have also proved that the categories of models of theories
of type M, i.e. those whose axioms’ premises contain only membership propositions involving variables,
are exactly those subcategories closed under products, strong monomorphisms and split epimorphisms.

Our category Fuz(H) of fuzzy sets has crisp arrows and crisp equality: arrows are ordinary functions
between the underlying sets and equalities can be judged to be either true or false. A way to further
“fuzzifying” concepts is to use the topos of H-sets over the frame H introduced in [47]: this is equivalent
to the topos of sheaves overH and containsFuz(H) as a (non full) subcategory. By construction, equalities
and functions are “fuzzy”. It would be interesting to study an application of our approach to this context.
A promising feature is that, in anH-set, the membership degree function is built-in as simply the equality
relation, so it would not be necessary to distinguish between equations and membership propositions.
Even more generally, we can replaceHwith an arbitrary quantaleQ := (Q,≤) and consider the category
of sets endowed with a “Q-valued equivalence relation” [27].
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CHAPTER 5On the axioms of M,N -adhesivity
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The introduction of adhesive categories marked a watershed moment for the algebraic approaches to the
rewriting of graph-like structures [42, 73]. Until then, key results of the approaches on e.g. parallelism
and confluence had to be proven over and over again for each different formalism at hand, despite the
obvious similarity of the procedure. Differently from previous solutions to such problems, as the one
witnessed by the butterfly lemma for graph rewriting [39, Lemma 3.9.1], the introduction of adhesive
categories provided such a disparate set of formalisms with a common abstract framework where many
of these general results could be recast and uniformly proved once and for all.

Despite the elegance and effectiveness of the framework, proving that a given category satisfies the
conditions for being adhesive can be a daunting task. For this reason, we look for simpler general criteria
implying adhesivity for a class of categories. Similar criteria have already been provided for the core frame-
work of adhesive categories; e.g. every elementary topos is adhesive [74], and a category is (quasi)adhesive
if and only if can be suitably embedded in a topos [52, 67]. This covers many useful categories such as sets,
graphs, and so on. On the other hand, there are many categories of interest which are not (quasi)adhesive,
such as directed graphs, posets, and many of their subcategories. In these cases we can try to prove the

159



160 5. On the axioms ofM,N -adhesivity

more general M,N -adhesivity [60, 104] for suitable classes M and N . However, so far this has been
achieved only by means of ad hoc arguments. To this end, one of the results of this chapter is a new crite-
rion forM,N -adhesivity, based on the verification of some properties of functors connecting the category
of interest to a family of suitable adhesive categories. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by products, exponents, and
the comma construction. Moreover, this result will be extensively exploited in Chapter 6 in order to show
the M,N of a host of categories of graphs and hypergraphs.

The next result presented here regards the relationship betweenM,N -adhesivity and the existence of
binary suprema in the poset of subobjects of a given objectX . It is well known [67] that in a quasiadhesive
category any two regular subobjects (i.e. subobjects represented by a regular mono) have a join which is
again a regular subobject. Vice versa it is also known [52] that if regular monos are adhesive, then the
existence of a regular join for any pair of regular subobjects entails quasiadhesivity. Generalizing the
approach of [52] we will show that, if M and N are nice enough, M,N -adhesivity entails the existence
of suprema for some pairs of subobjects and that, vice versa, the existence of these suprema together with
every arrow in M being N -adhesive is enough to guarantee M,N -adhesivity.

The framework of N -adhesive morphisms, in turn, allows us to generalize also the embedding results
provided in [52, 72]: every (quasi)adhesive category can be embedded in a Grothendieck topos via a
functor preserving pullbacks and pushouts along (regular) monomorphisms. Under some hypotheses on
the classesM andN we will prove that anM,N -adhesive category admits a full and faithful functor into
a Grothendieck topos which preserves pullbacks and M,N -pushouts.

The first section of this chapter is based on the material present in [36]. The remaining part of the
chapter is entirely new and, at the moment, a paper about these new results is submitted to Theoretical
Computer Science for publication.

Synopsis In Section 5.1 after recalling the definition of Van Kampen square and of M,N -adhesive
category, we prove a new criterion for M,N -adhesivity. Section 5.2 is devoted to study the relationship
betweenM,N -adhesivity and the existence of suprema in the poset of subobjects. Using the results of this
section, in Section 5.3 we will provide a new proof of the adhesivity of elementary toposes and show that,
under some hypotheses onM andN , everyM,N -adhesive category can be embedded in a Grothendieck
topos via a functor preserving pullbacks and M,N -pushouts.

5.1 M,N -adhesive categories

In this section we recall some definitions and results about M,N -adhesive categories and provide a new
criterion to prove this property. Intuitively, an adhesive category is one in which pushouts of monomor-
phisms exist and behave more or less as they do in a topos [73, 74] (see also Section 5.3).

5.1.1 The Van Kampen condition

The key property that M,N -adhesive categories enjoy is given by the so-called Van Kampen condition
[33, 67, 73]. We will recall it and examine some of its consequences. We will end this section with the
definition of M,N -adhesivity and some of its variants.
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Definition 5.1.1. Let X be a category and consider the two diagrams below

A′

a
��

f ′

//
m′

}}{{{
{

B′

b

��

n′

}}{{{
{

A

m

��

f // B

n

��

C ′

c

��

g′ // D′

d

��
A

f //

m}}{{
{{

B

n||zzz
z

C
g

// D C
g

// D

We say that the left square is a Van Kampen square if:

1. it is a pushout square;

2. whenever the right cube has pullbacks as back and left faces, then its top face is a pushout if and
only if the front and right faces are pullbacks.

Pushout squares which enjoy the “if” half of this condition are called stable.

Let us make two rather technical remarks.

Remark 5.1.2. Takem : X → Y and n : X → Z to be two arrows and consider two pushout squares

X
n //

m

��

Z

q1

��

X
n //

m

��

Z

p1

��
Y

q2
// Q Y

p2
// P

and let ϕ be the canonical isomorphismQ→ P . Take a cube in which the left and back faces are pullbacks

X ′

x
��

n′
//

m′

}}{{{
{

Z ′

z

��

p′1
}}{{{
{

Y ′

y

� �

g // P ′

p

��
X

n //

m||zz
zz

Z

p1}}{{
{{

Y
p2

// P

We can add ϕ−1 to get a second cube on the first pushout square.

X ′

x

��

n′
//

m

}}{{
{{
{

Z ′

z

��

p′1

~~||
||
|

Y ′

y

��

g // P ′

p
��
P

ϕ−1

��

X
n //

m}}||
||
||

Z

p1ll

q1~~||
||
|

Y

p2
00

q2
// Q
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Now, we can notice the following facts.

• If all the vertical faces in the first cube are pullbacks then, since ϕ is an isomorphism the ones in the
second cube are pullbacks too. Thus if the square

X
n //

m

��

Z

q1

��
Y

q2
// Q

is a stable pushout, also the other one is so.

• If the top face of the cubes is a pushout and the first square is Van Kampen, then all the vertical faces
in the first cube are pullbacks, and this, using again the fact that ϕ is an isomorphism, entails that
the second square is Van Kampen too.

Summing up, if a stable (Van Kampen) pushout square of m along n exists, then every other pushout
square ofm along n is stable (Van Kampen).

Remark 5.1.3. Take a pushout square

A
f //

m

��

B

n

��
C

g
// D

and an arrow d : D′ → D. Suppose that two cubes are given, in which all the vertical faces are pullbacks.

A′

a
��

g′ //
m′

}}zzz
z

B′

b

��

n′

}}{{{
{

A′′

a′

��

g′′ //
m′′

}}zzz
z

B′′

b′

��

n′′

||zzz
z

C ′′

c′

��

f ′′

// D′

d

��

C ′

c

��

f ′

// D′

d

��
A

g //

m||yy
yy

B

n||zzz
z

A
g //

m||yy
yy

B

n||yy
yy

C
f

// D C
f

// D

The top faces fit together in the following diagram

A′′

m′′

��

g′′ // B′′

n′′

��

A′

ϕ1

aaCCCCCC
g′ //

m′

��

B′

ϕ2

=={{{{{{

n′

��
C ′

f ′
//

ϕ3

}}{{
{{
{{

D′

idD′

!!C
CC

CC
C

C ′′

f ′′
// D′
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in which ϕ1, ϕ2 and ϕ3 are canonical isomorphism between pullbacks. It is now clear that the inner square
is a pushout if and only if the outer one is a pushout too. This means that to prove the stabilty of a pushout
square, it is enough to verify it for a cube with chosen pullbacks as vertical faces.

Before proceeding further, we must recall a classical result about pullbacks.

Lemma 5.1.4. LetX be a category, and consider the following diagram in which the right square is a pullback.

X

a

��

f // Y
g //

b

��

Z

c

��
A

h
// B

k
// C

Then the whole rectangle is a pullback if and only if the left square is one.

Proof. (⇒) Let q1 : Q→ Y and q2 : Q→ A be two arrows such that b ◦ q1 = h ◦ q2, if we copute we get

c ◦ g ◦ q1 = k ◦ b ◦ q1

= k ◦ h ◦ q2

and applying the pullback property of the whole rectangle we get the dotted l in the following diagram

Q

q2 **

g◦q1

))
l

// X

a

��

f
// Y

g
//

b

��

Z

c

��
A

h
// B

k
// C

All we have to prove is that f ◦ l = q1. On the one hand we have for free that

g ◦ f ◦ l = g ◦ q1

On the other hand

b ◦ f ◦ l = h ◦ a ◦ l

= h ◦ q2

= b ◦ q1

and we can conclude since the right square in the original diagram is a pullback.
For uniqueness: if l′ : Q→ X is such that

f ◦ l′ = q1 a ◦ l′ = q2

then
g ◦ f ◦ l′ = g ◦ q1

and we can conclude applying the pullback property of the outer rectangle.
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(⇐) Take two arrows q1 : Q→ Z and q2 : Q→ A such that

c ◦ q1 = k ◦ h ◦ q2

We can apply the pullback property of the right square to get the dotted q : Q→ Y in the following

Q

q2

��

q1

""

q

  

l

��
X

a

��

f // Y
g //

b

��

Z

c

��
A

h
// B

k
// C

Now, by construction we have
b ◦ q = h ◦ q2

and thus, since the left square is a pullback, we get also a unique l : Q→ X such that

f ◦ l = q a ◦ l = q2

but then we clearly have

g ◦ f ◦ l = g ◦ q

= q1

We are left with uniqueness. Let l′ : Q→ X be another arrow such that

q1 = g ◦ f ◦ l′ q2 = a ◦ l′

But then we must also have

b ◦ f ◦ l′ = h ◦ a ◦ l′

= h ◦ q2

= b ◦ q

which implies f ◦ l′ = q, from which l = l′ follows.

Corollary 5.1.5. Let X be a category and suppose that the solid part of the following cube is given

Y ′

y

��

g′ //
q′

}}

Z ′

z

��

r′

}}|||
||

B′

b

��

k′ // C ′

c

��

Y
g //

q}}{{
{{
{

Z

r}}{{
{{
{

B
k

// C
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If the front face is a pullback then there is a unique q′ : Y ′ → B′ filling the diagram. If, moreover, the other two
vertical faces are also pullbacks, then the following square is a pullback too.

Y ′ q′ //

y

��

B′

b

��
Y

q
// B

Proof. Let us compute:

c ◦ r′ ◦ g′ = r ◦ z ◦ g′

= r ◦ g ◦ y

= k ◦ q ◦ y

Since the front face is a pullback, this guarantees the existence of q′. The second half of the thesis follows
applying Lemma 5.1.4 to the following rectangle.

Y ′

r′◦g′

((
q′

//

y

��

B′

b

��

k′
// C ′

c

��
Y

r◦g

77
q // B

k // C

We can dualize Lemma 5.1.4 to get half of the following.

Lemma 5.1.6. Let X be a category, and consider the following diagram in which the left square is a pushout.

X

p

��

f // Y
g //

q

��

Z

r

��
A

h
// B

k
// C

Then the whole rectangle is a pushout if and only if the right square is one.
Moreover, if X has pullbacks and the left square is stable, then stability of the whole rectangle is equivalent

to that of the right square.

Proof. The first half follows from Lemma 5.1.4 by duality. Let us show the second one.

(⇒) Take a cube

Y ′

y

��

g′ //
q′

}}{{{
{{

Z ′

z

��

r′

}}|||
||

B′

b

��

k′ // C ′

c

��

Y
g //

q}}{{
{{
{

Z

r}}{{
{{
{

B
k

// C
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in which all the vertical faces are pullbacks. Pulling back y along f and b along h we get the solid part of
another cube

X ′ f ′

//
p′

}}

x

��

Y ′

y

��

g′ //
q′

}}{{{
{{

Z ′

z

��

r′

}}|||
||

A′ h′
//

a

��

B′

b

��

k′ // C ′

c

��

X
f //

p}}zz
zz
z

Y
g //

q}}{{
{{
{

Z

r}}{{
{{
{

A
h

// B
k

// C

and Corollary 5.1.5 shows that the dotted p′ : X ′ → A′ exists and that the new square is again a pullback.
By Lemma 5.1.4 the whole composite cube has pullbacks as vertical faces and thus the top one is a pushout.
Now the thesis follows from the first half of this lemma.

(⇐) Take the following cube with pullbacks as vertical faces

X ′ s //
p′

}}{{{
{{

x

��

Z ′

z

��

r′

}}|||
||

A′ t //

a

��

C ′

c

��

X
f //

p}}zz
zz
z

Y
g //

q~~~~
~~

Z

r}}{{
{{
{

A
h

// B
k

// C

Since X has pullbacks, we can construct the solid part of the cube

Y ′

y

��

g′ //
q′

}}

Z ′

z

��

r′

}}|||
||

B′

b

��

k′ // C ′

c

��

Y
g //

q}}{{
{{
{

Z

r}}{{
{{
{

B
k

// C

in which the three vertical faces are pullbacks. By Corollary 5.1.5 we also get the dotted q′ and a cube
with pullbacks as vertical faces. By hypothesis this cube has a stable pushout as bottom face. Thus its top
face is a pushout, too. Now,

z ◦ s = g ◦ f ◦ x c ◦ t = k ◦ h ◦ a

Thus there exists h′ : A′ → B′ and f ′ : X ′ → Y ′ such that

t = k′ ◦ h′ b ◦ h′ = h ◦ a s = g′ ◦ f ′ y ◦ f ′ = f ◦ x
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Moreover,

k′ ◦ q′ ◦ f ′ = r′ ◦ g′ ◦ f ′

= r′ ◦ s

= t ◦ p′

= k′ ◦ h′ ◦ p′

b ◦ q′ ◦ f ′ = q ◦ y ◦ f ′

= q ◦ f ◦ x

= h ◦ p ◦ x

= h ◦ a ◦ p′

= b ◦ h′ ◦ p′

Therefore we have a diagram

X ′ f ′

//
p′

}}{{{
{{

x

��

Y ′

y

��

g′ //
q′

}}{{{
{{

Z ′

z

��

r′

}}|||
||

A′ h′
//

a

��

B′

b

��

k′ // C ′

c

��

X
f //

p}}zz
zz
z

Y
g //

q}}{{
{{
{

Z

r}}{{
{{
{

A
h

// B
k

// C

Applying Lemma 5.1.4 to the rectangles

X ′

s

((

x

��

f ′
// Y ′

y

��

g′
// Z ′

z

��

A′

s

((
h′

//

a

��

B′

k′
//

b

��

C ′

c

��
X

f
// Y

g
// Z A

h
// B

k
// C

we get that all the faces of the left cube are pullbacks, and so both halves of the top face are pushouts.

We can now prove another property of Van Kampen squares.

Proposition 5.1.7. Letm : A→ C be a monomorphism in a category X. Then every Van Kampen square

A
g //

m

��

B

n

��
C

f
// D

is also a pullback square and n is a monomorphism.

Proof. Take the following cube:

A

idA
��

g //
idA
~~~~
~~

B

idB

��

idB
~~}}
}}

A

m

��

g // B

n

��

A
g //

m~~~~
~~

B

n~~}}
}}

C
f

// D
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By construction the top face of the cube is a pushout and the back one a pullback. The left face is a
pullback because m is mono, thus the Van Kampen property yields that the front and the right faces are
pullbacks too and the thesis follows.

Finally, we can show a kind of left cancellation property for pullbacks.

Lemma 5.1.8. Let X be a category with pullbacks, given the following diagrams:

Y
f2 //

f1

��

X2

r2

��

Z1

x1

��

z1 // W
w //

r

��

Q′

q

��

Z2

x2

��

z2 // W
w //

r

��

Q′

q

��
X1 r1

// R X1 r1
// R

s
// Q X2 r2

// R
s

// Q

if the first square is a stable pushout and the whole rectangles and their left halves are pullbacks, then their
common right half is a pullback too.

Proof. Pulling back q along s we get a square

U
u //

h

��

Q′

q

��
R

s
// S

Notice that

q ◦ w ◦ z1 = s ◦ r1 ◦ x1 q ◦ w ◦ z2 = s ◦ r2 ◦ x2

Thus we get u1 : Z1 → U and u2 : Z2 → U fitting in the rectangles

Z1

w◦z1

((
u1

//

x1

��

U

h

��

u
// Q′

q

��

Z2

w◦z2

((
u2

//

x2

��

U

h

��

u
// Q′

q

��
X1 r1

// R
s

// Q X2 r2
// R

s
// Q

which, by hypothesis and Lemma 5.1.4 have left halves which are pullbacks. Now,

s ◦ r1 ◦ f1 = s ◦ r2 ◦ f2

Pulling back q along this arrow we get another square

Z ′
0

t //

y

��

Q′

q

��
R

s◦r1◦f1
// S
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In particular, we obtain the dotted b1 : Z ′
0 → Z1 and b2 : Z ′

0 → Z2 in

Z ′
0

t

**

y

��

b1

// Z1 u1

//

x1

��

U

h

��

u
// Q′

q

��

Z ′
0

t

**

y

��

b2

// Z2 u2

//

x2

��

U

h

��

u
// Q′

q

��
Y

f1

// X1 r1
// R

s
// Q Y

f2

// X2 r2
// R

s
// Q

in which, using again Lemma 5.1.4, all of the squares on the bottom rows are pullbacks.
We are going to construct another row above these two rectangles. By hypothesis

q ◦ w = s ◦ r

Thus there exists a unique g : W → U such that

r = h ◦ g w = u ◦ g

Moreover, we also have that

h ◦ g ◦ z1 = r ◦ z1

= r1 ◦ x1

= h ◦ u1

h ◦ g ◦ z2 = r ◦ z2

= r2 ◦ x2

= h ◦ u2

and

u ◦ g ◦ z1 = w ◦ z1

= u ◦ u1

u ◦ g ◦ z1 = w ◦ z2

= u ◦ u2

which together show that
g ◦ z1 = u1 g ◦ z2 = u2

Summing up, we can depict all the arrows we have constucted so far in the following diagrams

Z ′
0

b1 //

idZ′

��

Z1
z1 //

idZ1

��

W

g

��

w // Q′

idQ′

��

Z ′
0

b2 //

idZ′

��

Z2

idZ2

��

z2 // W

g

��

w // Q′

idQ′

��
Z ′
0

y

��

b1 // Z1
u1 //

x1

��

U

h

��

u // Q′

q

��

Z ′
0

y

��

b2 // Z2
u2 //

x2

��

U

h

��

u // Q′

q

��
Y

f1

// X1 r1
// R

s
// Q Y

f2

// X2 r2
// R

s
// Q

If we show that g is an isomorphism we are done. Consider the cubes

Z ′
0

y

��

b2 //
b1

~~||
||

Z2

x2

��

z2

~~|||
||

Z ′
0

y

��

b2 //
b1

~~||
||

Z2

Fj(b)

��

u2

~~~~
~~
~

Z1

x1

��

z1 // W

r

��

Z1

x1

��

u1 // U

h

��

Y
f2 //

f1

}}{{
{{
{

X2

r2}}{{
{{
{

Y
f2 //

f1

}}{{
{{
{

X2

r2~~}}}
}}

X1 r1
// R X1 r1

// R
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in which the vertical faces are pullbacks. Since the bottom face is a stable pushout we can deduce that

Z ′
0

b1

� �

b2 // Z2

z2

��

Z ′
0

b1

��

b2 // Z2

u2

��
Z1 z1

// W Z1 u1

// U

are pushout squares too. The arrow g fits in the following diagram

Z ′
0

b2 //

b1

��

Z2

u2

��

z2

��
Z1 z1

//

u1 --

W

g

  A
AA

AA
AA

A

U

and thus it is an isomorphism.

5.1.2 Definition of M,N -adhesivity

In this section we will define the notion ofM,N -adhesivity and explore some of the consequence of such
a property. Let us start fixing some terminology.

Definition 5.1.9. Let X be a category and A, B two classes of arrows, we say that A is

• stable under pushouts (pullbacks) if for every pushout (pullbacks) square

A
f //

m

��

B

n

��
C

g
// D

ifm ∈ A (n ∈ A) then n ∈ A (m ∈ A);

• closed under composition if g, f ∈ A implies g ◦ f ∈ A whenever g and f are composable;

• closed under B-decomposition if g ◦ f ∈ A and g ∈ B implies f ∈ A;

• closed under decomposition if it is closed under A-decomposition.

Remark 5.1.10. Clearly, “decomposition” corresponds to “left cancellation”, but we prefer to stick to the
name commonly used in literature (see e.g. [60]).

Example 5.1.11. In every category X, split monomorphism (i.e. those arrows which have a left inverse)
are stable under pushouts. Indeed, take a square

A
f //

m

��

B

n

��
C

g
// D
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withm a split monomorphism. Let r : C → A be a left inverse ofm, then

f ◦ r ◦m = f ◦ idA
= f

= idB ◦ f

This equality in turn entails the existence of a unique t : D → B fitting in the following diagram

A
f //

m

��

B

idB

��

n

��
C

r **

g
// D

t

  
A

f
// B

Lemma 5.1.12. Let M be a class of monos in a category X which is stable under pullbacks and contains all
isomorphisms. If pushouts along arrows inM exist and are Van Kampen and every split mono is contained in
M, thenM is closed under pushouts.

Proof. Take two pushout squares

X
f //

m

��

Z

n

��

X
m //

m

��

Y

p

��
Y

g
// Q Y

q
// P

with m ∈ M. p and q are split monomorphisms: indeed by the universal property of pushouts there
exists the dotted arrow t : P → Y in the following diagram

X
m //

m

��

Y

idY

��

p

��
Y

idY --

q
// P

t

  
Y

By hypothesis p and q are in M, we can then consider the following cube, in which the top, left, front
and back faces are pushouts.

X

m

��

f //
m

��~~
~~
~

Z

n

��

n

����
��
�

Y

p

��

g // Q

r

��

Y
g //

q��~~
~~
~

Q

s����
��

P
h

// A
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Notice that the right face commutes too: the following rectangles are pushouts by Lemma 5.1.6

X
m //

f

��

Y
p //

g

��

P

h

��

X

f

��

m // Y

g

��

q // P

h

��
Z

n
// Q

r
// A Z

n
// Q

s
// A

and, by construction,

p ◦m = q ◦m

and this entails that

s ◦ n = r ◦ n

By hypothesis all the square beside the right one are Van Kampen, thus, by Proposition 5.1.7 are also
pullbacks. Since the bottom and top squares are pushouts this entails that the front faces are pullbacks.
Now, r is split mono by Example 5.1.11, thus it is in M, but this now entails that n is in M too.

We are now ready to give the definition of M,N -adhesive category

Definition 5.1.13 ( [60, 104]). Let X be a category, M ⊆ M(X) and N ⊆ A(X), we say that the pair
(M,N ) is a preadhesive structure on X if the following conditions hold.

1. M and N contain all isomorphisms and are closed under composition and decomposition;

2. N is closed under M-decomposition;

3. M and N are stable under pullbacks and pushouts.

Given a preadhesive structure (M,N ), we say that X is M,N -adhesive if

1. for everym : X → Y in M and g : Z → Y , a pullback square

P
p //

n

��

X

m

��
Z

g
// Y

exists, such pullbacks will be called M-pullbacks;

2. for everym : X → Y in M and n : X → Z in N , a pushout square

X
n //

m

��

Z

q

��
Y

p
// Q

exists, such pushouts will be called M,N -pushouts;

3. M,N -pushouts are Van Kampen squares.
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Remark 5.1.14. Our notion of M,N -adhesivity is slightly different from the one of [60]: in that paper,
M,N -pushouts are required to satisfy a VanKampen conditionwhich is weaker then ours. More precisely,
in [60] a pushout square

A

m

��

n // B

f

��
C

g
// D

is Van Kampen square if, for every cube as the one below, with b, c and d in M and pullbacks as back and
left faces, then its top face is a pushout if and only if the front and right faces are pullbacks.

A′

a
��

g′ //
m′

}}{{{
{

B′

b

��

n′

}}{{{
{

C ′

c

��

f ′

// D′

d

��
A

g //

m}}{{
{{

B

n||zzz
z

C
f

// D

Remark 5.1.15. A list of examples of M,N -adhesive categories will be provided in Chapter 6.

Proposition 5.1.7 yields at once the following fact.

Proposition 5.1.16. If X is anM,N -adhesive category, thenM,N -pushouts are also pullback squares.

Relation with M-adhesivity

Wewill end this section proving that, under suitable hypothesis,M,N -adhesivity subsumesM-adhesivity
as defined in [13].

Definition 5.1.17. Let X be a category, a stable system of monos is a class M of monomorphisms closed
under composition, containing all isomorphisms and stable under pullbacks.

Lemma 5.1.18. Let a stable system of monos M on a category X and let also f : X → Y be an arrow in X.
For every monom : Y → Z , ifm ◦ f ∈ M then f ∈ M.

Proof. Take the diagram

X

idX
��

f // Y
idY //

idY
��

Y

m

��
X

f
// Y

m
// Z

Sincem is mono the right square is a pullback, the thesis now follows from Lemma 5.1.4.

Definition 5.1.19 ( [13]). Let M be stable system of monos on a category X. X is M-adhesive if

1. it has M-pullbacks;
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2. for everym : X → Y in M and for any arrow f : X → Z, a pushout square

X
f //

m

��

Z

n

��
Y

g
// Q

exists and it is and it is a Van Kampen square.

Remark 5.1.20. Wewill stick to the notion ofM-adhesivity as defined in [13], as noted in Remark 5.1.14,
other authors have introduced weaker notions of M-adhesivity, where the Van Kampen condition is
required to hold only for some cubes; see, e.g. [22, 42, 43, 45, 118], where ourM-adhesive categories are
called adhesive HLR categories.

On the other hand, in [13] no requirement about the existence of pullbacks or M-pullbacks is made,
while in [52, 67, 73] adhesive and quasiadhesive categories are required to have all pullbacks. Mimicking
the definition of (M,N )-adhesivity, for us an M-adhesive category must have M-pullbacks, .

Proposition 5.1.21. Let X be anM-adhesive category and suppose that every split mono is inM, thenM is
stable under pushouts.

Proof. This follows at once from Lemma 5.1.12.

Example 5.1.22. The first, and fundamental, example is when M is the class of all monomorphisms: in
this case M-adhesivity is simply called adhesivity.

One would weaken the previous example using regular monos instead of ordinary monomorphisms.
The problem is thatR(X) is not in general closed under composition (see Example 2.1.56). This problem
is solved by the following proposition.

Proposition 5.1.23. Let X be a category withR(X)-pullbacks, then the following are equivalent:

1. R(X) is a stable system of monos and X isR(X)-adhesive;

2. pushouts along regular monos exists and are Van Kampen.

Proof. (1 ⇒ 2) This is tautological.

(2 ⇒ 1) We only have to show that show that R(X) is closed under composition. If m : X → Y has a
left inverse r thenm is the equalizer of idY andm ◦ r. On the one hand we have

m ◦ r ◦m = m ◦ idX
= m

On the other hand if z : Z → Y is such that

m ◦ r ◦ z = z

then r ◦ z is the unique arrow Z → X satisfying the previous equation. Thus R(X) contains every split
mono, and, by Lemma 5.1.12, we can deduce that it is also stable under pushouts. Now, if m : X → Y
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and n : Y → Z are in R(X), the previous observation allows are to construct the following diagram, in
which all squares are pushouts along regular monos:

X
m //

m

��

Y
n //

p

��

Z

t

��
Y

n

��

q // P

u

��

a // A

v

��
Z

s
// B

w
// C

By Proposition 5.1.7 all the inner squares are also pullbacks, by Lemma 5.1.4 the outer square is a pullback
too, but this entails that n ◦m is the equalizer of v ◦ t and w ◦ s.

Remark 5.1.24. A categorywith pullbacks and pushouts along regular monos and in which such pushouts
are Van Kampen is what in the literature is usually called a quasiadhesive category, a notable exception is
[52], in which rm-adhesive is used.

Lemma 5.1.25. Let M be a stable system of monos in a category X which is also stable under pushouts, then
the following are equivalent:

1. X isM-adhesive;

2. X is (M,A(X))-adhesive.

Proof. (1 ⇒ 2) Since the axioms of (M,A(X))-adhesivity are exactly those of M-adhesivity, the only
thing to verify is that (M,A(X)) is a preadhesive structure (Definition 5.1.13).

1. Closure under composition and decomposition of A(X) doesn’t need to be proved, and surely it
contains all isomorphisms. Closure under decomposition of M follows from Lemma 5.1.18.

2. This is obvious.

3. A(X) is clearly stable under pullbacks and pushouts, while stability ofM is one of the hypotheses.

(2 ⇒ 1) This is clear.

We can apply Proposition 5.1.21 to obtain the following corollary at once.

Corollary 5.1.26. Let M be a stable system of monos in a category X and suppose that it contains all split
monomorphisms., then the following are equivalent:

1. X isM-adhesive;

2. X is (M,A(X))-adhesive.

If we specialize the previous results to the classes of monos and regular monos we get the following.

Corollary 5.1.27. A category X is adhesive if an only if it is (M(X),A(X))-adhesive and it is quasiadhesive
if and only if it is (R(X),A(X))-adhesive).
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5.1.3 A criterion for M,N -adhesivity

In this section we present a criterion which allows us to deduce M,N -adhesivity from the existence of a
family of functors with sufficiently nice properties. We will start adapting Definition A.1.1.

Definition 5.1.28. Let G : D → X be a diagram and J a setz. Given a family F = {Fj}j∈J of functors
Fj : X → Yj we say that it:

1. jointly preserves (co)limits ofG if given a (co)limiting (co)cone (L, {lD}D∈D) forG, for every j ∈ J ,
the (co)cone (Fj(L), {Fj(lD)}D∈D) is (co)limiting for Fj ◦G;

2. jointly reflects (co)limits of G if a (co)cone (L, {lD}D∈D) is (co)limiting for G whenever for every
j ∈ J , (Fj(L), {Fj(lD)}D∈D) is (co)limiting for Fj ◦G;

3. jointly creates (co)limits of G if G has a (co)limit in X whenever Fj ◦G has one for every j ∈ J , and
F jointly preserves and reflects (co)limits along G.

Remark 5.1.29. Joint preservation, reflection or creation of (co)limits of for a family of functorsFj : X →
Yj is equivalent to the usual preservation, reflection or creation of (co)limits for the functor

X →
∏

j∈J

Yj

induced by the family F = {Fj}j∈J .

Remark 5.1.30. We can unpack a bit the definition of jointly creation of limits. IfG : D → Y is a functor
and F = {Fj}j∈J a family of functors creating limits ofG. Suppose that, for every j ∈ J , a limiting cone
(Lj , {lD,j}D∈D) for Fj ◦G is given. Then in X there exists a cone (L, {lD}D∈D) which is limiting for G
and, moreover, there exists a unique isomorphism ϕj : Fj(L) → Lj fitting in the following diagram

Fj(L)
ϕj //

Fj(lD) ##H
HH

HH
HH

HH
Lj

lD,k}}zz
zz
zz
zz

Fj(G(D))

Theorem 5.1.31. Let (M,N ) be a preadhesive structure on a categoryX, and let F be a non-empty family of
functors Fj : X → Yj such that for every j ∈ J , Yj isMj ,Nj -adhesive. Then the followings are true:

1. if every Fj preserves pullbacks, Fj(M) ⊆ Mj and Fj(N ) ⊆ Nj for every j ∈ J , F jointly preserves
M,N -pushouts, and jointly reflects pushout squares

Fj(A)
Fj(f) //

Fj(m)

��

Fj(B)

Fj(n)

��
Fj(C)

Fj(g)
// Fj(D)

withm,n ∈ M and f ∈ N , then M,N -pushouts in X are stable. Moreover, if, in addition, F jointly
reflectsM-pullbacks andN -pullbacks, thenM,N -pushouts are Van Kampen squares;
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2. ifF satisfies the assumptions of the previous points and jointly creates bothM-pullbacks andN -pullbacks,
then X isM,N -adhesive;

3. if F jointly creates all pushouts and all pullbacks, then X isMF ,NF -adhesive, where

MF := {m ∈ X | Fj(m) ∈ Mj for every j ∈ J} NF := {n ∈ X | Fj(n) ∈ Nj for every j ∈ J}

Proof. 1. Take a cube in which the bottom face is an M,N -pushout and all the vertical faces are
pullbacks, as the one below on the left. Applying each Fj ∈ F we get another cube in Yj as the one
below on the right.

A′

a

��

f ′

//
m′

����
��
��

B′

b

��

n′

��~~
~~
~~

Fj(A
′)

Fj(a)

��

Fj(f
′) //

Fj(m
′)

yysss
ss
s

Fj(B
′)

Fj(b)

��

Fj(n
′)

yysss
ss
s

C ′

c

��

g′ // D′

d

��

Fj(C
′)

Fj(c)

��

Fj(g
′) // Fj(D′)

Fj(d)

��

A
f //

m����
��
��

B

n��~~
~~
~~

Fj(A)
Fj(f) //

Fj(m)yysss
ss
s

Fj(B)

Fj(n)yysss
ss
s

C
g

// D Fj(C)
Fj(g)

// Fj(D)

By hypothesis the bottom face of the right cube is an Mj ,Nj -pushout and the vertical faces are
pullbacks, thus the top face of it is a pushout. Now m′, n′ ∈ M and f ′ ∈ N since they are the
pullbacks ofm, n and f , respectively, therefore the thesis follows from the hypothesis on F .

Suppose now that F jointly reflectsM-pullbacks and N -pullbacks. We have to show that the front
faces of the first cube above are pullbacks if the top one is a pushout. In the second cube, the bottom
and top face areMj ,Nj -pushouts and the back faces are pullbacks, thus the front faces are pullbacks
too by Mj ,Nj -adhesivity. Now, notice that f ∈ M and g ∈ N (since M and N are closed under
pushouts). Since F jointly reflects pullbacks along arrows in M or in N we get the thesis.

2. The first thing to check is that MF is a class of monos. Let m : X → Y be an arrow in M, by
hypothesis, for every j ∈ J , Fj(m) is a mono in Xj , thus we have a pullback square

Fj(X)
idFj(X)

//

idFj(X)

��

Fj(X)

Fj(m)

��
Fj(X)

Fj(m)
// Fj(Y )

Since F jointly creates pullbacks we can deduce that the following square

X
idX //

idX
��

X

m

��
X

m
// Y

is a pullback in X and this impliesm being a monomorphism.
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Next, we have to show the three properties defining M,N -adhesivity.

Existence of M-pullbacks. Let m : B → D be an arrow in M and g : C → D any other arrow.
Take j ∈ J , since Yj is Mj ,Nj -adhesive and Fj(m) ∈ Mj , we get a pullback square

Pj
pj //

qj

��

Fj(B)

Fj(m)

��
Fj(C)

Fj(g)
// Fj(D)

Since F jointly creates M-pullbacks we can conclude.

Existence of M,N -pushouts. if m : A → C is in M and n : A → B in N , we get an Mj ,Nj -
pushout square

Fj(A)
Fj(n) //

Fj(m)

��

Fj(B)

pj

��
Fj(C) qj

// Qj

in each Yj and we can conclude because F jointly creates M,N -pushouts.

M,N -pushouts are Van Kampen square. This follows at once from the second half of point 1.

3. By the previous point it is enough to show that (MF ,NF ) is a preadhesive structure.

1. If f ∈ X is an isomorphism then so is Fj(f) for every Fj ∈ F . Thus Fj(f) belongs to Mj and
Nj for every j ∈ J , which implies that f is in MF and in NF . The parts regarding composition
and decomposition follow immediately by functoriality of each Fj ∈ F .

2. Suppose that g ◦ f ∈ NF , with g ∈ MF . Then for every j ∈ F ,

Fj(g ◦ f) = Fj(g) ◦ Fj(f)

is in Nj and Fj(g) ∈ Mj , thus Fj(f) ∈ Nj and so f ∈ NF .

3. Take a pullback square with n ∈ MF (NF )

A
f //

m

��

B

n

��
C

g
// D

then applying any Fj ∈ F we get that Fj(m) is the pullback of Fj(n) along Fj(g), since Fj(n) is
in Mj (in Nj ), which implies that Fj(m) ∈ Mj (Nj ).

For pushouts the argument is the same: given a pushout square withm ∈ MF (NF )

A
f //

m

��

B

n

��
C

g
// D
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then Fj(n) ∈ Mj (Nj ) since it is the pushout of Fj(m) and the thesis follows.

Applying the previous theorem to the families given by, respectively, projections, evaluations and the
inclusion we get immediately the following three corollaries (cf. [42, Thm. 4.15]).

Corollary 5.1.32. Let {Xi}i∈I be a non-empty family of categories such that eachXi isMi,Ni-adhesive. Then
the product category

∏
i∈I Xi is

∏
i∈I Mi,

∏
i∈I Ni-adhesive, where

∏

i∈I

Mi :=

{
m ∈ A

(∏

i∈I

Xi

)
| πi(m) ∈ Mi for every i ∈ I

}

∏

i∈I

Ni :=

{
n ∈ A

(∏

i∈I

Xi

)
| πi(n) ∈ Ni for every i ∈ I

}

where πi :
∏
i∈I Xi → Xi is the projection functor.

Proof. Limits and colimits in
∏
i∈I Xi are computed componentwise. Thus, {πi}i∈I jointly creates all

limits and colimits, and the thesis follows from point 3 of Theorem 5.1.31.

Corollary 5.1.33. Let X be an M,N -adhesive category. Then for every category Y, the category of functors
XY isMY,N Y-adhesive, where

MY :=
{
η ∈ A

(
XY
)
| ηY ∈ M for every object Y of Y

}

N Y :=
{
η ∈ A

(
XY
)
| ηY ∈ N for every object Y of Y

}

Proof. This is proved as in the case of products since in a functor category limits and colimits are, again,
computed componentwise.

Corollary 5.1.34. Let X be a full subcategory of an M,N -adhesive category Y. Let also (M′,N ′) be a
preadhesive structure on X such that M′ ⊆ M and N ′ ⊆ N . Suppose that X is closed in Y under pullbacks
andM′,N ′-pushouts. Then X isM′,N ′-adhesive.

Proof. A full and faithful functor reflects limits and colimits, and the hypotheses entail that the inclusion
functor creates pullbacks and M′,N ′-pushouts.

Application to comma categories

In this sectionwewill show how to apply Theorem 5.1.31 to the comma construction in order to guarantee
some adhesivity properties under suitable hypotheses. Our starting point is the following result relating
limits and colimits in the comma category L↓R with those preserved by L : A → X or R : B → X .

Lemma 5.1.35. Let L : A → X and R : B → X be functors and F : D → L↓R be a diagram such that L
preserves colimits along UL ◦ F . Then the family {UL, UR} (see Appendix A.2) jointly creates colimits of F .

Proof. Suppose that UL ◦ F and UR ◦ F have colimiting cocones (A, {aD}D∈D) and (B, {bD}D∈D) re-
spectively. By hypothesis (L(A), {L (aD)}D∈D) is colimiting for L ◦ UL ◦ F . Now, if we define

F (D) := (AD, BD, fD)
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then we have arrows R(ai) ◦ fD : L(AD) → R(B) that forms a cocone on L ◦ UL ◦ F : if d : D → D′ is
an arrow in D then F (d) is an arrow in L↓R and so

R (bD′) ◦ fD′ ◦ L(UL(F (d))) = R (bD′) ◦R (UR (F (d))) ◦ fD

= R (bD′ ◦ UR (F (d))) ◦ fD

= R (bD) ◦ fD

Thus there exists f : L(A) → R(B) such that

L(AD)
L(aD) //

fD

��

L(A)

f

��
R(BD)

R(bD)
// R(B)

Notice that f is the unique arrow in X wich makes (aD, bD) an arrow (AD, BD, fD) → (A,B, f) of
L↓R. If we show that

(
(A,B, f), {(aD, bD)}D∈D

)
is colimiting for F we are done.

First of all, let us show that it is a cocone. Given d : D → D′ in D we have:

(aD′ , bD′) ◦ F (d) = (aD′ , bD′) ◦ (UL(F (d)), UR(F (d)))

= (aD′ ◦ UL(F (d)), bD′ ◦ UR(F (d)))

= (aD, bD)

For the colimiting property, let
(
(X,Y, g), {(xD, yD)}D∈D

)
be another cocone on F . In particular(

X, {xD}D∈D

)
and

(
Y, {yD}D∈D

)
are cocones on UL ◦ F and UR ◦ F respectively, so we have uniquely

determined arrows x : A→ X and y : B → Y such that

x ◦ aD = xD y ◦ bD = yD

Let us show that (x, y) is an arrow of L↓R. Given D ∈ D we have

R(y) ◦ f ◦ L(aD) = R(y) ◦R (bD) ◦ fD

= R (y ◦ bD) ◦ fD

= R (yD) ◦ fD

= g ◦ L (xD)

= g ◦ L (x ◦ aD)

= g ◦ L(x) ◦ L (aD)

from which it follows that the following diagram commutes.

L(A)

f

��

L(x) // X

g

��
R(B)

R(y)
// Y

This shows that
(
(A,B, f), {(aD, bD)}D∈D

)
is colimiting for F and the thesis follows.
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Proposition A.2.2 and Lemma 5.1.35 now yields the following.

Corollary 5.1.36. The family {UL, UR} jointly creates limits along every diagram F : D → L↓R such that
R preserves the limit of UR ◦ I .

We can use Corollary 5.1.36 to characterize monos in comma categories.

Corollary 5.1.37. If R preserves pullbacks then an arrow (h, k) in L↓R is mono if and only if both h and k
are monomorphisms.

Proof. (⇒) If (h, k) : (A,B, f) → (A′, B′, g) is a mono then the following square is a pullback in L↓R

(A,B, f)
id(A,B,f) //

id(A,B,f)

��

(A,B, f)

(h,k)

��
(A,B, f)

(h,k)
// (A′, B′, g)

Using Corollary 5.1.36 we deduce that the following two squares are pullbacks in A and B.

A
idA //

idA
��

A

h

��

B
idB //

idB
��

B

k

��
A

h
// A′ B

k
// B′

From which it follows that h and k are monos.

(⇐) Since h and k are monos then we have two pullback squares

A
idA //

idA
��

A

h

��

B
idB //

idB
��

B

k

��
A

h
// A′ B

k
// B′

By Corollary 5.1.36 this implies that

(A,B, f)
id(A,B,f) //

id(A,B,f)

��

(A,B, f)

(h,k)

��
(A,B, f)

(h,k)
// (A′, B′, g)

is a pullback in L↓R and we are done.

Applying Theorem 5.1.31 and Corollary 5.1.36 we get at once the following result.
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Theorem 5.1.38 ( [22]). LetA andB be respectivelyM,N -adhesive andM′,N ′-adhesive categories,L : A →
X a functor that preservesM,N -pushouts, andR : B → X a pullback preserving one. ThenL↓R isM↓M′,N ↓N ′-
adhesive, where

M↓M′ := {(h, k) ∈ A (L↓R) | h ∈ M, k ∈ M′}

N ↓N := {(h, k) ∈ A (L↓R) | h ∈ N , k ∈ N ′}

Take now L to be idX and δX : 1 → X the functor which picks an objectX . It is now obvious to notice
that δX preserves all pullbacks, (actually all connected limits [35, 103]) thus, applying Theorem 5.1.38 (and
Proposition A.3.5) we get the following.

Corollary 5.1.39. LetX beM,N -adhesive, then for every objectX ∈ X, the slice categoryX/X isM/X,N/X -
adhesive, where

M/X := {m ∈ A (X/X) | m ∈ M}

N/X := {n ∈ A (X/X) | n ∈ N}

5.2 M,N -unions and M,N -adhesivity

Johnstone, Lack and Sobociński [67] and Garner [52] have provided a criterion to establish quasiadhesiv-
ity, involving the closure of regular monos under unions. The aim of this section is to adapt their results
to the setting of M,N -adhesivity.

5.2.1 N -(pre)adhesive morphisms

The first step that we need to take is to generalize the notion of (pre)adhesive morphism provided in [52].

Definition 5.2.1. Given a class N of arrows of a category X, we say that N is a matching class if

1. it contains all isomorphisms;

2. is closed under composition and decomposition;

3. is stable under pullbacks and pushouts.

Given a matching class N , a morphism m : X → Y in X is N -preadhesive if for every n : X → Z in
N , a stable pushout square

X
n //

m

��

Z

p

��
Y

q
// W

exists and it is also a pullback of p along q. m will be called N -adhesive if for every pullback square as the
one below, n is N -preadhesive.

Z
g //

n

��

X

m

��
W

f
// Y

We will denote by Npa and by Na the classes of, respectively, N -preadhesive and N -adhesive morphisms.



5.2.M,N -unions andM,N -adhesivity 183

Notation. Instead of “A(X)-(pre)adhesive” we will use “(pre)adhesive”.

Example 5.2.2. IfX is anM,N -adhesive category thenN is a matching class. Moreover,M,N -pushouts
are Van Kampen squares, so every m ∈ M is preadhesive. Since M is closed under pullback this implies
that every arrow in M is also adhesive.

The following proposition collects some useful facts about N -(pre)adhesive morphisms.

Proposition 5.2.3. LetN be a matching class on a category X, then the following hold true:

1. ifm isN -adhesive then it isN -preadhesive;

2. every isomorphism isN -adhesive;

3. if n ∈ N isN -preadhesive then it is a regular mono;

4. the classNpa is closed under composition;

5. Na is stable under pullbacks;

6. if X has pullbacks alongN -adhesive arrows, thenNa is closed under composition.

Proof. 1. This follows at once noticing that the following square is a pullback.

X
idX //

m

��

X

m

��
Y

idY
// Y

2. Isomorphisms are closed under pullbacks, thus it is enough to show that every isomorphismm : X →
Y is N -preadhesive. Let n : X → Z be an element of N , we have a pushout square

X
n //

m

��

Z

idZ
��

Y
m−1

// X
n

// Z

Given f : W → Z and g : W → Y such that

f = n ◦m−1 ◦ g

we can notice thatm−1 ◦ f is the unique arrow such that

g = m ◦
(
m−1 ◦ g

)

and from the commutativity of the following diagram we can deduce that the pushout square above
is also a pullback.

W
g

//

g ..

f

**Y
m−1

/ / X
n //

m

��

Z

idZ
��

Y
m−1

// X
n

// Z
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For stability, take f : Z ′ → Z such that the following pullback square exists

P
h //

g

��

Z ′

f

��
X

n
// Z

Then by Lemma 5.1.4 in the following cube all the vertical faces are pullbacks

P
idP

zzvvv
vv
vv
g

��

h // Z ′

idZ′

zzuuu
uu
uu

f

��

P

g

��

idP // P
h //

g

��

Z ′

f

��

X

idX��
idX

zzuuu
uu
uu

X

m ��

X
n //

mzzuuu
uu
uu

Z

idZzzuuu
uu
uu

Y
m−1

// X
n

// Z

and we can conclude from Remarks 5.1.2 and 5.1.3 that the pushouts ofm along n are stable.

3. Since n is in N and N -preadhesive we can consider its pushout along itself

X
n //

n

��

Y

f

��
Y

g
// Z

which, is also a pullback. Thus n is the equalizer of f, g : Y ⇒ Z.

4. Let n : X → Z be an element of N , and m : X → Y , k : Y → Z two N -preadhesive morphisms,
sinceN is stable under pushouts, we get the following two pushout squares, which are also pullbacks

X
n //

m

��

Z

p1

��

Y
p2 //

k

��

P

q1

��
Y

p2
// P Z

q2
// Q

By Lemmas 5.1.4 and 5.1.6, pasting them together gives us a pushout square for n along m′ ◦ m
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which is also a pullback. For stability, Take an arrow p : P ′ → P , we have a cube

X ′

m′

yysss
ss

x

��

n′
// Z ′

z

��

p′1
yyttt

tt

Y ′

k′

zztt
tt
t

y

� �

p′2 // P ′

p

��

q′1
zzttt

tt

Z ′

z

��

q′2 // Q′

q

��

X
n //

m

yysss
ss
s

Z

p1yysss
ss
s

Y
p2 //

k

yyttt
tt
t

P

q1yyttt
tt
t

Z
q2

// Q

in which all the vertical squares are pullbacks. Thus the two halves of the top face are pushouts and
by Lemma 5.1.6 also the whole top face is one. The thesis follows from Remark 5.1.3

5. Letm : X → Y be N -adhesive, and consider the the following rectangle in which both squares are
pullbacks

A
p //

q

��

Z
g //

n

��

X

m

��
B

r
// W

f
// Y

By Lemma 5.1.4 the outer rectangle is a pullback and thus q is N -preadhesive, proving that n is
N -adhesive.

6. Let m1 : X → Y and m2 : Y → Z be N -adhesive arrows, then for every n : N → Z in N we can
consider the following diagram, in which the squares are pullbacks

Q
q1 //

q2

��

P
p1 //

p2

��

N

n

��
X

m1

// Y
m2

// Z

By Lemma 5.1.4 the whole rectangle is a pullback and both p1 and q1 are N -preadhesive, therefore
the thesis follows from point 4.

Corollary 5.2.4. In any category X, A(X)a ⊆ R(X).

Corollary 5.2.5. LetN be a matching class on a category X with pullbacks, then:

1. Na ∩M(X) is a stable system of monos;

2. ifNa ∩M(X) is stable under pushouts, then (Na ∩M(X),N ) is a preadhesive structure

Proof. 1. By point 2 of Proposition 5.2.3 every isomorphism is inNa∩M(X), stability under pullbacks
follows from point 5 while closure under composition is entailed by point 6.

2. This follows at once from the previous point and Lemma 5.1.18.
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In general we cannot guarantee closure of Na under all pushouts, nonetheless we can still establish
some result along this line.

Lemma 5.2.6. LetN be a matching class in a category X with pullbacks and consider the following pushout

X
n //

m1

��

Z

m2

��
Y

g
// W

with n ∈ N . Ifm1 is mono andN -adhesive, then:

1. m2 is mono;

2. m2 isN -preadhesive;

3. m2 isN -adhesive.

Proof. 1. Since X has pullbacks, we have a diagram

X
n

  

n

  

h

  
P

p / /

q

��

Z

m2

��
Z

m2

// W

in which the square is a pullback, so that the dotted h exists because of its universal property. We
can then build a cube

X

idX
��

h //
idX
~~||
||

P

q

��

p

~~||
||
|

X

idX
��

h //
idX
~~||
||

P

p

��

q

~~||
||
|

X

m1

��

n // Z

m2

��

X

m1

��

n // Z

m2

��

X
n //

m1~~|||
||

Z

m2~~||
||

X

m1~~|||
||

n // Z

m2~~||
||

Y
g

// W Y
g

// W

By point 1 of Proposition 5.2.3 the bottom and front faces are stable pushouts and pullbacks because
m1 is N -adhesive, and the left squares are pullbacks by hypothesis. Lemma 5.1.4 entails that the
rectangles

X

n

''
h

//

idX
��

P
p

//

q

��

Z

m2

��

X

n

''
h

//

idX
��

P
q

//

p

��

Z

m2

��
X

g◦m1

66
n // Z

m2 // W X

g◦m1

66
n // Z

m2 // W
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are pullbacks, thus the same lemma shows that also the back faces of the two cubes are pullbacks
too. By stability of the bottom faces it follows that

X
h //

idX
��

P

p

��

X
h //

idX
��

P

q

��
X

n
// Z X

n
// Z

are pushouts and thus p and q are isomorphisms.

2. Let k : Z → Q be another arrow in N and consider the diagram

X
n //

m1

� �

Z
k //

m2

��

Q

f

��
Y

t

77
g // W

s // S

in which the left square and the external rectangle are stable pushouts and pullbacks. Since

f ◦ k ◦ n = t ◦m1

the universal property of the left square yields the dotted s. By Lemma 5.1.6 the square so obtained
is a stable pushout. Thus we are left with showing that it is a pullback. Given the solid part of the
diagram

L

l2

��

l1

%%
l2

��

Z
k //

idZ
��

Q

f

��
Z

m2

// W
s

// S

we have

f ◦ l1 = s ◦m2 ◦ l2

= f ◦ k ◦m2

By the previous point, f is mono, and thus the following rectangle is a pullback

Z
k //

idZ
��

Q

f

��
Z

m2

// W
s

// S
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The thesis now follows applying the previous point and Lemma 5.1.8 to the following diagrams.

X
n //

m1

��

Z

m2

��

X

m1

��

n // Z
k //

m2

��

Q

f

��

Z

idZ
��

idZ // Z
k //

m2

��

Q

f

��
Y

g
// W Y

g
// W

s
// S Z

m2

// W
s

// S

3. Take an arrow w : W ′ →W and consider the following cube, in which the solid faces are pullbacks

X ′

x

��

n′
//

m′
1

}}

Z ′

z

��

m′
2

}}zz
zz

Y ′

y

��

g′ // W ′

w

��

X
n //

m1}}zz
zz
z

Z

m2||zzz
zz

Y
g

// W

By Corollary 5.1.5 the arrowm′
1 : X

′ → Y ′ exists and the added face is a pullback. Since the bottom
face is a stable pushout then the top face is a pushout too. By point 5 of Proposition 5.2.3, m′

1 is
N -adhesive and, sinceN is matching, n′ is inN . The previous point of this lemma implies thatm′

2

is N -preadhesive and we can conclude.

Corollary 5.2.7. If X is a category with pullbacks then (A(X)a,A(X)) is a preadhesive structure.

Proof. By Corollary 5.2.4 we know that A(X)a ⊆ M(X), by Lemma 5.2.6 this implies that A(X)a is
stable under pushout and we can conclude appealing to Corollary 5.2.5.

Finally, N -adhesivity allows us to compute suprema of certain pairs of subobjects.

Proposition 5.2.8. Let N be a matching class in a category X with pullbacks. Given an N -adhesive mono
m : M → X and another mono n : N → X inN , consider the diagram

P
p1 //

p2

��

M

u2

�� m

��

N

n --

u1

// U
u

  
X

in which the outer boundary form a pullback and the inner square a pushout. Then the dotted arrow u : U → X

is a monomorphism and, in (Sub(X),≤)
[u] = [m] ∨ [n]

Remark 5.2.9. Notice that the p2 and p1 are both monos, moreover, p2 is N -preadhesive while p1 ∈ N ,
as the pullback of n. Thus the inner pushout exists.
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Proof. Consider the following two pullback squares

Q
q1 //

q2

��

N

n

��

W
w1 //

w2

��

M

m

��
U

u
// X U

u
// X

By construction we have the following equalities

n = u ◦ u1

u ◦ u2 ◦ p1 = m ◦ p1

= n ◦ p2

m = u ◦ u2

u ◦ u1 ◦ p1 = n ◦ p2

= m ◦ p1

which give us the arrows f1 : N → Q, f2 : P → Q, g1 : M → W , g2 : P → W making the following
diagrams commute

N

idN
''

f1

//

idN
��

Q
q1

//

q2

��

N

n

��

P

p2

''
f2

//

p1

��

Q
q1

//

q2

��

N

n

��

M

idM
''

g1
//

idM
��

W
w1

//

w2

��

M

m

��

P

p1

''
g2

//

p2

��

W
w1

//

w2

��

M

m

��
N

n

77
u1 // U

u // X M

m

77
u2 // U

u // X M

m

77
u2 // U

u // X N

n

77
u1 // U

u // X

Their outer edges are pullbacks, thus in the following cubes, the vertical faces are pullbacks

P

idP
��

idP //
p2

��~~
~~

P

p1

��

f2

~~}}
}}
}

P

idP
��

p1 //
idP
��~~
~~
~

M

idM

��

g1

}}|||
||

N

idN

��

f1 // Q

q2

��

P

p2

��

g2 // W

w2

��

P
p1 //

p2~~}}
}}

M

u2~~|||
||

P
p1 //

p2~~}}
}}

M

u2}}{{
{{
{

N
u1

// U N
u1

// U

p2 isN -preadhesive, so the top faces are pushouts and therefore f1, and g1 are isomorphisms with inverses
given by q1 and w1. But then, since

u1 = q2 ◦ f1 u2 = w2 ◦ g1

we can further deduce that the squares below are both pullbacks.

N
idN //

u1

��

N

n

��

M
idM //

u2

��

M

m

��
U

u
// X U

u
// X
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We have three diagrams

P

p2

��

p1 // M

m

��

N

idN
��

u1 // U

idU
��

idU // U

u

��

M

idM
��

u2 // U
idU //

idU
��

U

u

��
N

n
// X N

n

55
u1 // U

u // X M

m

55
u2 // U

u // X

and we have just proved that the rectangles are pullbacks. Thus we can apply Lemma 5.1.8 to deduce that

U
idU //

idU
��

U

u

��
U

u
// X

is a pullback, but this means exactly that u is a mono.
For the second half: suppose that k : K → X is an upper bound for m and n, thus there exists

k1 : M → K and k2 : N → K such that

m = k ◦ k1 n = k ◦ k2

But then

k ◦ k1 ◦ p1 = m ◦ p1

= n ◦ p2

= k ◦ k2 ◦ p2

Since k is mono, this implies that there exists a unique h : U → K such that

k2 = h ◦ u1 k1 = h ◦ u1

and we have

k ◦ h ◦ u1 = k ◦ k2

= n

= u ◦ u1

k ◦ h ◦ u2 = k ◦ k1

= m

= u ◦ u2

showing that u = k ◦ h, i.e. u ≤ k.

5.2.2 From M,N -unions to M,N -adhesivity

Given a preadhesive structure (M,N ) and suppose that M ⊆ Na, in this section we will show how to
deduce M,N -adhesivity from the closure of M under some kind of unions.

Definition 5.2.10. Let (M,N ) be a preadhesive structure. A monomorphism u : U → X is an M,N -
union if there existm ∈ M and n ∈ M∩N such that, in the poset (Sub(X),≤),

[u] = [m] ∨ [n]

We will say that M is closed underM,N -unions, if it contains all such monos.
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We will need a technical lemma involving kernel pairs. Take a category X with pullbacks endowed
with a preadhesive structure (M,N ), and take also the following M,N -pushout square

X
n //

m

��

Z

p

��
Y

q
// W

Pulling back n and q along themselves, we get two diagrams

X
idX

!!

idX

��

γn

  

Y
idY

!!

idY

��

γq

  
Kn

x1 //

x2

��

X

n

��

Kq

y1 //

y2

��

Y

q

��
X

n
// Z Y

q
// W

with the dotted arrows γn : Z → Kn and γq : Y → Kq. Moreover, we have

q ◦m ◦ x1 = p ◦ n ◦ x1

= p ◦ n ◦ x2

= q ◦m ◦ x2

Thus we have an arrow k : Kn → Kq as in the following squares.

Kn

k

��

x1 // X

m

��

Kn

k

��

x2 // X

m

��
Kq y1

// Y Kq y2
// Y

We can also construct another commutative square. From the following chains of equalities

y1 ◦ γq ◦m = idY ◦m

= m

= m ◦ idX
= m ◦ x1 ◦ γn

= y1 ◦ ◦k ◦ γn

y2 ◦ γq ◦m = idY ◦m

= m

= m ◦ idX
= m ◦ x2 ◦ γn

= y2 ◦ ◦k ◦ γn

we can deduce the commutativity of the square below.

X
γn //

m

��

Kn

k

��
Y

γq
// Kq
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Lemma 5.2.11. Let (M,N ) be a preadhesive structure on a category X with pullbacks such that M ⊆ Na,
M∩N contains every split mono andM is closed underM,N -unions. Then given anM,N -pushout square

X
n //

m

��

Z

p

��
Y

q
// W

all the squares in the following diagrams, constructed as above, are stable pushouts and pullbacks.

X
γn //

m

��

Kn

k

��

x1 // X
n //

m

��

Z

p

��

X
γn //

m

��

Kn

k

��

x2 // X
n //

m

��

Z

p

��
Y

γq
// Kq y1

// Y
q

// W Y
γq

// Kq y2
// Y

q
// W

Proof. The rightmost square in both diagrams is a pushout by hypothesis, since it is an M,N -pushout
andm is N -adhesive. Now, by Lemma 5.1.4 the rectangles

Kn

x1

��

x2 // X
m //

n

��

Y

q

��

Kn

x2

��

x1 // X
m //

n

��

Y

q

��
X

n
// Y

p
// W X

n
// Y

p
// W

are pullbacks. But then also the following rectangles are pullbacks.

Kn

m◦x2

((

x1

��

k
// Kq y2

//

y1

��

Y

q

��

Kn

x2

��

m◦x1

((
k

// Kq y1
//

y2

��

Y

q

��
X

p◦n

66
m // Y

q // W X

p◦n

66
m // Y

q // W

Therefore their left halves, which are the central squares of the original diagrams, are pullbacks, too. In
particular this shows that k belongs toM, and thus, it isN -adhesive. We can now consider the following
two cubes in which all faces are pullbacks

Kn

x2

��

x1 //
k

}}{{{
{{

X

n

��

m

~~~~
~~
~

Kn

x1

��

x2 //
k

}}{{{
{{

X

n

��

m

~~~~
~~
~

Kq

y2

��

y1 // Y

q

��

Kq

y1

��

y2 // Y

q

��

X
n //

m

||yy
yy
y

Z

p}}||
||

X
n //

m

||yy
yy
y

Z

p}}||
||

Y
q

// W Y
q

// W
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which prove that the two central squares in the original diagram are also pushouts.
We are left with the last square. We can deduce that it is a pullback applying Lemma 5.1.4 to the

rectangle

X

idX

((
γn

//

m

��

Kn

k

��

x1

// X

m

��
Y

idX

66
γq // Kq

y1 // Y

By construction, γn is a split mono, thus it is inN . By hypothesis,m ∈ M isN -adhesive, and we can
build the following diagram in which the inner square is a pushout.

X
γn //

m

��

Kn

p1

�� k

��

Y
p2

//

γq --

E

e

!!
Kq

We already know that the outer edges form a pullback square. The arrow γq is in N because it is a split
mono, and k is N -adhesive,. Thus, by Proposition 5.2.8, we get a mono e : E → Kq filling the diagram
and such that

[e] = [k] ∨ [γq]

Since γq is also in M, e is an M,N -union, and thus, it belongs to M. Now, by construction we have

idY ◦m = m

= m ◦ idX
= m ◦ x1 ◦ γn

thus there exists an h : E → Y filling the diagram

X

idX

((

m

��

γn
// Kn

p1

��

x1

// X

m

��
Y

idY

66
p2 // E

h // Y

In this diagram the left square and the whole rectangle are pushouts. Thus by Lemma 5.1.6 the right
square is a pushout too. Now, x1 ∈ N as it is the pullback of n, and thus, h belongs to N too. On the
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other hand we have already proved that in the diagram

K1

k

((

x1

��

p1
// E

h

��

e
// Kq

y1

��
X

m

66
m // Y

idY // Y

the whole rectangle is a pushout. Hence, using again Lemma 5.1.6, it follows that its right half

E

h

��

e // Kq

y1

��
Y

idY
// Y

is a pushout too. By hypothesis, e isN -adhesive, and thus, the previous square is also a pullback, showing
that e is an isomorphism.

We are left with stability: n ∈ N by hypothesis, γn is in N because it is a split mono and x1 and x2
belongs to N as they are pullbacks of n. Since we have proved thatm and k are in M we know that they
are N -adhesive and we can conclude.

We are now going to prove that ifM is composed ofN -adhesive morphism then three quarters of the
Van Kampen condition are satisfied. In order to do so we need the following technical lemma.

Lemma 5.2.12. Let X be a category with pullbacks and consider the following cube in which the left, back,
bottom and top faces are pullbacks.

X ′

x

��

n′
//

m′

}}{{{
{{

Z ′

z

��

p′

}}zz
zz

Y ′

y

��

q′ // W ′

w

��

X
n //

m}}zz
zz
z

Z

p| |zzz
zz

Y
q

// W

Suppose that p and p′ are monos and that the top face is a stable pushout. Then the right face is a pullback.

Proof. Since p is a mono, by Lemma 5.1.4, the rectangle

Z ′

idZ′

��

z // Z

idZ
��

idZ // Z

p

��
Z ′

z
// Z

p
// W
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is a pullback. Take now the following three diagrams

X ′ n′
//

m′

��

Z ′

p′

��

X ′

n◦x

&&
n′

/ /

m′

��

Z ′

p′

��

z
// Z

p

��

Z ′

z

&&
idZ′

//

idZ′

��

Z ′

p′

��

z
/ / Z

p

��
Y ′

q′
// W ′ Z ′ q′ //

q◦y

88W ′ w // W Z ′ p′ //

p◦z

88W ′ w // W

By hypothesis the first square is a stable pushout and the left half of the first rectangle is a pullback. Since
also the bottom face is a pullback by hypothesis, it follows that the whole first rectangle is a pullback too.
By the previous observation, the whole second rectangle is a pullback and, since p′ is a mono, its first half
is a pullback square. We can then apply Lemma 5.1.8 to get the thesis.

Corollary 5.2.13. Let (M,N ) be a preadhesive structure on a category X with pullbacks, and suppose that
every arrow inM isN -adhesive. For everym ∈ M, n ∈ N and cube

X ′

x

��

n′
//

m′

}}{{{
{{

Z ′

z

��

p′

}}zz
zz

Y ′

y

��

q′ // W ′

w

��

X
n //

m} }zz
zz
z

Z

p||zzz
zz

Y
q

// W

if the top and bottom faces are pushouts and the left and back ones are pullbacks, then the right face is a pullback.

Proof. M and N are closed under pullbacks, thus the top face is an M,N -pushout, and so it is stable be-
causem′ isN -adhesive. Sincem′ andm areN -adhesive, the top and bottom faces are also pullbacks. The
arrows p and p′ are in M as they are the pushouts of, respectively, m and m′. Thus they are monomor-
phisms and the thesis now follows from Lemma 5.2.12.

We are now ready to prove the main theorem of this section.

Theorem 5.2.14. Let (M,N ) be a preadhesive structure on a category X with pullbacks and suppose that
every split mono is inM∩N ,M ⊆ Na andM is closed underM,N -unions. Then X isM,N -adhesive.

Proof. Every elements of M is adhesive. Thus we already know that for any n ∈ N and every ∈ M a
stable pushout square

X
n //

m

��

Z

p

��
Y

q
// W

exists. Since X has all pullbacks by hypothesis, all that we have to show is the remaining half of the Van
Kampen condition. Take a cube in which the top and bottom faces are pushout and the left and back ones
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are pullbacks

X ′

x

��

n′
//

m′

}}{{{
{{

Z ′

z

��

p′

}}zz
zz

Y ′

y

��

q′ // W ′

w

��

X
n //

m}}zz
zz
z

Z

p| |zzz
zz

Y
q

// W

Thenm′ and n′ belong to, respectively, M and N . Thus the top face is a stable pushout square, which is
also a pullback. By Corollary 5.2.13 we already know that the right face is a pullback, let us prove that
the other one is a pullback, too.

By Lemma 5.2.11, in the following diagrams all squares are stable pushouts and pullbacks.

X
γn //

m

��

Kn

k

��

x1 // X
n //

m

��

Z

p

��

X
γn //

m

��

Kn

k

��

x2 // X
n //

m

��

Z

p

��
Y

γq
// Kq y1

// Y
q

// W Y
γq

// Kq y2
// Y

q
// W

X ′
γn′ //

m′

��

Kn′

k′

��

x′
1 // X ′ n′

//

m′

��

Z ′

p′

��

X ′
γn′ //

m′

��

Kn′

k′

��

x′
2 // X ′ n′

//

m′

��

Z ′

p′

��
Y ′

γq′
// Kq′

y′1

// Y
q′

// W ′ Y
γq′

// Kq′
y′2

// Y
q′

// W

By Corollary 5.1.5, there exist t1 : Kn′ → Kn and t2 : Kq′ → Kq fitting in the following diagrams

Kn′

x′
2

��

x′
1 //

t1

}}

X ′

n′

��

x

����
��
�

Kq′

y′2
��

y′1 //
t2

}}

Y ′

q′

��

y

~~}}
}}
}}

Kn

x2

��

x1 // X

n

��

Kq

y2

��

y1 // Y

q

��

X ′ n′
//

x

{{ww
ww
w

Z ′

z}}{{
{{
{

Y ′ q′ //
y

||xx
xx
x

W ′

w||zzz
zz

X
n

// Z Y
q

// W
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and the left face of the first cube is a pullback square. We compute to obtain

x1 ◦ t1 ◦ γn′ = x ◦ x′1 ◦ γn′

= x ◦ idX′

= idX ◦ x

= x1 ◦ γn ◦ x

x2 ◦ t1 ◦ γn′ = x ◦ x′2 ◦ γn′

= x ◦ idX′

= idX ◦ x

= x2 ◦ γn ◦ x

y1 ◦ t2 ◦ γq′ = y ◦ y′1 ◦ γq′

= y ◦ idY ′

= idY ◦ y

= y1 ◦ γn ◦ y

y2 ◦ t2 ◦ γq′ = y ◦ y′2 ◦ γq′

= y ◦ idY ′

= idY ◦ y

= y2 ◦ γn ◦ y

y1 ◦ t2 ◦ k
′ = y ◦ y′1 ◦ k

′

= y ◦m′ ◦ x′1
= m ◦ x ◦ x′1
= m ◦ x1 ◦ t1

= y1 ◦ k ◦ t1

y2 ◦ t2 ◦ k
′ = y ◦ y′2 ◦ k

′

= y ◦m′ ◦ x′2
= m ◦ x ◦ x′2
= m ◦ x2 ◦ t1

= y2 ◦ k ◦ t1

Therefore the following three squares commute

X ′
γn′ //

x

��

Kn′

t1

��

Y ′

y

��

γq′ // Kq′

t2

��

Kn′
k′ //

t1

��

Kq′

t2

��
X

γn
// Kn Y

γq
// Kq Kn

k
// Kq

The first one of the squares above is a pullback: this follows applying Lemma 5.1.4 to the rectangle below.

X ′
γn′

//

x

��

idX′

((
Kn′

x′
2

//

t1

��

X ′

x

��
X

γn //

idX

66Kn
x2 // X

We can then use these arrows t1 and t2 to construct the following cube

X ′

x

��

m′
//

γn′

||zz
zz
z

Y ′

y

��

γq′

}}zz
zz
z

Kn′

t1

��

k′ // Kq′

t2

��

X
m //

γn

||yy
yy
y

Y

γq}}zz
zz
z

Kn
k

// Kq

which has pullbacks as left and back faces and stable pushouts as top and bottom ones. The morphisms
γq and γq′ are split monos, thus by Lemma 5.2.12 the right face is a pullback. Switching γn andm we get
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another cube

X ′

x

��

γn′ //
m′

~~}}
}}
}

Kn′

t1

��

k′

||yy
yy
y

Y ′

y

��

γq′ // Kq′

t2

��

X
γn //

m

~~}}
}}
}

Kn

k||yyy
yy

Y
γq

// Kq

to which we can apply Corollary 5.2.13 to get again that the right face is a pullback. Now, by Lemma 5.1.4,
the following rectangle is a pullback

Kn′

x′
1 //

t1

��

X ′

x

��

m′
// Y ′

y

��
Kn x1

// X
m

// Y

Thus we can apply Lemma 5.1.8 to the diagrams

X
γn //

m

��

Kn

k

��

Y ′

idY ′

((
γq′

//

y

��

Kq′

t2

��

y′2

// Y ′

y

��

Kn′

m′◦x′
1

((
k′

//

t1

��

Kq′

q′

��

y′2

// Y ′

y

��
Y

γq
// Kq Y

γq //

idY

66Kq

y2 // Y Kn

m◦x1

66
k // Kq

y2 // Y

to deduce that the square below is a pullback, too.

Kq′

t2

��

y′2 // Y ′

y

��
Kq y2

// Y

This in turn also entails that the following rectangle is a pullback.

Kq′
t2 //

y′2
��

Kq

y2

��

y1 // Y

q

��
Y ′

y
// Y

q
// W
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We can now notice that the diagrams

X ′ n′
//

m′

��

Z ′

p′

��

Kq′

y1◦t2

((
y′1

//

y′2
��

Y ′

q′

��

y
// Y

q

��

X ′

m◦x

((
m′

//

n′

��

Y ′

q′

��

y
// Y

q

��
Y ′

q′
// W ′ Y ′ q′ //

q◦y

66W ′ w // W Z ′

p◦z

66
p′ // W ′ w // W

satisfy the hypothesis of Lemma 5.1.8, and this yields the thesis.

The previous theorem yields at once the following two corollaries

Corollary 5.2.15. Let X be a category with pullbacks, then

1. ifM(X) ⊆ A(X)a then X is adhesive;

2. ifR(X) ⊆ A(X)a and it is closed under binary joins then X is quasiadhesive.

Proof. 1. By Corollary 5.2.7 (A(X)a,A(X)a) is a preadhesive structure, which, by Corollary 5.2.4,
coincides with (M(X),A(X)). The thesis now follows from Corollary 5.1.27 and Theorem 5.2.14.

2. As before, Corollaries 5.2.4 and 5.2.7 entails that (R(X),A(X)) is a preadhesive structure on X to
which we can apply Theorem 5.2.14 and get the thesis appealing to Corollary 5.1.27.

Corollary 5.2.16. LetM be a stable system of monos in a categoryXwith pullbacks. Suppose thatM is stable
under pushouts, it contains all split monos, it is closed under binary joins and M ⊆ A(X)a. Then X is an
M-adhesive category.

Proof. This follows at once from Corollary 5.1.26 and Theorem 5.2.14.

Remark 5.2.17. In Corollaries 5.2.15 and 5.2.16, closure under joins means that, given m : M → X ,
n : N → X inR(X) or inM, any representative of [m]∨ [n], which exists by virtue of Proposition 5.2.8,
is again in R(X) or in M.

5.2.3 From M,N -adhesivity to M,N -unions

In the previous section we deducedM,N -adhesivity from the closure ofM under some kinds of unions.
In this section we will go in the opposite direction.

Definition 5.2.18. Let f : X → Y be an arrow in a categoryX such that the pushout square below exists.

X
f //

f

��

Y

y1

��
Y

y2
// Qf
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The codiagonal υf : Qf → Y is the unique arrow fitting in the following diagram.

X
f //

f

��

Y

idY

��

y1

��
Y

idY --

y2
// Qf

υf

  
Y

Given a preadhesive structure (M,N ), anM,N -codiagonal is the codiagonal of an arrow n ∈ M∩N .

Let us list some useful properties of codiagonals.

Lemma 5.2.19. Let f : X → Y be a morphism in a category X and suppose that f admits a codiagonal
υf : Qf → Y , then the following hold true:

1. υf is the coequalizer of the pair of coprojections y1, y2 : Y ⇒ Qf ;

2. if a pullback of y1 along y2 exists, then the pair y1, y2 : Y ⇒ Qf has an equalizer e : E → Y and,
moreover, the following square is a pullback

E
e //

e

��

X

y1

��
X

y2
// Qf

Proof. 1. Let z : Qf → Z be such that

z ◦ y1 = z ◦ y2

Then

z ◦ y1 ◦ υf ◦ y1 = z ◦ y1 ◦ idY
= z ◦ y1

z ◦ y1 ◦ υ ◦ y2 = z ◦ y1 ◦ idY
= z ◦ y1

= z ◦ y2

and we can consider the following commutative diagram

Y
y1 //
y2

// Qf
z //

υf

��

Z

Y
y1

// Qf

z

OO

Uniqueness follows from the fact that υf is a split epi.
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2. First of all we can notice that in every square, not necessarily a pullback one, as the one in the
diagram below, the existence of the codiagonal implies p1 = p2

P
p1 //

p2

��

X

y1

�� idX

��

X
y2

//

idX --

Qf
υf

  A
AA

AA
AA

X

By hypothesis, y1 has a pullback along y2 as in the following diagram

E
e //

e

��

X

y1

��
X

y2
// Qf

Thus, if z : Z → X is an arrows such that

y1 ◦ z = y2 ◦ z

then the universal property of pullback yields a unique g : Z → E such that z = e ◦ g.

The following lemma is a generalization of [52, Prop. 4.4].

Lemma 5.2.20. Let (M,N ) be a preadhesive structure on a category X with pullbacks and u : U → X an
M,N -union. Suppose thatM ⊆ Na, thatM∩N contains all split monomorphisms and thatN contains all
M,N -codiagonals. Then:

1. u admits pushouts along itself (i.e. it has a cokernel pair);

2. there exists an epi eu : M → Eu and an elementmu : Eu → X ofM∩N such that u = mu ◦ eu.

Remark 5.2.21. Notice that, if M ⊆ Na, then for every n ∈ M∩N a pushout square

N
n //

n

��

X

n1

��
X

n2

// Qn

of n along itself exists, and thus there also exists the codiagonal υn.

Proof. 1. Letm : M → X in M and n : N → X in M∩N be arrows such that

[u] = [m] ∨ [n]
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By Proposition 5.2.8, we can consider the following diagram in which the outer edges form a pull-
back and the inner square is a pushout.

P
p1 //

p2

��

M

u2

�� m

��

N

n --

u1

// U
u

  A
AA

AA
AA

A

X

Pulling backm along υn, we obtain a pullback square

T
t1 //

t2

��

M

m

��
Qn υn

// X

Now, we have identities

m ◦ idM = m

= idX ◦m

= υn ◦ n1 ◦m

m ◦ idM = m

= idX ◦m

= υn ◦ n2 ◦m

and thus there exist l1, l2 : M ⇒ T as in the following diagram

M

l1 !!

idM

""
m

��

M

l2 !!

idM

""
m

��
X

n1 ))

T
t1 //

t2

��

M

m

��

X

n2 ))

T
t1 //

t2

��

M

m

��
Qn υn

// X Qn υn
// X

By Lemma 5.1.4, the following are pullback squares

M
l1 //

m

��

T

t2

��

M
l2 //

m

��

T

t2

��
X

n1

// Qn X
n2

// Qn
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Therefore, since n is N -adhesive, the top face of the following cube is a pushout.

P

p2

��

p1 //
p1

}}||
||

M

m

��

l1

||zz
zz
z

M

m

��

l2 // T

t2

��

N
n //

n

~~}}
}}
}

X

n1}}{{{
{{

X
n2

// Qn

Now, t1 is the pullback of an M,N -codiagonal. Thus, it is in N , while t2 is in Na since it is the
pullback ofm. Therefore the pushout square below exists.

T
t1 //

t2

��

M

q1

��
Qn q2

// Q

Suppose now that the solid part of the next diagram is given

U
u //

u

��

X

z1

}}{{
{{
{{
{{
{

n1

��
Z Qn

q2

��
X

n2

//

z2

>>}}}}}}}}
Qn q2

// Q

z

aa

Precomposing with u1 and u2 we get the following identities

z1 ◦m = z1 ◦ u ◦ u2

= z2 ◦ u ◦ u2

= z2 ◦m

z1 ◦ n = z1 ◦ u ◦ u1

= z2 ◦ u ◦ u1

= z2 ◦ n

The second chain of the equalities above allows us to deduce the existence of the dottedw : Qn → Z.

N
n //

n

��

X

n1

�� z1

��

X

z2 --

n2

// Qn
w

  
Z
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We compute to obtain

w ◦ t2 ◦ l2 = w ◦ n2 ◦m

= z2 ◦m

= z1 ◦m

= w ◦ n1 ◦m

= w ◦ t2 ◦ l1

By construction and by our previous observations, t1 is a codiagonal for p1. Thus the first point of
Lemma 5.2.19 implies the existence of a unique k : M → Z making the following diagram commu-
tative

T
t1 //

t2

��

M

k

��

q1

��
Qn

w --

q2
// Q

z

  
Z

which, in turn, implies the existence of the dotted z. Computing further we have

z1 = w ◦ n1

= z ◦ q2 ◦ n1

z2 = w ◦ n2

= z ◦ q2 ◦ n2

Moreover, if z′ : Q→ Z is such that

z1 = z′ ◦ q2 ◦ n1 z2 = z′ ◦ q2 ◦ n2

then we also have

z′ ◦ q2 ◦ n1 = z1

= w ◦ n1

z′ ◦ q2 ◦ n2 = z2

= w ◦ n2

which shows that w = z′ ◦ q2. On the other hand

z′ ◦ q1 ◦ t1 = z′ ◦ q2 ◦ t2

= w ◦ t2

and so we also have that z′ ◦ q1 = k, allowing us to conclude that z = z′. We can now deduce that
the following square is a pushout

U
u //

u

��

X

q2◦n1

��
X

q2◦n2

// Q

2. By the previous point u has pushout along itself. Therefore there exists a codiagonal υu : Q → U .
In particular, q2 ◦n1 and q2 ◦n2 are split monos and thus elements ofM∩N . By the second point
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of Lemma 5.2.19, they have an equalizer mu : Eu → X which, since M and N are stable under
pullback, is also an element of M∩N . Since, by construction we have

q2 ◦ n1 ◦ u = q2 ◦ n2 ◦ u

we also get an arrow eu : U → Eu such that u = mu ◦ eu. To show that this arrow is epi, start with
the equalities

m = u ◦ u2

= mu ◦ eu ◦ u2

n = u ◦ u2

= mu ◦ eu ◦ u1

SinceM andN are closed under decomposition andM-decomposition we can deduce that eu ◦ u2
belongs to M and that eu ◦ u1 is an element of M∩N .

Now let b : B → Eu be another mono such that

b ◦ b1 = eu ◦ u1 b ◦ b2 = eu ◦ u2

for some b1 : N → B and b2 : M → B. Then

b ◦ b1 ◦ p2 = eu ◦ u1 ◦ p2

= eu ◦ u2 ◦ p1

= b ◦ b2 ◦ p1

which, since b is a mono, entails
b1 ◦ p2 = b2 ◦ p1

Thus there exists b̂ : U → B such that

b1 = b̂ ◦ u1 b2 = b̂ ◦ u2

By computing further we get

b ◦ b̂ ◦ u1 = b ◦ b1

= eu ◦ u1

b ◦ b̂ ◦ u2 = b ◦ b2

= eu ◦ u2

which shows that [eu] ≤ [b], implying that eu is a union of eu ◦ u2 and eu ◦ u1. By the previous
point and point 2 of Lemma 5.2.19, there exist a diagram in which the outer edges form a pushout,
the inner square is a pullback and c is the equalizer of c1 and c2.

U

eu

''

eu ++

e
// C

c

��

c
// Eu

c2
��

Eu c1
// Q̂

The existence of e : U → C can then be inferred from the universal property of pullbacks. If we
show that c is invertible, then we are done. Notice that c1 and c2 are in M∩N since they are split
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monos. Thus c ∈ M∩N too. Suppose that the solid part of the following diagram is given.

C
c //

c

��

Eu
mu // X

n1

��

z1

}}{{
{{
{{
{{
{

Eu

c

��

Z Qn

q2

��
X

z2

==||||||||
n2

// Qn q2
// Q

z

aa

Then we have

z1 ◦ u = z1 ◦mu ◦ eu

= z1 ◦mu ◦ c ◦ e

= z2 ◦mu ◦ c ◦ e

= z2 ◦mu ◦ eu

= z2 ◦ u

and thus there exists z : Q→ Z such that

z1 = z ◦ q2 ◦ n1 z2 = z ◦ q2 ◦ n2

Uniqueness of such a z follows at once since q2 ◦ n1 and q2 ◦ n2 are the coprojections of a pushout.
Thus we can conclude that the square below is a pushout.

U
mu◦c //

mu◦c

��

X

q2◦n1

��
X

q2◦n2

// Q

Now, M and N are closed under composition. Thus mu ◦ c is in M ∩ N and, since M ⊆ Na,
it follows from the third point of Proposition 5.2.3 that mu ◦ c is a regular mono. The dual of
Proposition 2.1.50 thus entails that mu ◦ c is the equalizer of q2 ◦ n1 and q2 ◦ n2, and therefore c
must be an isomorphism.

We are now ready to prove the main theorem of this section (see [67, Thm. 19]).

Theorem 5.2.22. LetX be anM,N -adhesive category with pullbacks. IfM∩N contains all split monomor-
phisms andN contains allM,N -codiagonals, thenM is closed underM,N -unions.

Proof. Let u : U → X be the M,N -union of m : M → X in M and n : N → X in M ∩ N . By
Example 5.2.2 and Proposition 5.2.8, we know that these arrows fit in a diagram

P
p1 //

p2

��

M

u2

�� m

��

N

n --

u1

// U
u

  A
AA

AA
AA

A

X
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in which the outer edges form a pullback and the inner square is a pushout. Notice that p2 ∈ M and
p1 ∈ N . Thus, by Proposition 5.1.7, the inner square is also a pullback. By Lemma 5.2.20, we also know
that u = mu ◦ eu for some epi eu : Y → Eu and mu : Eu → X in M∩N . As we have noticed before,
the decomposition properties of M and N imply that eu ◦ u2 ∈ M and eu ◦ u1 ∈ M∩N . Our strategy
to prove the theorem consists in showing that eu is an isomorphism.

First of all notice that eu is a mono because u = mu ◦ eu. Thus in the following diagram every square
is a pullback and, applying Lemma 5.1.4, we can deduce that the composite square is a pullback too.

P
p1 //

p2

��

M
idM //

u2

��

M

u2

��
N

u1

//

idU
��

U
idU

//

idU
��

U

eu

��
N

u2

// U
eu

// Eu

.
Next, since the arrow n is inM, p1 is inM as it is its pullback and u1 ∈ M since it is the pushout of p1.

We can then build the following two pushout squares, which, by Proposition 5.1.16, are also pullbacks.

N
eu◦u1 //

eu◦u1

��

Eu

e1

��

N
eu◦u1 //

u1

��

Eu

a1

��
Eu e2

// Qeu◦u1
U

a2
// A

Notice that he solid part of the following diagram is commutative. Thus the dotted arrow a exists and,
by Lemma 5.1.6, the bottom rectangle is a pushout.

N
u1 //

u1

��

U
eu // Eu

a1

��
e1

� �

U

eu

��

a2 // A

a

��
Eu e2

// Qeu◦u1

Moreover, since u1 ∈ M and eu ◦ u1 is in N , the upper half of the square above is also a pullback.
Now, e2 is the pushout of eu◦u1. Thus it is inM, and so it is amono. This, together with Lemma 5.1.4,

entails that the following rectangle is a pullback.

U
eu //

idU
��

Eu
idEu //

idEu

��

Eu

e2

��
U

eu
// Eu e2

// Qeu◦u1
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The arrow a2 is in M as it is the pushout of eu ◦ u1. Thus we can apply Lemma 5.1.8 to the diagrams

N
eu◦u1 //

u1

��

Eu

a1

��

N

eu◦u1

��

u1 // U

a2

��

eu // Eu

e2

��

U
idU //

idU
��

U

a2

��

eu // Eu

e2

��
U

a2
// A Eu a1

// A
a

// Qeu◦u1
U

a2 //

e2◦eu

44A
a // Qeu◦u1

to get that also the following square is a pullback.

U

eu

��

a2 // A

a

��
Eu e2

// Qeu◦u1

On the other hand, the arrow p1 : P →M is inM∩N as it is the pullback of n. Thus we can consider
the following pushout of p1 along itself.

P
p1 //

p1

��

M

m1

��
M

m2

// Qp1

We can then construct the solid part of the rightmost rectangle in the diagram below, inducing the dotted
b : Qp1 → A. Notice that the first rectangle is a pushout by Lemma 5.1.6 so that the right half of the
second diagram also is a pushout, again because of Lemma 5.1.6, and since b belongs to M.

P
p2 //

p1

��

N

u1

��

u1 // U
eu // Eu

a1

��

P

eu◦u1◦p2

**
p1

//

p1

��

M

m1

��

u2

// U
eu

// Eu

a1

��
M

u2

// U
a2

// A M

a2◦u2

44
m2 // Qp1

b // A

We can compose with the codiagonal υp1 : Qp1 →M to obtain the solid diagram

M

idM

��

u2 //

m1

��

U
eu / / Eu

a1

��
idEu

��

Qp1

υp1

��

b // A

r

��
M

u2

// U
eu

/ / Eu
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Since the upper half of the square above is a pushout, the dotted r : A → Qeu◦u1 exists. Moreover, since
the outer edges make a pushout square, the lower half is a pushout too, by Lemma 5.1.6. The codiagonal
υp1 belongs to N , therefore Proposition 5.1.16 allows us to conclude that the bottom rectangle of the
previous diagram is also a pullback.

We can now notice that for every z1 : Z →M and z2 : Z → Eu such that

m ◦ z1 = mu ◦ z2

we have the following chain of equalities

mu ◦ eu ◦ u2 ◦ z1 = u ◦ u2 ◦ z1

= m ◦ z1

= mu ◦ z2

which, sincemu is mono, entails
z2 = eu ◦ u2 ◦ z1

This, in turn, can be rephrased by saying that the square below is a pullback

M
idM //

eu◦u2

��

M

m

��
Eu mu

// X

In particular, we can now apply Lemma 5.1.8 to the following M,N -pushout square

N
eu◦u1 //

eu◦u1

��

Eu

e1

��
Eu e2

// Qeu◦u1

and to the pullback rectangles

M

idM

++

eu◦u2

��

m2

// Qp1 υp1

//

a◦b

��

M

m

��

M

idM

++

eu◦u2

��

m1

// Qp1 υp1

//

a◦b

��

M

m

��
Eu

mu

3 3
e2 // Qeu◦u1

υeu◦u1 / / Eu
mu // X Eu

mu

33
e1 // Qeu◦u1

υeu◦u1 // Eu
mu // X

to show that the outer rectangle in the diagram below is a pullback, so that, in particular, a ◦ b ∈ M. We
can also apply Lemma 5.1.4 to deduce that the left half of the rectangle is a pullback, too.

Qp1
υp1 //

a◦b

��

M
idM //

eu◦u2

��

M

m

��
Qeu◦u1 υeu◦u1

// Eu mu

// X
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We compute to obtain

υeu◦u1
◦ a ◦ b = eu ◦ u2 ◦ υp1

= r ◦ b

υeu◦u1
◦ a ◦ a1 = υeu◦u1

◦ e1

= idEu

= r ◦ a1

Therefore r = υeu◦u1
◦ a. We can then apply Lemma 5.1.4 to the following rectangle, showing that its

left half is a pullback

Qp1

b

��

idQp1 // Qp1

a◦b

��

υp1 // M

eu◦u2

��
A

r

55
a // Qeu◦u1

υeu◦u1 // Eu

Suppose now that the solid part of the diagram below is given

Qp1
b //

υp1

��

A
a // Qeu◦u1

υeu◦u1

�� z1

��

M

z2 ..

u2

// U
eu

// Eu
z

##
Z

Wewant to show that the inner rectangle is a pushout. Uniqueness of the dotted z : Eu → Z is guaranteed
by the fact that υeu◦u1

is an epimorphism. So it is enough to construct an arrow fitting in the diagram.
First of all we can notice that

z1 ◦ e1 ◦ eu ◦ u1 = z1 ◦ e2 ◦ eu ◦ u1

while we also have

z1 ◦ e1 ◦ eu ◦ u2 = z1 ◦ a ◦ a1 ◦ eu ◦ u2

= z1 ◦ a ◦ b ◦m1

= z2 ◦ υp1 ◦m1

= z2 ◦ idM
= z2 ◦ υp1 ◦m2

= z1 ◦ a ◦ b ◦m2

= z1 ◦ a ◦ a2 ◦ u2

= z1 ◦ e2 ◦ eu ◦ u2

which implies that
z1 ◦ e1 ◦ eu = z1 ◦ e2 ◦ eu

which, since eu is an epimorphism, allows us to conclude that

z1 ◦ e1 = z1 ◦ e2



5.2.M,N -unions andM,N -adhesivity 211

So equipped, we can now compute:

z1 ◦ e1 ◦ υeu◦u1
◦ e1 = z1 ◦ e1 ◦ idEu

= z1 ◦ e1

z1 ◦ e1 ◦ υeu◦u1
◦ e2 = z1 ◦ e1 ◦ idEu

= z1 ◦ e1

= z1 ◦ e2

showing
z1 = z1 ◦ e1 ◦ υeu◦u1

Moreover, computing again we obtain

z2 ◦ υp1 = z1 ◦ a ◦ b

= z1 ◦ idEu
◦ a ◦ b

= z1 ◦ e1 ◦ υeu◦u1
◦ a ◦ b

= z1 ◦ e1 ◦ eu ◦ u2 ◦ υp1

and υp1 is an epimorphism, thus
z2 = z1 ◦ e1 ◦ eu ◦ u2

Summing up, z1 ◦ e1 fills our original diagram, thus its inner rectangle is indeed a pushout.
We are now ready to collect all our arrows in the following cube

Qp1

b

xxrrr
rr
rr
rr
rr
rr
rr
r

idQp1

��

υp1 // M

idM

��

u2zzuu
uu
u

U

idU

��

euyyttt
tt

A

a

��

r // Eu

idEu

��

Qp1
υp1 //

b

yysss
ss

M

u2zzuu
uu
u

A
a

xxppp
ppp

U

euzzttt
tt

Qeu◦u1 υeu◦u1

// Eu

This cube has anM,N -pushout as top and bottom face and all faces beside the frontal one are pullbacks,
hence, by M,N -adhesivity it follows that also this last face is a pullback. By Lemma 5.1.4 the rectangle

U
a2 //

eu

��

A
r //

a

��

Eu

idEu

��
Eu e2

// Qeu◦u1 υeu◦u1

// Eu

is a pullback. Thus eu is an isomorphism as it is the pullback of idEu
.

Corollary 5.2.23. Let X be a category with pullbacks and M a stables system of monos on it. If X is M-
adhesive, then for every objectX and every [m] and [n] inM-Sub(X), their supremum in (Sub(X),≤) exists
and it belongs toM-Sub(X).
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Combining Theorem 5.2.14 with Theorem 5.2.22 we obtain also the following results.

Corollary 5.2.24. Let (M,N ) be a preadhesive structure on a categoryXwith pullbacks. IfM∩N contains
every split mono and everyM,N -codiagonal is inN , then the following are equivalent:

1. M ⊆ Na andM is closed underM,N -unions;

2. X isM,N -adhesive.

Finally Proposition 5.1.21 and Corollaries 5.2.16 and 5.1.26 yield the result below.

Corollary 5.2.25. Let M be a stable system of monos on a category X with pullbacks and suppose that M
contains all split monos. Then the following are equivalent:

1. X isM-adhesive;

2. every M-pushout square is Van Kampen and for every object X , every pair [m], [n] ∈ M-Sub(X) has
a supremum in (Sub(X),≤) belonging toM-Sub(X);

3. M is stable under pushouts,M ⊆ A(X)a and for every objectX , every pair [m], [n] ∈ M-Sub(X) has
a supremum in (Sub(X),≤) which is again inM-Sub(X).

Remark 5.2.26. Notice that, in items 2 and 3 of the previous corollary, the existence of a supremum in
(Sub(X),≤) for [m], [n] ∈ M-Sub(X) is guaranteed by the hypothesis that every arrow inM is adhesive
and by Proposition 5.2.8.

5.3 M,N -adhesivity and toposes

In this section we will examine the relationship between M,N -adhesivity and (elementary) toposes. In
the first part we will provide a new proof of the fact, first shown in [74], that (elementary) toposes
are adhesive. In the second section we will generalize the results of [52] showing that, under suitable
hypotheses, an M,N -adhesive category admits a full and faithful embedding into a Grothendieck topos.

5.3.1 Some facts about toposes

Let us recall briefly the definition of a topos and some properties of toposes. The main references about
topos theory are [30, 66, 86, 93].

Definition 5.3.1. Let X be a finitely complete category. A subobject classifier is a mono t : 1 → Ω such
that, for every monomorphisms m : M → X , there is a unique χm : X → Ω such that the square below
is a pullback

M

m

��

!M // 1

t
��

X
χm

// Ω

A topos is a finitely complete, cartesian closed category X which has a subobject classifier.
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Remark 5.3.2. Subobject classifiers are unique up to isomorphism. Indeed, if t : 1 → Ω and t̂ : 1 → Ω̂ are
two subobjects classifiers, then we have the two diagrams below, in which every square is a pullback

1
id1 //

t
��

1

t̂
��

id1 // 1

t
��

1
id1 //

t̂
��

1

t
��

id1 // 1

t̂
��

Ω
χt

// Ω̂
χ̂t

// Ω Ω̂
χ̂t

// Ω
χt

// Ω̂

By Lemma 5.1.4 the whole rectangles are pullbacks, showing

idΩ = χ̂t ◦ χt idΩ̂ = χt ◦ χ̂t

Going deep into topos theory will lead us astray, so we rather assume the reader has at least a basic
knowledge of the following facts.

Fact 5.3.3. ( [65, Sec. A2.2] and [86, Ch. IV, Sec. 5]) If X is a topos, then it is finitely cocomplete.

Fact 5.3.4. ( [48, 65, Sec. A2.3], and [86, Ch. IV, Sec. 7]) If X is an object of a topos X, then the slice
category X/X over X is a topos too.

Fact 5.3.4, the so called “fundamental theorem of topos theory”, in particular entails that a topos X is
locally cartesian closed. We can therefore apply Corollary A.3.14 obtaining the corollary below.

Corollary 5.3.5. Let f : X → Y be a morphism in a topos X, then pbf : X/Y → X/X has a right adjoint.

We will also assume familiarity with the notions of coverage, Grothendieck topology, sheaves and
Grothendieck topos ( [66, Sec. C2.1] and [86, Ch. 3]).

Fact 5.3.6. Every Grothendieck topos is a topos.

Assuming these facts, in the next section, we will nonetheless prove some less known properties of
toposes needed to show their adhesivity. The proofs of all these properties are adapted from [65, Ch. A2].

5.3.2 Toposes are adhesive

Our strategy to show that toposes are adhesive is to use Corollary 5.2.25, proving that the class of monos
is closed under pushouts and consists of adhesive morphisms.

Proposition 5.3.7. In a topos X all pushout squares are stable.

Proof. Suppose that the following pushout square is given

X
f //

g

��

Y

k

��
Z

h
// Q
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δQ : 1 → X trivially preserves pushouts, so Lemma 5.1.35 and Proposition A.3.5 entails that the square

k ◦ f
f //

g

��

k

k

��
h

h
// idQ

is a pushout in X/Q. By hypothesis X is a topos. Thus, Corollary 5.3.5, for every q : Q′ → Q the functor
pbq : X/Q→ X/Q′ is a left adjoint .Therefore it preserves colimits and the square

pbq (k ◦ f)
pbq(f) //

pbq(g)

��

pbq (k)

pbq(k)

��
pbq (h) pbq(h)

// pbq (idQ)

is a square in X/Q′. Clearly idQ′ = pbq (idQ) and we know from Lemma A.3.13 that the functor
domQ′ : X/Q′ → X is a left adjoint, so that we have another pushout square

pbq (X)
pbq(f) //

pbq(g)

��

pbq (Y )

pbq(k)

��
pbq (Z) pbq(h)

// Q′

We can now construct a cube as the one below, in which all faces are pullbacks

pbq (X)

q3

��

pbq(f) //
pbq(g)

wwppp
ppp

p
pbq (Y )

q1

��

pbq(k)

yysss
ss
ss

pbq (Z)

q2

��

pbq(h) // Q′

q

��

X
f //

g

vvnnn
nnn

nnn
nn

Y

kxxqqq
qq
qq
qq

Z
h

// Q

and we already know that the top faces is a pushout, so that Remark 5.1.3 now yields the thesis.

Let m : X → Y and f : X → Z be two arrows in a topos X, and suppose that m is a mono. Then,
since m = πY ◦ (m, f), it follows that (m, f) is a mono X → Y × Z, and thus, it is classified by
χ(m,f) : Y × Z → Ω, which, in turn, can be transposed to get ⌜χ(m,f)⌝ : Y → ΩZ . In particular, when
m and f are both idX , we will denote by {−}X the arrow ⌜χ∆X

⌝ : X → ΩX .

Proposition 5.3.8. Let X be a topos. Then for every f : X → Y , the following identity holds true

⌜χ(idX ,f)⌝ = {−}Y ◦ f
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Proof. Let us take the solid part in the diagram below

Z
g1

''

g2

$$

g

&&
X

(idX ,f)
��

f // Y

∆Y

��
X × Y

f×idY
// Y × Y

Consider the projections πX : X × Y → X , πY : X × T → Y and take as g the arrow πX ◦ g2. If
π1, π2 : Y ⇒ Y are the other projections, then we have

f ◦ g = f ◦ πX ◦ g2

= π1 ◦ (f × idY ) ◦ g2
= π1 ◦∆Y ◦ g1

= idY ◦ g1

= g1

On the other hand, we also have

πY ◦ g2 = idY ◦ πY ◦ g2

= π2 ◦ (f × idY ) ◦ g2
= π2 ◦∆Y ◦ g1

= idY ◦ g1

= g1

Therefore we can deduce

(idX , f) ◦ g = (idX ◦ g, f ◦ g)

= (g, f ◦ g)

= (πX ◦ g2, πY ◦ g2)

= g2

Thus g fits in the given diagram. (idX , f) is mono because πX ◦ (idX , f) is the identity, thus the previous
equalities show that the square below is a pullback.

X

(idX ,f)
��

f // Y

∆Y

��
X × Y

f×idY
// Y × Y
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We can now use Lemma 5.1.4 to deduce that the whole rectangle

X

(idX ,f)
��

!X

,,
f

// Y

∆Y

��

!Y

// 1

t
��

X × Y
f×idY // Y × Y

χ∆Y

33
{−}Y ×idY // ΩY × Y

evY,Ω // Ω

is a pullback. Hence we have

χ(idX ,f) = evY,Ω ◦ ({−}Y × idY ) ◦ (f × idY )

= evY,Ω ◦ (({−}Y ◦ f)× idY )

and the thesis now follows.

Lemma 5.3.9. Letm : X → Y and f : X → Z be arrows in a toposX and suppose thatm is amonomorphism,
then the following hold true:

1. the square

X
f //

m

��

Z

{−}Z

��
Y

⌜χ(m,f)⌝

// ΩZ

commutes and it is a pullback;

2. if the square

X
f //

m

��

Z

q1

��
Y

q2
// Q

is a pushout, then q1 is a mono and the square is also a pullback.

Proof. 1. Let us start showing that the given square commutes. We can observe that the square

X

(idX ,f)
��

idX // X

(m,f)

��
X × Z

m×idZ
// Y × Z

is a pullback. Indeed, let π1 : X×Z → X , π2 : X×Z → Z, π′
1 : Y ×Z → Y ′ and π′

2 : Y ×Z → Z
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be projections and suppose that the solid part of the diagram below is given,

P
g1

''

g2

$$

g1

&&
X

(idX ,f)
��

idX // X

(m,f)

��
X × Z

m×idZ
// Y × Z

Then we get the following two chains of equalities

m ◦ π1 ◦ g2 = π′
1 ◦m× idZ ◦ g2

= π′
1 ◦ (m, f) ◦ g1

= m ◦ g1

π2 ◦ g2 = idZ ◦ π2 ◦ g

= π′
2 ◦m× idZ ◦ g2

= π′
2 ◦ (m, f) ◦ g1

= f ◦ g1

which, sincem is a mono, entail that

g2 = (g1, f ◦ g1)

showing that g1 is the unique arrow which can fill the dotted part of the diagram above. We can
combine this observation with Lemma 5.1.4 to conclude that the rectangle

X

(idX ,f)
��

idX // X

(m,f)

��

!X // 1

t
��

X × Z
m×idZ

// Y × Z
χ(m,f)

// Ω

is a pullback, allowing us to conclude that

χ(idX ,f) = χ(m,f) ◦ (m× idZ)

Thanks to this identity, we can build the diagram below

X × Z

(χ⌜(m,f)⌝◦m)×idZ

++

χ(idX,f) //

m×idZ
// Y × Z

χ⌜(m,f)⌝×idZ
//

χ(m,f)

%%LL
LL

LL
LL

LL
L ΩZ × Z

evZ,Ω

xxqqq
qq
qq
qq
qq
q

Ω

which shows that
⌜χ(idX ,f)⌝ = χ⌜(m,f)⌝ ◦m

On the other hand, we know by Proposition 5.3.8 that

⌜χ(idX ,f)⌝ = {−}Z ◦ f
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and therefore, we obtain the wanted equality

χ⌜(m,f)⌝ ◦m = {−}Z ◦ f

To prove the last half of the thesis, suppose that the solid part of the diagram below is given

Q
g1

%%

g2

##

g

$$
X

f //

m

��

Z

{−}Z

��
Y

⌜χ(m,f)⌝

// ΩZ

Sincem is a mono it is enough to show that the dotted g : Q→ X exists. Computing we get

χ(m,f) ◦ (g2, g1) = evZ,Ω ◦
(
⌜χ(m,f)⌝× idZ

)
◦ (g2, g1)

= evZ,Ω ◦
(
⌜χ(m,f)⌝ ◦ g2, g1

)

= evZ,Ω ◦ ({−}Z ◦ g1, g1)

= evZ,Ω ◦ ({−}Z × idZ) ◦ (g1, g1)

= χ∆Z
◦ (g1, g1)

= χ∆Z
◦∆Z ◦ g1

= t ◦ !Z ◦ g1

= t ◦ !Q

Thus we get g : Q→ X fitting in the diagram below:

Q !Q

&&

(g2,g1)

$$

g

&&LL
LL

LL
LL

LL
LL

X

(m,f)

��

!X // 1

t
��

Y × Z
χ(m,f)

// Ω

The commutativity of the left triangle entails

g2 = m ◦ g g1 = f ◦ g

as desired.
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2. Let us use the previous point to obtain a diagram as the one below

X
f //

m

��

Z

q1

�� {−}Z

��

Y
q2

//

⌜χ(m,f⌝ ,,

Q

g

  
ΩZ

The universal property of pushouts yields the dotted g : Q → ΩZ . {−}Z is a monomorphism
because

∆Z = evZ,Ω ◦ {−}Z

and thus q1 is a mono too. Too see that the original square is a pullback, take h1 : Q → Z and
h2 : Q→ Y such that

q1 ◦ h1 = q2 ◦ h2

Composing the two sides othe equation above with g, gives us

{−}Z ◦ h1 = g ◦ q1 ◦ h1

= g ◦ q2 ◦ h2

= ⌜χ(m,f)⌝ ◦ h2

Therefore, applying point 1 again, we get a unique h : Q→ X such that

h1 = f ◦ h h2 = m ◦ h

which is precisely the thesis.

A topos X is finitely cocomplete by Fact 5.3.3. Thus it has all pushouts and from Proposition 5.3.7
and Lemma 5.3.9 we can deduce the following result.

Corollary 5.3.10. In a topos X, every mono is adhesive.

We can now apply Corollary 5.2.25 and Lemma 5.3.9 together with Remark 5.2.26 to get our result.

Corollary 5.3.11. Every topos is an adhesive category.

5.3.3 An embedding theorem

Definition 5.3.12. Let (M,N ) be a preadhesive structure for a category X. A jM,N -covering family for
an object X is a set {p, q} of arrows p : Z → X and q : Y → X such that there exist m : N → Y in M
and n : N → Z in N making the following square a pushout

N
n //

m

��

Z

p

��
Y

q
// X

We will define jM,N (X) as the set of jM,N -covering families for X .
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Proposition 5.3.13. Let X be a category with pullbacks, for every preadhesive structure (M,N ) such that
M ⊆ Na, the family {jM,N (X)}X∈X defines a coverage jM,N on X.

Proof. Take p, q in jM,N (Y ) and f : X → Y . By definition of jM,N (Y ), there exists a pushout square

N
n //

m

��

Z

p

��
W

q
// Y

withm ∈ M and n ∈ N . By Remark 5.1.2, we know that it is stable. We can use Corollary 5.1.5 to build
the following cube in which all faces are pullbacks

X ′

g

��

n′
//

m′

||zzz
zz

Z ′

z

��

p′

~~}}}
}}

W ′

w

��

q′ // X

f

��

N
n //

m

||yyy
yy

Z

p}}|||
||

W
q

// Y

The arrows m and n belong to M and N , respectively. Thus m′ ∈ M and n′ ∈ N . The bottom face is
stable, therefore the top face witnesses {p′, q′} ∈ jM,N (X). On the other hand we have squares

W ′ w //

q′

��

W

q

��

Z ′

p′

��

z // Z

p

��
X

f
// Y X

f
// Y

from which we can deduce the thesis.

Remark 5.3.14. The coverage jM,N is a cd-structure in the sense of [120, 121].

Our next step is to characterize sheaves for the site (X, jM,N ).

Lemma 5.3.15. Let (M,N ) be a preadhesive structure for a categoryXwith pullbacks and suppose that every
element inM isN -adhesive. Then the following are equivalent for a presheaf F : Xop → Set:

1. F is in Sh(X, jM,N );

2. given the following two squares, the first of which is anM,N -pushout and the other two are pullbacks,

N
n //

m

��

Z

p

��

Kq

y1 //

y2

��

Y

q

��
Y

q
// X Y

q
// X
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if the solid part of the diagram below is given, then there exists a unique f : S → F (X) fitting in it.

S

f

''

f1

$$

f2

''
F (X)

F (p)

��

F (q) // F (Z)

F (m)

��
F (Kq) F (Y )

F (n)
//

F (y2)
oo
F (y1)oo

F (N)

Proof. (1 ⇒ 2) Let us start showing that, for every s ∈ S, the family {f1(s), f2(s)} is matching for the
jM,N -cover {p, q}. Given three commutative squares as the ones below

A
a1 //

a2

��

Y

q

��

B
b1 //

b2

��

Y

q

��

C
c1 //

c2

��

Z

p

��
Z

p
// X Y

q
// X Z

p
// X

p is the pushout ofm. Thus it belongs to M and so is a mono, which implies that

c1 = c2 F (c1) ◦ f2 = F (c2) ◦ f2

Moreover, m ∈ Na and n ∈ N . Thus in the following diagrams the two inner squares are pullbacks,
giving us the dotted arrows a : A→ N and b : B → Kq.

A a2

��

a1

!!

a

��

B b2

��

b1

""

b

  
N

n //

m

��

Z

p

��

Kq

y2 //

y1

��

Y

q

��
Y

q
// X Y

q
// X

Computing we get the following chains of identities

F (a1) ◦ f1 = F (a) ◦ F (m) ◦ f1

= F (a) ◦ F (n) ◦ f2

= F (a2) ◦ f2

F (b1) ◦ f1 = F (b) ◦ F (y1) ◦ f1

= F (b) ◦ F (y1) ◦ f1

= F (b2) ◦ f1

which imply that, for every s ∈ S, {f1(s), f2(s)} is a matching family for {p, q}. Since F is a sheaf we
can define f : S → F (X) taking as f(s) the unique amalgamation of {f1(s), f2(s)}, by construction

f1 = F (p) ◦ f f2 = F (q) ◦ f

For uniqueness it is enough to notice that, if g : S → F (X) is another arrow such that

f1 = F (p) ◦ g f2 = F (q) ◦ g
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then g(s) is an amalgamation for {f1(s), f2(s)}.

(2 ⇒ 1) Let {p, q} be a jM,N -cover of X . By definition there exists an M,N -pushout square

N
n //

m

��

Z

p

��
Y

q
// X

Take a matching family {s1, s2} for {p, q} with s1 ∈ F (Y ) and s2 ∈ F (Z). Applying the matching
property to the two squares below

N
n //

m

��

Z

p

��

Kq

y1 //

y2

��

Y

q

��
Y

q
// X Y

q
// X

we obtain the following identities:

F (m)(s1) = F (n)(s2) F (y1)(s1) = F (y2)(s1)

Thus, if δs1 : 1 → F (Y ) and δs2 : 1 → F (Z) pick s1 and s2, respectively, then we have the solid part of
the following commutative diagram and, by hypothesis, also the dotted δ : 1 → F (X).

1

δ

''

δs1

$$

δs2

''
F (X)

F (p)

��

F (q) // F (Z)

F (m)

��
F (Kq) F (Y )

F (n)
//

F (y2)
oo
F (y1)oo

F (N)

Now let s be the element of F (X) picked by δ. Then, by construction s is an amalgamation for {s1, s2}.
On the other hand, if s′ is another amalgamation, then

δs1 = F (p) ◦ δs′ δs2 = F (p) ◦ δs′

and so δ = δs′ , showing that s = s′, i.e. that F is a sheaf.

We can now combine the previous lemma with Lemma 5.2.11 to obtain the following.

Lemma 5.3.16. Let (M,N ) be a preadhesive structure on a category X with pullbacks such that M ⊆ Na,
M∩N contains every split mono and M is closed under M,N -unions. Then for a presheaf F : Xop → Set
the following are equivalent:

1. F is in Sh(X, jM,N );

2. F sendsM,N -pushouts to pullbacks.
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Proof. (1 ⇒ 2)Given the following two squares, the first of which is anM,N -pushout, while the second
is a pullback

N
n //

m

��

Z

p

��

Kn
n1 //

n2

��

N

n

��
Y

q
// X N

n
// Y

Lemma 5.2.11 gives the following diagrams, in which the common square on the left is anM,N -pushout.
In particular, this implies that {k, γq} is a jM,N -covering family of X

N
γn //

m

��

Kn

k

��

n1 // N
n //

m

��

Z

p

��

N
γn //

m

��

Kn

k

��

n2 // N
n //

m

��

Z

p

��
Y

γq
// Kq y1

// Y
q

// X Y
γq

// Kq y2
// Y

q
// X

The arrow k is in M since it is the pushout of M. Thus, k and γq are both mono, so that Lemma 5.3.15
now implies that the square below is a pullback.

F (Kq)
F (k) //

F (γq)

��

F (Kn)

F (γn)

��
F (Y )

F (m)
// F (N)

Suppose that the solid part of the following diagram is given

S

f

##

f1

$$

f2

""
F (X)

F (p)

��

F (q) // F (Z)

F (n)

��
F (Y )

F (m)
// F (N)

On the one hand we have at once that

F (γq) ◦ F (y1) ◦ f1 = F (y1 ◦ γq) ◦ f1

= F (idY ) ◦ f1
= F (y2 ◦ γq) ◦ f1

= F (γq) ◦ F (y2) ◦ f1
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while, on the other hand, we also have

F (k) ◦ F (y1) ◦ f1 = F (y1 ◦ k)

= F (m ◦ n1) ◦ f1

= F (n1) ◦ F (m) ◦ f1

= F (n1) ◦ F (n) ◦ f2

= F (n2) ◦ F (n) ◦ f2

= F (n2) ◦ F (m) ◦ f1

= F (m ◦ n2) ◦ f1

= F (y2 ◦ k) ◦ f1

= F (k) ◦ F (y2) ◦ f1

and we can deduce that F (y1) ◦ f1 = F (y2) ◦ f1. Lemma 5.3.15 now entails the thesis.

(2 ⇒ 1) This follows at once from Lemma 5.3.15.

We are now ready to deduce our main theorem.

Theorem 5.3.17. Let (M,N ) be a preadhesive structure on a category X with pullbacks such thatM ⊆ Na,
M∩N contains every split mono andM is closed underM,N -unions. Then the following hold true:

1. the Yoneda embeddingよX : X → SetX
op

factors through a full and faithful functorよ′
X : X → Sh(X, jM,N );

2. よ′
X preserves pullbacks and sendsM,N -pushouts to pushouts.

Proof. 1. Since Sh(X, jM,N ) is a full subcategory of SetX
op

, it is enough to show that, for everyX ∈ X,
the functor X(−, X) is a sheaf, but this follows at once from Lemma 5.3.16, since any representable
presheaf sends pushouts to pullbacks.

2. The inclusion Sh (X, jM,N ) → SetX
op

creates limits andよX sends pullbacks to pullbacks. There-
foreよ′

X preserves pullbacks, too. Take now an M,N -pushout

X
n //

m
��

Z

q
��

Y
p

// Q

Since Sh (X, jM,N ) is a full subcategory of SetX
op

, for every sheaf F , the Yoneda Lemma yields a
natural isomorphism y : Sh (X, jM,N )

(
よ

′
X(−), F

)
→ F , so that we obtain a diagram

Sh (X, jM,N )
(
よ

′
X(Q), F

)

yQ ))TTT
TTT

TTT
TTT

T

(−)◦よ
′

X(q) //

(−)◦よ
′

X(p)

��

Sh (X, jM,N )
(
よ

′
X(Z), F

)

yZuujjjj
jjj

jjj
jjj

(−)◦よ
′

X(n)

� �

F (Q)
F (q) //

F (p)
��

F (Z)

F (n)
��

F (Y )
F (m)

// F (X)

Sh (X, jM,N )
(
よ

′
X(Y ), F

)
yY

55jjjjjjjjjjjjj

(−)◦よ
′

X(m)

// Sh (X, jM,N )
(
よ

′
X(X), F

)
yX

iiTTTTTTTTTTTTT
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The functor F is a sheaf. Hence, the inner square is a pullback by Lemma 5.3.16, and, thus, the
outer one is a pullback, too, proving thatよ′

X sends M,N -pushouts to pushouts.

Corollary 5.3.18. Let X be an M,N -adhesive category with pullbacks such that M ∩ N contains all split
monomorphisms and N contains all M,N -codiagonals. Then there exists a full and faithful functor from X
into a topos. Moroever, such a functor preserves all pullbacks andM,N -pushouts.

Proof. Apply Theorem 5.2.22 and the previous theorem.
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In the previous chapter we have introduced and examined the notion of M,N -adhesivity and provided a
criterion, namely Theorem 5.1.31, allowing us to deduce some adhesivity result for a categoryX from the
existence of a family of functors with suitable properties. This chapter is devoted to exploit this criterion
to establish M,N -adhesivity of various categories.

It is well-known that categorical properties are often prescriptive, indicating abstractly the presence
of some good behaviour of the modelled system. Adhesivity is one such property, as it is highly sought
after when it comes to rewriting theories. Thus, our criterion for proving M,N -adhesivity can be seen
also as a “litmus test” for the given category. This is the precisely the case of our first important example:
hierarchical graphs. We roughly can find two alternative proposals for this kind of structures: on the one
hand, algebraic formalisms where the edges have some algebraic structures, so that the nesting is a side
effect of the term construction; on the other hand, combinatorial approaches where the topology of a

227



228 6. A zoo ofM,N -adhesive categories

standard graph is enriched by some partial order, either on the nodes or on the edges, where the order
relation indicates the presence of nesting. By applying our Theorem 5.1.31, we can show that the latter
approach yields indeed an M,N -adhesive category, confirming and overcoming the limitations of some
previous approaches to hierarchical graphs [99, 101, 102], which we briefly recall next.

The more straightforward proposal is by Palacz [102], using a poset of edges instead of just a set;
however, the class of rules has to be restricted in order to apply the approach, which in any case predates
the introduction of adhesive categories. Our work allows to rephrase in terms of adhesive properties
and generalise Palacz’s proposal, dropping the constraint on rules. Another attempt are Mylonakis and
Orejas’ graphs with layers [99], for which M-adhesivity is proved for a class of monomorphisms in the
category of symbolic graphs; however, nodes between edges at different layers cannot be shared. Padberg
[101] goes for a coalgebraic presentation via a peculiar “superpower set” functor; this gives immediately
M-adhesivity provided that this superpower set functor is well-behaved with respect to limits. However,
albeit quite general, the approach is rather ad hoc, not modular and not very natural for actual modelling.

As a next step, we leverage on the modularity of Theorem 5.1.31 to deal with hypergraphs and some
variants of them. In this way we are able to introduce hierarchical hypergraphs, i.e. hypergraphs in which
the edges are organized in some structure, like a tree, a simple graph, or a directed acyclic graph. This, in
turn allows us to study two other examples.

The first one is given by a a recently introduced (hyper)graphical formalism for the representation
of the internal language of monoidal closed categories. In [11] the authors define a category of labelled
hierarchical hypergraphs and use them to represent arrows of a given monoidal closed category. Identities
provided by the axioms of a monoidal closed structure are then formalized as rewriting rules. We show
that the category of these hypergraphs is M,M-adhesive for a class M of monos which contains the
morphisms appearing in the rules proposed in [11].

Our second hypergraphical examples is given by term graphs [38, 108]. These are elements of a par-
ticular class of hypergraphs, whose use has been advocated in the past years as a tool for the optimal
implementation of terms, with the intuition that the graphical counterpart of trees can allow for the shar-
ing of sub-terms [108]. As a preliminary step we show that two presentations of term graphs appearing in
the literature yields isomorphic categories. Next, we provide a new proof of the fact, first proved in [38]
with a brute-force approach, that the category of term graphs is quasiadhesive. Our strategy to do so, will
be prove that term graphs forms a full subcategory of the category of hypergraphs which is closed under
pullbacks and pushouts along regular monos.

This chapter, as the previous one, draws onmaterial previously published in [36]. An extended version
of it, including the comparison with the formalism introduced in [11] for monoidal closed categories and
the correspondence between the two presentations of term graphs appearing in the literature has been
submitted to Theoretical Computer Science for publication.

Synopsis In Section 6.1 we apply the results of Chapter 5 to various categories, such as simple graphs,
directed graphs, trees and hierarchical graphs. In Section 6.2 we move to hypergraphs, where an edge
may join two subsets of nodes, and we investigate the adhesivity of the category of (algebraically) labelled
hierarchical graphs. Section 6.3 is devoted to the introduction and study of a category whose objects
provide a representation for arrows in monoidal closed categories. Finally, in Section 6.4 we discuss term
graphs, which are seen as the standard formalism for the implementation of functional programs.
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6.1 M,N -adhesivity of some categories of graphs

In this section we apply the results provided in Chapter 5, to some important categories of graphs, such as
directed (acyclic) graphs and hierarchical graphs. These examples have been chosen for their importance
in graph rewriting, and because we can recover their M,N -adhesivity in a uniform and systematic way.
In fact, in the case of hierarchical graphs we give the first proof of M,N -adhesivity, to our knowledge.

As a preliminary step, let us prove some properties of pushouts in Set.

Lemma 6.1.1. Let the following square be a pushout in Set

X
f //

g

��

Y

q1

��
Z

q2
// Q

then the following are true:

1. the induced arrow 〈q1, q2〉 : Y + Z → Q is surjective;

2. If z1 and z2 are two distinct elements of Z which do not belong to g(X), then q2(z1) 6= q2(z1);

3. if g is injective then, given z ∈ Z and y ∈ Y , we have q1(z) = q2(y) if and only if there exists a unique
x ∈ X such that y = f(x) and z = g(x).

Proof. 1. In any category with binary coproducts the following diagram is a coequalizer

X
ιY ◦f //
ιZ◦g

// Y + Z
⟨q1,q2⟩ // Q

where ιY : Y → Y + Z and ιZ : Z → Y + Z are the coprojections. The thesis now follows since
epimorphisms in Set are surjective.

2. Consider the functions h2 : Z → 2 which sends g(X) ∪ {z1} to 0 and z2 to 1 and h1 : Y → 2
constant in 0. Then

h1 ◦ f = h2 ◦ g

and so there exists h : Q→ 2 such that

h1 = h ◦ q1 h2 = h ◦ q2

In particular we have that

h(q2(z1)) = h2(z1)

= 0

h(q2(z2)) = h2(z2)

= 1

showing that q2(z1) and q2(z2) must be different.
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3. (⇒) By hypothesis q1(z) = q1(y), thus we have the solid part of the diagram below

1

δ

��

δy

  

δz

��

X
f //

g

��

Y

q1

��
Z

q2
// Q

but Set is adhesive, thus, by Proposition 5.1.7, the given square is also a pullback and so there is a
unique dotted δ : 1 → X . Now it is enough to take as x the element picked by this arrow.

(⇐) Obvious.

6.1.1 Directed (acyclic) graphs

Among visual formalisms, directed simple graphs represent one of the most-used paradigms, since they
adhere to the classical view of graphs as relations included in the cartesian product of vertices. It is also
well-known that directed graphs are not quasiadhesive [67], not even in their acyclic variant. In this section
we are going to exploit Corollary 5.1.34 to show that these categories of (acyclic) graphs have nevertheless
adhesivity properties.

Definition 6.1.2. A directed graph G is a 4-tuple (EG , VG , sG , tG) where EG and VG are sets, called the set
of edges and nodes respectively, and sG , tG : EG ⇒ VG are functions, called source and target. An edge e is
between v and w if

v = sG(e) w = tG(e)

G(v, w) will denote the set of edges between v and w.
A morphism G → H is a pair (f, g) of functions f : EG → EH, g : VG → VH such that the squares

below commute. We will denote the category so defined by Graph

EH

f

��

sG // VF

g

��

EH
tG //

f

��

VH

g

��
EH sH

// VH EH
tH

// VH

A directed simple graph is a directed graph in which there is at most one edge between two nodes, SGraph
will denote the full subcategory of Graph made by directed simple graphs.

A path {ei}ni=1 in G is a finite and non empty family of edges such that, for all 1 ≤ i ≤ n− 1

tG(ei) = sG(ei+1)

A path will be called a cycle if
tG(en) = sG(e1)

A directed acyclic graph is a directed simple graph without cycles. Directed acyclic graphs form a full
subcategory DAG of SGraph and Graph.
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Remark 6.1.3. Let (f, g) : G → H be an arrow in SGraph withH ∈ DAG, then G is inDAG too. Given
a cycle {ei}ni=1 in G we have

tH(f(ei)) = g(tG(ei))

= g(sG(ei+1))

= tH(f(ei+1))

tH(f(e1)) = g(tG(e1))

= g(sG(en))

= tH(f(en))

so that {f(ei)}ni=1 is a cycle in H.

Proposition 6.1.4. Let prod be the functor Set → Set defined as

Y

f

−
→

X

7−→

7−→

Y × Y

−
→ f × f

X ×X

ThenGraph is isomorphic to idSet ↓prod

Proof. Define F : Graph → idSet ↓prod and G : idSet ↓prod → Graph putting

(EH, VH, sH, tH)

(f, g)

−
→

(EG , VG , sG , tG)

7−→

7−→

(EH, VH, (sH, tH))

−
→ (f, g)

(EG , VG , (sG , tG))

(EH, VH, pH)

(f, g)

−
→

(EG , VG , pG)

7−→

7−→

(EH, VH, π1 ◦ pH, π2 ◦ pH)

−
→ (f, g)

(EG , VG , π1 ◦ pG , π2 ◦ pG)

It is now immediate to see that F and G are mutually inverses.

Corollary 6.1.5. The following hold true:

1. the functorsWGraph, UGraph : Graph ⇒ Set sending a graph to its set of edges and of nodes, respectively,
jointly creates all limits and colimits;

2. an arrow (f, g) : G → H is a monoGraph if and only if both f and g are injective;

3. Graph is an adhesive category.

Proof. Products commute with limits, thus prod is continuous and the thesis now follows at once from
Lemma 5.1.35, Corollaries 5.1.36 and 5.1.37, and Theorem 5.1.38.

Remark 6.1.6. Graph is also equivalent to the category of presheaves on 0 ⇒ 1, the category with just
two objects and only two parallel arrows between them (besides the identities).

Remark 6.1.7. As a consequence of point 2 of the previous corollary, if (f, g) : G → H is a mono with
codomain in SGraph, then G also belongs to SGraph.

We can also apply Proposition A.2.3 deducing the following.

Corollary 6.1.8. The forgetful functor UGraph : Graph → Set has a left adjoint∆Graph : Set → Graph.

Y

f

−
→

X

7−→

7−→

(∅, Y, ?Y , ?Y )

−
→ (id∅, f)

(∅, X, ?X , ?X)



232 6. A zoo ofM,N -adhesive categories

Let us now establish some properties of SGraph that will be useful in the following.

Proposition 6.1.9. If (f, g) : G → H is an arrow in SGraph with g injective, then f is injective too.

Proof. Let e1, e2 ∈ EG be nodes such that f(e1) = f(e2), then

g(sG(e2)) = sH(f(e2))

= sH(f(e1))

= g(sG(e1))

g(tG(e2)) = tH(f(e2))

= tH(f(e1))

= g(tG(e1))

so that
sG(e1) = sG(e2) tG(e1) = tG(e2)

and the thesis follows since H is simple.

Let G = (EG , VG , sG , tG) be a directed graph. Define a relation∼ on EG putting e1 ∼ e2 if and only if

sG(e1) = sG(e2) tG(e1) = tG(e2)

It is immediate to see that ∼ is an equivalence relation. If πG : EG → EL(G) denotes the quotient projec-
tion, there are two unique functions sL(G), tL(G) : EL(G) ⇒ VG such that

sG = sL(G) ◦ πG tG = tL(G) ◦ πG

We can then consider the graph L(G) given by (EL(G), VG , sL(G), tL(G)) which, by construction is simple.

Proposition 6.1.10. The inclusion functor I : SGraph → Graph has a left adjoint L : Graph → SGraph.

Proof. For every G in Graph, there is an arrow (πG , idVG ) : G → I(L(G)). Let H be a simple graph and
(f, g) an arrow G → I(H). Since H is simple, we have that f(e1) = f(e2) whenever e1 ∼ e2, thus there
exists a unique f : EL(G) → EH such that f = f ◦ πG . Moreover

sH ◦ f ◦ πG = sH ◦ f

= g ◦ sG

= g ◦ sL(G) ◦ πG

tH ◦ f ◦ πG = tH ◦ f

= g ◦ tG

= g ◦ tL(G) ◦ πG

and, since πG is surjective, this shows that (f, g) is the unique morphism L(G) → H such that

G
(πG ,idVG

)
//

(f,g)   B
BB

BB
BB

B I(L(G))

I(H)

(f,g)

::uuuuuuuuu

commutes, therefore (πG , idVG ) is the unit of L a I .

Remark 6.1.11. (πG , idVG ) provides also the component at G of the counit L ◦ I → idSGraph, so we can
conclude that L◦ I is isomorphic to the identity functor. Notice that this is an instance of the general fact
that the counit of an adjunction F ` G is an isomorphism if and only if G is full and faithful.
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We have proved that I is a full and faithful right adjoint , thus it reflects and preservesmonomorphisms,
therefore, using Proposition 6.1.9, we can deduce the following result.

Corollary 6.1.12. Given a morphism (f, g) : G → H in SGraph, the following are equivalent

1. (f, g) is a mono in SGraph;

2. f and g are injective;

3. g is injective.

Corollary 6.1.13. The functor L preserves monomorphisms.

Proof. Let (f, g) : G → H be a monomorphism in Graph, then L(f, g) = (f, g) where f is the unique
arrow EL(G) → EL(H) fitting in the diagram

EG
f //

πG

��

EH

πH

��
EL(G)

f

// EL(H)

By point 2 of Corollary 6.1.5 g is injective and Corollary 6.1.12 yields the thesis.

Corollary 6.1.14. LetD : D → SGraph be a diagramand (C, {(fD, gD)}D∈D) a colimiting cocone for I◦D,

then
(
L(C),

{
L(fD, gD) ◦

(
π−1
G , idVG

)}
D∈D

)
is colimiting forD. In particular, SGraph is cocomplete.

Proof. L is a left adjoint, thus it preserves colimits and therefore (L(C), {L(fD, gD)}D∈D) is colimiting
for L ◦ I ◦D which, by Remark 6.1.11 is naturally isomorphic to D through π ∗D.

Proposition 6.1.15. The forgetful functor USGraph obtained restricting UGraph has both a left adjoint∆SGraph

and a right adjoint∇SGraph.

Proof. For the left adjoint just compose L and ∆Graph. To see that USGraph has a right adjoint, define

∇SGraph(X) as (X×X,X, π1, π2). For every setX we have idX : USGraph

(
∇SGraph(X)

)
→ X . Moreover,

if a function g : USGraph(G) → X is given, then we can take (g◦sG , g◦tG) : EG → X×X . By construction
((g ◦ sG , g ◦ tG) , g) is the unique arrow G → ∇SGraph(X) such that

g = idX ◦ USGraph ((g ◦ sG , g ◦ tG) , g)

and we can conclude.

Corollary 6.1.16. M(SGraph) is stable under pushouts.

Proof. Take a pushout square with (f1, g1) in M(SGraph)

H
(f2,g2) //

(f1,g1)

��

K

(p1,q1)

��
G

(p1,q2)
// P
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By Proposition 6.1.15 the following square, obtained applying USGraph is a pushout in Set

VH
g2 //

g1

��

K

q1

��
G

q2
// P

By Corollary 6.1.12 g1 is injective, so q1 is injective too because Set is adhesive, thus, using again Corol-
lary 6.1.12 we can conclude that (p1, q1) is mono.

Our next step is to characterize regular monos of SGraph.

Definition 6.1.17. An arrow (f, g) : G → H in Graph reflects the edges if, for every e ∈ H(g(v1), g(v2))
there exists e′ ∈ G(v1, v2) → H(g(v1), g(v2)) such that e = f(e′).

Remark 6.1.18. If (f, g) : G → H is an arrow of SGraph, then it reflects the edges if and only if G(v1, v2)
is non empty whenever H(g(v1), g(v2)) 6= ∅. Indeed, since H is simple, if e′ belongs to G(v1, v2), then
necessarily we must have e = f(e′).

Proposition 6.1.19. An arrow (f, g) : G → H of SGraph is a regular monomorphism if and only if it reflects
the edges and g is injective.

Proof. (⇒) Suppose that (f, g) is the equalizer of (f1, g1), (f2, g2) : H ⇒ K, since I preserves limits, (f, g)
is the equalizer of (f1, g1) and (f2, g2) in Graph. Let G′ be the graph where

EG′ := {e ∈ EH | f1(e) = f2(e)} VG′ := {v ∈ VH | v1(w) = v2(w)}

and sG′ , tG′ are the restrictions of sH and tH. Then, byCorollary 6.1.5 the inclusions i : EG′ → EH, j : VG′ →
VH provide an equalizer (i, j) : G′ → H of (f1, g1) and (f2, g2) inGraph. By Remark 6.1.7, G′ is an object
of SGraph. I preserves limits so there exists an isomorphism (ϕ, ψ) : G → G′ such that

G
(f,g) //

(ϕ,ψ) ��?
??

??
??

H

G′

(i,j)

??~~~~~~~~

commutes. If we show that (i, j) is edge-reflecting we are done. For every e ∈ H(i(v1), i(v2)) we have

sK(f1(e)) = g1(sH(e))

= g1(i(v1))

= g2(i(v1))

= g2(sH(e))

= sK(f2(e))

tK(f1(e)) = g1(tH(e))

= g1(i(v1))

= g2(i(v1))

= g2(tH(e))

= tK(f2(e))

Thus e is an element of EG because K is simple.

(⇐) Take the set
V := VH + (VH ∖ g(VG))

and define E ⊆ V × V putting (v, v′) ∈ E if and only if one of the following is true
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• v = i1(w), v′ = i1(w
′) and H(w,w′) 6= ∅;

• v = i2(w), v′ = i2(w
′) and H(w,w′) 6= ∅;

• v = i1(w), v′ = i2(w
′) and H(w,w′) 6= ∅;

• v = i2(w), v′ = i1(w
′) and H(w,w′) 6= ∅;

where i1 and i2 are the inclusion of VH and VH ∖ g(VG) into V . Restricting the projections, we get two
arrow s, t : E ⇒ V , let K be the directed graph (E, V, s, t), which by construction is simple. Now, take

f : EG → V e 7→ (i1(sH(e)), i1(tH(e)))

coupled with i1 : VH → V it induces a morphism (f, i1) : H → K. On the other hand, define

i′ : VH → V w 7→

{
i1(w) w ∈ g(VG)

i2(w) w /∈ g(VG)

and

f ′ : EH → E e 7→





(i1(sH(e)), i1(tH(e))) sH(e), tH(e) ∈ g(VG)

(i2(sH(e)), i2(tH(e))) sH(e), tH(e) /∈ g(VG)

(i1(sH(e)), i2(tH(e))) sH(e) ∈ g(VG)

(i2(sH(e)), i1(tH(e))) tH(e) ∈ g(VG)

Define the set A ⊆ EH as

A := {e ∈ EH | sH(e), tH(e) ∈ g(VG)}

with inclusion i : A → EH. Let also j be the inclusion g(VH) → VH. By construction there are arrows
s, t : A⇒ g(VH) such that the following diagrams commute:

A
i //

s

��

EH

sH

��

A
i //

t

��

EH

tH

��
g(VG)

j
// VH g(VG)

j
// VH

Putting G′ := (A, g(VG), s, t) we get a (simple) graph, with an inclusion (i, j) : G′ → G which is the
equalizer in Graph of (f, i1) and (f ′, i′).

Now, g = j ◦ ϕ for some ϕ : VH → g(VG) and, since (f, g) is a morphism of SGraph, f = i ◦ ψ for
some ψ : EH → A. We have the following two chains of identities

j ◦ ϕ ◦ sG = g ◦ sG

= sH ◦ f

= sH ◦ i ◦ ψ

= j ◦ s ◦ ψ

j ◦ ϕ ◦ tG = g ◦ tG

= tH ◦ f

= tH ◦ i ◦ ψ

= j ◦ t ◦ ψ

Since j is injective, we obtain a morphism (ψ, ϕ) : G → G′. Moreover, by construction ϕ is surjective
and g is injective by hypothesis, thus also ϕ is injective and, by Corollary 6.1.12, we can deduce that ψ
is injective too. Let us show that ψ is also surjective. Given e ∈ A, then e ∈ H(g(v1), g(v2)) for some
v1, v2 ∈ VG , thus there exists e′ ∈ G(v1, v2) and, necessarily, f(e′) = e, but this means that ψ(e′) = e.
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Example 6.1.20. In [67] it is shown that SGraph is not quasiadhesive. Too see this, using Corollary 5.2.25,
it is enough to notice that the union of regular monos in SGraph is not a regular mono. Take

G := (1, {0, 1}, δ0, δ1) M := (∅, 1, ?1, ?1)

Then we have morphisms (?1, δ0), (?1, δ1) : M ⇒ G which, by Proposition 6.1.19, are regular monos.
Their supremum in Sub(G) is the inclusion of (∅, {0, 1}, ?0, ?1) into G which, again by Proposition 6.1.19,
is not a regular monomorphism.

Definition 6.1.21. A monomorphism (f, g) : G → H in Graph is said to be downward closed if, for all
e ∈ EH, e ∈ f(EG) whenever tH(e) ∈ g(VG). We denote by dcl, dcls and dcld the classes of downward
closed morphisms in Graph, SGraph and DAG respectively.

Proposition 6.1.22. Every downward closed morphism in SGraph is a regular mono.

Proof. Let (f, g) : G → H be an element of dcls, we only have to check that it is edge-reflecting. Given
e ∈ H(g(v1), g(v2)), since (f, g) is downward closed there exists e′ such that f(e′) = e. But then

g(sG(e
′)) = sH(e)

= g(v1)

g(tG(e
′)) = tH(e)

= g(v2)

and, since g is injective, it follows that e′ ∈ G(v1, v2).

Remark 6.1.23. The converse of the previous proposition does not hold. A counterexample is given by
the arrow (?1, δ1) : (∅, 1, ?1, ?1) → (1, {0, 1}, δ0, δ1).

Proposition 6.1.24. Take an arrow (f, g) : G → H in Graph and consider the functor L : Graph →
SGraph left adjoint to the inclusion, then the following hold true:

1. if (f, g) is in dcl then L(f, g) is in dcld;

2. if (f, g) reflects the edges then L(f, g) reflects the edges too.

Proof. 1. Take an element (f, g) : G → H of dcl and let L(f, g) be (f, g) as in Corollary 6.1.13. If
tL(H)(πH(e)) is equal to g(v) for some v ∈ VG then we also have

tH(e) = g(v)

so that there exists e′ ∈ EG such that f(e′) = e. But then

f(πG(e
′)) = πH(f(e′))

= πH(e)

which is what we need to conclude.

2. As before, let L(f, g) be (f, g) and suppose that πG(e) be an edge between g(v) and g(v′) in L(H).
Then e is an edge in H(g(v), g(v′)) and thus there exists e′ ∈ G(v, v′) such that e = f(e′), but this,
by construction, entails f(e′) = e.

Corollary 6.1.25. R(SGraph) is stable under pushouts.
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Proof. Let (f1, g1) : H → G be a regular mono in SGraph. Given another (f2.g2) : H → K we can
consider the following two diagrams, the first of which is a pushout square in Graph, while the second
one is a pushout in SGraph by Corollary 6.1.14.

H
(f2,g2) //

(f1,g1)

��

K

(p1,q1)

��

H
(f2,g2) //

(f1,g1)

��

K

(π−1
G ,idVG )��

L(I(K))

L(p1,q1)��
G

(p2,q2)
// P G

(π−1
G ,idVG )

// L(I(G))
L(p2,q2)

// L(P)

Since Graph is adhesive, we already know that (p1, q1) a monomorphism, thus if we show that it reflects
the edges we get the thesis using Corollary 6.1.12 and Propositions 6.1.19 and 6.1.24.

ByCorollary 6.1.5 we also know that the squares below are pushouts in Set and that sP , tP : EP ⇒ VP
are the arrows induced by q2 ◦ sK, q1 ◦ sG and by q2 ◦ tK, q1 ◦ tK respectively.

EH
f2 //

f1

��

EK

p1

��

VH
g2 //

g1

��

VK

q1

��
EG p2

// EP VG q2
// VP

Let us take an edge e ∈ P (q1(v), q1(v
′)). If e = p1(e

′) for some e′ ∈ EK then

q1(sK(e
′)) = sP(p1(e

′))

= sP(e)

= q1(v)

q1(tK(e
′)) = tP(p1(e

′))

= tP(e)

= q1(v
′)

showing that e′ is an edge between v and v′ as wanted. On the other hand, if e = p2(e
′) for some e′ ∈ EG ,

then

q2(sG(e
′)) = sP(p2(e

′))

= sP(e)

= q1(v)

q2(tG(e
′)) = tP(p2(e

′))

= tP(e)

= q1(v
′)

and by Lemma 6.1.1 this means that there are h1, h2 in VH such that

sG(e
′) = f1(h1) v = f2(h1) tG(e

′) = f1(h2) v′ = f2(h2)

Since (f1, g1) reflects the edges we get e ∈ EH such that f1(e) = e′ and so

p1(f2(e)) = p2(f1(e))

= p2(e
′)

= e
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In particular this means that

q1(sK(f2(e))) = sP(p1(f2(e)))

= sP(e)

= q1(v)

q1(tK(f2(e))) = tP(p1(f2(e)))

= tP(e)

= q1(v
′)

showing that f1(e) belongs to K(v, v′).

We are now ready to show some closure properties of DAG and SGraph in Graph.

Lemma 6.1.26. The following are true:

1. SGraph andDAG are closed inGraph under pullbacks;

2. SGraph is closed inGraph underR(SGraph),M(SGraph)-pushouts;

3. DAG is closed inGraph under dcld,M(DAG)-pushouts.

Proof. 1. By Corollary 6.1.5, we can construct the pullback P of (f1, g1) : G → H along the arrow
(f2, g2) : K → H using the pullbacks

EP
p1 //

p2

��

EK

f2

��

VP
q1 //

q2

��

VK

q2

��
EG

f1

// EH VG g1
// VH

and defining sP , tP : EP ⇒ VP as the arrows induced by sK ◦ p1, sG ◦ p2 and by tK ◦ p1, tG ◦ p2.
The colimiting cone is then given by (p1, q1) and (p2, q2). Now, suppose that G and K are simple,
then if there are e, e′ ∈ EP with

sP(e) = sP(e
′) tP(e) = tP(e

′)

we also have

sK(p1(e)) = q1(sP(e))

= q1(sP(e
′))

= sK(p1(e
′))

sG(p2(e)) = q2(sP(e))

= q2(sP(e
′))

= sG(p1(e
′))

tK(p1(e)) = q1(tP(e))

= q1(tP(e
′))

= tK(p1(e
′))

tG(p2(e)) = q2(tP(e))

= q2(tP(e
′))

= tG(p2(e
′))

showing that
p1(e) = p1(e

′) p2(e) = p2(e
′)

and so we can conlude that e = e′. In particular, SGraph is closed in Graph under pullbacks. On
the other hand, if G orH is inDAG, then Remark 6.1.3 entails that P is also inDAG and thus also
DAG is closed in Graph under pullbacks.
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2. Using again Corollary 6.1.5, we see that, given (f1, g1) : H → G and (f2, g2) : H → K, their pushout
P is defined taking the two pushout squares

EH
f2 //

f1

��

EK

p1

��

VH
g2 //

g1

��

VK

q1

��
EG p2

// EP VG q2
// VP

with the arrow induced by q2 ◦ sK and q1 ◦ sG as sP , while tP is the one coming from q2 ◦ tK,
q1◦tG . Suppose now that (f1, g1) is inR(SGraph) and (f2, g2) inM(SGraph). By Corollary 6.1.5
and Propositions 6.1.9 and 6.1.19 we know that f1, f2, g1 and g2 are injective. Since Set is adhesive
this implies that p1, p2, q1 and q2 are injective too. Take now two elements e1 and e2 of P(v, v′),
we can use point 1 of Lemma 6.1.1 to split the cases.

• If e1 = p1(e
′
1) and e2 = p1(e

′
2) for some e′1, e

′
2 ∈ EK. Then

q1(sK(e
′
1)) = sP(p1(e

′
1))

= sP(e1)

= v

= sP(e2)

= sP(p1(e
′
2))

= q1(sK(e
′
2))

q1(tK(e
′
1)) = tP(p1(e

′
1))

= tP(e1)

= v′

= tP(e2)

= tP(p1(e
′
2))

= q1(tK(e
′
2))

By the injectivity of q1 is injective we get

sK(e
′
1) = sK(e

′
2) tK(e

′
1) = tK(e

′
2)

therefore, since K is simple, we know that e′1 = e′2 and thus e1 = e2.

• Similarly, if e1 = p2(e
′
1) and e2 = p2(e

′
2) for some e′1, e

′
2 ∈ EG we can compute again to get

q2(sK(e
′
1)) = sP(p2(e

′
1))

= sP(e1)

= v

= sP(e2)

= sP(p2(e
′
2))

= q2(sK(e
′
2))

q2(tK(e
′
1)) = tP(p2(e

′
1))

= tP(e1)

= v′

= tP(e2)

= tP(p2(e
′
2))

= q2(tK(e
′
2))

and the thesis now follows using the injectivity of q2.

• e1 = p1(e
′
1) and e2 = p2(e

′
2) for some e′1 ∈ K and e′2 ∈ EG . Therefore we have

p1(sK(e
′
1)) = v

= p2(sG(e
′
2))

p1(tK(e
′
1)) = v′

= p2(tG(e
′
2))

Thus by Lemma 6.1.1 there exist w1 and w2 ∈ VH such that

g1(w1) = sG(e
′
2), g2(w1) = sK(e

′
1) g1(w2) = tG(e

′
1), g2(w2) = tK(e

′
2)
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Hence e′1 ∈ G(g1(w1), g1(w2)), but (f1, g1) is regular, so Proposition 6.1.19 entails the exis-
tence of e ∈ H(w1, w2). Now, f1(e) = e′1, while

sK(f2(e)) = g2(sH(e))

= g2(w1)

= sK(e
′
1)

tK(f2(e)) = g2(tH(e))

= g2(w1)

= tK(e
′
1)

and thus f2(e) = e′1. We conclude that e1 = e2 in EP

• e1 = p2(e
′
1) and e2 = p1(e

′
2) for some e′1 ∈ G and e′2 ∈ EK. This is done exactly as in the

previous point swapping the roles of e′1 and e
′
2.

3. Now let (f1, g1) and (f2, g2) be, respectively, a downward closed morphism and a mono in DAG,
we are going to use agin the explicit construction pushouts in Graph. Suppose that a cycle {ei}ni=1

in P is given. We split again the cases using Lemma 6.1.1.

• For every 1 ≤ i ≤ n, ei = p1(e
′
i) for e

′
i ∈ EK. Then

q1(sK(e
′
1)) = sP(e1)

= tP(en)

= q1(tK(e
′
n))

q1(tK(e
′
i)) = tP(ei)

= sP(ei+1)

= q1(tK(e
′
i+1))

As before, q1 is injective because is the pushout of an injective function, thus {e′i}
n
i=1 is a cycle

in K, which is absurd.

• For every 1 ≤ i ≤ n, ei = p2(e
′
i) for e

′
i ∈ EG . Then

q2(sG(e
′
1)) = sP(e1)

= tP(en)

= q2(tG(e
′
n))

q2(tG(e
′
i)) = tP(ei)

= sP(ei+1)

= q2(tG(e
′
i+1))

We can conclude again appealing to the injectivity of q2.

• To deal with the other cases we can reason in the following way. Take e = p1(e
′) for some

e′ ∈ EK and suppose that there exists a = p2(a
′) for some a′ ∈ EG such that sP(e) = tP(a).

By Lemma 6.1.1 there exists v ∈ VH such that

q2(g1(v)) = tP(a)

= q2(p2(a
′))

q2 is injective, thus g1(v) = p2(a
′). Since (f1, g1) ∈ dcld there exists b ∈ EH such that

f1(b) = a′. Thus a = p1(f2(b)) belongs to p1(EK).

Let us apply this argument to our cycle {ei}ni=1. By Lemma 6.1.1 and the second point above,
there must be an index j such that ej ∈ p1(EK). Now, if j > 1 the previous argument
shows that ej−1 ∈ p1(EK) too, thus surely e1 ∈ p1(EK). But, since {ei}ni=1 is a cycle, the
same argument shows that en ∈ p1(EK) and this implies that every ei ∈ p1(EK) for every
1 ≤ i ≤ n, but we already know that this is absurd.

In particular, this implies that the inclusion DAG → Graph preserves monomorphisms, since it is a
full inclusion we get an analog of Corollary 6.1.12.
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Corollary 6.1.27. Given a morphism (f, g) : G → H inDAG, the following are equivalent

1. (f, g) is a mono;

2. f and g are injective;

3. g is injective.

We can also establish another result, regarding pushouts in DAG.

Proposition 6.1.28. Let J be the inclusionDAG → SGraph, given a diagram F : D → DAG, the following
are equivalent:

1. F has a colimit;

2. J ◦ F has a colimiting cocone (C, {(cD, dD)}D∈D) with C acyclic.

Proof. (1 ⇒ 2) Let (A, {(aD, bD)}D∈D) be a colimiting cocone for F in DAG. By Corollary 6.1.14 we
know that J ◦F also has a colimiting cocone (C, {(cD, dD)}D∈D) . (J(A), {J(aD, bD)}D∈D) is a cocone
on J ◦D and thus there exists an arrow (a, b) : C → A and the thesis follows from Remark 6.1.3.

(2 ⇒ 1) This follows from the fact that J is full and faithful and thus it creates colimits.

Corollary 6.1.29. The inclusion J : DAG → SGraph preserves colimits.

Proof. LetF : D → DAG be a diagramwith colimiting cocone (A, {(aD, bD)}D∈D), by Proposition 6.1.28
in SGraph there exists a colimiting cocone (C, {(cD, dD)D∈D}) for J ◦ F with C acyclic. Since J is full
and faithful we get that (C, {(cD, dD)D∈D}) is colimiting for F too and thus there is an isomorphism
(ϕ, ψ) : C → A in DAG such that

(aD, bD) = (ϕ, ψ) ◦ (cD, dD)

and this now implies that (J(A), {J(aD, bD)}D∈D) is colimiting for J ◦ F

Corollary 6.1.30. M(DAG) is stable under pushouts.

Proof. Let (f1, g1) : H → G be a mono in DAG and take a pushout square

H
(f2,g2) //

(f1,g1)

��

K

(p1,q1)

��
G

(p2,q2)
// P

ByCorollary 6.1.29 the same square is a pushout in SGraph, and, by Corollaries 6.1.12 and 6.1.27, (f1, g1)
is a mono in SGraph too, so Corollary 6.1.16 entails that (p1, q1) ∈ M(SGraph) and we conclude using
again Corollaries 6.1.12 and 6.1.27.

Our next step is to establish some kind of stability also for downward-closed morphisms of DAG.

Proposition 6.1.31. The class dcld is stable under pullbacks and pushouts.

Proof. Let us show the two halves of the thesis separately
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• dcld is stable under pullbacks. Take pullback square as the one below with (f, g) ∈ dcld

P
(p2,q2) //

(p1,q1)

��

K

(f2,g2)

��
G

(f1,g1)
// H

Let e1 ∈ EG be an edge such that
tG(e1) = q1(v)

for some v ∈ VP . We have

tH(f1(e1)) = g1(tG(e1))

= g1(q1(v))

= g2(q2(v))

By hypothesis, (f2, g2) ∈ dcld, and so there exist e2 ∈ EK such that

f2(e2) = f1(e1)

But, since EP is a pullback, this implies the existence of e ∈ EP such that

e1 = p1(e) e2 = p2(e)

In particular, we get that (p1, q1) is an element of dcld.

• dcld is stable under pushouts. Take a pushout square in SGraph with (f1, g1) in dcld.

H
(f2,g2) //

(f1,g1)

��

K

(p′1,q
′
1)

��
G

(p′2,q
′
2)

// P ′

By Corollary 6.1.29 the square above is a pushout in SGraph too, which, Corollary 6.1.14, must fit
in a diagram

H
(f2,g2) //

(f1,g1)

��

K
(π−1

K ,idVK
)

''PP
PPP

PPP
PPP

PP

(p1,q1)

��

(p′1,q
′
1)

��
G

(p1,q2)
33

(π−1
G ,idVG

)

%%LL
LL

LL
LL

LL
LL

(p′2,q
′
2) // P ′

(ϕ,ψ)

''OO
OOO

OOO
OOO

OOO
L(I(K))

(L(p′1,q
′
1))

��
L(I(G))

(L(p′2,q
′
2))

// L(P)

P

(πP ,idVP
)

jjTTTTTTTTTTTTTTTTTTTT
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where the outer edges form a pushout in Graph and (ϕ, ψ) : P ′ → L(P) is an isomorphism. If we
show that (p1, q1) is in dcl, Proposition 6.1.24 yields the thesis.

Suppose that e ∈ EP is such that for some v ∈ VK

tP(e) = q1(v)

If e ∈ p1(EK) there is nothing to show. Otherwise, by Lemma 6.1.1 we know that there exists
e′ ∈ EG such that p2(e′) = e, but then

q1(v) = tP(e)

= q2(tG(e
′))

Thus, again by Lemma 6.1.1 there exists w ∈ VH such that

g1(w) = tG(e
′) g2(w) = v

Since, by hypothesis, (f1, g1) is in dcl, there exists e′′ ∈ EH such that f1(e′′) = e′, so that

e = p2(e
′)

= p2(f1(e
′′))

= p1(f2(e
′′))

which shows that e is in the image of p1 as claimed.

We can now deduce the following results from Theorem 5.1.31 and Lemma 6.1.26.

Corollary 6.1.32. The following are true

1. SGraph isR(SGraph),M(SGraph)-adhesive

2. SGraph isM(SGraph),R(SGraph)-adhesive

3. DAG is dcld,M(DAG)-adhesive.

Proof. We only have to show that the pairs (R(SGraph),M(SGraph)), (M(SGraph),R(SGraph)) are
preadhesive structures on SGraph and that (dcld,M(DAG)) is a preadhesive structure on DAG. We
already know by Corollaries 6.1.16, 6.1.25 and 6.1.30 and Proposition 6.1.31 that all these classes are
stable under pullbacks and pushouts and clearly they contains all isomorphisms and are closed under
composition. For the decomposition properties: M(X) is closed under decomposition, andR(X) is closed
underM(X)-decomposition for every category X, soM(SGraph),R(SGraph) andR(DAG) are closed
under decomposition, R(SGraph) under M(SGraph)-decomposition, M(SGraph) under R(SGraph)-
decomposition and, finally, the class M(DAG) under dcld-decomposition.
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6.1.2 Tree orders

In this section we present trees as partial orders and show that the resulting category is equivalent to a
topos of presheaves, and thus, by Corollary 5.3.11, adhesive. This fact will be exploited in Sections 6.1.3
and 6.2.3 to construct two categories of hierarchical graphs, where the hierarchy between edges is modelled
by trees.

Definition 6.1.33. A tree order is a partial order (E,≤) such that for every e ∈ E, the set

↓e := {e′ ∈ E | e′ ≤ e}

is a finite set totally ordered by the restriction of ≤. Since ↓e is a finite chain we can define the immediate
predecessor function

pE : E → E + 1 e 7→

{
max(↓e∖ {e}) ↓e 6= {e}

⊥ ↓e = {e}

For any k ∈ N+ we can define the kth predecessor function by induction as follows:

pkE : E → E + 1 e 7→

{
pE
(
pk−1
E (e)

)
pk−1
E (e) ∈ E

⊥ pk−1
E (e) = ⊥

We extend this definition to k ∈ N taking p0E to be the inclusion ιE : E → E + 1.
Given a monotone map f : (E,≤) → (F,≤) and its extension f⊥ : E + 1 → F + 1 sending ⊥ to ⊥,

we say that f is strict if the following diagram commutes

E
pE //

f

��

E + 1

f⊥

��
F

pF
// F + 1

Tree will denote the subcategory of the category of posets Pos given by tree orders and strict morphisms.
UTree will denote the functor Tree → Set obtained restricting the forgetful functor from Pos to Set.

Remark 6.1.34. Clearly p1E = pE and it holds that pkE(e) = ⊥ if and only if |↓e| ≤ k. In this case an easy
induction shows that |↓pkE(e)| = |↓e| − k.

Example 6.1.35. A strict morphisms is simply a monotone function that preserves immediate predeces-
sors (and thus every predecessor). For instance the function {0} → {0, 1} sending 0 to 1 and where we
endow the codomain with the order 0 ≤ 1, is not a strict morphism.

Let (E,≤) be an object of Tree, for every n ∈ N we can put

Ê(n) := {e ∈ E | |↓e∖ {e}| = n}

Given anotherm ∈ N such that n ≤ m, we can define a function

pEn,m : Ê(m) → Ê(n) e 7→ pm−n
E (e)
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which is well defined since |↓e| > m− n so that

|↓pm−n
E (e)| = |↓e| −m+ n

= m+ 1−m+ n

= n+ 1

Notice, moreover that ifm = n, pm−n
E (e) is the identity, while for any k ≤ n ≤ m we have

pEk,n
(
pEn,m (e)

)
= pn−kE

(
pm−n
E (e)

)

= pn−k+m−n
E (e)

= pm−k
E (e)

= p
m,k
E (e)

Thus, taking the category associates to the ordinal ω = (N,≤) we get a presheaf Ê : ωop → Set.

Proposition 6.1.36. Let f : (E,≤) → (F,≤) be an arrow in Tree, for every n ∈ N, if e ∈ Ê(n) then

f(e) ∈ F̂ (n). Moreover, the following equation holds

f⊥ (pnE (e)) = pnF (f (e))

Proof. Let us prove by induction the first half of the proposition.

• If n = 0 then

pF (f(e)) = f⊥(pE(e))

= ⊥

so that ↓f(e) = ∅ and thus f(e) ∈ F̂ (0).

• If n ≥ 1 since e ∈ Ê(n), then pE(e) ∈ Ê(n − 1) and, by the inductive hypothesis, f(pE(e)) ∈

F̂ (n− 1), therefore

f(pE(e)) = f⊥(pE(e))

= pF (f(e))

so pF (f(e)) ∈ F̂ (n− 1) and thus f(e) ∈ F̂ (n).

For the second half we use again induction.

• Suppose that n = 0, then

f⊥(p
0
E(e)) = f⊥(ιE(e))

= ιF (f(e))

= p0F (f(e))

• Let n be greater or equal than 1, then

f⊥ (pnE (e)) = f⊥
(
pE
(
pn−1
E (e)

))

= pF
(
f⊥
(
pn−1
E (e)

))

= pF
(
pn−1
F (f(e))

)

= pnF (f(e))
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and we get the thesis.

We can now prove the main result of this section.

Theorem 6.1.37. There exists an equivalence of categories (̂−) : Tree → Setω
op

sending (E,≤) to Ê.

Proof. By Proposition 6.1.36, given f : (E,≤) → (F,≤) in Tree we can define

f̂n : F̂ (n) → Ĝ(n) e 7→ f(e)

We have to chek naturality. Let n ≤ m and e ∈ Ê(m), then, using Proposition 6.1.36

f̂n
(
pEn,m(e)

)
= f

(
pm−n
E (e)

)

= f⊥
(
pm−n
E (e)

)

= pm−n
F (f(e))

= pFn,m

(
f̂n(e)

)

Thus we have a functor (̂−) : Tree → Setω
op

, we want to show that it is an equivalence. Since every

elements e of E belongs Ê(n) for some n ∈ N we can deduce that (̂−) is faithful. For fullness, take

α : Ê → F̂ , and define

α : (E,≤) → (F,≤) e 7→ α|↓e|−1(e)

To see that α is strict, notice that, whenever |↓e| = 1 we have e ∈ Ê(0), thus α0(e) ∈ F̂ (0), so that

α⊥(pE(e)) =

{
α⊥(⊥) |↓e| = 1

α|↓pE(e)|−1(pE(e)) |↓e| ≥ 2

=

{
⊥ |↓e| = 1

α|↓e|−2(pE(e)) |↓e| ≥ 2

=

{
pF (α0(e)) |↓e| = 1

α|↓e|−2

(
pE|↓e|−1,|↓e|−2(e)

)
|↓e| ≥ 2

=

{
pF (α0(e)) |↓e| = 1

pF|↓e|−1,|↓e|−2

(
α|↓e|−1(e)

)
|↓e| ≥ 2

=

{
pF (α0(e)) |↓e| = 1

pF
(
α|↓e|−1(e)

)
|↓e| ≥ 2

= pF (α(e))

Finally, given F : ωop → Set we define F as the poset in which

• the underlying set is given by
∑
k∈N

F (k);

• if ιk is the coprojecton F (k) →
∑
k∈N

F (k), we put ιn(x) ≤ ιm(y) whenever

n ≤ m x = fn,m(y)

where fn,m : F (m) → F (n) is the function corresponding to n ≤ m.
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Given ιm(e) ∈
∑
k∈N

F (k) it holds that

↓ιm(e) =

{
x ∈

∑

k∈N

F (k) | x = ιn (fn,m(e)) for some n ≤ m

}

and so |↓ιm(e)| = m+ 1. On the other hand if n ≤ k and

x = ιn(fn,m(e)) y = ιk(fk,m(e))

then

fn,m(e) = fn,k(fk,m(e))

showing x ≤ y. Thus ↓ιm(e) is totally ordered and F is an object of Tree. By construction we have

|ιn(e)∖ ιn(e)| pF (ιn(e)) = fn−1,n

and this shows that F is sent by (̂−) to F .

Corollary 6.1.38. Tree is adhesive and the forgetful functor UTree : Tree → Set preserves all colimits.

Proof. Let (̂−) be the equivalence constructed in the previous theorem, and define S : Setω
op

→ Set as

G

α

−
→

F

7−→

7−→

∑
n∈N

G(n)

−
→ ∑

n∈ω αn

∑
n∈N

F (n)

since colimits are computed component-wise in Setω
op

and coproducts in Set commute with colimits we
get that S is cocontinuous. Morover the triangle commutes

Tree
(̂−) //

UTree ""D
DD

DD
DD

D Setω
op

S{{xx
xx
xx
xx
x

Set

commutes and the thesis follows.

6.1.3 Hierarchical graphs

We can use trees to produce a category of hierarchical graphs [102], which, in addition, can be equipped
with an interface, modelled by a function into the set of nodes.

Definition 6.1.39. A hierarchical graphs G is a 4-uple ((EG ,≤), VG , sG , tG) made by a tree order (EG ,≤),
a set VG and functions sG , tG : EG ⇒ VG . Amorphism G → H is a pair (f, g) with f : (E,≤) → (F,≤) in
Tree and g : VG → VH in Set such that the following squares commute

EG

UTree(f)

��

sG // VG

g

��

EG
tG //

UTree(f)

��

VG

g

��
EG sH

// VH EG
tH

// VH

This data, with componentwise composition, form a category HGraph.
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We can give an analog of Proposition 6.1.4.

Proposition 6.1.40. HGraph is isomorphic to UTree ↓prod

Proof. Define F : HGraph → UTree↓prod as

((EH,≤), VH, sH, tH)

(f, g)

−
→

((EG ,≤), VG , sG , tG)

7−→

7−→

((EH,≤), VH, (sH, tH))

−
→ (f, g)

((EG ,≤), VG , (sG , tG))

and G : UTree↓prod → HGraph

((EH,≤), VH, pH)

(f, g)

−
→

((EG ,≤), VG , pG)

7−→

7−→

((EH,≤), VH, π1 ◦ pH, π2 ◦ pH)

−
→ (f, g)

((EG ,≤), VG , π1 ◦ pG , π2 ◦ pG)

The thesis follows at once.

Applying Theorem 5.1.38 and Corollary 6.1.38 we get the following result.

Corollary 6.1.41. HGraph is an adhesive category.

Given a hierarchical graph G , we can model an interface as a function between a set X and the set of
nodes VG . We are then lead to the following definition.

Definition 6.1.42. The categoryHIGraph of hierarchical graphs with interface is defined in the following
way. Objects are triples (G, X, f) made by a hierarchical graph G, a set X and a function f : X → VG . A
morphism (G, X, f) → (H, Y, g) is a triple (h, k, l) with h : (E,≤) → (F,≤) in Tree, g : VG → VH and
l : X → Y in Set such that the following squares commute

EG

UTree(h)

��

sG // VG

k

��

EG
tG //

UTree(h)

��

VG

k

��

X
f //

l

��

VG

k

��
EG sH

// VH EG
tH

// VH Y
g

// VH

Now, UTree : Tree → Set preserves the initial objects by Corollary 6.1.38, thus, Proposition A.2.3
implies that the forgetful functor HGraph → Set, which only remembers the set of nodes, has a left
adjoint ∆HGraph which sends X to ((∅,≤), X, ?X , ?X). In particular we get the following.

Proposition 6.1.43. The categoryHIGraph is isomorphic to∆HGraph↓idHGraph.

Proof. Define F : HIGraph → ∆HGraph ↓idHGraph and G : ∆HGraph↓idHGraph → HIGraph putting

(H, Y, g)

(h, k, l)

−
→

(G, X, f)

7−→

7−→

(Y,H, (?Y , g))

−
→ (l, (h, k))

(X,G, (?X , f))

(Y,H, (?Y , g))

(l, (h, k))

−
→

(X,G, (?X , f))

7−→

7−→

(H, Y, g)

−
→ (h, k, l)

(G, X, f)

which, by inspection, are mutual inverses.

Corollary 6.1.44. HIGraph is an adhesive category.
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6.2 M,N -adhesivity of some categories of hypergraphs

In this section we will move from the world of graphs to the one of hypergraphs allowing an edge to join
two arbitrary subsets of nodes. Even in this case, leveraging the modularity provided by Theorem 5.1.31,
it is possible to combine sufficiently adhesive categories of preorders or graphs (modelling the hierarchy
between the edges) while retaining suitable adhesivity properties. It is worth noticing that, beside hyper-
graphs or interfaces, this methodology can be extended easily to other settings like Petri nets (see [44]).

6.2.1 An introduction to hypergraphs

We will start this section with the definition of (directed) hypergraph and we will see how label them
with an algebraic signature. A pivotal role will be played by the Kleene star (−)⋆ the functor Set → Set
introduced in Example 2.1.8.

Definition 6.2.1. A hypergraph is a 4-uple G := (EG , VG , sG , tG)made by two sets EG and VG , whose ele-
ments are called respectively hyperedges and nodes, plus a pair of source and target functions sG , tG : EG ⇒

V ⋆G . A hypergraph morphism (EG , VG , sG , tG) → (EH, VH, sH, tH) is a pair (h, k) of functions h : EG →
EH, k : VG → VH such that the following diagrams commute.

EG

h

��

sG // V ⋆G

k⋆

��

EG
tG //

h

��

V ⋆G

k⋆

��
EG sH

// V ⋆H EG
tH

// V ⋆H

We define Hyp to be the resulting category.

Let prod⋆ be the composition prod◦ (−)⋆, then we can prove the following result analogous to Propo-
sitions 6.1.4 and 6.1.40.

Proposition 6.2.2. Hyp is isomorphic to idSet ↓prod
⋆

Proof. This is done exactly as in Propositions 6.1.4 and 6.1.40. Define two functorsF : Hyp → idSet ↓prod
⋆

and G : idSet ↓prod
⋆ → Hyp as follows

(EH, VH, sH, tH)

(f, g)
−
→

(EG , VG , sG , tG)

7−→

7−→

(EH, VH, (sH, tH))

−
→ (f, g)

(EG , VG , (sG , tG))

(EH, VH, pH)

(f, g)

−
→

(EG , VG , pG)

7−→

7−→

(EH, VH, π1 ◦ pH, π2 ◦ pH)

−
→ (f, g)

(EG , VG , π1 ◦ pG , π2 ◦ pG)

Now it is enough to notice that they are one the inverse of the other.

We can show that the Kleene star preserves pullbacks (see also [35, Sec. 3] and [77, Ch.4] for details
and a deeper and more conceptual approach).

Proposition 6.2.3. The functor (−)⋆ preserves pullbacks.

Proof. Suppose that a pullbacks square as the one below is given.

P
p1 //

p2

��

X

f

��
Y

g
// Z
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and consider the solid part of the following diagram.

Z

t

  

t1

!!

t2

  

P ⋆
p⋆1 //

p⋆2
��

X⋆

f⋆

��
Y ⋆

g⋆
// Z⋆

For every z ∈ Z we have arrows t1(z) : n→ X and t2(z) : m→ Y such that

f⋆(t1(x)) = g⋆(t2(z))

In particular this entails that n = m and that there is t(z) : n→ P as in the diagram below

n
t(z)

  @
@@

@@
@@ t1(z)

  

t2(z)

��

P
p1 //

p2

��

X

f

��
Y

g
// Z

But this is equivalent to say that the dotted t : Z → P exists, while its uniqueness follows at once from
the universal property of the pullback with which we started.

Remark 6.2.4. Preservation of pullbacks implies that (−)⋆ sends monos to monos.

Corollary 6.2.5. Hyp is an adhesive category.

Proof. (−)⋆ preserves pullbacks by Proposition 6.2.3, while prod is continuous by definition, thus the
thesis follows from This follows from Theorem 5.1.38 and Proposition 6.2.2.

Propositions 6.2.2 and A.2.3 allows us to deduce immediately the following.

Proposition 6.2.6. The forgetful functor UHyp : Hyp → Set which sends an hypergraph G to its set of nodes
has a left adjoint∆Hyp.

Remark 6.2.7. Since the initial object of Set is the empty set, ∆Hyp(X) is the hypergraph which has X
as set of nodes and ∅ as set of hyperedges and ?X as both source and target function.

Hypergraphs, can be represented graphically. We will use dots to denote nodes and squares to denote
hyperedges, the name of a node or of an hyperedge will be put near the corresponding dot or square.
Sources and targets are represented by lines between dots and squares: the lines from the sources of an
hyperedge will have an arrowhead in the middle pointing towards the hyperedge, while the lines to the
targets will have arrowheads pointing to the target nodes. We will decorate the arrow corresponding to
the ith letter (i.e. its value at i− 1) of a target or a source with a label i.



6.2.M,N -adhesivity of some categories of hypergraphs 251

Example 6.2.8. Take VG to be be {v1, v2, v3, v4, v5} and EG to be {h1, h2, h3}. Sources and targets are
given by:

sG(h1) : 2 → VG
0 7→ v1
1 7→ v2

sG(h2) : 2 → VG
0 7→ v3
1 7→ v4

sG(h3) : 1 → VG 0 7→ v5

tG(h1) : 2 → VG
0 7→ v3
1 7→ v4

tG(h2) : 2 → VG 0 7→ v5 tG(h3) : 0 → VG tG(h3) =?VG

We can draw the resulting G as follows:

v1

v2

v3

v4

v51 1
h2h1 h3

1

2

1

22

1

Example 6.2.9. Let VG be as in the previous example and EG = {h1, h2, h3}. Then we define

sG(h1) : 0 → VG sG(h1) =?VG sG(h2) : 2 → VG
0 7→ v1
1 7→ v2

sG(h3) : 2 → VG
0 7→ v1
1 7→ v4

tG(h1) : 1 → VG 0 7→ v1 tG(h2) : 1 → VG 0 7→ v3 tG(h3) : 1 → VG 1 7→ v5

Now we can depict G as

v1

v2

v3

v4

v5

1

1

1

h3

h2

h1
1

2

1

2

Example 6.2.10. LetΣ = (OΣ, arΣ) be an algebraic signature, we can construct the hypergraph GΣ taking
VGΣ and EGΣ to be respectively the singleton {♥} and the set OΣ. We put

sGΣ : OΣ → {♥}⋆ o 7→ δ
arΣ(o)
♡ tGΣ : OΣ → {♥}⋆ o 7→ δ♡

For instance let ΣG be the signature of groups of Example 2.2.41, then GΣG is depicted as:

ve

·

(−)−1

1

21
1

1

2
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Hyp as a topos of presheaves By Corollary 5.1.36 we already know thatHyp has all pullbacks and
by Corollary 6.2.5 we know that it is adhesive. Actually more can be proved about it: we can realizeHyp
as a topos of presheaves [26].

Definition 6.2.11. Let H be the category in which:

• the set of objects is given by (N× N) ∪ {•}

• arrows are given by the identities idk,l and id• and exactly k+l arrows fi : (k, l) → •, where i ranges
from 0 to k + l − 1;

• composition is defined simply putting, for every fi : (k, l) → •:

fi = fi ◦ idk,l fi = id• ◦ fi

Now, given F : H → Set we can define

EF :=
∑

k,l∈N

F (k, l)

For every element x of F (k, l) we can put

sFk,l(x) : k → F (•) i 7→ F (fi)(x) tFk,l(x) : l → F (•) i 7→ F (fi+k)(x)

obtaining sF , tF : EF ⇒ F(•)⋆. Let GF be the resulting hypergraph. Now, every η : F → H in SetH has
components ηk,l : F (k, l) → H(k, l), η• : F (•) → H(•), thus it induces a function η̂ : EF → EH such
that the following squares commute

EF
sF //

η̂

��

F (•)⋆

η⋆•

��

EF
tF //

η̂

��

F (•)⋆

η⋆•

��
EH sH

// H(•)⋆ EH
tH

// H(•)⋆

This is equivalent to say that η induces a morphism (η̂, η•) : GF → GH . It is now clear that sending F

to GF and η to (η̂, η•) defines a faithful functor G− : SetH → Hyp.

Proposition 6.2.12. Hyp is equivalent to the category SetH.

Proof. Let X be a set, for every n ∈ N define

Xn := {w ∈ X⋆ | dom(w) = n}

In particular, if F : H → Set then the image of the coprojection ιFk,l : F (k, l) → EF is the intersection

s−1
F (F (•)k) ∩ t

−1
F (F (•)l)

We are now ready to that G− is full and essentially surjective.
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• For fullness, let (f, g) : GF → GH be a morphism of hypergraphs and define fk,l to be f ◦ ιFk,l, the
composition of h with Now, if x ∈ F (k, l) then

sH(fk,l(x)) = sH
(
f
(
ιFk,l(x)

))

= g⋆
(
sF
(
ιFk,l(x)

))
tH(fk,l(x)) = st

(
f
(
ιFk,l(x)

))

= g⋆
(
tF
(
ιFk,l(x)

))

Therefore there exists ηk,l : F (k, l) → H(k, l) fitting in the diagram below

F (k, l)
ιFk,l //

ηk,l

��

EF

fk,l

��
H(k, l)

ιHk,l

// EH

Define η• : F (•) → H(•) simply as g⋆, then the collection of all the ηk,l and of η• defines a natural
transformation η : F → H . Indeed, if fi : (k, l) → • we have:

F (k, l)

sFk,l

**

ιFk,l

//

ηk,l

��

EF

fk,l

��

sF
// F (•)⋆

g⋆

��

F (k, l)

tFk,l

**

ιFk,l

//

ηk,l

��

EF

fk,l

��

tF

// F (•)⋆

g⋆

��
H(k, l)

sHk,l

44
ιHk,l // EH

sH // H(•)⋆ H(k, l)

tHk,l

44
ιHk,l // EH

tH // H(•)⋆

Thus if i < k then

η•(F (fi)(x)) = g(F (fi)(x))

= g
(
sFk,l(x)(i)

)

= g⋆
(
sFk,l(x)

)
(i)

= sHk,l (ηk,l(x)) (i)

= F (fi)(ηk,l(x))

while, if k ≤ i < k + l − 1

η•(F (fi)(x)) = g(F (fi)(x))

= g
(
tFk,l(x)(i)

)

= g⋆
(
tFk,l(x)

)
(i)

= tHk,l (ηk,l(x)) (i)

= F (fi)(ηk,l(x))

Finally, by contruction it is clear that (η̂, η•) = (f, g).
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• Given an hypergraph G = (EG , VG , sG , tG) we can define

FG(k, l) := s−1
G (Vk) ∩ t

−1
G (Vl) FG(•) := VG

Given fi : (k, l) → • we put

FG(fi) : FG(k, l) → FG(•) x 7→

{
sG(x)(i) i < k

tG(x)(i− k) i ≤ k < k + l − 1

FG so defined is a functor H → Set and for every h ∈ EG there exists a unique pair (k, l) such that
h ∈ FG(k, l), namely the pair (dom(sG)(h), dom(tG)(h))thus

∑

k,l∈N

FG(k, l) ' E

Moreover, by construction sFG = s and tFG = t, from which the thesis follows.

As a corollary we get immediately the following.

Corollary 6.2.13. Hyp is a complete category.

6.2.2 Labelled hypergraphs

We will end this section examining two different kinds of labelings for hypergraphs. We need the first one
in Section 6.3, while the second one will be used in Section 6.4 for term graphs.

Labeling edges and nodes

Let us start with labeling both edges and nodes. In order to do so we will fix two sets LE and LV ). Their
elements will be the labels for the edges and for the nodes respectively. Notice that Set/LE and Set/LV
are adhesive thanks to Corollary 5.1.39. We have two forgetful functors

UE : Set/LE → Set UV : Set/LV → Set

which, by Lemma 5.1.35 and since Set is complete, preserve pullbacks.

Definition 6.2.14. A labelled hypergraph G is a 6-uple (XG , YG , lE,G , lV,G , sE,G , tE,G) made by: two sets
XG and YG , labelling functions lE,G : XG → LE and lV,G : YG → LV , and, finally source and target functions
sG , tG : X

⋆
G ⇒ Y ⋆G . A morphism (h, k) : G → H is given by f : hG → XH and k : YG → YH such that the

following diagrams commute.

XG
sG / /

h

��

Y ⋆G

k⋆

��

XG
tG //

h

��

Y ⋆G

k⋆

��

XG
h //

lE,G
��7

77
77

77
XH

lE,G����
��
��
�

YH

lV,G
��7

77
77

77
k // YH

lV,H
����
��
��
�

XH sH
// Y ⋆H XH

tH

// Y ⋆H LE LV

Remark 6.2.15. Notice that there is a forgetful functor ULHyp : LHyp → Hyp:

(XG , YG , lE,G , lV,G , sE,G , tE,G)

(h, k)

−
→

(XG , YG , lE,G , lV,G , sE,G , tE,G)

7−→

7−→

(XH, YH, sH, tH)

−
→ (h, k)

(XG , YG , sG , tG)
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Now, consider the functor lprod : Set/LV → Set given by the composition prod⋆ ◦ UV , on the one
hand we can define a functor LHyp → UE ↓lprod:

(XG , YG , lE,G , lV,G , sE,G , tE,G)

(h, k)

−
→

(XG , YG , lE,G , lV,G , sE,G , tE,G)

7−→

7−→

(lE,H, lV,H, (sH, tH))

−
→ (h, k)

(lE,G , lV,G , (sG , tG))

while, on the other hand, we can define

(lE,H, lV,H, pH)

(h, k)

−
→

(lE,G , lV,G , pG)

7−→

7−→

(XG , YG , lE,G , lV,G , π1 ◦ pH, π2 ◦ pH)

−
→ (h, k)

(XG , YG , lE,G , lV,G , π1 ◦ pG , π2 ◦ pG)

By inspection these two functors are one the inverse of the other, thus we have just proved the following.

Proposition 6.2.16. LHyp and UE ↓lprod are isomorphic.

Noticing that UE preserves pushouts we get at once an adhesivity result.

Corollary 6.2.17. LHyp is adhesive.

Labelling hypergraph with an algebraic signature

Let Σ = (OΣ, arΣ) be an algebraic signature, we are going to use the hypergraph GΣ of Example 6.2.10 in
order to label hyperedges with operations.

Definition 6.2.18. Let Σ = (O, ar) be an algebraic signature, the category HypΣ of algebraically labelled
hypergraphs is the slice category Hyp/GΣ.

Corollary 5.1.37 and Corollary 5.1.39 give us immediately an adhesivity result for HypΣ and a char-
acterization of monomorphisms in it.

Proposition 6.2.19. For every algebraic signature Σ, HypΣ is an adhesive category. Moreover a morphism
(h, k) between two object ofHypΣ is a mono if and only if h and k are injective functions.

Remark 6.2.20. Let H = (E, V, s, t) be an hypergraph, since UHyp(G
Σ) is the singleton an arrow H →

GΣ, is determined by a function h : EH → OΣ such that, for every e ∈ EH

arΣ(h(e)) = sH(e)

On the other hand, if H has an hyperedge e such that tH(e) has a length different from 1, then there
is no morphism H → GΣ. Indeed, if such a morphism (h, !VH) : H → GΣ exists, then, for every e ∈ EH

we have

f⋆(tH(h)) = tGΣ(f(h))

= δ♡

and so dom(tH(h)) = 1.
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HypΣ, as any slice category, has a forgetful functor UΣ : HypΣ → Setwhich sends (h, k) : H → GΣ to
UHyp(H). Now, UHyp(G

Σ) = {v} thus, for every set X , there is only one arrow X → UHyp(G
Σ). Define

∆Σ(X) : ∆Hyp(X) → GΣ to be the transpose of this arrow.

Proposition 6.2.21. UΣ has a left adjoint∆Σ.

Proof. Let (h, !VH) : H → GΣ be an object ofHypΣ, and suppose that there exists f : X → UΣ(H). Since
UΣ(H) = UHyp(H) and idSet is the unit of∆Hyp a UHyp, there exists a uniquemorphism (k, f) : ∆Hyp(X) →
H of Hyp. Since the set of hyperedges of ∆Hyp(X) is empty, k must be ?EH and the commutativity of
each of the two triangles below is equivalent to that of the other

∆Hyp(X)
(?EH

,f)
//

∆Σ(X)
##G

GG
GG

GG
GG

H

(h,!VH
)����

��
��
��

UHyp(∆Hyp(X))
f //

UHyp(∆Σ(X)) ''PP
PPP

PPP
PPP

UHyp(X)

!VHxxrrr
rr
rr
rr
r

GΣ UHyp

(
GΣ
)

But the triangle on the right commutes because UHyp(G
Σ) is terminal.

We will extend our graphical notation of hypergraphs to labeled ones putting the label of an hyperedge
h inside its corresponding square.

Example 6.2.22. The simplest example is given by the identity idGΣ : GΣ → GΣ. If Σ is the signature of
groups ΣGwe get

♥e

·

(−)−1

e

·

(−)−11

21
1

1

2

Example 6.2.23. Take again ΣG the signature of groups, then the hypergraph G of Example 6.2.9 can be
labeled defining

e = f(h1) · = f(h2) · = f(h3)

In this case we get the following picture

v1

v2

v3

v4

v5

1

1

1

h3

h2

h1
1

2

1

2

e

·

·
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Remark 6.2.24. There is a colored (or typed) version of these last constructions. Start with a colored
algebraic signature: this is a triple (C,O, ar) where C is the set of colors, O is the set of operations and
ar : O → C⋆ × C⋆ assigns to every operations f an arity and a coarity given by strings of colors. We
can still construct an hypergraph GΣ with C as set of nodes using the operations as hyperedges. In this
context an object in the slice Hyp/GΣ is an hypergraph in which both the hyperedges and the nodes are
labeled, the formers with an elemento of O and the latters with an element of C [26].

6.2.3 Hierarchical hypergraphs

We can leverage on the modularity of Theorem 5.1.31 and Theorem 5.1.38 to give hypergraphical variants
for Corollaries 6.1.41 and 6.1.44. This is done replacing the setEG of hyperedges with a tree order (EG ,≤)
and idSet with the forgetful functor UTree : Tree → Set.

Definition 6.2.25. A hierarchical hypergraph G is a triple ((EG ,≤), VG , sG , tG) where (EG ,≤) is a tree
order, VG a set and sG , tG : EG ⇒ V ⋆G two functions. A morphism G → H is a pair (h, k) made by
h : (EG ,≤) → (EH,≤) in Tree and by k : V →W in Set such that the following squares commute

EG

UTree(h)

��

sG // V ⋆G

k⋆

��

EG

UTree(h)

��

tG // V ⋆G

k⋆

��
EH

tG

// V ⋆H EH
tH

// V ⋆H

Taking componentwise composition we get a category HHGraph.

Proposition 6.2.26. HHGraph is isomorphic to UTree↓prod
⋆

Proof. Define F : HHGraph → UTree↓prod
⋆

((EH,≤), VH, sH, tH)

(h, k)

−
→

((EG ,≤), VG , sG , tG)

7−→

7−→

((EH,≤), VH, (sH, tH))

−
→ (h, k)

((EG ,≤), VG , (sG , tG))

and G : UTree↓prod
⋆ → HHGraph as

((EH,≤), VH, pH)

(f, g)

−
→

((EG ,≤), VG , pG)

7−→

7−→

((EH,≤), VH, π1 ◦ pH, π2 ◦ pH)

−
→ (f, g)

((EG ,≤), VG , π1 ◦ pG , π2 ◦ pG)

The thesis follows immediately.

Corollary 6.2.27. HHGRaph is adhesive. Moreover, the functor HHGraph → Set, which sends a hierar-
chical hypergraph to its set of nodes, has a left adjoint∆HHGraph.

Proof. The first half of the thesis follows from Theorem 5.1.38 and Proposition 6.2.26, while the second
one is entailed by Proposition A.2.3.

Remark 6.2.28. ∆HHGraph sends a set X to the hierarchical hypergraph ((∅,≤), X, ?X⋆ , ?X⋆).



258 6. A zoo ofM,N -adhesive categories

To add interface we proceed exactly as in Section 6.1.3, using the previous corollary.

Definition 6.2.29. The category HHIGraph of hierarchical hypergraphs with interface is the category in
which objects are triples (G, X, f) made by a hierarchical hypergraph G = ((EG ,≤), VG , sG , tG), a set X
and a function f : X → VG . A morphism (G, X, f) → (H, Y, g) is a triple (h, k, l) with h : (EG ,≤) →
(EH,≤) in Tree, k : VG → VH and l : X → Y in Set such that the following squares commute.

EG

UTree(h)

��

sG // V ⋆G

k⋆

��

EG
tG //

UTree(h)

��

V ⋆G

k⋆

��

X
f //

l

��

VG

k

��
EG sH

// V ⋆H EG
tH

// V ⋆H Y
g

// VH

Remark 6.2.30. This category of hypergraphs whose edges form a tree order, corresponds to Milner’s
(pure) bigraphs [96], with possibly infinite edges1.

Proposition 6.2.31. The categoryHHIGraph is isomorphic to∆HHGraph↓idHyp

Proof. Define F : HHIGraph → ∆HHGraph ↓idHyp and G : ∆HHGraph↓idHyp → HHIGraph putting

(H, Y, g)

(h, k, l)

−
→

(G, X, f)

7−→

7−→

(Y,H, (?Y , g))
−
→ (l, (h, k))

(X,G, (?X , f))

(Y,H, (?Y , g))

(l, (h, k))

−
→

(X,G, (?X , f))

7−→

7−→

(H, Y, g)

−
→ (h, k, l)

(G, X, f)

The thesis now follows at once.

Corollary 6.2.32. HHIGraph is adhesive.

6.2.4 SGraph and DAG-hypergraphs

We can consider more general relations between edges, besides tree orders. An interesting case is when
edges form a directed acyclic graph, yielding the category of DAG-hypergraphs; this corresponds to (pos-
sibly infinite) bigraphs with sharing, where an edge can have more than one parent, as in [117] (see also
Fig. 6.1, left). Even more generally, we can consider any relation between edges, i.e., the edges form a
generic directed graph possibly with cycles, yielding the category of SGraph-hypergraphs. These can be
seen as “recursive bigraphs”, i.e., bigraphs which allow for cyclic dependencies between controls, like in
recursive processes; an example is in Fig. 6.1 (right).

Definition 6.2.33. A SGraph-hypergraph (respectively DAG-hypergraphs) is a triple (G, V, s, t) where G
is in SGraph (in DAG), V is a set and s, t functions VG ⇒ V ⋆. A morphism of SGraph-hypergraph
(DAG-hypergraphs) is a pair ((h1, h2), k) : (G, V, s, t) → (H,W, s′, t′) with (h1, h2) : G → H in SGraph
(in DAG) and k : V →W in Set such that the following squares commute

VG
s //

h2

��

V ⋆

k⋆

��

VG

h2

��

t // V ⋆

k⋆

��
VH

s′
// W ⋆ VH

t′
// W ⋆

These data give rise to the categories SHGraph and DAGHGraph respectively.

1In bigraph terminology, “controls” and “edges” correspond to our edges and nodes.
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xy

b

ac

1

1

1

2

xy

ab

1

1

2

Figure 6.1: A DAG-hypergraph (left) and a SGraph-hypergraph corresponding to the CCS process P =
a(x).b(xy).P (right). The red arrows denotes the graph structure of the edges.

SHGraph and DAGHGraph isomorphic to, respectively USGraph↓prod
⋆ and UDAG↓prod⋆. This is

easily proved considering the four functors:

F1 : SHGraph → USGraph ↓prod
⋆

(H,W, s′, t′)

((h1, h2), k)

−
→

(G, V, s, t)

7−→

7−→

(H,W, (s′, t′))

−
→ ((h1, h2), k)

(G, V, (s, t))

F2 : DAGHGraph → UDAG↓prod⋆

(H,W, s′, t′)

((h1, h2), k)

−
→

(G, V, s, t)

7−→

7−→

(H,W, (s′, t′))
−
→ ((h1, h2), k)

(G, V, (s, t))

G1 : USGraph↓prod
⋆ → SHGraph

(H,W, p′)

((h1, h2), k)

−
→

(G, V, p)

7−→

7−→

(H,W, π1 ◦ p
′, π2 ◦ p

′)

−
→ ((h1, h2), k)

(G, V, π1 ◦ p, π2 ◦ p)

G2 : UDAG ↓prod⋆ → DAGHGraph

(H,W, p′)

((h1, h2), k)

−
→

(G, V, p)

7−→

7−→

(H,W, π1 ◦ p
′, π2 ◦ p

′)

−
→ ((h1, h2), k)

(G, V, π1 ◦ p, π2 ◦ p)

Theorem 6.2.34. SHGraph isM,N -adhesive with respect to the classes

M := {((h1, h2), k) ∈ A(SHGraph) | (h1, h2) ∈ R(SGraph), k ∈ M(Set)}

N := {((h1, h2), k) ∈ A(SHGraph) | (h1, h2) ∈ M(SGraph)}

whileDAGHGraph is adhesive with respect to the classes

{((h1, h2), k) ∈ A(DAGHGraph) | (h1, h2) ∈ dcld, k ∈ M(Set)}

{((h1, h2), k) ∈ A(DAGHGraph) | (h1, h2) ∈ M(DAG)}

Moreover, the functors DHGraph → Set and DAGHGraph → Set, which assign to an hypergraph its
set of nodes, have left adjoints∆DHGraph and∆DAGHGraph.

Remark 6.2.35. Let I be the initial object ofGraph, i.e. (∅, ∅, id∅, id∅). I is both in SGraph and inDAG,
thus it is initial in these categories too. Thus ∆DHGraph and ∆DAGHGraph assign to a set X the DAG and
SGraph-hypergraph (I, X, ?X⋆ , ?X⋆).

As in Sections 6.1.3 and 6.2.3, we can exploit these two last corollaries to add interfaces.

Definition 6.2.36. The category SHIGraph (DAGIHGraph) of SGraph-hypergraphs (resp. of DAG-
hypergraphs) with interfaces has as objects triples ((G, V, s, t), X, f) made by a SGraph-hypergraph (a
DAG-hypergraph) (G, V, s, t) and a function f : X → V . An arrow between ((G, V, s, t), X, f) and
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((H, w, s′, t′), Y, g) is a triple ((h1, h2), k, l)made by a morphism ((h1, h2), k) : G → H in SHGraph (in
DAGHGraph), and a function l : X → Y in Set such that the following squares commute

VG
s //

h2

��

V ⋆

k⋆

��

VG

h2

��

t // V ⋆

k⋆

��

X
f //

l

��

V

k

��
VH

s′
// W ⋆ VH

t′
// W ⋆ Y

g
// W

As before we can consider functors

F1 : SHIGraph → ∆SHGraph↓idSHGraph

((H,W, s′, t′), Y, g)

((h1, h2), k, l)

−
→

((G, V, s, t), X, f)

7−→

7−→

(Y, (H,W, s′, t′), (?H, g))

−
→ (l, ((h1, h2), k))

(X, (G, V, s, t), (?G , f))

G1 : ∆SHGraph↓idSHGraph → SHIGraph

(Y, (H,W, s′, t′), (?H, g))

(l, ((h1, h2), k))

−
→

(X, (G, V, s, t), (?G , f))

7−→

7−→

((H,W, s′, t′), Y, g)

−
→ ((h1, h2), k, l)

((G, V, s, t), X, f)

showing that SHIGRaph and ∆SHGraph↓idSHGraph are isomorphic.
We have another pair of functors (defined in the same way):

F2 : DAGHIGraph → ∆DAGHGraph ↓idDAGHGraph

((H,W, s′, t′), Y, g)

((h1, h2), k, l)

−
→

((G, V, s, t), X, f)

7−→

7−→

(Y, (H,W, s′, t′), (?H, g))

−
→ (l, ((h1, h2), k))

(X, (G, V, s, t), (?G , f))

G2 : ∆DAGHGraph ↓idDAGHGraph → DAGHIGraph

(Y, (H,W, s′, t′), (?H, g))

(l, ((h1, h2), k))

−
→

(X, (G, V, s, t), (?G , f))

7−→

7−→

((H,W, s′, t′), Y, g)

−
→ ((h1, h2), k, l)

((G, V, s, t), X, f)

which shows that and DAGHIGraph is isomorphic to ∆DAGHGraph ↓idDAGHGraph.
Summing up we can get a last adhesivity result.

Theorem 6.2.37. SHIGraph isM,N -adhesive with respect to the classes

M := {((h1, h2), k, l) ∈ A(SHIGraph) | (h1, h2) ∈ R(SGraph), k, l ∈ M(Set)}

N := {((h1, h2), k, l) ∈ A(SHIGraph) | (h1, h2) ∈ M(SGraph)}

whileDAGIHGraph isM,N -adhesive with respect to the classes

M := {((h1, h2), k, l) ∈ A(DAGHIGraph) | (h1, h2) ∈ dcld, k, l ∈ M(Set)}

N := {((h1, h2), k, l) ∈ A(DAGHIGraph) | (h1, h2) ∈ M(DAG)}
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6.3 A graphical formalism for monoidal closed categories

In [11], the authors use a kind of hierarchical graphs to implement rewriting of arrows in a monoidal
closed categories in terms of the double pushout approach. In this section we will prove some adhesivity
property of this category of hierarchical graphs

6.3.1 The category HHG and labelled DAG-hypergraphs

In this section we will start introducing the objects used in [11]. We will also show that the category
so obtained can be realized fully and faithfully embedded into a category of labelled DAG-hypergraphs of
which we know some adhesivity properties.

Definition 6.3.1 ( [11, Def. 16]). We define the category HHG in the following way.

• Objects are 8-uples G := (EG, VG, sG, tG, lE,G, lV,G, pE,G, pV,G) where (EG, VG, sG, tG, lE,G, lV,G)
is an object of LHyp such that EG and VG are finite, pE,G is a function EG → EG+1 and pV,G one
V → EG + 1. Moreover we ask that:

1. if ι1 : EG → EG + 1, ι2 : 1 → EG + 1 are the coprojections and p∗E,G : EG + 1 → EG + 1 is
the unique arrow fitting in the diagram

EG pE,G

&&
ι1 !!B

BB
BB

BB
B

EG + 1
p∗E,G // EG + 1

1
ι2

88
ι2

=={{{{{{{{

then for every e ∈ EG there exists a natural number k ≥ 1 such that

⊥ =
(
p∗E,G

)k
(ι1(e))

where ⊥ is the element picked by ι2 : 1 → EG + 1;

2. for every v ∈ VG, if v is in the image of sG(e) or in that of tG(e) for some e ∈ EG then

pV,G(v) = pE,G(e)

Given an object G of HHG, we will define the sets

SE,G := {e ∈ EG | there exists pE,G(e) ∈ EG such that pE,G(e) = ι1(pE,G(e))}

SV,G := {v ∈ VG | there exists pV,G(v) ∈ EG such that pV,G(v) = ι1(pV,G(v))}

By construction, there are pE,G : SE,G → EG and pV,G : SV,G → EG fitting in the diagrams below

SE,G

iE,G

��

pE,G // EG

ι1

��

SV,G

iV,G

��

pV,G // EG

ι1

��
EG pE,G

// EG + 1 EG pE,G
// EG + 1
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where iE,G : SE,G → EG, iV,G : SV,G → EG are inclusions. We are now ready to define arrows ofHHG.

• An arrow (h, k) : (EG, VG, sG, tG, lE,G, lV,G) → (EH, VH, sH, tH, lE,H, lV,H) of LHyp is a morphism
G → H if there are h : SE,G → SE,H and k : SV,G → SV,H which fit in the diagrams below.

EG

h

��

SE,G
iE,Goo

pE,G //

h

��

EG

h

��

VG

k

��

SV,G
iV,Goo

k

��

pV G // EG

k

��
EH SE,H

iE,H

oo
pE,H

// EH VH SV,H
iV,H

oo
pV,H

// EH

As in Section 6.2.2, we will use LE and LV for the set of labels for edges and the one for nodes.

Notation. The exponential
(
p∗E,G

)k
appearing in the first point of the definition of the objects ofHHG

means the composition of p∗E,G with itself k times.

The request on pE,G suggest some kind of relationship between HHG and a category of hierarchical
graphs in which the hierarchy is given by a directed acyclic graph. First of all we have to adapt the results
of Section 6.2.2 in order to equip DAGHGraph with labels.

First of all we can notice the following.

Proposition 6.3.2. UDAG : DAG → Set preserves limits and dcld,M(DAG)-pushouts.

Proof. This follows at once since ∆DAG a UDAG and from Corollary 6.1.5 and Lemma 6.1.26.

We are now ready to define a category of labelled DAG-hypergraphs.

Definition 6.3.3. The category of labelled DAG-hypergraphs LDAGHGraph is the category in which
object are 6-uples (G, X, s, t, lX , lG) made a G ∈ DAG, a set X , labelling functions lX : X → LV ,
lG : VG → LE+1 and source and target functions s, t : VG ⇒ X⋆ and . A morphism (G, X, s, t, lX , lG) →
(H, Y, s′, t′, lY , lH) is a pair ((h1, h2), k) where (h1, h2) is a morphism G → H of DAG and k a function
X → Y such that the following diagrams commute

VG
s //

h2

��

X⋆

k⋆

��

VG
t //

h2

��

X⋆

k⋆

��

VG

lG   B
BB

BB
BB

h2 // VH

lH}}||
||
||
||

X
k //

lX ��:
::

::
::

Y

lY����
��
��
�

VH
s′

// Y ⋆ VH
t′

// Y ⋆ LE + 1 LV

Notation. Wewill denote by kLE
and by k♠ the coprojectionsLE → LE+1 and 1 → LE+1. Moreover,

we will use ♠ for the element of LE + 1 picked by k♠.

We want now to show that the category LDAGHGraph has some adhesivity property. We can define
a continuous functor ps : Set → Set putting

Y

f

−
→

X

7−→

7−→

(LE + 1)× Y ⋆ × Y ⋆

−
→ idLE+1 × f⋆ × f⋆

(LE + 1)×X⋆ ×X⋆



6.3. A graphical formalism for monoidal closed categories 263

Proposition 6.3.4. LDAGHGraph is isomorphic to UDAG↓ps ◦ UV , where UV is the forgetful functor
UV : Set/LV → Set.

Proof. In one direction, define G1 : LDAGHGraph → UDAG↓ps ◦ UV putting

(H, Y, s′, t′, lY , lH)

((h1, h2), k)

−
→

(G, X, s, t, lX , lG)

7−→

7−→

(H, lY , (lH, s
′, t′))

−
→ ((h1, h2), k)

(G, lX , (lG , s, t))

In the other direction we can take G2 : UDAG↓ps ◦ UV → LDAGHGraph as

(H, l′, p′)

((h1, h2), k)

−
→

(G, l, p)

7−→

7−→

(H, dom(l′), π2 ◦ p
′, π3 ◦ p

′, l′, π1 ◦ p
′)

−
→ ((h1, h2), k)

(G, dom(l), π2 ◦ p, π3 ◦ p, l, π1 ◦ p)

It is now immediate to see that these functors give the thesis.

From Proposition 6.3.2 now we can obtain the following result.

Corollary 6.3.5. LDAGHGraph isM,N -adhesive with respect to the classes

M := {((h1, h2), k) ∈ A(LDAGHGraph) | (h1, h2) ∈ dcld, k ∈ M(Set)}

N := {((h1, h2), k) ∈ A(LDAGHGraph) | (h1, h2) ∈ M(DAG), k ∈ M(Set)}

Take now an objectG ofHHG, we can use pE,G and pV,G to define a labelledDAG-hypergraph F (G).
First of all we need to define a directed acyclic graph G of edges. Define two sets

E1
G := {(e, e′) ∈ EG × EG | ι1(e) = pE,G(e

′)} E2
G := {(e, v) ∈ EG × VG | ι1(e) = pV,G(v)}

and notice that they come with the restrictions of the projections

s1G : E
1
G → EG (e, e′) 7→ e s2G : E

2
G → EG (e, v) 7→ e

t1G : E
1
G → EG (e, e′) 7→ e′ t2G : E

2
G → VG (e, v) 7→ v

Take EG and VG to be, respectively, E1
G + E2

G and EG + VG, then we can define sG , tG : EG ⇒ VG as

sG := s1G + s2G tG := t1G + t2G

Notation. We will denote be j1G and j2G the coprojections E1
G → EG , E2

G → EG , while jE,G and jV,G will
denote those EG → VG , VG → VG .

Remark 6.3.6. Let us notice two facts:

1. if (e, e′) belongs to E1
G then e′ ∈ SE,G , similarly, if (e, v) is an element of E2

G then v is in SE,G ;

2. the image of sG is contained into the image of jE,G .

Proposition 6.3.7. The graph G = (EG , VG , sG , tG) is an object ofDAG.

Proof. First of all let us show that G is simple. Take v ∈ VG and x1, x2 ∈ G(w1, w2), we have four cases.
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• x1 = j1G(e1, e
′
1) and x2 = j1G(e2, e

′
2) for some (e1, e′1) and (e2, e

′
2) ∈ E1

G . Thus

jE,G(e1) = jE,G
(
s1G(e1, e

′
1)
)

= sG
(
j1G(e1, e

′
1)
)

= sG(x1)

= w1

= sG(x2)

= sG
(
j1G(e2, e

′
2)
)

= jE,G
(
s1G(e2, e

′
2)
)

= jE,G(e2)

jE,G(e
′
1) = t1G(e1, e

′
1)

= tG
(
j1G(e1, e

′
1)
)

= tG(x1)

= w2

= tG(x2)

= tG
(
j1G(e2, e

′
2)
)

= jE,G
(
t1G(e2, e

′
2)
)

= jE,G(e
′
2)

and thus x1 = x2.

• x1 = j2G(e1, v1) and x2 = j2G(e2, v2) for some (e1, v1) and (e2, v2) ∈ E2
G .

jE,G(e1) = jE,G
(
s1G(e1, v1)

)

= sG
(
j1G(e1, v1)

)

= sG(x1)

= w1

= sG(x2)

= sG
(
j1G(e2, v2)

)

= jE,G
(
s1G(e2, v2)

)

= jE,G(e2)

jE,G(v1) = t1G(e1, v1)

= tG
(
j1G(e1, v1)

)

= tG(x1)

= w2

= tG(x2)

= tG
(
j1G(e2, v2)

)

= jE,G
(
t1G(e2, v2)

)

= jE,G(v2)

Hence, even in this case we can conclude that x1 = x2

• x1 = j1G(e1, e
′
1) and x2 = j2G(e2, v2) for some (e1, e

′
1) ∈ E2

G and (e2, v2) ∈ E2
G . This case is

impossible: indeed we must have

w2 = tG(x1))

= tG
(
j1G(e1, e

′
1)
)

= jE,G
(
t1G(e1, e

′
1)
)

= jE,G(e
′
1)

w2 = tG(x2))

= tG
(
j2G(e2, v2)

)

= jV,G
(
t1G(e2, v2)

)

= jV,G(v2)

but the images of jE,G and jV,G are disjoint.

• x1 = j2G(e1, v1) and x2 = j2G(e2, e
′
2) for some (e1, v1) ∈ E1

G and (e2, e
′
2) ∈ E2

G . Swapping x1 and
x2 we fall back in the previous case.

Next, suppose that {xi}ni=1 is a cycle in G, we have two cases.

• For every 1 ≤ i ≤ n there exists (ei, e′i) ∈ E1
G such that

xi = j1G(ei, e
′
i)

The cycle condition implies that, for very 1 ≤ i < n

e′n = e1 e′i+1 = ei
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and we know by definition that

ι1(ei) = pE,G(e
′
i)

In particular, this implies that, for every k ≥ 1 we have
(
p∗E,G

)k
(ι1(e

′
1)) in the image of ι1, which

contradicts Definition 6.3.1.

• There exists an index j such that xj = j2G(ej , vj) for some (ej , vj) ∈ E2
G . This is impossible: indeed,

if this were the case, the cycle condition would imply that

jV,G(vj) =

{
sG(xj+1) j 6= n

sG(x1) j = n

and this is absurd by Remark 6.3.6 and the fact that the images of jV,G and jE,G are disjoint. .

Remark 6.3.8. Notice that the images of tG ◦ j1G and tG ◦ j2G are contained in, respectively, jE,G (SE,G)
and jV,G (SV,G). Since jE,G is injective and G is simple, in particulat implies that, for every e ∈ EG, if
jE,G(e) = tG(x) for some x ∈ EG then e ∈ SE,G and

x = j1G(pE,G(e), e)

Similarly, for every v ∈ VG, if jV,G(v) = tG(y) for some y ∈ EG , then v ∈ SV,G and

y = j2G(pV,G(v), v)

Next, we have to define source and targets sF (G), tF (G) : VG ⇒ V ⋆G . To do so it is enough to take
the arrows induced by, respectively, sG and tG, paired with the unit ηVG : VG → V ⋆G coming from Exam-
ple 2.1.8.

EG sG

%%
jE,G ��:

::
::

::
EG tG

%%
jE,G ��:

::
::

::

VG
sF (G) // V ⋆G VG

tF (G) // V ⋆G

VG
ηVG

99
jV,G

AA�������
VG

ηVG

99
jV,G

AA�������

Finally to label nodes and edges, we can take as lVG : VG → LV simply the function lV,G, while as
lG : VG → LE + 1 we take the function induced by lE,G and the constant function in ♠.

EG
lE,G //

jE,G ""F
FF

FF
FF

F
LE kLE

##
VG

lG // LE + 1

VG

jV,G

<<xxxxxxxxx

!VG

// 1
k♠

;;



266 6. A zoo ofM,N -adhesive categories

Let us define F (G) as (G, VG, sF (G), tF (G), lVG , lG). We have no to extend this construction to mor-
phisms. Take an arrow (h, k) : G → H in HHG, by definition k is a function VG → VH such that

lVH ◦ k = lV,H ◦ k

= lV,G

= lVG

Moreover, we can define h2 : VG → VH as the coproduct of h and k, so that we have a diagram

EG

h

��

jE,G // VG

h2

��

VG
jV,Goo

k

��
EH

jE,H

// VH VG
jV,H

oo

To get a morphism (h1, h2) : G → H of DAG we have to define another function h1 : EG → EH. Now,
given (e, e′) ∈ E1

G and (e, v) ∈ E2
G we have

h(e) = h(pE,G(e
′))

= pE,H(h(e
′))

h(e) = h(pV,G(v))

= pV,H(k(v))

so that we can put

h11 : E
1
G → E1

H (e, e′) 7→ (h(e), h(e′)) h21 : E
2
G → E2

H (e, v) 7→ (h(e), k(v))

and define h1 as the coproduct of these two functions. Moreover, we can check that

sH
(
h1
(
j1G(e, e

′)
))

= sH
(
jE,H

(
h11(e, e

′)
))

= s1H
(
h11(e, e

′)
)

= s1H(h(e), h(e′))

= h(e)

= h(s1G(e, e
′))

= h2
(
jE,G

(
s1G(e, e

′)
))

= h2
(
sG
(
j1G(e, e

′)
))

sH
(
h1
(
j2G(e, v)

))
= sH

(
jV,H

(
h21(e, v)

))

= s2H
(
h21(e, v)

)

= s2H(h(e), k(v))

= h(e)

= h(s2G(e, v))

= h2
(
jE,G

(
s2G(e, v)

))

= h2
(
sG
(
j2G(e, v)

))

tH
(
h1
(
j1G(e, e

′)
))

= tH
(
jE,H

(
h11(e, e

′)
))

= t1H
(
h11(e, e

′)
)

= t1H(h(e), h(e′))

= h(e′)

= h(t1G(e, e
′))

= h2
(
jE,G

(
t1G(e, e

′)
))

= h2
(
tG
(
j1G(e, e

′)
))

tH
(
h1
(
j2G(e, v)

))
= tH

(
jV,H

(
h21(e, v)

))

= t2H
(
h21(e, v)

)

= t2H(h(e), k(v))

= k(v)

= k(t2G(e, v))

= h2
(
jV,G

(
t2G(e, v)

))

= h2
(
tG
(
j2G(e, v)

))
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and we can therefore conclude that (h1, h2) is really a morphism G → H of DAG. We claim now that
((h1, h2), k) is a morphism of LDAGHGraph, so that sending (h, k) to it we get a functor F : HHG →
LDAGHGraph. We already know that lVG = lVH ◦k, while the other three equalities follow at once from
the definition of VG and from the computations below.

k⋆ ◦ sF (G) ◦ jE,G = k⋆ ◦ sG

= sH ◦ h

= sF (H) ◦ jE,H ◦ h

= sF (H) ◦ h2 ◦ jE,G

k⋆ ◦ sF (G) ◦ jV,G = k⋆ ◦ ηVG
= ηVH ◦ k

= sF (H) ◦ jV,H ◦ k

= sF (H) ◦ h2 ◦ jV,G

k⋆ ◦ tF (G) ◦ jE,G = k⋆ ◦ tG

= tH ◦ h

= tF (H) ◦ jE,H ◦ h

= tF (H) ◦ h2 ◦ jE,G

k⋆ ◦ tF (G) ◦ jV,G = k⋆ ◦ ηVG
= ηVH ◦ k

= tF (H) ◦ jV,H ◦ k

= tF (H) ◦ h2 ◦ jV,G

lH ◦ h2 ◦ jE,G = lH ◦ jE,H ◦ h

= kLE
◦ lE,H ◦ k

= kLE
◦ lE,G

= lG ◦ jE,G

lH ◦ h2 ◦ jV,G = lH ◦ jV,H ◦ k

= k♠◦!VH ◦ k

= k♠◦!VG
= lG ◦ jV,Ga

We are now ready to prove the first properties of F in which we are interested.

Proposition 6.3.9. The functor F : HHG → LDAGHGraph defined above is full and faithful.

Proof. For faithfulness: if (h, k), (h′, k′) : G ⇒ H are arrows of HHG and suppose that

F (h, k) = ((h1, h2), k) F (h′, k′) = ((h′1, h
′
2), k

′)

are equal. By definition of F we have this entails at once that k = k′. On the other hand, by hypothesis
h2 = h′2, thus

jE,H ◦ h = h2 ◦ jE,G

= h′2 ◦ ◦jE,G

= jE,H ◦ h′

and, since jE,H is mono, we can conclude that h = h′.
Let us prove fullness. Let ((h1, h2), k) be an arrow F (G) → F (H). By construction

lH ◦ h2 ◦ jE,G = lG ◦ jE,G

= kLE
◦ lE,G

Since the images of kLE
and k♠ are disjoint, this shows that there exists unique h : EG → EH and f : VG →

VH as in the diagram below.

EG
jE,G //

h

��

VG

h2

��

VG
jV,Goo

f

��
EH

jE,H

// VH VH
jV,H

oo
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Moreover, computing we get

ηVH ◦ f = sF (H) ◦ jV,H ◦ f

= sF (H) ◦ h2 ◦ jV,G

= k⋆ ◦ sF (G) ◦ jV,G

= k⋆ ◦ ηVG

= ηVH ◦ k

which entalis that f = k and that h2 is the coproduct of h and k. This in turn implies that

sH ◦ h1 = h2 ◦ sG

= (h+ k) ◦ (s1G + s2G)

= (h ◦ s1G + k ◦ s2G)

tH ◦ h1 = h2 ◦ tG

= (h+ k) ◦ (t1G + t2G)

= (h ◦ t1G + k ◦ t2G)

But then for every (e, e′) ∈ E1
G and (e, v) ∈ E2

G we have

sH
(
h1
(
j1G(e, e

′)
))

= jE,H
(
h
(
s1G(e, e

′)
))

= jE,H(h(e))

sH
(
h1
(
j2G(e, v)

))
= jE,H

(
h
(
s2G(e, v)

))

= jE,H(h(e))

tH
(
h1
(
j1G(e, e

′)
))

= jE,H
(
h
(
t1G(e, e

′)
))

= jE,H(h(e′))

tH
(
h1
(
j2G(e, v)

))
= jV,V

(
k
(
t2G(e, v)

))

= jV,H(k(v))

The previous identities, together with Remark 6.3.8 and the injectivity of j1H and j2H entail that h(e′) is
an element of SE,H, k(v) belongs to SV,H and

pE,H(h(e
′)) = h(e)

= h
(
pE,G(e

′)
)

pV,H(k(v)) = h(e)

= h
(
pV,G(v)

)

Moreover, the same identities show that h1 is the coproduct of

h11 : E
1
G → E1

H (e, e′) 7→ (h(e), h(e′)) h21 : E
2
G → E2

H (e, v) 7→ (h(e), k(v))

Given the previous remarks, if we show that (h, k) is an arrow G → H we are done. The only thing
left to show is that (h, k) is an arrow of labelled hypergraphs between (EG, VG, sG, tG, lE,G, lV,G) and
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(EH, VH, sH, tH, lE,H, lV,H). By construction we have diagrams

EG

sG

))
jE,G

//

h

��

VG

h2

��

sF (G)

// V ⋆G

k⋆

��

EG

tG

))
jE,G

//

h

��

VG
tF (G)

//

h2

��

V ⋆G

k⋆

��
EH

sH

55
jE,H // VH

sF (H) // V ⋆H EH

tH

55
jE,H // VH

tF (H) // V ⋆H

EG

lE,G

  
jE,G

/ /

h

��

VG lG

''PP
PPP

PP

h2

��

LE + 1 LE
kLEoo

EH

lE,H

>>
jE,H // VH

lH

77nnnnnnn

and the thesis follows since kLE
is a monomorphism.

6.3.2 Adhesivity properties of HHG

We ended the last section proving that we have a full and faithful functor F : HHG → LDAGHGraph.
We are now going to characterize the essential image of F and show that it is closed in LDAGHGraph
under pullbacks and some kinds of pushouts, allowing us to deduce an adhesivity result regardingHHG.

Proposition 6.3.10. LetG be an object ofHHG, then F (G) has the following properties:

(a) VG and EG are finite;

(b) tG is injective;

(c) for every v in VG there is a unique v♠ ∈ VG such that

lG(v♠) = ♠ δv = sF (G)(v♠) δv = tF (G)(v♠)

moreover, for every x ∈ VG , if lG(x) = ♠ then x = v♠ for some v ∈ VG;

(d) for every v ∈ VG, v♠ does not belong to the image of sG ;

(e) for every v ∈ VG, and x ∈ VG such that v is in the image of sF (G)(x) or tF (G)(x) the following are true:

(e1) if there is y ∈ EG with tG(y) = v♠ then there exists y′ ∈ EG such that

sG(y
′) = sG(y) x = tG(y

′)

(e2) if there is y ∈ EG such that x = tG(y) then there exists y′ ∈ EG such that

sG(y
′) = sG(y) v♠ = tG(y

′)

Proof. (a) By definition VG is EG+VG and so it is finite. On the other hand EG is the coproduct of E1
G

and E2
G , but they are subsets of, respectively, EG × EG and EG × VG.
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(b) Let (e1, e′1), (e2, e
′
2) in E

1
G and (e1, v1), (e2, v2) in E2

G such that

t1G(e1, e
′
1) = t1G(e2, e

′
2) t2G(e1, v1) = t2G(e2, v2)

then, by definition we have

e1 = pE,G(e
′
1) e2 = pE,G(e

′
2) e′1 = e′2 v1 = v2 e1 = pV,G(v1) e2 = pV,G(v2)

and so t1G and t2G are injectives. The thesis now follows since tG = t1G + t2G .

(c) For existence, take jV,G(v), then lG(jV,G(v)) = ♠ and:

δv = ηVG
(v)

= sF (G)(jV,G(v))

δv = ηVG
(v)

= tF (G)(jV,G(v))

On the other hand if x ∈ VG is such that lG(x) = ♠ then there must exists v ∈ VG such that

x = jV,G(v)

and this proves uniqueness of v♠ and the last half of the thesis.

(d) This follows from the previous point and Remark 6.3.6.

(e) Let us prove (e1 ) and (e2 ).

(e1 ) Let y be an edge in G with target v♠, by point (c) above we know that

tG(y) = jV,G(v)

thus, by Remark 6.3.8 we can further deduce that v ∈ SV,G and that

y = j2G(pV,G(v), v)

We have now two cases.

• If x = jV,G(w) for some w ∈ VG then

δw = sF (G)(x) δw = sF (G)(x)

so that w = v and we can take as y′ the y with which we have started.

• If, instead, x = jE,G(e) for some e ∈ EG, then, by hypothesis and by the definition of sF (G)(x)
and, tF (G)(x) we know that v must be in the image of sG(e) or in that of tG(e). Therefore, by
point 2 of Definition 6.3.1 we also know that

pE,G(e) = pV,G(v)

In particular this implies that e ∈ SE,G and that (pV,G(v), e) is an element ofE1
G and the thesis

follows taking as y′ its image through j1G .

(e2 ) Let us split the cases as in the proof of (e1 ).
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• As before, if x = jV,G(w) for some w ∈ VG then w must coincide con x. Moreover, by
Remark 6.3.8 this implies that v ∈ SV,G and that

y = j2G(pV,G(v), v)

In particular we can take as y′ the same y.

• Suppose that x = jE,G(e) for some e ∈ EG, this implies that v is a letter of sG(e) or of tG(e),
then the second point of Definition 6.3.1 entails that

pE,G(e) = pV,G(v)

By hypothesis there is y ∈ EG such that

tG(y) = jE,G(e)

and so, again by Remark 6.3.8, we can conclude that e ∈ SE,G and that v ∈ SV,G, therefore as
y′ we can take j1G(pV,G(v), v).

Lemma 6.3.11. An object (G, X, s, t, lX , lG) of LDAGHGraph is in the essential image of F if and only if

(a) the sets of nodes and edges of G are both finite;

(b) tG is injective;

(c) for every x inX there is a unique x♠ ∈ VG such that

lG(x♠) = ♠ δx = s(x♠) δx = t(x♠)

moreover, for every v ∈ VG , if lG(v) = ♠ then v = x♠ for some x ∈ X ;

(d) for every e ∈ EG and x ∈ X , sG(e) 6= x♠;

(e) for every x ∈ X , and v ∈ VG such that x is in the image of s(v) or t(v) the following are true:

(e1) if there is e ∈ EG with tG(e) = x♠ then there exists e′ ∈ EG such that

sG(e
′) = sG(e) v = tG(e

′)

(e2) if there is e ∈ EG such that v = tG(e) then there exists e′ ∈ EG such that

sG(e
′) = sG(e) x♠ = tG(e

′)

Remark 6.3.12. Point (c), in particular, entails that for every v ∈ VG , if s(v) 6= t(v) then lG(v) 6= ♠.

Proof. (⇒). It is immediate to notice that all the properties (a)–(e) are invariant under isomorphisms, so
this implication follows from Proposition 6.3.10.

(⇐). Start defining

VG := X EG := {v ∈ VG | lG(v) 6= ♠}
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As source and target functions sG, tG : EG ⇒ V ⋆G we can take the restrictions of s and t. For labelings,
use lX as lV,G and take lE,G as the unique arrow such that the square below commutes

EG

i

��

lE,G // LE

kLE

��
VG

lG

// LE + 1

where i : EG → VG is the inclusion function.
Now, property (b) entails that for every v ∈ VG there exists at most one e such that

v = tG(e)

while points (c) and (d) imply that the source of such an e must be in EG, so that we can put:

pE,G : EG → EG + 1 v 7→

{
ι1(sG(e)) there exists e ∈ EG such that tG(e) = v

⊥ otherwise

pV,G : VG → EG + 1 x 7→

{
ι1(sG(e)) there exists e ∈ EG such that tG(e) = x♠

⊥ otherwise

We have to prove that these data satisfies the two points of Definition 6.3.1.

1. Suppose that there exists v0 ∈ EG such that, for every natural k greater or equal than 1

⊥ 6=
(
p∗E,G

)k
(ι1(v0))

thus for every such κ there must be vk ∈ EG such that

ι1(vk) =
(
p∗E,G

)k
(ι1(v0))

In this way we get a succession {vi}i∈N of elements of EG which, by point (a) is finite so that there
must be h, k ∈ N with h < k such that vh = vk. Notice that every vi is in SE,G and

vi+1 = pE,G(vi)

and that, by definition of pE,G, for every index i ≥ 1 there is ei ∈ G(vi, vi−1), thus {ek−i}
k−h
i=1 is a

cycle in G, which is absurd.

2. Let x ∈ VG and v ∈ EG be such that v is in the image of sG(v) or in that of tG(v). Notice that, by
definition

sG(v) = s(v) tG(v) = t(v)

thus we can use property (e) to see the following two facts

• If x ∈ SE,G then v ∈ SV,G and
pE,G(v) = pV,G(x)
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The definition of pV,G implies that there is e ∈ EG such that tG(e) = x♠ so that we can use
property (e1 ) to obtain another edge e′ ∈ EG satisfying

sG(e
′) = sG(e) v = tG(e

′)

Then an easy computation shows

pE,G(v) = ι1(sG(e
′))

= ι1(sG(e
′))

= pV,G(x)

which is precisely what we need to conclude.

• If v ∈ SE,G then x ∈ SV,G and
pE,G(v) = pV,G(x)

By hypothesis there exists e ∈ EG such that tG(e) = v, then, by (e2 ) there is e′ ∈ EG such that

sG(e
′) = sG(e) x♠ = tG(e

′)

As before these two equalities now entail

pV,G(x) = ι1(sG(e
′))

= ι1(sG(e))

= pE,G(v)

and we are done.

Now it is immediate to see that pV,G(x) = pE,G(v) as wanted.

Thus we have constructed an object G of HHG, let us show that its image

F (G) := (G′, X, sF (G), sF (G), lX , lG′)

through F is isomorphic to the original object (G, X, s, t, lG , lX) of LDAGHGraph.
On the one hand, consider the inclusion function i : EG → VG and

(−)♠ : VG → {x♠}x∈X x 7→ x♠

Notice that property (c) implies that VG = EG ∪ {x♠}x∈X and, because of Remark 6.3.12, the images of
i and (−)♠ are disjoint, so that the induced functionϕ : EG + VG → VG is a bijection VG′ → VG .

On the other hand we have

E1
G′ = {(v, v′) ∈ VG × VG | lG(v) 6= ♠, lG(v

′) 6= ♠, v = pE,G(v
′)}

E2
G′ = {(v, x) ∈ VG ×X | lG(v) 6= ♠, v = pV,G(x)}

Now, by the definitions of pE,G and pV,G and by hypothesis (b), for every (v, v′) ∈ E1
G′ and (w, x) ∈ E2

G′

there exist unique ψ1(v, v
′) and ψ2(w, x) in EG such that

v = sG(ψ1(v, v
′)) v′ = tG(ψ1(v, v

′)) w = sG(ψ2(w, x)) x♠ = tG(ψ2(w, x))

This allows us to define functions ψ1 : E
1
G → EG , ψ2 : E

1
G → EG which, in turn, induce an arrow

ψ : EG′ → EG , which, by construction, is a morphism G′ → G of DAG, which, by Corollary 6.1.27 is a
mono and thus ψ is injective. On the other hand if e is in EG we have two cases:
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• if tG(e) is in EG then (sG(e), tG(e)) is an element of E1
G′ sent by ψ1 to e;

• if there exists x ∈ X such that tG(e) = x♠ then (sG(e), x) is in E2
G′ and e = ψ2(sG(e), x)

This shows that ψ is a bijection and thus that G and G′ are isomorphic. Notice, moreover, that

lG ◦ ϕ ◦ jE,G′ = lG ◦ i

= kLE
◦ lE,G

= lG′ ◦ jE,G′

while, by point (c),

lG ◦ ϕ ◦ jV,G′ = lG ◦ (−)♠

is the constant function in ♠, so we can conclude that lG′ = lG ◦ ϕ

To conclude it is now enough to check that ((ψ, ϕ), idX) is really a morphism of LDAGHGraph. In
particular, the only equalities left to us to prove are

sF (G) = s ◦ ϕ tF (G) = t ◦ ϕ

To see this, notice that property (c) entails, in particular that

ηX = s ◦ (−)♠ ηX = t ◦ (−)♠

so that, remembering that X = VG, we can compute to get

s ◦ ϕ ◦ jE,G′ = s ◦ i

= sG

= sF (G) ◦ jE,G′

t ◦ ϕ ◦ jE,G′ = t ◦ i

= tG

= tF (G) ◦ jE,G′

s ◦ ϕ ◦ jV,G′ = s ◦ (−)♠

= ηX

= sF (G) ◦ jV,G′

t ◦ ϕ ◦ jV,G′ = t ◦ (−)♠

= ηX

= tF (G) ◦ jV,G′

and we are done.

So equipped we can establish that the essential image of F is closed under pullbacks.

Proposition 6.3.13. Given a pullback square in LDAGHGraph

(P, P, s, t, lP , lP)
((a1,b1),p1) //

((a2,b2),p2)

��

F (H)

F (h2,k2)

��
F (K)

F (h1,k1)
// F (G)

(P, P, s, t, lP , lP) is in the essential image of F .
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Proof. LetF (G) = (G, G, sG, tG, lG, lG), F (H) = (H,H, sH , tH , lH , lH), F (K) = (K,K, sK , tK , lK , lK),
by Proposition 6.3.4 we know that in Set we have three pullback squares

EP
a1 //

a2

��

EH

f2

��

VP
lP

%%KK
KK

KK
KK

b1 //

b2

��

VH
lH

yysss
ss
ss
s

g2

��

P
lP

##F
FF

FF
FF

p1 //

p2

��

H
lH

{{xx
xx
xx
x

k2

��

LE + 1 LV

EK
f1

// EG VK

lK
99ssssssss
g1

// VG

lG
eeKKKKKKKK

K

lK
<<xxxxxxx

k1

// G

lG
bbFFFFFFF

plus four other diagrams defining the remaining of the structure of (P, P, s, t, lP , lP):

VP
b1 //

b2

��

VH

g2

��

VP
b1 //

b2

��

VH

g2

��

EP
a1 //

a2
��

sP
ccGGGGGGG

EH

sH
;;wwwwwww

f2
��

EP

tP
ccGGGGGGG

a1 //

a2
��

EH

tH
;;wwwwwww

f2
��

EK
f1

//

sK{{www
ww
ww

EG

sG ##G
GG

GG
GG

EK

tK{{www
ww
ww

f1

// EG

tG ##G
GG

GG
GG

VK g1
// VG VK g1

// VG

P ⋆
p⋆1 //

p⋆2

��

H⋆

k⋆2

��

P ⋆
p⋆1 / /

p⋆2

��

H⋆

k⋆2

��

VP
b1 //

b2
��

s
ccHHHHHHH

VH

sH
;;vvvvvvv

g2
��

VP

t
ccHHHHHHH

b1 //

b2
��

VH

tH
;;vvvvvvv

g2
��

VK g1
//

sK{{www
ww
ww

VG

sG ##G
GG

GG
GG

VK

tK{{www
ww
ww

g1
// VG

tG ##G
GG

GG
GG

K⋆

k⋆1

// G⋆ K⋆

k⋆1

// G⋆

We are now going to show that (P, P, s, t, lP , lP) satisfies conditions (a)–(e) of Lemma 6.3.11.

(a) VH, VK, EH and EK are finite, so EP and VP are finite.

(b) Let e, e′ ∈ EP such that tP(e) = tP(e
′), then

tH(a1(e)) = b1(tP(e))

= b1(tP(e
′))

= tH(a1(e
′))

tK(a2(e)) = b2(tP(e))

= b2(tP(e
′))

= tK(a2(e
′))

hence a1(e) = a1(e
′) and a2(e) = a2(e

′) and thus e = e′.
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(c) Given p ∈ P , we can consider p1(p)♠ ∈ VH and p2(p)♠ ∈ VK. Then

f2(p1(p)♠) = k2(p1(p))♠

= k1(p2(p))♠

= f1(p2(p)♠)

thus there exists p♠ ∈ VP such that

p1(p)♠ = b1(p♠) p2(p)♠ = b2(p♠)

Now, we have identities

sH(b1(p♠)) = p1(p) sK(b2(p♠)) = p2(p) tH(b1(p♠)) = p1(p) tK(b2(p♠)) = p2(p)

so that both s(p♠) and t(p♠) are equal to δp. Moreover,

lP(p♠) = lK(b1(p♠))

= ♠

For uniqueness, suppose that x ∈ VP is such that

δp = s(x) δp = t(x) lP(x) = ♠

then, we must have
b1(x) = p1(p)♠ b2(x) = p2(p)♠

and thus y = p♠. Finally, if x ∈ VP is such that lP(x) = ♠, then

lH(b1(x)) = lP(x)

= ♠

lK(b2(x)) = lP(x)

= ♠

so that, since F (H) and F (K) saisfy property (c) of Proposition 6.3.10 we must have

h♠ = b1(x) k♠ = b2(x)

for some h ∈ H and k ∈ K. In particular, this means that

δh = tH(b1(x)) δk = tK(b2(x))

so that

δk2(h) = k2 ◦ δh

= k⋆2(δh)

= k⋆2(tH(b1(x)))

= tG(g2(b1(x)))

= tG(g1(b2(x)))

= k⋆1(tK(b2(x)))

= k⋆1(δk)

= k1 ◦ δk

= δk1(k)
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and thus we can deduce that k2(h) = k1(k), therefore there exists p ∈ P such that

h = p1(p) k = p2(p)

On the other hand we have

p1 ◦ s(x) = p⋆1(s(x))

= sH(b1(x))

= δh

p2 ◦ s(x) = p⋆2(s(x))

= sK(b2(x))

= δk

p1 ◦ t(x) = p⋆1(t(x))

= tH(b1(x))

= δh

p2 ◦ t(x) = p⋆2(t(x))

= tK(b2(x))

= δk

showing that dom(t(x)) = 1 and that t = δp which now implies x = p♠.

(d) Let e ∈ EP such that exists sP(e) = p♠ for some p ∈ P , then,

lH(sH(a1(e))) = lH(b1(sP(e)))

= lH(b1(p♠))

= lP(p♠)

= ♠

which, by point (c) and (d) of Proposition 6.3.10 applied to F (H) is absurd.

(e) Fix an element p of P and a vertex v ∈ VP such that p is in the image of s(v) or t(v). Notice that
p1(p) must then be in the image of sH(b1(v)) or in that of tH(b1(v)) and, similarly p2(p) or is a
letter of sK(b2(v)) or one of tK(b2(v)).

(e1 ) Suppose that there is e ∈ EP be such that tP(e) = p♠, then

lH(tH(a1(e))) = lH(b1(tP(e)))

= lH(b1(p♠))

= lP(p♠)

= ♠

lK(tK(a2(e))) = lK(b2(tP(e)))

= lK(b2(p♠))

= lP(p♠)

= ♠

sH(tH(a1(e))) = sH(b1(tP(e)))

= sH(b1(p♠))

= p⋆1(s(p♠))

= p⋆1(δp)

= p1 ◦ δp

= δp1(p)

sK(tK(a2(e))) = sK(b2(tP(e)))

= sK(b2(p♠))

= p⋆2(s(p♠))

= p⋆2(δp)

= p2 ◦ δp

= δp2(p)

tH(tH(a1(e))) = tH(b1(tP(e)))

= tH(b1(p♠))

= p⋆1(t(p♠))

= p⋆1(δp)

= p1 ◦ δp

= δp1(p)

tK(tK(a2(e))) = tK(b2(tP(e)))

= tK(b2(p♠))

= p⋆2(t(p♠))

= p⋆2(δp)

= p2 ◦ δp

= δp2(p)
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and thus we must have

p1(p)♠ = tH(a1(e)) p2(p)♠ = tK(a2(e))

We know from Proposition 6.3.10 that F (H) and F (K) satisfy property (e1 ), so there exist eH ∈ EH

and eK ∈ EK with the property that

sH(eH) = sH(a1(e)) sK(eK) = sK(a2(e)) tH(eH) = b1(v) tK(eK) = b2(v)

Now, if we compute we have

tG(f2(eH)) = g2(tH(eH))

= g2(p1(p)♠)

= k2(p1(p))♠

= k1(p2(p))♠

= g1(p2(p)♠)

= g2(tK(eK))

= tG(f1(eK))

and we know that tG is injective, so that

f2(eH) = f1(eK)

This equality in turn implies the existence of e′ ∈ EP such that

eH = a1(e
′) eK = a2(e

′)

To see that sP(e′) = sP(e) and tP(e′) = v it is enough to compute:

b1(sP(e
′)) = sH(a1(e

′))

= sH(eH)

= sH(a1(e))

= b1(sP(e))

b1(tP(e
′)) = tH(a1(e

′))

= tH(eH)

= b1(v)

b2(sP(e
′)) = sK(a2(e

′))

= sK(eK)

= sK(a2(e))

= b2(sP(e))

b2(tP(e
′)) = tK(a2(e

′))

= tK(eK)

= b2(v)

(e2 ) Take e ∈ EP such that tP(e) = v, then a1(e) and a2(e) are such that

tH(a1(e
′)) = b1(v) tK(a2(e

′)) = b2(v)

hence there are eH ∈ EH and eK ∈ EK such that

sH(eH) = sH(a1(e
′)) sK(eK) = sK(a2(e

′)) tH(eH) = p1(p)♠ tK(eH) = p2(p)♠
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We can proceed as in the proof of (e1 ): a computation yields

tG(f2(eH)) = g2(tH(eH))

= g2(p1(p)♠)

= k2(p1(p))♠

= k1(p2(p))♠

= g1(p2(p)♠)

= g2(tK(eK))

= tG(f1(eK))

and by the injectivity of tG this gives us the existence of e′ ∈ EP such that

eH = a1(e
′) eK = a2(e

′)

so that

b1(sP(e
′)) = sH(a1(e

′))

= sH(eH)

= sH(a1(e))

= b1(sP(e))

b2(sP(e
′)) = sK(a2(e

′))

= sK(eK)

= sK(a2(e))

= b2(sP(e))

b1(tP(e
′)) = tH(a1(e

′))

= tH(eH)

= p1(p)♠

b2(tP(e
′)) = tK(a2(e

′))

= tK(eK)

= p2(p)♠

By the proof of point (c) we know that

p1(p)♠ = b1(p♠) p2(p)♠ = b2(p♠)

therefore identities implies that sP(e) = sP(e
′) andtP(e′) = p♠.

Proposition 6.3.14. Suppose that a pushout square in LDAGHGraph

F (G)
F (h2,k2) //

F (h1,k1)

��

F (H)

((c1,d1),q1)

��
F (K)

((c2,d2),q2)
// (Q, Q, s, t, lQ, lP)

is given. Suppose also that

F (h1, k1) = ((f1, g1), k1) F (h2, k2) = ((f2, g2), k2)

with k1 and k2 injective and (f1, g1), (f2, g2) ∈ dcld. Then (Q, Q, s, t, lQ, lQ) is in the essential image of F .
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Proof. As in the proof of Proposition 6.3.13, letF (G) = (G, G, sG, tG, lG, lG),F (H) = (H,H, sH , tH , lH , lH),
F (K) = (K,K, sK , tK , lK , lK), so that we have three pushout squares in Set

EG
f2 //

f1

��

EH

c1

��

VG
lG

%%KK
KK

KK
KK

g2 //

g1

��

VH
lH

yysss
ss
ss
s

d1

��

G
lG

""F
FF

FF
FF

k2 //

k1

��

H
lH

||xx
xx
xx
x

q1

��

LE + 1 LV

EK c2
// EQ VK

lK
99ssssssss

d2

// VQ

lQ
eeKKKKKKKK

K

lK
<<xxxxxxx
q2

// Q

lQ
bbFFFFFFF

We also have four other diagrams

VG
g2 //

g1

��

VH

d1

��

VG
g2 //

g1

��

VH

d1

��

EG
f2 //

f1
��

sG
ccGGGGGGG

EH

sH
;;wwwwwww

c1
��

EG

tG
ccGGGGGGG

f2 //

f1
��

EH

tH
;;wwwwwww

c1
��

EK c2
//

sK{{www
ww
ww

EQ

sQ ##G
GG

GG
GG

EK

tK{{www
ww
ww

c2
// EQ

tQ ##G
GG

GG
GG

VK
d2

// VQ VK
d2

// VG

G⋆
k⋆2 //

k⋆1

��

H⋆

q⋆1

��

G⋆
k⋆2 //

k⋆1

��

H⋆

q⋆1

��

VG
g2 //

g1
��

sG
ccGGGGGGG

VH

sH
;;wwwwwww

d1
��

VG

tG
ccGGGGGGG

g2 //

g1
��

VH

tH
;;wwwwwww

d1
��

VK
d2

//

sK{{www
ww
ww

VQ

s ##G
GG

GG
GG

VK

tK{{www
ww
ww

d2

// VQ

t ##G
GG

GG
GG

K⋆

q⋆2

// Q⋆ K⋆

q⋆2

// Q⋆

It is now enough to show that (Q, Q, s, t, lQ, lQ) satisfies the conditions of Lemma 6.3.11.

(a) VH, VK, EH and EK are finite, so EP and VP are finite.

(b) Let e, e′ ∈ EQ such that tQ(e) = tQ(e
′), by Lemma 6.1.1 we have four cases.

• e = c1(h) and e′ = c1(h
′) for some h, h′ ∈ EH. Then

d1(tH(h)) = tQ(c1(h))

= tQ(e)

= tQ(e
′)

= tQ(c1(h
′))

= d1(tH(h′))

d1 is the pushout of g1 and so it is injective, therefore we get h = h′.
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• e = c2(k) and e′ = c1(k
′) for some k, k′ ∈ EK. This is done as in the previous point:

d2(tK(k)) = tQ(c2(k))

= tQ(e)

= tQ(e
′)

= tQ(c2(k
′))

= d2(tK(k
′))

and d2 is injective, so that k = k′.

• e = c1(h) and e′ = c2(k) for some h ∈ VH and k ∈ VK, thus

d2(tK(k)) = tQ(c2(k))

= tQ(c1(h))

= d1(tH(h))

By Lemma 6.1.1 there exists w ∈ VG such that g1(w) = tK(k) and g2(w) = tH(h). Since
(f1, g1) is downward closed there exists g ∈ EG such that f1(g) = k, and so

g1(tG(g)) = tK(f1(g))

= tK(k)

= g1(w)

g1 is injective by hypothesis therefore we have tG(g) = w. Therefore

tH(f2(g)) = g2(tG(g))

= g2(w)

= tH(h)

from which it follows that f2(g) = h and that e = e′.

• If e = c2(k) and e′ = c1(h) for some k ∈ VK and h ∈ VH it is enough to swap e with e′ and
apply the previous point.

(c) Let q be an element of Q, by Lemma 6.1.1 we have two cases.

• q = q1(h) for some h ∈ H . If we start from h♠, on the one hand we obtain

lQ(d1(h♠)) = lH(h♠)

= ♠

while on the other we have

s(d1(h♠)) = q∗1(sH(h♠))

= q∗1(δh)

= q1 ◦ δh

= δq1(h)

= δq

t(d1(h♠)) = q∗1(tH(h♠))

= q∗1(δh)

= q1 ◦ δh

= δq1(h)

= δq



282 6. A zoo ofM,N -adhesive categories

and so we can take d1(h♠) as q♠. For uniqueness, suppose that y ∈ EQ is such that

♠ = lQ(y) q = s(y) q = s(y)

We have again two cases.

– If y = d1(h
′) for some other h′ ∈ VH then

lH(h′) = lQ(d1(h
′))

= lQ(y)

= ♠

so that h′ = x♠ for some x ∈ H . On the other hand we have

δq1(x) = q1 ◦ δx

= q⋆1(δxq
⋆
1(tH(h′))

= t(d1(h
′))

= t(y)

= δq

= δq1(h)

Thus q1(x) = q1(h), but q1 is injective as it is pushout of k1, so x = h and h′ = h♠.
– y = d2(k) for some other k ∈ VK. Then

lK(k) = lQ(d2(k))

= lQ(y)

= ♠

and therefore k = x♠ for some x ∈ K. Notice, moreover, that

δq2(x) = q2 ◦ δx

= q⋆2(δx)

= q⋆2(tK(k))

= t(d2(k))

= t(y)

= δq

Thus q2(x) = q1(h) and then, by Lemma 6.1.1, there exists g ∈ G such that

x = k1(g) h = k2(g)

Now, notice that,

lK(g1(g♠) = lG(g♠)

= ♠

lH(g2(g♠) = lG(g♠)

= ♠
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sK(g1(g♠)) = k⋆1(sG(g♠))

= k⋆1(δg)

= k⋆1 ◦ δg

= δk1(g)

= δx

sH(g2(g♠)) = k⋆2(sG(g♠))

= k⋆2(δg)

= k⋆2 ◦ δg

= δk2(g)

= δh

tK(g1(g♠)) = k⋆1(tG(g♠))

= k⋆1(δg)

= k⋆1 ◦ δg

= δk1(g)

= δx

tK(g2(g♠)) = k⋆2(tG(g♠))

= k⋆2(δg)

= k⋆2 ◦ δg

= δk2(g)

= δh

so that

x♠ = g1(g♠) h♠ = g2(g♠)

and this in turn implies that d2(k) = d1(h♠).

• If q = q2(k) for some k ∈ K we can repeat almost verbatim the same argument to obtain that
d2(k♠) is the unique q♠ we wanted. Clearly

lQ(d2(k♠)) = lK(k♠)

= ♠

and

s(d2(k♠)) = q∗2(sK(k♠))

= q∗2(δk)

= q2 ◦ δk

= δq2(k)

= δq

t(d2(k♠)) = q∗2(tK(k♠))

= q∗2(δk)

= q2 ◦ δk

= δq2(k)

= δq

To prove uniqueness, take again y ∈ EQ such that

♠ = lQ(y) q = s(y) q = s(y)

and split the cases.

– If y = d2(k
′) for some other k′ ∈ VK then

lK(k
′) = lQ(d2(k

′))

= lQ(y
′)

= ♠
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thus k′ = x♠ for some x ∈ K, but then:

δq2(x) = q2 ◦ δx

= q⋆2(δx)

= q⋆2(tK(k′))

= t(d2(k
′))

= t(y)

= δq

= δq2(k)

As above, since q2 is injective this impliws x = k and k′ = k♠.
– y = d1(h) for some h ∈ VH. Then

lH(h) = lQ(d1(h))

= lQ(y)

= ♠

therefore there is some x ∈ H such that h = x♠. Computing we get

δq1(x) = q1 ◦ δx

= q⋆1(δx)

= q⋆1(tH(h))

= t(d1(h))

= t(y)

= δq

entailing q2(k) = q1(x) and the existence of g ∈ G such that

k = k1(g) x = k2(g)

We can observe again that,

lK(g1(g♠) = lG(g♠)

= ♠

lH(g2(g♠) = lG(g♠)

= ♠

sK(g1(g♠)) = k⋆1(sG(g♠))

= k⋆1(δg)

= k⋆1 ◦ δg

= δk1(g)

= δk

sH(g2(g♠)) = k⋆2(sG(g♠))

= k⋆2(δg)

= k⋆2 ◦ δg

= δk2(g)

= δx

tK(g1(g♠)) = k⋆1(tG(g♠))

= k⋆1(δg)

= k⋆1 ◦ δg

= δk1(g)

= δk

tK(g2(g♠)) = k⋆2(tG(g♠))

= k⋆2(δg)

= k⋆2 ◦ δg

= δk2(g)

= δx
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Therefore we have identities

k♠ = g1(g♠) x♠ = g2(g♠)

from which it follows that d1(h) = d2(k♠).

We are left with the last half of the thesis. Take v ∈ VQ and suppose that lQ(v) = ♠. We have:

♠ = lQ(v)

=

{
lQ(d1(h)) v = d1(h) for some h ∈ VH

lQ(d2(k)) v = d2(k) for some k ∈ VK

=

{
lH(h) v = d1(h) for some h ∈ VH

lK(k) v = d2(k) for some k ∈ VK

So v is equal to d1(x♠) or to d2(y♠) for some x ∈ H or y ∈ K and the thesis now follows.

(d) It is worth to notice explicitly that the proof of the previous point entails that, for every h ∈ H and
k ∈ K:

d1(h♠) = q1(h)♠ d2(k♠) = q2(k)♠

Take now e ∈ EQ such that sQ(e) = q♠ for some q ∈ Q, using Lemma 6.1.1 we have four cases.

• e = c1(eH) and q = q1(h) for some eH ∈ EH and h ∈ H . Then

d1(h♠) = q1(h)♠

= q♠

= sQ(e)

= sQ(c1(eH))

= d1(sH(eH))

and, since d1 is injective, this entail sH(eH) = h♠, which is absurd.

• e = c2(eK) and q = q2(k) for some eK ∈ EK and k ∈ K. We proceed as above:

d2(k♠) = q2(k)♠

= q♠

= sQ(e)

= sQ(c2(eK))

= d2(sK(eK))

The injectivity of d2 implies sH(eK) = k♠.

• e = c1(eH) and q = q2(k) for some eH ∈ EH and k ∈ K. Let w be sH(sH(eH)), then

δq = s(q♠)

= s(sQ(e))

= s(sQ(c1(eH)))

= s(d1(sH(eH)))

= q⋆1(sH(sH(eH)))

= q⋆1(w)
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Thus w is a function 1 → H such that q1 ◦ w = δq. This implies that there exists h ∈ H such
that q1(h) = q and we fall back in the first point.

• e = c2(eK) and q = q1(h) for some eK ∈ EK and h ∈ H . This is proved as in the previous
point. If w is sL(sK(eK)), then

δq = s(q♠)

= s(sQ(e))

= s(sQ(c2(eK)))

= s(d2(sK(eK)))

= q⋆2(sK(sK(eK)))

= q⋆2(w)

Hence there exists k ∈ K such that q2(k) = q, bringing us back to the second point.

(e) Let q ∈ Q and v ∈ VQ such that q is a letter of s(v) or t(v). We can make some preliminary
observations.

• If v = d1(vH) and q = q1(h) for some vH ∈ VH and h ∈ H , then:

s(v) = s(d1(vH))

= q⋆1(sH(vH))

t(v) = t(d1(vH))

= q⋆1(tH(vH))

therefore, by the injectivity of q1, h must be a in the image of sH(vH) or of tH(vH).

• Similarly, if there are vK ∈ VK and k ∈ K such that

v = d2(vK) q = q2(k)

then we have

s(v) = s(d2(vK))

= q⋆2(sK(vK))

t(v) = t(d2(vK))

= q⋆2(tK(vK))

and the injectivity of q2 entails that k has to be a letter of sK(vK) or of tK(vK).

• Suppose that v = d1(vH) and q = q2(k) for some vH ∈ VH and k ∈ K, then, as before:

s(v) = s(d1(vH))

= q⋆1(sH(vH))

t(v) = t(d1(vH))

= q⋆1(tH(vH))

So, since q is a letter of s(v) or of t(v), there must be a, unique, letter h of sH(vH) or of tH(vH)
such that q1(h) = q. By Lemma 6.1.1, this implies that there exists g ∈ G such that

k = k1(g) h = k2(g)

• Simmetrically, if v = d1(vK) and q = q1(h) for some vK ∈ VK and h ∈ H from

s(v) = s(d2(vK))

= q⋆2(sK(vK))

t(v) = t(d2(vK))

= q⋆2(tK(vK))

we can deduce that there is a letter k of sK(vK) or of tK(vK) such that q2(k) = q and, therefore
there also is a g ∈ G such that

k = k1(g) h = k2(g)
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We are now ready to prove properties (e1 ) and (e2 ).

(e1 ) Let e be an element of EQ such that tQ(e) = q♠, we have eight cases.

• e = c1(eH), q = q1(h) and v = d1(vH) for some eH ∈ EH, h ∈ H and vH ∈ VH. We have
already noticed that

d1(h♠) = q1(h)♠

hence we have a chain of equalities:

d1(h♠) = q1(h)♠

= q♠

= tQ(e)

= tQ(c1(eH))

= d1(tH(eH))

and d1 is injective, showing that
h♠ = tH(eH)

We also know that h is a letter of sH(vH) or of tH(vH), so that there is e′H ∈ EH such that

sH(e′H) = sH(eH) tH(e′H) = vH

Now it is enough to take c1(e′H) and compute:

sQ(c1(e
′
H)) = d1(sH(e′H))

= d1(sH(eH))

= sQ(c1(eH))

= sQ(e)

tQ(c1(e
′
H)) = d1(tH(e′H))

= d1(vH)

= v

• e = c2(eK), q = q2(k) and v = d2(vK) for some eK ∈ EK, k ∈ K and vK ∈ VK. This is done
as in the previous point. Start with

d2(k♠) = q2(k)♠

= q♠

= tQ(e)

= tQ(c2(eK))

= d2(tK(eK))

so that we can conclude that
k♠ = tK(eK)

Since k is a letter of sK(vK) or of tK(vK), there is e′K ∈ EK such that

sK(e
′
K) = sK(eK) tK(e

′
K) = vK

and the thesis now follows considering c2(e′K).
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• e = c1(eH), q = q1(h) and v = d2(vK) for some eH ∈ EH, h ∈ H and vK ∈ VK. Notice that

d1(h♠) = q1(h)♠

= q♠

= tQ(e)

= tQ(c1(eH))

= d1(tH(eH))

thus tH(eH) = h♠. On the other hand, we already know that sK(vK) or tK(vK) must have
a letter k ∈ K such that

k = k1(g) h = k2(g)

for some g ∈ G, so that q = q2(k). Moreover

lH(g2(g♠)) = lG(g♠)

= ♠

and

sH(g2(g♠)) = k⋆2(sG(g♠))

= k ⋆2 (δg)

= k2 ◦ δg

= δk2(g)

= δh

tH(g2(g♠)) = k⋆2(tG(g♠))

= k ⋆2 (δg)

= k2 ◦ δg

= δk2(g)

= δh

showing thar g2(g♠) = h♠. Since (f2, g2) is downward closed, we can deduce the existence of
eG ∈ EG such that f2(eG) = eH . This in turn implies that

e = c2(f1(eG))

so that we fall back to the previous point.

• e = c2(eK), q = q2(k) and v = d1(vH) for some eK ∈ EK, k ∈ K and vH ∈ VH. As in the
point above, we know that d2(k♠) = d2(tK(eK)), so that

tK(eK) = k♠

We also know that there are g ∈ G and h ∈ H such that h is in the image of sH(vH) or of
tH(vH) and

k = k1(g) h = k2(g)

In turn this implies that g1(g♠) = k♠ and (f1, g1) is in dcld, thus there is eG ∈ EG such that
f1(eG) = eK and the thesis now follows from the first point.

• e = c1(eH), q = q2(k) and v = d1(vH) for some eH ∈ EH, k ∈ K and vH ∈ VH. We have
remarked at the beginning of this proof that our hypotheses entails the existence of g ∈ G

such that
k = k1(g) q = q1(k2(g))

Hence we can conclude using the first point.
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• e = c2(eK), q = q1(h) and v = d2(vK) for some eK ∈ EK, h ∈ H and vK ∈ VK. This is
done as before noticing that there must be g ∈ G such that

q = q2(k1(g)) h = k2(g)

allowing us to appeal to the second point of this list.

• e = c1(eH), q = q2(k) and v = d2(vK) for some eH ∈ EH, k ∈ K and vK ∈ VK. We have

q⋆1(tH(tH(eH))) = t(d1(tH(eH)))

= t(tQ(c1(eH)))

= t(tQ(e))

= t(q♠)

= δq

This implies that q is in the image of q1 and the thesis follows from the third item of this list.

• e = c2(eK), q = q1(h) and v = d1(vH) for some eK ∈ EK, h ∈ H and vH ∈ VH. Computing:

q⋆2(tK(tK(eK))) = t(d2(tK(eK)))

= t(tQ(c2(eK)))

= t(tQ(e))

= t(q♠)

= δq

Thus q is in the image of q2 and the thesis now follows from the fourth point.

(e2 ) Suppose now that there exists e ∈ EQ with tQ(e) = v. We have eight other cases to examine.

• e = c1(eH), q = q1(h) and v = d1(vH) for some eH ∈ EH, h ∈ H and vH ∈ VH. Then

d1(vH) = v

= tQ(e)

= tQ(c1(eH))

= d1(tH(eH))

and d1 is injective, so tH(e′H) = vH . Since we know h is in the image sH(vH) or of tH(vH),
we conclude that there exists e′H ∈ EH such that

sH(eH) = sH(e′H) h♠ = tH(e′H)

therefore c1(e′H) satisfies

sQ(c1(e
′
H)) = d1(sH(e′H))

= d1(sH(eH))

= sQ(c1(eH))

= sQ(e)

tQ(c1(e
′
H)) = d1(tH(e′H))

= d1(h♠)

= q1(h)♠

= q♠

and we can conclude.
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• e = c2(eK), q = q2(k) and v = d2(vK) for some e′K ∈ EK, k ∈ K and vK ∈ VK. As above
we have

d2(vK) = v

= tQ(e)

= tQ(c2(eK))

= d2(tK(eK))

implying tK(eK) = vK and the existence of e′K ∈ EK such that

sH(eK) = sK(e
′
K) k♠ = tK(e

′
K)

We can conclude considering c2(e′K).

• e = c1(eH), q = q1(h) and v = d2(vK) for some eH ∈ EH, h ∈ H and vK ∈ VK. Since

v = tQ(e)

= tQ(c1(eH))

= d1(tH(eH))

we know that v is in the image of d1 and we can appeal to the first point.

• e = c2(eK), q = q2(k) and v = d1(vH) for some eK ∈ EK, k ∈ K and vH ∈ VH. As above

v = tQ(e)

= tQ(c2(eK))

= d2(tK(eK))

shows that v is in the image of d2 so that we fall back to the second point.

• e = c1(eH), q = q2(k) and v = d1(vH) for some eH ∈ EH, k ∈ K and vH ∈ VH. We have

s(v) = s(d1(vH))

= q⋆1(sH(vH))

= q1 ◦ sH(vH)

By hypothesis q is in the image of s(v), thus it is also in the image of q1 ◦sH(vH). In particular
this implies that q = q1(h) for some h ∈ H , so the first point applies.

• e = c2(eK), q = q1(h) and v = d2(vK) for some eK ∈ EK, h ∈ H and vK ∈ VK. Since

s(v) = s(d2(vK))

= q⋆2(sK(vK))

= q2 ◦ sK(vK)

q is in the image of q2 and we can conclude.

• e = c1(eH), q = q2(k) and v = d2(vK) for some eH ∈ EH, k ∈ K and vK ∈ VK. This point
is proved appealing to the fifth item of this list and noticing that

v = tQ(c1(eH))

= d1(tH(eH))
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• e = c2(eK), q = q1(h) and v = d1(vH) for some eK ∈ EK, h ∈ H and vH ∈ VH. Then

v = tQ(c2(eK))

= d2(tK(eK))

and the sixth item of this list applies.

We know by Corollary 6.3.5 that LDAGHGraph is M,N -adhesive with respect to the classes

M := {((h1, h2), k) ∈ A(LDAGHGraph) | (h1, h2) ∈ dcld, k ∈ M(Set)}

N := {((h1, h2), k) ∈ A(LDAGHGraph) | (h1, h2) ∈ M(DAG), k ∈ M(Set)}

In particular, sinceM is a subclass ofN , we know thatLDAGHGraph is also anM,M-adhesive category.
Applying point 3 of Theorem 5.1.31 together with Propositions 6.3.13 and 6.3.14 we get the following.

Corollary 6.3.15. HHG isM′,M′-adhesive, where

M′ := {(h, k) ∈ HHG | F (h, k) ∈ M}

6.4 Term graphs

A brute force proof of quasiadhesivity of the category of term graphs was given in [38]. In this section
we will present the category of term graphs as a subcategory of labelled hypergraphs. First of all we will
prove that this presentation is equivalent to the traditional one. Next, we will recoverthe result of [38] by
means of our Theorem 5.1.31.

6.4.1 Two categories of term graphs

Let us start using labelled hypergraphs to define term graphs.

Definition 6.4.1. Let Σ be an algebraic signature, a labelled hypergraph (l, !VG ) : G → GΣ is a term graph
if tG is injective. We define TGΣ to be the full subcategory of HypΣ and denote by IΣ the inclusion.
Restricting UΣ : HypΣ → Set we get a forgetful functor UTGΣ

: TGΣ → Set.

Remark 6.4.2. Notice that, by Remark 6.2.20, if G is a term graph then tG(h) is a word of length 1.

Example 6.4.3. Of the examples of Section 6.2.2, only Example 6.2.23 is a term graph.

In the literature there are two definitions of term graphs: Definition 6.4.1 is different from the classical
one that was adopted in [38], and it is in turn more in tune with the current interests in string diagrams.
The aim of this section is to prove that the categories arising from the two definitions are in fact equivalent.

Definition 6.4.4. Let Σ = (OΣ, arΣ) be an algebraic signature. The category TeGrΣ is defined as follows:

• an object is a triple (V, l, s) where V is a set of nodes, l : V ⇀ OΣ, s : V ⇀ V ⋆ are partial functions
such that dom(l) = dom(s) and, for each v ∈ dom(l)

arΣ(l(v)) = dom(s(v))

• A morphism (V, l, s) → (W,p, r) is a function f : V → W such that, for every v ∈ dom(l), f(v)
belongs to dom(p) and

p(f(v)) = l(v) r(f(v)) = f⋆(s(v))
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A node v not in dom(l) is called empty

We can define a functor from G : TeGrΣ → TGΣ. Given (V, l, s) in TeGrΣ, the set of nodes of
G(V, l, s) isV , while the set of edges is dom(s). If i : dom(s) → V is the inclusion, we obtain sG(V,l,s), tG(V,l,s) : dom(s) ⇒
V ⋆ putting

sG(V,l,s) := s ◦ i tG(V,l,s) := ηV ◦ i

where η is the natural transformation idSet → (−)⋆ defined in Example 2.1.8. Now dom(s) = dom(l)
and computing we have

sGΣ(l(v)) = δ
arΣ(l(v))
♡

= δ
dom(s(v))
♡

=!⋆V (s(v))

=!⋆V (sG(V,l,s)(v))

thus (l, !V ) defines an algebraic labelled hypergraph G(V, l, s) : G(V, l, s) → GΣ. .

Proposition 6.4.5. For every (V, l, s) in TeGrΣ, G(V, l, s) : G(V, l, s) → GΣ is a term graph.

Proof. This follows at once since ηV and i are injective.

We have now to define the action of G on arrows of TeGrΣ. Given f : (V, l, s) → (W,p, r) we know
by definition that f(v) ∈ dom(r) for every v ∈ dom(l), therefore we can restrict f : V →W to a function
g : dom(s) → dom(r). If we compute we get:

f⋆
(
tG(V,l,s)(v)

)
= f ◦ δv

= δf(v)

= δg(v)

= tG(W,p,r)(g(v))

f⋆
(
sG(V,l,s)(v)

)
= f⋆(s(v))

= r(f(v))

= sG(W,p,r)(g(v))

thus (g, f) defines a morphism of hypergraphs G(V, l, s) → G(W,p, r). Moreover, for every v ∈ dom(l)

p(g(v)) = p(f(v))

= l(v)

and so(g, f) is a morphism in the category in HypΣ.

Theorem 6.4.6. The functor G : TeGrΣ → TGΣ defined above is an equivalence.

Proof. Faithfulness of G follows immediately from the definition. For fullness, let (g, f) be a morphism
between G(V, l, s) → G(W,p, r), then, for every v ∈ dom(s), we must have

tG(W,p,r)(g(v)) = f⋆(tG(V,l,s)(v))

= f⋆(δv)

= f ◦ δv

= δf (v)

= tG(W,p,r)(f(v))
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Since tG(W,p,r) is injective, this shows that g : dom(s) → dom(r) must coincide with the restriction of
f , so it’s now enough to show that f : V → W is a morphism of TeGrΣ. Take v ∈ dom(s), since, by
definition

G(V, l, s) = (l, !V ) G(W,p, r) := (p, !W )

the fact that (g, f) is a morphism of HypΣ entails at once the identity

p(f(v)) = l(v)

for every v ∈ dom(s). On the other hand

r(f(v)) = sG(W,p,r)(g(v))

= f⋆(sG(V,l,s)(v))

= f⋆(s(v))

Thus we are left with essential surjectivity of G. Let (h, !VG ) : G → GΣ be a term graph, we can define
an object of TeGrΣ as follows.

• The set of nodes is VG .

• Given v be in VG , by definition there is at most one e ∈ EG such that tG(e) = δv so we can define

l : V ⇀ OΣ v 7→

{
h(e) there exists e such that tG(e) = δv

undefined otherwise

s : V ⇀ V ⋆ v 7→

{
sG(e) there exists e such that tG(e) = δv

undefined otherwise

By construction dom(l) = dom(s) and arΣ(l(v)) = dom(s(v)), so that (VG , l, s) is an object of TeGrΣ.
We have to show that G(VG , l, s) is isomorphic to (h, !VG ). For every e ∈ EG there is exactly one

ϕ(e) ∈ dom(s) such that tG(e) = δϕ(e), thus we get a bijection ϕ : EG → dom(s). Now, we have

tG(V,l,s)(ϕ(e)) = δϕ(e)

= tG(e)

sG(V,l,s)(ϕ(e)) = sG(V,l,s)(tG(e))

= s(tG(e))

= sG(e)

so that (ϕ, idVG ) is an isomorphism from G to G(VG , l, s). Moreover l sends ϕ(e) to h(e) by construction,
thus (ϕ, idVG ) lies in HypΣ and we are done.

6.4.2 TGΣ is quasiadhesive

We are now going back to examine the properties of TGΣ, with the purpose of proving its quasidhesivity.

Proposition 6.4.7. The forgetful functor UTGΣ
: TGΣ → Set has a left adjoint∆TGΣ

.

Proof. This follows at once noticing that, for every set X , ∆Σ(X) is a term graph.
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Take now a mono (i, j) : H → G between (l, !VG ) : G → GΣ and (l′, !V ′
G
) : H → GΣ in HypΣ. In

particular we have a commutative square

EG
tG //

i

��

V ⋆G

j

��
EG′

tG′

// V ⋆G′

By Proposition 6.2.19 i and j are injective, thus if tG′ is injective then tG is injective too. This show
that if (l′, !V ′

G
) is a term graph then (l, !VG ) belongs to TGΣ too. We can apply this argument when (i, j)

is the equalizer in HypΣ of two parallel arrows between term graphs to get the following.

Proposition 6.4.8. TGΣ has equalizers and IΣ creates them.

We have a similar result also for binary products.

Proposition 6.4.9. TGΣ has binary products and IΣ creates them.

Proof. Let (l, !VG ) : G → GΣ and (l′, !VH) : H → GΣ be two term graphs, their product in HypΣ is given
by (p, !VP ) : P → GΣ, where the square below is a pullback in Hyp and (p, !VP ) is the diagonal filling it.

P
(pE ,pV ) //

(qE ,eV )

��

G

(l,!VG
)

��
H

(l′,!VH
)

// GΣ

By Proposition 6.2.2 we have two pullback square in Set:

EP
pE //

qE

��

EG

l

��

VP
pV //

qV

��

VG

!VG

��
EH

l′
// OΣ VH

!VH

// {♥}

Moreover tP fits in the following diagram.

V ⋆P
p⋆V //

q⋆V

��

V ⋆G

!⋆VG

��

EP

tP

aaBBBBBBBB
pE //

qE

��

EG

tG

<<yyyyyyyy

l

��
EH

tH

}}||
||
||
||

l′
// OΣ

tGΣ

""E
EE

EE
EE

E

V ⋆H !⋆VH

// {♥}⋆
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If we show that P is a term graph we are done. Take h1, h2 ∈ EP with the same image through tP , then
we get the following chains of equalities

tG(pE(h1)) = p⋆V (tP(h1))

= p⋆V (tP(h2))

= tG(pE(h2))

tH(qE(h1)) = q⋆V (tP(h1))

= q⋆V (tP(h2))

= tH(qE(h2))

since tG and tH are injective we get

pE(h1) = pE(h2) qE(h1) = qE(h2)

which, in turn, imply h1 = h2.

Since pullbacks can be computed from products and equalizers we also get the following.

Corollary 6.4.10. TGΣ has pullbacks and they are created by IΣ.

Remark 6.4.11. TGΣ in general does not have terminal objects. Since UTGΣ
preserves limits, if a terminal

object exists it must have the singleton as set of nodes, therefore the set of hyperedges must be empty or
a singleton {h}. Now take as signature the one given by two operations a and b, both of arity 0; we have
three term graphs with only one node v: ∆TGΣΣ({v}), (la, !VG ) : Ga → GΣ and (lb, !VG ) : Gb → GΣ.

vv

a
h

1

v

b

h

1

There are no morphisms in TGΣ between the last two and from the last two to the first one, therefore
none of them can be terminal.

Remark 6.4.12. TGΣ is not an adhesive category. In particular it does not have pushouts along all
monomorphisms. Take the three term graphs of the previous remark, we have two arrows (?{h}, id{v}) : ∆TGΣ

({v}) →
(la, !VGa

) and (?{h}, id{v}) : ∆TGΣ
({v}) → (lb, !VGa

) which cannot be completed to a square. Indeed if
(q, !VH) : H → GΣ is another term graph with (gE , gV ) : (la, !VG ) → (q, !VH) and (kE , kV ) : (la, !VG ) →
(q, !VH) such that

(gE , gV ) ◦ (?{h}, id{v}) = (kE , kV ) ◦ (?{h}, id{v})

then gV = kV and

tH(gE(h)) = g⋆V (tG(h))

= g⋆V (δv)

= k⋆V (δV )

= k⋆V (tG(h))

= tH(kE(h))
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so that we also have gE = kE , but then

a = la(h)

= q(gE(h))

= q(kE(h))

= lb(h)

= b

Definition 6.4.13. Given a labelled hypergraph (l, !VG ) : G → GΣ, we will say that v ∈ VG is an input
node if δv does not belong to the image of tG .

Proposition 6.4.14. Let (l, !VH) : H → GΣ be a term graph and (f, g) : G → H an arrow of Hyp sending
input nodes to input nodes. For every h ∈ EH, if tH(h) = δg(v) for some v ∈ VG then h ∈ f(EG).

Proof. Take v ∈ VG such that δg(v) = tH(h), since (f, g) sends input nodes to input nodes, δv must be in
the image of tG , thus there exists a k ∈ EG such that tG(k) = δv. Now,

tH(f(k)) = g⋆(tG(k))

= g⋆(δv)

= g ◦ δv

= δg(v)

= tH(h)

Buy H is a term graph, therefore we can conclude that f(k) = h.

We are now ready to show that regular monos are exactly monos sending input nodes to input nodes.

Lemma 6.4.15. Amono (i, j) between two term graphs (l, !VG ) : G → GΣ and (l′, !VH) : H → GΣ is regular
if and only if it sends input nodes to input nodes.

Proof. (⇒). If (i, j) is a regular mono in TGΣ then, by Proposition 6.4.8 it is so also in HypΣ. By
Corollaries 6.1.5 and 5.1.36 if (f1, g1) and (f2, g2) are arrows from (l′, !VH) to (k, !VK) : K → GΣ in
HypΣ, then their equalizer (e, !VE ) : E → GΣ is such that the two diagrams below are equalizer in Set.

EE
ιE // EH

f1 //
f2

// EK VE
ιV // VH

g1 //
g2

// VK

Moreover, the target function of E fits into the diagram

EE

tE

��

ιE // EH

tH

��

f1 / /
f2

/ / EK

V ⋆E ι⋆V

// V ⋆H
g⋆1 //
g⋆2

// V ⋆K
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and the arrow (ιE , ιV ) : (e, !VE ) → (l′, !VH) is given by the inclusions. In particular, if v ∈ VE is such that
διV (v) is the target of h ∈ H, then

tK(f1(h)) = g⋆1(tH)

= g⋆1(διV (v))

= g1 ◦ διV (v)

= δg1(ιV (v))

= δg2(ιV (v))

= g2 ◦ διV (v)

= g⋆2(διV (v))

= tK(f2(h))

thus f1(h) = f2(h) and h = ιE(h
′) for some h′ ∈ EE . By construction

ι⋆V (tE(h
′)) = tH(ιE(h

′))

= tH(h)

= διV (v)

= ι⋆V (δV )

thus, by Remark 6.2.4, tE(h′) = δv, showing that (ιE , ιV ) sends input nodes to input nodes.

(⇐). Take V and E to be, respectively, VH + (VH ∖ j(VG)) and EH + (EH ∖ i(EG)), with inclusions

j1 : VH → V j2 : VH ∖ j(VG) → V i1 : EH → E i2 : EH ∖ i(EG) → E

Now, we are going to use another auxiliary function

r : VH → V v 7→

{
j1(v) v ∈ j(VG)

j2(v) v /∈ j(VG)

which is clearly injective. We can now define s, t : E ⇒ V ⋆ as the functions induced by

s1 : EH → V ⋆ h 7→ j⋆1 (sH(h)) t1 : EH → V ⋆ h 7→ j⋆1 (tH(h))
s2 : EH ∖ i(EG) → V ⋆ h 7→ r⋆(sH(h)) t2 : EH ∖ i(EG) → V ⋆ h 7→ r⋆(tH(h))

We have just constructed an hypergraphK := (E, V, s, t), which we can label taking (q, !V ) : K → GΣ,
where q : E → OΣ is the morphism induced by l′ : EH → OΣ and its restriction to EH ∖ i(EG). We
have now to check that (q, !V ) : K → GΣ is actually a term graph, i.e. that t is injective. Suppose that
t(h1) = t(h2), we have four cases.

• h1 = i1(h) and h2 = i1(k) for some h, k in EH. Then

j⋆1 (tH(h)) = t(i1(h))

= t(h1)

= t(h2)

= t(i1(k))

= j⋆1 (tH(k))

But j⋆1 is injective so tH(h) = tH(k) and the thesis follows since (l′, !VH) : H → GΣ is a term graph.
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• h1 = i2(h) and h2 = i2(k) for some h, k in EH ∖ i(EG). As before we can compute to get

r⋆(tH(h)) = t(i2(h))

= t(h1)

= t(h2)

= t(i2(k))

= r⋆(tH(k))

and thus, exploiting Remark 6.2.4, h1 = h2.

• h1 = i1(h) and h2 = i2(k) for some h ∈ EH, k in EH ∖ i(EG). By the definition of t, this can
happen only if tH(k) ∈ j(VG), therefore, using Proposition 6.4.14, k must be an element of i(EG),
which is absurd.

• h1 = i2(h) and h2 = i1(k) for some h ∈ EH, k in EH ∖ i(EG). This is done as in the previous
point, switching the roles of h1 and h2.

Now, by construction (i1, j1) defines an arrow H → K, which is also a morphism (l′, !VH) → (q, !V ) of
TGΣ. On the other hand we can construct another arrow (f, r) parallel to it defining

f : EH → E h 7→

{
i1(h) h ∈ i(EG)

i2(h) h /∈ i(EG)

and noticing that

s(f(h)) =

{
s1(h) h ∈ i(EG)

s2(h) h /∈ i(EG)

=

{
j⋆1 (sH(h)) h ∈ i(EG)

r⋆(sH(h)) h /∈ i(EG)

= r⋆(sH(h))

t(f(h)) =

{
t1(h) h ∈ i(EG)

t2(h) h /∈ i(EG)

=

{
j⋆1 (tH(h)) h ∈ i(EG)

r⋆(tH(h)) h /∈ i(EG)

= r⋆(tH(h))

Where the last equalities follows since h ∈ i(EG) implies that

sH(h) = sH(i(k))

= j⋆(sG(k))

tH(h) = tH(i(k))

= j⋆(tG(k))

By construction we have

q(f(h)) = l′(h)

thus (f, r) is a morphism in TGΣ. Now, (i, j)G → H is the equalizer of (f, r), (i, j) : H ⇒ K in Hyp,
thus it is also the equalizer of (f, r), (i, j) : (l′, !VH) ⇒ (q, !VK) in HypΣ.The thesis follows from Propo-
sition 6.4.8.

Lemma 6.4.16. Let (l0, !VG ) : G → GΣ, (l1, !VH) : H → GΣ and (l2, !VK) : K → GΣ be term graphs. Given
(f1, g1) : (l0, !VG ) → (l1, !VH), (f2, g2) : (l0, !VG ) → (l2, !VK), if (f1, g1) is a regular mono in TGΣ, then
their pushout (p, !VP ) : P → GΣ inHypΣ is a term graph too.
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Proof. HypΣ is isomorphic to idHyp ↓δGΣ , and δGΣ preserves pushouts. In particular this implies that P
is a pushout of (f1, g1) along (f2, g2) in Hyp, equipped with the labeling induced by l1 and l2. More
precisely, we have pushout squares in Setu

EG
f2 //

f1

��

EK

kE

��

VG
g2 //

g1

��

VK

kV

��
EH

hE

// EP VH
hV

// VK

And diagrams

V ⋆G

g⋆1

��

g⋆2 // V ⋆K

k⋆V

��

V ⋆G

g⋆1

��

g⋆2 // V ⋆K

k⋆V

��

EG

sG

aaCCCCCC
f2 //

f1
��

EK

sK

==||||||

kE
��

EG

tG

aaCCCCCC
f2 //

f1
��

EK

tK

==||||||

kE
��

EG
f2 //

f1
��

EK

kE
�� l2

��

EH
sH

}}{{
{{
{{

hE

// EP
sP

!!C
CC

CC
C

EH
tH

}}{{
{{
{{

hE

// EP
tP

!!C
CC

CC
C

EH
hE

//

l1 --

EP
p

!!C
CC

CC
C

V ⋆H h⋆
V

// V ⋆P V ⋆H h⋆
V

// V ⋆P OΣ

Notice that kV and kE are injective as they are the pushout of injective arrows, hence by Remark 6.2.4
we know that k⋆V is injective too. Suppose now that there exists h1, h2 ∈ EP such that tP(h1) = tP(h2),
by Remark 6.2.20 we know that there must be v ∈ VP such that

δv = tP(h1) δv = tP(h2)

Using Lemma 6.1.1 we can split the cases.

• h1 = kE(k1) and h2 = kE(k2) for some k1 and k2 ∈ EK. Then we have

k⋆V (tK(k1)) = tP(kE(k1))

= tP(h1)

= tP(h2)

= tP(kE(k2))

= k⋆V (tK(k2))

k⋆V and tK are injective, thus k1 = k2 and so h1 = h2.

• h1 = kE(k) and h2 = hE(h
′) for some k ∈ EK and h′ ∈ EH. Let w1 ∈ VK and w2 ∈ VH be the

nodes such that

δw1
= tK(k) δw2

= tH(h′)
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then we have

δkV (w1) = kV ◦ δw1

= k⋆V (δw1
)

= k⋆V (tK(k))

= tP(kE(k))

= tP(h1)

= tP(h2)

= tP(hE(h
′))

= h⋆V (tH(h′))

= h⋆V (δw2
)

= hV ◦ δw2

= δhV (w2)

and thus we can deduce that
kV (w1) = hV (w2)

By the third point of Lemma 6.1.1 there must be a w3 ∈ VG such that

w1 = g2(w3) w2 = g1(w3)

Proposition 6.4.14 and Lemma 6.4.15 now entail that there exists e ∈ EG such that h′ = f1(e).
Notice that

g⋆1(tG(e)) = tH(f1(e))

= tH(h′)

= δw2

= δg1(w3)

= g⋆1(δw3
)

and so
δw3 = tG(e)

But then we also have

tK(f2(e)) = g⋆2(tG(e))

= g⋆2(δw3)

= g2 ◦ δw3

= δg2(w3)

= δw1

= tK(k)

Since (l2, !VK) : K → GΣ is a term graph this entails that

f2(k) = k

and we can conclude that h1 = h2.
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• h1 = hE(h
′) and h2 = kE(k) for some k ∈ EK and h′ ∈ EH. This is done as in the previous case

swapping the role of h1 and h2.

• h1 = hE(h
′
1) and h2 = hE(h

′
2) for some h′1 and h

′
2 ∈ EH. Let x1 and x2 be the unique elements of

VH such that
δx1 = tH(h′1) δx2 = tH(h′2)

Then it must be that

δhV (x1) = hV ◦ δx1

= h⋆V (δx1
)

= h⋆V (tH(h′1))

= tP(h1)

= tP(h2)

= h⋆V (tH(h′2))

= h⋆V (δx2)

= hV ◦ δx2

= δhV (x2)

showing that hV (x1) = hV (x2). By the second point of Lemma 6.1.1 we know that at least one
between x1 or x2 must belong to g1(VG). Without loss of generality we can suppose that it is x1
(otherwise just swap it with x2 ). Using Proposition 6.4.14 and Lemma 6.4.15 we know that h′1 is
in the image of f1, i.e. that there exists e ∈ EG such that h′1 = f1(e), but then

kE(f2(e)) = hE(f1(e))

= hE(h
′
1)

= h1

so we fall back to the third case and we can conclude.

Corollary 5.1.34 and Lemmas 6.4.15 and 6.4.16 allow us to recover the following result, previously
proved by direct computation in [38, Thm. 4.2].

Corollary 6.4.17. The category TGΣ is quasiadhesive.



302 6. A zoo ofM,N -adhesive categories



CHAPTER 7Conclusions for Part II

The second part of the thesis is devoted to the study ofM,N -adhesivity, a crucial property in the algebraic
treatment of rewriting theories.

In Chapter 5, we have first provided a brief definition and some fundamental properties of M,N -
adhesive categories. Then, we presented a novel criterion for verifying M,N -adhesivity, which involves
analyzing certain properties of functors that connect the category of interest to a family of categories
possessing suitable adhesive properties. This criterion can be seen as a distilled abstraction of several ad
hoc proofs of adhesivity found in the literature. By using this criterion, we were able to systematically and
uniformly establish some results concerning the adhesivity of categories formed by products, exponents,
and comma constructions.

Next, we have proceeded to generalize three well-known results from the theory of (quasi)adhesive
categories to the M,N -adhesive setting, adapting the techniques developed in [52].

The first result pertains to binary suprema in the poset of subobjects of an M,N -adhesive category.
We have demonstrated that given a mono inM and one inM∩N , then their supremum, called aM,N -
union, exists and it is computed as the pushout of the pullbacks of the two given monos.

We have then proved a kind of converse of the previous result: in the presence of M,N -unions, we
can guarantee M,N -adhesivity if we know that M is contained in the class of N -adhesive morphisms.
This enables us to reduce the proof of the Van Kampen condition to demonstrating the stability of some
squares and that some pullbacks are pushouts. As an example, adhesivity of toposes can be easily proven
using this method.

Finally, we showed that under somemild hypotheses aboutM andN , anM,N -adhesive category can
be embedded in a Grothendieck topos via a functor that preserves all relevant structure (i.e. pullbacks and
M,N -pushouts). Therefore, the slogan “an adhesive category is one whose pushouts of monomorphisms
exist and behave more or less as they do in a topos” holds true even for M,N -adhesive categories.

In Chapter 6, we have applied the criterion established in Chapter 5 to various significant examples,
such as term graphs and directed (acyclic) graphs. Furthermore, due to themodularity of our approach, we
could easily establish appropriate adhesivity properties for categories formed by combining simpler ones.
In particular, we tackled the adhesivity issue for several categories of hierarchical (hyper)graphs, including
Milner’s bigraphs, bigraphs with sharing, and a new version of bigraphs with recursion. Additionally, we
proved an adhesivity property for a category of hierarchical hypergraphs employed in [11] to provide a
graphical semantics for monoidal closed categories.

As future work, we plan to analyse other categories of graph-like objects using our criterion; an in-
teresting case is that of directed bigraphs [14, 34, 57, 58]. Moreover, it is worth to verify whether the
M,N -adhesivity that we obtain from the results of this thesis is suited for modelling specific rewriting
systems, e.g. based on the double pushout approach. As an example, TGΣ is quasiadhesive yet the left-
hand side of rules typically adopted in applications is often a non regular mono, thus questioning the
relative usefulness of the adhesivity property [38].

Our discussion on a criterion for adhesivity begs the question of its meaning for a rewriting system
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at hand. Namely, which is the right notion of M,N -adhesivity, given a set of rewriting rules? More
specifically, given some set of rewriting rules, the question of devising the right kind of adhesivity prop-
erties that should be proven is still open and an ongoing subject of work. In particular, we are planning
to investigate if the presence of conditions [21, 43, 59] in a rewriting system can suggest some canonical
choice of M and N for which M,N -adhesivity can be proved.

One may also notice that, if a category is M,N -adhesive, then M must be contained in the class
of N -adhesive morphisms. In particular, in the M-adhesive case, M must be a subclass of the class of
adhesive morphisms. Hence, the preadhesive structures for which X is M,N -adhesive form a bounded
family in the poset of all preadhesive structures. This suggests to study such poset, in order to characterize
the largest preadhesive structure, suited for the specific problem, for which X is M,N -adhesive.
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The aim of this appendix is to prove some basic results of category theory which we used throughout
all this thesis. Doing so we also fix some notation. The material contained in Appendices A.1 to A.4
is standard and can be found in any textbook on category theory [5, 12, 85, 93]. While the standard
references for Appendix A.5 are [81, 85].

A.1 Remarks on limits and colimits

Let us start pointing out some results about limits and colimits.

Definition A.1.1. [5] Let G : D → X be a diagram, given a functor F : X → Y we we say that F :

1. preserves (co)limits of G if given a (co)limiting (co)cone (L, {lD}D∈D) for G, (F (L), {F (lD)}D∈D)
is (co)limiting for F ◦G;

2. reflects (co)limits of G if a (co)cone (L, {lD}D∈D) is (co)limiting for the functor G whenever the
(co)cone (F (L), {F (lD)}D∈D) is (co)limiting for F ◦G;

3. creates (co)limits ofG ifG has a (co)limit in X whenever F ◦G has one, and F preserves and reflects
(co)limits along G.

Remark A.1.2. Notice that our notion of creation is laxer than, e.g., [85, Def. V.1].
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Proposition A.1.3. Let G : D → X be a diagram and F : X → Y a functor. The following are equivalent:

1. F creates (co)limits along G;

2. given a (co)limiting (co)cone (L, {lD}D∈D) for F ◦ G, there exists a (co)cone (X, {xD}D∈D) which
is (co)limiting for G and such that (F (X), {F (xD)}D∈D) is (co)limiting for F ◦ G. Moreover, for
every other (co)cone (Y, {yD}D∈D) such that (F (Y ), {F (yD)}D∈D) is (co)limiting, there is a (unique)
isomorphism f : X → Y such that , for everyD ∈ D:

xD = yD ◦ f

Proof. We prove the thesis for limits, the case of colimits follows by duality.

(1 ⇒ 2) By hypothesis F ◦G has a limit, thus there exists a limiting cone (X, {xD}D∈D) for G. Since F
preserves limits ofGwe know that (F (X), {F (xD)}D∈D) is a limit cone. If (Y, {yD}D∈D) is another cone
such that (F (Y ), {F (yD)}D∈D) is a limit, then, by reflection, it is limiting and thus the thesis follows.

(2 ⇒ 1) Let (L, {lD}D∈D) be a limiting cone for F ◦G, by hypothesis, we can pick a cone (X, {xD}D∈D)
inXwhich is limiting forG. Since (F (X), {F (xD)}D∈D) is a limit, we get also an isomorphismh : F (X) →
L such that, for every D ∈ D

F (xd) = lD ◦ h

Take now a limiting cone (Y, {yD}D∈D) onG, then there exists an isomorphism g : Y → X such that

yD = xD ◦ g

Thus h ◦ F (g) is an isomorphism F (Y ) → L such that

F (yD) = F (xD ◦ g)

= F (xD) ◦ F (g)

= lD ◦ h ◦ F (g)

showing that (F (Y ), {F (yD)}D∈D) is limiting, so that F preserves limits along G.
For reflection: suppose that (Y, {yD}D∈D) is a cone onG such that (F (Y ), {F (yD)}D∈D) is limiting.

By hypothesis we have an isomorphism f : Y → Y such that

xD = yD ◦ f

and the thesis now follows because we already know that (X, {xD}D∈D) is a limit.

Proposition A.1.4. If F : X → Y is a full and faithful functor then it reflects all limits and colimits.

Proof. Fix a diagram G : D → X and suppose that a cone (L, {lD}D∈D) for G is given with the property
that (F (L), {Fj(lD)}D∈D) is limiting for F ◦G. Let (X, {xD}D∈D) be another cone in X, by hypothesis
we have a unique arrow f : F (X) → F (L) such that, for every D ∈ D

F (xD) = F (lD) ◦ f

Since F is full and faithful, f is equal to F (x) for a unique x : X → L. Faithfulness also implies that

xD = lD ◦ x

Moreover, if x′ : X → L is another arrow such that lD ◦ x′ is equal to xD, then F (x′)must be f , proving
that x′ = x and thus that (L, {lD}D∈D) is limiting for G.

The thesis for colimits follows by duality.
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We end this section recalling a classical construction of basic category theory. Let X be a category
with arbitrary coproducts, then for every object X and set S we can construct the coproduct S • X of
the family {Xs}s∈S , where Xs = X for every s ∈ S. Now, if ιs : X → S • X is the coprojection
corresponding to s ∈ S, then we have a function

ηS : S → X(X,S •X) s 7→ ιS

On the other hand, for every function f : S → X(X,Y ), there exists a unique f̂ : S •X → Y such that

f(s) = f̂ ◦ ιs

In particular, this means that we have a commutative triangle

S
ηS //

f $$J
JJ

JJ
JJ

JJ
J X(X,S •X)

f̂◦(−)

��
X(X,Y )

Thus we have showed the following.

Proposition A.1.5. If X is a category with coproducts, then, for every X ∈ X, the representable functor
X(X,−) : X → Set has a left adjoint (−) •X .

A.1.1 Colimits in Set

We will now recall a general recipe to compute colimits in the category of sets and functions.

Lemma A.1.6. Let F : D → Set be a functor with a small domain, for everyD ∈ D consider the coprojection
iD : F (D) →

∑
D∈D F (D). Let also ∼ be the relation on

∑
D∈D F (D) defined by iD1(x) ∼ iD2(y) if and

only if there exists n ∈ N and families {Ei}ni=0,{Gi}
n+1
i=0 {fi}

2n+1
i=0 , {ei}ni=0, {gi}

n+1
i=0 such that:

• every Ei and every Gi is an object ofD, moreover ei ∈ F (Ei) and gi ∈ F (Gi);

• G0 = D1, Gn+1 = D2, g0 = x and g2n+1 = y;

• {fi}
2n+1
i=0 is a family of arrows of D such that f2i+1 : Ek → Gk+1 and f2i : Ei → Fi, moreover the

following equations hold
F (f2i)(ei) = gi F (f2i+1)(ei) = gi+1

Then the following hold true:

1. ∼ is an equivalence relation;

2. if C is the quotient
∑
D∈D F (D)/ ∼ and π :

∑
D∈D F (D) → C is the quotient function, then a

colimiting cocone for F is given by (C, {jD}D∈D) where jD := π ◦ iD.

Proof. 1. Let x be an element ofF (D) and put taken = 0,E0 = D, f0 = f1 = idD, then iD(x) ∼ iDx,
proving reflexivity. For simmetry, let {Ei}ni=0,{Gi}

n+1
i=0 {fi}

2n+1
i=0 , {ei}ni=0, {gi}

n+1
i=0 be families

witnessing iD1
(x) ∼ iD2

(y), then we can define

E′
i := En−i e′i := en−1 G′

i := Gn+1−i g′i := gn+1−i f ′i := f2n+1−i
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and these families witness iD2(y) ∼ iD1(x). We are left with transitivity: take {Ei}ni=0,{Gi}
n+1
i=0

{fi}
2n+1
i=0 , {ei}ni=0, {gi}

n+1
i=0 , {E

′
i}
m
i=0,{G

′
i}
m+1
i=0 {f ′i}

2m+1
i=0 , {e′i}

m
i=0, {g

′
i}
m+1
i=0 which witness , re-

spectively, iD1
(x) ∼ iD2

(y) and iD2
(y) ∼ iD3

(z), then we get iD1
(x) ∼ iD3

(z) putting:

E′′
i :=

{
Ei i ≤ n

E′
i−n−1 n+ 1 ≤ i ≤ n+m

e′′i :=

{
ei i ≤ n

e′i−n−1 n+ 1 ≤ i ≤ n+m

G′′
i :=

{
Gi i ≤ n+ 1

G′
i−n−1 n+ 2 ≤ i ≤ n+m+ 1

g′′i :=

{
gi i ≤ n+ 1

g′i−n−1 n+ 2 ≤ i ≤ n+m+ 1

f ′′i :=

{
fi i ≤ 2n+ 1

f ′i 2n+ 2 ≤ i ≤ 2(n+m)

2. First of all we have to prove that (C, {jD}D∈D) is a cocone. Given f : D1 → D2 in D, we can put

E0 := D1 G0 := D1 G1 := D2 f0 := F (idD1
) f1 := F (f)

which witness that, for every x ∈ F (D1), iD1(x) ∼ iD2(f(x)), and so jD2 ◦ F (f) = jD1 .

Let (A, {cD}D∈D) be another cocone, there is a unique arrow c :
∑
D∈D F (D) → A making the

following diagram commutative.

F (D)
iD

��

cD

��∑

D∈D

F (D)
c

// A

Take now x ∈ F (D1) and y ∈ F (D2) such that iD1(x) ∼ iD2(y) and let {Ei}ni=0,{Gi}
n+1
i=0

{fi}
2n+1
i=0 , {ei}ni=0, {gi}

n+1
i=0 be families witnessing it, then

c(iD1
(x)) = cD1

(x)

= cD1
(f0(e0))

= cE0
(e0)

= cD2
(f1(e0))

By induction this argument entails

c(iD1
(x)) = c(iD2

(y))

therefore we can conclude that there exists a unique q : C → A such that q ◦ π = c, but then

q ◦ jD = q ◦ π ◦ iD

= c ◦ iD

= cD
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On the other hand, if k : C → A is another arrow such that k ◦ jD = cD then

k ◦ π ◦ iD = cD

for every D ∈ D, thus κ ◦ π = c and we can conclude that k = q.

Corollary A.1.7. LetD0 be an object of a small categoryD, then (1, {!D(D0,D)}D∈D) is a colimiting cocone
forD(D0,−) : D → Set, where !D(D0,D) is the unique arrowD(D0, D) → 1.

Proof. For every f ∈ D(D0, D) we can take

E0 := D0 e0 := idD0 Gi :=

{
D i = 0

D0 i = 1
gi :=

{
f i = 0

idD0
i = 1

fi :=

{
f i = 0

idD0
i = 1

and we have

D(D0, f)(idD0) = f D(D0, idD0)(idD0) = idD0

showing that iD(f) ∼ iD0
(idD0

), from which the thesis follows.

A.2 Comma categories

In this section we will briefly recall the definition of the comma category associated to two functors and
some of its properties.

Definition A.2.1. Let L : A → X and R : B → X be two functors with the same codomain, the comma
category L↓R is the category in which

• objects are triples (A,B, f) with A ∈ A, B ∈ B, and f : L(A) → R(B);

• a morphism (A,B, f) → (A′, B′, g) is a pair (h, k)with h : A→ A′ inA and k : B → B′ in B such
that the following diagram commutes

L(A)
L(h) //

f

��

L(A′)

g

��
R(B)

R(k)
// R(B′)

We have two forgetful functors UL : L↓R→ A and UR : L↓R→ B given, respectively by

(A′, B′, g)

(h, k)

−
→

(A,B, f)

7−→

7−→

A′

−
→ h

A

(A′, B′, g)

(h, k)

−
→

(A,B, f)

7−→

7−→

B′

−
→ k

B

Given L : A → X and R : B → X, we can also consider their duals Lop : Aop → Xop and Rop : Bop →
Xop. An arrow f : L(A) → R(B) in X is the same ting as an arrow f : Rop(B) → Lop(A) in Xop, thus
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(L↓R) and Rop ↓Lop have the same objects. Moreover, the commutativity in X of the square

L(A)
L(h) //

f

��

L(A′)

g

��
R(B)

R(k)
// R(B′)

is tantamount to the commutativity in Xop of the square

R(B′)

g

��

R(k) // R(B)

f

��
L(A′)

L(h)
// L(A)

Summing up we have just proved the following fact.

Proposition A.2.2. (L↓R)op is equal to Rop ↓Lop, moreover UopL = ULop and UopR = URop .

We can notice another useful fact, showing that in some cases we can guarantee the existence of a left
adjoint to UR.

Proposition A.2.3. If A has initial objects and L preserves them then the forgetful functor UR : L↓R → B
has a left adjoint∆.

Proof. For an object B ∈ B we can define ∆(B) as (0, B, ?B), where 0 is an initial object in A and ?R(B)

is the unique arrow L(0) → R(B). Consider idB : B → UR(∆(B)) be the identity, and suppose that a
k : B → UR(A,B

′, f) in B is given. By initiality of 0, there is only one arrow ?A : 0 → A in A and, since
L preserves initial objects, the following square commutes.

L(0)
L(?A) //

?R(B)

��

L(A)

f

��
R(B)

R(k)
// R(B′)

Thus (h, k) is the unique morphism ∆(B) → (A,B′, f) such that UR(h, k) = k.

Dualizing we get immediately the following.

Corollary A.2.4. If B has terminal objects preserved by R then UL : L↓R→ A has a right adjoint.

A.3 Slice categories

This section is devoted to recall some basic facts about the so called slice categories.

Definition A.3.1. Let X be an object of a category X, we will define the following two categories.
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• The slice category overX is the categoryX/X which has as objects arrows f : Y → X and in which
an arrow h : f → g is h : Y → Y ′ in X such that the following triangle commutes.

Y

f ��8
88

88
88

h // Y ′

g
����
��
��
�

X

• Dually, the slice category underX is the categoryX/X in which objects are arrows f : X → Y with
domain X and a morphism h : f → g is an arrow of X fitting in a triangle as the one below.

X

g

��:
::

::
::

f

����
��
��
�

Y
h

// Y ′

Remark A.3.2. For every X ∈ X we have forgetful functors

domX : X/X → X

g

h

−
→

f

7−→

7−→

dom(g)

−
→ h

dom(f)

codX : X/X → X

g

h

−
→

f

7−→

7−→

cod(g)

−
→ h

cod(f)

Lemma A.3.3. For every f : Y → X the categories (X/X)/f and X/Y are the same category.

Proof. Given g : Z → X , an object of (X/X)/f is an arrow h : Z → Y in X thus, in particular, it is an
object of X/Y . On the other hand, any object k : Z → Y defines an arrow f ◦ k → f in (X/X)/f ,
showing that the two categories have the same objects. Take an arrow k : h → h′ in (X/X)/f with
h : Z → Y and h′ : Z ′ → Y , by definition it is an arrow of Z → Z ′ in X such that h = h′ ◦ k, that is

((X/X)/f) (h, h′) = (X/Y ) (h, h′)

and the thesis follows.

Remark A.3.4. In this situation, the functor domf : (X/X)/f → X/X becomes f ◦ (−) : X/Y → X/X

h′

k

−
→

h

7−→

7−→

f ◦ h′

−
→ k

f ◦ h

We can realize the slice over and under an object X ∈ X as comma categories.

Proposition A.3.5. For every objectX in a categoryX, if δX : 1 → X is the constant functor of valueX from
the category with only one object ∗, thenX/X andX/X are isomorphic to, respectively, idX ↓δX and δX ↓idX
.
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Proof. Define functors F1 : idX ↓δX → X/X and G1 : X/X → idX ↓δX as follows

(Y ′, ∗, g)

(h, id∗)

−
→

(Y, ∗, f)

7−→

7−→

g

−
→ h

f

g

h

−
→

f

7−→

7−→

(dom(g), ∗, g)

−
→ (h, id∗)

(dom(f), ∗, f)

Similarly, we have F2 : δX ↓idX → X/X and G2 : X/X → δX ↓idX

(∗, Y ′, g)

(id∗, h)

−
→

(∗, Y, f)

7−→

7−→

g

−
→ h

f

g

h

−
→

f

7−→

7−→

(∗, cod(g), g)
−
→ (id∗, h)

(∗, cod(f), f)

It is now obvious to see that F1, G1 and F2, G2 are pairs of inverses.

A straightforward application of Corollary 5.1.36 now yields the following.

Corollary A.3.6. If X has pullbacks, then for every objectX , the slice X/X has pullbacks too.

Let us turn to products.

Proposition A.3.7. Let f : Y → X and g : Z → X be two arrow in a categoryXwith a common codomain,
then f has a pullback along g if and only if f and g have a product in X/X .

Proof. (⇒) Take a pullback square as the one below and define p : P → X as its diagonal.

P
p

  @
@@

@@
@@

@

p2

��

p1 // Y

f

��
Z

g
// X

Then p1 and p2 are arrows p → f and p → g. Moreover, for every other q : W → Xwith arrows
w1 : q → f and w2 : q → g, it must be that

f ◦ w1 = q

= f ◦ w2

thus there exists a unique w : Z → P such that

w1 = p1 ◦ w w2 = p2 ◦ w

so that

p ◦ w = f ◦ p1 ◦ w

= f ◦ w1

= q

and so w is a morphism of X/X and (p, p1, p2) is a product of f and g.
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(⇐) Let p : P → X with projections p1 : P → Y and p2 : P → Z be the product of f and g, then we
must have a square

P
p

  @
@@

@@
@@

@

p2

��

p1 // Y

f

��
Z

g
// X

To see that this is a pullback square, let w1 : W → Y and w2 : W → Z such that

g ◦ w2 = f ◦ w1

then w1 and w2 are, respectively, arrows f ◦w1 → f and g ◦w2 → g in X/X . By hypothesis the domains
of these arrows are the same, therefore there exists a unique w : f ◦ w1 → p such that

w1 = p1 ◦ w w2 = p2 ◦ w

Such a w is, in particular, an arrow W → P , thus we only have to check is uniqueness in X. Now, if
w′ : W → P is such that

w1 = p1 ◦ w
′ w2 = p2 ◦ w

′

then

p ◦ w′ = f ◦ p1 ◦ w
′

= f ◦ w1

thus w′ defines a morphism f ◦ w1 → p and it must therefore coincide with w.

Notation. Given two arrows f : X → Y and g : X → Y , we will denote by pbf (g) : pbf (G) → X any
choosen representative of the pullback of g along f . Dually, given f : Y → X and g : Y → Z, we will use
pof (g) to denote any representative of the pushout of g along g.

Proposition A.3.8. Let X be a category with pullbacks. Given an arrow f : X → Y there exists a functor
pbf : X/Y → X/X sending g to pbf (g).

Proof. Let k : G→ H be an arrow between g : G→ Y and h : H → Y , then in X we have a diagram

pbf (G)

p

��

pbf(k) //

pbf(g) $$I
II

II
II

II
pbf (H)

pbf(h)zzuu
uu
uu
uu
u

q

��

X

f

��
Y

G

g

99ttttttttttt
k

// H

h

eeJJJJJJJJJJJ
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in which the two diagonal inner trapezoids are pullbacks. Now,

h ◦ k ◦ p = g ◦ p

= f ◦ pbf (g)

so that we can guarantee the existence of the dotted arrow pbf (k). Clearly

pbf (idg) = idpbf(g)

while, on the other hand, given another s : h→ t in X/Y , the diagram

pbf (G)

p

��

pbf(k) //

pbf(g) //

pbf (H)
pbf(s) //

q

��

pbf(h) &&LL
LL

LL
LL

LL
L

pbf (T )

pbf(t)xxrrr
rr
rr
rr
r

u

��

X

f

��
Y

G

g
//

k
// H

h

88qqqqqqqqqqqqq
s

// T

t

ffMMMMMMMMMMMMM

witness pbf (s ◦ k) = pbf (t) ◦ pbf (k) and the thesis now follows.

We can dualize this to get the following.

Proposition A.3.9. Let X be a category with pushouts. For every arrow f : X → Y there exists a functor
pof : X/X → X/Y sending g to pof (g).

Let X be an object in a category X binary products, for any other object Y in X we can consider the
second projection LX(Y ) : Y × X → X as an object of X/X . The following lemma guarantees that in
this way we get a right adjoint LX : X → X/X to domX .

Lemma A.3.10. LetX be a category with binary product. For every objectX there exists a functor LX : X →
X/X , sending an object Y to the second projection Y ×X → X , such that domX a LX .

Proof. By definition given, for every object Y ∈ X

domX(LX(Y )) = Y ×X

and we could define ϵY : domX(LX(Y )) → Y simply as the first projection. Given f ∈ X/X and
g : domX(f) → Y we have a diagram in X as below

Y ×X

LX(Y )

��

ϵY // Y

X domX(f)
f

oo

g

OO
(g,f)

eeLLLLLLLLLL
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Clearly (g, f) defines an arrow f → LX(Y ) such that

g = ϵY ◦ domX(g, f)

Viceversa, if z : f → LX(Y ) is such that

g = ϵY ◦ domX(z)

then it must coincide with (g, f), showing that ϵY is the component of the counit of domX a LX .

Remark A.3.11. More explicitly, if f : Z → Y is an arrow in X, then LX(f) is the transpose of f ◦
ϵZ : Z ×X → Y , that is LX(f) := f × idX .

Take now an arrow f : X → Y in a category X with pullbacks. Then, by Proposition A.3.7 the
slice X/Y has all products so that Lemma A.3.10 gives us a functor Lf : X/Y → (X/Y )/f . Now, the
codomain of Lf is X/X by Lemma A.3.3. Using again Proposition A.3.7 it is immediate to see that Lf
must coincide with pbf , therefore we have just established the following result.

Corollary A.3.12. If X is a category with pullbacks, then for every f : X → Y

f ◦ (−) a pbf

If we now take X to be cartesian closed we can prove the existence of another adjunction LX a RX .

Notation. Let us fix some notation. Given f : Y × X → Z in a cartesian closed category X, we will
denote by ⌜f⌝ the transpose Y → ZX . If evX is the counit of (−) × X a (−)X , ⌜f⌝ is the unique
morphism who fits in the diagram below

Y ×X

⌜f⌝×idX
��

f

$$J
JJ

JJ
JJ

JJ
J

ZX ×X evX,Z

// Z

In particular, and with a slight abuse of notation, every f : X → X induces ⌜f⌝ : 1 → XX which is the
unique one fitting in the diagram

1×X
πX //

⌜f⌝×idX
��

X

f

��
XX ×X evX,X

// X

Lemma A.3.13. Given a cartesian closed category X with pullbacks, for every X ∈ X there exists a functor
RX : X/X → X which is right adjoint to LX .

Proof. Given f : Y → X , we can consider the following pullback square

RX(f)
p //

!RX (f)

��

Y X

fX

��
1

⌜idX⌝

// XX
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If we apply (−)×X and paste with the naturality square of evX , we get

RX(f)×X
p×idX //

!RX (f)×idX

��

Y X ×X
evX,Y //

fX×idX
��

Y

f

��
1×X

⌜idX⌝×idX //

πX

33XX ×X
evX,X // X

We can now notice that
LX(RX(f)) = πX ◦

(
!RX(f) × idX

)

so that evX,Y ◦ (p× idX) defines an arrow LX(RX(f)) → f in X/X . To show that in this way we get a
counit for LX a RX , take Z ∈ X and h : LX(Z) → f . In particular, h is an arrow Z ×X → Y , so that
it has a transpose ⌜h⌝ : Z → Y X . First of all, let us notice that the diagram below commutes.

Z ×X
LX(Z) //

!LX (Z)×idX
��

X

1×X
⌜idX⌝×idX

// XX ×X

evX,X

OO

On the other hand, we know that LX(Z) = f ◦ h, thus we can build:

Y X ×X

evX,Y

��

fX×idX // XX ×X

evX,X

��
Z ×X

⌜h⌝×idX
22

!LX (Z)×idX ,,

h
// Y

f
// X

1×X
⌜idX⌝×idX

// XX ×X

evX,X

OO

showing that
fX ◦ ⌜h⌝ = ⌜idX⌝◦!LX(Z)

so that we get a unique k : Z → RX(f) such that

⌜h⌝ = p ◦ k

and thus

evX,Y ◦ (p× idX) ◦ LX(k) = evX,Y ◦ (p× idX) ◦ (k × idX)

= evX,Y ◦ ((p ◦ k)× idX)

= evX,Y ◦ (⌜h⌝× idX)

= h

On the other hand, if k′ : Z → RX(f) is such that

h = evX,Y ◦ (p× idX) ◦ LX(k′)

then p ◦ k′ must coincide with ⌜h⌝, implying k = k′.
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Take now X to be locally cartesian closed: that is a category such that X/X is cartesian closed for every
object X . Notice that by Proposition A.3.7 this implies that X has all pullbacks, thus Corollary A.3.6
entails that every slice X/X also has pullbacks. Take now an arrow f : X → Y , by Lemmas A.3.10
and A.3.13 we have functors: domf , Rf : (X/Y )/f ⇒ X/Y , Lf : X/Y → (X/Y )/f such that

domf a Lf a Rf

We have already noticed that Lf coincides with pbf , thus we can deduce at once the following

Corollary A.3.14. If f : X → Y is a morphism in a locally cartesian closed category X, then the pullback
functor pbf is both a left and a right adjoint.

A.4 Subobjects and quotients

We are now going to recall the notion of quotients and of subobjects, in order to fix a uniform notation.

Definition A.4.1. Let X be a category andM ⊆ M(X) a class of monomorphisms. Ffm : M → X and
m′ : M ′ → X are two elements of M with the same codomain, then we say that m ≤ m′ if and only if
there exists a, necessarily unique h : M →M ′ such that the following diagram commute

M
h //

m
  A

AA
AA

AA
A N

m′
~~}}
}}
}}
}}

X

We definem ≡ m′ if and only ifm ≤ m′ andm′ ≤ m. This is an equivalence relation on the class

M/X = {m ∈ M | cod(m) = X}

A M-subobject of X is an equivalence class [m] with respect to the relation ≡, we will denote by
M-Sub(X) the class of M-subobjects. X is M-wellpowered if, for every object X , M-Sub(X) is a set.

Dually, if E a class of epis in X, and e : X → Y , e′ : X → Y ′ are two elements of it, we say that e ≤ e′

if and only if there exists a, necessarily unique, h : Y → Y ′ such that the following diagram commute

X

e

~~~~
~~
~~
~~

e′

  A
AA

AA
AA

A

Y
h

// Y ′

We put e ≡ e′ if and only if e ≤ e′ and e′ ≤ e, getting an equivalence relation on the class

X/E = {e ∈ E | dom(e) = X}

A E -quotient of X is an equivalence class [e] with respect to the relation ≡ and we will denote by
E -Quot(X) the class of E -quotients. X is E -cowellpowered if, for every object X , E -Quot(X) is a set.

Notation. We will drop the prefixes “M-” and “E -” when considering the classes of all monomorphisms
or of all epimorphisms.
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Remark A.4.2. M-Sub(X) and E -Quot(X) can be naturally equipped with orders putting, respectively
[m] ≤ [m′] if and only if m ≤ m′ and [e] ≤ [e′] if and only if e ≤ e. the class of idX is a maximum in
M-Sub(X), while it is a minimum in E -Quot(X). Notice, moreover, thatm ≡ m′ if and only if there is
a isomorphism h such thatm′ ◦ h = m and, similarly, e ≡ e′ if and only if there exists an isomorphism h

such that h ◦ e = e′.

Remark A.4.3. IfX is an object of aM-wellpowered category X, then, assuming the axiom of choice for
classes, there exists a set R(X) ⊆ M/X of representatives for ≡. Similarly, if X is E -cowellpowered, we
can find a set of representatives in X/E for ≡.

Notation. Let m : M → X and f : Y → X be arrows, we will denote by pbf (m) : pbf (M) → Y any
representative of the pullback ofm along f . Dually, given e : X → E and g : X → Y , we will use pog (e)
to denote any representative of the pushout of e along g.

Proposition A.4.4. Let X be a category and M be a class of monos closed under pullbacks: i.e. for every
m : M → X in it and f : Y → X , pbf (m) belongs toM. Then the following hold true:

1. ifm : M → X and n : N → X are elements ofM/X such thatm ≤ n, then

pbf (m) ≤ pbf (n)

for every arrow f : Y → X ;

2. if X is wellpowered then there exists a functorM-Sub : Xop → Pos.

Proof. 1. By definition, there exists h : M → N such that n ◦ h = m, thus we have the solid part of
the following diagram

pbf (M)
p //

pbf(m)

��.
..
..
..
..
..
..
..

k

&&

M

))
))
))
))

m

��)
)
)
)
)
)

h

""E
EE

EE
EE

EE
E

pbf (N)
q //

pbf(n)����
��
��
�

N

n
����
��
��
�

Y
f

// X

This implies the existence of the dotted k and the thesis follows.

2. Given f : Y → X we can define a function

Pbf : M-Sub(X) → M-Sub(Y ) [m] 7→ [pbf (m)]

By the previous point this is a well-defined and monotone function and, for every other g : Z → Y

pbidX (m) ≡ m pbf◦g (m) ≡ pbg
(
pbf (m)

)

from which the thesis follows.

Dualizing we get the following corollary.

Corollary A.4.5. Let X be a category and E be a class of epis closed under pushouts: i.e. for every e : X → E

in it and g : X → Y , pog (e) belongs to E , then the following hold true:
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1. if e : X → E and f : X → F are elements ofX/E such that e ≤ f , then

pog (e) ≤ pog (f)

for every arrow g : X → Y ;

2. if X is cowellpowered then there exists a functor E -Quot : X → Pos.

In the presence of limits, we can easily compute infima in the poset of subobjects.

Proposition A.4.6. Let {[mi]}i∈I be a subset of Sub(X), and suppose that the diagram defined by the arrows
{mi}i∈I admits a wide pullback. Then {[mi]}i∈I has an infimum.

Proof. By definition of limit, for every i ∈ I we have a triangle

M
li //

m
!!B

BB
BB

BB
B Mi

mi

��
X

where (M, {li}i∈I ∪ {m}) is a limiting cone. Notice that m is monic, indeed if f, g : A ⇒ M are such
that

m ◦ f = m ◦ g

then, for every i ∈ I we have an equality

mi ◦ li ◦ f = mi ◦ li ◦ g

which, since everymi is a mono, allows us to deduce that

li ◦ f = li ◦ g

and therefore f = g. Clearly [m] ≤ [mi] for every i. Let [n] be another lower bound, with n : N → X ,
then there must be ki : N →Mi such that, for every i ∈ I ,mi ◦ ki = n and thus there exists ϕ : N →M

such that li ◦ ϕ = ki. Composing with anymi we getm ◦ ϕ = n, i.e. [n] ≤ [m].

A.5 A crash course on coends and Kan extensions

We are now going to briefly introduce the concept of coends and the notion of left Kan extension.

Definition A.5.1. Let F : Aop × A → B be a functor, a cowedge ω for F is a (large) family {ωA}A∈A

formed by arrows ωA : F (A,A) → B with a common codomain B and such that , for every f : A′ → A

the following square commutes

F (A,A)

ωA

##G
GG

GG
GG

GG
G

F (A,A′)

F (idA,f)
88rrrrrrrrrr

F (f,idA′ ) &&MM
MM

MM
MM

MM
B

F (A′, A′)

ωA′

;;wwwwwwwwww
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A cowedge ω with codomain
∫ A∈A

F (A,A) is initial, or a coend for F , if for every other cowedge ω′,

with codomain B, there exists a unique f :
∫ A∈A

F (A,A) → B fitting in the diagram below.

F (A,A)

ωA

��

ω′
A

  
F (A,A′)

F (idA,f)
11

F (f,idA′ ) ,,

∫ A∈A
F (A,A)

f // B

F (A′, A′)

ωA′

OO

ω′
A′

AA

Remark A.5.2. Cowedges for a functor F : Aop×A → B form a category cwd(F ) in which a morphism
between ω = {ωA}A∈A and ω′ = {ω′

A}A∈A is an arrow f : B → B′ sucht that, for every A ∈ A, the
diagram below is commutative.

F (A,A)
ω′

A

##H
HH

HH
HH

HH
ωA

{{ww
ww
ww
ww
w

B
f

// B′

A coend for F is then an initial object in cwd(F ) and thus it is unique up to a unique isomorphisms.

A.5.1 Left Kan extensions

Definition A.5.3. Let F : A → B and G : A → C be two functors with common domain. A left Kan
extension of F along G is a pair (lanG(F ), ηF ) given by functor lanG(F ) : C → B and a natural transfor-
mation ηF : F → lanG(F ) ◦ G such that, for every other H : C → B and λ : F → H ◦ G, there exists a
unique λ : lanG(F ) → H such that λ =

(
λ ∗ F

)
◦ ηF .

Remark A.5.4. The uniqueness clause entails at once that left Kan extensions are unique up to a unique
isomorphisms. More precisely, if (L, ηF ) and (L′, η′F ) enjoy the universal property of lanG(F ) a left Kan
extension then there exists a unique isomorphism λ : L→ L′ such that η′F = (λ ∗G) ◦ ηF .

We can restate the universal property of a left Kan extension (lanG(F ), ηF ) requesting, for every
functor H : C → B, the bijectivity of the function

BC(lanG(F ),H) → BA(F,H ◦G) λ 7→ (λ ∗G) ◦ ηF

The previous condition strongly resembles an adjunction. Indeed, if G : A → C is a functor, we can

consider its associate precomposition functor (−) ◦ G : BC → BA. Now for every F : A → B, the
universal property of (lanG(F ), ηF ) amounts exactly to ηF : F → lanG(F ) ◦G being the component in
F of the unit of an adjunction, therefore we have just proved the following result.

Proposition A.5.5. GivenG : A → C, let (−) ◦G : BC → BA be the precomposition functor. Then (−) ◦G
has a left adjoint if and only if a left Kan extension (lanG(F ), ηF ) exists for every F : A → B.

Take now two functors G : A → C and H : C → D with the property that left Kan extension along
them always exists. Since left adjoints compose, by the previous proposition we get that a left Kan exten-
sion of F : A → B along H ◦ G exists and it is given by

(
lanH(lanG(F )),

(
η

lanG(F ) ∗G
)
◦ ηF

)
. We can

give a slightly more general result.
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Lemma A.5.6. Let G : A → C,H : C → D and F : A → B be three functors such that both the left Kan ex-
tensions (lanG(F ), ηF ) and

(
lanH(lanG(F )), η

lanG(F )

)
exist. Then

(
lanH(lanG(F )),

(
η

lanG(F ) ∗G
)
◦ ηF

)

is a left Kan extension of F alongH ◦G.

Proof. Given K : D → B, by hypothesis we have a bijection

BD(lanH(lanG(F )),K) → BC(lanG(F ),K ◦H) µ 7→ (µ ∗H) ◦ η
lanG(F )

On the other hand, we also have another bijection

BC(lanG(F ),K ◦H) → BA(F,H ◦ (H ◦G)) ν 7→ (ν ∗G) ◦ ηF

Composing then we get a third bijection

BD(lanH(lanG(F )),K) → BA(F,H ◦ (H ◦G)) λ 7→ (λ ∗ (H ◦G)) ◦
(
η

lanG(F ) ∗G
)
◦ ηF

which proves the thesis.

We are now going to show how to compute left Kan extensions via colimits.

Definition A.5.7. Let G : A → C be a functor. For every C ∈ C, the category G/C has as objects pairs
(A, g) made by A ∈ A and g : G(A) → C, while an arrow h : (A, g) → (A′, g′) is an arrow h : A → A′

in A such that the triangle below commutes.

G(A)
G(h) //

g
!!D

DD
DD

DD
D

G(A′)

g′||yy
yy
yy
yy

C

Remark A.5.8. Let δC : 1 → C the functor picking the object C, as in Proposition A.3.5, we can define
functors F : G↓δC → G/C and G : G/C → G↓δC as follows.

(Y ′, ∗, g)

(h, id∗)

−
→

(Y, ∗, f)

7−→

7−→

g

−
→ h

f

g

h

−
→

f

7−→

7−→

(dom(g), ∗, g)

−
→ (h, id∗)

(dom(f), ∗, f)

giving us an isomorphism between G↓δC and G/C.

Now, we have a forgetful functor VC : G/C → A defined by

(A′, g′)

h

−
→

(A, g)

7−→

7−→

A′

−
→ h

A

If F : A → B is any other functor, we will denote by VC,F the composition F ◦ V .

Proposition A.5.9. Let F : A → B and G : A → C be two functors such that VC,F has a colimiting cocone(
BC ,

{
j(A,g)

}
(A,g)∈G/C

)
for every C ∈ C. Then F has a left Kan extension along G, such that

lanG(F )(C) = BC ηF,A = j(A,idG(A))
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Proof. Let f : C → C ′ be an arrow of C. Then we can define lanG(F )(f) : BC → BC′ as the unique
arrow fitting in the diagram below

F (A)
j(A,g)

||yy
yy
yy
yy j(A,f◦g)

""F
FF

FF
FF

F

BC
lanG(F )(f)

// BC′

Clearly lanG(F )(f idC) = idBC
, moreover, if f ′ : C ′ → C ′′

lanG(F )(f ′ ◦ f) ◦ j(A,g) = j(A,f ′◦f◦g)

= lanG(F )(f ′) ◦ j(A,f◦g)
= lanG(F )(f ′) ◦ lanG(F )(f) ◦ j(A,g)

showing that we have built a functor lanG(F ) : C → B. Moreover, given f : A → A′, if we take ηF,A to
be j(A,idG(A)), then we have

lanG(F )(G(f)) ◦ ηF,A = lanG(F )(G(f)) ◦ j(A,idG(A))

= jA,G(f)◦idG(A)

= j(A,G(f))

= j(A′,idG(A′))
◦ F (f)

= ηF,A′ ◦ F (f)

showing the existence of ηF : F → lanG(F ) ◦ G. Now let λ be any other natural transformation F →
H◦G. For every (A, g) inG/C we can define an arrow F (A) → H(C) taking the compositionH(g)◦λA.
Given h : (A, g) → (A′, g′) we have

H(g′) ◦ λA′ ◦ F (h) = H(g′) ◦H(G(h)) ◦ λA

= H(g′ ◦G(h)) ◦ λA

= H(g) ◦ λA

showing that
(
H(C), {H(g) ◦ λA}(A,g)∈G/C

)
is a cocone on VC,F . Let λC be the induced arrow BC →

H(C). Given f : C → C ′, for every (A, g) ∈ G/C we have

H(f) ◦ λC ◦ j(A,g) = H(f) ◦H(g) ◦ λA

= H(f ◦ g) ◦ λA

= λC′ ◦ j(A,f◦g)

= λC′ ◦ lanG(F )(f)j(A,g)

and thus we have a natural transformation λ : lanG(F ) → H . By construction, we also have

λG(A) ◦ jA,idG(A)
= H(idG(A)) ◦ λA

= λA
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On the other hand, if γ is another natural transformation lanG(F ) → H such that

λA = γG(A) ◦ jA,idG(A)

then, for every object (A, g) of G/C, we must have

γC ◦ j(A,g) = γC ◦ lanG(F )(g) ◦ j(A,idG(A))

= H(g) ◦ γG(A) ◦ jA,idG(A)

= H(g) ◦ λA

= λC ◦ j(A,g)

Therefore we can conclude that γ = λ, from which the thesis follows.

Remark A.5.4 and Proposition A.5.9 now yield at once the following result.

Corollary A.5.10. Let F : A → B and G : A → C be two functors. If A is essentially small and B is cocom-

plete, then for every object C ofC,
(

lanG(F )(C), {lanG(F )(g) ◦ ηF,A}(A,g)∈G/C

)
is a colimiting cocone for

the functor VC,F : G/C → B.

Let F : A → B be a functor with a cocomplete codomain, and suppose that G : A → C is another
functor such that a left Kan extension (lanG(F ), ηF ) exists. For every C ∈ C we can define a functor
TC : Aop × A → B in the following way. A pair (A,A′) is sent to C(G(A), C) • F (A′), while the image
of f1 : A′

1 → A1 and f2 : A2 → A′
2 is the unique arrow fitting in the diagram below.

F (A2)
F (f2) //

ιg

��

F (A′
2)

ι′g◦G(f1)

��
C(G(A1), C) • F (A2)

TC(f1,f2)
// C(G(A′

1), C) • F (A
′
2)

where ιg : F (A2) → C(G(A1), C) •F (A2) and ι′g◦G(f1)
: F (A′

2) → C(G(A′
1), C) •F (A

′
2) are the copro-

jections corresponding to, respectively, g : G(A1) → C and g ◦G(f1) : G(A′
1) → C.

Using Proposition A.5.9 we can now establish a link between left Kan extension and coends.

Theorem A.5.11. Let F : A → B and G : A → C be two functors and suppose that B is cocomplete. If

a coend ω for TC exists, then
(∫ A∈A

TC(A,A),
{
ωA ◦ k(A,g)

}
(A,g)∈G/C

)
is a colimiting cocone for VC,F ,

where k(A,g) is the coprojection F (A) → TC(A,A). In particular, there is a left Kan extension of F along G
such that

lanG(F )(C) =
∫ A∈A

C(G(A), C) • F (A) ηF,A = ωA ◦ k(A,idG(A))

Proof. Let us start showing that
(∫ A∈A

TC(A,A),
{
ωA ◦ k(A,g)

}
(A,g)∈G/C

)
is a cocone on VC,F . This
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follows at once noticing that, for every h : (A′, g′) → (A′, g), we have a commutative diagram

C(G(A′), C) • F (A′) ωA′

��

F (A′)
ιg

//

F (h)

��

k(A′,g′)

66

C(G(A), C) • F (A′)

TC(h,idA′ )

OO

TC(idA,h)

��

∫ A∈A
C(G(A), C) • F (A)

F (A)
kg

// C(G(A), C) • F (A) ωA

@@

Now let
(
B,
{
b(A,g)

}
(A,g)∈G(C)

)
be another cocone, then for everyA ∈ Awe can defineω′

A : C(G(A), C)•

F (A) as the unique arrow such that

b(A,g) = ω′
A ◦ k(A,g)

To see that {ω′
A}A∈A is indeed a cowedgeω′ for TC it is enough to notice that the diagram below commutes

F (A′)

F (f)

��
bA′,g◦G(f)

""

ιg

xx

ιg

$$

k(A′,g◦G(f))

{{

C(G(A), C) • F (A′)

TC(f,idA′ )

��

F (A)

k(A,g)

))RRR
RRR

RRR
RRR

RRR

b(A,g)

��

C(G(A), C) • F (A′)

TC(idA,f)
��

C(G(A′), C) • F (A′)
ω′

A′

// B C(G(A), C) • F (A)
ω′

A

oo

Then we know that there exists a unique f :
∫ A∈A

TC(A,A) → B such that

f ◦ ωA ◦ k(A,g) = ω′
A ◦ k(A,g)

= b(A,g)

which is precisely the thesis.

We want to proceed in the other direction. Take F and G as before and suppose that a left Kan
extension (lanG(F ), ηF ) of F along G exists. Using ηF we can build a cowedge on TC : for every A ∈ A,
define ωA : TC(A,A) → lanG(F )(C) as the unique arrow filling the diagram

F (A)
k(A,g) //

ηF,A

��

C(G(A), C) • F (A)

ωA

��
lanG(F )(G(A))

lanG(F )(g)
// lanG(F )(C)

To see that in this way we get a cowedge, let f be an arrow A′ → A in A, then it is enough to notice that,



A.5. A crash course on coends and Kan extensions 325

for every g : G(A) → C the following diagram commutes.

F (A′)

F (f)

��

ηF,A′

��

ιg

vv

ιg

&&
k(A′,g◦G(f))

��

C(G(A), C) • F (A′)

TC(f,idA′ )

��

C(G(A), C) • F (A′)

TC(idA,f)

��

lanG(F )(G(A′))

lanG(F )(G(f))

))

lanG(F )(g◦G(f))

((

F (A)

k(A,g)

''NN
NNN

NNN
NNN

ηF,Avv
C(G(A′), C) • F (A′)

ωA′ //

lanG(F )(G(A))

lanG(F )(g)

��

C(G(A), C) • F (A)

ωApplanG(F )(C)

Theorem A.5.12. Let F : A → B be a functor with a cocomplete codomain, ifG : A → C is any functor such
that a left Kan extension (lanG(F ), ηF ) exists, then for every C ∈ C the cowedge {ωA}A∈A defined above is a
coend for the functor TC .

Proof. We have to show that {ωA}A∈A is initial in cwd(TC). Let {ω′
A}A∈A be a cowedge for TC and

denote by B the common codomain of each ω′
A. Now, given a morphism h : (A′, g′) → (A, g) in G/C,

if k(A,g) is the coprojection F (A) → TC(A,A), then we have a diagram

C(G(A′), C) • F (A′)
ω′

A′

��
F (A′)

ιg
//

F (h)

��

k(A′,g′)
66

C(G(A), C) • F (A′)

TC(h,idA′ )

OO

TC(idA,h)
��

B

F (A)
kg

// C(G(A), C) • F (A)
ω′

A

DD

which shows that
(
B,
{
ω′
A ◦ k(A,g)

}
(A,g)∈G(C)

)
is a cocone on VC,F . By Corollary A.5.10, there exists

a unique f : lanG(F )(C) → B such that

ω′
A ◦ k(A,g) = f ◦ lanG(F )(g) ◦ ηF,A

= f ◦ ωA ◦ k(A,g)

and the thesis now follows.

We can sum up the results contained in Theorem A.5.12 and Theorem A.5.11 to get the following.

Corollary A.5.13. LetA be an essentially small category andB a cocomplete one. Given two functorsF : A →
B and G : A → C, if (lanG(F ), ηF ) is a left Kan extension of F along G, then

lanG(F ) '
∫ A∈A

C(G(A),−) • F (A)
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- for a fuzzy signature, 112
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Eilenberg-Moore -, 10
Heyting -, 88
quotient -, 71

axiom, 68, 120

bigraphs, 258

category
κ-filtered -, 44
κ-small -, 45
E -cowellpowered -, 41, 140
M-adhesive -, 173
M,N -adhesive -, 172
adhesive -, 174
comma -, 179–182, 309
locally κ-presentable -, 54
monadic -, 13
quasiadhesive -, 175
regular -, 34
rm-adhesive -, 175
slice -, 310
strictly monadic -, 13

closure
- under B-decomposition, 170
- under M,N -unions, 190
- under composition, 170
- under decomposition, 170

codiagonal, 199
N -, 199

coend, 57, 319
coequalizer

reflexive -, 24
split -, 38

coimage, 35
colimit

κ-filtered -, 45
- of Eilenberg-Moore algebras, 22–27
- of fuzzy sets, 97
creation of -, 305
jointly creation of -, 176
jointly preservation of -, 176
jointly reflection of -, 176
preservation of -, 305
reflection of -, 305

completeness
EX -, 143
- for algebraic theories, 73
- for fuzzy algebraic theories, 129

congruence, 71
constant, 110
context, 67, 115
covering family, 219

jM,N -, 219
cowedge, 319
cycle, 230

deductive closure, 67, 116
downward closed morphism, 236

edge-reflecting morphism, 234
element

κ-compact -, 52
equation, 67, 115

- in an MU-structure, see X -equation
derivable -, 67
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factorization system, 28
- on EM(T), 31
- on Fuz(H), 99
proper -, 28, 140
stable -, 28
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frame, 90

locally κ-compact -, 107
free

- Σ-algebra, 61–67
- Eilenberg-Moore algebra, 12
- model, 71–75, 123–134

functor
comparison -, 12
cotopological -, 92
monadic -, 13
semantic, 79
strictly monadic -, 13
topological -, 91

fuzzy
-set, 96
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extremal -, 54
strong -, 54

graph, 230
directed -, 230
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edge of a -, 230
hierarchical -, 247
node of a -, 230

group
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hypergraph, 249, $DAG−258, $SGraph-258

algebraically labelled -, 255
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ideal, 106
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interface, 248, 258, 259
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Kleene star, 9, 249

labelling functions, 254
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lattice

κ-algebraic -, 55, 102
κ-continuous -, 107

left Kan extension, 21, 57, 103, 320
- and rank, 57
coend formula for -, 21, 57

left lifting property, 28
lift, 91
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limit
- of Eilenberg-Moore algebras, 21–22
- of fuzzy sets, 97
creation of -, 305
jointly creation of -, 176
jointly preservation of -, 176
jointly reflection of -, 176
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reflection of -, 305

matching class, 182
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- degree function, 96
- proposition, 115

model, 68, 120
free -, see free, - model

monad, 8
- from an adjunction, 9, 12
- induced by a fuzzy algebraic theory, 134
- induced by an algebraic theory, 75
- morphism, 16–21
- with rank, 59
exception -, 8
continuation -, 9
multiplication of a -, 8
state -, 9
unit of a -, 8
writer -, 8

morphism
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N -preadhesive -, 182
- of fuzzy sets, 96
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preadhesive -, 182

MU-structure
- on Σ-FAlg, 146–147

negation, 89
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object
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operation, 60, 110
arity of a -, 60, 110

path, 230
poset

κ-directed -, 45
predecessor, 244
pullback

- functor, 34, 313
left cancellation property, 168
wide -, 29, 319

pushout
- functor, 314
- square, 160
Van Kampen -, see Van Kampen square
wide -, 29

quotient
EX -, 140

rank
- of a functor, 52
- of a monad, 59
- of exponentials, 105–110

satisfability, 68, 120
- of a X -equation, 141
- of a sequent, 120
- of an X -equational theory, 143

semilattice
κ-complete -, 15
complete -, 13

sequent, 115
e-, 148
- associated to an XM-equation, 148
- of type M, 151
derivable -, 116
unconditional -, 151

signature
κ-accessible fuzzy -, 110
κ-bounded -, 60
κ-bounded fuzzy -, 110
- associated to a monad, 80
- of fuzzy groups, 111
- of fuzzy semigroups, 111
- of groups, 60

- of monoids, 60
- of semigroups, 60
algebraic -, 60, 255
fuzzy -, 110
fuzzy - extended by a set, 123
strongly κ-bounded fuzzy -, 110
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U -structured -, 91

source, 29
U -structured -, 91

stability
- under pullbacks, 170
- under pushouts, 170

stable system of monos, 173
strict morphism, 244
structure

cd-, 220
MU-, 140
preadhesive -, 172
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M-, 140

subobject classifier, 212
substitution invariance, 143
support, 96

term, 63, 115
term graph, 291
theory, 68, 120

- associated to a monad, 82
- extended by a fuzzy set, 125
- of fuzzy groups, 122
- of fuzzy semigroups, 121
- of groups, 70
- of ideals, 122
- of left ideals, 121
- of monoids, 70
- of normal fuzzy groups, 122
- of righti deals, 121
- of semigroups, 70
- of type M, 151
basic -, 136
empty -, 70, 121
unconditional -, 151

topos, 34, 212
tree order, 244

Van Kampen square, 160
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word, 9
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